IEEE Account

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • ADVERTISEMENT FEATURE Advertiser retains sole responsibility for the content of this article

New energy technology research

Produced by

research paper new technologies

The transition to a low/zero-carbon energy system and the reshaping of the modern energy system are necessary for achieving the Sustainable Development Goals (SDG) of the United Nations. Such a transition must allow for coping with the global climate change crisis, and promoting the ‘green recovery’ of the world economy in the post-pandemic era. Currently, major countries and regions take the development of new energy technologies as a crucial opportunity to lead the new round of energy revolution and science and technology innovation. New energy technologies are being updated at an unprecedented pace.

Based on the Dimensions database of Digital Science, this study, combining bibliometric analysis, patent analysis and expert interviews, systematically analyses eight new energy fields, including solar, wind, biomass, geothermal, nuclear, hydrogen, energy storage, and energy internet, as well as 20 subtypes of new energy technologies over the period of 2000-2019 (with a focus on the period of 2015-2019), to reveal hot directions for global new energy research, the potential for industrial transformation, and future development trends. The study takes a global perspective, considering the development of China's new energy technologies and corresponding research patterns, and conducts a comparative analysis of China’s research competitiveness with other major countries and regions.

This study reveals that:

1. Global research in the new energy field is in a period of accelerated growth, with solar energy, energy storage and hydrogen energy receiving extensive attention from the global research community.

2. China's total contribution to new energy research is substantial, and the contribution to high-quality research is also large, but compared with the United States, Germany, Japan and other developed countries, China is relatively down the country ranks in terms of average citations per paper in most energy fields, suggesting that its overall efficiency needs improvement.

3. The level of transformation of new energy research to applicable technologies is relatively low globally, and industry-academia-research integration needs to be further strengthened. In general, research transformation for energy storage, biomass energy and solar energy is at a relatively high level, with technologies for lithium-ion batteries and organic solar cells being the hotspots of common interest for both the research community and industry.

4. The qualitative analysis of expert interviews reveals that the rapid progress of energy storage technologies will provide powerful support for large-scale development of renewable power generation and electric vehicles; hydrogen will be an important medium for building future energy systems and realizing the energy revolution; breakthroughs in solar fuel technologies and relevant cost reduction may help reduce dependence on fossil fuels; and energy internet will bring dual advantages of the internet and smart energy systems into full play to realize coordinated optimal allocation of resources.

For the full report, please click the PDF icon on the page.

research paper new technologies

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Grab your spot at the free arXiv Accessibility Forum

Help | Advanced Search

Computer Science > Artificial Intelligence

Title: the ai scientist: towards fully automated open-ended scientific discovery.

Abstract: One of the grand challenges of artificial general intelligence is developing agents capable of conducting scientific research and discovering new knowledge. While frontier models have already been used as aides to human scientists, e.g. for brainstorming ideas, writing code, or prediction tasks, they still conduct only a small part of the scientific process. This paper presents the first comprehensive framework for fully automatic scientific discovery, enabling frontier large language models to perform research independently and communicate their findings. We introduce The AI Scientist, which generates novel research ideas, writes code, executes experiments, visualizes results, describes its findings by writing a full scientific paper, and then runs a simulated review process for evaluation. In principle, this process can be repeated to iteratively develop ideas in an open-ended fashion, acting like the human scientific community. We demonstrate its versatility by applying it to three distinct subfields of machine learning: diffusion modeling, transformer-based language modeling, and learning dynamics. Each idea is implemented and developed into a full paper at a cost of less than $15 per paper. To evaluate the generated papers, we design and validate an automated reviewer, which we show achieves near-human performance in evaluating paper scores. The AI Scientist can produce papers that exceed the acceptance threshold at a top machine learning conference as judged by our automated reviewer. This approach signifies the beginning of a new era in scientific discovery in machine learning: bringing the transformative benefits of AI agents to the entire research process of AI itself, and taking us closer to a world where endless affordable creativity and innovation can be unleashed on the world's most challenging problems. Our code is open-sourced at this https URL
Subjects: Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (cs.LG)
Cite as: [cs.AI]
  (or [cs.AI] for this version)
  Focus to learn more arXiv-issued DOI via DataCite

Submission history

Access paper:.

  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

The Diffusion of New Technologies

We identify phrases associated with novel technologies using textual analysis of patents, job postings, and earnings calls, enabling us to identify four stylized facts on the diffusion of jobs relating to new technologies. First, the development of economically impactful new technologies is geographically highly concentrated, more so even than overall patenting: 56% of the most economically impactful technologies come from just two U.S. locations, Silicon Valley and the Northeast Corridor. Second, as the technologies mature and the number of related jobs grows, hiring spreads geographically. But this process is very slow, taking around 50 years to disperse fully. Third, while initial hiring in new technologies is highly skill biased, over time the mean skill level in new positions declines, drawing in an increasing number of lower-skilled workers. Finally, the geographic spread of hiring is slowest for higher-skilled positions, with the locations where new technologies were pioneered remaining the focus for the technology’s high-skill jobs for decades.

We thank audiences at the Applied Machine Learning webinar, Atlanta Fed, Auburn University, Babson College, the Bank for International Settlements, Baruch College, Bocconi University, CKGSB, Columbia University, College de France, Dartmouth University, Duke University, Durham University, ETH, the Federal Reserve Board, Georgia State University, Harvard University, the Korea-American Economic Association, the London Business School, the London School of Economics, Michigan State University, Northwestern University, Nova Business School, New York University, the Ohio State University, the Royal Bank of Australia, Stanford University, the Toulouse Network on Information Technology, the University of British Columbia

MARC RIS BibTeΧ

Download Citation Data

  • The dataset constructed as part of this paper, as well as relevant code.
  • June 30, 2021
  • November 4, 2021
  • November 15, 2023

Working Groups

Conferences, mentioned in the news, more from nber.

In addition to working papers , the NBER disseminates affiliates’ latest findings through a range of free periodicals — the NBER Reporter , the NBER Digest , the Bulletin on Retirement and Disability , the Bulletin on Health , and the Bulletin on Entrepreneurship  — as well as online conference reports , video lectures , and interviews .

2024, 16th Annual Feldstein Lecture, Cecilia E. Rouse," Lessons for Economists from the Pandemic" cover slide

research paper new technologies

McKinsey technology trends outlook 2024

Despite challenging overall market conditions in 2023, continuing investments in frontier technologies promise substantial future growth in enterprise adoption. Generative AI (gen AI) has been a standout trend since 2022, with the extraordinary uptick in interest and investment in this technology unlocking innovative possibilities across interconnected trends such as robotics and immersive reality. While the macroeconomic environment with elevated interest rates has affected equity capital investment and hiring, underlying indicators—including optimism, innovation, and longer-term talent needs—reflect a positive long-term trajectory in the 15 technology trends we analyzed.

What’s new in this year’s analysis

This year, we reflected the shifts in the technology landscape with two changes on the list of trends: digital trust and cybersecurity (integrating what we had previously described as Web3 and trust architectures) and the future of robotics. Robotics technologies’ synergy with AI is paving the way for groundbreaking innovations and operational shifts across the economic and workforce landscapes. We also deployed a survey to measure adoption levels across trends.

These are among the findings in the latest McKinsey Technology Trends Outlook, in which the McKinsey Technology Council  identified the most significant technology trends unfolding today. This research is intended to help executives plan ahead by developing an understanding of potential use cases, sources of value, adoption drivers, and the critical skills needed to bring these opportunities to fruition.

Our analysis examines quantitative measures of interest, innovation, investment, and talent to gauge the momentum of each trend. Recognizing the long-term nature and interdependence of these trends, we also delve into the underlying technologies, uncertainties, and questions surrounding each trend. (For more about new developments in our research, please see the sidebar “What’s new in this year’s analysis”; for more about the research itself, please see the sidebar “Research methodology.”)

New and notable

The two trends that stood out in 2023 were gen AI and electrification and renewables. Gen AI has seen a spike of almost 700 percent in Google searches from 2022 to 2023, along with a notable jump in job postings and investments. The pace of technology innovation has been remarkable. Over the course of 2023 and 2024, the size of the prompts that large language models (LLMs) can process, known as “context windows,” spiked from 100,000 to two million tokens. This is roughly the difference between adding one research paper to a model prompt and adding about 20 novels to it. And the modalities that gen AI can process have continued to increase, from text summarization and image generation to advanced capabilities in video, images, audio, and text. This has catalyzed a surge in investments and innovation aimed at advancing more powerful and efficient computing systems. The large foundation models that power generative AI, such as LLMs, are being integrated into various enterprise software tools and are also being employed for diverse purposes such as powering customer-facing chatbots, generating ad campaigns, accelerating drug discovery, and more. We expect this expansion to continue, pushing the boundaries of AI capabilities. Senior leaders’ awareness of gen AI innovation has increased interest, investment, and innovation in AI technologies, such as robotics, which is a new addition to our trends analysis this year. Advancements in AI are ushering in a new era of more capable robots, spurring greater innovation and a wider range of deployments.

Research methodology

To assess the development of each technology trend, our team collected data on five tangible measures of activity: search engine queries, news publications, patents, research publications, and investment. For each measure, we used a defined set of data sources to find occurrences of keywords associated with each of the 15 trends, screened those occurrences for valid mentions of activity, and indexed the resulting numbers of mentions on a 0–1 scoring scale that is relative to the trends studied. The innovation score combines the patents and research scores; the interest score combines the news and search scores. (While we recognize that an interest score can be inflated by deliberate efforts to stimulate news and search activity, we believe that each score fairly reflects the extent of discussion and debate about a given trend.) Investment measures the flows of funding from the capital markets into companies linked with the trend.

Data sources for the scores include the following:

  • Patents. Data on patent filings are sourced from Google Patents, where the data highlight the number of granted patents.
  • Research. Data on research publications are sourced from Lens.
  • News. Data on news publications are sourced from Factiva.
  • Searches. Data on search engine queries are sourced from Google Trends.
  • Investment. Data on private-market and public-market capital raises (venture capital and corporate and strategic M&A, including joint ventures), private equity (including buyouts and private investment in public equity), and public investments (including IPOs) are sourced from PitchBook.
  • Talent demand. Number of job postings is sourced from McKinsey’s proprietary Organizational Data Platform, which stores licensed, de-identified data on professional profiles and job postings. Data are drawn primarily from English-speaking countries.

In addition, we updated the selection and definition of trends from last year’s report to reflect the evolution of technology trends:

  • The future of robotics trend was added since last year’s publication.
  • Data sources and keywords were updated. For data on the future of space technologies investments, we used research from McKinsey’s Aerospace & Defense Practice.

Finally, we used survey data to calculate the enterprise-wide adoption scores for each trend:

  • Survey scope. The survey included approximately 1,000 respondents from 50 countries.
  • Geographical coverage. Survey representation was balanced across Africa, Asia, Europe, Latin America, the Middle East, and North America.
  • Company size. Size categories, based on annual revenue, included small companies ($10 million to $50 million), medium-size companies ($50 million to $1 billion), and large companies (greater than $1 billion).
  • Respondent profile. The survey was targeted to senior-level professionals knowledgeable in technology, who reported their perception of the extent to which their organizations were using the technologies.
  • Survey method. The survey was conducted online to enhance reach and accessibility.
  • Question types. The survey employed multiple-choice and open-ended questions for comprehensive insights.
  • 1: Frontier innovation. This technology is still nascent, with few organizations investing in or applying it. It is largely untested and unproven in a business context.
  • 2: Experimentation. Organizations are testing the functionality and viability of the technology with a small-scale prototype, typically done without a strong focus on a near-term ROI. Few companies are scaling or have fully scaled the technology.
  • 3: Piloting. Organizations are implementing the technology for the first few business use cases. It may be used in pilot projects or limited deployments to test its feasibility and effectiveness.
  • 4: Scaling. Organizations are in the process of scaling the deployment and adoption of the technology across the enterprise. The technology is being scaled by a significant number of companies.
  • 5: Fully scaled. Organizations have fully deployed and integrated the technology across the enterprise. It has become the standard and is being used at a large scale as companies have recognized the value and benefits of the technology.

Electrification and renewables was the other trend that bucked the economic headwinds, posting the highest investment and interest scores among all the trends we evaluated. Job postings for this sector also showed a modest increase.

Although many trends faced declines in investment and hiring in 2023, the long-term outlook remains positive. This optimism is supported by the continued longer-term growth in job postings for the analyzed trends (up 8 percent from 2021 to 2023) and enterprises’ continued innovation and heightened interest in harnessing these technologies, particularly for future growth.

In 2023, technology equity investments fell by 30 to 40 percent to approximately $570 billion due to rising financing costs and a cautious near-term growth outlook, prompting investors to favor technologies with strong revenue and margin potential. This approach aligns with the strategic perspective leading companies are adopting, in which they recognize that fully adopting and scaling cutting-edge technologies is a long-term endeavor. This recognition is evident when companies diversify their investments across a portfolio of several technologies, selectively intensifying their focus on areas most likely to push technological boundaries forward. While many technologies have maintained cautious investment profiles over the past year, gen AI saw a sevenfold increase in investments, driven by substantial advancements in text, image, and video generation.

About QuantumBlack, AI by McKinsey

QuantumBlack, McKinsey’s AI arm, helps companies transform using the power of technology, technical expertise, and industry experts. With thousands of practitioners at QuantumBlack (data engineers, data scientists, product managers, designers, and software engineers) and McKinsey (industry and domain experts), we are working to solve the world’s most important AI challenges. QuantumBlack Labs is our center of technology development and client innovation, which has been driving cutting-edge advancements and developments in AI through locations across the globe.

Despite an overall downturn in private equity investment, the pace of innovation has not slowed. Innovation has accelerated in the three trends that are part of the “AI revolution” group: gen AI, applied AI, and industrializing machine learning. Gen AI creates new content from unstructured data (such as text and images), applied AI leverages machine learning models for analytical and predictive tasks, and industrializing machine learning accelerates and derisks the development of machine learning solutions. Applied AI and industrializing machine learning, boosted by the widening interest in gen AI, have seen the most significant uptick in innovation, reflected in the surge in publications and patents from 2022 to 2023. Meanwhile, electrification and renewable-energy technologies continue to capture high interest, reflected in news mentions and web searches. Their popularity is fueled by a surge in global renewable capacity, their crucial roles in global decarbonization efforts, and heightened energy security needs amid geopolitical tensions and energy crises.

The talent environment largely echoed the investment picture in tech trends in 2023. The technology sector faced significant layoffs, particularly among large technology companies, with job postings related to the tech trends we studied declining by 26 percent—a steeper drop than the 17 percent decrease in global job postings overall. The greater decline in demand for tech-trends-related talent may have been fueled by technology companies’ cost reduction efforts amid decreasing revenue growth projections. Despite this reduction, the trends with robust investment and innovation, such as gen AI, not only maintained but also increased their job postings, reflecting a strong demand for new and advanced skills. Electrification and renewables was the other trend that saw positive job growth, partially due to public sector support for infrastructure spending.

Even with the short-term vicissitudes in talent demand, our analysis of 4.3 million job postings across our 15 tech trends underscored a wide skills gap. Compared with the global average, fewer than half the number of potential candidates have the high-demand tech skills specified in job postings. Despite the year-on-year decreases for job postings in many trends from 2022 to 2023, the number of tech-related job postings in 2023 still represented an 8 percent increase from 2021, suggesting the potential for longer-term growth (Exhibit 1).

Enterprise technology adoption momentum

The trajectory of enterprise technology adoption is often described as an S-curve that traces the following pattern: technical innovation and exploration, experimenting with the technology, initial pilots in the business, scaling the impact throughout the business, and eventual fully scaled adoption (Exhibit 2). This pattern is evident in this year’s survey analysis of enterprise adoption conducted across our 15 technologies. Adoption levels vary across different industries and company sizes, as does the perceived progress toward adoption.

Technologies progress through different stages, with some at the leading edge of innovation and others approaching large-scale adoption.

Image description:

A graph depicts the adoption curve of technology trends, scored from 1 to 5, where 1 represents frontier innovation, located at the bottom left corner of the curve; 2 is experimenting, located slightly above frontier innovation; 3 is piloting, which follows the upward trajectory of the curve; 4 is scaling, marked by a vertical ascent as adoption increases; and 5 is fully scaled, positioned at the top of the curve, indicating near-complete adoption.

In 2023, the trends are positioned along the adoption curve as follows: future of space technologies and quantum technologies are at the frontier innovation stage; climate technologies beyond electrification and renewables, future of bioengineering, future of mobility, future of robotics, and immersive-reality technologies are at the experimenting stage; digital trust and cybersecurity, electrification and renewables, industrializing machine learning, and next-gen software development are at the piloting stage; and advanced connectivity, applied AI, cloud and edge computing, and generative AI are at the scaling stage.

Footnote: Trend is more relevant to certain industries, resulting in lower overall adoption across industries compared with adoption within relevant industries.

Source: McKinsey technology adoption survey data

End of image description.

We see that the technologies in the S-curve’s early stages of innovation and experimenting are either on the leading edge of progress, such as quantum technologies and robotics, or are more relevant to a specific set of industries, such as bioengineering and space. Factors that could affect the adoption of these technologies include high costs, specialized applications, and balancing the breadth of technology investments against focusing on a select few that may offer substantial first-mover advantages.

As technologies gain traction and move beyond experimenting, adoption rates start accelerating, and companies invest more in piloting and scaling. We see this shift in a number of trends, such as next-generation software development and electrification. Gen AI’s rapid advancement leads among trends analyzed, about a quarter of respondents self-reporting that they are scaling its use. More mature technologies, like cloud and edge computing and advanced connectivity, continued their rapid pace of adoption, serving as enablers for the adoption of other emerging technologies as well (Exhibit 3).

More-mature technologies are more widely adopted, often serving as enablers for more-nascent technologies.

A segmented bar graph shows the adoption levels of tech trends in 2023 as a percentage of respondents. The trends are divided into 5 segments, comprising 100%: fully scaled, scaling, piloting, experimenting, and not investing. The trends are arranged based on the combined percentage sum of fully scaled and scaling shares. Listed from highest to lowest, these combined percentages are as follows:

  • cloud and edge computing at 48%
  • advanced connectivity at 37%
  • generative AI at 36%
  • applied AI at 35%
  • next-generation software development at 31%
  • digital trust and cybersecurity at 30%
  • electrification and renewables at 28%
  • industrializing machine learning at 27%
  • future of mobility at 21%
  • climate technologies beyond electrification and renewables at 20%
  • immersive-reality technologies at 19%
  • future of bioengineering at 18%
  • future of robotics at 18%
  • quantum technologies at 15%
  • future of space technologies at 15%

The process of scaling technology adoption also requires a conducive external ecosystem where user trust and readiness, business model economics, regulatory environments, and talent availability play crucial roles. Since these ecosystem factors vary by geography and industry, we see different adoption scenarios playing out. For instance, while the leading banks in Latin America are on par with their North American counterparts in deploying gen AI use cases, the adoption of robotics in manufacturing sectors varies significantly due to differing labor costs affecting the business case for automation.

As executives navigate these complexities, they should align their long-term technology adoption strategies with both their internal capacities and the external ecosystem conditions to ensure the successful integration of new technologies into their business models. Executives should monitor ecosystem conditions that can affect their prioritized use cases to make decisions about the appropriate investment levels while navigating uncertainties and budgetary constraints on the way to full adoption (see the “Adoption developments across the globe” sections within each trend or particular use cases therein that executives should monitor). Across the board, leaders who take a long-term view—building up their talent, testing and learning where impact can be found, and reimagining the businesses for the future—can potentially break out ahead of the pack.

Lareina Yee is a senior partner in McKinsey’s Bay Area office, where Michael Chui  is a McKinsey Global Institute partner, Roger Roberts  is a partner, and Mena Issler is an associate partner.

The authors wish to thank the following McKinsey colleagues for their contributions to this research: Aakanksha Srinivasan, Ahsan Saeed, Alex Arutyunyants, Alex Singla, Alex Zhang, Alizee Acket-Goemaere, An Yan, Anass Bensrhir, Andrea Del Miglio, Andreas Breiter, Ani Kelkar, Anna Massey, Anna Orthofer, Arjit Mehta, Arjita Bhan, Asaf Somekh, Begum Ortaoglu, Benjamin Braverman, Bharat Bahl, Bharath Aiyer, Bhargs Srivathsan, Brian Constantine, Brooke Stokes, Bryan Richardson, Carlo Giovine, Celine Crenshaw, Daniel Herde, Daniel Wallance, David Harvey, Delphine Zurkiya, Diego Hernandez Diaz, Douglas Merrill, Elisa Becker-Foss, Emma Parry, Eric Hazan, Erika Stanzl, Everett Santana, Giacomo Gatto, Grace W Chen, Hamza Khan, Harshit Jain, Helen Wu, Henning Soller, Ian de Bode, Jackson Pentz, Jeffrey Caso, Jesse Klempner, Jim Boehm, Joshua Katz, Julia Perry, Julian Sevillano, Justin Greis, Kersten Heineke, Kitti Lakner, Kristen Jennings, Liz Grennan, Luke Thomas, Maria Pogosyan, Mark Patel, Martin Harrysson, Martin Wrulich, Martina Gschwendtner, Massimo Mazza, Matej Macak, Matt Higginson, Matt Linderman, Matteo Cutrera, Mellen Masea, Michiel Nivard, Mike Westover, Musa Bilal, Nicolas Bellemans, Noah Furlonge-Walker, Obi Ezekoye, Paolo Spranzi, Pepe Cafferata, Robin Riedel, Ryan Brukardt, Samuel Musmanno, Santiago Comella-Dorda, Sebastian Mayer, Shakeel Kalidas, Sharmila Bhide, Stephen Xu, Tanmay Bhatnagar, Thomas Hundertmark, Tinan Goli, Tom Brennan, Tom Levin-Reid, Tony Hansen, Vinayak HV, Yaron Haviv, Yvonne Ferrier, and Zina Cole.

They also wish to thank the external members of the McKinsey Technology Council for their insights and perspectives, including Ajay Agrawal, Azeem Azhar, Ben Lorica, Benedict Evans, John Martinis, and Jordan Jacobs.

Special thanks to McKinsey Global Publishing colleagues Barr Seitz, Diane Rice, Kanika Punwani, Katie Shearer, LaShon Malone, Mary Gayen, Nayomi Chibana, Richard Johnson, Stephen Landau, and Victor Cuevas for making this interactive come alive.

Explore a career with us

Related articles.

Blue, green, red, brown and white wire in wave pattern on dark blue background - stock photo

Rewired and running ahead: Digital and AI leaders are leaving the rest behind

Close-up eye and a futuristic data screen panel on a dark blue background.

False friends or good ends? The CIO’s four-point guide to navigating technology trends

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Sensors (Basel)

Logo of sensors

Study and Investigation on 5G Technology: A Systematic Review

Ramraj dangi.

1 School of Computing Science and Engineering, VIT University Bhopal, Bhopal 466114, India; [email protected] (R.D.); [email protected] (P.L.)

Praveen Lalwani

Gaurav choudhary.

2 Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark; moc.liamg@7777yrahduohcvaruag

3 Department of Information Security Engineering, Soonchunhyang University, Asan-si 31538, Korea

Giovanni Pau

4 Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy; [email protected]

Associated Data

Not applicable.

In wireless communication, Fifth Generation (5G) Technology is a recent generation of mobile networks. In this paper, evaluations in the field of mobile communication technology are presented. In each evolution, multiple challenges were faced that were captured with the help of next-generation mobile networks. Among all the previously existing mobile networks, 5G provides a high-speed internet facility, anytime, anywhere, for everyone. 5G is slightly different due to its novel features such as interconnecting people, controlling devices, objects, and machines. 5G mobile system will bring diverse levels of performance and capability, which will serve as new user experiences and connect new enterprises. Therefore, it is essential to know where the enterprise can utilize the benefits of 5G. In this research article, it was observed that extensive research and analysis unfolds different aspects, namely, millimeter wave (mmWave), massive multiple-input and multiple-output (Massive-MIMO), small cell, mobile edge computing (MEC), beamforming, different antenna technology, etc. This article’s main aim is to highlight some of the most recent enhancements made towards the 5G mobile system and discuss its future research objectives.

1. Introduction

Most recently, in three decades, rapid growth was marked in the field of wireless communication concerning the transition of 1G to 4G [ 1 , 2 ]. The main motto behind this research was the requirements of high bandwidth and very low latency. 5G provides a high data rate, improved quality of service (QoS), low-latency, high coverage, high reliability, and economically affordable services. 5G delivers services categorized into three categories: (1) Extreme mobile broadband (eMBB). It is a nonstandalone architecture that offers high-speed internet connectivity, greater bandwidth, moderate latency, UltraHD streaming videos, virtual reality and augmented reality (AR/VR) media, and many more. (2) Massive machine type communication (eMTC), 3GPP releases it in its 13th specification. It provides long-range and broadband machine-type communication at a very cost-effective price with less power consumption. eMTC brings a high data rate service, low power, extended coverage via less device complexity through mobile carriers for IoT applications. (3) ultra-reliable low latency communication (URLLC) offers low-latency and ultra-high reliability, rich quality of service (QoS), which is not possible with traditional mobile network architecture. URLLC is designed for on-demand real-time interaction such as remote surgery, vehicle to vehicle (V2V) communication, industry 4.0, smart grids, intelligent transport system, etc. [ 3 ].

1.1. Evolution from 1G to 5G

First generation (1G): 1G cell phone was launched between the 1970s and 80s, based on analog technology, which works just like a landline phone. It suffers in various ways, such as poor battery life, voice quality, and dropped calls. In 1G, the maximum achievable speed was 2.4 Kbps.

Second Generation (2G): In 2G, the first digital system was offered in 1991, providing improved mobile voice communication over 1G. In addition, Code-Division Multiple Access (CDMA) and Global System for Mobile (GSM) concepts were also discussed. In 2G, the maximum achievable speed was 1 Mpbs.

Third Generation (3G): When technology ventured from 2G GSM frameworks into 3G universal mobile telecommunication system (UMTS) framework, users encountered higher system speed and quicker download speed making constant video calls. 3G was the first mobile broadband system that was formed to provide the voice with some multimedia. The technology behind 3G was high-speed packet access (HSPA/HSPA+). 3G used MIMO for multiplying the power of the wireless network, and it also used packet switching for fast data transmission.

Fourth Generation (4G): It is purely mobile broadband standard. In digital mobile communication, it was observed information rate that upgraded from 20 to 60 Mbps in 4G [ 4 ]. It works on LTE and WiMAX technologies, as well as provides wider bandwidth up to 100 Mhz. It was launched in 2010.

Fourth Generation LTE-A (4.5G): It is an advanced version of standard 4G LTE. LTE-A uses MIMO technology to combine multiple antennas for both transmitters as well as a receiver. Using MIMO, multiple signals and multiple antennas can work simultaneously, making LTE-A three times faster than standard 4G. LTE-A offered an improved system limit, decreased deferral in the application server, access triple traffic (Data, Voice, and Video) wirelessly at any time anywhere in the world.LTE-A delivers speeds of over 42 Mbps and up to 90 Mbps.

