Banner Image

Quantitative and Qualitative Research

  • I NEED TO . . .

What is Quantitative Research?

  • What is Qualitative Research?
  • Quantitative vs Qualitative
  • Step 1: Accessing CINAHL
  • Step 2: Create a Keyword Search
  • Step 3: Create a Subject Heading Search
  • Step 4: Repeat Steps 1-3 for Second Concept
  • Step 5: Repeat Steps 1-3 for Quantitative Terms
  • Step 6: Combining All Searches
  • Step 7: Adding Limiters
  • Step 8: Save Your Search!
  • What Kind of Article is This?
  • More Research Help This link opens in a new window

Quantitative methodology is the dominant research framework in the social sciences. It refers to a set of strategies, techniques and assumptions used to study psychological, social and economic processes through the exploration of numeric patterns . Quantitative research gathers a range of numeric data. Some of the numeric data is intrinsically quantitative (e.g. personal income), while in other cases the numeric structure is  imposed (e.g. ‘On a scale from 1 to 10, how depressed did you feel last week?’). The collection of quantitative information allows researchers to conduct simple to extremely sophisticated statistical analyses that aggregate the data (e.g. averages, percentages), show relationships among the data (e.g. ‘Students with lower grade point averages tend to score lower on a depression scale’) or compare across aggregated data (e.g. the USA has a higher gross domestic product than Spain). Quantitative research includes methodologies such as questionnaires, structured observations or experiments and stands in contrast to qualitative research. Qualitative research involves the collection and analysis of narratives and/or open-ended observations through methodologies such as interviews, focus groups or ethnographies.

Coghlan, D., Brydon-Miller, M. (2014).  The SAGE encyclopedia of action research  (Vols. 1-2). London, : SAGE Publications Ltd doi: 10.4135/9781446294406

What is the purpose of quantitative research?

The purpose of quantitative research is to generate knowledge and create understanding about the social world. Quantitative research is used by social scientists, including communication researchers, to observe phenomena or occurrences affecting individuals. Social scientists are concerned with the study of people. Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population.

Allen, M. (2017).  The SAGE encyclopedia of communication research methods  (Vols. 1-4). Thousand Oaks, CA: SAGE Publications, Inc doi: 10.4135/9781483381411

How do I know if the study is a quantitative design?  What type of quantitative study is it?

Quantitative Research Designs: Descriptive non-experimental, Quasi-experimental or Experimental?

Studies do not always explicitly state what kind of research design is being used.  You will need to know how to decipher which design type is used.  The following video will help you determine the quantitative design type.

  • << Previous: I NEED TO . . .
  • Next: What is Qualitative Research? >>
  • Last Updated: May 13, 2024 12:01 PM
  • URL: https://libguides.uta.edu/quantitative_and_qualitative_research

University of Texas Arlington Libraries 702 Planetarium Place · Arlington, TX 76019 · 817-272-3000

  • Internet Privacy
  • Accessibility
  • Problems with a guide? Contact Us.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.
  • Privacy Policy

Research Method

Home » Quantitative Research – Methods, Types and Analysis

Quantitative Research – Methods, Types and Analysis

Table of Contents

What is Quantitative Research

Quantitative Research

Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions . This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected. It often involves the use of surveys, experiments, or other structured data collection methods to gather quantitative data.

Quantitative Research Methods

Quantitative Research Methods

Quantitative Research Methods are as follows:

Descriptive Research Design

Descriptive research design is used to describe the characteristics of a population or phenomenon being studied. This research method is used to answer the questions of what, where, when, and how. Descriptive research designs use a variety of methods such as observation, case studies, and surveys to collect data. The data is then analyzed using statistical tools to identify patterns and relationships.

Correlational Research Design

Correlational research design is used to investigate the relationship between two or more variables. Researchers use correlational research to determine whether a relationship exists between variables and to what extent they are related. This research method involves collecting data from a sample and analyzing it using statistical tools such as correlation coefficients.

Quasi-experimental Research Design

Quasi-experimental research design is used to investigate cause-and-effect relationships between variables. This research method is similar to experimental research design, but it lacks full control over the independent variable. Researchers use quasi-experimental research designs when it is not feasible or ethical to manipulate the independent variable.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This research method involves manipulating the independent variable and observing the effects on the dependent variable. Researchers use experimental research designs to test hypotheses and establish cause-and-effect relationships.

Survey Research

Survey research involves collecting data from a sample of individuals using a standardized questionnaire. This research method is used to gather information on attitudes, beliefs, and behaviors of individuals. Researchers use survey research to collect data quickly and efficiently from a large sample size. Survey research can be conducted through various methods such as online, phone, mail, or in-person interviews.

Quantitative Research Analysis Methods

Here are some commonly used quantitative research analysis methods:

Statistical Analysis

Statistical analysis is the most common quantitative research analysis method. It involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis can be used to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.

Regression Analysis

Regression analysis is a statistical technique used to analyze the relationship between one dependent variable and one or more independent variables. Researchers use regression analysis to identify and quantify the impact of independent variables on the dependent variable.

Factor Analysis

Factor analysis is a statistical technique used to identify underlying factors that explain the correlations among a set of variables. Researchers use factor analysis to reduce a large number of variables to a smaller set of factors that capture the most important information.

Structural Equation Modeling

Structural equation modeling is a statistical technique used to test complex relationships between variables. It involves specifying a model that includes both observed and unobserved variables, and then using statistical methods to test the fit of the model to the data.

Time Series Analysis

Time series analysis is a statistical technique used to analyze data that is collected over time. It involves identifying patterns and trends in the data, as well as any seasonal or cyclical variations.

Multilevel Modeling

Multilevel modeling is a statistical technique used to analyze data that is nested within multiple levels. For example, researchers might use multilevel modeling to analyze data that is collected from individuals who are nested within groups, such as students nested within schools.

Applications of Quantitative Research

Quantitative research has many applications across a wide range of fields. Here are some common examples:

  • Market Research : Quantitative research is used extensively in market research to understand consumer behavior, preferences, and trends. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform marketing strategies, product development, and pricing decisions.
  • Health Research: Quantitative research is used in health research to study the effectiveness of medical treatments, identify risk factors for diseases, and track health outcomes over time. Researchers use statistical methods to analyze data from clinical trials, surveys, and other sources to inform medical practice and policy.
  • Social Science Research: Quantitative research is used in social science research to study human behavior, attitudes, and social structures. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform social policies, educational programs, and community interventions.
  • Education Research: Quantitative research is used in education research to study the effectiveness of teaching methods, assess student learning outcomes, and identify factors that influence student success. Researchers use experimental and quasi-experimental designs, as well as surveys and other quantitative methods, to collect and analyze data.
  • Environmental Research: Quantitative research is used in environmental research to study the impact of human activities on the environment, assess the effectiveness of conservation strategies, and identify ways to reduce environmental risks. Researchers use statistical methods to analyze data from field studies, experiments, and other sources.

Characteristics of Quantitative Research

Here are some key characteristics of quantitative research:

  • Numerical data : Quantitative research involves collecting numerical data through standardized methods such as surveys, experiments, and observational studies. This data is analyzed using statistical methods to identify patterns and relationships.
  • Large sample size: Quantitative research often involves collecting data from a large sample of individuals or groups in order to increase the reliability and generalizability of the findings.
  • Objective approach: Quantitative research aims to be objective and impartial in its approach, focusing on the collection and analysis of data rather than personal beliefs, opinions, or experiences.
  • Control over variables: Quantitative research often involves manipulating variables to test hypotheses and establish cause-and-effect relationships. Researchers aim to control for extraneous variables that may impact the results.
  • Replicable : Quantitative research aims to be replicable, meaning that other researchers should be able to conduct similar studies and obtain similar results using the same methods.
  • Statistical analysis: Quantitative research involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis allows researchers to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.
  • Generalizability: Quantitative research aims to produce findings that can be generalized to larger populations beyond the specific sample studied. This is achieved through the use of random sampling methods and statistical inference.

Examples of Quantitative Research

Here are some examples of quantitative research in different fields:

  • Market Research: A company conducts a survey of 1000 consumers to determine their brand awareness and preferences. The data is analyzed using statistical methods to identify trends and patterns that can inform marketing strategies.
  • Health Research : A researcher conducts a randomized controlled trial to test the effectiveness of a new drug for treating a particular medical condition. The study involves collecting data from a large sample of patients and analyzing the results using statistical methods.
  • Social Science Research : A sociologist conducts a survey of 500 people to study attitudes toward immigration in a particular country. The data is analyzed using statistical methods to identify factors that influence these attitudes.
  • Education Research: A researcher conducts an experiment to compare the effectiveness of two different teaching methods for improving student learning outcomes. The study involves randomly assigning students to different groups and collecting data on their performance on standardized tests.
  • Environmental Research : A team of researchers conduct a study to investigate the impact of climate change on the distribution and abundance of a particular species of plant or animal. The study involves collecting data on environmental factors and population sizes over time and analyzing the results using statistical methods.
  • Psychology : A researcher conducts a survey of 500 college students to investigate the relationship between social media use and mental health. The data is analyzed using statistical methods to identify correlations and potential causal relationships.
  • Political Science: A team of researchers conducts a study to investigate voter behavior during an election. They use survey methods to collect data on voting patterns, demographics, and political attitudes, and analyze the results using statistical methods.

How to Conduct Quantitative Research

Here is a general overview of how to conduct quantitative research:

  • Develop a research question: The first step in conducting quantitative research is to develop a clear and specific research question. This question should be based on a gap in existing knowledge, and should be answerable using quantitative methods.
  • Develop a research design: Once you have a research question, you will need to develop a research design. This involves deciding on the appropriate methods to collect data, such as surveys, experiments, or observational studies. You will also need to determine the appropriate sample size, data collection instruments, and data analysis techniques.
  • Collect data: The next step is to collect data. This may involve administering surveys or questionnaires, conducting experiments, or gathering data from existing sources. It is important to use standardized methods to ensure that the data is reliable and valid.
  • Analyze data : Once the data has been collected, it is time to analyze it. This involves using statistical methods to identify patterns, trends, and relationships between variables. Common statistical techniques include correlation analysis, regression analysis, and hypothesis testing.
  • Interpret results: After analyzing the data, you will need to interpret the results. This involves identifying the key findings, determining their significance, and drawing conclusions based on the data.
  • Communicate findings: Finally, you will need to communicate your findings. This may involve writing a research report, presenting at a conference, or publishing in a peer-reviewed journal. It is important to clearly communicate the research question, methods, results, and conclusions to ensure that others can understand and replicate your research.

When to use Quantitative Research

Here are some situations when quantitative research can be appropriate:

  • To test a hypothesis: Quantitative research is often used to test a hypothesis or a theory. It involves collecting numerical data and using statistical analysis to determine if the data supports or refutes the hypothesis.
  • To generalize findings: If you want to generalize the findings of your study to a larger population, quantitative research can be useful. This is because it allows you to collect numerical data from a representative sample of the population and use statistical analysis to make inferences about the population as a whole.
  • To measure relationships between variables: If you want to measure the relationship between two or more variables, such as the relationship between age and income, or between education level and job satisfaction, quantitative research can be useful. It allows you to collect numerical data on both variables and use statistical analysis to determine the strength and direction of the relationship.
  • To identify patterns or trends: Quantitative research can be useful for identifying patterns or trends in data. For example, you can use quantitative research to identify trends in consumer behavior or to identify patterns in stock market data.
  • To quantify attitudes or opinions : If you want to measure attitudes or opinions on a particular topic, quantitative research can be useful. It allows you to collect numerical data using surveys or questionnaires and analyze the data using statistical methods to determine the prevalence of certain attitudes or opinions.

Purpose of Quantitative Research

The purpose of quantitative research is to systematically investigate and measure the relationships between variables or phenomena using numerical data and statistical analysis. The main objectives of quantitative research include:

  • Description : To provide a detailed and accurate description of a particular phenomenon or population.
  • Explanation : To explain the reasons for the occurrence of a particular phenomenon, such as identifying the factors that influence a behavior or attitude.
  • Prediction : To predict future trends or behaviors based on past patterns and relationships between variables.
  • Control : To identify the best strategies for controlling or influencing a particular outcome or behavior.

Quantitative research is used in many different fields, including social sciences, business, engineering, and health sciences. It can be used to investigate a wide range of phenomena, from human behavior and attitudes to physical and biological processes. The purpose of quantitative research is to provide reliable and valid data that can be used to inform decision-making and improve understanding of the world around us.

Advantages of Quantitative Research

There are several advantages of quantitative research, including:

  • Objectivity : Quantitative research is based on objective data and statistical analysis, which reduces the potential for bias or subjectivity in the research process.
  • Reproducibility : Because quantitative research involves standardized methods and measurements, it is more likely to be reproducible and reliable.
  • Generalizability : Quantitative research allows for generalizations to be made about a population based on a representative sample, which can inform decision-making and policy development.
  • Precision : Quantitative research allows for precise measurement and analysis of data, which can provide a more accurate understanding of phenomena and relationships between variables.
  • Efficiency : Quantitative research can be conducted relatively quickly and efficiently, especially when compared to qualitative research, which may involve lengthy data collection and analysis.
  • Large sample sizes : Quantitative research can accommodate large sample sizes, which can increase the representativeness and generalizability of the results.

Limitations of Quantitative Research

There are several limitations of quantitative research, including:

  • Limited understanding of context: Quantitative research typically focuses on numerical data and statistical analysis, which may not provide a comprehensive understanding of the context or underlying factors that influence a phenomenon.
  • Simplification of complex phenomena: Quantitative research often involves simplifying complex phenomena into measurable variables, which may not capture the full complexity of the phenomenon being studied.
  • Potential for researcher bias: Although quantitative research aims to be objective, there is still the potential for researcher bias in areas such as sampling, data collection, and data analysis.
  • Limited ability to explore new ideas: Quantitative research is often based on pre-determined research questions and hypotheses, which may limit the ability to explore new ideas or unexpected findings.
  • Limited ability to capture subjective experiences : Quantitative research is typically focused on objective data and may not capture the subjective experiences of individuals or groups being studied.
  • Ethical concerns : Quantitative research may raise ethical concerns, such as invasion of privacy or the potential for harm to participants.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Case Study Research

Case Study – Methods, Examples and Guide

Observational Research

Observational Research – Methods and Guide

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

Survey Research

Survey Research – Types, Methods, Examples

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • What Is Quantitative Research? | Definition & Methods

What Is Quantitative Research? | Definition & Methods

Published on 4 April 2022 by Pritha Bhandari . Revised on 10 October 2022.

Quantitative research is the process of collecting and analysing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalise results to wider populations.

Quantitative research is the opposite of qualitative research , which involves collecting and analysing non-numerical data (e.g. text, video, or audio).

Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc.

  • What is the demographic makeup of Singapore in 2020?
  • How has the average temperature changed globally over the last century?
  • Does environmental pollution affect the prevalence of honey bees?
  • Does working from home increase productivity for people with long commutes?

Table of contents

Quantitative research methods, quantitative data analysis, advantages of quantitative research, disadvantages of quantitative research, frequently asked questions about quantitative research.

You can use quantitative research methods for descriptive, correlational or experimental research.

  • In descriptive research , you simply seek an overall summary of your study variables.
  • In correlational research , you investigate relationships between your study variables.
  • In experimental research , you systematically examine whether there is a cause-and-effect relationship between variables.

Correlational and experimental research can both be used to formally test hypotheses , or predictions, using statistics. The results may be generalised to broader populations based on the sampling method used.

To collect quantitative data, you will often need to use operational definitions that translate abstract concepts (e.g., mood) into observable and quantifiable measures (e.g., self-ratings of feelings and energy levels).

Prevent plagiarism, run a free check.

Once data is collected, you may need to process it before it can be analysed. For example, survey and test data may need to be transformed from words to numbers. Then, you can use statistical analysis to answer your research questions .

Descriptive statistics will give you a summary of your data and include measures of averages and variability. You can also use graphs, scatter plots and frequency tables to visualise your data and check for any trends or outliers.

Using inferential statistics , you can make predictions or generalisations based on your data. You can test your hypothesis or use your sample data to estimate the population parameter .

You can also assess the reliability and validity of your data collection methods to indicate how consistently and accurately your methods actually measured what you wanted them to.

Quantitative research is often used to standardise data collection and generalise findings . Strengths of this approach include:

  • Replication

Repeating the study is possible because of standardised data collection protocols and tangible definitions of abstract concepts.

  • Direct comparisons of results

The study can be reproduced in other cultural settings, times or with different groups of participants. Results can be compared statistically.

  • Large samples

Data from large samples can be processed and analysed using reliable and consistent procedures through quantitative data analysis.

  • Hypothesis testing

Using formalised and established hypothesis testing procedures means that you have to carefully consider and report your research variables, predictions, data collection and testing methods before coming to a conclusion.

Despite the benefits of quantitative research, it is sometimes inadequate in explaining complex research topics. Its limitations include:

  • Superficiality

Using precise and restrictive operational definitions may inadequately represent complex concepts. For example, the concept of mood may be represented with just a number in quantitative research, but explained with elaboration in qualitative research.

  • Narrow focus

Predetermined variables and measurement procedures can mean that you ignore other relevant observations.

  • Structural bias

Despite standardised procedures, structural biases can still affect quantitative research. Missing data , imprecise measurements or inappropriate sampling methods are biases that can lead to the wrong conclusions.

  • Lack of context

Quantitative research often uses unnatural settings like laboratories or fails to consider historical and cultural contexts that may affect data collection and results.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research , you also have to consider the internal and external validity of your experiment.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, October 10). What Is Quantitative Research? | Definition & Methods. Scribbr. Retrieved 21 May 2024, from https://www.scribbr.co.uk/research-methods/introduction-to-quantitative-research/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

  • Reviews / Why join our community?
  • For companies
  • Frequently asked questions

Quantitative Research

What is Quantitative Research?

Quantitative research is the methodology which researchers use to test theories about people’s attitudes and behaviors based on numerical and statistical evidence. Researchers sample a large number of users (e.g., through surveys) to indirectly obtain measurable, bias-free data about users in relevant situations.

“Quantification clarifies issues which qualitative analysis leaves fuzzy. It is more readily contestable and likely to be contested. It sharpens scholarly discussion, sparks off rival hypotheses, and contributes to the dynamics of the research process.” — Angus Maddison, Notable scholar of quantitative macro-economic history
  • Transcript loading…

See how quantitative research helps reveal cold, hard facts about users which you can interpret and use to improve your designs.

Use Quantitative Research to Find Mathematical Facts about Users

Quantitative research is a subset of user experience (UX) research . Unlike its softer, more individual-oriented “counterpart”, qualitative research , quantitative research means you collect statistical/numerical data to draw generalized conclusions about users’ attitudes and behaviors . Compare and contrast quantitative with qualitative research, below:

Qualitative Research

You Aim to Determine

The “what”, “where” & “when” of the users’ needs & problems – to help keep your project’s focus on track during development

The “why” – to get behind how users approach their problems in their world

Highly structured (e.g., surveys) – to gather data about what users do & find patterns in large user groups

Loosely structured (e.g., contextual inquiries) – to learn why users behave how they do & explore their opinions

Number of Representative Users

Ideally 30+

Often around 5

Level of Contact with Users

Less direct & more remote (e.g., analytics)

More direct & less remote (e.g., usability testing to examine users’ stress levels when they use your design)

Statistically

Reliable – if you have enough test users

Less reliable, with need for great care with handling non-numerical data (e.g., opinions), as your own opinions might influence findings

Quantitative research is often best done from early on in projects since it helps teams to optimally direct product development and avoid costly design mistakes later. As you typically get user data from a distance—i.e., without close physical contact with users—also applying qualitative research will help you investigate why users think and feel the ways they do. Indeed, in an iterative design process quantitative research helps you test the assumptions you and your design team develop from your qualitative research. Regardless of the method you use, with proper care you can gather objective and unbiased data – information which you can complement with qualitative approaches to build a fuller understanding of your target users. From there, you can work towards firmer conclusions and drive your design process towards a more realistic picture of how target users will ultimately receive your product.

quantitative research study definition

Quantitative analysis helps you test your assumptions and establish clearer views of your users in their various contexts.

Quantitative Research Methods You Can Use to Guide Optimal Designs

There are many quantitative research methods, and they help uncover different types of information on users. Some methods, such as A/B testing, are typically done on finished products, while others such as surveys could be done throughout a project’s design process. Here are some of the most helpful methods:

A/B testing – You test two or more versions of your design on users to find the most effective. Each variation differs by just one feature and may or may not affect how users respond. A/B testing is especially valuable for testing assumptions you’ve drawn from qualitative research. The only potential concerns here are scale—in that you’ll typically need to conduct it on thousands of users—and arguably more complexity in terms of considering the statistical significance involved.

Analytics – With tools such as Google Analytics, you measure metrics (e.g., page views, click-through rates) to build a picture (e.g., “How many users take how long to complete a task?”).

Desirability Studies – You measure an aspect of your product (e.g., aesthetic appeal) by typically showing it to participants and asking them to select from a menu of descriptive words. Their responses can reveal powerful insights (e.g., 78% associate the product/brand with “fashionable”).

Surveys and Questionnaires – When you ask for many users’ opinions, you will gain massive amounts of information. Keep in mind that you’ll have data about what users say they do, as opposed to insights into what they do . You can get more reliable results if you incentivize your participants well and use the right format.

Tree Testing – You remove the user interface so users must navigate the site and complete tasks using links alone. This helps you see if an issue is related to the user interface or information architecture.

Another powerful benefit of conducting quantitative research is that you can keep your stakeholders’ support with hard facts and statistics about your design’s performance—which can show what works well and what needs improvement—and prove a good return on investment. You can also produce reports to check statistics against different versions of your product and your competitors’ products.

Most quantitative research methods are relatively cheap. Since no single research method can help you answer all your questions, it’s vital to judge which method suits your project at the time/stage. Remember, it’s best to spend appropriately on a combination of quantitative and qualitative research from early on in development. Design improvements can be costly, and so you can estimate the value of implementing changes when you get the statistics to suggest that these changes will improve usability. Overall, you want to gather measurements objectively, where your personality, presence and theories won’t create bias.

Learn More about Quantitative Research

Take our User Research course to see how to get the most from quantitative research.

See how quantitative research methods fit into your design research landscape .

This insightful piece shows the value of pairing quantitative with qualitative research .

Find helpful tips on combining quantitative research methods in mixed methods research .

Questions related to Quantitative Research

Qualitative and quantitative research differ primarily in the data they produce. Quantitative research yields numerical data to test hypotheses and quantify patterns. It's precise and generalizable. Qualitative research, on the other hand, generates non-numerical data and explores meanings, interpretations, and deeper insights. Watch our video featuring Professor Alan Dix on different types of research methods.

This video elucidates the nuances and applications of both research types in the design field.

In quantitative research, determining a good sample size is crucial for the reliability of the results. William Hudson, CEO of Syntagm, emphasizes the importance of statistical significance with an example in our video. 

He illustrates that even with varying results between design choices, we need to discern whether the differences are statistically significant or products of chance. This ensures the validity of the results, allowing for more accurate interpretations. Statistical tools like chi-square tests can aid in analyzing the results effectively. To delve deeper into these concepts, take William Hudson’s Data-Driven Design: Quantitative UX Research Course . 

Quantitative research is crucial as it provides precise, numerical data that allows for high levels of statistical inference. Our video from William Hudson, CEO of Syntagm, highlights the importance of analytics in examining existing solutions. 

Quantitative methods, like analytics and A/B testing, are pivotal for identifying areas for improvement, understanding user behaviors, and optimizing user experiences based on solid, empirical evidence. This empirical nature ensures that the insights derived are reliable, allowing for practical improvements and innovations. Perhaps most importantly, numerical data is useful to secure stakeholder buy-in and defend design decisions and proposals. Explore this approach in our Data-Driven Design: Quantitative Research for UX Research course and learn from William Hudson’s detailed explanations of when and why to use analytics in the research process.

After establishing initial requirements, statistical data is crucial for informed decisions through quantitative research. William Hudson, CEO of Syntagm, sheds light on the role of quantitative research throughout a typical project lifecycle in this video:

 During the analysis and design phases, quantitative research helps validate user requirements and understand user behaviors. Surveys and analytics are standard tools, offering insights into user preferences and design efficacy. Quantitative research can also be used in early design testing, allowing for optimal design modifications based on user interactions and feedback, and it’s fundamental for A/B and multivariate testing once live solutions are available.

To write a compelling quantitative research question:

Create clear, concise, and unambiguous questions that address one aspect at a time.

Use common, short terms and provide explanations for unusual words.

Avoid leading, compound, and overlapping queries and ensure that questions are not vague or broad.

