Logo for College of DuPage Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7 Module 7: Thinking, Reasoning, and Problem-Solving

This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure out the solution to many problems, because you feel capable of using logic to argue a point, because you can evaluate whether the things you read and hear make sense—you do not need any special training in thinking. But this, of course, is one of the key barriers to helping people think better. If you do not believe that there is anything wrong, why try to fix it?

The human brain is indeed a remarkable thinking machine, capable of amazing, complex, creative, logical thoughts. Why, then, are we telling you that you need to learn how to think? Mainly because one major lesson from cognitive psychology is that these capabilities of the human brain are relatively infrequently realized. Many psychologists believe that people are essentially “cognitive misers.” It is not that we are lazy, but that we have a tendency to expend the least amount of mental effort necessary. Although you may not realize it, it actually takes a great deal of energy to think. Careful, deliberative reasoning and critical thinking are very difficult. Because we seem to be successful without going to the trouble of using these skills well, it feels unnecessary to develop them. As you shall see, however, there are many pitfalls in the cognitive processes described in this module. When people do not devote extra effort to learning and improving reasoning, problem solving, and critical thinking skills, they make many errors.

As is true for memory, if you develop the cognitive skills presented in this module, you will be more successful in school. It is important that you realize, however, that these skills will help you far beyond school, even more so than a good memory will. Although it is somewhat useful to have a good memory, ten years from now no potential employer will care how many questions you got right on multiple choice exams during college. All of them will, however, recognize whether you are a logical, analytical, critical thinker. With these thinking skills, you will be an effective, persuasive communicator and an excellent problem solver.

The module begins by describing different kinds of thought and knowledge, especially conceptual knowledge and critical thinking. An understanding of these differences will be valuable as you progress through school and encounter different assignments that require you to tap into different kinds of knowledge. The second section covers deductive and inductive reasoning, which are processes we use to construct and evaluate strong arguments. They are essential skills to have whenever you are trying to persuade someone (including yourself) of some point, or to respond to someone’s efforts to persuade you. The module ends with a section about problem solving. A solid understanding of the key processes involved in problem solving will help you to handle many daily challenges.

7.1. Different kinds of thought

7.2. Reasoning and Judgment

7.3. Problem Solving

READING WITH PURPOSE

Remember and understand.

By reading and studying Module 7, you should be able to remember and describe:

  • Concepts and inferences (7.1)
  • Procedural knowledge (7.1)
  • Metacognition (7.1)
  • Characteristics of critical thinking:  skepticism; identify biases, distortions, omissions, and assumptions; reasoning and problem solving skills  (7.1)
  • Reasoning:  deductive reasoning, deductively valid argument, inductive reasoning, inductively strong argument, availability heuristic, representativeness heuristic  (7.2)
  • Fixation:  functional fixedness, mental set  (7.3)
  • Algorithms, heuristics, and the role of confirmation bias (7.3)
  • Effective problem solving sequence (7.3)

By reading and thinking about how the concepts in Module 6 apply to real life, you should be able to:

  • Identify which type of knowledge a piece of information is (7.1)
  • Recognize examples of deductive and inductive reasoning (7.2)
  • Recognize judgments that have probably been influenced by the availability heuristic (7.2)
  • Recognize examples of problem solving heuristics and algorithms (7.3)

Analyze, Evaluate, and Create

By reading and thinking about Module 6, participating in classroom activities, and completing out-of-class assignments, you should be able to:

  • Use the principles of critical thinking to evaluate information (7.1)
  • Explain whether examples of reasoning arguments are deductively valid or inductively strong (7.2)
  • Outline how you could try to solve a problem from your life using the effective problem solving sequence (7.3)

7.1. Different kinds of thought and knowledge

  • Take a few minutes to write down everything that you know about dogs.
  • Do you believe that:
  • Psychic ability exists?
  • Hypnosis is an altered state of consciousness?
  • Magnet therapy is effective for relieving pain?
  • Aerobic exercise is an effective treatment for depression?
  • UFO’s from outer space have visited earth?

On what do you base your belief or disbelief for the questions above?

Of course, we all know what is meant by the words  think  and  knowledge . You probably also realize that they are not unitary concepts; there are different kinds of thought and knowledge. In this section, let us look at some of these differences. If you are familiar with these different kinds of thought and pay attention to them in your classes, it will help you to focus on the right goals, learn more effectively, and succeed in school. Different assignments and requirements in school call on you to use different kinds of knowledge or thought, so it will be very helpful for you to learn to recognize them (Anderson, et al. 2001).

Factual and conceptual knowledge

Module 5 introduced the idea of declarative memory, which is composed of facts and episodes. If you have ever played a trivia game or watched Jeopardy on TV, you realize that the human brain is able to hold an extraordinary number of facts. Likewise, you realize that each of us has an enormous store of episodes, essentially facts about events that happened in our own lives. It may be difficult to keep that in mind when we are struggling to retrieve one of those facts while taking an exam, however. Part of the problem is that, in contradiction to the advice from Module 5, many students continue to try to memorize course material as a series of unrelated facts (picture a history student simply trying to memorize history as a set of unrelated dates without any coherent story tying them together). Facts in the real world are not random and unorganized, however. It is the way that they are organized that constitutes a second key kind of knowledge, conceptual.

Concepts are nothing more than our mental representations of categories of things in the world. For example, think about dogs. When you do this, you might remember specific facts about dogs, such as they have fur and they bark. You may also recall dogs that you have encountered and picture them in your mind. All of this information (and more) makes up your concept of dog. You can have concepts of simple categories (e.g., triangle), complex categories (e.g., small dogs that sleep all day, eat out of the garbage, and bark at leaves), kinds of people (e.g., psychology professors), events (e.g., birthday parties), and abstract ideas (e.g., justice). Gregory Murphy (2002) refers to concepts as the “glue that holds our mental life together” (p. 1). Very simply, summarizing the world by using concepts is one of the most important cognitive tasks that we do. Our conceptual knowledge  is  our knowledge about the world. Individual concepts are related to each other to form a rich interconnected network of knowledge. For example, think about how the following concepts might be related to each other: dog, pet, play, Frisbee, chew toy, shoe. Or, of more obvious use to you now, how these concepts are related: working memory, long-term memory, declarative memory, procedural memory, and rehearsal? Because our minds have a natural tendency to organize information conceptually, when students try to remember course material as isolated facts, they are working against their strengths.

One last important point about concepts is that they allow you to instantly know a great deal of information about something. For example, if someone hands you a small red object and says, “here is an apple,” they do not have to tell you, “it is something you can eat.” You already know that you can eat it because it is true by virtue of the fact that the object is an apple; this is called drawing an  inference , assuming that something is true on the basis of your previous knowledge (for example, of category membership or of how the world works) or logical reasoning.

Procedural knowledge

Physical skills, such as tying your shoes, doing a cartwheel, and driving a car (or doing all three at the same time, but don’t try this at home) are certainly a kind of knowledge. They are procedural knowledge, the same idea as procedural memory that you saw in Module 5. Mental skills, such as reading, debating, and planning a psychology experiment, are procedural knowledge, as well. In short, procedural knowledge is the knowledge how to do something (Cohen & Eichenbaum, 1993).

Metacognitive knowledge

Floyd used to think that he had a great memory. Now, he has a better memory. Why? Because he finally realized that his memory was not as great as he once thought it was. Because Floyd eventually learned that he often forgets where he put things, he finally developed the habit of putting things in the same place. (Unfortunately, he did not learn this lesson before losing at least 5 watches and a wedding ring.) Because he finally realized that he often forgets to do things, he finally started using the To Do list app on his phone. And so on. Floyd’s insights about the real limitations of his memory have allowed him to remember things that he used to forget.

All of us have knowledge about the way our own minds work. You may know that you have a good memory for people’s names and a poor memory for math formulas. Someone else might realize that they have difficulty remembering to do things, like stopping at the store on the way home. Others still know that they tend to overlook details. This knowledge about our own thinking is actually quite important; it is called metacognitive knowledge, or  metacognition . Like other kinds of thinking skills, it is subject to error. For example, in unpublished research, one of the authors surveyed about 120 General Psychology students on the first day of the term. Among other questions, the students were asked them to predict their grade in the class and report their current Grade Point Average. Two-thirds of the students predicted that their grade in the course would be higher than their GPA. (The reality is that at our college, students tend to earn lower grades in psychology than their overall GPA.) Another example: Students routinely report that they thought they had done well on an exam, only to discover, to their dismay, that they were wrong (more on that important problem in a moment). Both errors reveal a breakdown in metacognition.

The Dunning-Kruger Effect

In general, most college students probably do not study enough. For example, using data from the National Survey of Student Engagement, Fosnacht, McCormack, and Lerma (2018) reported that first-year students at 4-year colleges in the U.S. averaged less than 14 hours per week preparing for classes. The typical suggestion is that you should spend two hours outside of class for every hour in class, or 24 – 30 hours per week for a full-time student. Clearly, students in general are nowhere near that recommended mark. Many observers, including some faculty, believe that this shortfall is a result of students being too busy or lazy. Now, it may be true that many students are too busy, with work and family obligations, for example. Others, are not particularly motivated in school, and therefore might correctly be labeled lazy. A third possible explanation, however, is that some students might not think they need to spend this much time. And this is a matter of metacognition. Consider the scenario that we mentioned above, students thinking they had done well on an exam only to discover that they did not. Justin Kruger and David Dunning examined scenarios very much like this in 1999. Kruger and Dunning gave research participants tests measuring humor, logic, and grammar. Then, they asked the participants to assess their own abilities and test performance in these areas. They found that participants in general tended to overestimate their abilities, already a problem with metacognition. Importantly, the participants who scored the lowest overestimated their abilities the most. Specifically, students who scored in the bottom quarter (averaging in the 12th percentile) thought they had scored in the 62nd percentile. This has become known as the  Dunning-Kruger effect . Many individual faculty members have replicated these results with their own student on their course exams, including the authors of this book. Think about it. Some students who just took an exam and performed poorly believe that they did well before seeing their score. It seems very likely that these are the very same students who stopped studying the night before because they thought they were “done.” Quite simply, it is not just that they did not know the material. They did not know that they did not know the material. That is poor metacognition.

In order to develop good metacognitive skills, you should continually monitor your thinking and seek frequent feedback on the accuracy of your thinking (Medina, Castleberry, & Persky 2017). For example, in classes get in the habit of predicting your exam grades. As soon as possible after taking an exam, try to find out which questions you missed and try to figure out why. If you do this soon enough, you may be able to recall the way it felt when you originally answered the question. Did you feel confident that you had answered the question correctly? Then you have just discovered an opportunity to improve your metacognition. Be on the lookout for that feeling and respond with caution.

concept :  a mental representation of a category of things in the world

Dunning-Kruger effect : individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

inference : an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

metacognition :  knowledge about one’s own cognitive processes; thinking about your thinking

Critical thinking

One particular kind of knowledge or thinking skill that is related to metacognition is  critical thinking (Chew, 2020). You may have noticed that critical thinking is an objective in many college courses, and thus it could be a legitimate topic to cover in nearly any college course. It is particularly appropriate in psychology, however. As the science of (behavior and) mental processes, psychology is obviously well suited to be the discipline through which you should be introduced to this important way of thinking.

More importantly, there is a particular need to use critical thinking in psychology. We are all, in a way, experts in human behavior and mental processes, having engaged in them literally since birth. Thus, perhaps more than in any other class, students typically approach psychology with very clear ideas and opinions about its subject matter. That is, students already “know” a lot about psychology. The problem is, “it ain’t so much the things we don’t know that get us into trouble. It’s the things we know that just ain’t so” (Ward, quoted in Gilovich 1991). Indeed, many of students’ preconceptions about psychology are just plain wrong. Randolph Smith (2002) wrote a book about critical thinking in psychology called  Challenging Your Preconceptions,  highlighting this fact. On the other hand, many of students’ preconceptions about psychology are just plain right! But wait, how do you know which of your preconceptions are right and which are wrong? And when you come across a research finding or theory in this class that contradicts your preconceptions, what will you do? Will you stick to your original idea, discounting the information from the class? Will you immediately change your mind? Critical thinking can help us sort through this confusing mess.

But what is critical thinking? The goal of critical thinking is simple to state (but extraordinarily difficult to achieve): it is to be right, to draw the correct conclusions, to believe in things that are true and to disbelieve things that are false. We will provide two definitions of critical thinking (or, if you like, one large definition with two distinct parts). First, a more conceptual one: Critical thinking is thinking like a scientist in your everyday life (Schmaltz, Jansen, & Wenckowski, 2017).  Our second definition is more operational; it is simply a list of skills that are essential to be a critical thinker. Critical thinking entails solid reasoning and problem solving skills; skepticism; and an ability to identify biases, distortions, omissions, and assumptions. Excellent deductive and inductive reasoning, and problem solving skills contribute to critical thinking. So, you can consider the subject matter of sections 7.2 and 7.3 to be part of critical thinking. Because we will be devoting considerable time to these concepts in the rest of the module, let us begin with a discussion about the other aspects of critical thinking.

Let’s address that first part of the definition. Scientists form hypotheses, or predictions about some possible future observations. Then, they collect data, or information (think of this as making those future observations). They do their best to make unbiased observations using reliable techniques that have been verified by others. Then, and only then, they draw a conclusion about what those observations mean. Oh, and do not forget the most important part. “Conclusion” is probably not the most appropriate word because this conclusion is only tentative. A scientist is always prepared that someone else might come along and produce new observations that would require a new conclusion be drawn. Wow! If you like to be right, you could do a lot worse than using a process like this.

A Critical Thinker’s Toolkit 

Now for the second part of the definition. Good critical thinkers (and scientists) rely on a variety of tools to evaluate information. Perhaps the most recognizable tool for critical thinking is  skepticism (and this term provides the clearest link to the thinking like a scientist definition, as you are about to see). Some people intend it as an insult when they call someone a skeptic. But if someone calls you a skeptic, if they are using the term correctly, you should consider it a great compliment. Simply put, skepticism is a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided. People from Missouri should recognize this principle, as Missouri is known as the Show-Me State. As a skeptic, you are not inclined to believe something just because someone said so, because someone else believes it, or because it sounds reasonable. You must be persuaded by high quality evidence.