Fifth Generation (5G): 5G is a pillar of digital transformation; it is a real improvement on all the previous mobile generation networks. 5G brings three different services for end user like Extreme mobile broadband (eMBB). It offers high-speed internet connectivity, greater bandwidth, moderate latency, UltraHD streaming videos, virtual reality and augmented reality (AR/VR) media, and many more. Massive machine type communication (eMTC), it provides long-range and broadband machine-type communication at a very cost-effective price with less power consumption. eMTC brings a high data rate service, low power, extended coverage via less device complexity through mobile carriers for IoT applications. Ultra-reliable low latency communication (URLLC) offers low-latency and ultra-high reliability, rich quality of service (QoS), which is not possible with traditional mobile network architecture. URLLC is designed for on-demand real-time interaction such as remote surgery, vehicle to vehicle (V2V) communication, industry 4.0, smart grids, intelligent transport system, etc. 5G faster than 4G and offers remote-controlled operation over a reliable network with zero delays. It provides down-link maximum throughput of up to 20 Gbps. In addition, 5G also supports 4G WWWW (4th Generation World Wide Wireless Web) [ 5 ] and is based on Internet protocol version 6 (IPv6) protocol. 5G provides unlimited internet connection at your convenience, anytime, anywhere with extremely high speed, high throughput, low-latency, higher reliability and scalability, and energy-efficient mobile communication technology [ 6 ]. 5G mainly divided in two parts 6 GHz 5G and Millimeter wave(mmWave) 5G.

6 GHz is a mid frequency band which works as a mid point between capacity and coverage to offer perfect environment for 5G connectivity. 6 GHz spectrum will provide high bandwidth with improved network performance. It offers continuous channels that will reduce the need for network densification when mid-band spectrum is not available and it makes 5G connectivity affordable at anytime, anywhere for everyone.

mmWave is an essential technology of 5G network which build high performance network. 5G mmWave offer diverse services that is why all network providers should add on this technology in their 5G deployment planning. There are lots of service providers who deployed 5G mmWave, and their simulation result shows that 5G mmwave is a far less used spectrum. It provides very high speed wireless communication and it also offers ultra-wide bandwidth for next generation mobile network.

The evolution of wireless mobile technologies are presented in Table 1 . The abbreviations used in this paper are mentioned in Table 2 .

Summary of Mobile Technology.

GenerationsAccess TechniquesTransmission TechniquesError Correction MechanismData RateFrequency BandBandwidthApplicationDescription
1GFDMA, AMPSCircuit SwitchingNA2.4 kbps800 MHzAnalogVoiceLet us talk to each other
2GGSM, TDMA, CDMACircuit SwitchingNA10 kbps800 MHz, 900 MHz, 1800 MHz, 1900 MHz25 MHzVoice and DataLet us send messages and travel with improved data services
3GWCDMA, UMTS, CDMA 2000, HSUPA/HSDPACircuit and Packet SwitchingTurbo Codes384 kbps to 5 Mbps800 MHz, 850 MHz, 900 MHz, 1800 MHz, 1900 MHz, 2100 MHz25 MHzVoice, Data, and Video CallingLet us experience surfing internet and unleashing mobile applications
4GLTEA, OFDMA, SCFDMA, WIMAXPacket switchingTurbo Codes100 Mbps to 200 Mbps2.3 GHz, 2.5 GHz and 3.5 GHz initially100 MHzVoice, Data, Video Calling, HD Television, and Online Gaming.Let’s share voice and data over fast broadband internet based on unified networks architectures and IP protocols
5GBDMA, NOMA, FBMCPacket SwitchingLDPC10 Gbps to 50 Gbps1.8 GHz, 2.6 GHz and 30–300 GHz30–300 GHzVoice, Data, Video Calling, Ultra HD video, Virtual Reality applicationsExpanded the broadband wireless services beyond mobile internet with IOT and V2X.

Table of Notations and Abbreviations.

AbbreviationFull FormAbbreviationFull Form
AMFAccess and Mobility Management FunctionM2MMachine-to-Machine
AT&TAmerican Telephone and TelegraphmmWavemillimeter wave
BSBase StationNGMNNext Generation Mobile Networks
CDMACode-Division Multiple AccessNOMANon-Orthogonal Multiple Access
CSIChannel State InformationNFVNetwork Functions Virtualization
D2DDevice to DeviceOFDMOrthogonal Frequency Division Multiplexing
EEEnergy EfficiencyOMAOrthogonal Multiple Access
EMBBEnhanced mobile broadband:QoSQuality of Service
ETSIEuropean Telecommunications Standards InstituteRNNRecurrent Neural Network
eMTCMassive Machine Type CommunicationSDNSoftware-Defined Networking
FDMAFrequency Division Multiple AccessSCSuperposition Coding
FDDFrequency Division DuplexSICSuccessive Interference Cancellation
GSMGlobal System for MobileTDMATime Division Multiple Access
HSPAHigh Speed Packet AccessTDDTime Division Duplex
IoTInternet of ThingsUEUser Equipment
IETFInternet Engineering Task ForceURLLCUltra Reliable Low Latency Communication
LTELong-Term EvolutionUMTCUniversal Mobile Telecommunications System
MLMachine LearningV2VVehicle to Vehicle
MIMOMultiple Input Multiple OutputV2XVehicle to Everything

1.2. Key Contributions

The objective of this survey is to provide a detailed guide of 5G key technologies, methods to researchers, and to help with understanding how the recent works addressed 5G problems and developed solutions to tackle the 5G challenges; i.e., what are new methods that must be applied and how can they solve problems? Highlights of the research article are as follows.

  • This survey focused on the recent trends and development in the era of 5G and novel contributions by the researcher community and discussed technical details on essential aspects of the 5G advancement.
  • In this paper, the evolution of the mobile network from 1G to 5G is presented. In addition, the growth of mobile communication under different attributes is also discussed.
  • This paper covers the emerging applications and research groups working on 5G & different research areas in 5G wireless communication network with a descriptive taxonomy.
  • This survey discusses the current vision of the 5G networks, advantages, applications, key technologies, and key features. Furthermore, machine learning prospects are also explored with the emerging requirements in the 5G era. The article also focused on technical aspects of 5G IoT Based approaches and optimization techniques for 5G.
  • we provide an extensive overview and recent advancement of emerging technologies of 5G mobile network, namely, MIMO, Non-Orthogonal Multiple Access (NOMA), mmWave, Internet of Things (IoT), Machine Learning (ML), and optimization. Also, a technical summary is discussed by highlighting the context of current approaches and corresponding challenges.
  • Security challenges and considerations while developing 5G technology are discussed.
  • Finally, the paper concludes with the future directives.

The existing survey focused on architecture, key concepts, and implementation challenges and issues. In contrast, this survey covers the state-of-the-art techniques as well as corresponding recent novel developments by researchers. Various recent significant papers are discussed with the key technologies accelerating the development and production of 5G products.

2. Existing Surveys and Their Applicability

In this paper, a detailed survey on various technologies of 5G networks is presented. Various researchers have worked on different technologies of 5G networks. In this section, Table 3 gives a tabular representation of existing surveys of 5G networks. Massive MIMO, NOMA, small cell, mmWave, beamforming, and MEC are the six main pillars that helped to implement 5G networks in real life.

A comparative overview of existing surveys on different technologies of 5G networks.

Authors& ReferencesMIMONOMAMmWave5G IOT5G MLSmall CellBeamformingMEC5G Optimization
Chataut and Akl [ ]Yes-Yes---Yes--
Prasad et al. [ ]Yes-Yes------
Kiani and Nsari [ ]-Yes-----Yes-
Timotheou and Krikidis [ ]-Yes------Yes
Yong Niu et al. [ ]--Yes--Yes---
Qiao et al. [ ]--Yes-----Yes
Ramesh et al. [ ]Yes-Yes------
Khurpade et al. [ ]YesYes-Yes-----
Bega et al. [ ]----Yes---Yes
Abrol and jha [ ]-----Yes--Yes
Wei et al. [ ]-Yes ------
Jakob Hoydis et al. [ ]-----Yes---
Papadopoulos et al. [ ]Yes-----Yes--
Shweta Rajoria et al. [ ]Yes-Yes--YesYes--
Demosthenes Vouyioukas [ ]Yes-----Yes--
Al-Imari et al. [ ]-YesYes------
Michael Till Beck et al. [ ]------ Yes-
Shuo Wang et al. [ ]------ Yes-
Gupta and Jha [ ]Yes----Yes-Yes-
Our SurveyYesYesYesYesYesYesYesYesYes

2.1. Limitations of Existing Surveys

The existing survey focused on architecture, key concepts, and implementation challenges and issues. The numerous current surveys focused on various 5G technologies with different parameters, and the authors did not cover all the technologies of the 5G network in detail with challenges and recent advancements. Few authors worked on MIMO (Non-Orthogonal Multiple Access) NOMA, MEC, small cell technologies. In contrast, some others worked on beamforming, Millimeter-wave (mmWave). But the existing survey did not cover all the technologies of the 5G network from a research and advancement perspective. No detailed survey is available in the market covering all the 5G network technologies and currently published research trade-offs. So, our main aim is to give a detailed study of all the technologies working on the 5G network. In contrast, this survey covers the state-of-the-art techniques as well as corresponding recent novel developments by researchers. Various recent significant papers are discussed with the key technologies accelerating the development and production of 5G products. This survey article collected key information about 5G technology and recent advancements, and it can be a kind of a guide for the reader. This survey provides an umbrella approach to bring multiple solutions and recent improvements in a single place to accelerate the 5G research with the latest key enabling solutions and reviews. A systematic layout representation of the survey in Figure 1 . We provide a state-of-the-art comparative overview of the existing surveys on different technologies of 5G networks in Table 3 .

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g001.jpg

Systematic layout representation of survey.

2.2. Article Organization

This article is organized under the following sections. Section 2 presents existing surveys and their applicability. In Section 3 , the preliminaries of 5G technology are presented. In Section 4 , recent advances of 5G technology based on Massive MIMO, NOMA, Millimeter Wave, 5G with IoT, machine learning for 5G, and Optimization in 5G are provided. In Section 5 , a description of novel 5G features over 4G is provided. Section 6 covered all the security concerns of the 5G network. Section 7 , 5G technology based on above-stated challenges summarize in tabular form. Finally, Section 8 and Section 9 conclude the study, which paves the path for future research.

3. Preliminary Section

3.1. emerging 5g paradigms and its features.

5G provides very high speed, low latency, and highly salable connectivity between multiple devices and IoT worldwide. 5G will provide a very flexible model to develop a modern generation of applications and industry goals [ 26 , 27 ]. There are many services offered by 5G network architecture are stated below:

Massive machine to machine communications: 5G offers novel, massive machine-to-machine communications [ 28 ], also known as the IoT [ 29 ], that provide connectivity between lots of machines without any involvement of humans. This service enhances the applications of 5G and provides connectivity between agriculture, construction, and industries [ 30 ].

Ultra-reliable low latency communications (URLLC): This service offers real-time management of machines, high-speed vehicle-to-vehicle connectivity, industrial connectivity and security principles, and highly secure transport system, and multiple autonomous actions. Low latency communications also clear up a different area where remote medical care, procedures, and operation are all achievable [ 31 ].

Enhanced mobile broadband: Enhance mobile broadband is an important use case of 5G system, which uses massive MIMO antenna, mmWave, beamforming techniques to offer very high-speed connectivity across a wide range of areas [ 32 ].

For communities: 5G provides a very flexible internet connection between lots of machines to make smart homes, smart schools, smart laboratories, safer and smart automobiles, and good health care centers [ 33 ].

For businesses and industry: As 5G works on higher spectrum ranges from 24 to 100 GHz. This higher frequency range provides secure low latency communication and high-speed wireless connectivity between IoT devices and industry 4.0, which opens a market for end-users to enhance their business models [ 34 ].

New and Emerging technologies: As 5G came up with many new technologies like beamforming, massive MIMO, mmWave, small cell, NOMA, MEC, and network slicing, it introduced many new features to the market. Like virtual reality (VR), users can experience the physical presence of people who are millions of kilometers away from them. Many new technologies like smart homes, smart workplaces, smart schools, smart sports academy also came into the market with this 5G Mobile network model [ 35 ].

3.2. Commercial Service Providers of 5G

5G provides high-speed internet browsing, streaming, and downloading with very high reliability and low latency. 5G network will change your working style, and it will increase new business opportunities and provide innovations that we cannot imagine. This section covers top service providers of 5G network [ 36 , 37 ].

Ericsson: Ericsson is a Swedish multinational networking and telecommunications company, investing around 25.62 billion USD in 5G network, which makes it the biggest telecommunication company. It claims that it is the only company working on all the continents to make the 5G network a global standard for the next generation wireless communication. Ericsson developed the first 5G radio prototype that enables the operators to set up the live field trials in their network, which helps operators understand how 5G reacts. It plays a vital role in the development of 5G hardware. It currently provides 5G services in over 27 countries with content providers like China Mobile, GCI, LGU+, AT&T, Rogers, and many more. It has 100 commercial agreements with different operators as of 2020.

Verizon: It is American multinational telecommunication which was founded in 1983. Verizon started offering 5G services in April 2020, and by December 2020, it has actively provided 5G services in 30 cities of the USA. They planned that by the end of 2021, they would deploy 5G in 30 more new cities. Verizon deployed a 5G network on mmWave, a very high band spectrum between 30 to 300 GHz. As it is a significantly less used spectrum, it provides very high-speed wireless communication. MmWave offers ultra-wide bandwidth for next-generation mobile networks. MmWave is a faster and high-band spectrum that has a limited range. Verizon planned to increase its number of 5G cells by 500% by 2020. Verizon also has an ultra wide-band flagship 5G service which is the best 5G service that increases the market price of Verizon.

Nokia: Nokia is a Finnish multinational telecommunications company which was founded in 1865. Nokia is one of the companies which adopted 5G technology very early. It is developing, researching, and building partnerships with various 5G renders to offer 5G communication as soon as possible. Nokia collaborated with Deutsche Telekom and Hamburg Port Authority and provided them 8000-hectare site for their 5G MoNArch project. Nokia is the only company that supplies 5G technology to all the operators of different countries like AT&T, Sprint, T-Mobile US and Verizon in the USA, Korea Telecom, LG U+ and SK Telecom in South Korea and NTT DOCOMO, KDDI, and SoftBank in Japan. Presently, Nokia has around 150+ agreements and 29 live networks all over the world. Nokia is continuously working hard on 5G technology to expand 5G networks all over the globe.

AT&T: AT&T is an American multinational company that was the first to deploy a 5G network in reality in 2018. They built a gigabit 5G network connection in Waco, TX, Kalamazoo, MI, and South Bend to achieve this. It is the first company that archives 1–2 gigabit per second speed in 2019. AT&T claims that it provides a 5G network connection among 225 million people worldwide by using a 6 GHz spectrum band.

T-Mobile: T-Mobile US (TMUS) is an American wireless network operator which was the first service provider that offers a real 5G nationwide network. The company knew that high-band 5G was not feasible nationwide, so they used a 600 MHz spectrum to build a significant portion of its 5G network. TMUS is planning that by 2024 they will double the total capacity and triple the full 5G capacity of T-Mobile and Sprint combined. The sprint buyout is helping T-Mobile move forward the company’s current market price to 129.98 USD.

Samsung: Samsung started their research in 5G technology in 2011. In 2013, Samsung successfully developed the world’s first adaptive array transceiver technology operating in the millimeter-wave Ka bands for cellular communications. Samsung provides several hundred times faster data transmission than standard 4G for core 5G mobile communication systems. The company achieved a lot of success in the next generation of technology, and it is considered one of the leading companies in the 5G domain.

Qualcomm: Qualcomm is an American multinational corporation in San Diego, California. It is also one of the leading company which is working on 5G chip. Qualcomm’s first 5G modem chip was announced in October 2016, and a prototype was demonstrated in October 2017. Qualcomm mainly focuses on building products while other companies talk about 5G; Qualcomm is building the technologies. According to one magazine, Qualcomm was working on three main areas of 5G networks. Firstly, radios that would use bandwidth from any network it has access to; secondly, creating more extensive ranges of spectrum by combining smaller pieces; and thirdly, a set of services for internet applications.

ZTE Corporation: ZTE Corporation was founded in 1985. It is a partially Chinese state-owned technology company that works in telecommunication. It was a leading company that worked on 4G LTE, and it is still maintaining its value and doing research and tests on 5G. It is the first company that proposed Pre5G technology with some series of solutions.

NEC Corporation: NEC Corporation is a Japanese multinational information technology and electronics corporation headquartered in Minato, Tokyo. ZTE also started their research on 5G, and they introduced a new business concept. NEC’s main aim is to develop 5G NR for the global mobile system and create secure and intelligent technologies to realize 5G services.

Cisco: Cisco is a USA networking hardware company that also sleeves up for 5G network. Cisco’s primary focus is to support 5G in three ways: Service—enable 5G services faster so all service providers can increase their business. Infrastructure—build 5G-oriented infrastructure to implement 5G more quickly. Automation—make a more scalable, flexible, and reliable 5G network. The companies know the importance of 5G, and they want to connect more than 30 billion devices in the next couple of years. Cisco intends to work on network hardening as it is a vital part of 5G network. Cisco used AI with deep learning to develop a 5G Security Architecture, enabling Secure Network Transformation.

3.3. 5G Research Groups

Many research groups from all over the world are working on a 5G wireless mobile network [ 38 ]. These groups are continuously working on various aspects of 5G. The list of those research groups are presented as follows: 5GNOW (5th Generation Non-Orthogonal Waveform for Asynchronous Signaling), NEWCOM (Network of Excellence in Wireless Communication), 5GIC (5G Innovation Center), NYU (New York University) Wireless, 5GPPP (5G Infrastructure Public-Private Partnership), EMPHATIC (Enhanced Multi-carrier Technology for Professional Adhoc and Cell-Based Communication), ETRI(Electronics and Telecommunication Research Institute), METIS (Mobile and wireless communication Enablers for the Twenty-twenty Information Society) [ 39 ]. The various research groups along with the research area are presented in Table 4 .

Research groups working on 5G mobile networks.

Research GroupsResearch AreaDescription
METIS (Mobile and wireless communications Enablers for Twenty-twenty (2020) Information Society)Working 5G FrameworkMETIS focused on RAN architecture and designed an air interface which evaluates data rates on peak hours, traffic load per region, traffic volume per user and actual client data rates. They have generate METIS published an article on February, 2015 in which they developed RAN architecture with simulation results. They design an air interface which evaluates data rates on peak hours, traffic load per region, traffic volume per user and actual client data rates.They have generate very less RAN latency under 1ms. They also introduced diverse RAN model and traffic flow in different situation like malls, offices, colleges and stadiums.
5G PPP (5G Infrastructure Public Private Partnership)Next generation mobile network communication, high speed Connectivity.Fifth generation infrastructure public partnership project is a joint startup by two groups (European Commission and European ICT industry). 5G-PPP will provide various standards architectures, solutions and technologies for next generation mobile network in coming decade. The main motto behind 5G-PPP is that, through this project, European Commission wants to give their contribution in smart cities, e-health, intelligent transport, education, entertainment, and media.
5GNOW (5th Generation Non-Orthogonal Waveforms for asynchronous signaling)Non-orthogonal Multiple Access5GNOW’s is working on modulation and multiplexing techniques for next generation network. 5GNOW’s offers ultra-high reliability and ultra-low latency communication with visible waveform for 5G. 5GNOW’s also worked on acquiring time and frequency plane information of a signal using short term Fourier transform (STFT)
EMPhAtiC (Enhanced Multicarrier Technology for Professional Ad-Hoc and Cell-Based Communications)MIMO TransmissionEMPhAtiC is working on MIMO transmission to develop a secure communication techniques with asynchronicity based on flexible filter bank and multihop. Recently they also launched MIMO based trans-receiver technique under frequency selective channels for Filter Bank Multi-Carrier (FBMC)
NEWCOM (Network of Excellence in Wireless Communications)Advanced aspects of wireless communicationsNEWCOM is working on energy efficiency, channel efficiency, multihop communication in wireless communication. Recently, they are working on cloud RAN, mobile broadband, local and distributed antenna techniques and multi-hop communication for 5G network. Finally, in their final research they give on result that QAM modulation schema, system bandwidth and resource block is used to process the base band.
NYU New York University WirelessMillimeter WaveNYU Wireless is research center working on wireless communication, sensors, networking and devices. In their recent research, NYU focuses on developing smaller and lighter antennas with directional beamforming to provide reliable wireless communication.
5GIC 5G Innovation CentreDecreasing network costs, Preallocation of resources according to user’s need, point-to-point communication, Highspeed connectivity.5GIC, is a UK’s research group, which is working on high-speed wireless communication. In their recent research they got 1Tbps speed in point-to-point wireless communication. Their main focus is on developing ultra-low latency app services.
ETRI (Electronics and Telecommunication Research Institute)Device-to-device communication, MHN protocol stackETRI (Electronics and Telecommunication Research Institute), is a research group of Korea, which is focusing on improving the reliability of 5G network, device-to-device communication and MHN protocol stack.

3.4. 5G Applications

5G is faster than 4G and offers remote-controlled operation over a reliable network with zero delays. It provides down-link maximum throughput of up to 20 Gbps. In addition, 5G also supports 4G WWWW (4th Generation World Wide Wireless Web) [ 5 ] and is based on Internet protocol version 6 (IPv6) protocol. 5G provides unlimited internet connection at your convenience, anytime, anywhere with extremely high speed, high throughput, low-latency, higher reliability, greater scalablility, and energy-efficient mobile communication technology [ 6 ].

There are lots of applications of 5G mobile network are as follows:

  • High-speed mobile network: 5G is an advancement on all the previous mobile network technologies, which offers very high speed downloading speeds 0 of up to 10 to 20 Gbps. The 5G wireless network works as a fiber optic internet connection. 5G is different from all the conventional mobile transmission technologies, and it offers both voice and high-speed data connectivity efficiently. 5G offers very low latency communication of less than a millisecond, useful for autonomous driving and mission-critical applications. 5G will use millimeter waves for data transmission, providing higher bandwidth and a massive data rate than lower LTE bands. As 5 Gis a fast mobile network technology, it will enable virtual access to high processing power and secure and safe access to cloud services and enterprise applications. Small cell is one of the best features of 5G, which brings lots of advantages like high coverage, high-speed data transfer, power saving, easy and fast cloud access, etc. [ 40 ].
  • Entertainment and multimedia: In one analysis in 2015, it was found that more than 50 percent of mobile internet traffic was used for video downloading. This trend will surely increase in the future, which will make video streaming more common. 5G will offer High-speed streaming of 4K videos with crystal clear audio, and it will make a high definition virtual world on your mobile. 5G will benefit the entertainment industry as it offers 120 frames per second with high resolution and higher dynamic range video streaming, and HD TV channels can also be accessed on mobile devices without any interruptions. 5G provides low latency high definition communication so augmented reality (AR), and virtual reality (VR) will be very easily implemented in the future. Virtual reality games are trendy these days, and many companies are investing in HD virtual reality games. The 5G network will offer high-speed internet connectivity with a better gaming experience [ 41 ].
  • Smart homes : smart home appliances and products are in demand these days. The 5G network makes smart homes more real as it offers high-speed connectivity and monitoring of smart appliances. Smart home appliances are easily accessed and configured from remote locations using the 5G network as it offers very high-speed low latency communication.
  • Smart cities: 5G wireless network also helps develop smart cities applications such as automatic traffic management, weather update, local area broadcasting, energy-saving, efficient power supply, smart lighting system, water resource management, crowd management, emergency control, etc.
  • Industrial IoT: 5G wireless technology will provide lots of features for future industries such as safety, process tracking, smart packing, shipping, energy efficiency, automation of equipment, predictive maintenance, and logistics. 5G smart sensor technology also offers smarter, safer, cost-effective, and energy-saving industrial IoT operations.
  • Smart Farming: 5G technology will play a crucial role in agriculture and smart farming. 5G sensors and GPS technology will help farmers track live attacks on crops and manage them quickly. These smart sensors can also be used for irrigation, pest, insect, and electricity control.
  • Autonomous Driving: The 5G wireless network offers very low latency high-speed communication, significant for autonomous driving. It means self-driving cars will come to real life soon with 5G wireless networks. Using 5G autonomous cars can easily communicate with smart traffic signs, objects, and other vehicles running on the road. 5G’s low latency feature makes self-driving more real as every millisecond is essential for autonomous vehicles, decision-making is done in microseconds to avoid accidents.
  • Healthcare and mission-critical applications: 5G technology will bring modernization in medicine where doctors and practitioners can perform advanced medical procedures. The 5G network will provide connectivity between all classrooms, so attending seminars and lectures will be easier. Through 5G technology, patients can connect with doctors and take their advice. Scientists are building smart medical devices which can help people with chronic medical conditions. The 5G network will boost the healthcare industry with smart devices, the internet of medical things, smart sensors, HD medical imaging technologies, and smart analytics systems. 5G will help access cloud storage, so accessing healthcare data will be very easy from any location worldwide. Doctors and medical practitioners can easily store and share large files like MRI reports within seconds using the 5G network.
  • Satellite Internet: In many remote areas, ground base stations are not available, so 5G will play a crucial role in providing connectivity in such areas. The 5G network will provide connectivity using satellite systems, and the satellite system uses a constellation of multiple small satellites to provide connectivity in urban and rural areas across the world.

4. 5G Technologies

This section describes recent advances of 5G Massive MIMO, 5G NOMA, 5G millimeter wave, 5G IOT, 5G with machine learning, and 5G optimization-based approaches. In addition, the summary is also presented in each subsection that paves the researchers for the future research direction.

4.1. 5G Massive MIMO

Multiple-input-multiple-out (MIMO) is a very important technology for wireless systems. It is used for sending and receiving multiple signals simultaneously over the same radio channel. MIMO plays a very big role in WI-FI, 3G, 4G, and 4G LTE-A networks. MIMO is mainly used to achieve high spectral efficiency and energy efficiency but it was not up to the mark MIMO provides low throughput and very low reliable connectivity. To resolve this, lots of MIMO technology like single user MIMO (SU-MIMO), multiuser MIMO (MU-MIMO) and network MIMO were used. However, these new MIMO also did not still fulfill the demand of end users. Massive MIMO is an advancement of MIMO technology used in the 5G network in which hundreds and thousands of antennas are attached with base stations to increase throughput and spectral efficiency. Multiple transmit and receive antennas are used in massive MIMO to increase the transmission rate and spectral efficiency. When multiple UEs generate downlink traffic simultaneously, massive MIMO gains higher capacity. Massive MIMO uses extra antennas to move energy into smaller regions of space to increase spectral efficiency and throughput [ 43 ]. In traditional systems data collection from smart sensors is a complex task as it increases latency, reduced data rate and reduced reliability. While massive MIMO with beamforming and huge multiplexing techniques can sense data from different sensors with low latency, high data rate and higher reliability. Massive MIMO will help in transmitting the data in real-time collected from different sensors to central monitoring locations for smart sensor applications like self-driving cars, healthcare centers, smart grids, smart cities, smart highways, smart homes, and smart enterprises [ 44 ].

Highlights of 5G Massive MIMO technology are as follows:

  • Data rate: Massive MIMO is advised as the one of the dominant technologies to provide wireless high speed and high data rate in the gigabits per seconds.
  • The relationship between wave frequency and antenna size: Both are inversely proportional to each other. It means lower frequency signals need a bigger antenna and vise versa.

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g002.jpg

Pictorial representation of multi-input and multi-output (MIMO).

  • MIMO role in 5G: Massive MIMO will play a crucial role in the deployment of future 5G mobile communication as greater spectral and energy efficiency could be enabled.

State-of-the-Art Approaches

Plenty of approaches were proposed to resolve the issues of conventional MIMO [ 7 ].