According to our video by William Hudson, CEO of Syntagm, quality and respondent understanding are vital in forming good questions. 

He emphasizes the importance of addressing specific aspects and avoiding intimidating and confusing elements, such as extensive question grids or ranking questions, to ensure participant engagement and accurate responses. For more insights, see the article Writing Good Questions for Surveys .

Survey research is typically quantitative, collecting numerical data and statistical analysis to make generalizable conclusions. However, it can also have qualitative elements, mainly when it includes open-ended questions, allowing for expressive responses. Our video featuring the CEO of Syntagm, William Hudson, provides in-depth insights into when and how to effectively utilize surveys in the product or service lifecycle, focusing on user satisfaction and potential improvements.

He emphasizes the importance of surveys in triangulating data to back up qualitative research findings, ensuring we have a complete understanding of the user's requirements and preferences.

Descriptive research focuses on describing the subject being studied and getting answers to questions like what, where, when, and who of the research question. However, it doesn’t include the answers to the underlying reasons, or the “why” behind the answers obtained from the research. We can use both f qualitative and quantitative methods to conduct descriptive research. Descriptive research does not describe the methods, but rather the data gathered through the research (regardless of the methods used).

When we use quantitative research and gather numerical data, we can use statistical analysis to understand relationships between different variables. Here’s William Hudson, CEO of Syntagm with more on correlation and how we can apply tests such as Pearson’s r and Spearman Rank Coefficient to our data.

This helps interpret phenomena such as user experience by analyzing session lengths and conversion values, revealing whether variables like time spent on a page affect checkout values, for example.

Random Sampling: Each individual in the population has an equitable opportunity to be chosen, which minimizes biases and simplifies analysis.

Systematic Sampling: Selecting every k-th item from a list after a random start. It's simpler and faster than random sampling when dealing with large populations.

Stratified Sampling: Segregate the population into subgroups or strata according to comparable characteristics. Then, samples are taken randomly from each stratum.

Cluster Sampling: Divide the population into clusters and choose a random sample.

Multistage Sampling: Various sampling techniques are used at different stages to collect detailed information from diverse populations.

Convenience Sampling: The researcher selects the sample based on availability and willingness to participate, which may only represent part of the population.

Quota Sampling: Segment the population into subgroups, and samples are non-randomly selected to fulfill a predetermined quota from each subset.

These are just a few techniques, and choosing the right one depends on your research question, discipline, resource availability, and the level of accuracy required. In quantitative research, there isn't a one-size-fits-all sampling technique; choosing a method that aligns with your research goals and population is critical. However, a well-planned strategy is essential to avoid wasting resources and time, as highlighted in our video featuring William Hudson, CEO of Syntagm.

He emphasizes the importance of recruiting participants meticulously, ensuring their engagement and the quality of their responses. Accurate and thoughtful participant responses are crucial for obtaining reliable results. William also sheds light on dealing with failing participants and scrutinizing response quality to refine the outcomes.

The 4 types of quantitative research are Descriptive, Correlational, Causal-Comparative/Quasi-Experimental, and Experimental Research. Descriptive research aims to depict ‘what exists’ clearly and precisely. Correlational research examines relationships between variables. Causal-comparative research investigates the cause-effect relationship between variables. Experimental research explores causal relationships by manipulating independent variables. To gain deeper insights into quantitative research methods in UX, consider enrolling in our Data-Driven Design: Quantitative Research for UX course.

The strength of quantitative research is its ability to provide precise numerical data for analyzing target variables.This allows for generalized conclusions and predictions about future occurrences, proving invaluable in various fields, including user experience. William Hudson, CEO of Syntagm, discusses the role of surveys, analytics, and testing in providing objective insights in our video on quantitative research methods, highlighting the significance of structured methodologies in eliciting reliable results.

To master quantitative research methods, enroll in our comprehensive course, Data-Driven Design: Quantitative Research for UX . 

This course empowers you to leverage quantitative data to make informed design decisions, providing a deep dive into methods like surveys and analytics. Whether you’re a novice or a seasoned professional, this course at Interaction Design Foundation offers valuable insights and practical knowledge, ensuring you acquire the skills necessary to excel in user experience research. Explore our diverse topics to elevate your understanding of quantitative research methods.

Answer a Short Quiz to Earn a Gift

What is the primary goal of quantitative research in design?

  • To analyze numerical data and identify patterns
  • To explore abstract design concepts for implementation
  • To understand people's subjective experiences and opinions

Which of the following methods is an example of quantitative research?

  • Conduct a focus groups to collect detailed user feedback
  • Participate in open-ended interviews to explore user experiences
  • Run usability tests and measure task completion times

What is one key advantage of quantitative research?

  • It allows participants to express their opinions in a flexible manner.
  • It provides researchers with detailed narratives of user experiences and perspectives.
  • It produces standardized, comparable data that researchers can statistically analyze.

What is a significant challenge of quantitative research?

  • It lacks objectivity which makes its results difficult to reproduce.
  • It may oversimplify complex user behaviors into numbers and miss contextual insights.
  • It often results in biased or misleading conclusions.

How can designers effectively combine qualitative and quantitative research?

  • They can collect quantitative data first, followed by qualitative insights to explain the findings.
  • They can completely replace quantitative methods with qualitative approaches.
  • They can treat them as interchangeable methods to gather similar data.

Better luck next time!

Do you want to improve your UX / UI Design skills? Join us now

Congratulations! You did amazing

You earned your gift with a perfect score! Let us send it to you.

Check Your Inbox

We’ve emailed your gift to [email protected] .

Literature on Quantitative Research

Here’s the entire UX literature on Quantitative Research by the Interaction Design Foundation, collated in one place:

Learn more about Quantitative Research

Take a deep dive into Quantitative Research with our course User Research – Methods and Best Practices .

How do you plan to design a product or service that your users will love , if you don't know what they want in the first place? As a user experience designer, you shouldn't leave it to chance to design something outstanding; you should make the effort to understand your users and build on that knowledge from the outset. User research is the way to do this, and it can therefore be thought of as the largest part of user experience design .

In fact, user research is often the first step of a UX design process—after all, you cannot begin to design a product or service without first understanding what your users want! As you gain the skills required, and learn about the best practices in user research, you’ll get first-hand knowledge of your users and be able to design the optimal product—one that’s truly relevant for your users and, subsequently, outperforms your competitors’ .

This course will give you insights into the most essential qualitative research methods around and will teach you how to put them into practice in your design work. You’ll also have the opportunity to embark on three practical projects where you can apply what you’ve learned to carry out user research in the real world . You’ll learn details about how to plan user research projects and fit them into your own work processes in a way that maximizes the impact your research can have on your designs. On top of that, you’ll gain practice with different methods that will help you analyze the results of your research and communicate your findings to your clients and stakeholders—workshops, user journeys and personas, just to name a few!

By the end of the course, you’ll have not only a Course Certificate but also three case studies to add to your portfolio. And remember, a portfolio with engaging case studies is invaluable if you are looking to break into a career in UX design or user research!

We believe you should learn from the best, so we’ve gathered a team of experts to help teach this course alongside our own course instructors. That means you’ll meet a new instructor in each of the lessons on research methods who is an expert in their field—we hope you enjoy what they have in store for you!

All open-source articles on Quantitative Research

Best practices for qualitative user research.

quantitative research study definition

  • 3 years ago

Card Sorting

quantitative research study definition

Understand the User’s Perspective through Research for Mobile UX

quantitative research study definition

  • 11 mths ago

7 Simple Ways to Get Better Results From Ethnographic Research

quantitative research study definition

Question Everything

quantitative research study definition

Tree Testing

quantitative research study definition

Adding Quality to Your Design Research with an SSQS Checklist

quantitative research study definition

  • 8 years ago

How to Fit Quantitative Research into the Project Lifecycle

quantitative research study definition

Correlation in User Experience

quantitative research study definition

Why and When to Use Surveys

quantitative research study definition

Rating Scales in UX Research: The Ultimate Guide

quantitative research study definition

  • 3 weeks ago

First-Click Testing

quantitative research study definition

What to Test

quantitative research study definition

Open Access—Link to us!

We believe in Open Access and the  democratization of knowledge . Unfortunately, world-class educational materials such as this page are normally hidden behind paywalls or in expensive textbooks.

If you want this to change , cite this page , link to us, or join us to help us democratize design knowledge !

Privacy Settings

Our digital services use necessary tracking technologies, including third-party cookies, for security, functionality, and to uphold user rights. Optional cookies offer enhanced features, and analytics.

Experience the full potential of our site that remembers your preferences and supports secure sign-in.

Governs the storage of data necessary for maintaining website security, user authentication, and fraud prevention mechanisms.

Enhanced Functionality

Saves your settings and preferences, like your location, for a more personalized experience.

Referral Program

We use cookies to enable our referral program, giving you and your friends discounts.

Error Reporting

We share user ID with Bugsnag and NewRelic to help us track errors and fix issues.

Optimize your experience by allowing us to monitor site usage. You’ll enjoy a smoother, more personalized journey without compromising your privacy.

Analytics Storage

Collects anonymous data on how you navigate and interact, helping us make informed improvements.

Differentiates real visitors from automated bots, ensuring accurate usage data and improving your website experience.

Lets us tailor your digital ads to match your interests, making them more relevant and useful to you.

Advertising Storage

Stores information for better-targeted advertising, enhancing your online ad experience.

Personalization Storage

Permits storing data to personalize content and ads across Google services based on user behavior, enhancing overall user experience.

Advertising Personalization

Allows for content and ad personalization across Google services based on user behavior. This consent enhances user experiences.

Enables personalizing ads based on user data and interactions, allowing for more relevant advertising experiences across Google services.

Receive more relevant advertisements by sharing your interests and behavior with our trusted advertising partners.

Enables better ad targeting and measurement on Meta platforms, making ads you see more relevant.

Allows for improved ad effectiveness and measurement through Meta’s Conversions API, ensuring privacy-compliant data sharing.

LinkedIn Insights

Tracks conversions, retargeting, and web analytics for LinkedIn ad campaigns, enhancing ad relevance and performance.

LinkedIn CAPI

Enhances LinkedIn advertising through server-side event tracking, offering more accurate measurement and personalization.

Google Ads Tag

Tracks ad performance and user engagement, helping deliver ads that are most useful to you.

Share Knowledge, Get Respect!

or copy link

Cite according to academic standards

Simply copy and paste the text below into your bibliographic reference list, onto your blog, or anywhere else. You can also just hyperlink to this page.

New to UX Design? We’re Giving You a Free ebook!

The Basics of User Experience Design

Download our free ebook The Basics of User Experience Design to learn about core concepts of UX design.

In 9 chapters, we’ll cover: conducting user interviews, design thinking, interaction design, mobile UX design, usability, UX research, and many more!

Root out friction in every digital experience, super-charge conversion rates, and optimise digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered straight to teams on the ground

Know exactly how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Meet the operating system for experience management

  • Free Account
  • For Digital
  • For Customer Care
  • For Human Resources
  • For Researchers
  • Financial Services
  • All Industries

Popular Use Cases

  • Customer Experience
  • Employee Experience
  • Employee Exit Interviews
  • Net Promoter Score
  • Voice of Customer
  • Customer Success Hub
  • Product Documentation
  • Training & Certification
  • XM Institute
  • Popular Resources
  • Customer Stories
  • Artificial Intelligence

Market Research

  • Partnerships
  • Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results.

language

  • English/AU & NZ
  • Español/Europa
  • Español/América Latina
  • Português Brasileiro
  • REQUEST DEMO
  • Experience Management
  • Ultimate Guide to Market Research
  • Quantitative Research

Try Qualtrics for free

Your ultimate guide to quantitative research.

10 min read You may be already using quantitative research and want to check your understanding, or you may be starting from the beginning. Here’s an exploration of this research method and how you can best use it for maximum effect for your business.

You may be already using quantitative research and want to check your understanding, or you may be starting from the beginning. Here’s an exploration of this research method and how you can best use it for maximum effect for your business.

What is quantitative research?

Quantitative is the research method of collecting quantitative data – this is data that can be converted into numbers or numerical data, which can be easily quantified, compared, and analysed.

Quantitative research deals with primary and secondary sources where data is represented in numerical form. This can include closed-question poll results, statistics, and census information or  demographic data .

Quantitative data tends to be used when researchers are interested in understanding a particular moment in time and examining data sets over time to find trends and patterns.

To collect numerical data, surveys are often employed as one of the main research methods to source first-hand information in  primary research . Qualitative research can also  come from third-party research studies .

Quantitative research is widely used in the realms of social sciences, such as psychology, economics, sociology, and marketing.

Research teams collect data that is significant to proving or disproving a hypothesis research question – known as the research objective. When they collect quantitative data, researchers will  aim to use a sample size that is representative  of the total population of the target market they’re interested in.

Then the data collected will be manually or automatically stored and compared for insights.

Learn how Qualtrics can enhance & simplify the quantitative research process

Qualitative vs quantitative research

While the quantitative research definition focuses on numerical data, qualitative research is defined as data that supplies non-numerical information.

Qualitative research focuses on the thoughts, feelings, and values of a participant, to understand why people act in the way they do. They result in data types like quotes, symbols, images, and written testimonials.

These data types tell researchers subjective information, which can help us assign people into categories, such as a participant’s religion, gender, social class, political alignment, likely favoured products to buy, or their preferred training learning style.

For this reason, qualitative research is often used in social research, as this gives a window into the behaviour and actions of people.

Differences between Qualitative and Quantitative Research

In general, if you’re interested in measuring something or testing a hypothesis, use quantitative methods. If you want to explore ideas, thoughts, and meanings, use qualitative methods.

However, quantitative and qualitative research methods are both recommended when you’re looking to understand a point in time, while also finding out the reason behind the facts.

Quantitative research data collection methods

Quantitative research methods can use structured research instruments like:

A survey is a simple-to-create and easy-to-distribute research method, which helps gather information from large groups of participants quickly. Traditionally, paper-based surveys can now be made online, so costs can stay quite low.

Quantitative questions tend to be closed questions that ask for a numerical result, based on a range of options, or a yes/no answer that can be tallied quickly.

Face-to-face or phone interviews

Interviews are a great way to connect with participants , though they require time from the research team to set up and conduct.

Researchers may also have issues connecting with participants in different geographical regions. The researcher uses a set of predefined close-ended questions, which ask for yes/no or numerical values.

Polls can be a shorter version of surveys, used to get a ‘flavour’ of what the current situation is with participants. Online polls can be shared easily, though polls are best used with simple questions that request a range or a yes/no answer.

Quantitative data is the opposite of qualitative research, another dominant framework for research in the social sciences, explored further below.

Quantitative data types

Quantitative research methods often deliver the following data types:

  • Test Scores
  • Per cent of training course completed
  • Performance score out of 100
  • Number of support calls active
  • Customer Net Promoter Score (NPS)

When gathering numerical data, the emphasis is on how specific the data is, and whether they can provide an indication of what ‘is’ at the time of collection. Pre-existing statistical data can tell us what ‘was’ for the date and time range that it represented.

Quantitative research design methods (with examples)

Quantitative research has a number of quantitative research designs you can choose from:

Types of Quantitative Research

Descriptive

This design type describes the state of a data type is telling researchers, in its native environment. There won’t normally be a clearly defined research question to start with. Instead,  data analysis will suggest a conclusion, which can become the hypothesis to investigate further.

Examples of descriptive quantitative design include:

  • A description of child’s Christmas gifts they received that year
  • A description of what businesses sell the most of during Black Friday
  • A description of a product issue being experienced by a customer

Correlational

This design type looks at two or more data types, the relationship between them, and the extent that they differ or align. This does not look at the causal links deeper – instead statistical analysis looks at the variables in a natural environment.

Examples of correlational quantitative design include:

  • The relationship between a child’s Christmas gifts and their perceived happiness level
  • The relationship between a business’ sales during Black Friday and the total revenue generated over the year
  • The relationship between a customer’s product issue and the reputation of the product

Causal-Comparative/Quasi-Experimental

This design type looks at two or more data types and tries to explain any relationship and differences between them, using a cause-effect analysis. The research is carried out in a near-natural environment, where information is gathered from two groups – a naturally occurring group that matches the original natural environment, and one that is not naturally present.

This allows for causal links to be made, though they might not be correct, as other variables may have an impact on results.

Examples of causal-comparative/quasi-experimental quantitative design include:

  • The effect of children’s Christmas gifts on happiness
  • The effect of Black Friday sales figures on the productivity of company yearly sales
  • The effect of product issues on the public perception of a product

Experimental Research

This design type looks to make a controlled environment in which two or more variables are observed to understand the exact cause and effect they have. This becomes a quantitative research study, where data types are manipulated to assess the effect they have. The participants are not naturally occurring groups, as the setting is no longer natural. A quantitative research study can help pinpoint the exact conditions in which variables impact one another.

Examples of experimental quantitative design include:

  • The effect of children’s Christmas gifts on a child’s dopamine (happiness) levels
  • The effect of Black Friday sales on the success of the company
  • The effect of product issues on the perceived reliability of the product

Quantitative research methods need to be carefully considered, as your data collection of a data type can be used to different effects. For example, statistics can be descriptive or correlational (or inferential). Descriptive statistics help us to summarise our data, while inferential statistics help infer conclusions about significant differences.

Advantages of quantitative research

  • Easy to do : Doing quantitative research is more straightforward, as the results come in numerical format, which can be more easily interpreted.
  • Less interpretation : Due to the factual nature of the results, you will be able to accept or reject your hypothesis based on the numerical data collected.
  • Less bias : There are higher levels of control that can be applied to the research, so  bias can be reduced , making your data more reliable and precise.

Disadvantages of quantitative research

  • Can’t understand reasons:  Quantitative research doesn’t always tell you the full story, meaning you won’t understand the context – or the why, of the data you see, why do you see the results you have uncovered?
  • Useful for simpler situations:  Quantitative research on its own is not great when dealing with complex issues. In these cases, quantitative research may not be enough.

How to use quantitative research to your business’s advantage

Quantitative research methods may help in areas such as:

  • Identifying which advert or landing page performs better
  • Identifying  how satisfied your customers are
  • How many customers are likely to recommend you
  • Tracking how your brand ranks in awareness  and customer purchase intent
  • Learn what consumers are likely to buy from your brand.

6 steps to conducting good quantitative research

Businesses can benefit from quantitative research by using it to evaluate the impact of data types. There are several steps to this:

  • Define your problem or interest area : What do you observe is happening and is it frequent? Identify the data type/s you’re observing.
  • Create a hypothesis : Ask yourself what could be the causes for the situation with those data types.
  • Plan your quantitative research : Use structured research instruments like surveys or polls to ask questions that test your hypothesis.
  • Data Collection : Collect quantitative data and understand what your data types are telling you. Using data collected on different types over long time periods can give you information on patterns.
  • Data analysis : Does your information support your hypothesis? (You may need to redo the research with other variables to see if the results improve)
  • Effectively present data : Communicate the results in a clear and concise way to help other people understand the findings.

Learn how Qualtrics can enhance & simplify the quantitative research process

Related resources

Market intelligence 9 min read, qualitative research questions 11 min read, ethnographic research 11 min read, business research methods 12 min read, qualitative research design 12 min read, business research 10 min read, qualitative research interviews 11 min read, request demo.

Ready to learn more about Qualtrics?

Library Homepage

Research Methods and Design

  • Action Research
  • Case Study Design
  • Literature Review
  • Quantitative Research Methods
  • Qualitative Research Methods
  • Mixed Methods Study
  • Indigenous Research and Ethics This link opens in a new window
  • Identifying Empirical Research Articles This link opens in a new window
  • Research Ethics and Quality
  • Data Literacy
  • Get Help with Writing Assignments

Quantitative research methods

a method of research that relies on measuring variables using a numerical system, analyzing these measurements using any of a variety of statistical models, and reporting relationships and associations among the studied variables. For example, these variables may be test scores or measurements of reaction time. The goal of gathering this quantitative data is to understand, describe, and predict the nature of a phenomenon, particularly through the development of models and theories. Quantitative research techniques include experiments and surveys. 

SAGE Research Methods Videos

What are the strengths of quantitative research.

Professor Norma T. Mertz briefly discusses qualitative research and how it has changed since she entered the field. She emphasizes the importance of defining a research question before choosing a theoretical approach to research.

This is just one segment in a series about quantitative methods. You can find additional videos in our SAGE database, Research Methods: 

Videos

Videos covering research methods and statistics

Further Reading

Cover Art

  • << Previous: Literature Review
  • Next: Qualitative Research Methods >>
  • Last Updated: May 7, 2024 9:51 AM

CityU Home - CityU Catalog

Creative Commons License

Qualitative vs Quantitative Research Methods & Data Analysis

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

What is the difference between quantitative and qualitative?

The main difference between quantitative and qualitative research is the type of data they collect and analyze.

Quantitative research collects numerical data and analyzes it using statistical methods. The aim is to produce objective, empirical data that can be measured and expressed in numerical terms. Quantitative research is often used to test hypotheses, identify patterns, and make predictions.

Qualitative research , on the other hand, collects non-numerical data such as words, images, and sounds. The focus is on exploring subjective experiences, opinions, and attitudes, often through observation and interviews.

Qualitative research aims to produce rich and detailed descriptions of the phenomenon being studied, and to uncover new insights and meanings.

Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language.

What Is Qualitative Research?

Qualitative research is the process of collecting, analyzing, and interpreting non-numerical data, such as language. Qualitative research can be used to understand how an individual subjectively perceives and gives meaning to their social reality.

Qualitative data is non-numerical data, such as text, video, photographs, or audio recordings. This type of data can be collected using diary accounts or in-depth interviews and analyzed using grounded theory or thematic analysis.

Qualitative research is multimethod in focus, involving an interpretive, naturalistic approach to its subject matter. This means that qualitative researchers study things in their natural settings, attempting to make sense of, or interpret, phenomena in terms of the meanings people bring to them. Denzin and Lincoln (1994, p. 2)

Interest in qualitative data came about as the result of the dissatisfaction of some psychologists (e.g., Carl Rogers) with the scientific study of psychologists such as behaviorists (e.g., Skinner ).

Since psychologists study people, the traditional approach to science is not seen as an appropriate way of carrying out research since it fails to capture the totality of human experience and the essence of being human.  Exploring participants’ experiences is known as a phenomenological approach (re: Humanism ).

Qualitative research is primarily concerned with meaning, subjectivity, and lived experience. The goal is to understand the quality and texture of people’s experiences, how they make sense of them, and the implications for their lives.

Qualitative research aims to understand the social reality of individuals, groups, and cultures as nearly as possible as participants feel or live it. Thus, people and groups are studied in their natural setting.

Some examples of qualitative research questions are provided, such as what an experience feels like, how people talk about something, how they make sense of an experience, and how events unfold for people.

Research following a qualitative approach is exploratory and seeks to explain ‘how’ and ‘why’ a particular phenomenon, or behavior, operates as it does in a particular context. It can be used to generate hypotheses and theories from the data.

Qualitative Methods

There are different types of qualitative research methods, including diary accounts, in-depth interviews , documents, focus groups , case study research , and ethnography.

The results of qualitative methods provide a deep understanding of how people perceive their social realities and in consequence, how they act within the social world.

The researcher has several methods for collecting empirical materials, ranging from the interview to direct observation, to the analysis of artifacts, documents, and cultural records, to the use of visual materials or personal experience. Denzin and Lincoln (1994, p. 14)

Here are some examples of qualitative data:

Interview transcripts : Verbatim records of what participants said during an interview or focus group. They allow researchers to identify common themes and patterns, and draw conclusions based on the data. Interview transcripts can also be useful in providing direct quotes and examples to support research findings.

Observations : The researcher typically takes detailed notes on what they observe, including any contextual information, nonverbal cues, or other relevant details. The resulting observational data can be analyzed to gain insights into social phenomena, such as human behavior, social interactions, and cultural practices.

Unstructured interviews : generate qualitative data through the use of open questions.  This allows the respondent to talk in some depth, choosing their own words.  This helps the researcher develop a real sense of a person’s understanding of a situation.

Diaries or journals : Written accounts of personal experiences or reflections.

Notice that qualitative data could be much more than just words or text. Photographs, videos, sound recordings, and so on, can be considered qualitative data. Visual data can be used to understand behaviors, environments, and social interactions.

Qualitative Data Analysis

Qualitative research is endlessly creative and interpretive. The researcher does not just leave the field with mountains of empirical data and then easily write up his or her findings.

Qualitative interpretations are constructed, and various techniques can be used to make sense of the data, such as content analysis, grounded theory (Glaser & Strauss, 1967), thematic analysis (Braun & Clarke, 2006), or discourse analysis.