Of course, if that evidence is produced, you have a responsibility as a skeptic to change your belief. Failure to change a belief in the face of good evidence is not skepticism; skepticism has open mindedness at its core. M. Neil Browne and Stuart Keeley (2018) use the term weak sense critical thinking to describe critical thinking behaviors that are used only to strengthen a prior belief. Strong sense critical thinking, on the other hand, has as its goal reaching the best conclusion. Sometimes that means strengthening your prior belief, but sometimes it means changing your belief to accommodate the better evidence.

Many times, a failure to think critically or weak sense critical thinking is related to a  bias , an inclination, tendency, leaning, or prejudice. Everybody has biases, but many people are unaware of them. Awareness of your own biases gives you the opportunity to control or counteract them. Unfortunately, however, many people are happy to let their biases creep into their attempts to persuade others; indeed, it is a key part of their persuasive strategy. To see how these biases influence messages, just look at the different descriptions and explanations of the same events given by people of different ages or income brackets, or conservative versus liberal commentators, or by commentators from different parts of the world. Of course, to be successful, these people who are consciously using their biases must disguise them. Even undisguised biases can be difficult to identify, so disguised ones can be nearly impossible.

Here are some common sources of biases:

  • Personal values and beliefs.  Some people believe that human beings are basically driven to seek power and that they are typically in competition with one another over scarce resources. These beliefs are similar to the world-view that political scientists call “realism.” Other people believe that human beings prefer to cooperate and that, given the chance, they will do so. These beliefs are similar to the world-view known as “idealism.” For many people, these deeply held beliefs can influence, or bias, their interpretations of such wide ranging situations as the behavior of nations and their leaders or the behavior of the driver in the car ahead of you. For example, if your worldview is that people are typically in competition and someone cuts you off on the highway, you may assume that the driver did it purposely to get ahead of you. Other types of beliefs about the way the world is or the way the world should be, for example, political beliefs, can similarly become a significant source of bias.
  • Racism, sexism, ageism and other forms of prejudice and bigotry.  These are, sadly, a common source of bias in many people. They are essentially a special kind of “belief about the way the world is.” These beliefs—for example, that women do not make effective leaders—lead people to ignore contradictory evidence (examples of effective women leaders, or research that disputes the belief) and to interpret ambiguous evidence in a way consistent with the belief.
  • Self-interest.  When particular people benefit from things turning out a certain way, they can sometimes be very susceptible to letting that interest bias them. For example, a company that will earn a profit if they sell their product may have a bias in the way that they give information about their product. A union that will benefit if its members get a generous contract might have a bias in the way it presents information about salaries at competing organizations. (Note that our inclusion of examples describing both companies and unions is an explicit attempt to control for our own personal biases). Home buyers are often dismayed to discover that they purchased their dream house from someone whose self-interest led them to lie about flooding problems in the basement or back yard. This principle, the biasing power of self-interest, is likely what led to the famous phrase  Caveat Emptor  (let the buyer beware) .  

Knowing that these types of biases exist will help you evaluate evidence more critically. Do not forget, though, that people are not always keen to let you discover the sources of biases in their arguments. For example, companies or political organizations can sometimes disguise their support of a research study by contracting with a university professor, who comes complete with a seemingly unbiased institutional affiliation, to conduct the study.

People’s biases, conscious or unconscious, can lead them to make omissions, distortions, and assumptions that undermine our ability to correctly evaluate evidence. It is essential that you look for these elements. Always ask, what is missing, what is not as it appears, and what is being assumed here? For example, consider this (fictional) chart from an ad reporting customer satisfaction at 4 local health clubs.

reasoning ability and problem solving pdf

Clearly, from the results of the chart, one would be tempted to give Club C a try, as customer satisfaction is much higher than for the other 3 clubs.

There are so many distortions and omissions in this chart, however, that it is actually quite meaningless. First, how was satisfaction measured? Do the bars represent responses to a survey? If so, how were the questions asked? Most importantly, where is the missing scale for the chart? Although the differences look quite large, are they really?

Well, here is the same chart, with a different scale, this time labeled:

reasoning ability and problem solving pdf

Club C is not so impressive any more, is it? In fact, all of the health clubs have customer satisfaction ratings (whatever that means) between 85% and 88%. In the first chart, the entire scale of the graph included only the percentages between 83 and 89. This “judicious” choice of scale—some would call it a distortion—and omission of that scale from the chart make the tiny differences among the clubs seem important, however.

Also, in order to be a critical thinker, you need to learn to pay attention to the assumptions that underlie a message. Let us briefly illustrate the role of assumptions by touching on some people’s beliefs about the criminal justice system in the US. Some believe that a major problem with our judicial system is that many criminals go free because of legal technicalities. Others believe that a major problem is that many innocent people are convicted of crimes. The simple fact is, both types of errors occur. A person’s conclusion about which flaw in our judicial system is the greater tragedy is based on an assumption about which of these is the more serious error (letting the guilty go free or convicting the innocent). This type of assumption is called a value assumption (Browne and Keeley, 2018). It reflects the differences in values that people develop, differences that may lead us to disregard valid evidence that does not fit in with our particular values.

Oh, by the way, some students probably noticed this, but the seven tips for evaluating information that we shared in Module 1 are related to this. Actually, they are part of this section. The tips are, to a very large degree, set of ideas you can use to help you identify biases, distortions, omissions, and assumptions. If you do not remember this section, we strongly recommend you take a few minutes to review it.

skepticism :  a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

bias : an inclination, tendency, leaning, or prejudice

  • Which of your beliefs (or disbeliefs) from the Activate exercise for this section were derived from a process of critical thinking? If some of your beliefs were not based on critical thinking, are you willing to reassess these beliefs? If the answer is no, why do you think that is? If the answer is yes, what concrete steps will you take?

7.2 Reasoning and Judgment

  • What percentage of kidnappings are committed by strangers?
  • Which area of the house is riskiest: kitchen, bathroom, or stairs?
  • What is the most common cancer in the US?
  • What percentage of workplace homicides are committed by co-workers?

An essential set of procedural thinking skills is  reasoning , the ability to generate and evaluate solid conclusions from a set of statements or evidence. You should note that these conclusions (when they are generated instead of being evaluated) are one key type of inference that we described in Section 7.1. There are two main types of reasoning, deductive and inductive.

Deductive reasoning

Suppose your teacher tells you that if you get an A on the final exam in a course, you will get an A for the whole course. Then, you get an A on the final exam. What will your final course grade be? Most people can see instantly that you can conclude with certainty that you will get an A for the course. This is a type of reasoning called  deductive reasoning , which is defined as reasoning in which a conclusion is guaranteed to be true as long as the statements leading to it are true. The three statements can be listed as an  argument , with two beginning statements and a conclusion:

Statement 1: If you get an A on the final exam, you will get an A for the course

Statement 2: You get an A on the final exam

Conclusion: You will get an A for the course

This particular arrangement, in which true beginning statements lead to a guaranteed true conclusion, is known as a  deductively valid argument . Although deductive reasoning is often the subject of abstract, brain-teasing, puzzle-like word problems, it is actually an extremely important type of everyday reasoning. It is just hard to recognize sometimes. For example, imagine that you are looking for your car keys and you realize that they are either in the kitchen drawer or in your book bag. After looking in the kitchen drawer, you instantly know that they must be in your book bag. That conclusion results from a simple deductive reasoning argument. In addition, solid deductive reasoning skills are necessary for you to succeed in the sciences, philosophy, math, computer programming, and any endeavor involving the use of logic to persuade others to your point of view or to evaluate others’ arguments.

Cognitive psychologists, and before them philosophers, have been quite interested in deductive reasoning, not so much for its practical applications, but for the insights it can offer them about the ways that human beings think. One of the early ideas to emerge from the examination of deductive reasoning is that people learn (or develop) mental versions of rules that allow them to solve these types of reasoning problems (Braine, 1978; Braine, Reiser, & Rumain, 1984). The best way to see this point of view is to realize that there are different possible rules, and some of them are very simple. For example, consider this rule of logic:

therefore q

Logical rules are often presented abstractly, as letters, in order to imply that they can be used in very many specific situations. Here is a concrete version of the of the same rule:

I’ll either have pizza or a hamburger for dinner tonight (p or q)

I won’t have pizza (not p)

Therefore, I’ll have a hamburger (therefore q)

This kind of reasoning seems so natural, so easy, that it is quite plausible that we would use a version of this rule in our daily lives. At least, it seems more plausible than some of the alternative possibilities—for example, that we need to have experience with the specific situation (pizza or hamburger, in this case) in order to solve this type of problem easily. So perhaps there is a form of natural logic (Rips, 1990) that contains very simple versions of logical rules. When we are faced with a reasoning problem that maps onto one of these rules, we use the rule.

But be very careful; things are not always as easy as they seem. Even these simple rules are not so simple. For example, consider the following rule. Many people fail to realize that this rule is just as valid as the pizza or hamburger rule above.

if p, then q

therefore, not p

Concrete version:

If I eat dinner, then I will have dessert

I did not have dessert

Therefore, I did not eat dinner

The simple fact is, it can be very difficult for people to apply rules of deductive logic correctly; as a result, they make many errors when trying to do so. Is this a deductively valid argument or not?

Students who like school study a lot

Students who study a lot get good grades

Jane does not like school

Therefore, Jane does not get good grades

Many people are surprised to discover that this is not a logically valid argument; the conclusion is not guaranteed to be true from the beginning statements. Although the first statement says that students who like school study a lot, it does NOT say that students who do not like school do not study a lot. In other words, it may very well be possible to study a lot without liking school. Even people who sometimes get problems like this right might not be using the rules of deductive reasoning. Instead, they might just be making judgments for examples they know, in this case, remembering instances of people who get good grades despite not liking school.

Making deductive reasoning even more difficult is the fact that there are two important properties that an argument may have. One, it can be valid or invalid (meaning that the conclusion does or does not follow logically from the statements leading up to it). Two, an argument (or more correctly, its conclusion) can be true or false. Here is an example of an argument that is logically valid, but has a false conclusion (at least we think it is false).

Either you are eleven feet tall or the Grand Canyon was created by a spaceship crashing into the earth.

You are not eleven feet tall

Therefore the Grand Canyon was created by a spaceship crashing into the earth

This argument has the exact same form as the pizza or hamburger argument above, making it is deductively valid. The conclusion is so false, however, that it is absurd (of course, the reason the conclusion is false is that the first statement is false). When people are judging arguments, they tend to not observe the difference between deductive validity and the empirical truth of statements or conclusions. If the elements of an argument happen to be true, people are likely to judge the argument logically valid; if the elements are false, they will very likely judge it invalid (Markovits & Bouffard-Bouchard, 1992; Moshman & Franks, 1986). Thus, it seems a stretch to say that people are using these logical rules to judge the validity of arguments. Many psychologists believe that most people actually have very limited deductive reasoning skills (Johnson-Laird, 1999). They argue that when faced with a problem for which deductive logic is required, people resort to some simpler technique, such as matching terms that appear in the statements and the conclusion (Evans, 1982). This might not seem like a problem, but what if reasoners believe that the elements are true and they happen to be wrong; they will would believe that they are using a form of reasoning that guarantees they are correct and yet be wrong.

deductive reasoning :  a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

argument :  a set of statements in which the beginning statements lead to a conclusion

deductively valid argument :  an argument for which true beginning statements guarantee that the conclusion is true

Inductive reasoning and judgment

Every day, you make many judgments about the likelihood of one thing or another. Whether you realize it or not, you are practicing  inductive reasoning   on a daily basis. In inductive reasoning arguments, a conclusion is likely whenever the statements preceding it are true. The first thing to notice about inductive reasoning is that, by definition, you can never be sure about your conclusion; you can only estimate how likely the conclusion is. Inductive reasoning may lead you to focus on Memory Encoding and Recoding when you study for the exam, but it is possible the instructor will ask more questions about Memory Retrieval instead. Unlike deductive reasoning, the conclusions you reach through inductive reasoning are only probable, not certain. That is why scientists consider inductive reasoning weaker than deductive reasoning. But imagine how hard it would be for us to function if we could not act unless we were certain about the outcome.

Inductive reasoning can be represented as logical arguments consisting of statements and a conclusion, just as deductive reasoning can be. In an inductive argument, you are given some statements and a conclusion (or you are given some statements and must draw a conclusion). An argument is  inductively strong   if the conclusion would be very probable whenever the statements are true. So, for example, here is an inductively strong argument:

  • Statement #1: The forecaster on Channel 2 said it is going to rain today.
  • Statement #2: The forecaster on Channel 5 said it is going to rain today.
  • Statement #3: It is very cloudy and humid.
  • Statement #4: You just heard thunder.
  • Conclusion (or judgment): It is going to rain today.

Think of the statements as evidence, on the basis of which you will draw a conclusion. So, based on the evidence presented in the four statements, it is very likely that it will rain today. Will it definitely rain today? Certainly not. We can all think of times that the weather forecaster was wrong.

A true story: Some years ago psychology student was watching a baseball playoff game between the St. Louis Cardinals and the Los Angeles Dodgers. A graphic on the screen had just informed the audience that the Cardinal at bat, (Hall of Fame shortstop) Ozzie Smith, a switch hitter batting left-handed for this plate appearance, had never, in nearly 3000 career at-bats, hit a home run left-handed. The student, who had just learned about inductive reasoning in his psychology class, turned to his companion (a Cardinals fan) and smugly said, “It is an inductively strong argument that Ozzie Smith will not hit a home run.” He turned back to face the television just in time to watch the ball sail over the right field fence for a home run. Although the student felt foolish at the time, he was not wrong. It was an inductively strong argument; 3000 at-bats is an awful lot of evidence suggesting that the Wizard of Ozz (as he was known) would not be hitting one out of the park (think of each at-bat without a home run as a statement in an inductive argument). Sadly (for the die-hard Cubs fan and Cardinals-hating student), despite the strength of the argument, the conclusion was wrong.