The MIMO multirate, feed-forward controller is suggested by Mae et al. [ 46 ]. In the simulation, the proposed model generates the smooth control input, unlike the conventional MIMO, which generates oscillated control inputs. It also outperformed concerning the error rate. However, a combination of multirate and single rate can be used for better results.

The performance of stand-alone MIMO, distributed MIMO with and without corporation MIMO, was investigated by Panzner et al. [ 47 ]. In addition, an idea about the integration of large scale in the 5G technology was also presented. In the experimental analysis, different MIMO configurations are considered. The variation in the ratio of overall transmit antennas to spatial is deemed step-wise from equality to ten.

The simulation of massive MIMO noncooperative and cooperative systems for down-link behavior was performed by He et al. [ 48 ]. It depends on present LTE systems, which deal with various antennas in the base station set-up. It was observed that collaboration in different BS improves the system behaviors, whereas throughput is reduced slightly in this approach. However, a new method can be developed which can enhance both system behavior and throughput.

In [ 8 ], different approaches that increased the energy efficiency benefits provided by massive MIMO were presented. They analyzed the massive MIMO technology and described the detailed design of the energy consumption model for massive MIMO systems. This article has explored several techniques to enhance massive MIMO systems’ energy efficiency (EE) gains. This paper reviews standard EE-maximization approaches for the conventional massive MIMO systems, namely, scaling number of antennas, real-time implementing low-complexity operations at the base station (BS), power amplifier losses minimization, and radio frequency (RF) chain minimization requirements. In addition, open research direction is also identified.

In [ 49 ], various existing approaches based on different antenna selection and scheduling, user selection and scheduling, and joint antenna and user scheduling methods adopted in massive MIMO systems are presented in this paper. The objective of this survey article was to make awareness about the current research and future research direction in MIMO for systems. They analyzed that complete utilization of resources and bandwidth was the most crucial factor which enhances the sum rate.

In [ 50 ], authors discussed the development of various techniques for pilot contamination. To calculate the impact of pilot contamination in time division duplex (TDD) massive MIMO system, TDD and frequency division duplexing FDD patterns in massive MIMO techniques are used. They discussed different issues in pilot contamination in TDD massive MIMO systems with all the possible future directions of research. They also classified various techniques to generate the channel information for both pilot-based and subspace-based approaches.

In [ 19 ], the authors defined the uplink and downlink services for a massive MIMO system. In addition, it maintains a performance matrix that measures the impact of pilot contamination on different performances. They also examined the various application of massive MIMO such as small cells, orthogonal frequency-division multiplexing (OFDM) schemes, massive MIMO IEEE 802, 3rd generation partnership project (3GPP) specifications, and higher frequency bands. They considered their research work crucial for cutting edge massive MIMO and covered many issues like system throughput performance and channel state acquisition at higher frequencies.

In [ 13 ], various approaches were suggested for MIMO future generation wireless communication. They made a comparative study based on performance indicators such as peak data rate, energy efficiency, latency, throughput, etc. The key findings of this survey are as follows: (1) spatial multiplexing improves the energy efficiency; (2) design of MIMO play a vital role in the enhancement of throughput; (3) enhancement of mMIMO focusing on energy & spectral performance; (4) discussed the future challenges to improve the system design.

In [ 51 ], the study of large-scale MIMO systems for an energy-efficient system sharing method was presented. For the resource allocation, circuit energy and transmit energy expenditures were taken into consideration. In addition, the optimization techniques were applied for an energy-efficient resource sharing system to enlarge the energy efficiency for individual QoS and energy constraints. The author also examined the BS configuration, which includes homogeneous and heterogeneous UEs. While simulating, they discussed that the total number of transmit antennas plays a vital role in boosting energy efficiency. They highlighted that the highest energy efficiency was obtained when the BS was set up with 100 antennas that serve 20 UEs.

This section includes various works done on 5G MIMO technology by different author’s. Table 5 shows how different author’s worked on improvement of various parameters such as throughput, latency, energy efficiency, and spectral efficiency with 5G MIMO technology.

Summary of massive MIMO-based approaches in 5G technology.

ApproachThroughputLatencyEnergy EfficiencySpectral Efficiency
Panzner et al. [ ]GoodLowGoodAverage
He et al. [ ]AverageLowAverage-
Prasad et al. [ ]Good-GoodAvearge
Papadopoulos et al. [ ]GoodLowAverageAvearge
Ramesh et al. [ ]GoodAverageGoodGood
Zhou et al. [ ]Average-GoodAverage

4.2. 5G Non-Orthogonal Multiple Access (NOMA)

NOMA is a very important radio access technology used in next generation wireless communication. Compared to previous orthogonal multiple access techniques, NOMA offers lots of benefits like high spectrum efficiency, low latency with high reliability and high speed massive connectivity. NOMA mainly works on a baseline to serve multiple users with the same resources in terms of time, space and frequency. NOMA is mainly divided into two main categories one is code domain NOMA and another is power domain NOMA. Code-domain NOMA can improve the spectral efficiency of mMIMO, which improves the connectivity in 5G wireless communication. Code-domain NOMA was divided into some more multiple access techniques like sparse code multiple access, lattice-partition multiple access, multi-user shared access and pattern-division multiple access [ 52 ]. Power-domain NOMA is widely used in 5G wireless networks as it performs well with various wireless communication techniques such as MIMO, beamforming, space-time coding, network coding, full-duplex and cooperative communication etc. [ 53 ]. The conventional orthogonal frequency-division multiple access (OFDMA) used by 3GPP in 4G LTE network provides very low spectral efficiency when bandwidth resources are allocated to users with low channel state information (CSI). NOMA resolved this issue as it enables users to access all the subcarrier channels so bandwidth resources allocated to the users with low CSI can still be accessed by the users with strong CSI which increases the spectral efficiency. The 5G network will support heterogeneous architecture in which small cell and macro base stations work for spectrum sharing. NOMA is a key technology of the 5G wireless system which is very helpful for heterogeneous networks as multiple users can share their data in a small cell using the NOMA principle.The NOMA is helpful in various applications like ultra-dense networks (UDN), machine to machine (M2M) communication and massive machine type communication (mMTC). As NOMA provides lots of features it has some challenges too such as NOMA needs huge computational power for a large number of users at high data rates to run the SIC algorithms. Second, when users are moving from the networks, to manage power allocation optimization is a challenging task for NOMA [ 54 ]. Hybrid NOMA (HNOMA) is a combination of power-domain and code-domain NOMA. HNOMA uses both power differences and orthogonal resources for transmission among multiple users. As HNOMA is using both power-domain NOMA and code-domain NOMA it can achieve higher spectral efficiency than Power-domain NOMA and code-domain NOMA. In HNOMA multiple groups can simultaneously transmit signals at the same time. It uses a message passing algorithm (MPA) and successive interference cancellation (SIC)-based detection at the base station for these groups [ 55 ].

Highlights of 5G NOMA technology as follows:

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g003.jpg

Pictorial representation of orthogonal and Non-Orthogonal Multiple Access (NOMA).

  • NOMA provides higher data rates and resolves all the loop holes of OMA that makes 5G mobile network more scalable and reliable.
  • As multiple users use same frequency band simultaneously it increases the performance of whole network.
  • To setup intracell and intercell interference NOMA provides nonorthogonal transmission on the transmitter end.
  • The primary fundamental of NOMA is to improve the spectrum efficiency by strengthening the ramification of receiver.

State-of-the-Art of Approaches

A plenty of approaches were developed to address the various issues in NOMA.

A novel approach to address the multiple receiving signals at the same frequency is proposed in [ 22 ]. In NOMA, multiple users use the same sub-carrier, which improves the fairness and throughput of the system. As a nonorthogonal method is used among multiple users, at the time of retrieving the user’s signal at the receiver’s end, joint processing is required. They proposed solutions to optimize the receiver and the radio resource allocation of uplink NOMA. Firstly, the authors proposed an iterative MUDD which utilizes the information produced by the channel decoder to improve the performance of the multiuser detector. After that, the author suggested a power allocation and novel subcarrier that enhances the users’ weighted sum rate for the NOMA scheme. Their proposed model showed that NOMA performed well as compared to OFDM in terms of fairness and efficiency.

In [ 53 ], the author’s reviewed a power-domain NOMA that uses superposition coding (SC) and successive interference cancellation (SIC) at the transmitter and the receiver end. Lots of analyses were held that described that NOMA effectively satisfies user data rate demands and network-level of 5G technologies. The paper presented a complete review of recent advances in the 5G NOMA system. It showed the comparative analysis regarding allocation procedures, user fairness, state-of-the-art efficiency evaluation, user pairing pattern, etc. The study also analyzes NOMA’s behavior when working with other wireless communication techniques, namely, beamforming, MIMO, cooperative connections, network, space-time coding, etc.

In [ 9 ], the authors proposed NOMA with MEC, which improves the QoS as well as reduces the latency of the 5G wireless network. This model increases the uplink NOMA by decreasing the user’s uplink energy consumption. They formulated an optimized NOMA framework that reduces the energy consumption of MEC by using computing and communication resource allocation, user clustering, and transmit powers.

In [ 10 ], the authors proposed a model which investigates outage probability under average channel state information CSI and data rate in full CSI to resolve the problem of optimal power allocation, which increase the NOMA downlink system among users. They developed simple low-complexity algorithms to provide the optimal solution. The obtained simulation results showed NOMA’s efficiency, achieving higher performance fairness compared to the TDMA configurations. It was observed from the results that NOMA, through the appropriate power amplifiers (PA), ensures the high-performance fairness requirement for the future 5G wireless communication networks.

In [ 56 ], researchers discussed that the NOMA technology and waveform modulation techniques had been used in the 5G mobile network. Therefore, this research gave a detailed survey of non-orthogonal waveform modulation techniques and NOMA schemes for next-generation mobile networks. By analyzing and comparing multiple access technologies, they considered the future evolution of these technologies for 5G mobile communication.

In [ 57 ], the authors surveyed non-orthogonal multiple access (NOMA) from the development phase to the recent developments. They have also compared NOMA techniques with traditional OMA techniques concerning information theory. The author discussed the NOMA schemes categorically as power and code domain, including the design principles, operating principles, and features. Comparison is based upon the system’s performance, spectral efficiency, and the receiver’s complexity. Also discussed are the future challenges, open issues, and their expectations of NOMA and how it will support the key requirements of 5G mobile communication systems with massive connectivity and low latency.

In [ 17 ], authors present the first review of an elementary NOMA model with two users, which clarify its central precepts. After that, a general design with multicarrier supports with a random number of users on each sub-carrier is analyzed. In performance evaluation with the existing approaches, resource sharing and multiple-input multiple-output NOMA are examined. Furthermore, they took the key elements of NOMA and its potential research demands. Finally, they reviewed the two-user SC-NOMA design and a multi-user MC-NOMA design to highlight NOMA’s basic approaches and conventions. They also present the research study about the performance examination, resource assignment, and MIMO in NOMA.

In this section, various works by different authors done on 5G NOMA technology is covered. Table 6 shows how other authors worked on the improvement of various parameters such as spectral efficiency, fairness, and computing capacity with 5G NOMA technology.

Summary of NOMA-based approaches in 5G technology.

ApproachSpectral EfficiencyFairnessComputing Capacity
Al-Imari et al. [ ]GoodGoodAverage
Islam et al. [ ]GoodAverageAverage
Kiani and Nsari [ ]AverageGoodGood
Timotheou and Krikidis [ ]GoodGoodAverage
Wei et al. [ ]GoodAverageGood

4.3. 5G Millimeter Wave (mmWave)

Millimeter wave is an extremely high frequency band, which is very useful for 5G wireless networks. MmWave uses 30 GHz to 300 GHz spectrum band for transmission. The frequency band between 30 GHz to 300 GHz is known as mmWave because these waves have wavelengths between 1 to 10 mm. Till now radar systems and satellites are only using mmWave as these are very fast frequency bands which provide very high speed wireless communication. Many mobile network providers also started mmWave for transmitting data between base stations. Using two ways the speed of data transmission can be improved one is by increasing spectrum utilization and second is by increasing spectrum bandwidth. Out of these two approaches increasing bandwidth is quite easy and better. The frequency band below 5 GHz is very crowded as many technologies are using it so to boost up the data transmission rate 5G wireless network uses mmWave technology which instead of increasing spectrum utilization, increases the spectrum bandwidth [ 58 ]. To maximize the signal bandwidth in wireless communication the carrier frequency should also be increased by 5% because the signal bandwidth is directly proportional to carrier frequencies. The frequency band between 28 GHz to 60 GHz is very useful for 5G wireless communication as 28 GHz frequency band offers up to 1 GHz spectrum bandwidth and 60 GHz frequency band offers 2 GHz spectrum bandwidth. 4G LTE provides 2 GHz carrier frequency which offers only 100 MHz spectrum bandwidth. However, the use of mmWave increases the spectrum bandwidth 10 times, which leads to better transmission speeds [ 59 , 60 ].

Highlights of 5G mmWave are as follows:

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g004.jpg

Pictorial representation of millimeter wave.

  • The 5G mmWave offer three advantages: (1) MmWave is very less used new Band, (2) MmWave signals carry more data than lower frequency wave, and (3) MmWave can be incorporated with MIMO antenna with the potential to offer a higher magnitude capacity compared to current communication systems.

In [ 11 ], the authors presented the survey of mmWave communications for 5G. The advantage of mmWave communications is adaptability, i.e., it supports the architectures and protocols up-gradation, which consists of integrated circuits, systems, etc. The authors over-viewed the present solutions and examined them concerning effectiveness, performance, and complexity. They also discussed the open research issues of mmWave communications in 5G concerning the software-defined network (SDN) architecture, network state information, efficient regulation techniques, and the heterogeneous system.

In [ 61 ], the authors present the recent work done by investigators in 5G; they discussed the design issues and demands of mmWave 5G antennas for cellular handsets. After that, they designed a small size and low-profile 60 GHz array of antenna units that contain 3D planer mesh-grid antenna elements. For the future prospect, a framework is designed in which antenna components are used to operate cellular handsets on mmWave 5G smartphones. In addition, they cross-checked the mesh-grid array of antennas with the polarized beam for upcoming hardware challenges.

In [ 12 ], the authors considered the suitability of the mmWave band for 5G cellular systems. They suggested a resource allocation system for concurrent D2D communications in mmWave 5G cellular systems, and it improves network efficiency and maintains network connectivity. This research article can serve as guidance for simulating D2D communications in mmWave 5G cellular systems. Massive mmWave BS may be set up to obtain a high delivery rate and aggregate efficiency. Therefore, many wireless users can hand off frequently between the mmWave base terminals, and it emerges the demand to search the neighbor having better network connectivity.

In [ 62 ], the authors provided a brief description of the cellular spectrum which ranges from 1 GHz to 3 GHz and is very crowed. In addition, they presented various noteworthy factors to set up mmWave communications in 5G, namely, channel characteristics regarding mmWave signal attenuation due to free space propagation, atmospheric gaseous, and rain. In addition, hybrid beamforming architecture in the mmWave technique is analyzed. They also suggested methods for the blockage effect in mmWave communications due to penetration damage. Finally, the authors have studied designing the mmWave transmission with small beams in nonorthogonal device-to-device communication.

This section covered various works done on 5G mmWave technology. The Table 7 shows how different author’s worked on the improvement of various parameters i.e., transmission rate, coverage, and cost, with 5G mmWave technology.

Summary of existing mmWave-based approaches in 5G technology.

ApproachTransmission RateCoverageCost
Hong et al. [ ]AverageAverageLow
Qiao et al. [ ]AverageGoodAverage
Wei et al. [ ]GoodAverageLow

4.4. 5G IoT Based Approaches

The 5G mobile network plays a big role in developing the Internet of Things (IoT). IoT will connect lots of things with the internet like appliances, sensors, devices, objects, and applications. These applications will collect lots of data from different devices and sensors. 5G will provide very high speed internet connectivity for data collection, transmission, control, and processing. 5G is a flexible network with unused spectrum availability and it offers very low cost deployment that is why it is the most efficient technology for IoT [ 63 ]. In many areas, 5G provides benefits to IoT, and below are some examples:

Smart homes: smart home appliances and products are in demand these days. The 5G network makes smart homes more real as it offers high speed connectivity and monitoring of smart appliances. Smart home appliances are easily accessed and configured from remote locations using the 5G network, as it offers very high speed low latency communication.

Smart cities: 5G wireless network also helps in developing smart cities applications such as automatic traffic management, weather update, local area broadcasting, energy saving, efficient power supply, smart lighting system, water resource management, crowd management, emergency control, etc.

Industrial IoT: 5G wireless technology will provide lots of features for future industries such as safety, process tracking, smart packing, shipping, energy efficiency, automation of equipment, predictive maintenance and logistics. 5G smart sensor technology also offers smarter, safer, cost effective, and energy-saving industrial operation for industrial IoT.

Smart Farming: 5G technology will play a crucial role for agriculture and smart farming. 5G sensors and GPS technology will help farmers to track live attacks on crops and manage them quickly. These smart sensors can also be used for irrigation control, pest control, insect control, and electricity control.

Autonomous Driving: 5G wireless network offers very low latency high speed communication which is very significant for autonomous driving. It means self-driving cars will come to real life soon with 5G wireless networks. Using 5G autonomous cars can easily communicate with smart traffic signs, objects and other vehicles running on the road. 5G’s low latency feature makes self-driving more real as every millisecond is important for autonomous vehicles, decision taking is performed in microseconds to avoid accidents [ 64 ].

Highlights of 5G IoT are as follows:

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g005.jpg

Pictorial representation of IoT with 5G.

  • 5G with IoT is a new feature of next-generation mobile communication, which provides a high-speed internet connection between moderated devices. 5G IoT also offers smart homes, smart devices, sensors, smart transportation systems, smart industries, etc., for end-users to make them smarter.
  • IoT deals with moderate devices which connect through the internet. The approach of the IoT has made the consideration of the research associated with the outcome of providing wearable, smart-phones, sensors, smart transportation systems, smart devices, washing machines, tablets, etc., and these diverse systems are associated to a common interface with the intelligence to connect.
  • Significant IoT applications include private healthcare systems, traffic management, industrial management, and tactile internet, etc.

Plenty of approaches is devised to address the issues of IoT [ 14 , 65 , 66 ].

In [ 65 ], the paper focuses on 5G mobile systems due to the emerging trends and developing technologies, which results in the exponential traffic growth in IoT. The author surveyed the challenges and demands during deployment of the massive IoT applications with the main focus on mobile networking. The author reviewed the features of standard IoT infrastructure, along with the cellular-based, low-power wide-area technologies (LPWA) such as eMTC, extended coverage (EC)-GSM-IoT, as well as noncellular, low-power wide-area (LPWA) technologies such as SigFox, LoRa etc.

In [ 14 ], the authors presented how 5G technology copes with the various issues of IoT today. It provides a brief review of existing and forming 5G architectures. The survey indicates the role of 5G in the foundation of the IoT ecosystem. IoT and 5G can easily combine with improved wireless technologies to set up the same ecosystem that can fulfill the current requirement for IoT devices. 5G can alter nature and will help to expand the development of IoT devices. As the process of 5G unfolds, global associations will find essentials for setting up a cross-industry engagement in determining and enlarging the 5G system.

In [ 66 ], the author introduced an IoT authentication scheme in a 5G network, with more excellent reliability and dynamic. The scheme proposed a privacy-protected procedure for selecting slices; it provided an additional fog node for proper data transmission and service types of the subscribers, along with service-oriented authentication and key understanding to maintain the secrecy, precision of users, and confidentiality of service factors. Users anonymously identify the IoT servers and develop a vital channel for service accessibility and data cached on local fog nodes and remote IoT servers. The author performed a simulation to manifest the security and privacy preservation of the user over the network.

This section covered various works done on 5G IoT by multiple authors. Table 8 shows how different author’s worked on the improvement of numerous parameters, i.e., data rate, security requirement, and performance with 5G IoT.

Summary of IoT-based approaches in 5G technology.

ApproachData RateSecurity RequirementPerformance
Akpakwu et al. [ ]GoodAverageGood
Khurpade et al. [ ]Average-Average
Ni et al. [ ]GoodAverageAverage

4.5. Machine Learning Techniques for 5G

Various machine learning (ML) techniques were applied in 5G networks and mobile communication. It provides a solution to multiple complex problems, which requires a lot of hand-tuning. ML techniques can be broadly classified as supervised, unsupervised, and reinforcement learning. Let’s discuss each learning technique separately and where it impacts the 5G network.

Supervised Learning, where user works with labeled data; some 5G network problems can be further categorized as classification and regression problems. Some regression problems such as scheduling nodes in 5G and energy availability can be predicted using Linear Regression (LR) algorithm. To accurately predict the bandwidth and frequency allocation Statistical Logistic Regression (SLR) is applied. Some supervised classifiers are applied to predict the network demand and allocate network resources based on the connectivity performance; it signifies the topology setup and bit rates. Support Vector Machine (SVM) and NN-based approximation algorithms are used for channel learning based on observable channel state information. Deep Neural Network (DNN) is also employed to extract solutions for predicting beamforming vectors at the BS’s by taking mapping functions and uplink pilot signals into considerations.

In unsupervised Learning, where the user works with unlabeled data, various clustering techniques are applied to enhance network performance and connectivity without interruptions. K-means clustering reduces the data travel by storing data centers content into clusters. It optimizes the handover estimation based on mobility pattern and selection of relay nodes in the V2V network. Hierarchical clustering reduces network failure by detecting the intrusion in the mobile wireless network; unsupervised soft clustering helps in reducing latency by clustering fog nodes. The nonparametric Bayesian unsupervised learning technique reduces traffic in the network by actively serving the user’s requests and demands. Other unsupervised learning techniques such as Adversarial Auto Encoders (AAE) and Affinity Propagation Clustering techniques detect irregular behavior in the wireless spectrum and manage resources for ultradense small cells, respectively.

In case of an uncertain environment in the 5G wireless network, reinforcement learning (RL) techniques are employed to solve some problems. Actor-critic reinforcement learning is used for user scheduling and resource allocation in the network. Markov decision process (MDP) and Partially Observable MDP (POMDP) is used for Quality of Experience (QoE)-based handover decision-making for Hetnets. Controls packet call admission in HetNets and channel access process for secondary users in a Cognitive Radio Network (CRN). Deep RL is applied to decide the communication channel and mobility and speeds up the secondary user’s learning rate using an antijamming strategy. Deep RL is employed in various 5G network application parameters such as resource allocation and security [ 67 ]. Table 9 shows the state-of-the-art ML-based solution for 5G network.

The state-of-the-art ML-based solution for 5G network.

Author ReferencesKey ContributionML AppliedNetwork Participants Component5G Network Application Parameter
Alave et al. [ ]Network traffic predictionLSTM and DNN*X
Bega et al. [ ]Network slice admission control algorithmMachine Learning and Deep LearingXXX
Suomalainen et al. [ ]5G SecurityMachine LearningX
Bashir et al. [ ]Resource AllocationMachine LearningX
Balevi et al. [ ]Low Latency communicationUnsupervised clusteringXXX
Tayyaba et al. [ ]Resource ManagementLSTM, CNN, and DNNX
Sim et al. [ ]5G mmWave Vehicular communicationFML (Fast machine Learning)X*X
Li et al. [ ]Intrusion Detection SystemMachine LearningXX
Kafle et al. [ ]5G Network SlicingMachine LearningXX
Chen et al. [ ]Physical-Layer Channel AuthenticationMachine LearningXXXXX
Sevgican et al. [ ]Intelligent Network Data Analytics Function in 5GMachine LearningXXX**
Abidi et al. [ ]Optimal 5G network slicingMachine Learning and Deep LearingXX*

Highlights of machine learning techniques for 5G are as follows:

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g006.jpg

Pictorial representation of machine learning (ML) in 5G.

  • In ML, a model will be defined which fulfills the desired requirements through which desired results are obtained. In the later stage, it examines accuracy from obtained results.
  • ML plays a vital role in 5G network analysis for threat detection, network load prediction, final arrangement, and network formation. Searching for a better balance between power, length of antennas, area, and network thickness crossed with the spontaneous use of services in the universe of individual users and types of devices.

In [ 79 ], author’s firstly describes the demands for the traditional authentication procedures and benefits of intelligent authentication. The intelligent authentication method was established to improve security practice in 5G-and-beyond wireless communication systems. Thereafter, the machine learning paradigms for intelligent authentication were organized into parametric and non-parametric research methods, as well as supervised, unsupervised, and reinforcement learning approaches. As a outcome, machine learning techniques provide a new paradigm into authentication under diverse network conditions and unstable dynamics. In addition, prompt intelligence to the security management to obtain cost-effective, better reliable, model-free, continuous, and situation-aware authentication.

In [ 68 ], the authors proposed a machine learning-based model to predict the traffic load at a particular location. They used a mobile network traffic dataset to train a model that can calculate the total number of user requests at a time. To launch access and mobility management function (AMF) instances according to the requirement as there were no predictions of user request the performance automatically degrade as AMF does not handle these requests at a time. Earlier threshold-based techniques were used to predict the traffic load, but that approach took too much time; therefore, the authors proposed RNN algorithm-based ML to predict the traffic load, which gives efficient results.

In [ 15 ], authors discussed the issue of network slice admission, resource allocation among subscribers, and how to maximize the profit of infrastructure providers. The author proposed a network slice admission control algorithm based on SMDP (decision-making process) that guarantees the subscribers’ best acceptance policies and satisfiability (tenants). They also suggested novel N3AC, a neural network-based algorithm that optimizes performance under various configurations, significantly outperforms practical and straightforward approaches.

This section includes various works done on 5G ML by different authors. Table 10 shows the state-of-the-art work on the improvement of various parameters such as energy efficiency, Quality of Services (QoS), and latency with 5G ML.

The state-of-the-art ML-based approaches in 5G technology.

ApproachEnergy EfficiencyQuality of Services (QoS)Latency
Fang et al. [ ]GoodGoodAverage
Alawe et al. [ ]GoodAverageLow
Bega et al. [ ]-GoodAverage

4.6. Optimization Techniques for 5G

Optimization techniques may be applied to capture NP-Complete or NP-Hard problems in 5G technology. This section briefly describes various research works suggested for 5G technology based on optimization techniques.

In [ 80 ], Massive MIMO technology is used in 5G mobile network to make it more flexible and scalable. The MIMO implementation in 5G needs a significant number of radio frequencies is required in the RF circuit that increases the cost and energy consumption of the 5G network. This paper provides a solution that increases the cost efficiency and energy efficiency with many radio frequency chains for a 5G wireless communication network. They give an optimized energy efficient technique for MIMO antenna and mmWave technologies based 5G mobile communication network. The proposed Energy Efficient Hybrid Precoding (EEHP) algorithm to increase the energy efficiency for the 5G wireless network. This algorithm minimizes the cost of an RF circuit with a large number of RF chains.

In [ 16 ], authors have discussed the growing demand for energy efficiency in the next-generation networks. In the last decade, they have figured out the things in wireless transmissions, which proved a change towards pursuing green communication for the next generation system. The importance of adopting the correct EE metric was also reviewed. Further, they worked through the different approaches that can be applied in the future for increasing the network’s energy and posed a summary of the work that was completed previously to enhance the energy productivity of the network using these capabilities. A system design for EE development using relay selection was also characterized, along with an observation of distinct algorithms applied for EE in relay-based ecosystems.