For example, thematic analysis is a qualitative approach that involves identifying implicit or explicit ideas within the data. Themes will often emerge once the data has been coded .

RESEARCH THEMATICANALYSISMETHOD

Key Features

  • Events can be understood adequately only if they are seen in context. Therefore, a qualitative researcher immerses her/himself in the field, in natural surroundings. The contexts of inquiry are not contrived; they are natural. Nothing is predefined or taken for granted.
  • Qualitative researchers want those who are studied to speak for themselves, to provide their perspectives in words and other actions. Therefore, qualitative research is an interactive process in which the persons studied teach the researcher about their lives.
  • The qualitative researcher is an integral part of the data; without the active participation of the researcher, no data exists.
  • The study’s design evolves during the research and can be adjusted or changed as it progresses. For the qualitative researcher, there is no single reality. It is subjective and exists only in reference to the observer.
  • The theory is data-driven and emerges as part of the research process, evolving from the data as they are collected.

Limitations of Qualitative Research

  • Because of the time and costs involved, qualitative designs do not generally draw samples from large-scale data sets.
  • The problem of adequate validity or reliability is a major criticism. Because of the subjective nature of qualitative data and its origin in single contexts, it is difficult to apply conventional standards of reliability and validity. For example, because of the central role played by the researcher in the generation of data, it is not possible to replicate qualitative studies.
  • Also, contexts, situations, events, conditions, and interactions cannot be replicated to any extent, nor can generalizations be made to a wider context than the one studied with confidence.
  • The time required for data collection, analysis, and interpretation is lengthy. Analysis of qualitative data is difficult, and expert knowledge of an area is necessary to interpret qualitative data. Great care must be taken when doing so, for example, looking for mental illness symptoms.

Advantages of Qualitative Research

  • Because of close researcher involvement, the researcher gains an insider’s view of the field. This allows the researcher to find issues that are often missed (such as subtleties and complexities) by the scientific, more positivistic inquiries.
  • Qualitative descriptions can be important in suggesting possible relationships, causes, effects, and dynamic processes.
  • Qualitative analysis allows for ambiguities/contradictions in the data, which reflect social reality (Denscombe, 2010).
  • Qualitative research uses a descriptive, narrative style; this research might be of particular benefit to the practitioner as she or he could turn to qualitative reports to examine forms of knowledge that might otherwise be unavailable, thereby gaining new insight.

What Is Quantitative Research?

Quantitative research involves the process of objectively collecting and analyzing numerical data to describe, predict, or control variables of interest.

The goals of quantitative research are to test causal relationships between variables , make predictions, and generalize results to wider populations.

Quantitative researchers aim to establish general laws of behavior and phenomenon across different settings/contexts. Research is used to test a theory and ultimately support or reject it.

Quantitative Methods

Experiments typically yield quantitative data, as they are concerned with measuring things.  However, other research methods, such as controlled observations and questionnaires , can produce both quantitative information.

For example, a rating scale or closed questions on a questionnaire would generate quantitative data as these produce either numerical data or data that can be put into categories (e.g., “yes,” “no” answers).

Experimental methods limit how research participants react to and express appropriate social behavior.

Findings are, therefore, likely to be context-bound and simply a reflection of the assumptions that the researcher brings to the investigation.

There are numerous examples of quantitative data in psychological research, including mental health. Here are a few examples:

Another example is the Experience in Close Relationships Scale (ECR), a self-report questionnaire widely used to assess adult attachment styles .

The ECR provides quantitative data that can be used to assess attachment styles and predict relationship outcomes.

Neuroimaging data : Neuroimaging techniques, such as MRI and fMRI, provide quantitative data on brain structure and function.

This data can be analyzed to identify brain regions involved in specific mental processes or disorders.

For example, the Beck Depression Inventory (BDI) is a clinician-administered questionnaire widely used to assess the severity of depressive symptoms in individuals.

The BDI consists of 21 questions, each scored on a scale of 0 to 3, with higher scores indicating more severe depressive symptoms. 

Quantitative Data Analysis

Statistics help us turn quantitative data into useful information to help with decision-making. We can use statistics to summarize our data, describing patterns, relationships, and connections. Statistics can be descriptive or inferential.

Descriptive statistics help us to summarize our data. In contrast, inferential statistics are used to identify statistically significant differences between groups of data (such as intervention and control groups in a randomized control study).

  • Quantitative researchers try to control extraneous variables by conducting their studies in the lab.
  • The research aims for objectivity (i.e., without bias) and is separated from the data.
  • The design of the study is determined before it begins.
  • For the quantitative researcher, the reality is objective, exists separately from the researcher, and can be seen by anyone.
  • Research is used to test a theory and ultimately support or reject it.

Limitations of Quantitative Research

  • Context: Quantitative experiments do not take place in natural settings. In addition, they do not allow participants to explain their choices or the meaning of the questions they may have for those participants (Carr, 1994).
  • Researcher expertise: Poor knowledge of the application of statistical analysis may negatively affect analysis and subsequent interpretation (Black, 1999).
  • Variability of data quantity: Large sample sizes are needed for more accurate analysis. Small-scale quantitative studies may be less reliable because of the low quantity of data (Denscombe, 2010). This also affects the ability to generalize study findings to wider populations.
  • Confirmation bias: The researcher might miss observing phenomena because of focus on theory or hypothesis testing rather than on the theory of hypothesis generation.

Advantages of Quantitative Research

  • Scientific objectivity: Quantitative data can be interpreted with statistical analysis, and since statistics are based on the principles of mathematics, the quantitative approach is viewed as scientifically objective and rational (Carr, 1994; Denscombe, 2010).
  • Useful for testing and validating already constructed theories.
  • Rapid analysis: Sophisticated software removes much of the need for prolonged data analysis, especially with large volumes of data involved (Antonius, 2003).
  • Replication: Quantitative data is based on measured values and can be checked by others because numerical data is less open to ambiguities of interpretation.
  • Hypotheses can also be tested because of statistical analysis (Antonius, 2003).

Antonius, R. (2003). Interpreting quantitative data with SPSS . Sage.

Black, T. R. (1999). Doing quantitative research in the social sciences: An integrated approach to research design, measurement and statistics . Sage.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology . Qualitative Research in Psychology , 3, 77–101.

Carr, L. T. (1994). The strengths and weaknesses of quantitative and qualitative research : what method for nursing? Journal of advanced nursing, 20(4) , 716-721.

Denscombe, M. (2010). The Good Research Guide: for small-scale social research. McGraw Hill.

Denzin, N., & Lincoln. Y. (1994). Handbook of Qualitative Research. Thousand Oaks, CA, US: Sage Publications Inc.

Glaser, B. G., Strauss, A. L., & Strutzel, E. (1968). The discovery of grounded theory; strategies for qualitative research. Nursing research, 17(4) , 364.

Minichiello, V. (1990). In-Depth Interviewing: Researching People. Longman Cheshire.

Punch, K. (1998). Introduction to Social Research: Quantitative and Qualitative Approaches. London: Sage

Further Information

  • Designing qualitative research
  • Methods of data collection and analysis
  • Introduction to quantitative and qualitative research
  • Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?
  • Qualitative research in health care: Analysing qualitative data
  • Qualitative data analysis: the framework approach
  • Using the framework method for the analysis of
  • Qualitative data in multi-disciplinary health research
  • Content Analysis
  • Grounded Theory
  • Thematic Analysis

Print Friendly, PDF & Email

Related Articles

Qualitative Data Coding

Research Methodology

Qualitative Data Coding

What Is a Focus Group?

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

What Is Internal Validity In Research?

What Is Internal Validity In Research?

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

Criterion Validity: Definition & Examples

Criterion Validity: Definition & Examples

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

quantitative research study definition

Home Market Research

Quantitative Research: What It Is, Practices & Methods

Quantitative research

Quantitative research involves analyzing and gathering numerical data to uncover trends, calculate averages, evaluate relationships, and derive overarching insights. It’s used in various fields, including the natural and social sciences. Quantitative data analysis employs statistical techniques for processing and interpreting numeric data.

Research designs in the quantitative realm outline how data will be collected and analyzed with methods like experiments and surveys. Qualitative methods complement quantitative research by focusing on non-numerical data, adding depth to understanding. Data collection methods can be qualitative or quantitative, depending on research goals. Researchers often use a combination of both approaches to gain a comprehensive understanding of phenomena.

What is Quantitative Research?

Quantitative research is a systematic investigation of phenomena by gathering quantifiable data and performing statistical, mathematical, or computational techniques. Quantitative research collects statistically significant information from existing and potential customers using sampling methods and sending out online surveys , online polls , and questionnaires , for example.

One of the main characteristics of this type of research is that the results can be depicted in numerical form. After carefully collecting structured observations and understanding these numbers, it’s possible to predict the future of a product or service, establish causal relationships or Causal Research , and make changes accordingly. Quantitative research primarily centers on the analysis of numerical data and utilizes inferential statistics to derive conclusions that can be extrapolated to the broader population.

An example of a quantitative research study is the survey conducted to understand how long a doctor takes to tend to a patient when the patient walks into the hospital. A patient satisfaction survey can be administered to ask questions like how long a doctor takes to see a patient, how often a patient walks into a hospital, and other such questions, which are dependent variables in the research. This kind of research method is often employed in the social sciences, and it involves using mathematical frameworks and theories to effectively present data, ensuring that the results are logical, statistically sound, and unbiased.

Data collection in quantitative research uses a structured method and is typically conducted on larger samples representing the entire population. Researchers use quantitative methods to collect numerical data, which is then subjected to statistical analysis to determine statistically significant findings. This approach is valuable in both experimental research and social research, as it helps in making informed decisions and drawing reliable conclusions based on quantitative data.

Quantitative Research Characteristics

Quantitative research has several unique characteristics that make it well-suited for specific projects. Let’s explore the most crucial of these characteristics so that you can consider them when planning your next research project:

quantitative research study definition

  • Structured tools: Quantitative research relies on structured tools such as surveys, polls, or questionnaires to gather quantitative data . Using such structured methods helps collect in-depth and actionable numerical data from the survey respondents, making it easier to perform data analysis.
  • Sample size: Quantitative research is conducted on a significant sample size  representing the target market . Appropriate Survey Sampling methods, a fundamental aspect of quantitative research methods, must be employed when deriving the sample to fortify the research objective and ensure the reliability of the results.
  • Close-ended questions: Closed-ended questions , specifically designed to align with the research objectives, are a cornerstone of quantitative research. These questions facilitate the collection of quantitative data and are extensively used in data collection processes.
  • Prior studies: Before collecting feedback from respondents, researchers often delve into previous studies related to the research topic. This preliminary research helps frame the study effectively and ensures the data collection process is well-informed.
  • Quantitative data: Typically, quantitative data is represented using tables, charts, graphs, or other numerical forms. This visual representation aids in understanding the collected data and is essential for rigorous data analysis, a key component of quantitative research methods.
  • Generalization of results: One of the strengths of quantitative research is its ability to generalize results to the entire population. It means that the findings derived from a sample can be extrapolated to make informed decisions and take appropriate actions for improvement based on numerical data analysis.

Quantitative Research Methods

Quantitative research methods are systematic approaches used to gather and analyze numerical data to understand and draw conclusions about a phenomenon or population. Here are the quantitative research methods:

  • Primary quantitative research methods
  • Secondary quantitative research methods

Primary Quantitative Research Methods

Primary quantitative research is the most widely used method of conducting market research. The distinct feature of primary research is that the researcher focuses on collecting data directly rather than depending on data collected from previously done research. Primary quantitative research design can be broken down into three further distinctive tracks and the process flow. They are:

A. Techniques and Types of Studies

There are multiple types of primary quantitative research. They can be distinguished into the four following distinctive methods, which are:

01. Survey Research

Survey Research is fundamental for all quantitative outcome research methodologies and studies. Surveys are used to ask questions to a sample of respondents, using various types such as online polls, online surveys, paper questionnaires, web-intercept surveys , etc. Every small and big organization intends to understand what their customers think about their products and services, how well new features are faring in the market, and other such details.

By conducting survey research, an organization can ask multiple survey questions , collect data from a pool of customers, and analyze this collected data to produce numerical results. It is the first step towards collecting data for any research. You can use single ease questions . A single-ease question is a straightforward query that elicits a concise and uncomplicated response.

This type of research can be conducted with a specific target audience group and also can be conducted across multiple groups along with comparative analysis . A prerequisite for this type of research is that the sample of respondents must have randomly selected members. This way, a researcher can easily maintain the accuracy of the obtained results as a huge variety of respondents will be addressed using random selection. 

Traditionally, survey research was conducted face-to-face or via phone calls. Still, with the progress made by online mediums such as email or social media, survey research has also spread to online mediums.There are two types of surveys , either of which can be chosen based on the time in hand and the kind of data required:

Cross-sectional surveys: Cross-sectional surveys are observational surveys conducted in situations where the researcher intends to collect data from a sample of the target population at a given point in time. Researchers can evaluate various variables at a particular time. Data gathered using this type of survey is from people who depict similarity in all variables except the variables which are considered for research . Throughout the survey, this one variable will stay constant.

  • Cross-sectional surveys are popular with retail, SMEs, and healthcare industries. Information is garnered without modifying any parameters in the variable ecosystem.
  • Multiple samples can be analyzed and compared using a cross-sectional survey research method.
  • Multiple variables can be evaluated using this type of survey research.
  • The only disadvantage of cross-sectional surveys is that the cause-effect relationship of variables cannot be established as it usually evaluates variables at a particular time and not across a continuous time frame.

Longitudinal surveys: Longitudinal surveys are also observational surveys , but unlike cross-sectional surveys, longitudinal surveys are conducted across various time durations to observe a change in respondent behavior and thought processes. This time can be days, months, years, or even decades. For instance, a researcher planning to analyze the change in buying habits of teenagers over 5 years will conduct longitudinal surveys.

  • In cross-sectional surveys, the same variables were evaluated at a given time, and in longitudinal surveys, different variables can be analyzed at different intervals.
  • Longitudinal surveys are extensively used in the field of medicine and applied sciences. Apart from these two fields, they are also used to observe a change in the market trend analysis , analyze customer satisfaction, or gain feedback on products/services.
  • In situations where the sequence of events is highly essential, longitudinal surveys are used.
  • Researchers say that when research subjects need to be thoroughly inspected before concluding, they rely on longitudinal surveys.

02. Correlational Research

A comparison between two entities is invariable. Correlation research is conducted to establish a relationship between two closely-knit entities and how one impacts the other, and what changes are eventually observed. This research method is carried out to give value to naturally occurring relationships, and a minimum of two different groups are required to conduct this quantitative research method successfully. Without assuming various aspects, a relationship between two groups or entities must be established.

Researchers use this quantitative research design to correlate two or more variables using mathematical analysis methods. Patterns, relationships, and trends between variables are concluded as they exist in their original setup. The impact of one of these variables on the other is observed, along with how it changes the relationship between the two variables. Researchers tend to manipulate one of the variables to attain the desired results.

Ideally, it is advised not to make conclusions merely based on correlational research. This is because it is not mandatory that if two variables are in sync that they are interrelated.

Example of Correlational Research Questions :

  • The relationship between stress and depression.
  • The equation between fame and money.
  • The relation between activities in a third-grade class and its students.

03. Causal-comparative Research

This research method mainly depends on the factor of comparison. Also called quasi-experimental research , this quantitative research method is used by researchers to conclude the cause-effect equation between two or more variables, where one variable is dependent on the other independent variable. The independent variable is established but not manipulated, and its impact on the dependent variable is observed. These variables or groups must be formed as they exist in the natural setup. As the dependent and independent variables will always exist in a group, it is advised that the conclusions are carefully established by keeping all the factors in mind.

Causal-comparative research is not restricted to the statistical analysis of two variables but extends to analyzing how various variables or groups change under the influence of the same changes. This research is conducted irrespective of the type of relationship that exists between two or more variables. Statistical analysis plan is used to present the outcome using this quantitative research method.

Example of Causal-Comparative Research Questions:

  • The impact of drugs on a teenager. The effect of good education on a freshman. The effect of substantial food provision in the villages of Africa.

04. Experimental Research

Also known as true experimentation, this research method relies on a theory. As the name suggests, experimental research is usually based on one or more theories. This theory has yet to be proven before and is merely a supposition. In experimental research, an analysis is done around proving or disproving the statement. This research method is used in natural sciences. Traditional research methods are more effective than modern techniques.

There can be multiple theories in experimental research. A theory is a statement that can be verified or refuted.

After establishing the statement, efforts are made to understand whether it is valid or invalid. This quantitative research method is mainly used in natural or social sciences as various statements must be proved right or wrong.

  • Traditional research methods are more effective than modern techniques.
  • Systematic teaching schedules help children who struggle to cope with the course.
  • It is a boon to have responsible nursing staff for ailing parents.

B. Data Collection Methodologies

The second major step in primary quantitative research is data collection. Data collection can be divided into sampling methods and data collection using surveys and polls.

01. Data Collection Methodologies: Sampling Methods

There are two main sampling methods for quantitative research: Probability and Non-probability sampling .

Probability sampling: A theory of probability is used to filter individuals from a population and create samples in probability sampling . Participants of a sample are chosen by random selection processes. Each target audience member has an equal opportunity to be selected in the sample.

There are four main types of probability sampling:

  • Simple random sampling: As the name indicates, simple random sampling is nothing but a random selection of elements for a sample. This sampling technique is implemented where the target population is considerably large.
  • Stratified random sampling: In the stratified random sampling method , a large population is divided into groups (strata), and members of a sample are chosen randomly from these strata. The various segregated strata should ideally not overlap one another.
  • Cluster sampling: Cluster sampling is a probability sampling method using which the main segment is divided into clusters, usually using geographic segmentation and demographic segmentation parameters.
  • Systematic sampling: Systematic sampling is a technique where the starting point of the sample is chosen randomly, and all the other elements are chosen using a fixed interval. This interval is calculated by dividing the population size by the target sample size.

Non-probability sampling: Non-probability sampling is where the researcher’s knowledge and experience are used to create samples. Because of the researcher’s involvement, not all the target population members have an equal probability of being selected to be a part of a sample.

There are five non-probability sampling models:

  • Convenience sampling: In convenience sampling , elements of a sample are chosen only due to one prime reason: their proximity to the researcher. These samples are quick and easy to implement as there is no other parameter of selection involved.
  • Consecutive sampling: Consecutive sampling is quite similar to convenience sampling, except for the fact that researchers can choose a single element or a group of samples and conduct research consecutively over a significant period and then perform the same process with other samples.
  • Quota sampling: Using quota sampling , researchers can select elements using their knowledge of target traits and personalities to form strata. Members of various strata can then be chosen to be a part of the sample as per the researcher’s understanding.
  • Snowball sampling: Snowball sampling is conducted with target audiences who are difficult to contact and get information. It is popular in cases where the target audience for analysis research is rare to put together.
  • Judgmental sampling: Judgmental sampling is a non-probability sampling method where samples are created only based on the researcher’s experience and research skill .

02. Data collection methodologies: Using surveys & polls

Once the sample is determined, then either surveys or polls can be distributed to collect the data for quantitative research.

Using surveys for primary quantitative research

A survey is defined as a research method used for collecting data from a pre-defined group of respondents to gain information and insights on various topics of interest. The ease of survey distribution and the wide number of people it can reach depending on the research time and objective makes it one of the most important aspects of conducting quantitative research.

Fundamental levels of measurement – nominal, ordinal, interval, and ratio scales

Four measurement scales are fundamental to creating a multiple-choice question in a survey. They are nominal, ordinal, interval, and ratio measurement scales without the fundamentals of which no multiple-choice questions can be created. Hence, it is crucial to understand these measurement levels to develop a robust survey.

Use of different question types

To conduct quantitative research, close-ended questions must be used in a survey. They can be a mix of multiple question types, including multiple-choice questions like semantic differential scale questions , rating scale questions , etc.

Survey Distribution and Survey Data Collection

In the above, we have seen the process of building a survey along with the research design to conduct primary quantitative research. Survey distribution to collect data is the other important aspect of the survey process. There are different ways of survey distribution. Some of the most commonly used methods are:

  • Email: Sending a survey via email is the most widely used and effective survey distribution method. This method’s response rate is high because the respondents know your brand. You can use the QuestionPro email management feature to send out and collect survey responses.
  • Buy respondents: Another effective way to distribute a survey and conduct primary quantitative research is to use a sample. Since the respondents are knowledgeable and are on the panel by their own will, responses are much higher.
  • Embed survey on a website: Embedding a survey on a website increases a high number of responses as the respondent is already in close proximity to the brand when the survey pops up.
  • Social distribution: Using social media to distribute the survey aids in collecting a higher number of responses from the people that are aware of the brand.
  • QR code: QuestionPro QR codes store the URL for the survey. You can print/publish this code in magazines, signs, business cards, or on just about any object/medium.
  • SMS survey: The SMS survey is a quick and time-effective way to collect a high number of responses.
  • Offline Survey App: The QuestionPro App allows users to circulate surveys quickly, and the responses can be collected both online and offline.

Survey example

An example of a survey is a short customer satisfaction (CSAT) survey that can quickly be built and deployed to collect feedback about what the customer thinks about a brand and how satisfied and referenceable the brand is.

Using polls for primary quantitative research

Polls are a method to collect feedback using close-ended questions from a sample. The most commonly used types of polls are election polls and exit polls . Both of these are used to collect data from a large sample size but using basic question types like multiple-choice questions.

C. Data Analysis Techniques

The third aspect of primary quantitative research design is data analysis . After collecting raw data, there must be an analysis of this data to derive statistical inferences from this research. It is important to relate the results to the research objective and establish the statistical relevance of the results.

Remember to consider aspects of research that were not considered for the data collection process and report the difference between what was planned vs. what was actually executed.

It is then required to select precise Statistical Analysis Methods , such as SWOT, Conjoint, Cross-tabulation, etc., to analyze the quantitative data.

  • SWOT analysis: SWOT Analysis stands for the acronym of Strengths, Weaknesses, Opportunities, and Threat analysis. Organizations use this statistical analysis technique to evaluate their performance internally and externally to develop effective strategies for improvement.
  • Conjoint Analysis: Conjoint Analysis is a market analysis method to learn how individuals make complicated purchasing decisions. Trade-offs are involved in an individual’s daily activities, and these reflect their ability to decide from a complex list of product/service options.
  • Cross-tabulation: Cross-tabulation is one of the preliminary statistical market analysis methods which establishes relationships, patterns, and trends within the various parameters of the research study.
  • TURF Analysis: TURF Analysis , an acronym for Totally Unduplicated Reach and Frequency Analysis, is executed in situations where the reach of a favorable communication source is to be analyzed along with the frequency of this communication. It is used for understanding the potential of a target market.

Inferential statistics methods such as confidence interval, the margin of error, etc., can then be used to provide results.

Secondary Quantitative Research Methods

Secondary quantitative research or desk research is a research method that involves using already existing data or secondary data. Existing data is summarized and collated to increase the overall effectiveness of the research.

This research method involves collecting quantitative data from existing data sources like the internet, government resources, libraries, research reports, etc. Secondary quantitative research helps to validate the data collected from primary quantitative research and aid in strengthening or proving, or disproving previously collected data.

The following are five popularly used secondary quantitative research methods:

  • Data available on the internet: With the high penetration of the internet and mobile devices, it has become increasingly easy to conduct quantitative research using the internet. Information about most research topics is available online, and this aids in boosting the validity of primary quantitative data.
  • Government and non-government sources: Secondary quantitative research can also be conducted with the help of government and non-government sources that deal with market research reports. This data is highly reliable and in-depth and hence, can be used to increase the validity of quantitative research design.
  • Public libraries: Now a sparingly used method of conducting quantitative research, it is still a reliable source of information, though. Public libraries have copies of important research that was conducted earlier. They are a storehouse of valuable information and documents from which information can be extracted.
  • Educational institutions: Educational institutions conduct in-depth research on multiple topics, and hence, the reports that they publish are an important source of validation in quantitative research.
  • Commercial information sources: Local newspapers, journals, magazines, radio, and TV stations are great sources to obtain data for secondary quantitative research. These commercial information sources have in-depth, first-hand information on market research, demographic segmentation, and similar subjects.

Quantitative Research Examples

Some examples of quantitative research are:

  • A customer satisfaction template can be used if any organization would like to conduct a customer satisfaction (CSAT) survey . Through this kind of survey, an organization can collect quantitative data and metrics on the goodwill of the brand or organization in the customer’s mind based on multiple parameters such as product quality, pricing, customer experience, etc. This data can be collected by asking a net promoter score (NPS) question , matrix table questions, etc. that provide data in the form of numbers that can be analyzed and worked upon.
  • Another example of quantitative research is an organization that conducts an event, collecting feedback from attendees about the value they see from the event. By using an event survey , the organization can collect actionable feedback about the satisfaction levels of customers during various phases of the event such as the sales, pre and post-event, the likelihood of recommending the organization to their friends and colleagues, hotel preferences for the future events and other such questions.