Given the possibility that we might draw an incorrect conclusion even with an inductively strong argument, we really want to be sure that we do, in fact, make inductively strong arguments. If we judge something probable, it had better be probable. If we judge something nearly impossible, it had better not happen. Think of inductive reasoning, then, as making reasonably accurate judgments of the probability of some conclusion given a set of evidence.

We base many decisions in our lives on inductive reasoning. For example:

Statement #1: Psychology is not my best subject

Statement #2: My psychology instructor has a reputation for giving difficult exams

Statement #3: My first psychology exam was much harder than I expected

Judgment: The next exam will probably be very difficult.

Decision: I will study tonight instead of watching Netflix.

Some other examples of judgments that people commonly make in a school context include judgments of the likelihood that:

  • A particular class will be interesting/useful/difficult
  • You will be able to finish writing a paper by next week if you go out tonight
  • Your laptop’s battery will last through the next trip to the library
  • You will not miss anything important if you skip class tomorrow
  • Your instructor will not notice if you skip class tomorrow
  • You will be able to find a book that you will need for a paper
  • There will be an essay question about Memory Encoding on the next exam

Tversky and Kahneman (1983) recognized that there are two general ways that we might make these judgments; they termed them extensional (i.e., following the laws of probability) and intuitive (i.e., using shortcuts or heuristics, see below). We will use a similar distinction between Type 1 and Type 2 thinking, as described by Keith Stanovich and his colleagues (Evans and Stanovich, 2013; Stanovich and West, 2000). Type 1 thinking is fast, automatic, effortful, and emotional. In fact, it is hardly fair to call it reasoning at all, as judgments just seem to pop into one’s head. Type 2 thinking , on the other hand, is slow, effortful, and logical. So obviously, it is more likely to lead to a correct judgment, or an optimal decision. The problem is, we tend to over-rely on Type 1. Now, we are not saying that Type 2 is the right way to go for every decision or judgment we make. It seems a bit much, for example, to engage in a step-by-step logical reasoning procedure to decide whether we will have chicken or fish for dinner tonight.

Many bad decisions in some very important contexts, however, can be traced back to poor judgments of the likelihood of certain risks or outcomes that result from the use of Type 1 when a more logical reasoning process would have been more appropriate. For example:

Statement #1: It is late at night.

Statement #2: Albert has been drinking beer for the past five hours at a party.

Statement #3: Albert is not exactly sure where he is or how far away home is.

Judgment: Albert will have no difficulty walking home.

Decision: He walks home alone.

As you can see in this example, the three statements backing up the judgment do not really support it. In other words, this argument is not inductively strong because it is based on judgments that ignore the laws of probability. What are the chances that someone facing these conditions will be able to walk home alone easily? And one need not be drunk to make poor decisions based on judgments that just pop into our heads.

The truth is that many of our probability judgments do not come very close to what the laws of probability say they should be. Think about it. In order for us to reason in accordance with these laws, we would need to know the laws of probability, which would allow us to calculate the relationship between particular pieces of evidence and the probability of some outcome (i.e., how much likelihood should change given a piece of evidence), and we would have to do these heavy math calculations in our heads. After all, that is what Type 2 requires. Needless to say, even if we were motivated, we often do not even know how to apply Type 2 reasoning in many cases.

So what do we do when we don’t have the knowledge, skills, or time required to make the correct mathematical judgment? Do we hold off and wait until we can get better evidence? Do we read up on probability and fire up our calculator app so we can compute the correct probability? Of course not. We rely on Type 1 thinking. We “wing it.” That is, we come up with a likelihood estimate using some means at our disposal. Psychologists use the term heuristic to describe the type of “winging it” we are talking about. A  heuristic   is a shortcut strategy that we use to make some judgment or solve some problem (see Section 7.3). Heuristics are easy and quick, think of them as the basic procedures that are characteristic of Type 1.  They can absolutely lead to reasonably good judgments and decisions in some situations (like choosing between chicken and fish for dinner). They are, however, far from foolproof. There are, in fact, quite a lot of situations in which heuristics can lead us to make incorrect judgments, and in many cases the decisions based on those judgments can have serious consequences.

Let us return to the activity that begins this section. You were asked to judge the likelihood (or frequency) of certain events and risks. You were free to come up with your own evidence (or statements) to make these judgments. This is where a heuristic crops up. As a judgment shortcut, we tend to generate specific examples of those very events to help us decide their likelihood or frequency. For example, if we are asked to judge how common, frequent, or likely a particular type of cancer is, many of our statements would be examples of specific cancer cases:

Statement #1: Andy Kaufman (comedian) had lung cancer.

Statement #2: Colin Powell (US Secretary of State) had prostate cancer.

Statement #3: Bob Marley (musician) had skin and brain cancer

Statement #4: Sandra Day O’Connor (Supreme Court Justice) had breast cancer.

Statement #5: Fred Rogers (children’s entertainer) had stomach cancer.

Statement #6: Robin Roberts (news anchor) had breast cancer.

Statement #7: Bette Davis (actress) had breast cancer.

Judgment: Breast cancer is the most common type.

Your own experience or memory may also tell you that breast cancer is the most common type. But it is not (although it is common). Actually, skin cancer is the most common type in the US. We make the same types of misjudgments all the time because we do not generate the examples or evidence according to their actual frequencies or probabilities. Instead, we have a tendency (or bias) to search for the examples in memory; if they are easy to retrieve, we assume that they are common. To rephrase this in the language of the heuristic, events seem more likely to the extent that they are available to memory. This bias has been termed the  availability heuristic   (Kahneman and Tversky, 1974).

The fact that we use the availability heuristic does not automatically mean that our judgment is wrong. The reason we use heuristics in the first place is that they work fairly well in many cases (and, of course that they are easy to use). So, the easiest examples to think of sometimes are the most common ones. Is it more likely that a member of the U.S. Senate is a man or a woman? Most people have a much easier time generating examples of male senators. And as it turns out, the U.S. Senate has many more men than women (74 to 26 in 2020). In this case, then, the availability heuristic would lead you to make the correct judgment; it is far more likely that a senator would be a man.

In many other cases, however, the availability heuristic will lead us astray. This is because events can be memorable for many reasons other than their frequency. Section 5.2, Encoding Meaning, suggested that one good way to encode the meaning of some information is to form a mental image of it. Thus, information that has been pictured mentally will be more available to memory. Indeed, an event that is vivid and easily pictured will trick many people into supposing that type of event is more common than it actually is. Repetition of information will also make it more memorable. So, if the same event is described to you in a magazine, on the evening news, on a podcast that you listen to, and in your Facebook feed; it will be very available to memory. Again, the availability heuristic will cause you to misperceive the frequency of these types of events.

Most interestingly, information that is unusual is more memorable. Suppose we give you the following list of words to remember: box, flower, letter, platypus, oven, boat, newspaper, purse, drum, car. Very likely, the easiest word to remember would be platypus, the unusual one. The same thing occurs with memories of events. An event may be available to memory because it is unusual, yet the availability heuristic leads us to judge that the event is common. Did you catch that? In these cases, the availability heuristic makes us think the exact opposite of the true frequency. We end up thinking something is common because it is unusual (and therefore memorable). Yikes.

The misapplication of the availability heuristic sometimes has unfortunate results. For example, if you went to K-12 school in the US over the past 10 years, it is extremely likely that you have participated in lockdown and active shooter drills. Of course, everyone is trying to prevent the tragedy of another school shooting. And believe us, we are not trying to minimize how terrible the tragedy is. But the truth of the matter is, school shootings are extremely rare. Because the federal government does not keep a database of school shootings, the Washington Post has maintained their own running tally. Between 1999 and January 2020 (the date of the most recent school shooting with a death in the US at of the time this paragraph was written), the Post reported a total of 254 people died in school shootings in the US. Not 254 per year, 254 total. That is an average of 12 per year. Of course, that is 254 people who should not have died (particularly because many were children), but in a country with approximately 60,000,000 students and teachers, this is a very small risk.

But many students and teachers are terrified that they will be victims of school shootings because of the availability heuristic. It is so easy to think of examples (they are very available to memory) that people believe the event is very common. It is not. And there is a downside to this. We happen to believe that there is an enormous gun violence problem in the United States. According the the Centers for Disease Control and Prevention, there were 39,773 firearm deaths in the US in 2017. Fifteen of those deaths were in school shootings, according to the Post. 60% of those deaths were suicides. When people pay attention to the school shooting risk (low), they often fail to notice the much larger risk.

And examples like this are by no means unique. The authors of this book have been teaching psychology since the 1990’s. We have been able to make the exact same arguments about the misapplication of the availability heuristics and keep them current by simply swapping out for the “fear of the day.” In the 1990’s it was children being kidnapped by strangers (it was known as “stranger danger”) despite the facts that kidnappings accounted for only 2% of the violent crimes committed against children, and only 24% of kidnappings are committed by strangers (US Department of Justice, 2007). This fear overlapped with the fear of terrorism that gripped the country after the 2001 terrorist attacks on the World Trade Center and US Pentagon and still plagues the population of the US somewhat in 2020. After a well-publicized, sensational act of violence, people are extremely likely to increase their estimates of the chances that they, too, will be victims of terror. Think about the reality, however. In October of 2001, a terrorist mailed anthrax spores to members of the US government and a number of media companies. A total of five people died as a result of this attack. The nation was nearly paralyzed by the fear of dying from the attack; in reality the probability of an individual person dying was 0.00000002.

The availability heuristic can lead you to make incorrect judgments in a school setting as well. For example, suppose you are trying to decide if you should take a class from a particular math professor. You might try to make a judgment of how good a teacher she is by recalling instances of friends and acquaintances making comments about her teaching skill. You may have some examples that suggest that she is a poor teacher very available to memory, so on the basis of the availability heuristic you judge her a poor teacher and decide to take the class from someone else. What if, however, the instances you recalled were all from the same person, and this person happens to be a very colorful storyteller? The subsequent ease of remembering the instances might not indicate that the professor is a poor teacher after all.

Although the availability heuristic is obviously important, it is not the only judgment heuristic we use. Amos Tversky and Daniel Kahneman examined the role of heuristics in inductive reasoning in a long series of studies. Kahneman received a Nobel Prize in Economics for this research in 2002, and Tversky would have certainly received one as well if he had not died of melanoma at age 59 in 1996 (Nobel Prizes are not awarded posthumously). Kahneman and Tversky demonstrated repeatedly that people do not reason in ways that are consistent with the laws of probability. They identified several heuristic strategies that people use instead to make judgments about likelihood. The importance of this work for economics (and the reason that Kahneman was awarded the Nobel Prize) is that earlier economic theories had assumed that people do make judgments rationally, that is, in agreement with the laws of probability.

Another common heuristic that people use for making judgments is the  representativeness heuristic (Kahneman & Tversky 1973). Suppose we describe a person to you. He is quiet and shy, has an unassuming personality, and likes to work with numbers. Is this person more likely to be an accountant or an attorney? If you said accountant, you were probably using the representativeness heuristic. Our imaginary person is judged likely to be an accountant because he resembles, or is representative of the concept of, an accountant. When research participants are asked to make judgments such as these, the only thing that seems to matter is the representativeness of the description. For example, if told that the person described is in a room that contains 70 attorneys and 30 accountants, participants will still assume that he is an accountant.

inductive reasoning :  a type of reasoning in which we make judgments about likelihood from sets of evidence

inductively strong argument :  an inductive argument in which the beginning statements lead to a conclusion that is probably true

heuristic :  a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

availability heuristic :  judging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

representativeness heuristic:   judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

Type 1 thinking : fast, automatic, and emotional thinking.

Type 2 thinking : slow, effortful, and logical thinking.

  • What percentage of workplace homicides are co-worker violence?

Many people get these questions wrong. The answers are 10%; stairs; skin; 6%. How close were your answers? Explain how the availability heuristic might have led you to make the incorrect judgments.

  • Can you think of some other judgments that you have made (or beliefs that you have) that might have been influenced by the availability heuristic?

7.3 Problem Solving

  • Please take a few minutes to list a number of problems that you are facing right now.
  • Now write about a problem that you recently solved.
  • What is your definition of a problem?

Mary has a problem. Her daughter, ordinarily quite eager to please, appears to delight in being the last person to do anything. Whether getting ready for school, going to piano lessons or karate class, or even going out with her friends, she seems unwilling or unable to get ready on time. Other people have different kinds of problems. For example, many students work at jobs, have numerous family commitments, and are facing a course schedule full of difficult exams, assignments, papers, and speeches. How can they find enough time to devote to their studies and still fulfill their other obligations? Speaking of students and their problems: Show that a ball thrown vertically upward with initial velocity v0 takes twice as much time to return as to reach the highest point (from Spiegel, 1981).

These are three very different situations, but we have called them all problems. What makes them all the same, despite the differences? A psychologist might define a  problem   as a situation with an initial state, a goal state, and a set of possible intermediate states. Somewhat more meaningfully, we might consider a problem a situation in which you are in here one state (e.g., daughter is always late), you want to be there in another state (e.g., daughter is not always late), and with no obvious way to get from here to there. Defined this way, each of the three situations we outlined can now be seen as an example of the same general concept, a problem. At this point, you might begin to wonder what is not a problem, given such a general definition. It seems that nearly every non-routine task we engage in could qualify as a problem. As long as you realize that problems are not necessarily bad (it can be quite fun and satisfying to rise to the challenge and solve a problem), this may be a useful way to think about it.

Can we identify a set of problem-solving skills that would apply to these very different kinds of situations? That task, in a nutshell, is a major goal of this section. Let us try to begin to make sense of the wide variety of ways that problems can be solved with an important observation: the process of solving problems can be divided into two key parts. First, people have to notice, comprehend, and represent the problem properly in their minds (called  problem representation ). Second, they have to apply some kind of solution strategy to the problem. Psychologists have studied both of these key parts of the process in detail.