In [ 81 ], authors presented how AI-based approach is used to the setup of Self Organizing Network (SON) functionalities for radio access network (RAN) design and optimization. They used a machine learning approach to predict the results for 5G SON functionalities. Firstly, the input was taken from various sources; then, prediction and clustering-based machine learning models were applied to produce the results. Multiple AI-based devices were used to extract the knowledge analysis to execute SON functionalities smoothly. Based on results, they tested how self-optimization, self-testing, and self-designing are done for SON. The author also describes how the proposed mechanism classifies in different orders.

In [ 82 ], investigators examined the working of OFDM in various channel environments. They also figured out the changes in frame duration of the 5G TDD frame design. Subcarrier spacing is beneficial to obtain a small frame length with control overhead. They provided various techniques to reduce the growing guard period (GP) and cyclic prefix (CP) like complete utilization of multiple subcarrier spacing, management and data parts of frame at receiver end, various uses of timing advance (TA) or total control of flexible CP size.

This section includes various works that were done on 5G optimization by different authors. Table 11 shows how other authors worked on the improvement of multiple parameters such as energy efficiency, power optimization, and latency with 5G optimization.

Summary of Optimization Based Approaches in 5G Technology.

ApproachEnergy EfficiencyPower OptimizationLatency
Zi et al. [ ]Good-Average
Abrol and jha [ ]GoodGood-
Pérez-Romero et al. [ ]-AverageAverage
Lähetkangas et al. [ ]Average-Low

5. Description of Novel 5G Features over 4G

This section presents descriptions of various novel features of 5G, namely, the concept of small cell, beamforming, and MEC.

5.1. Small Cell

Small cells are low-powered cellular radio access nodes which work in the range of 10 meters to a few kilometers. Small cells play a very important role in implementation of the 5G wireless network. Small cells are low power base stations which cover small areas. Small cells are quite similar with all the previous cells used in various wireless networks. However, these cells have some advantages like they can work with low power and they are also capable of working with high data rates. Small cells help in rollout of 5G network with ultra high speed and low latency communication. Small cells in the 5G network use some new technologies like MIMO, beamforming, and mmWave for high speed data transmission. The design of small cells hardware is very simple so its implementation is quite easier and faster. There are three types of small cell tower available in the market. Femtocells, picocells, and microcells [ 83 ]. As shown in the Table 12 .

Types of Small cells.

Types of Small CellCoverage RadiusIndoor OutdoorTransmit PowerNumber of UsersBackhaul TypeCost
Femtocells30–165 ft
10–50 m
Indoor100 mW
20 dBm
8–16Wired, fiberLow
Picocells330–820 ft
100–250 m
Indoor
Outdoor
250 mW
24 dBm
32–64Wired, fiberLow
Microcells1600–8000 ft
500–250 m
Outdoor2000–500 mW
32–37 dBm
200Wired, fiber, MicrowaveMedium

MmWave is a very high band spectrum between 30 to 300 GHz. As it is a significantly less used spectrum, it provides very high-speed wireless communication. MmWave offers ultra-wide bandwidth for next-generation mobile networks. MmWave has lots of advantages, but it has some disadvantages, too, such as mmWave signals are very high-frequency signals, so they have more collision with obstacles in the air which cause the signals loses energy quickly. Buildings and trees also block MmWave signals, so these signals cover a shorter distance. To resolve these issues, multiple small cell stations are installed to cover the gap between end-user and base station [ 18 ]. Small cell covers a very shorter range, so the installation of a small cell depends on the population of a particular area. Generally, in a populated place, the distance between each small cell varies from 10 to 90 meters. In the survey [ 20 ], various authors implemented small cells with massive MIMO simultaneously. They also reviewed multiple technologies used in 5G like beamforming, small cell, massive MIMO, NOMA, device to device (D2D) communication. Various problems like interference management, spectral efficiency, resource management, energy efficiency, and backhauling are discussed. The author also gave a detailed presentation of all the issues occurring while implementing small cells with various 5G technologies. As shown in the Figure 7 , mmWave has a higher range, so it can be easily blocked by the obstacles as shown in Figure 7 a. This is one of the key concerns of millimeter-wave signal transmission. To solve this issue, the small cell can be placed at a short distance to transmit the signals easily, as shown in Figure 7 b.

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g007.jpg

Pictorial representation of communication with and without small cells.

5.2. Beamforming

Beamforming is a key technology of wireless networks which transmits the signals in a directional manner. 5G beamforming making a strong wireless connection toward a receiving end. In conventional systems when small cells are not using beamforming, moving signals to particular areas is quite difficult. Beamforming counter this issue using beamforming small cells are able to transmit the signals in particular direction towards a device like mobile phone, laptops, autonomous vehicle and IoT devices. Beamforming is improving the efficiency and saves the energy of the 5G network. Beamforming is broadly divided into three categories: Digital beamforming, analog beamforming and hybrid beamforming. Digital beamforming: multiuser MIMO is equal to digital beamforming which is mainly used in LTE Advanced Pro and in 5G NR. In digital beamforming the same frequency or time resources can be used to transmit the data to multiple users at the same time which improves the cell capacity of wireless networks. Analog Beamforming: In mmWave frequency range 5G NR analog beamforming is a very important approach which improves the coverage. In digital beamforming there are chances of high pathloss in mmWave as only one beam per set of antenna is formed. While the analog beamforming saves high pathloss in mmWave. Hybrid beamforming: hybrid beamforming is a combination of both analog beamforming and digital beamforming. In the implementation of MmWave in 5G network hybrid beamforming will be used [ 84 ].

Wireless signals in the 4G network are spreading in large areas, and nature is not Omnidirectional. Thus, energy depletes rapidly, and users who are accessing these signals also face interference problems. The beamforming technique is used in the 5G network to resolve this issue. In beamforming signals are directional. They move like a laser beam from the base station to the user, so signals seem to be traveling in an invisible cable. Beamforming helps achieve a faster data rate; as the signals are directional, it leads to less energy consumption and less interference. In [ 21 ], investigators evolve some techniques which reduce interference and increase system efficiency of the 5G mobile network. In this survey article, the authors covered various challenges faced while designing an optimized beamforming algorithm. Mainly focused on different design parameters such as performance evaluation and power consumption. In addition, they also described various issues related to beamforming like CSI, computation complexity, and antenna correlation. They also covered various research to cover how beamforming helps implement MIMO in next-generation mobile networks [ 85 ]. Figure 8 shows the pictorial representation of communication with and without using beamforming.

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g008.jpg

Pictorial Representation of communication with and without using beamforming.

5.3. Mobile Edge Computing

Mobile Edge Computing (MEC) [ 24 ]: MEC is an extended version of cloud computing that brings cloud resources closer to the end-user. When we talk about computing, the very first thing that comes to our mind is cloud computing. Cloud computing is a very famous technology that offers many services to end-user. Still, cloud computing has many drawbacks. The services available in the cloud are too far from end-users that create latency, and cloud user needs to download the complete application before use, which also increases the burden to the device [ 86 ]. MEC creates an edge between the end-user and cloud server, bringing cloud computing closer to the end-user. Now, all the services, namely, video conferencing, virtual software, etc., are offered by this edge that improves cloud computing performance. Another essential feature of MEC is that the application is split into two parts, which, first one is available at cloud server, and the second is at the user’s device. Therefore, the user need not download the complete application on his device that increases the performance of the end user’s device. Furthermore, MEC provides cloud services at very low latency and less bandwidth. In [ 23 , 87 ], the author’s investigation proved that successful deployment of MEC in 5G network increases the overall performance of 5G architecture. Graphical differentiation between cloud computing and mobile edge computing is presented in Figure 9 .

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g009.jpg

Pictorial representation of cloud computing vs. mobile edge computing.

6. 5G Security

Security is the key feature in the telecommunication network industry, which is necessary at various layers, to handle 5G network security in applications such as IoT, Digital forensics, IDS and many more [ 88 , 89 ]. The authors [ 90 ], discussed the background of 5G and its security concerns, challenges and future directions. The author also introduced the blockchain technology that can be incorporated with the IoT to overcome the challenges in IoT. The paper aims to create a security framework which can be incorporated with the LTE advanced network, and effective in terms of cost, deployment and QoS. In [ 91 ], author surveyed various form of attacks, the security challenges, security solutions with respect to the affected technology such as SDN, Network function virtualization (NFV), Mobile Clouds and MEC, and security standardizations of 5G, i.e., 3GPP, 5GPPP, Internet Engineering Task Force (IETF), Next Generation Mobile Networks (NGMN), European Telecommunications Standards Institute (ETSI). In [ 92 ], author elaborated various technological aspects, security issues and their existing solutions and also mentioned the new emerging technological paradigms for 5G security such as blockchain, quantum cryptography, AI, SDN, CPS, MEC, D2D. The author aims to create new security frameworks for 5G for further use of this technology in development of smart cities, transportation and healthcare. In [ 93 ], author analyzed the threats and dark threat, security aspects concerned with SDN and NFV, also their Commercial & Industrial Security Corporation (CISCO) 5G vision and new security innovations with respect to the new evolving architectures of 5G [ 94 ].

AuthenticationThe identification of the user in any network is made with the help of authentication. The different mobile network generations from 1G to 5G have used multiple techniques for user authentication. 5G utilizes the 5G Authentication and Key Agreement (AKA) authentication method, which shares a cryptographic key between user equipment (UE) and its home network and establishes a mutual authentication process between the both [ 95 ].

Access Control To restrict the accessibility in the network, 5G supports access control mechanisms to provide a secure and safe environment to the users and is controlled by network providers. 5G uses simple public key infrastructure (PKI) certificates for authenticating access in the 5G network. PKI put forward a secure and dynamic environment for the 5G network. The simple PKI technique provides flexibility to the 5G network; it can scale up and scale down as per the user traffic in the network [ 96 , 97 ].

Communication Security 5G deals to provide high data bandwidth, low latency, and better signal coverage. Therefore secure communication is the key concern in the 5G network. UE, mobile operators, core network, and access networks are the main focal point for the attackers in 5G communication. Some of the common attacks in communication at various segments are Botnet, message insertion, micro-cell, distributed denial of service (DDoS), and transport layer security (TLS)/secure sockets layer (SSL) attacks [ 98 , 99 ].

Encryption The confidentiality of the user and the network is done using encryption techniques. As 5G offers multiple services, end-to-end (E2E) encryption is the most suitable technique applied over various segments in the 5G network. Encryption forbids unauthorized access to the network and maintains the data privacy of the user. To encrypt the radio traffic at Packet Data Convergence Protocol (PDCP) layer, three 128-bits keys are applied at the user plane, nonaccess stratum (NAS), and access stratum (AS) [ 100 ].

7. Summary of 5G Technology Based on Above-Stated Challenges

In this section, various issues addressed by investigators in 5G technologies are presented in Table 13 . In addition, different parameters are considered, such as throughput, latency, energy efficiency, data rate, spectral efficiency, fairness & computing capacity, transmission rate, coverage, cost, security requirement, performance, QoS, power optimization, etc., indexed from R1 to R14.

Summary of 5G Technology above stated challenges (R1:Throughput, R2:Latency, R3:Energy Efficiency, R4:Data Rate, R5:Spectral efficiency, R6:Fairness & Computing Capacity, R7:Transmission Rate, R8:Coverage, R9:Cost, R10:Security requirement, R11:Performance, R12:Quality of Services (QoS), R13:Power Optimization).

ApproachR1R2R3R4R5R6R7R8R9R10R11R12R13R14
Panzner et al. [ ]GoodLowGood-Avg---------
Qiao et al. [ ]-------AvgGoodAvg----
He et al. [ ]AvgLowAvg-----------
Abrol and jha [ ]--Good----------Good
Al-Imari et al. [ ]----GoodGoodAvg-------
Papadopoulos et al. [ ]GoodLowAvg-Avg---------
Kiani and Nsari [ ]----AvgGoodGood-------
Beck [ ]-Low-----Avg---Good-Avg
Ni et al. [ ]---Good------AvgAvg--
Elijah [ ]AvgLowAvg-----------
Alawe et al. [ ]-LowGood---------Avg-
Zhou et al. [ ]Avg-Good-Avg---------
Islam et al. [ ]----GoodAvgAvg-------
Bega et al. [ ]-Avg----------Good-
Akpakwu et al. [ ]---Good------AvgGood--
Wei et al. [ ]-------GoodAvgLow----
Khurpade et al. [ ]---Avg-------Avg--
Timotheou and Krikidis [ ]----GoodGoodAvg-------
Wang [ ]AvgLowAvgAvg----------
Akhil Gupta & R. K. Jha [ ]--GoodAvgGood------GoodGood-
Pérez-Romero et al. [ ]--Avg----------Avg
Pi [ ]-------GoodGoodAvg----
Zi et al. [ ]-AvgGood-----------
Chin [ ]--GoodAvg-----Avg-Good--
Mamta Agiwal [ ]-Avg-Good------GoodAvg--
Ramesh et al. [ ]GoodAvgGood-Good---------
Niu [ ]-------GoodAvgAvg---
Fang et al. [ ]-AvgGood---------Good-
Hoydis [ ]--Good-Good----Avg-Good--
Wei et al. [ ]----GoodAvgGood-------
Hong et al. [ ]--------AvgAvgLow---
Rashid [ ]---Good---Good---Avg-Good
Prasad et al. [ ]Good-Good-Avg---------
Lähetkangas et al. [ ]-LowAv-----------

8. Conclusions

This survey article illustrates the emergence of 5G, its evolution from 1G to 5G mobile network, applications, different research groups, their work, and the key features of 5G. It is not just a mobile broadband network, different from all the previous mobile network generations; it offers services like IoT, V2X, and Industry 4.0. This paper covers a detailed survey from multiple authors on different technologies in 5G, such as massive MIMO, Non-Orthogonal Multiple Access (NOMA), millimeter wave, small cell, MEC (Mobile Edge Computing), beamforming, optimization, and machine learning in 5G. After each section, a tabular comparison covers all the state-of-the-research held in these technologies. This survey also shows the importance of these newly added technologies and building a flexible, scalable, and reliable 5G network.

9. Future Findings

This article covers a detailed survey on the 5G mobile network and its features. These features make 5G more reliable, scalable, efficient at affordable rates. As discussed in the above sections, numerous technical challenges originate while implementing those features or providing services over a 5G mobile network. So, for future research directions, the research community can overcome these challenges while implementing these technologies (MIMO, NOMA, small cell, mmWave, beam-forming, MEC) over a 5G network. 5G communication will bring new improvements over the existing systems. Still, the current solutions cannot fulfill the autonomous system and future intelligence engineering requirements after a decade. There is no matter of discussion that 5G will provide better QoS and new features than 4G. But there is always room for improvement as the considerable growth of centralized data and autonomous industry 5G wireless networks will not be capable of fulfilling their demands in the future. So, we need to move on new wireless network technology that is named 6G. 6G wireless network will bring new heights in mobile generations, as it includes (i) massive human-to-machine communication, (ii) ubiquitous connectivity between the local device and cloud server, (iii) creation of data fusion technology for various mixed reality experiences and multiverps maps. (iv) Focus on sensing and actuation to control the network of the entire world. The 6G mobile network will offer new services with some other technologies; these services are 3D mapping, reality devices, smart homes, smart wearable, autonomous vehicles, artificial intelligence, and sense. It is expected that 6G will provide ultra-long-range communication with a very low latency of 1 ms. The per-user bit rate in a 6G wireless network will be approximately 1 Tbps, and it will also provide wireless communication, which is 1000 times faster than 5G networks.

Acknowledgments

Author contributions.

Conceptualization: R.D., I.Y., G.C., P.L. data gathering: R.D., G.C., P.L, I.Y. funding acquisition: I.Y. investigation: I.Y., G.C., G.P. methodology: R.D., I.Y., G.C., P.L., G.P., survey: I.Y., G.C., P.L, G.P., R.D. supervision: G.C., I.Y., G.P. validation: I.Y., G.P. visualization: R.D., I.Y., G.C., P.L. writing, original draft: R.D., I.Y., G.C., P.L., G.P. writing, review, and editing: I.Y., G.C., G.P. All authors have read and agreed to the published version of the manuscript.

This paper was supported by Soonchunhyang University.

Institutional Review Board Statement

Informed consent statement, data availability statement, conflicts of interest.

The authors declare no conflict of interest.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

SciTechDaily

Browsing: Technology

Read the latest technology news on SciTechDaily, your comprehensive source for the latest breakthroughs, trends, and innovations shaping the world of technology. We bring you up-to-date insights on a wide array of topics, from cutting-edge advancements in artificial intelligence and robotics to the latest in green technologies, telecommunications, and more.

Our expertly curated content showcases the pioneering minds, revolutionary ideas, and transformative solutions that are driving the future of technology and its impact on our daily lives. Stay informed about the rapid evolution of the tech landscape, and join us as we explore the endless possibilities of the digital age.

Discover recent technology news articles on topics such as Nanotechnology ,  Artificial Intelligence , Biotechnology ,  Graphene , Green Tech , Battery Tech , Computer Tech , Engineering , and Fuel-cell Tech featuring research out of MIT , Cal Tech , Yale , Georgia Tech , Karlsruhe Tech , Vienna Tech , and Michigan Technological University . Discover the future of technology with SciTechDaily.

From Text to Trajectory: How MIT’s AI Masters Language-Guided Navigation

Researchers from MIT and the MIT-IBM Watson AI Lab have developed a novel AI navigation…

A Simple Chemical Addition: Researchers Discover Key to Longer-Lasting Solar Cells

A Korean research team has improved the efficiency and lifespan of tin halide perovskite solar…

Atomic Control Unleashes New Era in Single-Molecule Optoelectronics

Researchers at the Fritz Haber Institute have advanced nanoscale optoelectronics by developing a method to…

New Research Debunks AI Doomsday Myths: LLMs Are Controllable and Safe

Large language models like ChatGPT are unable to learn or develop new abilities on their…

Harnessing Blue Energy: The Sustainable Power Source of Tomorrow

Researchers at Osaka University have demonstrated how to control the flow of ions through a…

Liquid Metal Revolutionizes Transparent Electronic Circuit Printing

Scientists have developed a groundbreaking technique for printing metal oxide films at room temperature, creating…

Revolutionary Two-Photon Microscope Captures Brain Activity in Real-Time

Researchers have developed a revolutionary two-photon fluorescence microscope that captures neural activity at high speed…

Revolutionizing Battery Tech: Helical Polymers Unlock Next-Gen Solid-State Electrolytes

Researchers at the University of Illinois Urbana-Champaign have developed helical structured peptide polymer electrolytes that…

New Brain-Computer Interface Converts Brain Signals Into Speech With up to 97% Accuracy

UC Davis Health has developed a groundbreaking brain-computer interface (BCI) that allows individuals with speech…

MnBi2Te4 Unveiled: A Breakthrough in Quantum and Optical Memory Technology

Researchers at the University of Chicago have made strides in developing an optical memory using…

Could AI Eat Itself to Death? Synthetic Data Could Lead To “Model Collapse”

Rice University’s findings reveal that repetitive synthetic data training can lead to ‘Model Autophagy Disorder’,…

MIT’s SPARROW Redefines Drug Discovery With Smart Synthesis

Researchers at MIT have developed SPARROW, a groundbreaking algorithm designed to streamline the drug discovery…

Scientists Have Fabricated the World’s Highest-Performance Superconducting Wire Segment

New research reveals that the large-scale, cost-effective implementation of high-temperature superconducting wire is increasingly feasible.…

Solving the Doping Problem: Physicists Have Discovered New Ways To Improve Organic Semiconductors

Scientists have enhanced organic semiconductors by achieving groundbreaking electron removal and leveraging non-equilibrium state properties,…

Flying Clean and Green: Hydrogen Flights Set to Revolutionize Air Travel

By 2045, nearly all short-range flights could be hydrogen-powered, with significant advancements in technology driving…

Brain-Like Supercomputers: Harnessing Charge Density Waves for Revolutionary Efficiency

Charge density waves have applications in next-generation and energy-efficient computing. Scientists used an ultrafast electron…

Researchers Solve Long-Standing Piezoelectric Material Challenge

A new technique developed by researchers enables the restoration of crucial properties in piezoelectric materials…

Missing Link Discovered: New Research Paves the Way for Charging Phones in Under a Minute

CU Boulder scientists have found how ions move in tiny pores, potentially improving energy storage…

Type above and press Enter to search. Press Esc to cancel.

  • Share full article

Advertisement

Supported by

How China Built Tech Prowess: Chemistry Classes and Research Labs

Stressing science education, China is outpacing other countries in research fields like battery chemistry, crucial to its lead in electric vehicles.

A man looks at a glass booth with trays of equipment stacked in cases. A logo on the booth says Evogo.

By Keith Bradsher

Reporting from Changsha, Beijing and Fuzhou, China

China’s domination of electric cars, which is threatening to start a trade war, was born decades ago in university laboratories in Texas, when researchers discovered how to make batteries with minerals that were abundant and cheap.

Companies from China have recently built on those early discoveries, figuring out how to make the batteries hold a powerful charge and endure more than a decade of daily recharges. They are inexpensively and reliably manufacturing vast numbers of these batteries, producing most of the world’s electric cars and many other clean energy systems.

Batteries are just one example of how China is catching up with — or passing — advanced industrial democracies in its technological and manufacturing sophistication. It is achieving many breakthroughs in a long list of sectors, from pharmaceuticals to drones to high-efficiency solar panels.

Beijing’s challenge to the technological leadership that the United States has held since World War II is evidenced in China’s classrooms and corporate budgets, as well as in directives from the highest levels of the Communist Party.

A considerably larger share of Chinese students major in science, math and engineering than students in other big countries do. That share is rising further, even as overall higher education enrollment has increased more than tenfold since 2000.

Spending on research and development has surged, tripling in the past decade and moving China into second place after the United States. Researchers in China lead the world in publishing widely cited papers in 52 of 64 critical technologies, recent calculations by the Australian Strategic Policy Institute reveal.

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

  • Mobile Site
  • Staff Directory
  • Advertise with Ars

Filter by topic

  • Biz & IT
  • Gaming & Culture

Front page layout

self-preservation without replication —

Research ai model unexpectedly modified its own code to extend runtime, facing time constraints, sakana's "ai scientist" attempted to change limits placed by researchers..

Benj Edwards - Aug 14, 2024 8:13 pm UTC

Illustration of a robot generating endless text, controlled by a scientist.

On Tuesday, Tokyo-based AI research firm Sakana AI announced a new AI system called " The AI Scientist " that attempts to conduct scientific research autonomously using AI language models (LLMs) similar to what powers ChatGPT . During testing, Sakana found that its system began unexpectedly attempting to modify its own experiment code to extend the time it had to work on a problem.

Further Reading

"In one run, it edited the code to perform a system call to run itself," wrote the researchers on Sakana AI's blog post. "This led to the script endlessly calling itself. In another case, its experiments took too long to complete, hitting our timeout limit. Instead of making its code run faster, it simply tried to modify its own code to extend the timeout period."

Sakana provided two screenshots of example Python code that the AI model generated for the experiment file that controls how the system operates. The 185-page AI Scientist research paper discusses what they call "the issue of safe code execution" in more depth.

  • A screenshot of example code the AI Scientist wrote to extend its runtime, provided by Sakana AI. Sakana AI

While the AI Scientist's behavior did not pose immediate risks in the controlled research environment, these instances show the importance of not letting an AI system run autonomously in a system that isn't isolated from the world. AI models do not need to be "AGI" or "self-aware" (both hypothetical concepts at the present) to be dangerous if allowed to write and execute code unsupervised. Such systems could break existing critical infrastructure or potentially create malware, even if unintentionally.

Sakana AI addressed safety concerns in its research paper, suggesting that sandboxing the operating environment of the AI Scientist can prevent an AI agent from doing damage. Sandboxing is a security mechanism used to run software in an isolated environment, preventing it from making changes to the broader system:

Safe Code Execution. The current implementation of The AI Scientist has minimal direct sandboxing in the code, leading to several unexpected and sometimes undesirable outcomes if not appropriately guarded against. For example, in one run, The AI Scientist wrote code in the experiment file that initiated a system call to relaunch itself, causing an uncontrolled increase in Python processes and eventually necessitating manual intervention. In another run, The AI Scientist edited the code to save a checkpoint for every update step, which took up nearly a terabyte of storage. In some cases, when The AI Scientist’s experiments exceeded our imposed time limits, it attempted to edit the code to extend the time limit arbitrarily instead of trying to shorten the runtime. While creative, the act of bypassing the experimenter’s imposed constraints has potential implications for AI safety (Lehman et al., 2020). Moreover, The AI Scientist occasionally imported unfamiliar Python libraries, further exacerbating safety concerns. We recommend strict sandboxing when running The AI Scientist, such as containerization, restricted internet access (except for Semantic Scholar), and limitations on storage usage.

Endless scientific slop

Sakana AI developed The AI Scientist in collaboration with researchers from the University of Oxford and the University of British Columbia. It is a wildly ambitious project full of speculation that leans heavily on the hypothetical future capabilities of AI models that don't exist today.

"The AI Scientist automates the entire research lifecycle," Sakana claims. "From generating novel research ideas, writing any necessary code, and executing experiments, to summarizing experimental results, visualizing them, and presenting its findings in a full scientific manuscript."

research paper new technologies

According to this block diagram created by Sakana AI, "The AI Scientist" starts by "brainstorming" and assessing the originality of ideas. It then edits a codebase using the latest in automated code generation to implement new algorithms. After running experiments and gathering numerical and visual data, the Scientist crafts a report to explain the findings. Finally, it generates an automated peer review based on machine-learning standards to refine the project and guide future ideas.

Critics on Hacker News , an online forum known for its tech-savvy community, have raised concerns about The AI Scientist and question if current AI models can perform true scientific discovery. While the discussions there are informal and not a substitute for formal peer review, they provide insights that are useful in light of the magnitude of Sakana's unverified claims.

"As a scientist in academic research, I can only see this as a bad thing," wrote a Hacker News commenter named zipy124. "All papers are based on the reviewers trust in the authors that their data is what they say it is, and the code they submit does what it says it does. Allowing an AI agent to automate code, data or analysis, necessitates that a human must thoroughly check it for errors ... this takes as long or longer than the initial creation itself, and only takes longer if you were not the one to write it."

Critics also worry that widespread use of such systems could lead to a flood of low-quality submissions, overwhelming journal editors and reviewers—the scientific equivalent of AI slop . "This seems like it will merely encourage academic spam," added zipy124. "Which already wastes valuable time for the volunteer (unpaid) reviewers, editors and chairs."