What are the Advantages of Quantitative Research?

There are many advantages to quantitative research. Some of the major advantages of why researchers use this method in market research are:

advantages-of-quantitative-research

Collect Reliable and Accurate Data:

Quantitative research is a powerful method for collecting reliable and accurate quantitative data. Since data is collected, analyzed, and presented in numbers, the results obtained are incredibly reliable and objective. Numbers do not lie and offer an honest and precise picture of the conducted research without discrepancies. In situations where a researcher aims to eliminate bias and predict potential conflicts, quantitative research is the method of choice.

Quick Data Collection:

Quantitative research involves studying a group of people representing a larger population. Researchers use a survey or another quantitative research method to efficiently gather information from these participants, making the process of analyzing the data and identifying patterns faster and more manageable through the use of statistical analysis. This advantage makes quantitative research an attractive option for projects with time constraints.

Wider Scope of Data Analysis:

Quantitative research, thanks to its utilization of statistical methods, offers an extensive range of data collection and analysis. Researchers can delve into a broader spectrum of variables and relationships within the data, enabling a more thorough comprehension of the subject under investigation. This expanded scope is precious when dealing with complex research questions that require in-depth numerical analysis.

Eliminate Bias:

One of the significant advantages of quantitative research is its ability to eliminate bias. This research method leaves no room for personal comments or the biasing of results, as the findings are presented in numerical form. This objectivity makes the results fair and reliable in most cases, reducing the potential for researcher bias or subjectivity.

In summary, quantitative research involves collecting, analyzing, and presenting quantitative data using statistical analysis. It offers numerous advantages, including the collection of reliable and accurate data, quick data collection, a broader scope of data analysis, and the elimination of bias, making it a valuable approach in the field of research. When considering the benefits of quantitative research, it’s essential to recognize its strengths in contrast to qualitative methods and its role in collecting and analyzing numerical data for a more comprehensive understanding of research topics.

Best Practices to Conduct Quantitative Research

Here are some best practices for conducting quantitative research:

Tips to conduct quantitative research

  • Differentiate between quantitative and qualitative: Understand the difference between the two methodologies and apply the one that suits your needs best.
  • Choose a suitable sample size: Ensure that you have a sample representative of your population and large enough to be statistically weighty.
  • Keep your research goals clear and concise: Know your research goals before you begin data collection to ensure you collect the right amount and the right quantity of data.
  • Keep the questions simple: Remember that you will be reaching out to a demographically wide audience. Pose simple questions for your respondents to understand easily.

Quantitative Research vs Qualitative Research

Quantitative research and qualitative research are two distinct approaches to conducting research, each with its own set of methods and objectives. Here’s a comparison of the two:

quantitative research study definition

Quantitative Research

  • Objective: The primary goal of quantitative research is to quantify and measure phenomena by collecting numerical data. It aims to test hypotheses, establish patterns, and generalize findings to a larger population.
  • Data Collection: Quantitative research employs systematic and standardized approaches for data collection, including techniques like surveys, experiments, and observations that involve predefined variables. It is often collected from a large and representative sample.
  • Data Analysis: Data is analyzed using statistical techniques, such as descriptive statistics, inferential statistics, and mathematical modeling. Researchers use statistical tests to draw conclusions and make generalizations based on numerical data.
  • Sample Size: Quantitative research often involves larger sample sizes to ensure statistical significance and generalizability.
  • Results: The results are typically presented in tables, charts, and statistical summaries, making them highly structured and objective.
  • Generalizability: Researchers intentionally structure quantitative research to generate outcomes that can be helpful to a larger population, and they frequently seek to establish causative connections.
  • Emphasis on Objectivity: Researchers aim to minimize bias and subjectivity, focusing on replicable and objective findings.

Qualitative Research

  • Objective: Qualitative research seeks to gain a deeper understanding of the underlying motivations, behaviors, and experiences of individuals or groups. It explores the context and meaning of phenomena.
  • Data Collection: Qualitative research employs adaptable and open-ended techniques for data collection, including methods like interviews, focus groups, observations, and content analysis. It allows participants to express their perspectives in their own words.
  • Data Analysis: Data is analyzed through thematic analysis, content analysis, or grounded theory. Researchers focus on identifying patterns, themes, and insights in the data.
  • Sample Size: Qualitative research typically involves smaller sample sizes due to the in-depth nature of data collection and analysis.
  • Results: Findings are presented in narrative form, often in the participants’ own words. Results are subjective, context-dependent, and provide rich, detailed descriptions.
  • Generalizability: Qualitative research does not aim for broad generalizability but focuses on in-depth exploration within a specific context. It provides a detailed understanding of a particular group or situation.
  • Emphasis on Subjectivity: Researchers acknowledge the role of subjectivity and the researcher’s influence on the Research Process . Participant perspectives and experiences are central to the findings.

Researchers choose between quantitative and qualitative research methods based on their research objectives and the nature of the research question. Each approach has its advantages and drawbacks, and the decision between them hinges on the particular research objectives and the data needed to address research inquiries effectively.

Quantitative research is a structured way of collecting and analyzing data from various sources. Its purpose is to quantify the problem and understand its extent, seeking results that someone can project to a larger population.

Companies that use quantitative rather than qualitative research typically aim to measure magnitudes and seek objectively interpreted statistical results. So if you want to obtain quantitative data that helps you define the structured cause-and-effect relationship between the research problem and the factors, you should opt for this type of research.

At QuestionPro , we have various Best Data Collection Tools and features to conduct investigations of this type. You can create questionnaires and distribute them through our various methods. We also have sample services or various questions to guarantee the success of your study and the quality of the collected data.

Quantitative research is a systematic and structured approach to studying phenomena that involves the collection of measurable data and the application of statistical, mathematical, or computational techniques for analysis.

Quantitative research is characterized by structured tools like surveys, substantial sample sizes, closed-ended questions, reliance on prior studies, data presented numerically, and the ability to generalize findings to the broader population.

The two main methods of quantitative research are Primary quantitative research methods, involving data collection directly from sources, and Secondary quantitative research methods, which utilize existing data for analysis.

1.Surveying to measure employee engagement with numerical rating scales. 2.Analyzing sales data to identify trends in product demand and market share. 4.Examining test scores to assess the impact of a new teaching method on student performance. 4.Using website analytics to track user behavior and conversion rates for an online store.

1.Differentiate between quantitative and qualitative approaches. 2.Choose a representative sample size. 3.Define clear research goals before data collection. 4.Use simple and easily understandable survey questions.

MORE LIKE THIS

quantitative research study definition

What Are My Employees Really Thinking? The Power of Open-ended Survey Analysis

May 24, 2024

When I think of “disconnected”, it is important that this is not just in relation to people analytics, Employee Experience or Customer Experience - it is also relevant to looking across them.

I Am Disconnected – Tuesday CX Thoughts

May 21, 2024

Customer success tools

20 Best Customer Success Tools of 2024

May 20, 2024

AI-Based Services in Market Research

AI-Based Services Buying Guide for Market Research (based on ESOMAR’s 20 Questions) 

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Quantitative research

Affiliation.

  • 1 Faculty of Health and Social Care, University of Hull, Hull, England.
  • PMID: 25828021
  • DOI: 10.7748/ns.29.31.44.e8681

This article describes the basic tenets of quantitative research. The concepts of dependent and independent variables are addressed and the concept of measurement and its associated issues, such as error, reliability and validity, are explored. Experiments and surveys – the principal research designs in quantitative research – are described and key features explained. The importance of the double-blind randomised controlled trial is emphasised, alongside the importance of longitudinal surveys, as opposed to cross-sectional surveys. Essential features of data storage are covered, with an emphasis on safe, anonymous storage. Finally, the article explores the analysis of quantitative data, considering what may be analysed and the main uses of statistics in analysis.

Keywords: Experiments; measurement; nursing research; quantitative research; reliability; surveys; validity.

  • Biomedical Research / methods*
  • Double-Blind Method
  • Evaluation Studies as Topic
  • Longitudinal Studies
  • Randomized Controlled Trials as Topic
  • United Kingdom
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Quantitative Methods
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Quantitative methods emphasize objective measurements and the statistical, mathematical, or numerical analysis of data collected through polls, questionnaires, and surveys, or by manipulating pre-existing statistical data using computational techniques . Quantitative research focuses on gathering numerical data and generalizing it across groups of people or to explain a particular phenomenon.

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Muijs, Daniel. Doing Quantitative Research in Education with SPSS . 2nd edition. London: SAGE Publications, 2010.

Need Help Locating Statistics?

Resources for locating data and statistics can be found here:

Statistics & Data Research Guide

Characteristics of Quantitative Research

Your goal in conducting quantitative research study is to determine the relationship between one thing [an independent variable] and another [a dependent or outcome variable] within a population. Quantitative research designs are either descriptive [subjects usually measured once] or experimental [subjects measured before and after a treatment]. A descriptive study establishes only associations between variables; an experimental study establishes causality.

Quantitative research deals in numbers, logic, and an objective stance. Quantitative research focuses on numeric and unchanging data and detailed, convergent reasoning rather than divergent reasoning [i.e., the generation of a variety of ideas about a research problem in a spontaneous, free-flowing manner].

Its main characteristics are :

  • The data is usually gathered using structured research instruments.
  • The results are based on larger sample sizes that are representative of the population.
  • The research study can usually be replicated or repeated, given its high reliability.
  • Researcher has a clearly defined research question to which objective answers are sought.
  • All aspects of the study are carefully designed before data is collected.
  • Data are in the form of numbers and statistics, often arranged in tables, charts, figures, or other non-textual forms.
  • Project can be used to generalize concepts more widely, predict future results, or investigate causal relationships.
  • Researcher uses tools, such as questionnaires or computer software, to collect numerical data.

The overarching aim of a quantitative research study is to classify features, count them, and construct statistical models in an attempt to explain what is observed.

  Things to keep in mind when reporting the results of a study using quantitative methods :

  • Explain the data collected and their statistical treatment as well as all relevant results in relation to the research problem you are investigating. Interpretation of results is not appropriate in this section.
  • Report unanticipated events that occurred during your data collection. Explain how the actual analysis differs from the planned analysis. Explain your handling of missing data and why any missing data does not undermine the validity of your analysis.
  • Explain the techniques you used to "clean" your data set.
  • Choose a minimally sufficient statistical procedure ; provide a rationale for its use and a reference for it. Specify any computer programs used.
  • Describe the assumptions for each procedure and the steps you took to ensure that they were not violated.
  • When using inferential statistics , provide the descriptive statistics, confidence intervals, and sample sizes for each variable as well as the value of the test statistic, its direction, the degrees of freedom, and the significance level [report the actual p value].
  • Avoid inferring causality , particularly in nonrandomized designs or without further experimentation.
  • Use tables to provide exact values ; use figures to convey global effects. Keep figures small in size; include graphic representations of confidence intervals whenever possible.
  • Always tell the reader what to look for in tables and figures .

NOTE:   When using pre-existing statistical data gathered and made available by anyone other than yourself [e.g., government agency], you still must report on the methods that were used to gather the data and describe any missing data that exists and, if there is any, provide a clear explanation why the missing data does not undermine the validity of your final analysis.

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Brians, Craig Leonard et al. Empirical Political Analysis: Quantitative and Qualitative Research Methods . 8th ed. Boston, MA: Longman, 2011; McNabb, David E. Research Methods in Public Administration and Nonprofit Management: Quantitative and Qualitative Approaches . 2nd ed. Armonk, NY: M.E. Sharpe, 2008; Quantitative Research Methods. Writing@CSU. Colorado State University; Singh, Kultar. Quantitative Social Research Methods . Los Angeles, CA: Sage, 2007.

Basic Research Design for Quantitative Studies

Before designing a quantitative research study, you must decide whether it will be descriptive or experimental because this will dictate how you gather, analyze, and interpret the results. A descriptive study is governed by the following rules: subjects are generally measured once; the intention is to only establish associations between variables; and, the study may include a sample population of hundreds or thousands of subjects to ensure that a valid estimate of a generalized relationship between variables has been obtained. An experimental design includes subjects measured before and after a particular treatment, the sample population may be very small and purposefully chosen, and it is intended to establish causality between variables. Introduction The introduction to a quantitative study is usually written in the present tense and from the third person point of view. It covers the following information:

  • Identifies the research problem -- as with any academic study, you must state clearly and concisely the research problem being investigated.
  • Reviews the literature -- review scholarship on the topic, synthesizing key themes and, if necessary, noting studies that have used similar methods of inquiry and analysis. Note where key gaps exist and how your study helps to fill these gaps or clarifies existing knowledge.
  • Describes the theoretical framework -- provide an outline of the theory or hypothesis underpinning your study. If necessary, define unfamiliar or complex terms, concepts, or ideas and provide the appropriate background information to place the research problem in proper context [e.g., historical, cultural, economic, etc.].

Methodology The methods section of a quantitative study should describe how each objective of your study will be achieved. Be sure to provide enough detail to enable the reader can make an informed assessment of the methods being used to obtain results associated with the research problem. The methods section should be presented in the past tense.

  • Study population and sampling -- where did the data come from; how robust is it; note where gaps exist or what was excluded. Note the procedures used for their selection;
  • Data collection – describe the tools and methods used to collect information and identify the variables being measured; describe the methods used to obtain the data; and, note if the data was pre-existing [i.e., government data] or you gathered it yourself. If you gathered it yourself, describe what type of instrument you used and why. Note that no data set is perfect--describe any limitations in methods of gathering data.
  • Data analysis -- describe the procedures for processing and analyzing the data. If appropriate, describe the specific instruments of analysis used to study each research objective, including mathematical techniques and the type of computer software used to manipulate the data.

Results The finding of your study should be written objectively and in a succinct and precise format. In quantitative studies, it is common to use graphs, tables, charts, and other non-textual elements to help the reader understand the data. Make sure that non-textual elements do not stand in isolation from the text but are being used to supplement the overall description of the results and to help clarify key points being made. Further information about how to effectively present data using charts and graphs can be found here .

  • Statistical analysis -- how did you analyze the data? What were the key findings from the data? The findings should be present in a logical, sequential order. Describe but do not interpret these trends or negative results; save that for the discussion section. The results should be presented in the past tense.

Discussion Discussions should be analytic, logical, and comprehensive. The discussion should meld together your findings in relation to those identified in the literature review, and placed within the context of the theoretical framework underpinning the study. The discussion should be presented in the present tense.

  • Interpretation of results -- reiterate the research problem being investigated and compare and contrast the findings with the research questions underlying the study. Did they affirm predicted outcomes or did the data refute it?
  • Description of trends, comparison of groups, or relationships among variables -- describe any trends that emerged from your analysis and explain all unanticipated and statistical insignificant findings.
  • Discussion of implications – what is the meaning of your results? Highlight key findings based on the overall results and note findings that you believe are important. How have the results helped fill gaps in understanding the research problem?
  • Limitations -- describe any limitations or unavoidable bias in your study and, if necessary, note why these limitations did not inhibit effective interpretation of the results.

Conclusion End your study by to summarizing the topic and provide a final comment and assessment of the study.

  • Summary of findings – synthesize the answers to your research questions. Do not report any statistical data here; just provide a narrative summary of the key findings and describe what was learned that you did not know before conducting the study.
  • Recommendations – if appropriate to the aim of the assignment, tie key findings with policy recommendations or actions to be taken in practice.
  • Future research – note the need for future research linked to your study’s limitations or to any remaining gaps in the literature that were not addressed in your study.

Black, Thomas R. Doing Quantitative Research in the Social Sciences: An Integrated Approach to Research Design, Measurement and Statistics . London: Sage, 1999; Gay,L. R. and Peter Airasain. Educational Research: Competencies for Analysis and Applications . 7th edition. Upper Saddle River, NJ: Merril Prentice Hall, 2003; Hector, Anestine. An Overview of Quantitative Research in Composition and TESOL . Department of English, Indiana University of Pennsylvania; Hopkins, Will G. “Quantitative Research Design.” Sportscience 4, 1 (2000); "A Strategy for Writing Up Research Results. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper." Department of Biology. Bates College; Nenty, H. Johnson. "Writing a Quantitative Research Thesis." International Journal of Educational Science 1 (2009): 19-32; Ouyang, Ronghua (John). Basic Inquiry of Quantitative Research . Kennesaw State University.

Strengths of Using Quantitative Methods

Quantitative researchers try to recognize and isolate specific variables contained within the study framework, seek correlation, relationships and causality, and attempt to control the environment in which the data is collected to avoid the risk of variables, other than the one being studied, accounting for the relationships identified.

Among the specific strengths of using quantitative methods to study social science research problems:

  • Allows for a broader study, involving a greater number of subjects, and enhancing the generalization of the results;
  • Allows for greater objectivity and accuracy of results. Generally, quantitative methods are designed to provide summaries of data that support generalizations about the phenomenon under study. In order to accomplish this, quantitative research usually involves few variables and many cases, and employs prescribed procedures to ensure validity and reliability;
  • Applying well established standards means that the research can be replicated, and then analyzed and compared with similar studies;
  • You can summarize vast sources of information and make comparisons across categories and over time; and,
  • Personal bias can be avoided by keeping a 'distance' from participating subjects and using accepted computational techniques .

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Brians, Craig Leonard et al. Empirical Political Analysis: Quantitative and Qualitative Research Methods . 8th ed. Boston, MA: Longman, 2011; McNabb, David E. Research Methods in Public Administration and Nonprofit Management: Quantitative and Qualitative Approaches . 2nd ed. Armonk, NY: M.E. Sharpe, 2008; Singh, Kultar. Quantitative Social Research Methods . Los Angeles, CA: Sage, 2007.

Limitations of Using Quantitative Methods

Quantitative methods presume to have an objective approach to studying research problems, where data is controlled and measured, to address the accumulation of facts, and to determine the causes of behavior. As a consequence, the results of quantitative research may be statistically significant but are often humanly insignificant.

Some specific limitations associated with using quantitative methods to study research problems in the social sciences include:

  • Quantitative data is more efficient and able to test hypotheses, but may miss contextual detail;
  • Uses a static and rigid approach and so employs an inflexible process of discovery;
  • The development of standard questions by researchers can lead to "structural bias" and false representation, where the data actually reflects the view of the researcher instead of the participating subject;
  • Results provide less detail on behavior, attitudes, and motivation;
  • Researcher may collect a much narrower and sometimes superficial dataset;
  • Results are limited as they provide numerical descriptions rather than detailed narrative and generally provide less elaborate accounts of human perception;
  • The research is often carried out in an unnatural, artificial environment so that a level of control can be applied to the exercise. This level of control might not normally be in place in the real world thus yielding "laboratory results" as opposed to "real world results"; and,
  • Preset answers will not necessarily reflect how people really feel about a subject and, in some cases, might just be the closest match to the preconceived hypothesis.

Research Tip

Finding Examples of How to Apply Different Types of Research Methods

SAGE publications is a major publisher of studies about how to design and conduct research in the social and behavioral sciences. Their SAGE Research Methods Online and Cases database includes contents from books, articles, encyclopedias, handbooks, and videos covering social science research design and methods including the complete Little Green Book Series of Quantitative Applications in the Social Sciences and the Little Blue Book Series of Qualitative Research techniques. The database also includes case studies outlining the research methods used in real research projects. This is an excellent source for finding definitions of key terms and descriptions of research design and practice, techniques of data gathering, analysis, and reporting, and information about theories of research [e.g., grounded theory]. The database covers both qualitative and quantitative research methods as well as mixed methods approaches to conducting research.

SAGE Research Methods Online and Cases

  • << Previous: Qualitative Methods
  • Next: Insiderness >>
  • Last Updated: May 22, 2024 12:03 PM
  • URL: https://libguides.usc.edu/writingguide

Illustration

  • Basics of Research Process
  • Methodology
  • Quantitative Research Study: Definition, Approaches, Methods & Examples
  • Speech Topics
  • Basics of Essay Writing
  • Essay Topics
  • Other Essays
  • Main Academic Essays
  • Research Paper Topics
  • Basics of Research Paper Writing
  • Miscellaneous
  • Chicago/ Turabian
  • Data & Statistics
  • Admission Writing Tips
  • Admission Advice
  • Other Guides
  • Student Life
  • Studying Tips
  • Understanding Plagiarism
  • Academic Writing Tips
  • Basics of Dissertation & Thesis Writing

Illustration

  • Essay Guides
  • Research Paper Guides
  • Formatting Guides
  • Admission Guides
  • Dissertation & Thesis Guides

Quantitative Research Study: Definition, Approaches, Methods & Examples

Quantitative Research

Table of contents

Illustration

Use our free Readability checker

Quantitative research is a type of scientific study that involves the collection and analysis of numerical data. It uses mathematical and statistical techniques to identify patterns in large datasets. Analysis of numbers allows researchers to make predictions about future trends or outcomes. Quantitative methods include surveys, experiments, field studies, structured interviews, standardized assessments and questionnaires.

In this article, we will focus on what a quantitative study is and its main methods. Prepare to go through:

  • Key characteristics
  • Main types and approaches
  • Steps of conducting a quantitative study .

Our paper writers also provided the best quantitative research methods and examples to showcase the benefits of this approach.

What Is Quantitative Research: Definition

Before jumping into a detailed discussion on how to launch quantitative research, let’s outline a definition of this type of study. 

Quantitative research involves analyzing numerical data to uncover patterns and statistical information, which can be used to test hypotheses and respond to research questions . Quantitative methods often include statistical analysis, surveys, and experiments to generate measurable data and make accurate predictions. 

Quantitative research studies are usually applied to fields such as social science, economics, marketing, biology, etc. It is also commonly used for descriptive , correlational , or experimental studies .

Next, we will delve deeper into specific methods to define which one can best fit your academic work. However, before you start analysis and data collection, you need to be clear with the study purpose and research questions you will try to answer in your work.

>> Read more: Difference Between Qualitative and Quantitative Research

Characteristics of Quantitative Research

First, let’s define quantitative research characteristics to ensure that you choose the right type of data for your study. A deep understanding of key traits is the guarantee that you won’t make a mistake when conducting your own study.

  • Quantitative data is measurable. There are variables that can be easily counted and applied to statistical formulas. In other words, this is numeric data.
  • You can apply structured tools for your quantitative research. Those tools are surveys, polls, and questionnaires – structured forms you can use to collect the information.
  • The sample size should be sufficient. To get accurate results, you need to collect data from a significant portion of the target market.Obtaining only 10 survey responses, for example, would not yield any meaningful insights.
  • Your data can be represented in tables, graphs, or charts. As quantitative methods of data collection are focused on numbers, you should utilize visual aids to structure those numbers clearly for analysis. Such representation can provide valuable insights into patterns, trends, and relationships between independent and dependent variables.

If you need a thesis helper online , check our expert services. Our team of professional writers and editors can provide valuable guidance and support in all stages of research and writing.

Quantitative Research Examples

Quite often, it is challenging to apply all the knowledge about this type of research to your specific field of study. However, we want to share examples of quantitative research that illustrate that it can be used for any purpose.

Quantitative research example 1

One common example for students is an evaluation survey after they finish a course at the university. Students usually answer some questions on a likable scale. For instance, they evaluate the quality of lectures on a scale from 1 to 10, where 10 is the highest grade. These numbers help universities to see general satisfaction from this course, define an average number of people who like the course, and run a correlation between student satisfaction by course and their grades.

Example of quantitative research 2

Another common example is customer surveys you get after purchasing something online. After the purchase, you will get an email from a retailer or brand with questions about your satisfaction. For example, you will grade on a scale from 1 to 5 how easy you could find the right size or get customer support. As a result, they get numeric data to evaluate how well their online shop works and what can be improved, make some predictions about future purchases, and use the insights for marketing purposes.

Types of Quantitative Research

There are a few different types of quantitative research that can be used for various studies. Let’s overview each type of quantitative research to understand in what circumstances and for what goals you can use each of them.

We would focus on 4 main types of quantitative approaches in data collection and analysis:

  • Descriptive study Descriptive research is used to measure variables for understanding the situation. It does not involve any manipulation of variables. In other words, descriptive studies focus on defining key statistical measures, without testing for specific data insights.
  • Correlation Correlational study is used in the quantitative research process when you need to measure a relationship between two variables and understand how one variable (for example, the age of respondents) is related to positive answers in the customer survey. Ensure you understand the difference between correlation and causation while making this kind of research.
  • Causal-comparative research Causal-comparative research is a type of non-experimental study that aims to investigate the causes behind differences in behavior among multiple groups. It is one of the commonly used types of quantitative studies for investigating  causal relationships between variables.
  • Experimental research. Experimental research involves manipulating independent variables to observe how they affect dependent variables under controlled conditions. Put simply, the researcher will need to alter the situation to measure various outcomes that may occur.