When you first think about the problem-solving process, you might guess that most of our difficulties would occur because we are failing in the second step, the application of strategies. Although this can be a significant difficulty much of the time, the more important source of difficulty is probably problem representation. In short, we often fail to solve a problem because we are looking at it, or thinking about it, the wrong way.

problem :  a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

problem representation :  noticing, comprehending and forming a mental conception of a problem

Defining and Mentally Representing Problems in Order to Solve Them

So, the main obstacle to solving a problem is that we do not clearly understand exactly what the problem is. Recall the problem with Mary’s daughter always being late. One way to represent, or to think about, this problem is that she is being defiant. She refuses to get ready in time. This type of representation or definition suggests a particular type of solution. Another way to think about the problem, however, is to consider the possibility that she is simply being sidetracked by interesting diversions. This different conception of what the problem is (i.e., different representation) suggests a very different solution strategy. For example, if Mary defines the problem as defiance, she may be tempted to solve the problem using some kind of coercive tactics, that is, to assert her authority as her mother and force her to listen. On the other hand, if Mary defines the problem as distraction, she may try to solve it by simply removing the distracting objects.

As you might guess, when a problem is represented one way, the solution may seem very difficult, or even impossible. Seen another way, the solution might be very easy. For example, consider the following problem (from Nasar, 1998):

Two bicyclists start 20 miles apart and head toward each other, each going at a steady rate of 10 miles per hour. At the same time, a fly that travels at a steady 15 miles per hour starts from the front wheel of the southbound bicycle and flies to the front wheel of the northbound one, then turns around and flies to the front wheel of the southbound one again, and continues in this manner until he is crushed between the two front wheels. Question: what total distance did the fly cover?

Please take a few minutes to try to solve this problem.

Most people represent this problem as a question about a fly because, well, that is how the question is asked. The solution, using this representation, is to figure out how far the fly travels on the first leg of its journey, then add this total to how far it travels on the second leg of its journey (when it turns around and returns to the first bicycle), then continue to add the smaller distance from each leg of the journey until you converge on the correct answer. You would have to be quite skilled at math to solve this problem, and you would probably need some time and pencil and paper to do it.

If you consider a different representation, however, you can solve this problem in your head. Instead of thinking about it as a question about a fly, think about it as a question about the bicycles. They are 20 miles apart, and each is traveling 10 miles per hour. How long will it take for the bicycles to reach each other? Right, one hour. The fly is traveling 15 miles per hour; therefore, it will travel a total of 15 miles back and forth in the hour before the bicycles meet. Represented one way (as a problem about a fly), the problem is quite difficult. Represented another way (as a problem about two bicycles), it is easy. Changing your representation of a problem is sometimes the best—sometimes the only—way to solve it.

Unfortunately, however, changing a problem’s representation is not the easiest thing in the world to do. Often, problem solvers get stuck looking at a problem one way. This is called  fixation . Most people who represent the preceding problem as a problem about a fly probably do not pause to reconsider, and consequently change, their representation. A parent who thinks her daughter is being defiant is unlikely to consider the possibility that her behavior is far less purposeful.

Problem-solving fixation was examined by a group of German psychologists called Gestalt psychologists during the 1930’s and 1940’s. Karl Dunker, for example, discovered an important type of failure to take a different perspective called  functional fixedness . Imagine being a participant in one of his experiments. You are asked to figure out how to mount two candles on a door and are given an assortment of odds and ends, including a small empty cardboard box and some thumbtacks. Perhaps you have already figured out a solution: tack the box to the door so it forms a platform, then put the candles on top of the box. Most people are able to arrive at this solution. Imagine a slight variation of the procedure, however. What if, instead of being empty, the box had matches in it? Most people given this version of the problem do not arrive at the solution given above. Why? Because it seems to people that when the box contains matches, it already has a function; it is a matchbox. People are unlikely to consider a new function for an object that already has a function. This is functional fixedness.

Mental set is a type of fixation in which the problem solver gets stuck using the same solution strategy that has been successful in the past, even though the solution may no longer be useful. It is commonly seen when students do math problems for homework. Often, several problems in a row require the reapplication of the same solution strategy. Then, without warning, the next problem in the set requires a new strategy. Many students attempt to apply the formerly successful strategy on the new problem and therefore cannot come up with a correct answer.

The thing to remember is that you cannot solve a problem unless you correctly identify what it is to begin with (initial state) and what you want the end result to be (goal state). That may mean looking at the problem from a different angle and representing it in a new way. The correct representation does not guarantee a successful solution, but it certainly puts you on the right track.

A bit more optimistically, the Gestalt psychologists discovered what may be considered the opposite of fixation, namely  insight . Sometimes the solution to a problem just seems to pop into your head. Wolfgang Kohler examined insight by posing many different problems to chimpanzees, principally problems pertaining to their acquisition of out-of-reach food. In one version, a banana was placed outside of a chimpanzee’s cage and a short stick inside the cage. The stick was too short to retrieve the banana, but was long enough to retrieve a longer stick also located outside of the cage. This second stick was long enough to retrieve the banana. After trying, and failing, to reach the banana with the shorter stick, the chimpanzee would try a couple of random-seeming attempts, react with some apparent frustration or anger, then suddenly rush to the longer stick, the correct solution fully realized at this point. This sudden appearance of the solution, observed many times with many different problems, was termed insight by Kohler.

Lest you think it pertains to chimpanzees only, Karl Dunker demonstrated that children also solve problems through insight in the 1930s. More importantly, you have probably experienced insight yourself. Think back to a time when you were trying to solve a difficult problem. After struggling for a while, you gave up. Hours later, the solution just popped into your head, perhaps when you were taking a walk, eating dinner, or lying in bed.

fixation :  when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

functional fixedness :  a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

mental set :  a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

insight :  a sudden realization of a solution to a problem

Solving Problems by Trial and Error

Correctly identifying the problem and your goal for a solution is a good start, but recall the psychologist’s definition of a problem: it includes a set of possible intermediate states. Viewed this way, a problem can be solved satisfactorily only if one can find a path through some of these intermediate states to the goal. Imagine a fairly routine problem, finding a new route to school when your ordinary route is blocked (by road construction, for example). At each intersection, you may turn left, turn right, or go straight. A satisfactory solution to the problem (of getting to school) is a sequence of selections at each intersection that allows you to wind up at school.

If you had all the time in the world to get to school, you might try choosing intermediate states randomly. At one corner you turn left, the next you go straight, then you go left again, then right, then right, then straight. Unfortunately, trial and error will not necessarily get you where you want to go, and even if it does, it is not the fastest way to get there. For example, when a friend of ours was in college, he got lost on the way to a concert and attempted to find the venue by choosing streets to turn onto randomly (this was long before the use of GPS). Amazingly enough, the strategy worked, although he did end up missing two out of the three bands who played that night.

Trial and error is not all bad, however. B.F. Skinner, a prominent behaviorist psychologist, suggested that people often behave randomly in order to see what effect the behavior has on the environment and what subsequent effect this environmental change has on them. This seems particularly true for the very young person. Picture a child filling a household’s fish tank with toilet paper, for example. To a child trying to develop a repertoire of creative problem-solving strategies, an odd and random behavior might be just the ticket. Eventually, the exasperated parent hopes, the child will discover that many of these random behaviors do not successfully solve problems; in fact, in many cases they create problems. Thus, one would expect a decrease in this random behavior as a child matures. You should realize, however, that the opposite extreme is equally counterproductive. If the children become too rigid, never trying something unexpected and new, their problem solving skills can become too limited.

Effective problem solving seems to call for a happy medium that strikes a balance between using well-founded old strategies and trying new ground and territory. The individual who recognizes a situation in which an old problem-solving strategy would work best, and who can also recognize a situation in which a new untested strategy is necessary is halfway to success.

Solving Problems with Algorithms and Heuristics

For many problems there is a possible strategy available that will guarantee a correct solution. For example, think about math problems. Math lessons often consist of step-by-step procedures that can be used to solve the problems. If you apply the strategy without error, you are guaranteed to arrive at the correct solution to the problem. This approach is called using an  algorithm , a term that denotes the step-by-step procedure that guarantees a correct solution. Because algorithms are sometimes available and come with a guarantee, you might think that most people use them frequently. Unfortunately, however, they do not. As the experience of many students who have struggled through math classes can attest, algorithms can be extremely difficult to use, even when the problem solver knows which algorithm is supposed to work in solving the problem. In problems outside of math class, we often do not even know if an algorithm is available. It is probably fair to say, then, that algorithms are rarely used when people try to solve problems.

Because algorithms are so difficult to use, people often pass up the opportunity to guarantee a correct solution in favor of a strategy that is much easier to use and yields a reasonable chance of coming up with a correct solution. These strategies are called  problem solving heuristics . Similar to what you saw in section 6.2 with reasoning heuristics, a problem solving heuristic is a shortcut strategy that people use when trying to solve problems. It usually works pretty well, but does not guarantee a correct solution to the problem. For example, one problem solving heuristic might be “always move toward the goal” (so when trying to get to school when your regular route is blocked, you would always turn in the direction you think the school is). A heuristic that people might use when doing math homework is “use the same solution strategy that you just used for the previous problem.”

By the way, we hope these last two paragraphs feel familiar to you. They seem to parallel a distinction that you recently learned. Indeed, algorithms and problem-solving heuristics are another example of the distinction between Type 1 thinking and Type 2 thinking.

Although it is probably not worth describing a large number of specific heuristics, two observations about heuristics are worth mentioning. First, heuristics can be very general or they can be very specific, pertaining to a particular type of problem only. For example, “always move toward the goal” is a general strategy that you can apply to countless problem situations. On the other hand, “when you are lost without a functioning gps, pick the most expensive car you can see and follow it” is specific to the problem of being lost. Second, all heuristics are not equally useful. One heuristic that many students know is “when in doubt, choose c for a question on a multiple-choice exam.” This is a dreadful strategy because many instructors intentionally randomize the order of answer choices. Another test-taking heuristic, somewhat more useful, is “look for the answer to one question somewhere else on the exam.”

You really should pay attention to the application of heuristics to test taking. Imagine that while reviewing your answers for a multiple-choice exam before turning it in, you come across a question for which you originally thought the answer was c. Upon reflection, you now think that the answer might be b. Should you change the answer to b, or should you stick with your first impression? Most people will apply the heuristic strategy to “stick with your first impression.” What they do not realize, of course, is that this is a very poor strategy (Lilienfeld et al, 2009). Most of the errors on exams come on questions that were answered wrong originally and were not changed (so they remain wrong). There are many fewer errors where we change a correct answer to an incorrect answer. And, of course, sometimes we change an incorrect answer to a correct answer. In fact, research has shown that it is more common to change a wrong answer to a right answer than vice versa (Bruno, 2001).

The belief in this poor test-taking strategy (stick with your first impression) is based on the  confirmation bias   (Nickerson, 1998; Wason, 1960). You first saw the confirmation bias in Module 1, but because it is so important, we will repeat the information here. People have a bias, or tendency, to notice information that confirms what they already believe. Somebody at one time told you to stick with your first impression, so when you look at the results of an exam you have taken, you will tend to notice the cases that are consistent with that belief. That is, you will notice the cases in which you originally had an answer correct and changed it to the wrong answer. You tend not to notice the other two important (and more common) cases, changing an answer from wrong to right, and leaving a wrong answer unchanged.

Because heuristics by definition do not guarantee a correct solution to a problem, mistakes are bound to occur when we employ them. A poor choice of a specific heuristic will lead to an even higher likelihood of making an error.

algorithm :  a step-by-step procedure that guarantees a correct solution to a problem

problem solving heuristic :  a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

confirmation bias :  people’s tendency to notice information that confirms what they already believe

An Effective Problem-Solving Sequence

You may be left with a big question: If algorithms are hard to use and heuristics often don’t work, how am I supposed to solve problems? Robert Sternberg (1996), as part of his theory of what makes people successfully intelligent (Module 8) described a problem-solving sequence that has been shown to work rather well:

  • Identify the existence of a problem.  In school, problem identification is often easy; problems that you encounter in math classes, for example, are conveniently labeled as problems for you. Outside of school, however, realizing that you have a problem is a key difficulty that you must get past in order to begin solving it. You must be very sensitive to the symptoms that indicate a problem.
  • Define the problem.  Suppose you realize that you have been having many headaches recently. Very likely, you would identify this as a problem. If you define the problem as “headaches,” the solution would probably be to take aspirin or ibuprofen or some other anti-inflammatory medication. If the headaches keep returning, however, you have not really solved the problem—likely because you have mistaken a symptom for the problem itself. Instead, you must find the root cause of the headaches. Stress might be the real problem. For you to successfully solve many problems it may be necessary for you to overcome your fixations and represent the problems differently. One specific strategy that you might find useful is to try to define the problem from someone else’s perspective. How would your parents, spouse, significant other, doctor, etc. define the problem? Somewhere in these different perspectives may lurk the key definition that will allow you to find an easier and permanent solution.
  • Formulate strategy.  Now it is time to begin planning exactly how the problem will be solved. Is there an algorithm or heuristic available for you to use? Remember, heuristics by their very nature guarantee that occasionally you will not be able to solve the problem. One point to keep in mind is that you should look for long-range solutions, which are more likely to address the root cause of a problem than short-range solutions.
  • Represent and organize information.  Similar to the way that the problem itself can be defined, or represented in multiple ways, information within the problem is open to different interpretations. Suppose you are studying for a big exam. You have chapters from a textbook and from a supplemental reader, along with lecture notes that all need to be studied. How should you (represent and) organize these materials? Should you separate them by type of material (text versus reader versus lecture notes), or should you separate them by topic? To solve problems effectively, you must learn to find the most useful representation and organization of information.
  • Allocate resources.  This is perhaps the simplest principle of the problem solving sequence, but it is extremely difficult for many people. First, you must decide whether time, money, skills, effort, goodwill, or some other resource would help to solve the problem Then, you must make the hard choice of deciding which resources to use, realizing that you cannot devote maximum resources to every problem. Very often, the solution to problem is simply to change how resources are allocated (for example, spending more time studying in order to improve grades).
  • Monitor and evaluate solutions.  Pay attention to the solution strategy while you are applying it. If it is not working, you may be able to select another strategy. Another fact you should realize about problem solving is that it never does end. Solving one problem frequently brings up new ones. Good monitoring and evaluation of your problem solutions can help you to anticipate and get a jump on solving the inevitable new problems that will arise.