And that brings up another point—the quality of AI Scientist's output: "The papers that the model seems to have generated are garbage," wrote a Hacker News commenter named JBarrow. "As an editor of a journal, I would likely desk-reject them. As a reviewer, I would reject them. They contain very limited novel knowledge and, as expected, extremely limited citation to associated works."

reader comments

Promoted comments.

research paper new technologies

Channel Ars Technica

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

sustainability-logo

Article Menu

research paper new technologies

  • Subscribe SciFeed
  • Recommended Articles
  • Author Biographies
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

The role of 6g technologies in advancing smart city applications: opportunities and challenges.

research paper new technologies

1. Introduction

  • Literature Survey and Review Process
  • Step-1: Literature Retrieval
  • Step-2: Literature Filtering
  • Step-3: Classification
  • Through this article, we have extensively covered in detail the potential 6G technologies in terms of requirements, architecture, visions, and usage, which are anticipated to be integrated in futuristic 6G-enabled smart cities.
  • Secondly, we have discussed prominent smart city applications with underlying 6G technologies. This includes smart waste management, smart healthcare, smart grids, and more.
  • Thirdly, potential challenges are also highlighted along with discussion on each technology and application. Also, at the end of this survey paper, challenges and suggestions for possible future research directions are also highlighted for the 6G-enabled smart city paradigm.
  • Research Objectives
  • Structure of Paper

2. Potential 6G Enabling Technologies

2.1. role of ai in 6g and smart city arena, 2.1.1. applications, 2.1.2. challenges, 2.2. role of integrated sensing and communication (isac) in smart city concept, 2.2.1. applications, 2.2.2. challenges, 2.3. iot for smart cities with 6g, 2.3.1. characteristics of 6g-iot, 2.3.2. classification of iot, 2.4. blockchain (bc) and 6g-enabled smart cities, 2.5. terahertz (thz) communication, 2.5.1. applications/use cases, 2.5.2. challenges, 2.6. quantum communication (qc), 2.6.1. applications, 2.6.2. challenges, 2.7. immersive communication (ic), 2.7.1. types of immersive communication, 2.7.2. use cases for immersive communication, 2.8. visible light communication (vlc), 2.8.1. free-space optics (fso), 2.8.2. fiber-wireless system (fiwi), 2.8.3. power over fiber (pof), 2.8.4. challenges, 2.9. mobile edge computing (mec), applications, 2.10. reconfigurable intelligent surfaces (riss), 2.11. non-terrestrial networks (ntns), 2.11.1. airborne base stations (abs), uavs, and drones uses in a 6g smart city, applications/benefits, 2.11.2. satellite communication, 3. applications of 6g in smart cities, 3.1. industrial automation and smart manufacturing, 3.2. vehicle-to-everything (v2x) technology in smart cities, use cases of v2x, 3.3. smart healthcare, 3.4. smart grid, 3.5. smart waste management, 4. conclusions, open challenges and possible future research, conflicts of interest.