Primary Quantitative Research Methods

When discussing types of quantitative research methods, we also need to define primary and secondary methods. Primary methods are used to collect data directly from the source, such as through surveys , experiments , or systematic observations . 

Below we will explain each of these methods in detail.

1. Survey Research

Surveys are a widely used quantitative research methodology across various disciplines and fields of study. They are organized both online or offline to gather data from different audiences. In recent years, online surveys have become increasingly popular, replacing traditional methods such as phone or in-person questioning

Surveys can be applied to achieve various study aims, such as understanding attitudes, behaviors, opinions, preferences, or demographic characteristics.

We would like to define 2 main quantitative survey methods:

  • Cross-sectional surveys Cross sectional survey that analyzes data across a sample population at a specific point in time. It means you may send this survey to various different groups of people, but you will need a one-time point you are researching for your study. It is a common method in such fields like economy, epidemiology, or medicine.
  • Longitudinal surveys In longitudinal research , you will measure the same group of people, but the data should be collected repeatedly over time. This method requires repeated measurements at regular intervals, such as days, months, or even years, to track changes in dependent variables over time.

Survey quantitative research method example

One of the common examples is the survey for measuring how citizens are satisfied with local politicians. For this purpose, the sociology group used to develop a questionnaire sample and define target audiences – people living in specific areas or some age groups. Based on their answers, different methods can be applied to answer defined questions, make predictions for the next election or just measure the general attitude of the selected group to political ideas.

2. Experiment

Experimentation is one of the quantitative approaches to research that assumes testing various theories to prove or disprove them, or to identify their limitations. This is another powerful quantitative research method that is often used in psychology, biology, physics, and sociology, among others. 

Experimentation is a systematic quantitative research approach to testing hypotheses and understanding the causal relationships between variables. Researchers manipulate independent variables while holding all other variables constant to observe changes in their dependent variable. By comparing the outcomes of the experimental group to those of the control group , researchers can determine if intervention was effective.

There are two main types of experiments:

  • Laboratory experiments A laboratory experiment is conducted in a controlled environment, such as a laboratory or research center, where researchers have complete control over the variables they manipulate. Such experiments are carefully designed to ensure that all resulting data is carefully analyzed in a lab report .
  • Field experiments Field experiment is a quantitative methodology conducted in real-world settings, such as schools, businesses, or communities, where researchers have less control over variables.

Example of experiment method

You may know about such famous experiments in psychology, such as the marshmallow experiment, when children need to wait some time to eat the marshmallow. The psychologists test how the child's behavior and motivation are related to endurance. For this experiment, scientists measured an independent variable which is the number of sweeteners and dependent variables as time and children's attitude to the task.

>> Read more: How to Design an Experiment 

3. Systematic Observation

One of the most reliable types of quantitative research methodologies is systematic observation. It requires researchers to observe specific situations, behavior, or case and collect numeric data based on predefined forms. Those forms are based on the theoretical framework for a specific quantitative study. Usually, this method involves one or more observers and can be applied to different events or behavioral observations. 

Systematic observation relies on accurate coding and the proper recording of data onto the structured forms used in the study. This quantitative research method is commonly employed in fields such as sociology, medicine, education, and psychology, and requires precise numeric data to be collected. Although observations can be documented through video or audio recordings, researchers using systematic observation focus specifically on measuring specific variables of interest. 

Observation: quantitative research design example

Great example is the observation of children's behavior in the classroom. For study proposals, observers can keep an eye on a classroom during different activities. Then they add countable information into the form - how many times the teacher asked for a specific action or raised a question? How many times do children speak during the class?

Quantitative Methods for Data Collection

When we discuss various analytical techniques, we have already mentioned some types of quantitative data collection methods . However, let’s go deeper and identify key methods to gather numeric data. We will speak about sampling methods , surveys , and polls . Also, our experts prepared examples of quantitative methods for data collection to help students and researchers work accurately. You also should consider using specific tools for working with this type of data and what is the most important to understand your study purpose. 

1. Sampling Method

Let’s imagine you are conducting research about teens and their usage of social media. There is no way you can send a survey, and they analyze data from all teens in the world. However, you will need to choose a reliable number of teens and then create quantitative research designs for this group. 

There are two main sampling methods we are going to discuss – probability and non-probability sampling . 

Probability Sampling

This quantitative method of data collection can be applied to cases when you need to analyze a specific group of people. For instance, you need to learn what the chance is that a city will vote for a chosen politician. It means you need to understand the age and gender percentages in a city and choose people for the survey based on this information. If your city has 34% of women age 55+, using a quantitative approach, you need to have the same percentage in your sampling. 

There are 4 types of probability sampling:

  • Simple random sampling
  • Systematic sampling
  • Stratified sampling
  • Cluster sampling .

Non-Probability Sampling

These quantitative data collection methods consider that the choice of samples depends on a researcher's experience and knowledge. In other words, not everyone can be selected for this data collection procedure - not everyone has an equal probability of being a part of your study. 

Quantitative researchers use five models for non-probability data gathering:

  • Convenience sampling: the only reason to choose study participants is their proximity to researchers.
  • Quota sampling: scientists use their knowledge and experience to form a quota.
  • Consecutive sampling: similar to the conventional method but can be applied to the same situation during some period of time.
  • Snowball sampling: researchers ask their target audience whom they can recommend for the same study.
  • Judgmental samplings: it is usually chosen based on the researcher's skills.

The next and quite popular method to collect data is the quantitative survey method. The design of your question will depend on the theory you are using for your study. For instance, If you are looking at how customer awareness about product features influence their engagement with a brand, you will apply relationship communication theory. In other words, you can’t put any questions you want into the survey.

You can conduct surveys for your quantitative research using the following ways:

  • Social media
  • Survey on your website
  • Offline surveys, and other methods.

As quantitative studies are focused on numeric data, you need to use a likable scale for answers and not open questions.

Polls are a commonly used quantitative research method, particularly in election and exit polls. Conducting quantitative research for the election means you can ask simple questions with multiple choices. For instance, you may offer a few demographic questions (e.g., age, employment),as well as questions about voting behavior (e.g., candidate they voted for).

Applying quantitative design for polls, researchers need to ensure that the answers can be analyzed with statistical formulas. That is why the questions for the polls are often quite simple and comprise up to 5 questions. However, in some cases, polls may include even less queries. 

A quantitative research study can use benchmarks, brushfire, and tracking polls.

Data Analysis Methods

After you collect the results of your polls, samplings, or surveys, you need to analyze quantitative data. As we are discussing primary data, researchers have raw information that can be analyzed and later interpreted in different ways. 

Based on quantitative research approaches, we identify 2 key methods for the analysis of numeric data:

  • Descriptive statistics Descriptive statistics allows us to get average data on questions or measure variability. It helps to overview the data with statistical evaluation. Applying descriptive statistics, you can count the average mean or standard deviation.
  • Inferential statistics Inferential statistics helps to design predictions and understand the relations between variables. You can run a T-test to measure the relation between two variables. Likewise, you may arrange a Pearson correlation test and measure how one variable depends on another one.

Using these statistical instruments, scientists can go deeper into result discussion and test hypotheses.

Secondary Quantitative Research Methods

Secondary methods of quantitative research are based on the analysis of existing data – the information already gathered by someone or presented in other papers. In this case, we do not need to collect data. Instead, scientists conduct their own quantitative research applying statistical analysis methods and formulas to gain new insights from existing data. 

There are 5 most commonly used types of secondary quantitative research methods:

  • Data from open online sources This is probably one of the most frequently used resources for quantitative study is the internet. A lot of companies and government institutions share the data on their own work, like the number of mobile users or a number of people using state health insurance.
  • Official data from government and non-government organizations Some data can exist in official reports but are not published online. In this case, you can ask for data that can be shared without breaking privacy protection laws. You may need to make an official request for the information you want to use for your study.
  • Public libraries You may think that no one uses public libraries. However, this is where you can find old studies conducted by someone else. The library also has a dataset for the papers that can be used for your own study.
  • Educational institutions A lot of educational institutions are also conducting research. While you can find the analytics published in open sources, a data set can be shared with you after the request.
  • Commercial sources These sources typically include information from private research firms or companies that collect and analyze data on specific industries, markets, or consumer behavior. Researchers can access this data through websites, reports, or journals, or by requesting access directly from the companies themselves.

How to Conduct Quantitative Research?

If you are working in the academic field or going to get a master's or Ph.D. degree, you definitely will need to conduct various types of studies to write a dissertation . Let’s look at the common ways to conduct quantitative research. Make sure you keep these important considerations in mind:

  • Determine the type of research you need to conduct. Will you be testing a hypothesis? If so, you will likely need to analyze numerical data.
  • Identify the appropriate sample size for your study. Do you need a large sample size to obtain reliability of outcomes, or will a smaller sample size suffice?
  • Be clear about your research goals. It's important to define your research objectives and ensure that your study design aligns with these goals.
  • Simplify your research questions. If your questions are clear and concise, it will be easier to determine the appropriate type of analysis needed to answer them.

Adhering to these recommendations ensures that research is targeted and generates valuable findings.

Are you searching where to buy dissertation online ? Our professional writing service offers high-quality custom dissertations that are tailored to your specific needs and requirements.

Advantages of Quantitative Research

Before choosing this analytical type for your work, you need to be aware of the advantages of quantitative research methods. 

Here are the pros of using quantitative research methodologies for the research:

  • Time efficiency Gathering and analyzing numerical data usually takes less time than collecting and analyzing non-numerical data.
  • Reliable data Working with numbers allows for precise statistical analysis, resulting in more reliable results.
  • Objectivity The absence of personal comments or interpretation in quantitative data collection reduces the possibility of bias in the results.
  • Scientific approach The quantitative method is considered one of the most scientific research methods, which helps to establish credibility and believability of the results.
  • Verifiability The results can be easily checked and verified by repeating the formula or analysis, ensuring the accuracy of the data.

Disadvantages of Quantitative Research

It may look like working with quantitative research can bring only pros to your study. However, there are a few cons you need to be aware of before starting your data collection. How can methodology in quantitative research become a disadvantage for your study?

  • Risk of bias We mentioned that there is no way you will put your emotions into statistical formulas. But researcher experience and personal feelings can be used to form samplings. Even the daytime for data collection can influence the final results.
  • Narrow focus It is possible that you can be so focused on numbers that you miss the bigger picture. Anytime you are running the numeric study, you need to look at your questions broadly. You may also need some qualitative methods to answer your research questions.
  • Complexity For people who are not very good at math and statistics, it can be problematic to identify what type of numbers they need and what test should be conducted to get results.

Bottom Line on Quantitative Research

In the few paragraphs, we tried to guide you through key principles of numeric research and answer the question of what is a quantitative study and how to conduct it correctly. We identified critical approaches in collecting data for this type of analysis and outlined limitations you need to have in mind running this study. 

You also can find the best quantitative methods examples that will definitely help you with your own study. Try your best to launch a valuable and reliable study using all the knowledge on how to work with numbers!

Illustration

Our research paper service can help you meet your deadlines and deliver high-quality work. Whether you need a quantitative study or any other type of research, we can assist you in completing your project effort-free.

FAQ About Quantitative Research Studies & Methods

1. what is the purpose of quantitative research.

The primary purpose of quantitative research is to test the hypothesis you may have in your study. This is one of the most frequently used types of data analysis, but before start working with numbers, you need to be clear with your goal. For example, for answering research questions, you may need only qualitative data.

2. What is a quantitative research method?

Quantitative research methods are types of data collection and analysis that focus on numeric information. In other words, this is the research when you work with numbers instead of words. You may need to apply some statistical formulas to those numbers to get results, while in a qualitative study, you will deal with content analysis mostly.

3. When is quantitative research used?

You may need to conduct quantitative research in case you are going to test the hypothesis by running statistical formulas. In most cases, you understand what type of research you need to conduct when you are clear with the study's aims and purpose. After you define hypotheses or questions, you may focus on the methodology that will help you get results.

Joe_Eckel_1_ab59a03630.jpg

Joe Eckel is an expert on Dissertations writing. He makes sure that each student gets precious insights on composing A-grade academic writing.

You may also like

Qualitative Research

Quantitative research methods are opposite to approaches applied in a  qualitative study , where you are dealing with descriptions instead of numbers. In the latter case, analysis is focused on non-numerical data, like texts from interviews or focus groups, videos, or audio.

Note that a single study may require the use of multiple methods to gather different types of data. As such, researchers may need to employ a variety of methods to gain a comprehensive understanding of their research topics .

Types of market research: Methods and examples

mm

  • Share on Facebook
  • Share on Twitter
  • Share on LinkedIn

Fancy a look round our platform? Show me

Here at GWI we publish a steady stream of blogs, reports, and other resources that dig deep into specific market research topics.

But what about the folks who’d appreciate a more general overview of market research that explains the big picture? Don’t they deserve some love too?

Of course they do. That’s why we’ve created this overview guide focusing on types of market research and examples. With so many market research companies to choose from, having a solid general understanding of how this sector works is essential for any brand or business that wants to pick the right market research partner.

So with that in mind, let’s start at the very beginning and get clear on…

Market research definition

At the risk of stating the slightly obvious, market research is the gathering and analyzing of data on consumers, competitors, distributors, and markets. As such it’s not quite the same as consumer research , but there’s significant overlap.

Market research matters because it can help you take the guesswork out of getting through to audiences. By studying consumers and gathering information on their likes, dislikes, and so on, brands can make evidence-based decisions instead of relying on instinct or experience. 

quantitative research study definition

What is market research?

Market research is the organized gathering of information about target markets and consumers’ needs and preferences. It’s an important component of business strategy and a major factor in maintaining competitiveness.

If a business wants to know – really know – what sort of products or services consumers want to buy, along with where, when, and how those products and services should be marketed, it just makes sense to ask the prospective audience. 

Without the certainty that market research brings, a business is basically hoping for the best. And while we salute their optimism, that’s not exactly a reliable strategy for success.

What are the types of market research?

Primary research .

Primary research is a type of market research you either conduct yourself or hire someone to do on your behalf.

A classic example of primary research involves going directly to a source – typically customers or prospective customers in your target market – to ask questions and gather information about a product or service. Interviewing methods include in-person, online surveys, phone calls, and focus groups.

The big advantage of primary research is that it’s directly focused on your objectives, so the outcome will be conclusive, detailed insights – particularly into customer views – making it the gold standard.

The disadvantages are it can be time-consuming and potentially costly, plus there’s a risk of survey bias creeping in, in the sense that research samples may not be representative of the wider group.

Secondary research 

Primary market research means you collect the data your business needs, whereas the types of market research known as secondary market research use information that’s already been gathered for other purposes but can still be valuable. Examples include published market studies, white papers, analyst reports, customer emails, and customer surveys/feedback.

For many small businesses with limited budgets, secondary market research is their first choice because it’s easier to acquire and far more affordable than primary research.

Secondary research can still answer specific business questions, but with limitations. The data collected from that audience may not match your targeted audience exactly, resulting in skewed outcomes. 

A big benefit of secondary market research is helping lay the groundwork and get you ready to carry out primary market research by making sure you’re focused on what matters most.

quantitative research study definition

Qualitative research

Qualitative research is one of the two fundamental types of market research. Qualitative research is about people and their opinions. Typically conducted by asking questions either one-on-one or in groups, qualitative research can help you define problems and learn about customers’ opinions, values, and beliefs.

Classic examples of qualitative research are long-answer questions like “Why do you think this product is better than competitive products? Why do you think it’s not?”, or “How would you improve this new service to make it more appealing?”

Because qualitative research generally involves smaller sample sizes than its close cousin quantitative research, it gives you an anecdotal overview of your subject, rather than highly detailed information that can help predict future performance.

Qualitative research is particularly useful if you’re developing a new product, service, website or ad campaign and want to get some feedback before you commit a large budget to it.

Quantitative research

If qualitative research is all about opinions, quantitative research is all about numbers, using math to uncover insights about your audience. 

Typical quantitative research questions are things like, “What’s the market size for this product?” or “How long are visitors staying on this website?”. Clearly the answers to both will be numerical.

Quantitative research usually involves questionnaires. Respondents are asked to complete the survey, which marketers use to understand consumer needs, and create strategies and marketing plans.

Importantly, because quantitative research is math-based, it’s statistically valid, which means you’re in a good position to use it to predict the future direction of your business.

Consumer research 

As its name implies, consumer research gathers information about consumers’ lifestyles, behaviors, needs and preferences, usually in relation to a particular product or service. It can include both quantitative and qualitative studies.

Examples of consumer research in action include finding ways to improve consumer perception of a product, or creating buyer personas and market segments, which help you successfully market your product to different types of customers.

Understanding consumer trends , driven by consumer research, helps businesses understand customer psychology and create detailed purchasing behavior profiles. The result helps brands improve their products and services by making them more customer-centric, increasing customer satisfaction, and boosting bottom line in the process.

Product research 

Product research gives a new product (or indeed service, we don’t judge) its best chance of success, or helps an existing product improve or increase market share.

It’s common sense: by finding out what consumers want and adjusting your offering accordingly, you gain a competitive edge. It can be the difference between a product being a roaring success or an abject failure.

Examples of product research include finding ways to develop goods with a higher value, or identifying exactly where innovation effort should be focused. 

Product research goes hand-in-hand with other strands of market research, helping you make informed decisions about what consumers want, and what you can offer them.

Brand research  

Brand research is the process of gathering feedback from your current, prospective, and even past customers to understand how your brand is perceived by the market.

It covers things like brand awareness, brand perceptions, customer advocacy, advertising effectiveness, purchase channels, audience profiling, and whether or not the brand is a top consideration for consumers.

The result helps take the guesswork out of your messaging and brand strategy. Like all types of market research, it gives marketing leaders the data they need to make better choices based on fact rather than opinion or intuition.

Market research methods 

So far we’ve reviewed various different types of market research, now let’s look at market research methods, in other words the practical ways you can uncover those all-important insights.

Consumer research platform 

A consumer research platform like GWI is a smart way to find on-demand market research insights in seconds.

In a world of fluid markets and changing attitudes, a detailed understanding of your consumers, developed using the right research platform, enables you to stop guessing and start knowing.

As well as providing certainty, consumer research platforms massively accelerate speed to insight. Got a question? Just jump on your consumer research platform and find the answer – job done.

The ability to mine data for answers like this is empowering – suddenly you’re in the driving seat with a world of possibilities ahead of you. Compared to the most obvious alternative – commissioning third party research that could take weeks to arrive – the right consumer research platform is basically a magic wand.

Admittedly we’re biased, but GWI delivers all this and more. Take our platform for a quick spin and see for yourself.

And the downside of using a consumer research platform? Well, no data set, however fresh or thorough, can answer every question. If you need really niche insights then your best bet is custom market research , where you can ask any question you like, tailored to your exact needs.

Face-to-face interviews 

Despite the rise in popularity of online surveys , face-to-face survey interviewing – using mobile devices or even the classic paper survey – is still a popular data collection method.

In terms of advantages, face-to-face interviews help with accurate screening, in the sense the interviewee can’t easily give misleading answers about, say, their age. The interviewer can also make a note of emotions and non-verbal cues. 

On the other hand, face-to-face interviews can be costly, while the quality of data you get back often depends on the ability of the interviewer. Also, the size of the sample is limited to the size of your interviewing staff, the area in which the interviews are conducted, and the number of qualified respondents within that area.

Social listening 

Social listening is a powerful solution for brands who want to keep an ear to the ground, gathering unfiltered thoughts and opinions from consumers who are posting on social media. 

Many social listening tools store data for up to a couple of years, great for trend analysis that needs to compare current and past conversations.

Social listening isn’t limited to text. Images, videos, and emojis often help us better understand what consumers are thinking, saying, and doing better than more traditional research methods. 

Perhaps the biggest downside is there are no guarantees with social listening, and you never know what you will (or won’t) find. It can also be tricky to gauge sentiment accurately if the language used is open to misinterpretation, for example if a social media user describes something as “sick”.

There’s also a potential problem around what people say vs. what they actually do. Tweeting about the gym is a good deal easier than actually going. The wider problem – and this may shock you – is that not every single thing people write on social media is necessarily true, which means social listening can easily deliver unreliable results.

Public domain data 

Public domain data comes from think tanks and government statistics or research centers like the UK’s National Office for Statistics or the United States Census Bureau and the National Institute of Statistical Sciences. Other sources are things like research journals, news media, and academic material.

Its advantages for market research are it’s cheap (or even free), quick to access, and easily available. Public domain datasets can be huge, so potentially very rich.

On the flip side, the data can be out of date, it certainly isn’t exclusive to you, and the collection methodology can leave much to be desired. But used carefully, public domain data can be a useful source of secondary market research.

Telephone interviews 

You know the drill – you get a call from a researcher who asks you questions about a particular topic and wants to hear your opinions. Some even pay or offer other rewards for your time.

Telephone surveys are great for reaching niche groups of consumers within a specific geographic area or connected to a particular brand, or who aren’t very active in online channels. They’re not well-suited for gathering data from broad population groups, simply because of the time and labor involved.

How to use market research 

Data isn’t an end in itself; instead it’s a springboard to make other stuff happen. So once you’ve drawn conclusions from your research, it’s time to think of what you’ll actually do based on your findings.

While it’s impossible for us to give a definitive list (every use case is different), here are some suggestions to get you started.

Leverage it . Think about ways to expand the use – and value – of research data and insights, for example by using research to support business goals and functions, like sales, market share or product design.

Integrate it . Expand the value of your research data by integrating it with other data sources, internal and external. Integrating data like this can broaden your perspective and help you draw deeper insights for more confident decision-making.

Justify it . Enlist colleagues from areas that’ll benefit from the insights that research provides – that could be product management, product development, customer service, marketing, sales or many others – and build a business case for using research.

How to choose the right type of market research 

Broadly speaking, choosing the right research method depends on knowing the type of data you need to collect. To dig into ideas and opinions, choose qualitative; to do some testing, it’s quantitative you want.

There are also a bunch of practical considerations, not least cost. If a particular approach sounds great but costs the earth then clearly it’s not ideal for any brand on a budget.

Then there’s how you intend to use the actual research, your level of expertise with research data, whether you need access to historical data or just a snapshot of today, and so on.

The point is, different methods suit different situations. When choosing, you’ll want to consider what you want to achieve, what data you’ll need, the pros and cons of each method, the costs of conducting the research, and the cost of analyzing the results. 

Market research examples

Independent agency Bright/Shift used GWI consumer insights to shape a high-impact go-to-market strategy for their sustainable furniture client, generating £41K in revenue in the first month. Here’s how they made the magic happen .

Fancy a look around? Book your demo

Never miss a post

By subscribing you confirm you’re happy for us to send you our latest articles.

You’ve read our blog, now see our platform

Every business has questions about its audiences, GWI has answers. Powered by consistent, global research, our platform is an on-demand window into their world.

laptop

Advertisement

Issue Cover

  • Previous Issue

Research Articles

On the shoulders of fallen giants: what do references to retracted research tell us about citation behaviors, completeness degree of publication metadata in eight free-access scholarly databases, opencitations meta, examining the quality of the corresponding authorship field in web of science and scopus, the challenge of assessing academic books: the u.k. and lithuanian cases through the isbn lens, individual and gender inequality in computer science: a career study of cohorts from 1970 to 2000, large-scale text analysis using generative language models: a case study in discovering public value expressions in ai patents, technological impact of funded research: a case study of nonpatent references, keeping a close watch on innovation studies: opening the black box of journal editorships, exploring evidence selection with the inclusion network, scholarly publications and data set evidence for the human reference atlas, the gendered structure of science does not transpire in an experimental vacuum, are open access fees a good use of taxpayers’ money, product(s) added to cart, email alerts, affiliations.

  • Online ISSN 2641-3337

A product of The MIT Press

Mit press direct.