Please note that this as  an  effective problem-solving sequence, not  the  effective problem solving sequence. Just as you can become fixated and end up representing the problem incorrectly or trying an inefficient solution, you can become stuck applying the problem-solving sequence in an inflexible way. Clearly there are problem situations that can be solved without using these skills in this order.

Additionally, many real-world problems may require that you go back and redefine a problem several times as the situation changes (Sternberg et al. 2000). For example, consider the problem with Mary’s daughter one last time. At first, Mary did represent the problem as one of defiance. When her early strategy of pleading and threatening punishment was unsuccessful, Mary began to observe her daughter more carefully. She noticed that, indeed, her daughter’s attention would be drawn by an irresistible distraction or book. Fresh with a re-representation of the problem, she began a new solution strategy. She began to remind her daughter every few minutes to stay on task and remind her that if she is ready before it is time to leave, she may return to the book or other distracting object at that time. Fortunately, this strategy was successful, so Mary did not have to go back and redefine the problem again.

Pick one or two of the problems that you listed when you first started studying this section and try to work out the steps of Sternberg’s problem solving sequence for each one.

a mental representation of a category of things in the world

an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

knowledge about one’s own cognitive processes; thinking about your thinking

individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

Thinking like a scientist in your everyday life for the purpose of drawing correct conclusions. It entails skepticism; an ability to identify biases, distortions, omissions, and assumptions; and excellent deductive and inductive reasoning, and problem solving skills.

a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

an inclination, tendency, leaning, or prejudice

a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

a set of statements in which the beginning statements lead to a conclusion

an argument for which true beginning statements guarantee that the conclusion is true

a type of reasoning in which we make judgments about likelihood from sets of evidence

an inductive argument in which the beginning statements lead to a conclusion that is probably true

fast, automatic, and emotional thinking

slow, effortful, and logical thinking

a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

udging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

noticing, comprehending and forming a mental conception of a problem

when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

a sudden realization of a solution to a problem

a step-by-step procedure that guarantees a correct solution to a problem

The tendency to notice and pay attention to information that confirms your prior beliefs and to ignore information that disconfirms them.

a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

Introduction to Psychology Copyright © 2020 by Ken Gray; Elizabeth Arnott-Hill; and Or'Shaundra Benson is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

STEM Problem Solving: Inquiry, Concepts, and Reasoning

  • Published: 29 January 2022
  • Volume 32 , pages 381–397, ( 2023 )

Cite this article

reasoning ability and problem solving pdf

  • Aik-Ling Tan   ORCID: orcid.org/0000-0002-4627-4977 1 ,
  • Yann Shiou Ong   ORCID: orcid.org/0000-0002-6092-2803 1 ,
  • Yong Sim Ng   ORCID: orcid.org/0000-0002-8400-2040 1 &
  • Jared Hong Jie Tan 1  

9790 Accesses

8 Citations

2 Altmetric

Explore all metrics

Balancing disciplinary knowledge and practical reasoning in problem solving is needed for meaningful learning. In STEM problem solving, science subject matter with associated practices often appears distant to learners due to its abstract nature. Consequently, learners experience difficulties making meaningful connections between science and their daily experiences. Applying Dewey’s idea of practical and science inquiry and Bereiter’s idea of referent-centred and problem-centred knowledge, we examine how integrated STEM problem solving offers opportunities for learners to shuttle between practical and science inquiry and the kinds of knowledge that result from each form of inquiry. We hypothesize that connecting science inquiry with practical inquiry narrows the gap between science and everyday experiences to overcome isolation and fragmentation of science learning. In this study, we examine classroom talk as students engage in problem solving to increase crop yield. Qualitative content analysis of the utterances of six classes of 113 eighth graders and their teachers were conducted for 3 hours of video recordings. Analysis showed an almost equal amount of science and practical inquiry talk. Teachers and students applied their everyday experiences to generate solutions. Science talk was at the basic level of facts and was used to explain reasons for specific design considerations. There was little evidence of higher-level scientific conceptual knowledge being applied. Our observations suggest opportunities for more intentional connections of science to practical problem solving, if we intend to apply higher-order scientific knowledge in problem solving. Deliberate application and reference to scientific knowledge could improve the quality of solutions generated.

Similar content being viewed by others

reasoning ability and problem solving pdf

Science Camps for Introducing Nature of Scientific Inquiry Through Student Inquiries in Nature: Two Applications with Retention Study

reasoning ability and problem solving pdf

Ways of thinking in STEM-based problem solving

reasoning ability and problem solving pdf

Framing and Assessing Scientific Inquiry Practices

Avoid common mistakes on your manuscript.

1 Introduction

As we enter to second quarter of the twenty-first century, it is timely to take stock of both the changes and demands that continue to weigh on our education system. A recent report by World Economic Forum highlighted the need to continuously re-position and re-invent education to meet the challenges presented by the disruptions brought upon by the fourth industrial revolution (World Economic Forum, 2020 ). There is increasing pressure for education to equip children with the necessary, relevant, and meaningful knowledge, skills, and attitudes to create a “more inclusive, cohesive and productive world” (World Economic Forum, 2020 , p. 4). Further, the shift in emphasis towards twenty-first century competencies over mere acquisition of disciplinary content knowledge is more urgent since we are preparing students for “jobs that do not yet exist, technology that has not yet been invented, and problems that has yet exist” (OECD, 2018 , p. 2). Tan ( 2020 ) concurred with the urgent need to extend the focus of education, particularly in science education, such that learners can learn to think differently about possibilities in this world. Amidst this rhetoric for change, the questions that remained to be answered include how can science education transform itself to be more relevant; what is the role that science education play in integrated STEM learning; how can scientific knowledge, skills and epistemic practices of science be infused in integrated STEM learning; what kinds of STEM problems should we expose students to for them to learn disciplinary knowledge and skills; and what is the relationship between learning disciplinary content knowledge and problem solving skills?

In seeking to understand the extent of science learning that took place within integrated STEM learning, we dissected the STEM problems that were presented to students and examined in detail the sense making processes that students utilized when they worked on the problems. We adopted Dewey’s ( 1938 ) theoretical idea of scientific and practical/common-sense inquiry and Bereiter’s ideas of referent-centred and problem-centred knowledge building process to interpret teacher-students’ interactions during problem solving. There are two primary reasons for choosing these two theoretical frameworks. Firstly, Dewey’s ideas about the relationship between science inquiry and every day practical problem-solving is important in helping us understand the role of science subject matter knowledge and science inquiry in solving practical real-world problems that are commonly used in STEM learning. Secondly, Bereiter’s ideas of referent-centred and problem-centred knowledge augment our understanding of the types of knowledge that students can learn when they engage in solving practical real-world problems.

Taken together, Dewey’s and Bereiter’s ideas enable us to better understand the types of problems used in STEM learning and their corresponding knowledge that is privileged during the problem-solving process. As such, the two theoretical lenses offered an alternative and convincing way to understand the actual types of knowledge that are used within the context of integrated STEM and help to move our understanding of STEM learning beyond current focus on examining how engineering can be used as an integrative mechanism (Bryan et al., 2016 ) or applying the argument of the strengths of trans-, multi-, or inter-disciplinary activities (Bybee, 2013 ; Park et al., 2020 ) or mapping problems by the content and context as pure STEM problems, STEM-related problems or non-STEM problems (Pleasants, 2020 ). Further, existing research (for example, Gale et al., 2000 ) around STEM education focussed largely on description of students’ learning experiences with insufficient attention given to the connections between disciplinary conceptual knowledge and inquiry processes that students use to arrive at solutions to problems. Clarity in the role of disciplinary knowledge and the related inquiry will allow for more intentional design of STEM problems for students to learn higher-order knowledge. Applying Dewey’s idea of practical and scientific inquiry and Bereiter’s ideas of referent-centred and problem-centred knowledge, we analysed six lessons where students engaged with integrated STEM problem solving to propose answers to the following research questions: What is the extent of practical and scientific inquiry in integrated STEM problem solving? and What conceptual knowledge and problem-solving skills are learnt through practical and science inquiry during integrated STEM problem solving?

2 Inquiry in Problem Solving

Inquiry, according to Dewey ( 1938 ), involves the direct control of unknown situations to change them into a coherent and unified one. Inquiry usually encompasses two interrelated activities—(1) thinking about ideas related to conceptual subject-matter and (2) engaging in activities involving our senses or using specific observational techniques. The National Science Education Standards released by the National Research Council in the US in 1996 defined inquiry as “…a multifaceted activity that involves making observations; posing questions; examining books and other sources of information to see what is already known; planning investigations; reviewing what is already known in light of experimental evidence; using tools to gather, analyze, and interpret data; proposing answers, explanations, and predictions; and communicating the results. Inquiry requires identification of assumptions, use of critical and logical thinking, and consideration of alternative explanations” (p. 23). Planning investigation; collecting empirical evidence; using tools to gather, analyse and interpret data; and reasoning are common processes shared in the field of science and engineering and hence are highly relevant to apply to integrated STEM education.

In STEM education, establishing the connection between general inquiry and its application helps to link disciplinary understanding to epistemic knowledge. For instance, methods of science inquiry are popular in STEM education due to the familiarity that teachers have with scientific methods. Science inquiry, a specific form of inquiry, has appeared in many science curriculum (e.g. NRC, 2000 ) since Dewey proposed in 1910 that learning of science should be perceived as both subject-matter and a method of learning science (Dewey, 1910a , 1910b ). Science inquiry which involved ways of doing science should also encompass the ways in which students learn the scientific knowledge and investigative methods that enable scientific knowledge to be constructed. Asking scientifically orientated questions, collecting empirical evidence, crafting explanations, proposing models and reasoning based on available evidence are affordances of scientific inquiry. As such, science should be pursued as a way of knowing rather than merely acquisition of scientific knowledge.

Building on these affordances of science inquiry, Duschl and Bybee ( 2014 ) advocated the 5D model that focused on the practice of planning and carrying out investigations in science and engineering, representing two of the four disciplines in STEM. The 5D model includes science inquiry aspects such as (1) deciding on what and how to measure, observe and sample; (2) developing and selecting appropriate tools to measure and collect data; (3) recording the results and observations in a systematic manner; (4) creating ways to represent the data and patterns that are observed; and (5) determining the validity and the representativeness of the data collected. The focus on planning and carrying out investigations in the 5D model is used to help teachers bridge the gap between the practices of building and refining models and explanation in science and engineering. Indeed, a common approach to incorporating science inquiry in integrated STEM curriculum involves student planning and carrying out scientific investigations and making sense of the data collected to inform engineering design solution (Cunningham & Lachapelle, 2016 ; Roehrig et al., 2021 ). Duschl and Bybee ( 2014 ) argued that it is needful to design experiences for learners to appreciate that struggles are part of problem solving in science and engineering. They argued that “when the struggles of doing science is eliminated or simplified, learners get the wrong perceptions of what is involved when obtaining scientific knowledge and evidence” (Duschl & Bybee, 2014 , p. 2). While we concur with Duschl and Bybee about the need for struggles, in STEM learning, these struggles must be purposeful and grade appropriate so that students will also be able to experience success amidst failure.

The peculiar nature of science inquiry was scrutinized by Dewey ( 1938 ) when he cross-examined the relationship between science inquiry and other forms of inquiry, particularly common-sense inquiry. He positioned science inquiry along a continuum with general or common-sense inquiry that he termed as “logic”. Dewey argued that common-sense inquiry serves a practical purpose and exhibits features of science inquiry such as asking questions and a reliance on evidence although the focus of common-sense inquiry tends to be different. Common-sense inquiry deals with issues or problems that are in the immediate environment where people live, whereas the objects of science inquiry are more likely to be distant (e.g. spintronics) from familiar experiences in people’s daily lives. While we acknowledge the fundamental differences (such as novel discovery compared with re-discovering science, ‘messy’ science compared with ‘sanitised’ science) between school science and science that is practiced by scientists, the subject of interest in science (understanding the world around us) remains the same.

The unfamiliarity between the functionality and purpose of science inquiry to improve the daily lives of learners does little to motivate learners to learn science (Aikenhead, 2006 ; Lee & Luykx, 2006 ) since learners may not appreciate the connections of science inquiry in their day-to-day needs and wants. Bereiter ( 1992 ) has also distinguished knowledge into two forms—referent-centred and problem-centred. Referent-centred knowledge refers to subject-matter that is organised around topics such as that in textbooks. Problem-centred knowledge is knowledge that is organised around problems, whether they are transient problems, practical problems or problems of explanations. Bereiter argued that referent-centred knowledge that is commonly taught in schools is limited in their applications and meaningfulness to the lives of students. This lack of familiarity and affinity to referent-centred knowledge is likened to the science subject-matter knowledge that was mentioned by Dewey. Rather, it is problem-centred knowledge that would be useful when students encounter problems. Learning problem-centred knowledge will allow learners to readily harness the relevant knowledge base that is useful to understand and solve specific problems. This suggests a need to help learners make the meaningful connections between science and their daily lives.