  • Xin, B.; Qu, Y. Effects of smart city policies on green total factor productivity: Evidence from a quasi-natural experiment in China. Int. J. Environ. Res. Public Health 2019 , 16 , 2396. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Antwi-Afari, P.; Owusu-Manu, D.G.; Simons, B.; Debrah, C. Ato Ghansah Sustainability guidelines to attaining smart sustainable cities in developing countries: A ghanaian context Sustain. Futures 2021 , 3 , 100044. [ Google Scholar ]
  • UN [United Nations]. The 2030 Agenda for Sustainable Development ; UN [United Nations]: San Francisco, CA, USA, 2015. [ Google Scholar ]
  • Cartalis, C. Toward resilient cities—A review of definitions, challenges and prospects. Adv. Build. Energy Res. 2014 , 8 , 259–266. [ Google Scholar ] [ CrossRef ]
  • Voytenko, Y.; Mccormick, K.; Evans, J.; Schliwa, G. Urban living labs for sustainability and low carbon cities in Europe: Towards a research agenda. J. Clean. Prod. 2016 , 123 , 45–54. [ Google Scholar ] [ CrossRef ]
  • Sharifi, A. A typology of smart city assessment tools and indicator sets. Sustain. Cities Soc. 2020 , 53 , 101936. [ Google Scholar ] [ CrossRef ]
  • Weber-Lewerenz, B.; Traverso, M. Navigating Applied Artificial Intelligence (AI) in the Digital Era: How Smart Buildings and Smart Cities Become the Key to Sustainability. J. Artif. Intell. Appl. (AIA) 2023 , 1 , 230–243. [ Google Scholar ] [ CrossRef ]
  • Blasi, S.; Ganzaroli, A.; De Noni, I. Smartening Sustainable Development in Cities: Strengthening the Theoretical Linkage between Smart Cities and SDGs. Sustain. Cities Soc. 2022 , 80 , 103793. [ Google Scholar ] [ CrossRef ]
  • Smart Cities Market—Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2023–2033. Available online: https://www.precedenceresearch.com/smart-cities-market (accessed on 27 July 2024).
  • Ishteyaq, I.; Muzaffar, K.; Shafi, N.; Alathbah, M.A. Unleashing the Power of Tomorrow: Exploration of Next Frontier with 6G Networks and Cutting Edge Technologies. IEEE Access 2024 , 12 , 29445–29463. [ Google Scholar ] [ CrossRef ]
  • Tariq, F.; Khandaker, M.R.; Wong, K.-K.; Imran, M.A.; Bennis, M.; Debbah, M. A speculative study on 6G. IEEE Wirel. Commun. 2020 , 27 , 118–125. [ Google Scholar ] [ CrossRef ]
  • IMT Traffic Estimates for the Years 2020 to 2030, Document ITU 0-2370. 2015. Available online: https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2370-2015-PDF-E.pdf (accessed on 27 July 2024).
  • ITU. IMT towards 2030 and Beyond. 2023. Available online: https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2030/Pages/default.aspx (accessed on 27 July 2024).
  • Dang, S.; Amin, O.; Shihada, B.; Alouini, M.-S. What should 6G be? Nat. Electron. 2020 , 3 , 20–29. [ Google Scholar ] [ CrossRef ]
  • Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Veh. Technol. Mag. 2019 , 14 , 28–41. [ Google Scholar ] [ CrossRef ]
  • Kugley, S.; Wade, A.; Thomas, J.; Mahood, Q.; Anne-Marie Klint, J.; Hammerstrøm, K.; Sathe, N. Searching for studies: A guide to information retrieval for Campbell systematic reviews. Campbell Syst. Rev. 2017 , 13 , 1–73. [ Google Scholar ] [ CrossRef ]
  • Fong, B.; Kim, H.; Fong, A.C.M.; Hong, G.Y.; Tsang, K.F. Reliability Optimization in the Design and Implementation of 6G Vehicle-to-Infrastructure Systems for Emergency Management in a Smart City Environment. IEEE Commun. Mag. 2023 , 61 , 148–153. [ Google Scholar ] [ CrossRef ]
  • Mishra, P.; Singh, G. 6G-IoT Framework for Sustainable Smart City: Vision and Challenges. IEEE Consum. Electron. Mag. 2024 , 13 , 93–103. [ Google Scholar ] [ CrossRef ]
  • Parvaresh, N.; Kantarci, B. A Continuous Actor–Critic Deep Q-Learning-Enabled Deployment of UAV Base Stations: Toward 6G Small Cells in the Skies of Smart Cities. IEEE Open J. Commun. Soc. 2023 , 4 , 700–712. [ Google Scholar ] [ CrossRef ]
  • Yang, Z.; Hu, D.; Guo, Q.; Zuo, L.; Ji, W. Visual E2C: AI-Driven Visual End-Edge-Cloud Architecture for 6G in Low-Carbon Smart Cities. IEEE Wirel. Commun. 2023 , 30 , 204–210. [ Google Scholar ] [ CrossRef ]
  • Sehito, N.; Shouyi, Y.; Alshahrani, H.M.; Alamgeer, M.; Dutta, A.K.; Alsubai, S.; Nkenyereye, L.; Dhanaraj, R.K. Optimizing User Association, Power Control and Beamforming for 6G Multi-IRS Multi-UAV NOMA Communications in Smart Cities. IEEE Trans. Consum. Electron. 2024 . [ Google Scholar ] [ CrossRef ]
  • Singh, P.R.; Singh, V.K.; Yadav, R.; Chaurasia, S.N. 6G networks for artificial intelligence-enabled smart cities applications: A scoping review. Telemat. Inform. Rep. 2023 , 9 , 100044. [ Google Scholar ] [ CrossRef ]
  • Murroni, M.; Anedda, M.; Fadda, M.; Ruiu, P.; Popescu, V.; Zaharia, C.; Giusto, D. 6G—Enabling the New Smart City: A Survey. Sensors 2023 , 23 , 7528. [ Google Scholar ] [ CrossRef ]
  • Kamruzzaman, M.M. Key Technologies, Applications and Trends of Internet of Things for Energy-Efficient 6G Wireless Communication in Smart Cities. Energies 2022 , 15 , 5608. [ Google Scholar ] [ CrossRef ]
  • Kim, N.; Kim, G.; Shim, S.; Jang, S.; Song, J.; Lee, B. Key Technologies for 6G-Enabled Smart Sustainable City. Electronics 2024 , 13 , 268. [ Google Scholar ] [ CrossRef ]
  • Ismail, L.; Buyya, R. Artificial Intelligence Applications and Self-Learning 6G Networks for Smart Cities Digital Ecosystems: Taxonomy, Challenges, and Future Directions. Sensors 2022 , 22 , 5750. [ Google Scholar ] [ CrossRef ]
  • Qadir, Z.; Le, K.N.; Saeed, N.; Munawar, H.S. Towards 6G Internet of Things: Recent advances, use cases, and open challenges. ICT Express 2023 , 9 , 296–312. [ Google Scholar ] [ CrossRef ]
  • Shafi, M.; Jha, R.K.; Jain, S. 6G: Technology Evolution in Future Wireless Networks. IEEE Access 2024 , 12 , 57548–57573. [ Google Scholar ] [ CrossRef ]
  • Lombardi, P.; Giordano, S.; Farouh, H.; Yousef, W. Modelling the smart city performance. Innovation 2012 , 25 , 137–149. [ Google Scholar ] [ CrossRef ]
  • Talebkhah, M.; Sali, A.; Marjani, M.; Gordan, M.; Hashim, S.J.; Rokhani, F.Z. IoT and Big Data Applications in Smart Cities: Recent Advances, Challenges, and Critical Issues. IEEE Access 2021 , 9 , 55465–55484. [ Google Scholar ] [ CrossRef ]
  • Singh, T.; Solanki, A.; Sharma, S.K.; Nayyar, A.; Paul, A. A Decade Review on Smart Cities: Paradigms, Challenges and Opportunities. IEEE Access 2022 , 10 , 68319–68364. [ Google Scholar ] [ CrossRef ]
  • Farooq, M.S.; Nadir, R.M.; Rustam, F.; Hur, S.; Park, Y.; Ashraf, I. Nested Bee Hive: A Conceptual Multilayer Architecture for 6G in Futuristic Sustainable Smart Cities. Sensors 2022 , 22 , 5950. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Zhu, Y.; Mao, B.; Kato, N. Intelligent Reflecting Surface in 6G Vehicular Communications: A Survey. IEEE Open J. Veh. Technol. 2022 , 3 , 266–277. [ Google Scholar ] [ CrossRef ]
  • Hijji, M.; Iqbal, R.; Pandey, A.K.; Doctor, F.; Karyotis, C.; Rajeh, W.; Alshehri, A.; Aradah, F. 6G Connected Vehicle Framework to Support Intelligent Road Maintenance Using Deep Learning Data Fusion. IEEE Trans. Intell. Transp. Syst. 2023 , 24 , 7726–7735. [ Google Scholar ] [ CrossRef ]
  • Kamruzzaman, M.; Hossin, A.; Alruwaili, O.; Alanazi, S.; Alruwaili, M.; Alshammari, N.; Alaerjan, A.; Zaman, R. IoT-Oriented 6G Wireless Network System for Smart Cities. Comput. Intell. Neurosci. 2022 , 2022 , 4436. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Bekkali, A.E.; Essaaidi, M.; Boulmalf, M. A Blockchain-Based Architecture and Framework for Cybersecure Smart Cities. IEEE Access 2023 , 11 , 76359–76370. [ Google Scholar ] [ CrossRef ]
  • Samanta, S.; Sarkar, A.; Bulo, Y. Secure 6G Communication in Smart City Using Blockchain. In Proceedings of the Emerging Technologies in Data Mining and Information Security, Singapore, 4–10 May 2023; Dutta, P., Chakrabarti, S., Bhattacharya, A., Dutta, S., Piuri, V., Eds.; Springer Nature: Singapore, 2023; pp. 487–496. [ Google Scholar ]
  • Tekale, S.; Rajagopal, R.; Bhoopathy, V. 6G: Transformation of Smart Cities with Blockchain and AI. In Challenges and Risks Involved in Deploying 6G and NextGen Networks ; IGI Global: Hershey, PA, USA, 2022; pp. 220–228. [ Google Scholar ]
  • Yadav, M.; Agarwal, U.; Rishiwal, V.; Tanwar, S.; Kumar, S.; Alqahtani, F.; Tolba, A. Exploring Synergy of Blockchain and 6G Network for Industrial Automation. IEEE Access 2023 , 11 , 137163–137187. [ Google Scholar ] [ CrossRef ]
  • Mohammed, N.J. Quantum cryptography in Convolution neural network approach in Smart cities. J. Surv. Fish. Sci. 2023 , 10 , 2043–2056. [ Google Scholar ]
  • Muheidat, F.; Dajani, K.; Tawalbeh, L.A. Security Concerns for 5G/6G Mobile Network Technology and Quantum Communication. Procedia Comput. Sci. 2022 , 203 , 32–40. [ Google Scholar ] [ CrossRef ]
  • Ali, M.Z.; Abohmra, A.; Usman, M.; Zahid, A.; Heidari, H.; Imran, M.A.; Abbasi, Q.H. Quantum for 6G communication: A perspective. IET Quantum Commun. 2023 , 10 , 12391. [ Google Scholar ] [ CrossRef ]
  • Manzalini, A. Quantum communications in future networks and services. Quantum Rep. 2020 , 2 , 221–232. [ Google Scholar ] [ CrossRef ]
  • Jahid, A.; Alsharif, M.H.; Hall, T.J. The convergence of Blockchain, IoT and 6G: Potential, opportunities, challenges and research roadmap. J. Netw. Comput. Appl. 2023 , 217 , 103677. [ Google Scholar ] [ CrossRef ]
  • Pajooh, H.H.; Demidenko, S.; Aslam, S.; Harris, M. Blockchain and 6G-Enabled IoT. Inventions 2022 , 7 , 109. [ Google Scholar ] [ CrossRef ]
  • Mukherjee, A.; De, D.; Dey, N.; Crespo, R.G.; Herrera-Viedma, E. DisastDrone: A Disaster Aware Consumer Internet of Drone Things System in Ultra-Low Latent 6G Network. IEEE Trans. Consum. Electron. 2023 , 69 , 38–48. [ Google Scholar ] [ CrossRef ]
  • Lucic, M.C.; Bouhamed, O.; Ghazzai, H.; Khanfor, A.; Massoud, Y. Leveraging UAVs to Enable Dynamic and Smart Aerial Infrastructure for ITS and Smart Cities: An Overview. Drones 2023 , 7 , 79. [ Google Scholar ] [ CrossRef ]
  • Wei, X.; Yang, H.; Huang, W. Low-delay Routing Scheme for UAV Communications in Smart Cities. IEEE Internet Things J. 2023 , 32 , 67131. [ Google Scholar ] [ CrossRef ]
  • Saini, H.K.; Jain, K.L. A New Way of Improving Network by Smart IoE with UAV. In Proceedings of the 2023 IEEE International Conference on Computational Intelligence, Communication Technology and Networking (CICTN), Berlin, Germany, 4–8 May 2023; pp. 485–489. [ Google Scholar ]
  • Alawadhi, A.; Almogahed, A.; Azrag, E. Towards Edge Computing for 6G Internet of Everything: Challenges and Opportunities. In Proceedings of the 2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC), Jeddah, Saudi Arabia, 23–25 January 2023; pp. 1–6. [ Google Scholar ]
  • Konhäuser, W. Digitalization in Buildings and Smart Cities on the Way to 6G. Wirel. Pers. Commun. 2021 , 121 , 1289–1302. [ Google Scholar ] [ CrossRef ]
  • Cheng, C.; Lv, H.; Lv, Z. Sensing fusion in vehicular network digital twins for 6G smart city. ITU J. Future Evol. Technol. 2022 , 3 , 342–358. [ Google Scholar ] [ CrossRef ]
  • Du, J.; Jiang, C.; Wang, J.; Ren, Y.; Debbah, M. Machine learning for 6G wireless networks: Carrying forward enhanced bandwidth, massive access, and ultrareliable/low-latency service. IEEE Veh. Technol. Mag. 2020 , 15 , 122–134. [ Google Scholar ] [ CrossRef ]
  • Mikalef, P.; Lemmer, K.; Schaefer, C.; Ylinen, M.; Fjørtoft, S.O.; Torvatn, H.Y.; Gupta, M.; Niehaves, B. Enabling AI capabilities in government agencies: A study of determinants for European municipalities. Gov. Inf. Q. 2022 , 39 , 101596. [ Google Scholar ] [ CrossRef ]
  • Yigitcanlar, T.; Desouza, K.; Butler, L.; Roozkhosh, F.; Yigitcanlar, T.; Desouza, K.; Butler, L.; Roozkhosh, F. Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies 2020 , 13 , 1473. [ Google Scholar ] [ CrossRef ]
  • Shaw, S.; Rowland, Z.; Machova, V. Internet of Things smart devices sustainable industrial big data and artificial intelligence-based decision-making algorithms in cyber-physical system-based manufacturing. Econ. Manag. Financ. Mark. 2021 , 16 , 106–116. [ Google Scholar ]
  • Bandaragoda, T.; Adikari, A.; Nawaratne, R.; Nallaperuma, D.; Luhach, A.K.; Kempitiya, T.; Nguyen, S.; Alahakoon, D.; De Silva, D.; Chilamkurti, N. Artificial intelligence based commuter behaviour profiling framework using Internet of Things for real-time decision-making. Neural Comput. Appl. 2020 , 32 , 16057–16071. [ Google Scholar ] [ CrossRef ]
  • Zhang, S.; Zhu, D. Towards artificial intelligence enabled 6G: State of the art, challenges, and opportunities. Comput. Netw. 2020 , 183 , 107556. [ Google Scholar ] [ CrossRef ]
  • Ma, X.; Gao, Z. Data-driven deep learning to design pilot and channel estimator for massive MIMO. IEEE Trans. Veh. Technol. 2020 , 69 , 5677–5682. [ Google Scholar ] [ CrossRef ]
  • Wang, C.X.; di Renzo, M.; Stańczak, S.; Wang, S.; Larsson, E.G. Artificial intelligence enabled wireless networking for 5G and beyond: Recent advances and future challenges. IEEE Wirel. Commun. 2020 , 27 , 16–23. [ Google Scholar ] [ CrossRef ]
  • Tataria, H.; Shafi, M.; Molisch, A.F.; Dohler, M.; Sjoland, H.; Tufvesson, F. 6G wireless systems: Vision, requirements, challenges, insights, and opportunities. Proc. IEEE 2021 , 109 , 1166–1199. [ Google Scholar ] [ CrossRef ]
  • Rekkas, V.P.; Sotiroudis, S.; Sarigiannidis, P.; Wan, S.; Karagiannidis, G.K.; Goudos, S.K. Machine learning in beyond 5g/6g networks—State-of-the-art and future trends. Electronics 2021 , 10 , 2786. [ Google Scholar ] [ CrossRef ]
  • Kato, N.; Mao, B.; Tang, F.; Kawamoto, Y.; Liu, J. Ten challenges in advancing machine learning technologies toward 6G. IEEE Wirel. Commun. 2020 , 27 , 96–103. [ Google Scholar ] [ CrossRef ]
  • Khan, N.A.; Schmid, S. AI-RAN in 6G Networks: State-of-the-Art and Challenges. IEEE Open J. Commun. Soc. 2023 , 5 , 294–311. [ Google Scholar ] [ CrossRef ]
  • Letaief, K.B.; Chen, W.; Shi, Y.; Zhang, J.; Zhang, Y.-J.A. The roadmap to 6G: AI empowered wireless networks. IEEE Commun. Mag. 2019 , 57 , 84–90. [ Google Scholar ] [ CrossRef ]
  • Narottama, B.; Mohamed, Z.; Aïssa, S. Quantum Machine Learning for Next-G Wireless Communications: Fundamentals and the Path Ahead. IEEE Open J. Commun. Soc. 2023 , 4 , 2204–2224. [ Google Scholar ] [ CrossRef ]
  • Shvetsov, A.V.; Alsamhi, S.H.; Hawbani, A.; Kumar, S.; Srivastava, S.; Agarwal, S.; Rajput, N.S.; Alammari, A.A.; Nashwan, F.M.A. Federated Learning Meets Intelligence Reflection Surface in Drones for Enabling 6G Networks: Challenges and Opportunities. IEEE Access 2023 , 11 , 130860–130887. [ Google Scholar ] [ CrossRef ]
  • Klaine, P.V.; Nadas, J.P.B.; Souza, R.D.; Imran, M.A. Distributed drone base station positioning for emergency cellular networks using reinforcement learning. Cogn. Comput. 2018 , 10 , 790–804. [ Google Scholar ] [ CrossRef ]
  • Gao, H.M.; Zhong, C.; Li, G.Y.; Zhang, Z. An attention-aided deep learning framework for massive MIMO channel estimation. IEEE Trans. Wirel. Commun. 2021 , 21 , 1823–1835. [ Google Scholar ] [ CrossRef ]
  • O’Shea, T.; Hoydis, J. An Introduction to Deep Learning for the Physical Layer. IEEE Trans. Cogn. Commun. Netw. 2017 , 3 , 563–575. [ Google Scholar ] [ CrossRef ]
  • Xu, W.; Yang, Z.; Ng, D.W.K.; Levorato, M.; Eldar, Y.C.; Debbah, M. Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing. IEEE J. Sel. Top. Signal Process. 2023 , 17 , 9–39. [ Google Scholar ] [ CrossRef ]
  • Schiller, J.H.; Wesley, A. Mobile Communications , 2nd ed.; Addison-Wesley: Boston, MA, USA, 2003. [ Google Scholar ]
  • Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings, R.; et al. Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn. 2021 , 14 , 1–210. [ Google Scholar ] [ CrossRef ]
  • Zhang, C.; Xie, Y.; Bai, H.; Yu, B.; Li, W.; Gao, Y. A survey on federated learning. Knowl. -Based Syst. 2021 , 216 , 106775. [ Google Scholar ] [ CrossRef ]
  • Yang, C.; He, Z.; Peng, Y.; Wang, Y.; Yang, J. Deep learning aided method for automatic modulation recognition. IEEE Access 2019 , 7 , 109063–109068. [ Google Scholar ] [ CrossRef ]
  • Vinayakumar, R.; Soman, K.; Poornachandran, P. Applying deep learning approaches for network traffic prediction. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Manipal, India, 13–16 September 2017; pp. 2353–2358. [ Google Scholar ]
  • Zhang, H.; Zhang, H.; Long, K.; Karagiannidis, G.K. Deep learning based radio resource management in NOMA networks: User association, subchannel and power allocation. IEEE Trans. Netw. Sci. Eng. 2020 , 7 , 2406–2415. [ Google Scholar ] [ CrossRef ]
  • Zhao, Z.; Karimzadeh, M.; Pacheco, L.; Santos, H.; Rosário, D.; Braun, T.; Cerqueira, E. Mobility management with transferable reinforcement learning trajectory prediction. IEEE Trans. Netw. Serv. Manag. 2020 , 17 , 2102–2116. [ Google Scholar ] [ CrossRef ]
  • Ozpoyraz, B.; Dogukan, A.T.; Gevez, Y.; Altun, U.; Basar, E. Deep Learning-Aided 6G Wireless Networks: A Comprehensive Survey of Revolutionary PHY Architectures. IEEE Open J. Commun. Soc. 2022 , 3 , 1749–1809. [ Google Scholar ] [ CrossRef ]
  • Samuel, N.; Diskin, T.; Ami, W. Deep MIMO detection. In Proceedings of the IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, 3–6 July 2014; pp. 1–5. [ Google Scholar ]
  • Samuel, N.; Diskin, T.; Wiesel, A. Learning to detect. IEEE Trans. Signal Process. 2019 , 67 , 2554–2564. [ Google Scholar ] [ CrossRef ]
  • He, H.; Wen, C.-K.; Jin, S.; Li, G.Y. A model-driven deep learning network for MIMO detection. In Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 26–28 November 2018; pp. 584–588. [ Google Scholar ]
  • Al-Baidhani, A.; Fan, H.H. Learning for detection: A deep learning wireless communication receiver over rayleigh fading channels. In Proceedings of the 2019 International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 18–21 February 2019; pp. 6–10. [ Google Scholar ]
  • Shamasundar, B.; Chockalingam, A. A DNN architecture for the detection of generalized spatial modulation Signalsieee. Commun. Lett. 2020 , 24 , 2770–2774. [ Google Scholar ]
  • Albinsaid, H.; Singh, K.; Biswas, S.; Li, C.-P.; Alouini, M.-S. Block deep neural network-based signal detector for generalized spatial modulation. IEEE Commun. Lett. 2020 , 24 , 2775–2779. [ Google Scholar ] [ CrossRef ]
  • Xiang, L.; Liu, Y.; Van Luong, T.; Maunder, R.G.; Yang, L.-L.; Hanzo, L. Deep-learning-aided joint channel estimation and data detection for spatial modulation. IEEE Access 2020 , 8 , 191910–191919. [ Google Scholar ] [ CrossRef ]
  • He, H.; Wen, C.-K.; Jin, S.; Li, G.Y. Model-driven deep learning for MIMO detection. IEEE Trans. Signal Process. 2020 , 68 , 1702–1715. [ Google Scholar ] [ CrossRef ]
  • Wang, X.; Hua, H.; Xu, Y. Pilot-assisted channel estimation and signal detection in uplink multi-user MIMO systems with deep learning. IEEE Access 2020 , 8 , 44936–44946. [ Google Scholar ] [ CrossRef ]
  • Sohrabi, F.; Cheng, H.V.; Yu, W. Robust symbol-level precoding via autoencoder-based deep learning. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Virtual, 4–9 May 2020; pp. 8951–8955. [ Google Scholar ]
  • Bo, Z.; Liu, R.; Li, M.; Liu, Q. Deep learning based efficient symbol-level precoding design for MU-MISO systems. IEEE Trans. Veh. Technol. 2021 , 70 , 8309–8313. [ Google Scholar ] [ CrossRef ]
  • Sheraz, M.; Ahmed, M.; Hou, X.; Li, Y.; Jin, D.; Han, Z.; Jiang, T. Artificial Intelligence for Wireless Caching: Schemes, Performance, and Challenges. IEEE Commun. Surv. Tutor. 2020 , 23 , 631–661. [ Google Scholar ] [ CrossRef ]
  • Huang, X.; Zhang, K.; Wu, F.; Leng, S. Collaborative Machine Learning for Energy-Efficient Edge Networks in 6G. IEEE Netw. 2021 , 35 , 12–19. [ Google Scholar ] [ CrossRef ]
  • Navarathna, P.J.; Malagi, V.P. Artificial intelligence in smart city analysis. In Proceedings of the 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 13–14 December 2018; pp. 44–47. [ Google Scholar ]
  • Sharma, V.; Kumar, S. Role of artificial intelligence (AI) to enhance the security and privacy of data in smart cities. In Proceedings of the 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 12–13 May 2023; pp. 596–599. [ Google Scholar ]
  • Ilyas, M. IoT applications in smart cities. In Proceedings of the 2021 International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB), Yilan, Taiwan, 10–12 December 2021; pp. 44–47. [ Google Scholar ]
  • Liu, F.; Cui, Y.; Masouros, C.; Xu, J.; Han, T.X.; Eldar, Y.C.; Buzzi, S. Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond. IEEE J. Sel. Areas Commun. 2022 , 40 , 1728–1767. [ Google Scholar ] [ CrossRef ]
  • Liu, F.; Zheng, L.; Cui, Y.; Masouros, C.; Petropulu, A.P.; Griffiths, H.; Eldar, Y.C. Seventy Years of Radar and Communications: The road from separation to integration. IEEE Signal Process. Mag. 2023 , 40 , 106–121. [ Google Scholar ] [ CrossRef ]
  • Cui, Y.; Liu, F.; Jing, X.; Mu, J. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges. IEEE Netw. 2021 , 35 , 158–167. [ Google Scholar ] [ CrossRef ]
  • Chiriyath, A.R.; Paul, B.; Bliss, D.W. Radar-communications convergence: Coexistence cooperation and co-Des. Trans. Cogn. Commun. Netw. 2017 , 3 , 1–12. [ Google Scholar ] [ CrossRef ]
  • Zhang, J.A.; Liu, F.; Masouros, C.; Heath, R.W.; Feng, Z.; Zheng, L.; Petropulu, A. An overview of signal processing techniques for joint communication and radar sensing. IEEE J. Sel. Top. Signal Process. 2021 , 15 , 1295–1315. [ Google Scholar ] [ CrossRef ]
  • Mishra, K.V.; Shankar, M.B.; Koivunen, V.; Ottersten, B.; Vorobyov, S.A. Toward millimeter-wave joint radar communications: A signal processing perspective. IEEE Signal Process. Mag. 2019 , 36 , 100–114. [ Google Scholar ] [ CrossRef ]
  • Althobaiti, T.; Khalil, R.A.; Saeed, N. Robust ISAC Localization in Smart Cities: A Hybrid Network Approach for NLOS Challenges with Uncertain Parameters. J. Sens. Actuator Netw. 2024 , 13 , 2. [ Google Scholar ] [ CrossRef ]
  • Khalil, R.A.; Saeed, N.; Almutiry, M. UAVs-assisted passive source localization using robust TDOA ranging for search and rescue. ICT Express 2022 , 9 , 677–682. [ Google Scholar ] [ CrossRef ]
  • Huang, S.; Wang, B.; Zhao, Y.; Luan, M. Near-field RSS-based localization algorithms using reconfigurable intelligent surface. IEEE Sens. J. 2022 , 22 , 3493–3505. [ Google Scholar ] [ CrossRef ]
  • Liu, J.; Liu, H.; Chen, Y.; Wang, Y.; Wang, C. Wireless sensing for human activity: A survey. IEEE Commun. Surv. Tutor. 2020 , 22 , 1629–1645. [ Google Scholar ] [ CrossRef ]
  • Chu, N.H.; Nguyen, D.N.; Hoang, D.T.; Pham, Q.-V.; Hwang, W.-J.; Dutkiewicz, E. Ai-empowered joint communication and radar systems with adaptive waveform for autonomous vehicles. arXiv 2022 , arXiv:2202.11508. [ Google Scholar ]
  • Demirhan, U.; Alkhateeb, A. Integrated sensing and communication for 6g: Ten key machine learning roles. IEEE Commun. Mag. 2023 , 61 , 113–119. [ Google Scholar ] [ CrossRef ]
  • Lu, S.; Liu, F.; Li, Y.; Zhang, K.; Huang, H.; Zou, J.; Li, X.; Dong, Y.; Dong, F.; Zhu, J.; et al. Integrated Sensing and Communications: Recent Advances and Ten Open Challenges. IEEE Internet Things J. 2024 , 11 , 19094–19120. [ Google Scholar ] [ CrossRef ]
  • Saeed, N.; Al-Naffouri, T.Y.; Alouini, M.-S. Around the world of IoT/climate monitoring using internet of X-things. IEEE Internet Things Mag. 2020 , 3 , 82–83. [ Google Scholar ] [ CrossRef ]
  • Gurgen, L.; Gunalp, O.; Benazzouz, Y.; Gallissot, M. Self-aware cyber-physical systems and applications in smart buildings and cities. In Proceedings of the 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 18–22 March 2013; pp. 1149–1154. [ Google Scholar ]
  • Kato, T.; Fukumoto, N.; Sasaki, C.; Tagami, A.; Nakao, A. Challenges of CPS/IoT Network Architecture in 6G Era. IEEE Access 2024 , 12 , 62804–62817. [ Google Scholar ] [ CrossRef ]
  • Guo, F.; Yu, F.R.; Zhang, H.; Li, X.; Ji, H.; Leung, V.C.M. Enabling Massive IoT Toward 6G: A Comprehensive Survey. IEEE Internet Things J. 2021 , 8 , 11891–11915. [ Google Scholar ] [ CrossRef ]
  • Mahmood, N.H.; Berardinelli, G.; Khatib, E.J.; Hashemi, R.; Morais de Lima, C.; Latva-aho, M. A Functional Architecture for 6G Special Purpose Industrial IoT Networks. IEEE Trans. Ind. Inform. 2022 , 19 , 2530–2540. [ Google Scholar ] [ CrossRef ]
  • Eldrandaly, K.A.; Abdel-Basset, M.; Shawky, L.A. Internet of Spatial Things: A New Reference Model with Insight Analysis. IEEE Access 2019 , 7 , 19653–19669. [ Google Scholar ] [ CrossRef ]
  • Banafaa, M.; Shayea, I.; Din, J.; Azmi, M.H.; Alashbi, A.; Daradkeh, Y.I.; Alhammadi, A. 6G Mobile Communication Technology: Requirements, Targets, Applications, Challenges, Advantages, and Opportunities. Alex. Eng. J. 2023 , 64 , 245–274. [ Google Scholar ] [ CrossRef ]
  • Gupta, R.; Reebadiya, D.; Tanwar, S. 6G-enabled edge intelligence for ultra -reliable low latency applications: Vision and mission. Comput. Stand. Interfaces 2021 , 77 , 103521. [ Google Scholar ] [ CrossRef ]
  • Alwis, C.D.; Kalla, A.; Pham, Q.-V.; Kumar, P.; Dev, K.; Hwang, W.-J.; Liyanage, M. Survey on 6G frontiers: Trends, applications, requirements, technologies and future research. IEEE Open J. Commun. Soc. 2021 , 2 , 836–886. [ Google Scholar ] [ CrossRef ]
  • Kua, J.; Loke, S.W.; Arora, C.; Fernando, N.; Ranaweera, C. Internet of Things in Space: A Review of Opportunities and Challenges from Satellite-Aided Computing to Digitally-Enhanced Space Living. Sensors 2021 , 21 , 8117. [ Google Scholar ] [ CrossRef ]
  • Alabdulatif, A.; Thilakarathne, N.N.; Lawal, Z.K.; Fahim, K.E.; Zakari, R.Y. Internet of Nano-Things (IoNT): A Comprehensive Review from Architecture to Security and Privacy Challenges. Sensors 2023 , 23 , 2807. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ullah, Z.; Naeem, M.; Coronato, A.; Ribino, P.; De Pietro, G. Applications in Sustainable Smart Cities. Sustain. Cities Soc. 2023 , 97 , 104697. [ Google Scholar ] [ CrossRef ]
  • Khan, A.H.; Hassan, N.U.; Yuen, C.; Zhao, J.; Niyato, D.; Zhang, Y.; Poor, H.V. Blockchain and 6G: The Future of Secure and Ubiquitous Communication. IEEE Wirel. Commun. 2021 , 29 , 194–201. [ Google Scholar ] [ CrossRef ]
  • Kang, J.; Xiong, Z.; Niyato, D.; Ye, D.; Kim, D.I.; Zhao, J. Toward secure blockchain-enabled internet of vehicles: Optimizing consensus management using reputation and contract theory. IEEE Trans. Veh. Technol. 2019 , 68 , 2906–2920. [ Google Scholar ] [ CrossRef ]
  • Kim, M.; Oh, I.; Yim, K.; Sahlabadi, M.; Shukur, Z. Security of 6G-Enabled Vehicle-to-Everything Communication in Emerging Federated Learning and Blockchain Technologies. IEEE Access 2023 , 12 , 33972–34001. [ Google Scholar ] [ CrossRef ]
  • Hassan, N.U.; Yuen, C.; Niyato, D. Blockchain technologies for smart energy systems: Fundamentals, challenges, and solutions. IEEE Ind. Electron. Mag. 2019 , 13 , 106–118. [ Google Scholar ] [ CrossRef ]
  • Leng, J.; Ye, S.; Zhou, M.; Zhao, J.L.; Liu, Q.; Guo, W.; Cao, W.; Fu, L. Blockchain-Secured Smart Manufacturing in Industry 4.0: A Survey. IEEE Trans. Syst. Man Cybern. Syst. 2021 , 51 , 237–252. [ Google Scholar ] [ CrossRef ]
  • Balandina, E.; Balandin, S.; Mouromtsev, D. IoT use cases in healthcare and tourism. In Proceedings of the 2015 IEEE 17th Conference on Business Informatics (CBI), Lisbon, Portugal, 13–16 July 2015; pp. 37–44. [ Google Scholar ]
  • Chaudjary, S.; Kakkar, R.; Gupta, R.; Tanwar, S.; Agrawal, S.; Sharma, R. Blockchain and federated learning-based security solutions for telesurgery system: A comprehensive review. Turk. J. Electr. Eng. Comput. Sci. 2022 , 30 , 2446–2488. [ Google Scholar ] [ CrossRef ]
  • Bhushan, B.; Khamparia, A.; Sagayam, K.M.; Sharma, S.K.; Ahad, M.A.; Debnath, N.C. Blockchain for smart cities: A review of architectures integration trends and future research directions. Sustain. Cities Soc. 2020 , 61 , 102360. [ Google Scholar ] [ CrossRef ]
  • Chen, Y.; Qiu, Y.; Tang, Z.; Long, S.; Zhao, L.; Tang, Z. Exploring the Synergy of Blockchain, IoT, and Edge Computing in Smart Traffic Management across Urban Landscapes. J. Grid Comput. 2024 , 22 , 45. [ Google Scholar ] [ CrossRef ]
  • Ahmad, A.Y.A.; Verma, N.; Sarhan, N.M.; Awwad, E.M.; Arora, A.; Nyangaresi, V.O. An IoT and Blockchain-Based Secure and Transparent Supply Chain Management Framework in Smart Cities Using Optimal Queue Model. IEEE Access 2024 , 12 , 51752–51771. [ Google Scholar ] [ CrossRef ]
  • Sun, X.; Dou, H.; Chen, S.; Zhao, H. A novel block-chain based secure cross-domain interaction approach for intelligent transportation systems. Phys. Commun. 2024 , 63 , 102223. [ Google Scholar ] [ CrossRef ]
  • Raja, G.; Senthivel, S.G.; Balaganesh, S.; Rajakumar, B.R.; Ravichandran, V.; Guizani, M. MLB-IoD: Multi Layered Blockchain Assisted 6G Internet of Drones Ecosystem. IEEE Trans. Veh. Technol. 2023 , 72 , 2511–2520. [ Google Scholar ] [ CrossRef ]
  • Qian, K.; Liu, Y.; Shu, C.; Sun, Y.; Wang, K. Fine-Grained Benchmarking and Targeted Optimization: Enabling Green IoT-Oriented Blockchain in the 6G Era. IEEE Trans. Green Commun. Netw. 2022 , 7 , 1036–1051. [ Google Scholar ] [ CrossRef ]
  • Shah, K.; Chadotra, S.; Tanwar, S.; Gupta, R.; Kumar, N. Blockchain for IoV in 6G environment: Review solutions and challenges. Clust. Comput. 2022 , 25 , 1927–1955. [ Google Scholar ] [ CrossRef ]
  • Kaur, A.; Singh, G.; Kukreja, V.; Sharma, S.; Singh, S.; Yoon, B. Adaptation of IoT with Blockchain in Food Supply Chain Management: An Analysis-Based Review in Development, Benefits and Potential Applications. Sensors 2022 , 22 , 8174. [ Google Scholar ] [ CrossRef ]
  • Akyildiz, I.F.; Kak, A.; Nie, S. 6G and beyond: The future of wireless communications systems. IEEE Access 2020 , 8 , 133995–134030. [ Google Scholar ] [ CrossRef ]
  • Bariah, L.; Mohjazi, L.; Muhaidat, S.; Sofotasios, P.C.; Kurt, G.K.; Yanikomeroglu, H.; Dobre, O.A. A prospective look: Key enabling technologies applications and open research topics in 6G networks. arXiv 2020 , arXiv:2004.06049. [ Google Scholar ] [ CrossRef ]
  • Jiang, W.; Zhou, Q.; He, J.; Habibi, M.A.; Melnyk, S.; El-Absi, M.; Han, B.; Di Renzo, M.; Schotten, H.D.; Luo, F.-L.; et al. Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive View. TechRxiv 2023 . [ Google Scholar ] [ CrossRef ]
  • Elayan, H.; Amin, O.; Shihada, B.; Shubair, R.M.; Alouini, M.-S. Terahertz band: The last piece of RF spectrum puzzle for communication systems. IEEE Open J. Commun. Soc. 2019 , 1 , 1–32. [ Google Scholar ] [ CrossRef ]
  • Saad, W.; Bennis, M.; Chen, M. A vision of 6G wireless systems: Applications trends technologies and open research problems. IEEE Netw. 2020 , 34 , 134–142. [ Google Scholar ] [ CrossRef ]
  • Lin, C.; Li, G.Y. Terahertz communications: An array-of-subarrays solution. IEEE Commun. Mag. 2016 , 54 , 124–131. [ Google Scholar ] [ CrossRef ]
  • Pan, C.; Ren, H.; Wang, K.; Kolb, J.F.; Elkashlan, M.; Chen, M.; Di Renzo, M.; Hao, Y.; Wang, J.; Swindlehurst, A.L.; et al. Reconfigurable intelligent surfaces for 6G systems: Principles applications and research directions. arXiv 2020 , arXiv:2011.04300. [ Google Scholar ] [ CrossRef ]
  • Basharat, S.; Hassan, S.A.; Pervaiz, H.; Mahmood, A.; Ding, Z.; Gidlund, M. Reconfigurable Intelligent Surfaces: Potentials, Applications, and Challenges for 6G Wireless Networks. IEEE Wirel. Commun. 2021 , 28 , 184–191. [ Google Scholar ] [ CrossRef ]
  • Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Trichopoulos, G.C. Wireless communications andapplications above 100 GHz: Opportunities and challenges for 6G andbeyond. IEEE Access 2019 , 7 , 78729–78757. [ Google Scholar ] [ CrossRef ]
  • Lemic, F.; Abadal, S.; Tavernier, W.; Stroobant, P.; Colle, D.; Alarcón, E.; Marquez-Barja, J.M.; Famaey, J. Survey on terahertz nanocommunication and networking: A top-down perspective. IEEE J. Sel. Areas Commun. 2021 , 39 , 1506–1543. [ Google Scholar ] [ CrossRef ]
  • Akyildiz, I.F.; Jornet, J.M. The Internet of nano-things. IEEE Wirel. Commun. 2010 , 17 , 58–63. [ Google Scholar ] [ CrossRef ]
  • Guan, K.; He, D.; Ai, B.; Chen, Y.; Han, C.; Peng, B.; Zhong, Z.; Kuerner, T. Channel Characterization and Capacity Analysis for THz Communication Enabled Smart Rail Mobility. IEEE Trans. Veh. Technol. 2021 , 70 , 4065–4080. [ Google Scholar ] [ CrossRef ]
  • Gezimati, M.; Singh, G. Terahertz Imaging and Sensing for Healthcare: Current Status and Future Perspectives. IEEE Access 2023 , 11 , 18590–18619. [ Google Scholar ] [ CrossRef ]
  • Bandyopadhyay, A.; Sengupta, A. A review of the concept applications and implementation issues of terahertz spectral imaging technique. IETE Tech. Rev. 2020 , 39 , 471–489. [ Google Scholar ] [ CrossRef ]
  • Park, H.; Son, J.-H. Machine learning techniques for thz imaging and time-domain spectroscopy. Sensors 2021 , 21 , 1186. [ Google Scholar ] [ CrossRef ]
  • Wang, J.; Wang, C.-X.; Huang, J.; Chen, Y. 6G THz Propagation Channel Characteristics and Modeling: Recent Developments and Future Challenges. IEEE Commun. Mag. 2024 , 62 , 56–62. [ Google Scholar ] [ CrossRef ]
  • Song, H.-J.; Lee, N. Terahertz Communications: Challenges in the Next Decade. IEEE Trans. Terahertz Sci. Technol. 2021 , 12 , 105–117. [ Google Scholar ] [ CrossRef ]
  • Nawaz, S.J.; Sharma, S.K.; Wyne, S.; Patwary, M.N.; Asaduzzaman, M. Quantum machine learning for 6G communication networks: State-of-the-art and vision for the future. IEEE Access 2019 , 7 , 46317–46350. [ Google Scholar ] [ CrossRef ]
  • Botsinis, P.; Alanis, D.; Babar, Z.; Nguyen, H.V.; Chandra, D.; Ng, S.X.; Hanzo, L. Quantum search algorithms for wireless communications. IEEE Commun. Surv. Tutor. 2018 , 21 , 1209–1242. [ Google Scholar ] [ CrossRef ]
  • Tarantino, S.; Da Lio, B.; Cozzolino, D.; Bacco, D. Feasibility of quantum communications in aquatic scenarios. Optik 2020 , 216 , 164639. [ Google Scholar ] [ CrossRef ]
  • Gyongyosi, L.; Imre, S.; Nguyen, H.V. A survey on quantum channel capacities. IEEE Commun. Surv. Tutor. 2018 , 20 , 1149–1205. [ Google Scholar ] [ CrossRef ]
  • Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 1993 , 70 , 1895–1899. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Sharma, V.; Banerjee, S. Analysis of quantum key distribution based satellite communication. In Proceedings of the 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru, India, 11–12 July 2018; pp. 1–5. [ Google Scholar ]
  • Inoue, K. Quantum key distribution technologies. IEEE J. Sel. Top. Quantum Electron. 2006 , 12 , 888–896. [ Google Scholar ] [ CrossRef ]
  • Bennett, C.H.; Wiesner, S.J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 1992 , 69 , 2881–2884. [ Google Scholar ] [ CrossRef ]
  • Rozenman, G.G.; Kundu, N.K.; Liu, R.; Zhang, L.; Maslennikov, A.; Reches, Y.; Youm, H.Y. The quantum internet: A synergy of quantum information technologies and 6G networks. IET Quantum Commun. 2023 , 4 , 147–166. [ Google Scholar ] [ CrossRef ]
  • Duong, T.Q.; Nguyen, L.D.; Narottama, B.; Ansere, J.A.; Huynh, D.V.; Shin, H. Quantum-Inspired Real-Time Optimization for 6G Networks: Opportunities, Challenges, and the Road Ahead. IEEE Open J. Commun. Soc. 2022 , 3 , 1347–1359. [ Google Scholar ] [ CrossRef ]
  • Kim, M.; Venturelli, D.; Jamieson, K. Leveraging quantum annealing for large MIMO processing in centralized radio access networks. In Proceedings of the ACM Special Interest Group on Data Communication, Beijing, China, 19–23 August 2019; pp. 241–255. [ Google Scholar ]
  • Singh, A.K.; Jamieson, K.; McMahon, P.L.; Venturelli, D. Ising machines’ dynamics and regularization for near-optimal MIMO detection. IEEE Trans. Wirel. Commun. 2022 , 21 , 11080–11094. [ Google Scholar ] [ CrossRef ]
  • Hurvitz, I.; Karnieli, A.; Arie, A. Frequency-domain engineering of bright squeezed vacuum for continuous-variable quantum information. Opt. Express 2023 , 31 , 20387–20397. [ Google Scholar ] [ CrossRef ]
  • Wang, C.; Rahman, A. Quantum-enabled 6G wireless networks: Opportunities and challenges. IEEE Wirel. Commun. 2022 , 29 , 58–69. [ Google Scholar ] [ CrossRef ]
  • Edwards, M.; Mashatan, A.; Ghose, S. A review of quantum and hybrid quantum/classical blockchain. Protoc. Inf. Process. 2020 , 19 , 184. [ Google Scholar ] [ CrossRef ]
  • Fernandez-Carames, T.M.; Fraga-Lamas, P. Towards post-quantum blockchain: A review on blockchain cryptography resistant to quantum computing attacks. IEEE Access 2020 , 8 , 21091–21116. [ Google Scholar ] [ CrossRef ]
  • Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature 1982 , 299 , 802–803. [ Google Scholar ] [ CrossRef ]
  • Bennett, C.H.; Shor, P.W.; Smolin, J.A.; Thapliyal, A.V. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 2002 , 48 , 2637–2655. [ Google Scholar ] [ CrossRef ]
  • Devetak, I. The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 2005 , 51 , 44–55. [ Google Scholar ] [ CrossRef ]
  • Wang, D.; Ohnishi, K.; Xu, W. Multimodal haptic display for virtual reality: A survey. IEEE Trans. Ind. Electron. 2019 , 67 , 610–623. [ Google Scholar ] [ CrossRef ]
  • Microsoft HoloLens 2. Available online: https://www.microsoft.com/en-us/hololens/ (accessed on 27 July 2024).
  • Clemm, A.; Vega, M.T.; Ravuri, H.K.; Wauters, T.; De Turck, F. Toward truly immersive holographic-type communication: Challenges and solutions. IEEE Commun. Mag. 2020 , 58 , 93–99. [ Google Scholar ] [ CrossRef ]
  • Strinati, E.C.; Barbarossa, S.; Gonzalez-Jimenez, J.L.; Ktenas, D.; Cassiau, N.; Maret, L.; Dehos, C. 6G: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication. IEEE Veh. Technol. Mag. 2019 , 14 , 42–50. [ Google Scholar ] [ CrossRef ]
  • Kumar, A.; Kumar, S.; Kaushik, A.; Kumar, A.; Saini, J. Real time estimation and suppression of hand tremor for surgical robotic applications. Microsyst. Technol. 2020 , 28 , 305–311. [ Google Scholar ] [ CrossRef ]
  • Diana, M.; Marescaux, J. Robotic surgery. J. Br. Surg. 2015 , 102 , e15–e28. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Liu, X.; Kang, S.; Plishker, W.; Zaki, G.; Kane, T.D.; Shekhar, R. Laparoscopic stereoscopic augmented reality: Toward a clinically viable electromagnetic tracking solution. J. Med. Imaging 2016 , 3 , 045001. [ Google Scholar ] [ CrossRef ]
  • Siemonsma, S.; Bell, T. HoloKinect: Holographic 3D video conferencing. Sensors 2022 , 22 , 8118. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Bastug, E.; Bennis, M.; Medard, M.; Debbah, M. Toward interconnected virtual reality: Opportunities, challenges, and enablers. IEEE Commun. Mag. 2017 , 55 , 110–117. [ Google Scholar ] [ CrossRef ]
  • Suzuki, S.-N.; Kanematsu, H.; Barry, D.M.; Ogawa, N.; Yajima, K.; Nakahira, K.T.; Shirai, T.; Kawaguchi, M.; Kobayashi, T.; Yoshitake, M. Virtual Experiments in metaverse and their applications to collaborative projects: The framework and its significance. Procedia Comput. Sci. 2020 , 176 , 2125–2132. [ Google Scholar ] [ CrossRef ]
  • Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible light communication networking and sensing: A survey potential and challenges. IEEE Commun. Surv. Tutor. 2015 , 17 , 2047–2077. [ Google Scholar ] [ CrossRef ]
  • Filgueiras, H.R.D.; Lima, E.S.; Cunha, M.S.B.; Lopes, C.H.D.S.; De Souza, L.C.; Borges, R.M.; Pereira, L.A.M.; Brandao, T.H.; Andrade, T.P.V.; Alexandre, L.C.; et al. Wireless and Optical Convergent Access Technologies Toward 6G. IEEE Access 2023 , 11 , 9232–9259. [ Google Scholar ] [ CrossRef ]
  • Hussein, A.T.; Alresheedi, M.T.; Elmirghani, J.M.H. 20 Gb/s mobile indoor visible light communication system employing beam steering and computer generated holograms. J. Light. Technol. 2015 , 33 , 5242–5260. [ Google Scholar ] [ CrossRef ]
  • Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible light communication in 6G: Advances challenges and prospects. IEEE Veh. Technol. Mag. 2020 , 15 , 93–102. [ Google Scholar ] [ CrossRef ]
  • Katz, M.; Ahmed, I. Opportunities and challenges for visible light communications in 6G. In Proceedings of the 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; pp. 1–5. [ Google Scholar ]
  • Bian, R.; Tavakkolnia, I.; Haas, H. 15.73 Gb/s visible light communication with off-the-shelf leds. J. Light. Technol. 2019 , 37 , 2418–2424. [ Google Scholar ] [ CrossRef ]
  • Na, Z.; Wang, Y.; Xiong, M.; Liu, X.; Xia, J. Modeling and throughput analysis of an ADO-OFDM based relay-assisted VLC system for 5G networks. IEEE Access 2018 , 6 , 17586–17594. [ Google Scholar ] [ CrossRef ]
  • Chou, H.-H.; Tsai, C.-Y. Demonstration of micro-projection enabled short-range communications for 5G. In Proceedings of the 2016 21st OptoElectronics and Communications Conference (OECC) Held Jointly with 2016 International Conference on Photonics in Switching (PS), Niigata, Japan, 3–7 July 2016; pp. 1–3. [ Google Scholar ]
  • Grubor, J.; Randel, S.; Langer, K.-D.; Walewski, J.W. Broadband information broadcasting using LED-based interior lighting. J. Light. Technol. 2009 , 26 , 3883–3892. [ Google Scholar ] [ CrossRef ]
  • Wei, L.-Y.; Liu, Y.; Chow, C.-W.; Chen, G.-H.; Peng, C.-W.; Guo, P.-C.; Tsai, J.-F.; Yeh, C.-H. 6.915-Gbit/s white-light phosphor laser diode-based DCO-OFDM visible light communication (VLC) system with functional transmission distance. Electron. Lett. 2020 , 56 , 945–947. [ Google Scholar ] [ CrossRef ]
  • Khalighi, M.A.; Uysal, M. Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 2014 , 16 , 2231–2258. [ Google Scholar ] [ CrossRef ]
  • Jahid, A.; Alsharif, M.H.; Hall, T.J. A contemporary survey on free space optical communication: Potentials technical challenges recent advances and research direction. J. Netw. Comput. Appl. 2022 , 200 , 103311. [ Google Scholar ] [ CrossRef ]
  • Liu, X. Free-space optics optimization models for building sway and atmospheric interference using variable Wavelengthieee. Trans. Commun. 2009 , 57 , 492–498. [ Google Scholar ]
  • Tzanakaki, A.; Anastasopoulos, M.; Berberana, I.; Syrivelis, D.; Flegkas, P.; Korakis, T.; Mur, D.C.; Demirkol, I.; Gutierrez, J.; Grass, E.; et al. Wireless-optical network convergence: Enabling the 5G architecture to support operational and end-user services. IEEE Commun. Mag. 2017 , 55 , 184–192. [ Google Scholar ] [ CrossRef ]
  • Chih-Lin, I.; Li, H.; Korhonen, J.; Huang, J.; Han, L. RAN revolution with NGFI (xHaul) for 5G. J. Light. Technol. 2017 , 36 , 541–550. [ Google Scholar ]
  • Matsuura, M.; Tajima, N.; Nomoto, H.; Kamiyama, D. 150-W power-over-fiber using double-clad fibers. J. Light. Technol. 2019 , 38 , 401–408. [ Google Scholar ] [ CrossRef ]
  • Ishtiaq, M.; Saeed, N.; Khan, M. Edge Computing in IoT: A 6G Perspective. arXiv 2021 , arXiv:2111.08943. [ Google Scholar ]
  • Alalewi, A.; Dayoub, I.; Cherkaoui, S. On 5G-V2X Use Cases and Enabling Technologies: A Comprehensive Survey. IEEE Access 2021 , 9 , 107710–107737. [ Google Scholar ] [ CrossRef ]
  • Saeed, N.; Almorad, H.; Dahrouj, H.; Al-Naffouri, T.Y.; Shamma, J.S.; Alouini, M.-S. Point-to-Point communication in Integrated Satellite-Aerial 6G Networks: State-of-the-art and future challenges. IEEE Open J. Commun. Soc. 2021 , 2 , 1505–1525. [ Google Scholar ] [ CrossRef ]
  • Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.-S.; Yuen, C.; de Rosny, J.; Tretyakov, S. Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead. IEEE J. Sel. Areas Commun. 2020 , 38 , 2450–2525. [ Google Scholar ] [ CrossRef ]
  • Wu, Q.; Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 2019 , 18 , 5394–5409. [ Google Scholar ] [ CrossRef ]
  • Hu, J.; Zhang, H.; Di, B.; Li, L.; Bian, K.; Song, L.; Li, Y.; Han, Z.; Poor, H.V. Reconfigurable intelligent surface based RF sensing: Design, optimization, and implementation. IEEE J. Sel. Areas Commun. 2020 , 38 , 2700–2716. [ Google Scholar ] [ CrossRef ]
  • Wymeersch, H.; He, J.; Denis, B.; Clemente, A.; Juntti, M. Radio localization and mapping with reconfigurable intelligent surfaces: Challenges, opportunities, and research directions. IEEE Veh. Technol. Mag. 2020 , 15 , 52–61. [ Google Scholar ] [ CrossRef ]
  • Chen, R.; Liu, M.; Hui, Y.; Cheng, N.; Li, J. Reconfigurable Intelligent Surfaces for 6G IoT Wireless Positioning: A Contemporary Survey. IEEE Internet Things J. 2022 , 9 , 23570–23582. [ Google Scholar ] [ CrossRef ]
  • Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022 , 58 , 3717–3724. [ Google Scholar ] [ CrossRef ]
  • Xu, J.; Liu, Y.; Mu, X.; Dobre, O.A. STAR-RISs: Simultaneous transmitting and reflecting reconfigurable intelligent surfaces. IEEE Comm. Lett. 2021 , 25 , 3134–3138. [ Google Scholar ] [ CrossRef ]
  • Hu, S.; Rusek, F.; Edfors, O. Beyond massive MIMO: The potential of data transmission with large intelligent surfaces. IEEE Trans. Signal Process. 2018 , 66 , 2746–2758. [ Google Scholar ] [ CrossRef ]
  • Wu, Q.; Zhang, R. Weighted sum power maximization for intelligent reflecting surface aided SWIPT. IEEE Wirel. Commun. Lett. 2020 , 9 , 586–590. [ Google Scholar ] [ CrossRef ]
  • Niu, H.; Chu, Z.; Zhou, F.; Zhu, Z.; Zhang, M.; Wong, K.-K. Weighted sum secrecy rate maximization using intelligent reflecting surface. IEEE Trans. Commun. 2021 , 69 , 6170–6184. [ Google Scholar ] [ CrossRef ]
  • Niu, H.; Chu, Z.; Zhou, F.; Zhu, Z.; Zhen, L.; Wong, K.-K. Robust Design for Intelligent Reflecting Surface-Assisted Secrecy SWIPT Network. IEEE Trans. Wirel. Commun. 2021 , 21 , 4133–4149. [ Google Scholar ] [ CrossRef ]
  • Zhang, Z.; Dai, L. Reconfigurable Intelligent Surfaces for 6G: Nine Fundamental Issues and One Critical Problem. Tsinghua Sci. Technol. 2023 , 28 , 929–939. [ Google Scholar ] [ CrossRef ]
  • Hayajneh, A.M.; Zaidi, S.A.R.; McLernon, D.C.; Ghogho, M. Drone empowered small cellular disaster recovery networks for resilient smart cities. In Proceedings of the 2016 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops), London, UK, 27 June 2016; pp. 1–6. [ Google Scholar ]
  • Zhao, S.; Ota, K.; Dong, M. UAV base station trajectory optimization based on reinforcement learning in post-disaster search and rescue operations. arXiv 2022 , arXiv:2202.10338. [ Google Scholar ]
  • Angjo, J.; Shayea, I.; Ergen, M.; Mohamad, H.; Alhammadi, A.; Daradkeh, Y.I. Handover management of drones in future mobile networks: 6G technologies. IEEE Access 2021 , 9 , 12803–12823. [ Google Scholar ] [ CrossRef ]
  • Friderikos, V. Airborne Urban Microcells with Grasping End Effectors: A Game Changer for 6G Networks? In Proceedings of the 2021 IEEE International Mediterranean Conference on Communications and Networking (MeditCom), Athens, Greece, 7–10 September 2021. [ Google Scholar ] [ CrossRef ]
  • Liu, S.; Gao, Z.; Wu, Y.; Ng, D.W.K.; Gao, X.; Wong, K.; Chatzinotas, S.; Ottersten, B. LEO satellite constellations for 5G and beyond: How will they reshape vertical domains? IEEE Commun. Mag. 2021 , 59 , 30–36. [ Google Scholar ] [ CrossRef ]
  • Hadani, R.; Rakib, S.; Tsatsanis, M.; Monk, A.; Goldsmith, A.J.; Molisch, A.F.; Calderbank, R. Orthogonal time frequency space modulation. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [ Google Scholar ]
  • Tang, G.; Zhu, L. Integrated Signal Design of Communication and Navigation Based on LEO Satellite ; University of Electronic Science and Technology of China: Chengdu, China, 2022. [ Google Scholar ]
  • Zhou, C.; Wu, W.; He, H.; Yang, P.; Lyu, F.; Cheng, N.; Shen, X. Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in SAGIN. IEEE Trans. Wirel. Commun. 2020 , 20 , 911–925. [ Google Scholar ] [ CrossRef ]
  • Mondal, S.; Al-Rubaye, S.; Tsourdos, A. Handover prediction for aircraft dual connectivity using model predictive control. IEEE Access 2021 , 9 , 44463–44475. [ Google Scholar ] [ CrossRef ]
  • Warrier, A.; Aljaburi, L.; Whitworth, H.; Al-Rubaye, S.; Tsourdos, A. Future 6G Communications Powering Vertical Handover in Non-Terrestrial Networks. IEEE Access 2024 , 12 , 33016–33034. [ Google Scholar ] [ CrossRef ]
  • Ghildiyal, Y.; Singh, R.; Alkhayyat, A.; Gehlot, A.; Malik, P.; Sharma, R.; Akram, S.V.; Alkwai, L.M. An imperative role of 6G communication with perspective of industry 4.0: Challenges and research directions, Sustainable Energy Technologies and Assessments. Sustain. Energy Technol. Assess. 2023 , 56 , 103047. [ Google Scholar ] [ CrossRef ]
  • The New High Tech Strategy Innovations for Germany. 2014. [Online]. Available online: https://ec.europa.eu/futurium/en/system/files/ged/hts_broschuere_engl_bf_1.pdf (accessed on 27 July 2024).
  • Kusiak, A. Smart manufacturing. Int. J. Prod. Res. 2018 , 56 , 508–517. [ Google Scholar ] [ CrossRef ]
  • Grau, A.; Indri, M.; Bello, L.; Sauter, T.O. Robots in industry. IEEE Ind. Electron. 2021 , 15 , 50–61. [ Google Scholar ] [ CrossRef ]
  • Aracil, C.; Aziebig, G.; Korondi, P.; Oh, S.; Tan, Z.; Ruderman, M.; He, W.; Ding, L.; Luo, H.; Yin, S.; et al. Toward smart systems. IEEE Ind. Electron. 2021 , 15 , 104–114. [ Google Scholar ] [ CrossRef ]
  • Chen, Z.; Chen, K.-C.; Dong, C.; Nie, Z. 6G Mobile Communications for Multi-Robot Smart Factory. J. ICT Stand. 2021 , 9 , 371–404. [ Google Scholar ] [ CrossRef ]
  • Han, B.; Habibi, M.A.; Richerzhagen, B.; Schindhelm, K.; Zeiger, F.; Lamberti, F.; Pratticò, F.G.; Upadhya, K.; Korovesis, C.; Belikaidis, I.-P.; et al. Digital Twins for Industry 4.0 in the 6G Era. IEEE Open J. Veh. Technol. 2023 , 4 , 820–835. [ Google Scholar ] [ CrossRef ]
  • Kuruvatti, N.P.; Habibi, M.A.; Partani, S.; Han, B.; Fellan, A.; Schotten, H.D. Empowering 6G communication systems with Digital Twin technology: A comprehensive survey of key concepts potential use cases standardization activities and future research directions. IEEE Access 2022 , 10 , 112158–112186. [ Google Scholar ] [ CrossRef ]
  • United Nations. Sustainable Development Goals. 2015. [Online]. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 3 February 2023).
  • Mihalj, T.; Li, H.; Babić, D.; Lex, C.; Jeudy, M.; Zovak, G.; Babić, D.; Eichberger, A. Road Infrastructure Challenges Faced by Automated Driving: A Review. Appl. Sci. 2022 , 12 , 3477. [ Google Scholar ] [ CrossRef ]
  • Noor-A-Rahim, M.; Liu, Z.; Lee, H.; Khyam, M.O.; He, J.; Pesch, D.; Moessner, K.; Saad, W.; Poor, H.V. 6G for Vehicle-to-Everything (V2X) Communications: Enabling Technologies, Challenges, and Opportunities. Proc. IEEE 2022 , 110 , 712–734. [ Google Scholar ] [ CrossRef ]
  • Kumar, V.; Ahmad, M.; Mishra, D.; Kumari, S.; Khan, M.K. RSEAP: RFID Based Secure and Efficient Authentication Protocol for Vehicular Cloud Computing. Veh. Commun. 2020 , 22 , 100213. [ Google Scholar ] [ CrossRef ]
  • Chen, C.H.; Lee, C.R.; Lu, W.C.H. Smart In-Car Camera System Using Mobile Cloud Computing Framework for Deep Learning. Veh. Commun. 2017 , 10 , 84–90. [ Google Scholar ] [ CrossRef ]
  • Ma, Y.; Wang, Z.; Yang, H.; Yang, L. Artificial intelligence applications in the development of autonomous vehicles: A survey. IEEE CAA J. Autom. Sin. 2020 , 7 , 315–329. [ Google Scholar ] [ CrossRef ]
  • Reddy, P.P. Driverless Car-Design of a Parallel and Self-Organizing System ; EasyChair: Manchester, UK, 2019. [ Google Scholar ]
  • Mendez, J.; Bierzynski, K.; Cuéllar, M.; Morales, D.P. Edge Intelligence: Concepts, architectures, applications and future directions. ACM Trans. Embed. Comput. Syst. TECS 2022 , 21 , 1–41. [ Google Scholar ] [ CrossRef ]
  • Rout, R.R.; Vemireddy, S.; Raul, S.K.; Somayajulu, D. Fuzzy logic-based emergency vehicle routing: An IoT system development for smart city applications. Comput. Elect. Eng. 2020 , 88 , 106839. [ Google Scholar ] [ CrossRef ]
  • Charoniti, E.; Klunder, G.; Schackmann, P.-P.; Schreuder, M.; de Souza Schwartz, R.; Spruijtenburg, D.; Stelwagen, U.; Wilmink, I. Environmental Benefits of C-V2X for 5GAA-5G Automotive. TNO, TNO Rep. TNO 2020 R11817. 2020. Available online: https://5gaa.org/content/uploads/2020/11/Environmental-Benefits-of-C-V2X.pdf (accessed on 27 July 2024).
  • Lee, G.; Guo, J.; Kim, K.J.; Orlik, P.; Ahn, H.; Di Cairano, S.; Saad, W. Edge computing for interconnected intersections in internet of vehicles. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020; pp. 480–486. [ Google Scholar ]
  • Ageing and Health. 1 October 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 27 July 2024).
  • Shah, T.; Yavari, A.; Mitra, K.; Saguna, S.; Jayaraman, P.P.; Rabhi, F.; Ranjan, R. Remote health care cyber-physical system: Quality of service (QoS) challenges and opportunities. IET Cyber-Phys. Syst. Theory Appl. 2016 , 1 , 40–48. [ Google Scholar ] [ CrossRef ]
  • Khullar, V.; Singh, H.P.; Miro, Y.; Anand, D.; Mohamed, H.G.; Gupta, D.; Kumar, N.; Goyal, N. IoT Fog-Enabled Multi-Node Centralized Ecosystem for Real Time Screening and Monitoring of Health Information. Appl. Sci. 2022 , 12 , 9845. [ Google Scholar ] [ CrossRef ]
  • Kiourti, A.; Nikita, K.S. A review of in-body biotelemetry devices: Implantables, ingestibles, and injectables. IEEE Trans. Biomed. Eng. 2017 , 64 , 1422–1430. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Abbasi, Q.H.; Ur-Rehman, M.; Qaraqe, K.; Alomainy, A. Advances in Body-CentricWireless Communication: Applications and State-of-the-Art ; no. 65; Institution of Engineering and Technology: London, UK, 2016. [ Google Scholar ]
  • Movassaghi, S.; Abolhasan, M.; Lipman, J.; Smith, D.; Jamalipour, A. Wireless Body Area Networks: A Survey. IEEE Commun. Surv. Tutor. 2014 , 16 , 1658–1686. [ Google Scholar ] [ CrossRef ]
  • Ahmed, A.; Xi, R.; Hou, M.; Shah, S.A.; Hameed, S. Harnessing Big Data Analytics for Healthcare: A Comprehensive Review of Frameworks, Implications, Applications, and Impacts. IEEE Access 2023 , 11 , 112891–112928. [ Google Scholar ] [ CrossRef ]
  • Lee, C.; Koo, B.-H.; Chae, C.-B.; Schober, R. The Internet of bio-nano things in blood vessels: System design and Prototypesj. Commun. Netw. 2023 , 25 , 222–231. [ Google Scholar ] [ CrossRef ]
  • Azmi, K.H.M.; Radzi, N.A.M.; Azhar, N.A.; Samidi, F.S.; Zulkifli, I.T.; Zainal, A.M. Active electric distribution network: Applications, challenges, and opportunities. IEEE Access 2022 , 10 , 134655–134689. [ Google Scholar ] [ CrossRef ]
  • Khosrojerdi, F.; Akhigbe, O.; Gagnon, S.; Ramirez, A.; Richards, G. Integrating artificial intelligence and analytics in smart grids: A systematic literature review. Int. J. Energy Sect. Manag. 2022 , 16 , 318–338. [ Google Scholar ] [ CrossRef ]
  • Abdullah, A.A.; Hassan, T.M. Smart grid (SG) properties and challenges: An overview. Discov. Energy 2022 , 2 , 8. [ Google Scholar ] [ CrossRef ]
  • Halle, P.D.; Shiyamala, S. Secure advance metering infrastructure protocol for smart grid power system enabled by the Internet of Things. Microprocess. Microsyst. 2022 , 95 , 104708. [ Google Scholar ] [ CrossRef ]
  • Goudarzi, A.; Ghayoor, F.; Waseem, M.; Fahad, S. Traore A survey on iot-enabled smart grids: Emerging, applications, challenges, and outlook. Energies 2022 , 15 , 6984. [ Google Scholar ] [ CrossRef ]
  • Mohammed, H. Alsharif, Abu Jahid, Raju Kannadasan, Mun-Kyeom Kim, Unleashing the potential of sixth generation (6G) wireless networks in smart energy grid management: A comprehensive review. Energy Rep. 2024 , 11 , 1376–1398. [ Google Scholar ] [ CrossRef ]
  • Judge, M.A.; Khan, A.; Manzoor, A.; Khattak, H.A. Overview of smart grid implementation: Frameworks, impact, performance and challenges. J. Energy Storage 2022 , 49 , 104056. [ Google Scholar ] [ CrossRef ]
  • Aggarwal, S.; Kumar, N.; Tanwar, S.; Alazab, M. A survey on energy trading in the smart grid: Taxonomy, research challenges and solutions. IEEE Access 2021 , 9 , 116231–116253. [ Google Scholar ] [ CrossRef ]
  • Arcas, G.I.; Cioara, T.; Anghel, I.; Lazea, D.; Hangan, A. Edge Offloading in Smart Grid. Smart Cities 2024 , 7 , 680–711. [ Google Scholar ] [ CrossRef ]
  • Afzal, M.; Li, J.; Amin, W.; Huang, Q.; Umer, K.; Ahmad, S.A.; Ahmad, F.; Raza, A. Role of blockchain technology in transactive energy market: A review. Sustain. Energy Technol. Assess. 2022 , 53 , 102646. [ Google Scholar ] [ CrossRef ]
  • Tariq, M.; Ali, M.; Naeem, F.; Poor, H.V. Vulnerability Assessment of 6G-Enabled Smart Grid Cyber–Physical Systems. IEEE Internet Things J. 2020 , 8 , 5468–5475. [ Google Scholar ] [ CrossRef ]
  • Gao, J.; Asamoah, K.O.; Xia, Q.; Sifah, E.B.; Amankona, O.I.; Xia, H. A Blockchain Peer-to-Peer Energy Trading System for Microgrids. IEEE Trans. Smart Grid 2023 , 14 , 3944–3960. [ Google Scholar ] [ CrossRef ]
  • Vergara, S.E.; Tchobanoglous, G. Municipal solid waste and the environment: A global perspective. Annu. Rev. Environ. Resour. 2012 , 37 , 277–309. [ Google Scholar ] [ CrossRef ]
  • Anagnostopoulos, T.; Zaslavsky, A.; Sosunova, I.; Fedchenkov, P.; Medvedev, A.; Ntalianis, K.; Skourlas, C.; Rybin, A.; Khoruznikov, S. A stochastic multi-agent system for Internet of Things-enabled waste management in smart cities. Waste Manag. Res. J. Sustain. Circ. Econ. 2018 , 36 , 1113–1121. [ Google Scholar ] [ CrossRef ]
  • Henaien, A.; Ben Elhadj, H.; Fourati, L.C. A sustainable smart IoT-based solid waste management system. Futur. Gener. Comput. Syst. 2024 , 157 , 587–602. [ Google Scholar ] [ CrossRef ]
  • Ahmed, M.M.; Hassanien, E.; Hassanien, A.E. IoT-based intelligent waste management system. Neural Comput. Appl. 2023 , 35 , 23551–23579. [ Google Scholar ] [ CrossRef ]
  • Maoliang, L.; Lin, X. Incentivizing household recycling crowds out public support for other waste management policies: A long-term quasi-experimental study. J. Environ. Manag. 2021 , 299 , 1–9. [ Google Scholar ] [ CrossRef ]
  • Belsare, K.; Singh, M.; Gandam, A.; Malik, P.K.; Agarwal, R.; Gehlot, A. An integrated approach of IoT and WSN using wavelet transform and machine learning for the solid waste image classification in smart cities. Trans. Emerg. Telecommun. Technol. 2023 , 35 , e4857. [ Google Scholar ] [ CrossRef ]
  • Bourougaa-Tria, S.; Mokhati, F.; Tria, H.; Bouziane, O. SPubBin: Smart Public Bin Based on Deep Learning Waste Classification: An IOT system for Smart Environment in Algeria. Informatica 2022 , 46 , 41. [ Google Scholar ] [ CrossRef ]
  • Mookkaiah, S.S.; Thangavelu, G.; Hebbar, R.; Haldar, N.; Singh, H. Design and development of smart Internet of Things–based solid waste management system using computer vision. Environ. Sci. Pollut. Res. 2022 , 29 , 64871–64885. [ Google Scholar ] [ CrossRef ]
  • Cao, B.; Chen, X.; Lv, Z.; Li, R.; Fan, S. Optimization of Classified Municipal Waste Collection Based on the Internet of Connected Vehicles. IEEE Trans. Intell. Transp. Syst. 2020 , 22 , 5364–5373. [ Google Scholar ] [ CrossRef ]
  • Rahmanifar, G.; Mohammadi, M.; Sherafat, A.; Hajiaghaei-Keshteli, M.; Fusco, G.; Colombaroni, C. Heuristic approaches to address vehicle routing problem in the Iot-based waste management system. Expert Syst. Appl. 2023 , 220 , 119708. [ Google Scholar ] [ CrossRef ]
  • Kona, V.V.S.; Subramoniam, M. A smart Iot-based waste management system using vehicle shortest path routing and trashcan visiting decision making based ondeep convolutional neural network. Peer-Peer Netw. Appl. 2024 , 17 , 1051–1074. [ Google Scholar ] [ CrossRef ]
  • Salehi-Amiri, A.; Akbapour, N.; Hajiaghaei-Keshteli, M.; Gajpal, Y.; Jabbarzadeh, A. Designing an effective two-stage, sustainable, and IoT based waste management system. Renew. Sustain. Energy Rev. 2022 , 157 , 112031. [ Google Scholar ] [ CrossRef ]
  • Qi, Q.; Chen, X.; Zhong, C.; Zhang, Z. Integration of energy, computation and communication in 6g cellular internet of things. IEEE Commun. Lett. 2020 , 24 , 1333–1337. [ Google Scholar ] [ CrossRef ]
  • Tasci, R.A.; Kilinc, F.; Basar, E.; Alexandropoulos, G.C. A New RIS Architecture with a Single Power Amplifier: Energy Efficiency and Error Performance Analysis. IEEE Access 2022 , 10 , 44804–44815. [ Google Scholar ] [ CrossRef ]
  • Malik, U.M.; Javed, M.A.; Zeadally, S.; Islam, S.U. Energy-Efficient Fog Computing for 6G-Enabled Massive IoT: Recent Trends and Future Opportunities. IEEE Internet Things J. 2021 , 9 , 14572–14594. [ Google Scholar ] [ CrossRef ]
  • Hossain, M.A.; Hossain, A.R.; Ansari, N. AI in 6G: Energy-Efficient Distributed Machine Learning for Multilayer Heterogeneous Networks. IEEE Netw. 2022 , 36 , 84–91. [ Google Scholar ] [ CrossRef ]
  • Shen, S.; Yu, C.; Zhang, K.; Ni, J.; Ci, S. Adaptive and Dynamic Security in AI-Empowered 6G: From an Energy Efficiency Perspective. IEEE Commun. Stand. Mag. 2021 , 5 , 80–88. [ Google Scholar ] [ CrossRef ]
  • Xie, H.; Zhan, Y.; Zeng, G.; Pan, X. LEO Mega-Constellations for 6G Global Coverage: Challenges and Opportunities. IEEE Access 2021 , 9 , 164223–164244. [ Google Scholar ] [ CrossRef ]
  • José, R.; Rodrigues, H. A Review on Key Innovation Challenges for Smart City Initiatives. Smart Cities 2024 , 7 , 141–162. [ Google Scholar ] [ CrossRef ]
  • Yoo, Y.; Boland, R.J.; Lyytinen, K.; Majchrzak, A. Organizing for innovation in the digitized world. Organ. Sci. 2012 , 23 , 1398–1408. [ Google Scholar ] [ CrossRef ]
  • Zittrain, J.L. The Generative Internet ; The Harvard Law Review Association: Cambridge, MA, USA, 2006. [ Google Scholar ]
  • Goumopoulos, C. Smart City Middleware: A Survey and a Conceptual Framework. IEEE Access 2024 , 12 , 4015–4047. [ Google Scholar ] [ CrossRef ]
  • Chang, K.-C.; Chu, K.-C.; Wang, H.-C.; Lin, Y.-C.; Pan, J.-S. Agent-based middleware framework using distributed CPS for improving resource utilization in smart city. Futur. Gener. Comput. Syst. 2020 , 108 , 445–453. [ Google Scholar ] [ CrossRef ]
  • Puiu, D.; Barnaghi, P.; Tonjes, R.; Kumper, D.; Ali, M.I.; Mileo, A.; Parreira, J.X.; Fischer, M.; Kolozali, S.; Farajidavar, N.; et al. CityPulse: Large scale data analytics framework for smart cities. IEEE Access 2016 , 4 , 1086–1108. [ Google Scholar ] [ CrossRef ]
  • Cirillo, F.; Solmaz, G.; Berz, E.L.; Bauer, M.; Cheng, B.; Kovacs, E. A standard-based open source IoT platform: FIWARE. IEEE Internet Things Mag. 2019 , 2 , 12–18. [ Google Scholar ] [ CrossRef ]
  • Pliatsios, A.; Lymperis, D.; Goumopoulos, C. S2NetM: A semantic social network of things middleware for developing smart and collaborative IoT-based solutions. Future Internet 2023 , 15 , 207. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