  • About MIT Press Direct

Information

  • Accessibility
  • For Authors
  • For Customers
  • For Librarians
  • Direct to Open
  • Open Access
  • Media Inquiries
  • Rights and Permissions
  • For Advertisers
  • About the MIT Press
  • The MIT Press Reader
  • MIT Press Blog
  • Seasonal Catalogs
  • MIT Press Home
  • Give to the MIT Press
  • Direct Service Desk
  • Terms of Use
  • Privacy Statement
  • Crossref Member
  • COUNTER Member  
  • The MIT Press colophon is registered in the U.S. Patent and Trademark Office

This Feature Is Available To Subscribers Only

Sign In or Create an Account

Leveraging collective action and environmental literacy to address complex sustainability challenges

  • Perspective
  • Open access
  • Published: 09 August 2022
  • Volume 52 , pages 30–44, ( 2023 )

Cite this article

You have full access to this open access article

quantitative research study definition

  • Nicole M. Ardoin   ORCID: orcid.org/0000-0002-3290-8211 1 ,
  • Alison W. Bowers 2 &
  • Mele Wheaton 3  

8268 Accesses

18 Citations

20 Altmetric

Explore all metrics

Developing and enhancing societal capacity to understand, debate elements of, and take actionable steps toward a sustainable future at a scale beyond the individual are critical when addressing sustainability challenges such as climate change, resource scarcity, biodiversity loss, and zoonotic disease. Although mounting evidence exists for how to facilitate individual action to address sustainability challenges, there is less understanding of how to foster collective action in this realm. To support research and practice promoting collective action to address sustainability issues, we define the term “collective environmental literacy” by delineating four key potent aspects: scale, dynamic processes, shared resources, and synergy. Building on existing collective constructs and thought, we highlight areas where researchers, practitioners, and policymakers can support individuals and communities as they come together to identify, develop, and implement solutions to wicked problems. We close by discussing limitations of this work and future directions in studying collective environmental literacy.

Similar content being viewed by others

quantitative research study definition

Reimagining the language of engagement in a post-stakeholder world

quantitative research study definition

Can public awareness, knowledge and engagement improve climate change adaptation policies?

quantitative research study definition

Building community resilience in a context of climate change: The role of social capital

Avoid common mistakes on your manuscript.

Introduction

For socio-ecologically intertwined issues—such as climate change, land conversion, biodiversity loss, resource scarcity, and zoonotic diseases—and their associated multi-decadal timeframes, individual action is necessary, yet not sufficient, for systemic, sustained change (Amel et al. 2017 ; Bodin 2017 ; Niemiec et al. 2020 ; Spitzer and Fraser 2020 ). Instead, collective action, or individuals working together toward a common good, is essential for achieving the scope and scale of solutions to current sustainability challenges. To support communities as they engage in policy and action for socio-environmental change, communicators, land managers, policymakers, and other practitioners need an understanding of how communities coalesce and leverage their shared knowledge, skills, connections, and experiences.

Engagement efforts, such as those grounded in behavior-change approaches or community-based social marketing initiatives, that address socio-environmental issues have often emphasized individuals as the pathway to change. Such efforts address a range of domains including, but not limited to, residential energy use, personal transportation choices, and workplace recycling efforts, often doing so in a stepwise fashion, envisioning each setting or suite of behaviors as discrete spheres of action and influence (Heimlich and Ardoin 2008 ; McKenzie-Mohr 2011 ). In this way, specific actions are treated incrementally and linearly, considering first the individual barriers to be removed and then the motivations to be activated (and, sometimes, sustained; Monroe 2003 ; Gifford et al. 2011 ). Once each behavior is successfully instantiated, the next barrier is then addressed. Proceeding methodically from one action to the next, such initiatives often quite successfully alter a series of actions or group of related behaviors (at least initially) by addressing them incrementally, one at a time (Byerly et al. 2018 ). Following this aspirational logic chain, many resources have been channeled into such programs under the assumption that, by raising awareness and knowledge, such information, communication, and educational outreach efforts will shift attitudes and behaviors to an extent that, ultimately, mass-scale change will follow. (See discussion in Wals et al. 2014 .)

Numerous studies have demonstrated, however, that challenges arise with these stepwise approaches, particularly with regard to their ability to address complex issues and persist over time (Heimlich and Ardoin 2008 ; Wals et al. 2014 ). Such approaches place a tremendous—and unrealistic—burden on individuals, ignoring key aspects not only of behavioral science but also of social science more broadly, including the view that humans exist nested within socio-ecological systems and, thus, are most successful at achieving lasting change when it is meaningful, relevant, and undertaken within a supportive context (Swim et al. 2011 ; Feola 2015 ). Individualized approaches often require multiple steps or nudges (Byerly et al. 2018 ), or ongoing reminders to retain their salience (Stern et al. 2008 ). Because of the emphasis on decontextualized action, such approaches can miss, ignore, obfuscate, or minimize the importance of the bigger picture, which includes the sociocultural, biophysical, and political economic contexts (Ardoin 2006 ; Amel et al. 2017 ). Although the tightly trained focus on small, actionable steps and reliance on individual willpower may help in initially achieving success with initial habit formation (Carden and Wood 2018 ), it becomes questionable in terms of bringing about a wave of transformation on larger scales in the longer term. For those decontextualized actions to persist, they require continued prompting, constancy, and support in the social and biophysical context (Schultz 2014 ; Manfredo et al. 2016 ; Wood and Rünger 2016 ).

Less common in practice are theoretically based initiatives that embrace the holistic nature of the human experience, which occurs within complex systems spanning time and space in a multidimensional, weblike fashion (Bronfenbrenner 1979 ; Rogoff 2003 ; Barron 2006 ; DeCaro and Stokes 2008 ; Gould et al. 2019 ; Hovardas 2020 ). These systems-thinking approaches, while varying across disciplines and epistemological perspectives, envision human experiences, including learning and behavior, as occurring within a milieu that include the social, political, cultural, and historical contexts (Rogoff 2003 ; Roth and Lee 2007 ; Swim et al. 2011 ; Gordon 2019 ). In such a view, people’s everyday practices continuously reflect and grow out of past learning and experiences, not only at the individual, but also at the collective level (Lave 1991 ; Gutiérrez and Rogoff 2003 ; Nasir et al. 2020 ; Ardoin and Heimlich 2021 ). The multidimensional context in which we exist—including the broader temporal and spatial ecosystem—both facilitates and constrains our actions.

Scholars across diverse areas of study discuss the need for and power of collective thought and action, using various conceptual frames, models, and terms, such as collective action, behavior, impact, and intelligence; collaborative governance; communities of practice; crowdsourcing; and social movement theory; among many others (Table 1 ). These scholars acknowledge and explore the influence of our multidimensional context on collective thought and action. In this paper, we explore the elements and processes that constitute collective environmental literacy . We draw on the vast, relevant literature and, in so doing, we attempt to invoke the power of the collective: by reviewing and synthesizing ideas from a variety of fields, we strive to leverage existing constructs and perspectives that explore notions of the “collective” (see Table 1 for a summary of constructs and theories reviewed to develop our working definition of collective environmental literacy). A primary goal of this paper is to dialogue with other researchers and practitioners working in this arena who are eager to uncover and further explore related avenues.

First, we present a formal definition of collective environmental literacy. Next, we briefly review the dominant view of environmental literacy at the individual level and, in support of a collective take on environmental literacy, we examine various collective constructs. We then delve more deeply into the definition of collective environmental literacy by outlining four key aspects: scale, dynamic processes, shared resources, and synergy. We conclude by providing suggestions for future directions in studying collective environmental literacy.

Defining collective environmental literacy

Decades of research in political science, economics, anthropology, sociology, psychology, and the learning sciences, among other fields (Chawla and Cushing 2007 ; Ostrom 2009 ; Sawyer 2014 ; Bamberg et al. 2015 ; Chan 2016 ; Jost et al. 2017 ) repeatedly demonstrates the effectiveness, and indeed necessity of, collective action when addressing problems that are inherently social in nature. Yet theoretical frameworks and empirical documentation emphasize that such collective activities rarely arise spontaneously and, when they do, are a result of preconditions that have sown fertile ground (van Zomeren et al. 2008 ; Duncan 2018 ). Persistent and effective collective action then requires scaffolding in the form of institutional, sociocultural, and political economic structure that provides ongoing support. To facilitate discussions of how to effectively support collective action around sustainability issues, we suggest the concept of “collective environmental literacy.” We conceptualize collective environmental literacy as more than collective action; rather, we suggest that the term encapsulates action along with its various supporting structures and resources. Additionally, we employ the word “literacy” as it connotes learning, intention, and the idea that knowledge, skills, attitudes, and behaviors can be enhanced iteratively over time. By using “literacy,” we strive to highlight the efforts, often unseen, that lead to effective collective action in communities. We draw on scholarship in science and health education, areas that have begun over the past two decades to theorize about related areas of collective science literacy (Roth and Lee 2002 , 2004 ; Lee and Roth 2003 ; Feinstein 2018 ) and health literacy (Freedman et al. 2009 ; Papen 2009 ; Chinn 2011 ; Guzys et al. 2015 ). Although these evolving constructs lack consensus definitions, they illuminate affordances and constraints that exist when conceptualizing collective environmental literacy (National Academies of Sciences, Engineering, and Medicine [NASEM] 2016 ).

Some of the key necessary—but not sufficient—conditions that facilitate aligned, collective actions include a common body of decision-making information; shared attitudes, values, and beliefs toward a motivating issue or concern; and efficacy skills that facilitate change-making (Sturmer and Simon 2004 ; van Zomeren et al. 2008 ; Jagers et al. 2020 ). In addition, other contextual factors are essential, such as trust, reciprocity, collective efficacy, and communication among group members and societal-level facilitators, such as social norms, institutions, and technology (Bandura 2000 ; Ostrom 2010 ; McAdam and Boudet 2012 ; Jagers et al. 2020 ). Taken together, we term this body of knowledge, dispositions, skills, and the context in which they flourish collective environmental literacy . More formally, we define collective environmental literacy as: a dynamic, synergistic process that occurs as group members develop and leverage shared resources to undertake individual and aggregate actions over time to address sustainability issues within the multi-scalar context of a socio-environmental system (Fig.  1 ).

figure 1

Key elements of collective environmental literacy

Environmental literacy: Historically individual, increasingly collective

Over the past five decades, the term “environmental literacy” has come into increasingly frequent use. Breaking from the traditional association of “literacy” with reading and writing in formal school contexts, environmental literacy emphasizes associations with character and behavior, often in the form of responsible environmental stewardship (Roth 1992 ). Footnote 1 Such perspectives define the concept as including affective (attitudinal), cognitive (knowledge-based), and behavioral domains, emphasizing that environmental literacy is both a process and outcome that develops, builds, and morphs over time (Hollweg et al. 2011 ; Wheaton et al. 2018 ; Clark et al. 2020 ).

The emphasis on defining, measuring, and developing interventions to bring about environmental literacy has primarily remained at the individual scale, as evidenced by frequent descriptions of an environmentally literate person (Roth 1992 ; Hollweg et al. 2011 among others) rather than community or community member. In most understandings, discussions, and manifestations of environmental literacy, the implicit assumption remains that the unit of action, intervention, and therefore analysis occurs at the individual level. Yet instinctively and perhaps by nature, community members often seek information and, as a result, take action collectively, sharing what some scholars call “the hive mind” or “group mind,” relying on each other for distributed knowledge, expertise, motivation, and support (Surowiecki 2005 ; Sunstein 2008 ; Sloman and Fernbach 2017 ; Paul 2021 ).

As with the proverbial elephant (Saxe, n.d.), each person, household, or neighborhood group may understand or “see” a different part of an issue or challenge, bring a novel understanding to the table, and have a certain perspective or skill to contribute. Although some environmental literacy discussions allude to a collective lens (e.g., Hollweg et al. 2011 ; Ardoin et al. 2013 ; Wheaton et al. 2018 ; Bey et al. 2020 ), defining, developing frameworks, and creating measures to assess the efficacy of such collective-scale sustainability-related endeavors has remained elusive. Footnote 2 Looking to related fields and disciplines—such as ecosystem theory, epidemiology and public health, sociology, network theory, and urban planning, among others—can provide insight, theoretical frames, and empirical examples to assist in such conceptualizations (McAdam and Boudet 2012 ; National Research Council 2015 ) (See Table 1 for an overview of some of the many areas of study that informed our conceptualization of collective environmental literacy).

Seeking the essence of the collective: Looking to and learning from others

The social sciences have long focused on “the kinds of activities engaged in by sizable but loosely organized groups of people” (Turner et al. 2020 , para. 1) and addressed various collective constructs, such as collective behavior, action, intelligence, and memory (Table 1 ). Although related constructs in both the social and natural sciences—such as communities of practice (Wenger and Snyder 2000 ), collaborative governance (Ansell and Gash 2008 ; Emerson et al. 2012 ), and the collaboration–coordination continuum (Sadoff and Grey 2005 ; Prager 2015 ), as well as those from social movement theory and related areas (McAdam and Boudet 2012 ; de Moor and Wahlström 2019 )—lack the word “collective” in name, they too leverage the benefits of collectivity. A central tenet connects all of these areas: powerful processes, actions, and outcomes can arise when individuals coalesce around a common purpose or cause. This notion of a dynamic, potent force transcending the individual to enhance the efficacy of outcomes motivates the application of a collective lens to the environmental literacy concept.

Dating to the 1800s, discussions of collective behavior have explored connections to social order, structures, and norms (Park 1927 ; Smelser 2011 /1962; Turner and Killian 1987 ). Initially, the focus emphasized spontaneous, often violent crowd behaviors, such as riots, mobs, and rebellions. More contemporarily, sociologists, political scientists, and others who study social movements and collective behaviors acknowledge that such phenomena may take many forms, including those occurring in natural ecosystems, such as ant colonies, bird flocks, and even the human brain (Gordon 2019 ). In sociology, collective action represents a paradigm shift highlighting coordinated, purposeful pro-social movements, while de-emphasizing aroused emotions and crowd behavior (Miller 2014 ). In political science, Ostrom’s ( 1990 , 2000 , 2010 ) theory of collective action in the context of the management of shared resources extends the concept’s reach to economics and other fields. In education and the learning sciences, social learning and sociocultural theories tap into the idea of learning as a social-cognitive-cultural endeavor (Vygotsky 1980 ; Lave and Wenger 1991 ; Tudge and Winterhoff 1993 ; Rogoff 2003 ; Reed et al. 2010 ).

Collective action, specifically, and collective constructs, generally, have found their way into the research and practice in the fields of conservation, natural resources, and environmental management. Collective action theory has been applied in a range of settings and scenarios, including agriculture (Mills et al. 2011 ), invasive species management (Marshall et al. 2016 ; Sullivan et al. 2017 ; Lubeck et al. 2019 ; Clarke et al. 2021 ), fire management (Canadas et al. 2016 ; Charnley et al. 2020 ), habitat conservation (Raymond 2006 ; Niemiec et al. 2020 ), and water governance (Lopez-Gunn 2003 ; Baldwin et al. 2018 ), among others. Frameworks and methods that emphasize other collective-related ideas—like collaboration, co-production, and group learning—are also ubiquitous in natural resource and environmental management. These constructs include community-based conservation (DeCaro and Stokes 2008 ; Niemiec et al. 2016 ), community natural resource management (Kellert et al. 2000 ; Dale et al. 2020 ), collaboration/coordination (Sadoff and Grey 2005 ; Prager 2015 ), polycentricity (Galaz et al. 2012 ; Heikkila et al. 2018 ), knowledge co-production (Armitage et al. 2011 ; Singh et al. 2021 ), and social learning (Reed et al. 2010 ; Hovardas 2020 ). Many writings on collective efforts in the social sciences broadly, and applied in the area of environment specifically, provide insights into collective action’s necessary preconditions, which prove invaluable to further defining and later operationalizing collective environmental literacy.

Unpacking the definition of collective environmental literacy: Anchoring principles

As described, we propose the following working definition of collective environmental literacy drawing on our analysis of related literatures and informed by scholarly and professional experience in the sustainability and conservation fields: a dynamic, synergistic process that occurs as group members develop and leverage shared resources to undertake individual and aggregate actions over time to address sustainability issues within the multi-scalar context of a socio-environmental system (Fig.  1 ). This definition centers on four core, intertwined ideas: the scale of the group involved; the dynamic nature of the process; shared resources brought by, available to, and needed by the group; and the synergy that arises from group interaction.

Multi-scalar

When transitioning from the focus on individual to collective actions—and, herein, principles of environmental literacy—the most obvious and primary requisite shift is one of scale. Yet, moving to a collective scale does not mean abandoning action at the individual scale; rather, success at the collective level is intrinsically tied to what occurs at an individual level. Such collective-scale impacts leverage the power of the hive, harnessing people’s willingness, ability, and motivation to take action alongside others, share their ideas and resources to build collective ideas and resources, contribute to making a difference in an impactful way, and participate communally in pro-social activities.

Collective environmental literacy is likely dynamic in its orientation to scale, incorporating place-based notions, such as ecoregional or community-level environmental literacy (with an emphasis on geographic boundaries). On the other hand, it may encapsulate environmental literacy of a group or organization united by a common identity (e.g., organizational membership) or cause (e.g., old-growth forests, coastal protection), rather than solely or even primarily by geography. Although shifting scales can make measuring collective environmental literacy more difficult, dynamic levels may be a benefit when addressing planetary boundary issues such as climate change, biodiversity, and ocean acidification (Galaz et al. 2012 ). Some scholars have called for a polycentric approach to these large-scale issues in response to a perceived failure of global-wide, top-down solutions (Ostrom 2010 , 2012 ; Jordan et al. 2018 ). Conceptualizing and consequently supporting collective environmental literacy at multiple scales can facilitate such desired polycentricity.

Rather than representing a static outcome, environmental literacy is a dynamic process that is fluctuating and complex, reflective of iterative interactions among community members, whose discussions and negotiations reflect the changing context of sustainability issues. Footnote 3 Such open-minded processes allow for, and indeed welcome, adaptation in a way that builds social-ecological resilience (Berkes and Jolly 2002 ; Adger et al. 2005 ; Berkes 2007 ). Additionally, this dynamism allows for collective development and maturation, supporting community growth in collective knowledge, attitudes, skills, and actions via new experiences, interactions, and efforts (Berkman et al. 2010 ). With this mindset, and within a sociocultural perspective, collective environmental literacy evolves through drawing on and contributing to the community’s funds of knowledge (González et al. 2006 ). Movement and actions within and among groups impact collective literacy, as members share knowledge and other resources, shifting individuals and the group in the course of their shared practices (Samerski 2019 ).

In a collective mode, effectiveness is heightened as shared resources are streamlined, waste is minimized, and innovation maximized. Rather than each group member developing individual expertise in every matter of concern, the shared knowledge, skills, and behaviors can be distributed, pursued, and amplified among group members efficiently and effectively, with collective literacy emerging from the process of pooling diverse forms of capital and aggregating resources. This perspective builds on ideas of social capital as a collective good (Ostrom 1990 ; Putnam 2020 ), wherein relationships of trust and reciprocity are both inputs and outcomes (Pretty and Ward 2001 ). The shared resources then catalyze and sustain action as they are reassembled and coalesced at the group level for collective impact.

The pooled resources—likely vast—may include, but are not limited to, physical and human resources, funding, time, energy, and space and place (physical or digital). Shared resources may also include forms of theorized capital, such as intellectual and social (Putnam 2020 ). Also of note is the recognition that these resources extend far beyond information and knowledge. Of particular interest when building collective environmental literacy are resources previously ignored or overlooked by those in power in prior sustainability efforts. For example, collective environmental literacy can draw strength from shared resources unique to the community or even subgroups within the larger community. Discussions of Indigenous knowledge (Gadgil et al. 1993 ) and funds of knowledge (González et al. 2006 ; Cruz et al. 2018 ) suggest critical, shared resources that highlight strengths of an individual community and its members. Another dimension of shared resources relates to the strength of institutional connections, such as the benefits that accrue from leveraging the collective knowledge, expertise, and resources of organizational collaborators working in adjacent areas to further and amplify each other’s impact (Wojcik et al. 2021 ).

Synergistic

Finally, given the inherent complexities related to defining, deploying, implementing, and measuring these dynamic, at-times ephemeral processes, resources, and outcomes at a collective scale, working in such a manner must be clearly advantageous to pressing sustainability issues at hand. Numerous related constructs and approaches from a range of fields emphasize the benefits of diverse collaboration to collective thought and action, including improved solutions, more effective and fair processes, and more socioculturally just outcomes (Klein 1990 ; Jörg 2011 ; Wenger and Snyder 2000 ; Djenontin and Meadow 2018 ). These benefits go beyond efficient aggregation and distribution of resources, invoking an almost magical quality that defines synergy, resulting in robust processes and outcomes that are more than the sum of the parts.

This synergy relies on the diversity of a group across various dimensions, bringing power, strength, and insight to a decision-making process (Bear and Woolley 2011 ; Curşeu and Pluut 2013 ; Freeman and Huang 2015 ; Lu et al. 2017 ; Bendor and Page 2019 ). Individuals are limited not only to singular knowledge-perspectives and skillsets, but also to their own experiences, which influence their self-affirming viewpoints and tendencies to seek out confirmatory information for existing beliefs (Kahan et al. 2011 ). Although the coming together of those from different racial, cultural, social, and economic backgrounds facilitates a collective literacy process that draws on a wider range of resources and equips a gestalt, it also sets up the need to consider issues of power, privilege, voice, and representation (Bäckstrand 2006 ) and the role of social capital, leading to questions related to trust and reciprocity in effective collectives (Pretty and Ward 2001 ; Folke et al. 2005 ).

Leveraging the ‘Hive’: Proceeding with collective environmental literacy

This paper presents one conceptualization of collective environmental literacy, with the understanding that numerous ways exist to envision its definition, formation, deployment, and measurement. Characterized by a collective effort, such literacies at scale offer a way to imagine, measure, and support the synergy that occurs when the emphasis moves from an individual to a larger whole. By expanding the scale and focusing on shared responsibility among actors at the systems level, opportunities arise for inspiring and enabling a broader contribution to a sustainable future. These evolving notions serve to invite ongoing conversation, both in research and practice, about how to enact our collective responsibility toward, as well as vision of, a thriving future.

Emerging from the many discussions of shared and collaborative efforts to address socio-environmental issues, our conceptualization of collective environmental literacy is a first step toward supporting communities as they work to identify, address, and solve sustainability problems. We urge continued discussions on this topic, with the goal of understanding the concept of collective environmental literacy, how to measure it, and the implications of this work for practitioners. The conceptual roots of collective environmental literacy reach into countless fields of study and, as such, a transdisciplinary approach, which includes an eye toward practice, is necessary to fully capture and maximize the tremendous amount of knowledge, wisdom, and experience around this topic. Specifically, next steps to evolve the concept include engaging sustainability researchers and practitioners in discussions of the saliency of the presented definition of collective environmental literacy. These discussions include verifying the completeness of the definition and ensuring a thorough review of relevant research: Are parts of the definition missing or unclear? What are the “blank, blind, bald, and bright spots” in the literature (Reid 2019 p. 158)? Additionally, recognizing and leveraging literacy at a collective scale most certainly is not unique to environmental work, nor is adopting literacy-related language to conceptualize and measure process outcomes, although the former has consistently proven more challenging. Moreover, although we (the authors) appreciate the connotations and structures gained by using a literacy framework, we struggle with whether “environmental literacy” is the most appropriate and useful term for the conceptualizations as described herein; we, thus, welcome lively discussions about the need for new terminology.

Even at this early stage of conceptualization, this work has implications for practitioners. For scientists, communicators, policymakers, land managers, and other professionals desiring to work with communities to address sustainability issues, a primary take-away message concerns the holistic nature of what is needed for effective collective action in the environmental realm. Many previous efforts have focused on conveying information and, while a lack of knowledge and awareness may be a barrier to action in some cases, the need for a more holistic lens is increasingly clear. This move beyond an individually focused, information-deficit model is essential for effective impact (Bolderdijk et al. 2013 ; van der Linden 2014 ; Geiger et al. 2019 ). The concept of collective environmental literacy suggests a role for developing shared resources that can foster effective collective action. When working with communities, a critical early step includes some form of needs assessment—a systematic, in-depth process that allows for meaningfully gauging gaps in shared resources required to tackle sustainability issues (Braus 2011). Following this initial, evaluative step, an understanding of the components of collective environmental literacy, as outlined in this paper, can be used to guide the development of interventions to support communities in their efforts to address those issues.

Growing discussion of collective literacy constructs, and related areas, suggests researchers, practitioners, and policymakers working in pro-social areas recognize and value collective efforts, despite the need for clearer definitions and effective measures. This definitional and measurement work, in both research and practice, is not easy. The ever-changing, dynamic contexts in which collective environmental literacy exists make defining the concept a moving target, compounded by a need to draw upon work in countless, often distinct academic fields of study. Furthermore, the hard-to-see, inner workings of collective constructs make measurement difficult. Yet, the “power of the hive” is intriguing, as the synergism that arises from communities working in an aligned manner toward a unified vision suggests a potency and wave of motivated action essential to coalescing and leveraging individual goodwill, harnessing its power and potential toward effective sustainability solutions.