Further, Dewey opined that while the contexts in which scientific knowledge arise could be different from our daily common-sense world, careful consideration of scientific activities and applying the resultant knowledge to daily situations for use and enjoyment is possible. Similarly, in arguing for problem-centred knowledge, Bereiter ( 1992 ) questioned the value of inert knowledge that plays no role in helping us understand or deal with the world around us. Referent-centred knowledge has a higher tendency to be inert due to the way that the knowledge is organised and the way that the knowledge is encountered by learners. For instance, learning about the equation and conditions for photosynthesis is not going to help learners appreciate how plants are adapted for photosynthesis and how these adaptations can allow plants to survive changes in climate and for farmers to grow plants better by creating the best growing conditions. Rather, students could be exposed to problems of explanations where they are asked to unravel the possible reasons for low crop yield and suggest possible ways to overcome the problem. Hence, we argue here that the value of the referent knowledge is that they form the basis and foundation for the students to be able to discuss or suggest ways to overcome real life problems. Referent-centred knowledge serves as part of the relevant knowledge base that can be harnessed to solve specific problems or as foundational knowledge students need to progress to learn higher-order conceptual knowledge that typically forms the foundations or pillars within a discipline. This notion of referent-centred knowledge serving as foundational knowledge that can be and should be activated for application in problem-solving situation is shown by Delahunty et al. ( 2020 ). They found that students show high reliance on memory when they are conceptualising convergent problem-solving tasks.

While Bereiter argues for problem-centred knowledge, he cautioned that engagement should be with problems of explanation rather than transient or practical problems. He opined that if learners only engage in transient or practical problem alone, they will only learn basic-category types of knowledge and fail to understand higher-order conceptual knowledge. For example, for photosynthesis, basic-level types of knowledge included facts about the conditions required for photosynthesis, listing the products formed from the process of photosynthesis and knowing that green leaves reflect green light. These basic-level knowledges should intentionally help learners learn higher-level conceptual knowledge that include learners being able to draw on the conditions for photosynthesis when they encounter that a plant is not growing well or is exhibiting discoloration of leaves.

Transient problems disappear once a solution becomes available and there is a high likelihood that we will not remember the problem after that. Practical problems, according to Bereiter are “stuck-door” problems that could be solved with or without basic-level knowledge and often have solutions that lacks precise definition. There are usually a handful of practical strategies, such as pulling or pushing the door harder, kicking the door, etc. that will work for the problems. All these solutions lack a well-defined approach related to general scientific principles that are reproducible. Problems of explanations are the most desirable types of problems for learners since these are problems that persist and recur such that they can become organising points for knowledge. Problems of explanations consist of the conceptual representations of (1) a text base that serves to represent the text content and (2) a situation model that shows the portion of the world in which the text is relevant. The idea of text base to represent text content in solving problems of explanations is like the idea of domain knowledge and structural knowledge (refers to knowledge of how concepts within a domain are connected) proposed by Jonassen ( 2000 ). He argued that both types of knowledges are required to solve a range of problems from well-structured problems to ill-structured problems with a simulated context, to simple ill-structured problems and to complex ill-structured problems.

Jonassen indicated that complex ill-structured problems are typically design problems and are likely to be the most useful forms of problems for learners to be engaged in inquiry. Complex ill-structured design problems are the “wicked” problems that Buchanan ( 1992 ) discussed. Buchanan’s idea is that design aims to incorporate knowledge from different fields of specialised inquiry to become whole. Complex or wicked problems are akin to the work of scientists who navigate multiple factors and evidence to offer models that are typically oversimplified, but they apply them to propose possible first approximation explanations or solutions and iteratively relax constraints or assumptions to refine the model. The connections between the subject matter of science and the design process to engineer a solution are delicate. While it is important to ensure that practical concerns and questions are taken into consideration in designing solutions (particularly a material artefact) to a practical problem, the challenge here lies in ensuring that creativity in design is encouraged even if students initially lack or neglect the scientific conceptual understanding to explain/justify their design. In his articulation of wicked problems and the role of design thinking, Buchanan ( 1992 ) highlighted the need to pay attention to category and placement. Categories “have fixed meanings that are accepted within the framework of a theory or a philosophy and serve as the basis for analyzing what already exist” (Buchanan, 1992 , p. 12). Placements, on the other hand, “have boundaries to shape and constrain meaning, but are not rigidly fixed and determinate” (p. 12).

The difference in the ideas presented by Dewey and Bereiter lies in the problem design. For Dewey, scientific knowledge could be learnt from inquiring into practical problems that learners are familiar with. After all, Dewey viewed “modern science as continuous with, and to some degree an outgrowth and refinement of, practical or ‘common-sense’ inquiry” (Brown, 2012 ). For Bereiter, he acknowledged the importance of familiar experiences, but instead of using them as starting points for learning science, he argued that practical problems are limiting in helping learners acquire higher-order knowledge. Instead, he advocated for learners to organize their knowledge around problems that are complex, persistent and extended and requiring explanations to better understand the problems. Learners are to have a sense of the kinds of problems to which the specific concept is relevant before they can be said to have grasp the concept in a functionally useful way.

To connect between problem solving, scientific knowledge and everyday experiences, we need to examine ways to re-negotiate the disciplinary boundaries (such as epistemic understanding, object of inquiry, degree of precision) of science and make relevant connections to common-sense inquiry and to the problem at hand. Integrated STEM appears to be one way in which the disciplinary boundaries of science can be re-negotiated to include practices from the fields of technology, engineering and mathematics. In integrated STEM learning, inquiry is seen more holistically as a fluid process in which the outcomes are not absolute but are tentative. The fluidity of the inquiry process is reflected in the non-deterministic inquiry approach. This means that students can use science inquiry, engineering design, design process or any other inquiry approaches that fit to arrive at the solution. This hybridity of inquiry between science, common-sense and problems allows for some familiar aspects of the science inquiry process to be applied to understand and generate solutions to familiar everyday problems. In attempting to infuse elements of common-sense inquiry with science inquiry in problem-solving, logic plays an important role to help learners make connections. Hypothetically, we argue that with increasing exposure to less familiar ways of thinking such as those associated with science inquiry, students’ familiarity with scientific reasoning increases, and hence such ways of thinking gradually become part of their common-sense, which students could employ to solve future relevant problems. The theoretical ideas related to complexities of problems, the different forms of inquiry afforded by different problems and the arguments for engaging in problem solving motivated us to examine empirically how learners engage with ill-structured problems to generate problem-centred knowledge. Of particular interest to us is how learners and teachers weave between practical and scientific reasoning as they inquire to integrate the components in the original problem into a unified whole.

3.1 Context

The integrated STEM activity in our study was planned using the S-T-E-M quartet instructional framework (Tan et al., 2019 ). The S-T-E-M quartet instructional framework positions complex, persistent and extended problems at its core and focusses on the vertical disciplinary knowledge and understanding of the horizontal connections between the disciplines that could be gained by learners through solving the problem (Tan et al., 2019 ). Figure  1 depicts the disciplinary aspects of the problem that was presented to the students. The activity has science and engineering as the two lead disciplines. It spanned three 1-h lessons and required students to both learn and apply relevant scientific conceptual knowledge to solve a complex, real-world problem through processes that resemble the engineering design process (Wheeler et al., 2019 ).

figure 1

Connections across disciplines in integrate STEM activity

figure 2

Frequency of different types of reasoning

In the first session (1 h), students were introduced to the problem and its context. The problem pertains to the issue of limited farmland in a land scarce country that imports 90% of food (Singapore Food Agency [SFA], 2020 ). The students were required to devise a solution by applying knowledge of the conditions required for photosynthesis and plant growth to design and build a vertical farming system to help farmers increase crop yield with limited farmland. This context was motivated by the government’s effort to generate interests and knowledge in farming to achieve the 30 by 30 goal—supplying 30% of country’s nutritional needs by 2030. The scenario was a fictitious one where they were asked to produce 120 tonnes of Kailan (a type of leafy vegetable) with two hectares of land instead of the usual six hectares over a specific period. In addition to the abovementioned constraints, the teacher also discussed relevant success criteria for evaluating the solution with the students. Students then researched about existing urban farming approaches. They were given reading materials pertaining to urban farming to help them understand the affordances and constraints of existing solutions. In the second session (6 h), students engaged in ideation to generate potential solutions. They then designed, built and tested their solution and had opportunities to iteratively refine their solution. Students were given a list of materials (e.g. mounting board, straws, ice-cream stick, glue, etc.) that they could use to design their solutions. In the final session (1 h), students presented their solution and reflected on how well their solution met the success criteria. The prior scientific conceptual knowledge that students require to make sense of the problem include knowledge related to plant nutrition, namely, conditions for photosynthesis, nutritional requirements of Kailin and growth cycle of Kailin. The problem resembles a real-world problem that requires students to engage in some level of explanation of their design solution.

A total of 113 eighth graders (62 boys and 51 girls), 14-year-olds, from six classes and their teachers participated in the study. The students and their teachers were recruited as part of a larger study that examined the learning experiences of students when they work on integrated STEM activities that either begin with a problem, a solution or are focused on the content. Invitations were sent to schools across the country and interested schools opted in for the study. For the study reported here, all students and teachers were from six classes within a school. The teachers had all undergone 3 h of professional development with one of the authors on ways of implementing the integrated STEM activity used in this study. During the professional development session, the teachers learnt about the rationale of the activity, familiarize themselves with the materials and clarified the intentions and goals of the activity. The students were mostly grouped in groups of three, although a handful of students chose to work independently. The group size of students was not critical for the analysis of talk in this study as the analytic focus was on the kinds of knowledge applied rather than collaborative or group think. We assumed that the types of inquiry adopted by teachers and students were largely dependent on the nature of problem. Eighth graders were chosen for this study since lower secondary science offered at this grade level is thematic and integrated across biology, chemistry and physics. Furthermore, the topic of photosynthesis is taught under the theme of Interactions at eighth grade (CPDD, 2021 ). This thematic and integrated nature of science at eighth grade offered an ideal context and platform for integrated STEM activities to be trialled.

The final lessons in a series of three lessons in each of the six classes was analysed and reported in this study. Lessons where students worked on their solutions were not analysed because the recordings had poor audibility due to masking and physical distancing requirements as per COVID-19 regulations. At the start of the first lesson, the instructions given by the teacher were:

You are going to present your models. Remember the scenario that you were given at the beginning that you were tasked to solve using your model. …. In your presentation, you have to present your prototype and its features, what is so good about your prototype, how it addresses the problem and how it saves costs and space. So, this is what you can talk about during your presentation. ….. pay attention to the presentation and write down questions you like to ask the groups after the presentation… you can also critique their model, you can evaluate, critique and ask questions…. Some examples of questions you can ask the groups are? Do you think your prototype can achieve optimal plant growth? You can also ask questions specific to their models.

3.2 Data collection

Parental consent was sought a month before the start of data collection. The informed consent adhered to confidentiality and ethics guidelines as described by the Institutional Review Board. The data collection took place over a period of one month with weekly video recording. Two video cameras, one at the front and one at the back of the science laboratory were set up. The front camera captured the students seated at the front while the back video camera recorded the teacher as well as the groups of students at the back of the laboratory. The video recordings were synchronized so that the events captured from each camera can be interpreted from different angles. After transcription of the raw video files, the identities of students were substituted with pseudonyms.

3.3 Data analysis

The video recordings were analysed using the qualitative content analysis approach. Qualitative content analysis allows for patterns or themes and meanings to emerge from the process of systematic classification (Hsieh & Shannon, 2005 ). Qualitative content analysis is an appropriate analytic method for this study as it allows us to systematically identify episodes of practical inquiry and science inquiry to map them to the purposes and outcomes of these episodes as each lesson unfolds.

In total, six h of video recordings where students presented their ideas while the teachers served as facilitator and mentor were analysed. The video recordings were transcribed, and the transcripts were analysed using the NVivo software. Our unit of analysis is a single turn of talk (one utterance). We have chosen to use utterances as proxy indicators of reasoning practices based on the assumption that an utterance relates to both grammar and context. An utterance is a speech act that reveals both meaning and intentions of the speaker within specific contexts (Li, 2008 ).

Our research analytical lens is also interpretative in nature and the validity of our interpretation is through inter-rater discussion and agreement. Each utterance at the speaker level in transcripts was examined and coded either as relevant to practical reasoning or scientific reasoning based on the content. The utterances could be a comment by the teacher, a question by a student or a response by another student. Deductive coding is deployed with the two codes, practical reasoning and scientific reasoning derived from the theoretical ideas of Dewey and Bereiter as described earlier. Practical reasoning refers to utterances that reflect commonsensical knowledge or application of everyday understanding. Scientific reasoning refers to utterances that consist of scientifically oriented questions, scientific terms, or the use of empirical evidence to explain. Examples of each type of reasoning are highlighted in the following section. Each coded utterance is then reviewed for detailed description of the events that took place that led to that specific utterance. The description of the context leading to the utterance is considered an episode. The episodes and codes were discussed and agreed upon by two of the authors. Two coders simultaneously watched the videos to identify and code the episodes. The coders interpreted the content of each utterance, examine the context where the utterance was made and deduced the purpose of the utterance. Once each coder has established the sense-making aspect of the utterance in relation to the context, a code of either practical reasoning or scientific reasoning is assigned. Once that was completed, the two coders compared their coding for similarities and differences. They discussed the differences until an agreement was reached. Through this process, an agreement of 85% was reached between the coders. Where disagreement persisted, codes of the more experienced coder were adopted.

4 Results and Discussion

The specific STEM lessons analysed were taken from the lessons whereby students presented the model of their solutions to the class for peer evaluation. Every group of students stood in front of the class and placed their model on the bench as they presented. There was also a board where they could sketch or write their explanations should they want to. The instructions given by the teacher to the students were to explain their models and state reasons for their design.

4.1 Prevalence of Reasoning

The 6h of videos consists of 1422 turns of talk. Three hundred four turns of talk (21%) were identified as talk related to reasoning, either practical reasoning or scientific reasoning. Practical reasoning made up 62% of the reasoning turns while 38% were scientific reasoning (Fig. 2 ).

The two types of reasoning differ in the justifications that are used to substantiate the claims or decisions made. Table 1 describes the differences between the two categories of reasoning.