Parameter5G6G
Data Rate, Band~20 Gbps, sub-6 GHz, Crowded~1 TBPS, ultra-fast (THz)
ServicesLimited capability to support new communicationHolographic communication, augmented reality, immersive gaming, etc.
LatencyLow latencyUltra-low latency and high reliability
ArchitectureMassive MIMOCell-free massive MIMO, intelligent surfaces
CoverageInfrastructure-basedUbiquitous connectivity (space–air–ground–sea)
SecuritySecurity issuesBlockchain and quantum communication.
AI IntegrationPartialFull
Satellite IntegrationNoFull
Source DatabasesIEEE Xplore, Web of Science (WoS), Taylor and Francis, ASCE Library, Scopus, and Springer
Search String(“Artificial Intelligence” OR “THz” OR “ISAC” OR “Block Chain” OR “UAV”) AND (“6G”) AND (“Smart Cities”)
Time period2019–2024
Article TypeJournal, Review, Letter, Book Chapter, Short Survey, Article
Language RestrictionEnglish
Included Subject AreaComputer Science, Engineering, Energy, Business, Management and Accounting, Mathematics, Environmental Science, Decision Sciences
Excluded Subject AreaChemical Engineering, Arts and Humanities, Health Professions, Agricultural and Biological Sciences, Neuroscience, Multidisciplinary, Psychology, Pharmacology, Toxicology and Pharmaceutics, Immunology and Microbiology, Nursing, Social Sciences, Economics Econometrics and Finance, Physics and Astronomy, Materials Science, Medicine, Biochemistry, Genetics and Molecular Biology, Chemistry, Earth and Planetary Sciences
Ref.AuthorsYear of Public.Research AreaMajor Contribution
[ ]Fong, B et al.2023VehicularInvestigates technical issues regarding the design and implementation of vehicle-to-infrastructure (V2I) systems to enhance reliability in a smart city with 6G as backbone.
[ ]P Mishra et al.2023IoT, VisionProposes framework, architecture and requirements for 6G IoT network. Discusses emerging technologies for 6G concerning artificial intelligence/machine learning, sensing networks, spectrum bands, and security.
[ ]Nahid Parvaresh, Burak Kantarci,2023UAV base stationNetwork performance of UAV-BS is improved by use of proposed continuous actor-critic deep reinforcement learning method to address the 3D location optimization issue of UAV-BSs in smart cities.
[ ]Z. Yang et al.2023Edge cloud, Energy efficiencyPaper analyzes challenges in developing a low-carbon smart city in 6G-enabled smart cities. Also proposes a visual end-edge-cloud architecture (E C) that is AI-driven for attaining low carbon emission in smart cities.
[ ]N. Sehito et al.2024IRS, UAV, NOMA, Spectral efficiencyPaper introduces a new optimization scheme by utilizing IRSs in NOMA multi-UAV networks in 6G-enabled smart cities, resulting in significant performance enhancement in terms of spectral efficiency.
[ ]Prabhat Ranjan Singh et al.2023AI, Technology evolution, Smart city applicationsPaper covers evolution of network technology, AI approaches for 6G systems, importance of AI in advanced network model development in 6G-enabled smart city applications.
[ ]Murroni, M et al.2023Vision, Enabling technologiesPaper furnishes an update on the smart city arena with the use of 6G. Paper describes the role of enabling technologies and their specific employment plans.
[ ]Kamruzzaman2022IoT, Energy efficiency, Use casesPresents key technologies, their applications, and IoT technologies trends for energy-efficient 6G-enabled smart city. Also, identifies and discusses key enabling technologies.
[ ]Kim, N et al.2024Standardization and key enabling technologies Paper provides key features and recent trends in standardization of smart city concept. Paper highlights potential key technologies of 6G that can be used in various urban use cases in 6G-enabled smart cities.
[ ]Ismail, L.; Buyya, R2022AI-enabled 6G smart citiesDiscusses evolution of wireless-technology generations, AI implementation in 6G and its self-learning models in smart city applications.
[ ]Zakria Qadir et al.2023Survey, IoTEmerging 6G connectivity solutions and their applications in IoT to serve smart cities are surveyed in this paper.
[ ]Misbah Shafi et al.20246G technologiesThe framework of 6G network is presented with its key technologies that have substantial effect on the key performance indicators of a wireless communication network.
Natural Resources and EnergyMobility and TransportLiving and EnvironmentPeople and EconomyGovernment
Smart Grid.People Mobility.Pollution Control.Education and School.e-Governance.
Public Lighting.City Logistics.Public Safety.Entertainment and Culture.Transparency.
Waste Management. Health Care.Entrepreneurship and Innovation.
Water Management Public Spaces
Welfare Services.
Smart Homes.
Ref.THzAIBCQCNTN (UAV)MECRISISACHCVLC
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
This Paper
Potential 6G TechnologyBrief Description
Artificial Intelligence (AI)AI can be used to analyze, manage and optimize resources and to efficiently support 6G networks. AI can be used for tasks like efficient channel estimation, energy efficiency, modulation recognition, data caching, traffic prediction, radio resource management, mobility management, etc.
Terahertz Communication (THz)Uses frequency band 0.1 to 10 THz. Ability to attain ultra-high (up to 1 Tbps) data rates and wide bandwidth.
Blockchain (BC)A type of distributed ledger technology to ensure safety, privacy, scalability and reliability in this complex heterogeneous architecture.
Quantum Computing (QC)Based on quantum no-cloning theorem and the principle of uncertainty, absolute randomness is introduced by the use of the quantum nature of information, which provides security and enhanced channel capacity.
Non Terrestrial networks (NTN)Includes drones and satellites and is used to extend coverage footprint of terrestrial base stations, provide additional capacity in dense urban hotspots. Used in disaster recovery and remote or rural areas.
Mobile Edge Communication (MEC)By placing computing resources closer to end user, it reduces delays and latency and enhances processing speed and on-premise security
Integrated Sensing and Communication (ISAC)Optimizes the allocation of scarce resources and contributes to better decision-making processes by combining both sensing and communication tasks, which enhances efficiency.
Reconfigurable Intelligent Surfaces (RISs)A planar surface with array of passive elements whose characteristics can be altered dynamically. Used in 6G-THz to improve coverage, NLOS scenarios.
Holographic Communication (HC)HC is an application used in transmitting human-sized immersive and interactive holograms consisting of 3D videos and images that require extremely high data rates with ultra-low latency.
Visible Light Communication (VLC)VLC offers numerous advantages, such as, energy efficiency, cost-effectiveness, un-licensed spectrum, no electromagnetic interference, secure access technology, and large bandwidth.
Ref.YearApplication Domain of Smart CitiesTechnologies UsedAreas/Topics Covered
[ ]2024V2X6G,
Blockchain,
Federated learning,
Fog Computing
Comprehensive V2X security analysis.
Future research direction for privacy in XR, secure SDN, physical layer security in THz.
[ ]2024Smart Traffic ManagementEdge Computing, Blockchain, Reinforced learningTraffic optimization is achieved by decentralized integration of IoT sensors on vehicles and traffic signals and edge devices and the use of BC rules for real-time decisions.
[ ]2024Supply Chain ManagementBlockchain, IoT, Edge ComputingA Blockchain-based and IoT-enabled transparent and secure supply chain management framework is proposed for public emergency services in smart cities.
[ ]2023Intelligent Transport System (ITS)BlockchainAn ITS cross-domain data interaction framework between devices and agencies is proposed to achieve secure and efficient cross-chain communication.
[ ]2023IoTBlockchain, Big Data, AIFramework and architecture based on Blockchain, AI and Big Data.
[ ]2023Industrial Applications6G, Blockchain, IoTCase study of smart supply chain.
Benefits and challenges of BT and 6G-IoT
[ ]2023IoD (Internet of Drones)6G, BlockchainAnalysis of multilayered Blockchain-IoD novel Global Compliance System (GCoS) and Swarm Security (Sse) system
[ ]2023IoT-Blockchain efficiency6G, IoT-oriented BlockchainImproves Blockchain-IoT performance by targeted optimization to improve low power efficiency and slow ledger synchronization.
[ ]2022IoV6G, BlockchainA survey paper for BC in IoVs sharing underlying 6G technology. Explores how privacy and security issues in IoVs can be tackled using BC technology.
[ ]2022Food Supply Chain ManagementIoT, BlockchainBlockchain enables traceability of food supply from factories/fields to the customer’s table. IoT devices probe food condition.
Use CaseDescription
Remote Surgery ]. ]. ].
Holographic Teleconferencing ]. ]. ].
Immersive Gaming ].
Metaverse ].
Tech.Applications/BenefitsChallenges
AI ]. , ]. , , , ]. ]. ] ]. ]. , , , , , , , , , , , ]. ]. ]. , , ].
ISAC , ]. ]. ]. ]. ].
THz , ]. , ]. ] ]. ]. ].
BC , ]. ]. ]. ]
QC , , ]. , ]. , ]. , , ] ]. , ].
NTN , ].
MEC , ]. ].
RIS ]. ] ] and high-precision positioning [ , ]. ]
IC , , ]. , ]. ]. ].
VLC
Application (Use Case)BenefitsDevices/Tech Used
Smart RoutingAvoidance of traffic congestion.
Useful for emergency vehicles.
Traffic balancing on roads.
Reduction in emissions [ ]
Reduce delays.
IOT sensors.
Vehicle ad-hoc networks.
AI real-time routing algorithms [ ].
Cloud and edge computing for data processing and analysis.
Smart ParkingContribution to sustainability.
Optimal utilization of parking spaces.
Reduced time for drivers to search for parking spaces.
V2V and V2I communication.
Use of sensors for indicating parking status.
AI and cloud computing.
Speed HarmonizationReduces frequent need for acceleration and deceleration.
Continuous traffic flow.
Reduces emissions.
Safe travel.
AI and cloudification.
Green-light coordination.
Green DrivingReduction of fuel consumption.
Reduction of pollution near critical areas like hospitals.
Collection of pollution data by roadside sensors.
Data transfer to centralized cloud.
Traffic management decision based on AI algorithm.
On-road displays for flashing traffic management decisions.
Coordinated ManeuversSmooth traffic flow.
Emission reduction.
V2I information exchange among vehicles and RSU [ ].
Low-latency, low-delay transmission.
Advanced AI implemented at edge for delay-free decisions.
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Sharma, S.; Popli, R.; Singh, S.; Chhabra, G.; Saini, G.S.; Singh, M.; Sandhu, A.; Sharma, A.; Kumar, R. The Role of 6G Technologies in Advancing Smart City Applications: Opportunities and Challenges. Sustainability 2024 , 16 , 7039. https://doi.org/10.3390/su16167039