See Stables and Bishop’s ( 2001 ) idea of defining environmental literacy by viewing the environment as “text.”

The climate change education literature also includes a nascent, but growing, discussion of collective-lens thinking and literacy. See, for example, Waldron et al. ( 2019 ), Mochizuki and Bryan ( 2015 ), and Kopnina ( 2016 ).

This conceptualization is similar to how some scholars describe collective health literacy (Berkman et al., 2010 ; Mårtensson and Hensing, 2012 ).

Adger, W.N. 2003. Social capital, collective action, and adaptation to climate change. Economic Geography 79: 387–404.

Article   Google Scholar  

Adger, W.N., T.P. Hughes, C. Folke, S.R. Carpenter, and J. Rockström. 2005. Social-ecological resilience to coastal disasters. Science 309: 1036–1039. https://doi.org/10.1126/science.1112122 .

Article   CAS   Google Scholar  

Adler, P.S., and S.-W. Kwon. 2002. Social capital: Prospects for a new concept. Academy of Management Review 27: 17–40. https://doi.org/10.5465/amr.2002.5922314 .

Agrawal, A. 1995. Dismantling the divide between Indigenous and scientific knowledge. Development and Change 26: 413–439. https://doi.org/10.1111/j.1467-7660.1995.tb00560.x .

Aguilar, O.M. 2018. Examining the literature to reveal the nature of community EE/ESD programs and research. Environmental Education Research 24: 26–49. https://doi.org/10.1080/13504622.2016.1244658 .

Aguilar, O., A. Price, and M. Krasny. 2015. Perspectives on community environmental education. In M.C. Monroe & M.E. Krasny (Eds.), Across the spectrum: Resources for environmental educators (3rd edn., pp. 235–249). North American Association for Environmental Education.

Aldrich, D.P., and M.A. Meyer. 2015. Social capital and community resilience. American Behavioral Scientist 59: 254–269. https://doi.org/10.1177/0002764214550299 .

Amel, E., C. Manning, B. Scott, and S. Koger. 2017. Beyond the roots of human inaction: Fostering collective effort toward ecosystem conservation. Science 356: 275–279. https://doi.org/10.1126/science.aal1931 .

Ansell, C., and A. Gash. 2008. Collaborative governance in theory and practice. Journal of Public Administration Research and Theory 18: 543–571. https://doi.org/10.1093/jopart/mum032 .

Ardoin, N.M. 2006. Toward an interdisciplinary understanding of place: Lessons for environmental education. Canadian Journal of Environmental Education 11: 112–126.

Google Scholar  

Ardoin, N.M., and J.E. Heimlich. 2021. Environmental learning in everyday life: Foundations of meaning and a context for change. Environmental Education Research 27: 1681–1699. https://doi.org/10.1080/13504622.2021.1992354 .

Ardoin, N.M., C. Clark, and E. Kelsey. 2013. An exploration of future trends in environmental education research. Environmental Education Research 19: 499–520. https://doi.org/10.1080/13504622.2012.709823 .

Armitage, D., F. Berkes, A. Dale, E. Kocho-Schellenberg, and E. Patton. 2011. Co-management and the co-production of knowledge: Learning to adapt in Canada’s Arctic. Global Environmental Change 21: 995–1004. https://doi.org/10.1016/j.gloenvcha.2011.04.006 .

Assis Neto, F.R., and C.A.S. Santos. 2018. Understanding crowdsourcing projects: A systematic review of tendencies, workflow, and quality management. Information Processing & Management 54: 490–506. https://doi.org/10.1016/j.ipm.2018.03.006 .

Bäckstrand, K. 2006. Multi-stakeholder partnerships for sustainable development: Rethinking legitimacy, accountability and effectiveness. European Environment 16: 290–306. https://doi.org/10.1002/eet.425 .

Baldwin, E., P. McCord, J. Dell’Angelo, and T. Evans. 2018. Collective action in a polycentric water governance system. Environmental Policy and Governance 28: 212–222. https://doi.org/10.1002/eet.1810 .

Bamberg, S., J. Rees, and S. Seebauer. 2015. Collective climate action: Determinants of participation intention in community-based pro-environmental initiatives. Journal of Environmental Psychology 43: 155–165. https://doi.org/10.1016/j.jenvp.2015.06.006 .

Bandura, A. 1977. Social learning theory . Englewood Cliffs: Prentice Hall.

Bandura, A. 2000. Exercise of human agency through collective efficacy. Current Directions in Psychological Science 9: 75–78. https://doi.org/10.1111/1467-8721.00064 .

Barron, B. 2006. Interest and self-sustained learning as catalysts of development: A learning ecology perspective. Human Development 49: 193–224. https://doi.org/10.1159/000094368 .

Barry, M.M., M. D’Eath, and J. Sixsmith. 2013. Interventions for improving population health literacy: Insights from a rapid review of the evidence. Journal of Health Communication 18: 1507–1522. https://doi.org/10.1080/10810730.2013.840699 .

Barton, A.C., and E. Tan. 2009. Funds of knowledge and discourses and hybrid space. Journal of Research in Science Teaching 46: 50–73. https://doi.org/10.1002/tea.20269 .

Bear, J.B., and A.W. Woolley. 2011. The role of gender in team collaboration and performance. Interdisciplinary Science Reviews 36: 146–153. https://doi.org/10.1179/030801811X13013181961473 .

Bendor, J., and S.E. Page. 2019. Optimal team composition for tool-based problem solving. Journal of Economics & Management Strategy 28: 734–764. https://doi.org/10.1111/jems.12295 .

Berkes, F. 2007. Understanding uncertainty and reducing vulnerability: Lessons from resilience thinking. Natural Hazards 41: 283–295. https://doi.org/10.1007/s11069-006-9036-7 .

Berkes, F., and D. Jolly. 2002. Adapting to climate change: Social-ecological resilience in a Canadian western Arctic community. Conservation Ecology 5: 45.

Berkes, F., and H. Ross. 2013. Community resilience: Toward an integrated approach. Society & Natural Resources 26: 5–20. https://doi.org/10.1080/08941920.2012.736605 .

Berkes, F., M.K. Berkes, and H. Fast. 2007. Collaborative integrated management in Canada’s north: The role of local and traditional knowledge and community-based monitoring. Coastal Management 35: 143–162.

Berkman, N.D., T.C. Davis, and L. McCormack. 2010. Health literacy: What is it? Journal of Health Communication 15: 9–19. https://doi.org/10.1080/10810730.2010.499985 .

Bey, G., C. McDougall, and S. Schoedinger. 2020. Report on the NOAA office of education environmental literacy program community resilience education theory of change. National Oceanic and Atmospheric Administration . https://doi.org/10.25923/mh0g-5q69 .

Blumer, H. 1971. Social problems as collective behavior. Social Problems 18: 298–306.

Bodin, Ö. 2017. Collaborative environmental governance: Achieving collective action in social-ecological systems. Science . https://doi.org/10.1126/science.aan1114 .

Bolderdijk, J.W., M. Gorsira, K. Keizer, and L. Steg. 2013. Values determine the (in)effectiveness of informational interventions in promoting pro-environmental behavior. PLoS ONE 8: e83911. https://doi.org/10.1371/journal.pone.0083911 .

Brabham, D.C. 2013. Crowdsourcing . Cambridge: MIT Press.

Book   Google Scholar  

Braus, J. (Ed.). 2011. Tools of engagement: A toolkit for engaging people in conservation. NAAEE/Audubon. https://cdn.naaee.org/sites/default/files/eepro/resource/files/toolsofengagement.pdf .

Brieger, S.A. 2019. Social identity and environmental concern: The importance of contextual effects. Environment and Behavior 51: 828–855. https://doi.org/10.1177/0013916518756988 .

Briggs, J. 2005. The use of Indigenous knowledge in development: Problems and challenges. Progress in Development Studies 5: 99–114. https://doi.org/10.1191/1464993405ps105oa .

Briggs, J., and J. Sharp. 2004. Indigenous knowledges and development: A postcolonial caution. Third World Quarterly 25: 661–676. https://doi.org/10.1080/01436590410001678915 .

Bronfenbrenner, U. 1979. The ecology of human development: Experiments by nature and design . Cambridge: Harvard University Press.

Bruce, C., and P. Chesterton. 2002. Constituting collective consciousness: Information literacy in university curricula. International Journal for Academic Development 7: 31–40. https://doi.org/10.1080/13601440210156457 .

Byerly, H., A. Balmford, P.J. Ferraro, C.H. Wagner, E. Palchak, S. Polasky, T.H. Ricketts, A.J. Schwartz, et al. 2018. Nudging pro-environmental behavior: Evidence and opportunities. Frontiers in Ecology and the Environment 16: 159–168. https://doi.org/10.1002/fee.1777 .

Canadas, M.J., A. Novais, and M. Marques. 2016. Wildfires, forest management and landowners’ collective action: A comparative approach at the local level. Land Use Policy 56: 179–188. https://doi.org/10.1016/j.landusepol.2016.04.035 .

Carden, L., and W. Wood. 2018. Habit formation and change. Current Opinion in Behavioral Sciences 20: 117–122. https://doi.org/10.1016/j.cobeha.2017.12.009 .

Chan, M. 2016. Psychological antecedents and motivational models of collective action: Examining the role of perceived effectiveness in political protest participation. Social Movement Studies 15: 305–321. https://doi.org/10.1080/14742837.2015.1096192 .

Charnley, S., E.C. Kelly, and A.P. Fischer. 2020. Fostering collective action to reduce wildfire risk across property boundaries in the American West. Environmental Research Letters 15: 025007. https://doi.org/10.1088/1748-9326/ab639a .

Chawla, L., and D.F. Cushing. 2007. Education for strategic environmental behavior. Environmental Education Research 13: 437–452. https://doi.org/10.1080/13504620701581539 .

Chinn, D. 2011. Critical health literacy: A review and critical analysis. Social Science & Medicine 73: 60–67. https://doi.org/10.1016/j.socscimed.2011.04.004 .

Clark, C.R., J.E. Heimlich, N.M. Ardoin, and J. Braus. 2020. Using a Delphi study to clarify the landscape and core outcomes in environmental education. Environmental Education Research 26: 381–399. https://doi.org/10.1080/13504622.2020.1727859 .

Clarke, M., Z. Ma, S.A. Snyder, and K. Floress. 2021. Factors influencing family forest owners’ interest in community-led collective invasive plant management. Environmental Management 67: 1088–1099. https://doi.org/10.1007/s00267-021-01454-1 .

Cruz, A.R., S.T. Selby, and W.H. Durham. 2018. Place-based education for environmental behavior: A ‘funds of knowledge’ and social capital approach. Environmental Education Research 24: 627–647. https://doi.org/10.1080/13504622.2017.1311842 .

Curşeu, P.L., and H. Pluut. 2013. Student groups as learning entities: The effect of group diversity and teamwork quality on groups’ cognitive complexity. Studies in Higher Education 38: 87–103. https://doi.org/10.1080/03075079.2011.565122 .

Cutter, S.L., L. Barnes, M. Berry, C. Burton, E. Evans, E. Tate, and J. Webb. 2008. A place-based model for understanding community resilience to natural disasters. Global Environmental Change 18: 598–606. https://doi.org/10.1016/j.gloenvcha.2008.07.013 .

Dale, A., K. Vella, S. Ryan, K. Broderick, R. Hill, R. Potts, and T. Brewer. 2020. Governing community-based natural resource management in Australia: International implications. Land 9: 234. https://doi.org/10.3390/land9070234 .

de Moor, J., and M. Wahlström. 2019. Narrating political opportunities: Explaining strategic adaptation in the climate movement. Theory and Society 48: 419–451. https://doi.org/10.1007/s11186-019-09347-3 .

DeCaro, D., and M. Stokes. 2008. Social-psychological principles of community-based conservation and conservancy motivation: Attaining goals within an autonomy-supportive environment. Conservation Biology 22: 1443–1451.

Djenontin, I.N.S., and A.M. Meadow. 2018. The art of co-production of knowledge in environmental sciences and management: Lessons from international practice. Environmental Management 61: 885–903. https://doi.org/10.1007/s00267-018-1028-3 .

Duncan, L.E. 2018. The psychology of collective action. In The Oxford handbook of personality and social psychology , ed. K. Deaux and M. Snyder. Oxford: Oxford University Press.

Edwards, M., F. Wood, M. Davies, and A. Edwards. 2015. ‘Distributed health literacy’: Longitudinal qualitative analysis of the roles of health literacy mediators and social networks of people living with a long-term health condition. Health Expectations 18: 1180–1193. https://doi.org/10.1111/hex.12093 .

Emerson, K., T. Nabatchi, and S. Balogh. 2012. An integrative framework for collaborative governance. Journal of Public Administration Research and Theory 22: 1–29.

Engeström, Y. 2001. Expansive learning at work: Toward an activity theoretical reconceptualization. Journal of Education and Work 14: 133–156. https://doi.org/10.1080/13639080020028747 .

Ensor, J., and B. Harvey. 2015. Social learning and climate change adaptation: Evidence for international development practice. Wires Climate Change 6: 509–522. https://doi.org/10.1002/wcc.348 .

Fanta, V., M. Šálek, and P. Sklenicka. 2019. How long do floods throughout the millennium remain in the collective memory? Nature Communications 10: 1105. https://doi.org/10.1038/s41467-019-09102-3 .

Feinstein, N.W. 2018. Collective science literacy: A key to community science capacity [Conference session]. American Association for the Advancement of Science Annual Meeting, Austin, TX, USA https://d32ogoqmya1dw8.cloudfront.net/files/earthconnections/collective_science_literacy_key.pdf .

Feola, G. 2015. Societal transformation in response to global environmental change: A review of emerging concepts. Ambio 44: 376–390. https://doi.org/10.2139/ssrn.2689741 .

Fernandez-Gimenez, M.E., H.L. Ballard, and V.E. Sturtevant. 2008. Adaptive management and social learning in collaborative and community-based monitoring: A study of five community-based forestry organizations in the western USA. Ecology and Society 13: 15.

Folke, C., T. Hahn, P. Olsson, and J. Norberg. 2005. Adaptive governance of social-ecological systems. Annual Review of Environment and Resources 30: 441–473. https://doi.org/10.1146/annurev.energy.30.050504.144511 .

Freedman, D.A., K.D. Bess, H.A. Tucker, D.L. Boyd, A.M. Tuchman, and K.A. Wallston. 2009. Public health literacy defined. American Journal of Preventive Medicine 36: 446–451. https://doi.org/10.1016/j.amepre.2009.02.001 .

Freeman, R.B., and W. Huang. 2015. Collaborating with people like me: Ethnic coauthorship within the United States. Journal of Labor Economics 33: S289–S318.

Gadgil, M., F. Berkes, and C. Folke. 1993. Indigenous knowledge for biodiversity conservation. Ambio 22: 151–156.

Galaz, V., B. Crona, H. Österblom, P. Olsson, and C. Folke. 2012. Polycentric systems and interacting planetary boundaries—Emerging governance of climate change–ocean acidification–marine biodiversity. Ecological Economics 81: 21–32. https://doi.org/10.1016/j.ecolecon.2011.11.012 .

Geiger, S.M., M. Geiger, and O. Wilhelm. 2019. Environment-specific vs general knowledge and their role in pro-environmental behavior. Frontiers in Psychology 10: 718. https://doi.org/10.3389/fpsyg.2019.00718 .

Gifford, R., C. Kormos, and A. McIntyre. 2011. Behavioral dimensions of climate change: Drivers, responses, barriers, and interventions. Wires Climate Change 2: 801–827. https://doi.org/10.1002/wcc.143 .

González, N., L.C. Moll, and C. Amanti. 2006. Funds of knowledge: Theorizing practices in households, communities, and classrooms . New York: Routledge.

Gordon, D.M. 2019. Measuring collective behavior: An ecological approach. Theory in Biosciences . https://doi.org/10.1007/s12064-019-00302-5 .

Gould, R.K., N.M. Ardoin, J.M. Thomsen, and N. Wyman Roth. 2019. Exploring connections between environmental learning and behavior through four everyday-life case studies. Environmental Education Research 25: 314–340.

Graham, S., A.L. Metcalf, N. Gill, R. Niemiec, C. Moreno, T. Bach, V. Ikutegbe, L. Hallstrom, et al. 2019. Opportunities for better use of collective action theory in research and governance for invasive species management. Conservation Biology 33: 275–287. https://doi.org/10.1111/cobi.13266 .

Granovetter, M. 1978. Threshold models of collective behavior. American Journal of Sociology 83: 1420–1443.

Groulx, M., M.C. Brisbois, C.J. Lemieux, A. Winegardner, and L. Fishback. 2017. A role for nature-based citizen science in promoting individual and collective climate change action? A systematic review of learning outcomes. Science Communication 39: 45–76. https://doi.org/10.1177/1075547016688324 .

Gutiérrez, K.D., and B. Rogoff. 2003. Cultural ways of learning: Individual traits or repertoires of practice. Educational Researcher 32: 19–25. https://doi.org/10.3102/0013189X032005019 .

Guzys, D., A. Kenny, V. Dickson-Swift, and G. Threlkeld. 2015. A critical review of population health literacy assessment. BMC Public Health 15: 1–7. https://doi.org/10.1186/s12889-015-1551-6 .

Halbwachs, M. 1992. On collective memory (L. A. Coser, Ed. & Trans.). University of Chicago Press. (Original works published 1941 and 1952).

Heikkila, T., S. Villamayor-Tomas, and D. Garrick. 2018. Bringing polycentric systems into focus for environmental governance. Environmental Policy and Governance 28: 207–211. https://doi.org/10.1002/eet.1809 .

Heimlich, J.E., and N.M. Ardoin. 2008. Understanding behavior to understand behavior change: A literature review. Environmental Education Research 14: 215–237. https://doi.org/10.1080/13504620802148881 .

Hill, R., F.J. Walsh, J. Davies, A. Sparrow, M. Mooney, R.M. Wise, and M. Tengö. 2020. Knowledge co-production for Indigenous adaptation pathways: Transform post-colonial articulation complexes to empower local decision-making. Global Environmental Change 65: 102161. https://doi.org/10.1016/j.gloenvcha.2020.102161 .

Hollweg, K.S., J. Taylor, R.W. Bybee, T.J. Marcinkowski, W.C. McBeth, and P. Zoido. 2011. Developing a framework for assessing environmental literacy: Executive summary . North American Association for Environmental Education. https://cdn.naaee.org/sites/default/files/envliteracyexesummary.pdf .

Hovardas, T. 2020. A social learning approach for stakeholder engagement in large carnivore conservation and management. Frontiers in Ecology and Evolution 8: 436. https://doi.org/10.3389/fevo.2020.525278 .

Jagers, S.C., N. Harring, Å. Löfgren, M. Sjöstedt, F. Alpizar, B. Brülde, D. Langlet, A. Nilsson, et al. 2020. On the preconditions for large-scale collective action. Ambio 49: 1282–1296. https://doi.org/10.1007/s13280-019-01284-w .

Jordan, A., D. Huitema, H. van Asselt, and J. Forster. 2018. Governing climate change: Polycentricity in action? Cambridge: Cambridge University Press.

Jörg, T. 2011. New thinking in complexity for the social sciences and humanities: A generative, transdisciplinary approach . New York: Springer Science & Business Media.

Jost, J.T., J. Becker, D. Osborne, and V. Badaan. 2017. Missing in (collective) action: Ideology, system justification, and the motivational antecedents of two types of protest behavior. Current Directions in Psychological Science 26: 99–108. https://doi.org/10.1177/0963721417690633 .

Jull, J., A. Giles, and I.D. Graham. 2017. Community-based participatory research and integrated knowledge translation: Advancing the co-creation of knowledge. Implementation Science 12: 150. https://doi.org/10.1186/s13012-017-0696-3 .

Kahan, D.M., H. Jenkins-Smith, and D. Braman. 2011. Cultural cognition of scientific consensus. Journal of Risk Research 14: 147–174. https://doi.org/10.1080/13669877.2010.511246 .

Kania, J., and M. Kramer. 2011. Collective impact. Stanford Social Innovation Review 9: 36–41.

Karachiwalla, R., and F. Pinkow. 2021. Understanding crowdsourcing projects: A review on the key design elements of a crowdsourcing initiative. Creativity and Innovation Management 30: 563–584. https://doi.org/10.1111/caim.12454 .

Kellert, S.R., J.N. Mehta, S.A. Ebbin, and L.L. Lichtenfeld. 2000. Community natural resource management: Promise, rhetoric, and reality. Society & Natural Resources 13: 705–715.

Klein, J.T. 1990. Interdisciplinarity: History, theory, and practice . Detroit: Wayne State University Press.

Knapp, C.N., R.S. Reid, M.E. Fernández-Giménez, J.A. Klein, and K.A. Galvin. 2019. Placing transdisciplinarity in context: A review of approaches to connect scholars, society and action. Sustainability 11: 4899. https://doi.org/10.3390/su11184899 .

Koliou, M., J.W. van de Lindt, T.P. McAllister, B.R. Ellingwood, M. Dillard, and H. Cutler. 2020. State of the research in community resilience: Progress and challenges. Sustainable and Resilient Infrastructure 5: 131–151. https://doi.org/10.1080/23789689.2017.1418547 .

Kopnina, H. 2016. Of big hegemonies and little tigers: Ecocentrism and environmental justice. The Journal of Environmental Education 47: 139–150. https://doi.org/10.1080/00958964.2015.1048502 .

Krasny, M.E., M. Mukute, O. Aguilar, M.P. Masilela, and L. Olvitt. 2017. Community environmental education. In Urban environmental education review , ed. A. Russ and M.E. Krasny, 124–132. Ithaca: Cornell University Press.

Chapter   Google Scholar  

Lave, J. 1991. Situating learning in communities of practice.

Lave, J., and E. Wenger. 1991. Situated learning: Legitimate peripheral participation . Cambridge: Cambridge University Press.

Lee, S., and W.-M. Roth. 2003. Science and the “good citizen”: Community-based scientific literacy. Science, Technology, & Human Values 28: 403–424. https://doi.org/10.1177/0162243903028003003 .

Lévy, P., and R. Bononno. 1997. Collective intelligence: Mankind’s emerging world in cyberspace . New York: Perseus Books.

Lloyd, A. 2005. No man (or woman) is an island: Information literacy, affordances and communities of practice. The Australian Library Journal 54: 230–237. https://doi.org/10.1080/00049670.2005.10721760 .

Lopez-Gunn, E. 2003. The role of collective action in water governance: A comparative study of groundwater user associations in La Mancha aquifers in Spain. Water International 28: 367–378. https://doi.org/10.1080/02508060308691711 .

Lu, J.G., A.C. Hafenbrack, P.W. Eastwick, D.J. Wang, W.W. Maddux, and A.D. Galinsky. 2017. “Going out” of the box: Close intercultural friendships and romantic relationships spark creativity, workplace innovation, and entrepreneurship. Journal of Applied Psychology 102: 1091–1108. https://doi.org/10.1037/apl0000212 .

Lubeck, A., A. Metcalf, C. Beckman, L. Yung, and J. Angle. 2019. Collective factors drive individual invasive species control behaviors: Evidence from private lands in Montana, USA. Ecology and Society . https://doi.org/10.5751/ES-10897-240232 .

Mackay, C.M.L., M.T. Schmitt, A.E. Lutz, and J. Mendel. 2021. Recent developments in the social identity approach to the psychology of climate change. Current Opinion in Psychology 42: 95–101. https://doi.org/10.1016/j.copsyc.2021.04.009 .

Magis, K. 2010. Community resilience: An indicator of social sustainability. Society & Natural Resources 23: 401–416. https://doi.org/10.1080/08941920903305674 .

Manfredo, M.J., T.L. Teel, and A.M. Dietsch. 2016. Implications of human value shift and persistence for biodiversity conservation. Conservation Biology 30: 287–296. https://doi.org/10.1111/cobi.12619 .

Marshall, G.R., M.J. Coleman, B.M. Sindel, I.J. Reeve, and P.J. Berney. 2016. Collective action in invasive species control, and prospects for community-based governance: The case of serrated tussock ( Nassella trichotoma ) in New South Wales, Australia. Land Use Policy 56: 100–111. https://doi.org/10.1016/j.landusepol.2016.04.028 .

Mårtensson, L., and G. Hensing. 2012. Health literacy: A heterogeneous phenomenon: A literature review. Scandinavian Journal of Caring Sciences 26: 151–160. https://doi.org/10.1111/j.1471-6712.2011.00900.x .