4.2 Applications of Scientific Reasoning

Instances of engagement with scientific reasoning (for instance, using scientific concepts to justify, raising scientifically oriented questions, or providing scientific explanations) revolved around the conditions for photosynthesis and the concept of energy conversion when students were presenting their ideas or when they were questioned by their peers. For example, in explaining the reason for including fish in their plant system, one group of students made connection to cyclical energy transfer: “…so as the roots of the plants submerged in the water, faeces from the fish will be used as fertilizers so that the plant can grow”. The students considered how organic matter that is still trapped within waste materials can be released and taken up by plants to enhance the growth. The application of scientific reasoning made their design one that is innovative and sustainable as evaluated by the teacher. Some students attempted more ecofriendly designs by considering energy efficiencies through incorporating water turbines in their farming systems. They applied the concept of different forms of energy and energy conversion when their peers inquired about their design. The same scientific concepts were explained at different levels of details by different students. At one level, the students explained in a purely descriptive manner of what happens to the different entities in their prototypes, with implied changes to the forms of energy─ “…spins then generates electricity. So right, when the water falls down, then it will spin. The water will fall on the fan blade thing, then it will spin and then it generates electricity. So, it saves electricity, and also saves water”. At another level, students defended their design through an explanation of energy conversion─ “…because when the water flows right, it will convert gravitational potential energy so, when it reaches the bottom, there is not really much gravitational potential energy”. While these instances of applying scientific reasoning indicated that students have knowledge about the scientific phenomena and can apply them to assist in the problem-solving process, we are not able to establish if students understood the science behind how the dynamo works to generate electricity. Students in eighth grade only need to know how a generator works at a descriptive level and the specialized understanding how a dynamo works is beyond the intended learning outcomes at this grade level.

The application of scientific concepts for justification may not always be accurate. For instance, the naïve conception that students have about plants only respiring at night and not in the day surfaced when one group of students tried to justify the growth rates of Kailan─ “…I mean, they cannot be making food 24/7 and growing 24/7. They have nighttime for a reason. They need to respire”. These students do not appreciate that plants respire in the day as well, and hence respiration occurs 24/7. This naïve conception that plants only respire at night is one that is common among learners of biology (e.g. Svandova, 2014 ) since students learn that plant gives off oxygen in the day and takes in oxygen at night. The hasty conclusion to that observation is that plants carry out photosynthesis in the day and respire at night. The relative rates of photosynthesis and respiration were not considered by many students.

Besides naïve conceptions, engagement with scientific ideas to solve a practical problem offers opportunities for unusual and alternative ideas about science to surface. For instance, another group of students explained that they lined up their plants so that “they can take turns to absorb sunlight for photosynthesis”. These students appear to be explaining that the sun will move and depending on the position of the sun, some plants may be under shade, and hence rates of photosynthesis are dependent on the position of the sun. However, this idea could also be interpreted as (1) the students failed to appreciate that sunlight is everywhere, and (2) plants, unlike animals, particularly humans, do not have the concept of turn-taking. These diverse ideas held by students surfaced when students were given opportunities to apply their knowledge of photosynthesis to solve a problem.

4.3 Applications of Practical Reasoning

Teachers and students used more practical reasoning during an integrated STEM activity requiring both science and engineering practices as seen from 62% occurrence of practical reasoning compared with 38% for scientific reasoning. The intention of the activity to integrate students’ scientific knowledge related to plant nutrition to engineering practice of building a model of vertical farming system could be the reason for the prevalence of practical reasoning. The practical reasoning used related to structural design considerations of the farming system such as how water, light and harvesting can be carried out in the most efficient manner. Students defended the strengths of designs using logic based on their everyday experiences. In the excerpt below (transcribed verbatim), we see students applied their everyday experiences when something is “thinner” (likely to mean narrower), logically it would save space. Further, to reach a higher level, you use a machine to climb up.

Excerpt 1. “Thinner, more space” Because it is more thinner, so like in terms of space, it’s very convenient. So right, because there is – because it rotates right, so there is this button where you can stop it. Then I also installed steps, so that – because there are certain places you can’t reach even if you stop the – if you stop the machine, so when you stop it and you climb up, and then you see the condition of the plants, even though it costs a lot of labour, there is a need to have an experienced person who can grow plants. Then also, when like – when water reach the plants, cos the plants I want to use is soil-based, so as the water reach the soil, the soil will xxx, so like the water will be used, and then we got like – and then there’s like this filter that will filter like the dirt.

In the examples of practical reasoning, we were not able to identify instances where students and teachers engaged with discussion around trade-off and optimisation. Understanding constraints, trade-offs and optimisations are important ideas in informed design matrix for engineering as suggested by Crismond and Adams ( 2012 ). For instance, utterances such as “everything will be reused”, “we will be saving space”, “it looks very flimsy” or “so that it can contains [sic] the plants” were used. These utterances were made both by students while justifying their own prototypes and also by peers who challenged the design of others. Longer responses involving practical reasoning were made based on common-sense, everyday logic─ “…the product does not require much manpower, so other than one or two supervisors like I said just now, to harvest the Kailan, hence, not too many people need to be used, need to be hired to help supervise the equipment and to supervise the growth”. We infer that the higher instances of utterances related to practical reasoning could be due to the presence of more concrete artefacts that is shown, and the students and teachers were more focused on questioning the structure at hand. This inference was made as instructions given by the teacher at the start of students’ presentation focus largely on the model rather than the scientific concepts or reasoning behind the model.

4.4 Intersection Between Scientific and Practical Reasoning

Comparing science subject matter knowledge and problem-solving to the idea of categories and placement (Buchanan, 1992 ), subject matter is analogous to categories where meanings are fixed with well-established epistemic practices and norms. The problem-solving process and design of solutions are likened to placements where boundaries are less rigid, hence opening opportunities for students’ personal experiences and ideas to be presented. Placements allow students to apply their knowledge from daily experiences and common-sense logic to justify decisions. Common-sense knowledge and logic are more accessible, and hence we observe higher frequency of usage. Comparatively, while science subject matter (categories) is also used, it is observed less frequently. This could possibly be due either to less familiarity with the subject matter or lack of appropriate opportunity to apply in practical problem solving. The challenge for teachers during implementation of a STEM problem-solving activity, therefore, lies in the balance of the application of scientific and practical reasoning to deepen understanding of disciplinary knowledge in the context of solving a problem in a meaningful manner.

Our observations suggest that engaging students with practical inquiry tasks with some engineering demands such as the design of modern farm systems offers opportunities for them to convert their personal lived experiences into feasible concrete ideas that they can share in a public space for critique. The peer critique following the sharing of their practical ideas allows for both practical and scientific questions to be asked and for students to defend their ideas. For instance, after one group of students presented their prototype that has silvered surfaces, a student asked a question: “what is the function of the silver panels?”, to which his peers replied : “Makes the light bounce. Bounce the sunlight away and then to other parts of the tray.” This question indicated that students applied their knowledge that shiny silvered surfaces reflect light, and they used this knowledge to disperse the light to other trays where the crops were growing. An example of a practical question asked was “what is the purpose of the ladder?”, to which the students replied: “To take the plants – to refill the plants, the workers must climb up”. While the process of presentation and peer critique mimic peer review in the science inquiry process, the conceptual knowledge of science may not always be evident as students paid more attention to the design constraints such as lighting, watering, and space that was set in the activity. Given the context of growing plants, engagement with the science behind nutritional requirements of plants, the process of photosynthesis, and the adaptations of plants could be more deliberately explored.

5 Conclusion

The goal of our work lies in applying the theoretical ideas of Dewey and Bereiter to better understand reasoning practices in integrate STEM problem solving. We argue that this is a worthy pursue to better understand the roles of scientific reasoning in practical problem solving. One of the goals of integrated STEM education in schools is to enculture students into the practices of science, engineering and mathematics that include disciplinary conceptual knowledge, epistemic practices, and social norms (Kelly & Licona, 2018 ). In the integrated form, the boundaries and approaches to STEM learning are more diverse compared with monodisciplinary ways of problem solving. For instance, in integrated STEM problem solving, besides scientific investigations and explanations, students are also required to understand constraints, design optimal solutions within specific parameters and even to construct prototypes. For students to learn the ways of speaking, doing and being as they participate in integrated STEM problem solving in schools in a meaningful manner, students could benefit from these experiences.

With reference to the first research question of What is the extent of practical and scientific reasoning in integrated STEM problem solving, our analysis suggests that there are fewer instances of scientific reasoning compared with practical reasoning. Considering the intention of integrated STEM learning and adopting Bereiter’s idea that students should learn higher-order conceptual knowledge through engagement with problem solving, we argue for a need for scientific reasoning to be featured more strongly in integrated STEM lessons so that students can gain higher order scientific conceptual knowledge. While the lessons observed were strong in design and building, what was missing in generating solutions was the engagement in investigations, where learners collected or are presented with data and make decisions about the data to allow them to assess how viable the solutions are. Integrated STEM problems can be designed so that science inquiry can be infused, such as carrying out investigations to figure out relationships between variables. Duschl and Bybee ( 2014 ) have argued for the need to engage students in problematising science inquiry and making choices about what works and what does not.

With reference to the second research question , What is achieved through practical and scientific reasoning during integrated STEM problem solving? , our analyses suggest that utterance for practical reasoning are typically used to justify the physical design of the prototype. These utterances rely largely on what is observable and are associated with basic-level knowledge and experiences. The higher frequency of utterances related to practical reasoning and the nature of the utterances suggests that engagement with practical reasoning is more accessible since they relate more to students’ lived experiences and common-sense. Bereiter ( 1992 ) has urged educators to engage learners in learning that is beyond basic-level knowledge since accumulation of basic-level knowledge does not lead to higher-level conceptual learning. Students should be encouraged to use scientific knowledge also to justify their prototype design and to apply scientific evidence and logic to support their ideas. Engagement with scientific reasoning is preferred as conceptual knowledge, epistemic practices and social norms of science are more widely recognised compared with practical reasoning that are likely to be more varied since they rely on personal experiences and common-sense. This leads us to assert that both context and content are important in integrated STEM learning. Understanding the context or the solution without understanding the scientific principles that makes it work makes the learning less meaningful since we “…cannot strip learning of its context, nor study it in a ‘neutral’ context. It is always situated, always relayed to some ongoing enterprise”. (Bruner, 2004 , p. 20).

To further this discussion on how integrated STEM learning experiences harness the ideas of practical and scientific reasoning to move learners from basic-level knowledge to higher-order conceptual knowledge, we propose the need for further studies that involve working with teachers to identify and create relevant problems-of-explanations that focuses on feasible, worthy inquiry ideas such as those related to specific aspects of transportation, alternative energy sources and clean water that have impact on the local community. The design of these problems can incorporate opportunities for systematic scientific investigations and scaffolded such that there are opportunities to engage in epistemic practices of the constitute disciplines of STEM. Researchers could then examine the impact of problems-of-explanations on students’ learning of higher order scientific concepts. During the problem-solving process, more attention can be given to elicit students’ initial and unfolding ideas (practical) and use them as a basis to start the science inquiry process. Researchers can examine how to encourage discussions that focus on making meaning of scientific phenomena that are embedded within specific problems. This will help students to appreciate how data can be used as evidence to support scientific explanations as well as justifications for the solutions to problems. With evidence, learners can be guided to work on reasoning the phenomena with explanatory models. These aspects should move engagement in integrated STEM problem solving from being purely practice to one that is explanatory.

6 Limitations

There are four key limitations of our study. Firstly, the degree of generalisation of our observations is limited. This study sets out to illustrate what how Dewey and Bereiter’s ideas can be used as lens to examine knowledge used in problem-solving. As such, the findings that we report here is limited in its ability to generalise across different contexts and problems. Secondly, the lessons that were analysed came from teacher-frontal teaching and group presentation of solution and excluded students’ group discussions. We acknowledge that there could potentially be talk that could involve practical and scientific reasonings within group work. There are two practical consideration for choosing to analyse the first and presentation segments of the suite of lesson. Firstly, these two lessons involved participation from everyone in class and we wanted to survey the use of practical and scientific reasoning by the students as a class. Secondly, methodologically, clarity of utterances is important for accurate analysis and as students were wearing face masks during the data collection, their utterances during group discussions lack the clarity for accurate transcription and analysis. Thirdly, insights from this study were gleaned from a small sample of six classes of students. Further work could involve more classes of students although that could require more resources devoted to analysis of the videos. Finally, the number of students varied across groups and this could potentially affect the reasoning practices during discussions.

Data Availability

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Aikenhead, G. S. (2006). Science education for everyday life: Evidence-based practice . Teachers College Press.

Google Scholar  

Bereiter, C. (1992). Referent-centred and problem-centred knowledge: Elements of an educational epistemology. Interchange, 23 (4), 337–361.

Article   Google Scholar  

Breiner, J. M., Johnson, C. C., Harkness, S. S., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnership. School Science and Mathematics, 112 (1), 3–11. https://doi.org/10.1111/j.194908594.2011.00109.x

Brown, M. J. (2012). John Dewey’s logic of science. HOPS: The Journal of the International Society for the History of Philosophy of Science, 2 (2), 258–306.

Bruner, J. (2004). The psychology of learning: A short history (pp.13–20). Winter: Daedalus.

Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2016). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23–37). Routledge.

Buchanan, R. (1992). Wicked problems in design thinking. Design Issues, 8 (2), 5–21.

Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities . NSTA Press.

Crismond, D. P., & Adams, R. S. (2012). The informed design teaching and learning matrix. Journal of Engineering Education, 101 (4), 738–797.

Cunningham, C. M., & Lachapelle, P. (2016). Experiences to engage all students. Educational Designer , 3(9), 1–26. https://www.educationaldesigner.org/ed/volume3/issue9/article31/

Curriculum Planning and Development Division [CPDD] (2021). 2021 Lower secondary science express/ normal (academic) teaching and learning syllabus . Singapore: Ministry of Education.

Delahunty, T., Seery, N., & Lynch, R. (2020). Exploring problem conceptualization and performance in STEM problem solving contexts. Instructional Science, 48 , 395–425. https://doi.org/10.1007/s11251-020-09515-4

Dewey, J. (1938). Logic: The theory of inquiry . Henry Holt and Company Inc.