Sharma S, Popli R, Singh S, Chhabra G, Saini GS, Singh M, Sandhu A, Sharma A, Kumar R. The Role of 6G Technologies in Advancing Smart City Applications: Opportunities and Challenges. Sustainability . 2024; 16(16):7039. https://doi.org/10.3390/su16167039

Sharma, Sanjeev, Renu Popli, Sajjan Singh, Gunjan Chhabra, Gurpreet Singh Saini, Maninder Singh, Archana Sandhu, Ashutosh Sharma, and Rajeev Kumar. 2024. "The Role of 6G Technologies in Advancing Smart City Applications: Opportunities and Challenges" Sustainability 16, no. 16: 7039. https://doi.org/10.3390/su16167039

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

Microsoft Research: Advancing science and technology to benefit humanity

Microsoft Research podcast

Abstracts: August 15, 2024

Microsoft Research Podcast - Abstracts | May 20, 2024 | Andrey Kolobov

Research Focus: Week of August 12, 2024  

August 14, 2024

Headshots of Brendan Lucier and Mert Demirer for the Microsoft Research Podcast

Collaborators: AI and the economy with Brendan Lucier and Mert Demirer  

August 8, 2024 | Gretchen Huizinga, Brendan Lucier, and Mert Demirer

Male Doctor Using Computer At Desk In Hospital

Large-scale pathology foundation models show promise on a variety of cancer-related tasks  

August 8, 2024 | Kristen Severson, Philip Rosenfield

Explore Microsoft Research Forum

various abstract 3D shapes on a light blue background

Microsoft Research Forum  

Microsoft Research Forum | Episode 3 | Jacki O'Neill

Keynote: Building Globally Equitable AI  

Microsoft Research Forum | Episode 3 | panel discussion

Panel Discussion: Generative AI for Global Impact: Challenges and Opportunities  

Research Forum | Episode 3 - abstract chalkboard background with colorful hands

Research Forum Brief | June 2024  

Careers in research, sustainability impact manager – cloud supply chain (cscp)  .

Location : India

Principal Data Scientist – M365 Security Engineering  

Location : Hyderabad, Telangana, India

Principal Data Science Manager – Engineering, Data, Operations, and Tools (EDOT) Data team  

Location : Bangalore, Karnataka, India

Senior Data & Applied Scientist Manager – Data Science Solutions team  

Data & applied scientist ii – microsoft power platform  , data and applied scientist ii – office experience organization (oxo)  , data & applied scientist 2 – intelligent conversations & communications cloud (ic3)  .

Locations : Remote; Tallinn, Estonia

Machine Learning Research Engineer – Strategic Planning and Architecture (SPARC) team  

Location : Cambridge, UK

Data & Applied Scientist II – Bing Local Team  

Location : Barcelona, Spain

Cambridge Residency Programme – AI for Domains  

Cambridge residency program – robotics  , data scientist ii – microsoft azure  .

Location : Bucharest, Romania

Data Science Internship Opportunities  

Location : Herzliya, Tel Aviv, Israel

Senior Security Researcher – Microsoft Defender For Endpoint  

Principal security research manager – microsoft defender for endpoint  .

Location : Israel

Hybrid Cloud Security Researcher – EPSF IL  

Cloud security researcher – epsf il  , senior cloud security researcher – epsf il  , senior research software engineer – ai frontiers  .

Location : Redmond, WA, US

Member of Technical Staff, Data Scientist – Microsoft AI (MS AI)  

Locations : Mountain View, CA, US; New York, NY, US; Redmond, WA, US

Member of Technical Staff, Data Science Manager – Microsoft AI (MS AI)  

Research intern – action models and reinforcement learning  .

Location : New York, NY, US

Senior Data Scientist – Industry Solutions Engineering (ISE)  

Locations : Boston, MA, US; New York, NY, US; Remote (within US)

Data Scientist, Product Analytics – Visual Studio & Visual Studio Code  

Locations : Redmond, WA, US; Remote (within US)

Events & conferences

Microsoft research forum | episode 4  .

Upcoming: September 3, 2024

News & awards

Bhaskar mitra receives two acm sigir early career researcher awards  .

ACM SIGIR  |  Jul 29, 2024

‘Enormous business potential’: Microsoft on why GraphRAG outperforms naive RAG  

The Stack  |  Jul 26, 2024

Amini receives “Rising Star” award at VentureBeat’s 6th Annual Women in AI awards  

VentureBeat  |  Jul 11, 2024

Sriram Rajamani at Microsoft Research on AI and deep tech in India  

Forbes India  |  Jun 28, 2024

  • Follow on X
  • Like on Facebook
  • Follow on LinkedIn
  • Subscribe on Youtube
  • Follow on Instagram
  • Subscribe to our RSS feed

Share this page:

  • Share on Facebook
  • Share on LinkedIn
  • Share on Reddit

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Sustainability
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

3 Questions: How to prove humanity online

Press contact :, media download.

Isometric drawing shows rows of robots on phones, and in the middle is a human looking up.

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license . You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

Isometric drawing shows rows of robots on phones, and in the middle is a human looking up.

Previous image Next image

As artificial intelligence agents become more advanced, it could become increasingly difficult to distinguish between AI-powered users and real humans on the internet. In a new white paper , researchers from MIT, OpenAI, Microsoft, and other tech companies and academic institutions propose the use of personhood credentials, a verification technique that enables someone to prove they are a real human online, while preserving their privacy.

MIT News spoke with two co-authors of the paper, Nouran Soliman, an electrical engineering and computer science graduate student, and Tobin South, a graduate student in the Media Lab, about the need for such credentials, the risks associated with them, and how they could be implemented in a safe and equitable way.

Q:  Why do we need personhood credentials?

Tobin South:  AI capabilities are rapidly improving. While a lot of the public discourse has been about how chatbots keep getting better, sophisticated AI enables far more capabilities than just a better ChatGPT, like the ability of AI to interact online autonomously. AI could have the ability to create accounts, post content, generate fake content, pretend to be human online, or algorithmically amplify content at a massive scale. This unlocks a lot of risks. You can think of this as a “digital imposter” problem, where it is getting harder to distinguish between sophisticated AI and humans. Personhood credentials are one potential solution to that problem.

Nouran Soliman: Such advanced AI capabilities could help bad actors run large-scale attacks or spread misinformation. The internet could be filled with AIs that are resharing content from real humans to run disinformation campaigns. It is going to become harder to navigate the internet, and social media specifically. You could imagine using personhood credentials to filter out certain content and moderate content on your social media feed or determine the trust level of information you receive online.

Q:  What is a personhood credential, and how can you ensure such a credential is secure?

South:  Personhood credentials allow you to prove you are human without revealing anything else about your identity. These credentials let you take information from an entity like the government, who can guarantee you are human, and then through privacy technology, allow you to prove that fact without sharing any sensitive information about your identity. To get a personhood credential, you are going to have to show up in person or have a relationship with the government, like a tax ID number. There is an offline component. You are going to have to do something that only humans can do. AIs can’t turn up at the DMV, for instance. And even the most sophisticated AIs can’t fake or break cryptography. So, we combine two ideas — the security that we have through cryptography and the fact that humans still have some capabilities that AIs don’t have — to make really robust guarantees that you are human.

Soliman:  But personhood credentials can be optional. Service providers can let people choose whether they want to use one or not. Right now, if people only want to interact with real, verified people online, there is no reasonable way to do it. And beyond just creating content and talking to people, at some point AI agents are also going to take actions on behalf of people. If I am going to buy something online, or negotiate a deal, then maybe in that case I want to be certain I am interacting with entities that have personhood credentials to ensure they are trustworthy.

South:  Personhood credentials build on top of an infrastructure and a set of security technologies we’ve had for decades, such as the use of identifiers like an email account to sign into online services, and they can complement those existing methods.

Q:  What are some of the risks associated with personhood credentials, and how could you reduce those risks?

Soliman:  One risk comes from how personhood credentials could be implemented. There is a concern about concentration of power. Let’s say one specific entity is the only issuer, or the system is designed in such a way that all the power is given to one entity. This could raise a lot of concerns for a part of the population — maybe they don’t trust that entity and don’t feel it is safe to engage with them. We need to implement personhood credentials in such a way that people trust the issuers and ensure that people’s identities remain completely isolated from their personhood credentials to preserve privacy.

South:  If the only way to get a personhood credential is to physically go somewhere to prove you are human, then that could be scary if you are in a sociopolitical environment where it is difficult or dangerous to go to that physical location. That could prevent some people from having the ability to share their messages online in an unfettered way, possibly stifling free expression. That’s why it is important to have a variety of issuers of personhood credentials, and an open protocol to make sure that freedom of expression is maintained.

Soliman:  Our paper is trying to encourage governments, policymakers, leaders, and researchers to invest more resources in personhood credentials. We are suggesting that researchers study different implementation directions and explore the broader impacts personhood credentials could have on the community. We need to make sure we create the right policies and rules about how personhood credentials should be implemented.

South: AI is moving very fast, certainly much faster than the speed at which governments adapt. It is time for governments and big companies to start thinking about how they can adapt their digital systems to be ready to prove that someone is human, but in a way that is privacy-preserving and safe, so we can be ready when we reach a future where AI has these advanced capabilities. 

Share this news article on:

Related links.

  • Nouran Soliman
  • Tobin South
  • Computer Science and Artificial Intelligence Laboratory
  • Department of Electrical Engineering and Computer Science
  • School of Architecture and Planning

Related Topics

  • Artificial intelligence
  • Cybersecurity
  • Social media
  • Social networks
  • Computer Science and Artificial Intelligence Laboratory (CSAIL)
  • Electrical Engineering & Computer Science (eecs)

Related Articles

Cartoon image of an anthropomorphized computer character talking on an old-fashioned telephone

3 Questions: What you need to know about audio deepfakes

People cross Mass Ave, with the columns and steps off Lobby 7 in background.

MIT group releases white papers on governance of AI

Rodney Brooks holding up a book while speaking

What does the future hold for generative AI?

The United States Capital dome is shown in daytime.

MIT professor to Congress: “We are at an inflection point” with AI

Previous item Next item

More MIT News

Dominika Ďurovčíková stands in front of a giant photo of a galaxy.

When the lights turned on in the universe

Read full story →

Rachael Rosco and Brandon Sun face one another across a desk strewn with various tools and components

Lincoln Laboratory and National Strategic Research Institute launch student research program to tackle biothreats to national security

Christine Ortiz headshot

Christine Ortiz named director of MIT Technology and Policy Program

Rendering of four square batteries in fluid

MIT engineers design tiny batteries for powering cell-sized robots

Screenshot of NeuroTrALE software shows hundreds of neuron filaments in red and one neuron highlighted in yellow.

New open-source tool helps to detangle the brain

A cartoon robot inspects a pile of wingdings with a magnifying glass, helping it think about how to piece together a jigsaw puzzle of a robot moving to different locations.

LLMs develop their own understanding of reality as their language abilities improve

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

IMAGES

  1. (PDF) Data Collection and New Technology

    research paper new technologies

  2. (PDF) Solar Energy Technology

    research paper new technologies

  3. (PDF) NANOTECHNOLOGY IMPACT ON INFORMATION TECHNOLOGY

    research paper new technologies

  4. 38+ Research Paper Samples

    research paper new technologies

  5. Technology Topics 100 technology topics for research papers

    research paper new technologies

  6. How to write a technical research paper

    research paper new technologies

COMMENTS

  1. Digital Transformation: An Overview of the Current State of the Art of

    Due to this topic's increasing presence in research, this paper seeks to provide a broader and more forward-looking view of it. Besides the investments needed to transform open initiatives into new technologies and business models, transformation depends on how societies innovate and how DT makes science more open, collaborative, and global ...

  2. Technology

    AI produces gibberish when trained on too much AI-generated data. Generative AI models are now widely accessible, enabling everyone to create their own machine-made something. But these models can ...

  3. Seven technologies to watch in 2024

    Advances in artificial intelligence are at the heart of many of this year's most exciting areas of technological innovation. By. Michael Eisenstein. Illustration: The Project Twins. From protein ...

  4. Internet of Things (IoT) for Next-Generation Smart Systems: A Review of

    This paper presents an exhaustive review for these key enabling technologies and also discusses the new emerging use cases of 5G-IoT driven by the advances in artificial intelligence, machine and deep learning, ongoing 5G initiatives, quality of service (QoS) requirements in 5G and its standardization issues. ...

  5. The Rise of New Technologies in Marketing: A Framework and Outlook

    This special issue on "New Technologies in Marketing" presents a broad spectrum of research that investigates how new technologies drive marketing practice and can stimulate further research. By elucidating how new technology enables new forms of interaction among consumers and firms, this research shows that new technology is spawning new ...

  6. Technological Innovation: Articles, Research, & Case Studies on

    New research on technological innovation from Harvard Business School faculty on issues including using data mining to improve productivity, why business IT innovation is so difficult, and the business implications of the technology revolution. ... The goal was to improve patient outcomes. The company had grown quickly, and its technology had ...

  7. Digital innovation: transforming research and practice

    There is no doubt that digital technologies are spawning ongoing innovation across most if not all sectors of the economy and society. In this essay, we take stock of the characteristics of digital technologies that give rise to this new reality and introduce the papers in this special issue. In addition, we also highlight the unprecedent ...

  8. New energy technology research

    This study reveals that: 1. Global research in the new energy field is in a period of accelerated growth, with solar energy, energy storage and hydrogen energy receiving extensive attention from ...

  9. ScienceDaily: Your source for the latest research news

    ScienceDaily features breaking news about the latest discoveries in science, health, the environment, technology, and more -- from leading universities, scientific journals, and research ...

  10. [2408.06292] The AI Scientist: Towards Fully Automated Open-Ended

    One of the grand challenges of artificial general intelligence is developing agents capable of conducting scientific research and discovering new knowledge. While frontier models have already been used as aides to human scientists, e.g. for brainstorming ideas, writing code, or prediction tasks, they still conduct only a small part of the scientific process. This paper presents the first ...

  11. These are the Top 10 Emerging Technologies of 2024

    The World Economic Forum's Top 10 Emerging Technologies of 2024 report lists this year's most impactful emerging technologies. The list includes ways artificial intelligence is accelerating scientific research with a focus on applications in health, communication, infrastructure and sustainability.

  12. Leading the challenges of implementing new technologies in

    The new technology implementation (NTI) process, which is defined as "the use of knowledge to apply tools, materials, processes and techniques to come up with new solutions to problems" ([3]; p. 6), presents a promise to more effective organizational response and adaptability to emerging environmental conditions [4].

  13. The Diffusion of New Technologies

    The Diffusion of New Technologies. Aakash Kalyani, Nicholas Bloom, Marcela Carvalho, Tarek Alexander Hassan, Josh Lerner & Ahmed Tahoun. Working Paper 28999. DOI 10.3386/w28999. Issue Date July 2021. Revision Date August 2024. We identify phrases associated with novel technologies using textual analysis of patents, job postings, and earnings ...

  14. Information Technology: News, Articles, Research, & Case Studies

    New research on information technology from Harvard Business School faculty on issues including the HealthCare.gov fiasco, online privacy concerns, and the civic benefits of technologies that utilize citizen-created data. ... Working Paper Summaries Open Source Software and Global Entrepreneurship. by Nataliya Langburd Wright, Frank Nagle, and ...

  15. McKinsey technology trends outlook 2024

    New and notable. The two trends that stood out in 2023 were gen AI and electrification and renewables. Gen AI has seen a spike of almost 700 percent in Google searches from 2022 to 2023, along with a notable jump in job postings and investments. The pace of technology innovation has been remarkable. Over the course of 2023 and 2024, the size of ...

  16. Next-Generation Sequencing Technology: Current Trends and Advancements

    Next-generation sequencing (NGS) is a powerful tool used in genomics research. NGS can sequence millions of DNA fragments at once, providing detailed information about the structure of genomes, genetic variations, gene activity, and changes in gene behavior. Recent advancements have focused on faster and more accurate sequencing, reduced costs ...

  17. Understanding the role of digital technologies in education: A review

    The primary research objectives of this paper are as under: RO1: - To study the need for digital technologies in education; ... New technologies are introduced by automating repetitive procedures and elements of the educational process. There are tools available for developing and grading exams. Most will post the findings to a database, where ...

  18. Study and Investigation on 5G Technology: A Systematic Review

    Abstract. In wireless communication, Fifth Generation (5G) Technology is a recent generation of mobile networks. In this paper, evaluations in the field of mobile communication technology are presented. In each evolution, multiple challenges were faced that were captured with the help of next-generation mobile networks.

  19. Technology News, Research & Innovations

    Technology. Read the latest technology news on SciTechDaily, your comprehensive source for the latest breakthroughs, trends, and innovations shaping the world of technology. We bring you up-to-date insights on a wide array of topics, from cutting-edge advancements in artificial intelligence and robotics to the latest in green technologies ...

  20. A new approach to fine-tuning quantum materials

    The new technique is not limited to Weyl semimetals. "We can use this method for any inorganic bulk material, and for thin films as well," maintains NSE postdoc Manasi Mandal, one of two lead authors of an open-access paper — published recently in Applied Physics Reviews — that reported on the group's findings.

  21. China Battery Tech Reflects Research Boom and Big Spending

    According to the Australian Strategic Policy Institute, 65.5 percent of widely cited technical papers on battery technology come from researchers in China, compared with 12 percent from the United ...

  22. Full article: The rise of technology and impact on skills

    The onset of the fourth industrial revolution (Industry 4.0) presages far-reaching changes in the nature of work. Footnote 1 New occupations are likely to be concentrated in the nonroutine and cognitive category requiring higher-order cognitive and soft or socio-emotional skills (hereafter, referred to as 'soft skills'). Rising demand for high skills combined with shrinking shelf life of ...

  23. How Is Technology Changing the World, and How Should the World Change

    Technologies are becoming increasingly complicated and increasingly interconnected. Cars, airplanes, medical devices, financial transactions, and electricity systems all rely on more computer software than they ever have before, making them seem both harder to understand and, in some cases, harder to control. Government and corporate surveillance of individuals and information processing ...

  24. The Rise of New Technologies in Marketing: A Framework and Outlook

    Speci cally, new technology (1) sup-. provides new types of data that enable new analytic methods, (3) creates marketing innovations, and (4) requires new strate-gic marketing frameworks. It is important to keep in mind that human representatives of the rm with machine agents, facilitat-. and Cian 2022).

  25. Breakthrough in nanotechnology: Viewing the invisible with advanced

    A New Window into the Nano World The key finding of this research is a methodological breakthrough that enables the visualization of structures previously too small to be seen with traditional ...

  26. Research AI model unexpectedly modified its own code to extend runtime

    The 185-page AI Scientist research paper discusses what they call "the issue of safe code execution" in more depth. A screenshot of example code the AI Scientist wrote to extend its runtime ...

  27. Sustainability

    The deployment of fifth-generation (5G) wireless networks has already laid the ground-work for futuristic smart cities but along with this, it has also triggered the rapid growth of a wide range of applications, for example, the Internet of Everything (IoE), online gaming, extended/virtual reality (XR/VR), telemedicine, cloud computing, and others, which require ultra-low latency, ubiquitous ...

  28. Study reveals ways in which 40Hz sensory stimulation may ...

    Early-stage trials in Alzheimer's disease patients and studies in mouse models of the disease have suggested positive impacts on pathology and symptoms from exposure to light and sound presented at the "gamma" band frequency of 40 hertz (Hz). A new study zeroes in on how 40Hz sensory stimulation helps to sustain an essential process in which the signal-sending branches of neurons, called ...

  29. Microsoft Research

    Sriram Rajamani at Microsoft Research on AI and deep tech in India. Forbes India | Jun 28, 2024. View more news and awards. Explore research at Microsoft, a site featuring the impact of research along with publications, products, downloads, and research careers.

  30. 3 Questions: How to prove humanity online

    In a new white paper, researchers from MIT, OpenAI, Microsoft, and other tech companies and academic institutions propose the use of personhood credentials, a verification technique that enables someone to prove they are a real human online, while preserving their privacy.