Martin, C., and C. Steinkuehler. 2010. Collective information literacy in massively multiplayer online games. E-Learning and Digital Media 7: 355–365. https://doi.org/10.2304/elea.2010.7.4.355 .

Masson, T., and I. Fritsche. 2021. We need climate change mitigation and climate change mitigation needs the ‘We’: A state-of-the-art review of social identity effects motivating climate change action. Current Opinion in Behavioral Sciences 42: 89–96. https://doi.org/10.1016/j.cobeha.2021.04.006 .

Massung, E., D. Coyle, K.F. Cater, M. Jay, and C. Preist. 2013. Using crowdsourcing to support pro-environmental community activism. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems . https://doi.org/10.1145/2470654.2470708 .

McAdam, D. 2017. Social movement theory and the prospects for climate change activism in the United States. Annual Review of Political Science 20: 189–208. https://doi.org/10.1146/annurev-polisci-052615-025801 .

McAdam, D., and H. Boudet. 2012. Putting social movements in their place: Explaining opposition to energy projects in the United States, 2000–2005 . Cambridge University Press.

McKenzie-Mohr, D. 2011. Fostering sustainable behavior: An introduction to community-based social marketing (3rd edn.). New Society Publishers.

McKinley, D.C., A.J. Miller-Rushing, H.L. Ballard, R. Bonney, H. Brown, S.C. Cook-Patton, D.M. Evans, R.A. French, et al. 2017. Citizen science can improve conservation science, natural resource management, and environmental protection. Biological Conservation 208: 15–28.

Miller, D.L. 2014. Introduction to collective behavior and collective action (3rd ed.). Waveland Press.

Mills, J., D. Gibbon, J. Ingram, M. Reed, C. Short, and J. Dwyer. 2011. Organising collective action for effective environmental management and social learning in Wales. The Journal of Agricultural Education and Extension 17: 69–83. https://doi.org/10.1080/1389224X.2011.536356 .

Mistry, J., and A. Berardi. 2016. Bridging Indigenous and scientific knowledge. Science 352: 1274–1275. https://doi.org/10.1126/science.aaf1160 .

Mochizuki, Y., and A. Bryan. 2015. Climate change education in the context of education for sustainable development: Rationale and principles. Journal of Education for Sustainable Development 9: 4–26. https://doi.org/10.1177/0973408215569109 .

Monroe, M.C. 2003. Two avenues for encouraging conservation behaviors. Human Ecology Review 10: 113–125.

Nasir, N.S., M.M. de Royston, B. Barron, P. Bell, R. Pea, R. Stevens, and S. Goldman. 2020. Learning pathways: How learning is culturally organized. In Handbook of the cultural foundations of learning , ed. N.S. Nasir, C.D. Lee, R. Pea, and M.M. de Royston, 195–211. Routledge.

National Academies of Sciences, Engineering, and Medicine. 2016. Science literacy: Concepts, contexts, and consequences . https://doi.org/10.17226/23595

National Research Council. 2015. Collective behavior: From cells to societies: Interdisciplinary research team summaries . National Academies Press. https://doi.org/10.17226/21737

Niemiec, R.M., N.M. Ardoin, C.B. Wharton, and G.P. Asner G.P. 2016. Motivating residents to combat invasive species on private lands: Social norms and community reciprocity. Ecology and Society , 21. https://doi.org/10.5751/ES-08362-210230

Niemiec, R.M., S. McCaffrey, and M.S. Jones. 2020. Clarifying the degree and type of public good collective action problem posed by natural resource management challenges. Ecology and Society 25: 30. https://doi.org/10.5751/ES-11483-250130 .

Norström, A.V., C. Cvitanovic, M.F. Löf, S. West, C. Wyborn, P. Balvanera, A.T. Bednarek, E.M. Bennett, et al. 2020. Principles for knowledge co-production in sustainability research. Nature Sustainability 3: 182–190. https://doi.org/10.1038/s41893-019-0448-2 .

Olick, J.K. 1999. Collective memory: The two cultures. Sociological Theory 17: 333–348. https://doi.org/10.1111/0735-2751.00083 .

Ostrom, E. 1990. Governing the commons: The evolution of institutions for collective action . Cambridge University Press.

Ostrom, E. 2000. Collective action and the evolution of social norms. Journal of Economic Perspectives 14: 137–158. https://doi.org/10.1257/jep.14.3.137 .

Ostrom, E. 2009. A general framework for analyzing sustainability of social-ecological systems. Science 325: 419–422. https://doi.org/10.1126/science.1172133 .

Ostrom, E. 2010. Polycentric systems for coping with collective action and global environmental change. Global Environmental Change 20: 550–557. https://doi.org/10.1016/j.gloenvcha.2010.07.004 .

Ostrom, E. 2012. Nested externalities and polycentric institutions: Must we wait for global solutions to climate change before taking actions at other scales? Economic Theory 49: 353–369. https://doi.org/10.1007/s00199-010-0558-6 .

Ostrom, E., and T.K. Ahn. 2009. The meaning of social capital and its link to collective action. In Handbook of social capital: The troika of sociology, political science and economics , ed. G.T. Svendsen and G.L.H. Svendsen, 17–35. Edward Elgar Publishing.

Papen, U. 2009. Literacy, learning and health: A social practices view of health literacy. Literacy and Numeracy Studies . https://doi.org/10.5130/lns.v0i0.1275 .

Park, R.E. 1927. Human nature and collective behavior. American Journal of Sociology 32: 733–741.

Paul, A.M. 2021. The extended mind: The power of thinking outside the brain . Boston: Mariner Books.

Pawilen, G.T. 2021. Integrating Indigenous knowledge in the Philippine elementary science curriculum: Integrating Indigenous knowledge. International Journal of Curriculum and Instruction 13: 1148–1160.

Prager, K. 2015. Agri-environmental collaboratives for landscape management in Europe. Current Opinion in Environmental Sustainability 12: 59–66. https://doi.org/10.1016/j.cosust.2014.10.009 .

Pretty, J., and H. Ward. 2001. Social capital and the environment. World Development 29: 209–227. https://doi.org/10.1016/S0305-750X(00)00098-X .

Putnam, R.D. 2020. Bowling alone: Revised and updated: The collapse and revival of American community . Anniversary. New York: Simon & Schuster.

Raymond, L. 2006. Cooperation without trust: Overcoming collective action barriers to endangered species protection. Policy Studies Journal 34: 37–57. https://doi.org/10.1111/j.1541-0072.2006.00144.x .

Reed, M.S., A.C. Evely, G. Cundill, I. Fazey, J. Glass, A. Laing, J. Newig, B. Parrish, et al. 2010. What is social learning? Ecology and Society 15: 12.

Reicher, S., R. Spears, and S.A. Haslam. 2010. The social identity approach in social psychology. In The SAGE handbook of identities (pp. 45–62). SAGE. https://doi.org/10.4135/9781446200889

Reid, A. 2019. Blank, blind, bald and bright spots in environmental education research. Environmental Education Research 25: 157–171. https://doi.org/10.1080/13504622.2019.1615735 .

Rogoff, B. 2003. The cultural nature of human development (Reprint edition) . Oxford: Oxford University Press.

Roth, C.E. 1992. Environmental literacy: Its roots, evolution and directions in the 1990s . http://eric.ed.gov/?id=ED348235

Roth, W.-M. 2003. Scientific literacy as an emergent feature of collective human praxis. Journal of Curriculum Studies 35: 9–23. https://doi.org/10.1080/00220270210134600 .

Roth, W.-M., and A.C. Barton. 2004. Rethinking scientific literacy . London: Psychology Press.

Roth, W.-M., and S. Lee. 2002. Scientific literacy as collective praxis. Public Understanding of Science 11: 33–56. https://doi.org/10.1088/0963-6625/11/1/302 .

Roth, W.-M., and S. Lee. 2004. Science education as/for participation in the community. Science Education 88: 263–291.

Roth, W.-M., and Y.-J. Lee. 2007. “Vygotsky’s neglected legacy”: Cultural-historical activity theory. Review of Educational Research 77: 186–232.

Sadoff, C.W., and D. Grey. 2005. Cooperation on international rivers: A continuum for securing and sharing benefits. Water International 30: 420–427.

Samerski, S. 2019. Health literacy as a social practice: Social and empirical dimensions of knowledge on health and healthcare. Social Science & Medicine 226: 1–8. https://doi.org/10.1016/j.socscimed.2019.02.024 .

Sawyer, R.K. 2014. The future of learning: Grounding educational innovation in the learning sciences. In The Cambridge handbook of the learning sciences , ed. R.K. Sawyer, 726–746. Cambridge: Cambridge University Press.

Saxe, J.G. n.d.. The blind man and the elephant . All Poetry. Retrieved October 6, 2020, from https://allpoetry.com/The-Blind-Man-And-The-Elephant .

Scheepers, D., and N. Ellemers. 2019. Social identity theory. In Social psychology in action: Evidence-based interventions from theory to practice , ed. K. Sassenberg and M.L.W. Vliek, 129–143. New York: Springer International Publishing.

Schipper, E.L.F., N.K. Dubash, and Y. Mulugetta. 2021. Climate change research and the search for solutions: Rethinking interdisciplinarity. Climatic Change 168: 18. https://doi.org/10.1007/s10584-021-03237-3 .

Schoerning, E. 2018. A no-conflict approach to informal science education increases community science literacy and engagement. Journal of Science Communication, Doi 10: 17030205.

Schultz, P.W. 2014. Strategies for promoting proenvironmental behavior: Lots of tools but few instructions. European Psychologist 19: 107–117. https://doi.org/10.1027/1016-9040/a000163 .

Sharifi, A. 2016. A critical review of selected tools for assessing community resilience. Ecological Indicators 69: 629–647. https://doi.org/10.1016/j.ecolind.2016.05.023 .

Sherrieb, K., F.H. Norris, and S. Galea. 2010. Measuring capacities for community resilience. Social Indicators Research 99: 227–247. https://doi.org/10.1007/s11205-010-9576-9 .

Singh, R.K., A. Singh, K.K. Zander, S. Mathew, and A. Kumar. 2021. Measuring successful processes of knowledge co-production for managing climate change and associated environmental stressors: Adaptation policies and practices to support Indian farmers. Journal of Environmental Management 282: 111679. https://doi.org/10.1016/j.jenvman.2020.111679 .

Sloman, S., and P. Fernbach. 2017. The knowledge illusion: Why we never think alone . New York: Riverhead Books.

Smelser, N.J. 2011. Theory of collective behavior . Quid Pro Books. (Original work published 1962).

Sørensen, K., S. Van den Broucke, J. Fullam, G. Doyle, J. Pelikan, Z. Slonska, H. Brand, and (HLS-EU) Consortium Health Literacy Project European. 2012. Health literacy and public health: A systematic review and integration of definitions and models. BMC Public Health 12: 80. https://doi.org/10.1186/1471-2458-12-80 .

Spitzer, W., and J. Fraser. 2020. Advancing community science literacy. Journal of Museum Education 45: 5–15. https://doi.org/10.1080/10598650.2020.1720403 .

Stables, A., and K. Bishop. 2001. Weak and strong conceptions of environmental literacy: Implications for environmental education. Environmental Education Research 7: 89. https://doi.org/10.1080/13504620125643 .

Stern, M.J., R.B. Powell, and N.M. Ardoin. 2008. What difference does it make? Assessing outcomes from participation in a residential environmental education program. The Journal of Environmental Education 39: 31–43. https://doi.org/10.3200/JOEE.39.4.31-43 .

Stets, J.E., and P.J. Burke. 2000. Identity theory and social identity theory. Social Psychology Quarterly 63: 224–237. https://doi.org/10.2307/2695870 .

Sturmer, S., and B. Simon. 2004. Collective action: Towards a dual-pathway model. European Review of Social Psychology 15: 59–99. https://doi.org/10.1080/10463280340000117 .

Sullivan, A., A. York, D. White, S. Hall, and S. Yabiku. 2017. De jure versus de facto institutions: Trust, information, and collective efforts to manage the invasive mile-a-minute weed (Mikania micrantha). International Journal of the Commons 11: 171–199. https://doi.org/10.18352/ijc.676 .

Sunstein, C.R. 2008. Infotopia: How many minds produce knowledge . Oxford: Oxford University Press.

Surowiecki, J. 2005. The wisdom of crowds . New York: Anchor.

Swim, J.K., S. Clayton, and G.S. Howard. 2011. Human behavioral contributions to climate change: Psychological and contextual drivers. American Psychologist 66: 251–264.

Thaker, J., P. Howe, A. Leiserowitz, and E. Maibach. 2019. Perceived collective efficacy and trust in government influence public engagement with climate change-related water conservation policies. Environmental Communication 13: 681–699. https://doi.org/10.1080/17524032.2018.1438302 .

Tudge, J.R.H., and P.A. Winterhoff. 1993. Vygotsky, Piaget, and Bandura: Perspectives on the relations between the social world and cognitive development. Human Development 36: 61–81. https://doi.org/10.1159/000277297 .

Turner, R.H., and L.M. Killian. 1987. Collective behavior , 3rd ed. Englewood Cliffs: Prentice Hall.

Turner, R.H., N.J. Smelser, and L.M. Killian. 2020. Collective behaviour. In Encyclopedia Britannica . Encyclopedia Britannica, Inc. https://www.britannica.com/science/collective-behaviour .

van der Linden, S. 2014. Towards a new model for communicating climate change. In Understanding and governing sustainable tourism mobility , ed. S. Cohen, J. Higham, P. Peeters, and S. Gössling, 263–295. Milton Park: Routledge.

van Zomeren, M., T. Postmes, and R. Spears. 2008. Toward an integrative social identity model of collective action: A quantitative research synthesis of three socio-psychological perspectives. Psychological Bulletin 134: 504–535. https://doi.org/10.1037/0033-2909.134.4.504 .

Vygotsky, L.S. 1980. Mind in society: The development of higher psychological processes . Cambridge: Harvard University Press.

Waldron, F., B. Ruane, R. Oberman, and S. Morris. 2019. Geographical process or global injustice? Contrasting educational perspectives on climate change. Environmental Education Research 25: 895–911. https://doi.org/10.1080/13504622.2016.1255876 .

Wals, A.E.J., M. Brody, J. Dillon, and R.B. Stevenson. 2014. Convergence between science and environmental education. Science 344: 583–584.

Wenger, E.C., and W.M. Snyder. 2000. Communities of practice: The organizational frontier. Harvard Business Review 78: 139–146.

Weschsler, D. 1971. Concept of collective intelligence. American Psychologist 26: 904–907. https://doi.org/10.1037/h0032223 .

Wheaton, M., A. Kannan, and N.M. Ardoin. 2018. Environmental literacy: Setting the stage (Environmental Literacy Brief, Vol. 1). Social Ecology Lab, Stanford University. https://ed.stanford.edu/sites/default/files/news/images/stanfordsocialecologylab-brief-1.pdf .

Wojcik, D.J., N.M. Ardoin, and R.K. Gould. 2021. Using social network analysis to explore and expand our understanding of a robust environmental learning landscape. Environmental Education Research 27: 1263–1283.

Wood, W., and D. Rünger. 2016. Psychology of habit. Annual Review of Psychology 67: 289–314. https://doi.org/10.1146/annurev-psych-122414-033417 .

Woolley, A.W., C.F. Chabris, A. Pentland, N. Hashmi, and T.W. Malone. 2010. Evidence for a collective intelligence factor in the performance of human groups. Science 330: 686–688. https://doi.org/10.1126/science.1193147 .

Download references

Acknowledgements

We are grateful to Maria DiGiano, Anna Lee, and Becca Shareff for their feedback and contributions to early drafts of this paper. We appreciate the research and writing assistance supporting this paper provided by various members of the Stanford Social Ecology Lab, especially: Brennecke Gale, Pari Ghorbani, Regina Kong, Naomi Ray, and Austin Stack.

This work was supported by a grant from the Pisces Foundation.

Author information

Authors and affiliations.

Emmett Interdisciplinary Program in Environment and Resources, Graduate School of Education, and Woods Institute for the Environment, Stanford University, 233 Littlefield Hall, Stanford, CA, 94305, USA

Nicole M. Ardoin

Social Ecology Lab, Graduate School of Education and Woods Institute for the Environment, Stanford University, 233 Littlefield Hall, Stanford, CA, 94305, USA

Alison W. Bowers

Emmett Interdisciplinary Program in Environment and Resources, School of Earth, Energy and Environmental Sciences, Stanford University, 473 Via Ortega, Suite 226, Stanford, CA, 94305, USA

Mele Wheaton

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Nicole M. Ardoin .

Ethics declarations

Conflict of interest.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Ardoin, N.M., Bowers, A.W. & Wheaton, M. Leveraging collective action and environmental literacy to address complex sustainability challenges. Ambio 52 , 30–44 (2023). https://doi.org/10.1007/s13280-022-01764-6

Download citation

Received : 11 July 2021

Revised : 11 January 2022

Accepted : 22 June 2022

Published : 09 August 2022

Issue Date : January 2023

DOI : https://doi.org/10.1007/s13280-022-01764-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Collective action
  • Environmental literacy
  • Social movements
  • Sustainability
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. Quantitative Research: What It Is, Practices & Methods

    quantitative research study definition

  2. Types of Quantitative Research

    quantitative research study definition

  3. PPT

    quantitative research study definition

  4. What Is Quantitative Research

    quantitative research study definition

  5. Different Types of Quantitative Research: Meaning & Examples

    quantitative research study definition

  6. Quantitative Research

    quantitative research study definition

VIDEO

  1. Quantitative Research

  2. Lecture 41: Quantitative Research

  3. Lecture 40: Quantitative Research: Case Study

  4. Lecture 43: Quantitative Research

  5. Comparison of Quantitative & Qualitative Research

  6. QUANTITATIVE Research Design: A Comprehensive Guide with Examples #phd #quantitativeresearch

COMMENTS

  1. What Is Quantitative Research?

    Quantitative research methods. You can use quantitative research methods for descriptive, correlational or experimental research. In descriptive research, you simply seek an overall summary of your study variables.; In correlational research, you investigate relationships between your study variables.; In experimental research, you systematically examine whether there is a cause-and-effect ...

  2. Quantitative and Qualitative Research

    What is Quantitative Research? Quantitative methodology is the dominant research framework in the social sciences. It refers to a set of strategies, techniques and assumptions used to study psychological, social and economic processes through the exploration of numeric patterns.Quantitative research gathers a range of numeric data.

  3. What is Quantitative Research? Definition, Methods, Types, and Examples

    Quantitative research is used to validate or test a hypothesis through the collection and analysis of data. (Image by Freepik) If you're wondering what is quantitative research and whether this methodology works for your research study, you're not alone. If you want a simple quantitative research definition, then it's enough to say that this is a method undertaken by researchers based on ...

  4. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  5. Quantitative Research

    Here are some key characteristics of quantitative research: Numerical data: Quantitative research involves collecting numerical data through standardized methods such as surveys, experiments, and observational studies. This data is analyzed using statistical methods to identify patterns and relationships.

  6. What Is Quantitative Research?

    Quantitative research methods. You can use quantitative research methods for descriptive, correlational or experimental research. In descriptive research, you simply seek an overall summary of your study variables.; In correlational research, you investigate relationships between your study variables.; In experimental research, you systematically examine whether there is a cause-and-effect ...

  7. What is Quantitative Research? Definition, Examples, Key Advantages

    Quantitative research is a type of research that focuses on collecting and analyzing numerical data to answer research questions. There are two main methods used to conduct quantitative research: 1. Primary Method. There are several methods of primary quantitative research, each with its own strengths and limitations.

  8. Quantitative research

    Quantitative research is a research strategy that focuses on quantifying the collection and analysis of data. It is formed from a deductive approach where emphasis is placed on the testing of theory, shaped by empiricist and positivist philosophies.. Associated with the natural, applied, formal, and social sciences this research strategy promotes the objective empirical investigation of ...

  9. What is Quantitative Research?

    Quantitative research is the methodology which researchers use to test theories about people's attitudes and behaviors based on numerical and statistical evidence. Researchers sample a large number of users (e.g., through surveys) to indirectly obtain measurable, bias-free data about users in relevant situations.

  10. Quantitative Research

    Quantitative research methods are concerned with the planning, design, and implementation of strategies to collect and analyze data. Descartes, the seventeenth-century philosopher, suggested that how the results are achieved is often more important than the results themselves, as the journey taken along the research path is a journey of discovery. . High-quality quantitative research is ...

  11. Quantitative Methods

    Definition. Quantitative method is the collection and analysis of numerical data to answer scientific research questions. Quantitative method is used to summarize, average, find patterns, make predictions, and test causal associations as well as generalizing results to wider populations.

  12. PDF Introduction to quantitative research

    Quantitative research is 'Explaining phenomena by collecting numerical data that are analysed using mathematically based methods (in particu-lar statistics)'. Let's go through this definition step by step. The first element is explaining phenomena. This is a key element of all research, be it quantitative or quali-tative.

  13. Quantitative Research: The Ultimate Guide

    While the quantitative research definition focuses on numerical data, qualitative research is defined as data that supplies non-numerical information. Qualitative research focuses on the thoughts, feelings, and values of a participant, to understand why people act in the way they do. They result in data types like quotes, symbols, images, and ...

  14. PDF Quantitative Research Methods

    Quantitative . Research Methods. T. his chapter focuses on research designs commonly used when conducting . quantitative research studies. The general purpose of quantitative research is to investigate a particular topic or activity through the measurement of variables in quantifiable terms. Quantitative approaches to conducting educational ...

  15. Quantitative research methods

    For example, these variables may be test scores or measurements of reaction time. The goal of gathering this quantitative data is to understand, describe, and predict the nature of a phenomenon, particularly through the development of models and theories. Quantitative research techniques include experiments and surveys.

  16. Quantitative Research

    Quantitative research is relatively uncommon in socio-legal studies, which tend, on the whole, to make use of qualitative methodology or take a mixed methodological approach to empirical research. One exception to this was a large-scale randomised telephone survey carried out in the late 1990s in the United Kingdom.

  17. Qualitative vs Quantitative Research: What's the Difference?

    Qualitative research aims to produce rich and detailed descriptions of the phenomenon being studied, and to uncover new insights and meanings. Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language.

  18. Quantitative Research: What It Is, Practices & Methods

    Quantitative research involves analyzing and gathering numerical data to uncover trends, calculate averages, evaluate relationships, and derive overarching insights. It's used in various fields, including the natural and social sciences. Quantitative data analysis employs statistical techniques for processing and interpreting numeric data.

  19. Quantitative research

    Abstract. This article describes the basic tenets of quantitative research. The concepts of dependent and independent variables are addressed and the concept of measurement and its associated issues, such as error, reliability and validity, are explored. Experiments and surveys - the principal research designs in quantitative research - are ...

  20. Quantitative Methods

    Quantitative methods emphasize objective measurements and the statistical, mathematical, or numerical analysis of data collected through polls, questionnaires, and surveys, or by manipulating pre-existing statistical data using computational techniques.Quantitative research focuses on gathering numerical data and generalizing it across groups of people or to explain a particular phenomenon.

  21. What Is Quantitative Research Study: Methods & Examples

    What Is Quantitative Research: Definition. Before jumping into a detailed discussion on how to launch quantitative research, let's outline a definition of this type of study. Quantitative research involves analyzing numerical data to uncover patterns and statistical information, which can be used to test hypotheses and respond to research ...

  22. What is Quantitative Research Design? Definition, Types, Methods and

    Quantitative research design is defined as a research method used in various disciplines, including social sciences, psychology, economics, and market research. It aims to collect and analyze numerical data to answer research questions and test hypotheses. Quantitative research design offers several advantages, including the ability to ...

  23. Types of Market Research: Methods & Examples

    Market research definition. At the risk of stating the slightly obvious, market research is the gathering and analyzing of data on consumers, competitors, distributors, and markets. ... It can include both quantitative and qualitative studies. Examples of consumer research in action include finding ways to improve consumer perception of a ...

  24. Volume 5 Issue 1

    Sergio Pelaez, Gaurav Verma, Barbara Ribeiro, Philip Shapira. Quantitative Science Studies (2024) 5 (1): 153-169. Abstract. View article titled, Large-scale text analysis using generative language models: A case study in discovering public value expressions in AI patents. Supplementary data.

  25. Leveraging collective action and environmental literacy to address

    Numerous studies have ... These discussions include verifying the completeness of the definition and ensuring a thorough review of relevant research: Are parts of the definition missing or unclear? ... van Zomeren, M., T. Postmes, and R. Spears. 2008. Toward an integrative social identity model of collective action: A quantitative research ...