Dewey, J. (1910a). Science as subject-matter and as method. Science, 31 (787), 121–127.

Dewey, J. (1910b). How we think . D.C. Heath & Co Publishers.

Book   Google Scholar  

Duschl, R. A., & Bybee, R. W. (2014). Planning and carrying out investigations: an entry to learning and to teacher professional development around NGSS science and engineering practices. International Journal of STEM Education, 1 (12). DOI: https://doi.org/10.1186/s40594-014-0012-6 .

Gale, J., Alemder, M., Lingle, J., & Newton, S (2000). Exploring critical components of an integrated STEM curriculum: An application of the innovation implementation framework. International Journal of STEM Education, 7(5), https://doi.org/10.1186/s40594-020-0204-1 .

Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15 (9), 1277–1288.

Jonassen, D. H. (2000). Toward a design theory of problem solving. ETR&D, 48 (4), 63–85.

Kelly, G., & Licona, P. (2018). Epistemic practices and science education. In M. R. Matthews (Ed.), History, philosophy and science teaching: New perspectives (pp. 139–165). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-62616-1 .

Lee, O., & Luykx, A. (2006). Science education and student diversity: Synthesis and research agenda . Cambridge University Press.

Li, D. (2008). The pragmatic construction of word meaning in utterances. Journal of Chinese Language and Computing, 18 (3), 121–137.

National Research Council. (1996). The National Science Education standards . National Academy Press.

National Research Council (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: The National Academies Press. https://doi.org/10.17226/9596 .

OECD (2018). The future of education and skills: Education 2030. Downloaded on October 3, 2020 from https://www.oecd.org/education/2030/E2030%20Position%20Paper%20(05.04.2018).pdf

Park, W., Wu, J.-Y., & Erduran, S. (2020) The nature of STEM disciplines in science education standards documents from the USA, Korea and Taiwan: Focusing on disciplinary aims, values and practices.  Science & Education, 29 , 899–927.

Pleasants, J. (2020). Inquiring into the nature of STEM problems: Implications for pre-college education. Science & Education, 29 , 831–855.

Roehrig, G. H., Dare, E. A., Ring-Whalen, E., & Wieselmann, J. R. (2021). Understanding coherence and integration in integrated STEM curriculum. International Journal of STEM Education, 8(2), https://doi.org/10.1186/s40594-020-00259-8

SFA (2020). The food we eat . Downloaded on May 5, 2021 from https://www.sfa.gov.sg/food-farming/singapore-food-supply/the-food-we-eat

Svandova, K. (2014). Secondary school students’ misconceptions about photosynthesis and plant respiration: Preliminary results. Eurasia Journal of Mathematics, Science, & Technology Education, 10 (1), 59–67.

Tan, M. (2020). Context matters in science education. Cultural Studies of Science Education . https://doi.org/10.1007/s11422-020-09971-x

Tan, A.-L., Teo, T. W., Choy, B. H., & Ong, Y. S. (2019). The S-T-E-M Quartet. Innovation and Education , 1 (1), 3. https://doi.org/10.1186/s42862-019-0005-x

Wheeler, L. B., Navy, S. L., Maeng, J. L., & Whitworth, B. A. (2019). Development and validation of the Classroom Observation Protocol for Engineering Design (COPED). Journal of Research in Science Teaching, 56 (9), 1285–1305.

World Economic Forum (2020). Schools of the future: Defining new models of education for the fourth industrial revolution. Retrieved on Jan 18, 2020 from https://www.weforum.org/reports/schools-of-the-future-defining-new-models-of-education-for-the-fourth-industrial-revolution/

Download references

Acknowledgements

The authors would like to acknowledge the contributions of the other members of the research team who gave their comment and feedback in the conceptualization stage.

This study is funded by Office of Education Research grant OER 24/19 TAL.

Author information

Authors and affiliations.

Natural Sciences and Science Education, meriSTEM@NIE, National Institute of Education, Nanyang Technological University, Singapore, Singapore

Aik-Ling Tan, Yann Shiou Ong, Yong Sim Ng & Jared Hong Jie Tan

You can also search for this author in PubMed   Google Scholar

Contributions

The first author conceptualized, researched, read, analysed and wrote the article.

The second author worked on compiling the essential features and the variations tables.

The third and fourth authors worked with the first author on the ideas and refinements of the idea.

Corresponding author

Correspondence to Yann Shiou Ong .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Tan, AL., Ong, Y.S., Ng, Y.S. et al. STEM Problem Solving: Inquiry, Concepts, and Reasoning. Sci & Educ 32 , 381–397 (2023). https://doi.org/10.1007/s11191-021-00310-2

Download citation

Accepted : 28 November 2021

Published : 29 January 2022

Issue Date : April 2023

DOI : https://doi.org/10.1007/s11191-021-00310-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Practical Inquiry
  • Science Inquiry
  • Referent-centered knowledge
  • Problem-centered knowledge
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. 10 Problem Solving Skills Examples How To Improve Careercliff

    reasoning ability and problem solving pdf

  2. Logical Reasoning Study Material 2021

    reasoning ability and problem solving pdf

  3. Introduction to Problem Solving Skills

    reasoning ability and problem solving pdf

  4. PPT

    reasoning ability and problem solving pdf

  5. Critical Thinking Reasoning Evaluating Problem Solving

    reasoning ability and problem solving pdf

  6. Reasoning and Problem Solving

    reasoning ability and problem solving pdf

VIDEO

  1. reasoning

  2. Reasoning Ability(For all Competitive & Campus Exams) || For Practice!

  3. BCS : MENTAL ABILITY PROBLEM SOLVING CLASS

  4. REASONING ABILITY || JKSSB VLW || PRACTICE SET-02 || BY SHUBAM SIR

  5. Problem Solving 101: Are you solving the REAL problem?

  6. Art of Problem Solving: Probability and Combinations Part 2

COMMENTS

  1. PDF ANALYTICAL THINKING AND PROBLEM-SOLVING

    It is good to promote your analytical thinking skills in your resume and during a job interview. Use words and phrases like problem solving, creativity and analytical when describing your abilities. If you have previous work experiences, you can write something like in my previous job I was tasked with selecting the right materials.

  2. PDF The Cambridge Handbook of Thinking and Reasoning

    The Cambridge Handbook of Thinking and Rea-soning is the first comprehensive and authorita-tive handbook covering all the core topics of the field of thinking and reasoning. Written by the foremost experts from cognitive psychology, cog-nitive science, and cognitive neuroscience, indi-vidual chapters summarize basic concepts and findings for a ...

  3. PDF Reasoning, Decision-Making & Problem-Solving

    catching the ball), and both are essentially physics problems. But solving an introductory physics problem requires sustained attention, the recall and generation of learned facts, the conscious application of those facts, and the ability to engage in some kind of explicit 01_Minda_Ch 01 Section 1.indd 4 8/21/2015 10:01:42 AM

  4. 7 Module 7: Thinking, Reasoning, and Problem-Solving

    Critical thinking entails solid reasoning and problem solving skills; skepticism; and an ability to identify biases, distortions, omissions, and assumptions. Excellent deductive and inductive reasoning, and problem solving skills contribute to critical thinking. So, you can consider the subject matter of sections 7.2 and 7.3 to be part of ...

  5. PDF CHAPTER 1 Thinking and Reasoning: A Reader's Guide

    4 the cambridge handbook of thinking and reasoning Most notable of the Gestaltists were Karl Duncker and Max Wertheimer, students of human problem solving, and Wolfgang Kohler, a keen observer of problem solv-¨ ing by great apes (see Call & Tomasello, Chap. 25). The pioneers of the early twentieth cen-tury also include Sigmund Freud, whose

  6. PDF 23 Problem-Solving and Intelligence

    In this chapter, we discuss the link between intelligence and problem-solving in terms of contemporary ideas concerning both. To preview, we argue that the ability to solve problems is not just an aspect or feature of intelligence. - it is the essence of intelligence. The chapter is organized into ve major sections.

  7. PDF Problem Solving, Reasoning, and Analytical Thinking in a Classroom ...

    problem solving, reasoning, thinking, Think Aloud Pair Problem Solving, verbal behavior, TAPS This article is a slightly revised and updated version a book chapter titled "Problem Solving, Reasoning, and Analytical Thinking within the Morningside Model" that ap-peared in The Morningside model of generative instruction: What it means to leave no

  8. PDF Introduction to Problem-Solving Strategies

    thrust. Everyone seems to agree that problem solving and reasoning are, and must be, an integral part of any good instructional program. In an effort to emphasize this study of problem solving and reasoning in math-ematics curricula, most states are now including problem-solving skills on their statewide tests.

  9. PDF Thinking: Problem Solving and Reasoning

    Thinking: Problem Solving and Reasoning should begin, leading to the solution (10 cents for the pen, 40 cents for the notebook). For the two-strings problem in Table ll.l, the solution is almost entirely dependent on a subject's ability to construct a particular representa­ ...

  10. PDF Complex cognition: the science of human reasoning, problem-solving, and

    A further problem in the area of complex cognition is that many problems are solvable only under certain social conditions (norms, values, laws, culture) or only in inter-action with other actors (cf. Beller 2008). The article on deontic reasoning by Beller is concerned with this topic. Deontic reasoning is thinking about whether actions are

  11. PDF THINKING AND PROBLEM SOLVING

    solving, lawyers' reasoning, mechanical problem solving, problem solving in electronics, computer skills, game playing, and personal problem solving. In Europe, two main approaches have surfaced, one initiated by Donald Broadbent in Great Britain and the other by Dietrich Drner in Germany. The two approaches have in common an

  12. (PDF) Reasoning and problem solving

    The topic of reasoning and problem solving is so broad and encompasses such a vast literature that it would be impossible to cover all the research that fits under this commodious umbrella in any ...

  13. PDF Learning Styles in the Context of Reasoning and Problem Solving Ability

    styles in context of reasoning and problem solving ability. High school students (598) completed the reasoning ability test, problem solving ability test and learning style inventory. SPSS software was used for evaluating data obtained from three measurement tools. The entire three tools were

  14. STEM Problem Solving: Inquiry, Concepts, and Reasoning

    Balancing disciplinary knowledge and practical reasoning in problem solving is needed for meaningful learning. In STEM problem solving, science subject matter with associated practices often appears distant to learners due to its abstract nature. Consequently, learners experience difficulties making meaningful connections between science and their daily experiences. Applying Dewey's idea of ...

  15. PDF The Development of Mathematical Problem-Solving and Reasoning Abilities

    2.4 Action Research Kemmis a and McTaggartt (1988) propo osed a four-ste ep approach fo or implementin ng action resea arch to improv ve the teaching an nd learning en nvironment in s schools. Step 1: Pla an—In this ste ep, the problem m that needs to be solved is id dentified and e explored.

  16. PDF Problem Solving and Critical Thinking

    solving, according to a 2010 Critical Skills Survey by the American Management Association and others. Problem solving and critical thinking refers to the ability to use knowledge, facts, and data to effectively solve problems. This doesn't mean you need to have an immediate answer, it means you have to be able to think on your feet, assess ...

  17. PDF Factor B: Reasoning & Problem-solving Ability

    • Scores of 7.0 or greater indicate a higher level of reasoning and problem- solving • Scores of 5.0 and 6.0 suggest an ability to function adequately • Scores of 4.0 or less should raise question as to whether the person has enough reasoning skills for jobs requiring a higher degree of problem-solving, especially in more senior level ...

  18. PDF Problem Solving, Reasoning, and Analytical Thinking in a Classroom

    teach these vital problem-solving, reasoning, and thinking skills to children much younger than college students. At any given time, the Morningside Academy population may include students with special needs. Experts in the eld of teaching problem solving and thinking skills have remarked that certain procedures are reserved for students of ...

  19. PDF CRITICAL THINKING

    It's thinking on purpose! Critical thinking involves mindful communication, problem-solving, and a freedom from bias or. About This Workbook. egocentric tendency. You can apply critical thinking to any kind of subject, problem, or situation you choose. The activity pages in the Critical Thinking Workbook are meant to be shared and explored.

  20. (PDF) Improving Students' Scientific Reasoning and Problem-Solving

    The results showed that the rises of students' scientific reasoning ability were 69.77% for XI MIA 3 and 66.27% for XI MIA 4, in the medium category. The problem-solving skills were 63.40% for ...

  21. PDF Spatial ability, skills, reasoning or thinking: What does it mean for

    of spatial reasoning that consider real world spatial problem-solving (Mix, 2019). Spatial Reasoning Spatial reasoning, as a foundational component of Numeracy, requires an awareness of space, the ability to imagine objects and relationships, and use this information to reason and problem-solve (ACARA, n.d; NRC, 2006).

  22. (PDF) Problem Solving Ability: Significance for Adolescents

    enhances problem-solving abilities and promotes c reativity and reasoning ability of students. Keywords : Problem solving ability, students. Scholarly Research Journal's is licensed Based on a ...

  23. Boost Logical Reasoning for Better Problem-Solving

    6. Embrace Complexity. Be the first to add your personal experience. 7. Here's what else to consider. Be the first to add your personal experience. Logical reasoning is a vital skill in the ...

  24. PDF General Inspection, Investigation, Compliance, and Enforcement

    GS-1801 General Inspection, Investigation, Compliance and Enforcement. The following general competencies are valid for assessment and selection, performance management, and other related human capital functions for the GS-1801 occupational series at the grade levels listed below. 1 Italics represent the lowest grade at which the competency ...

  25. PDF Exploring relationship between scientific reasoning skills and

    problems. In this sense, there are aspects of mathematical problem solving that could draw on scientific reasoning (Hand, Prain & Yore, 2001). Scientific Reasoning Skills (SRS) The range of SRS that students bring to learning and problem solving can be expected to assist them in making progress in multiple ways. SRS 'encompasses the reasoning and

  26. Enhance Logical Reasoning with Personal Coaching

    Logical reasoning is the process of using a structured approach to problem-solving that involves evaluating arguments, identifying patterns, and making deductions. It's essential in fields that ...