Math Essay Ideas for Students: Exploring Mathematical Concepts

Are you a student who's been tasked with writing a math essay? Don't fret! While math may seem like an abstract and daunting subject, it's actually full of fascinating concepts waiting to be explored. In this article, we'll delve into some exciting math essay ideas that will not only pique your interest but also impress your teachers. So grab your pens and calculators, and let's dive into the world of mathematics!

  • The Beauty of Fibonacci Sequence

Have you ever wondered why sunflowers, pinecones, and even galaxies exhibit a mesmerizing spiral pattern? It's all thanks to the Fibonacci sequence! Explore the origin, properties, and real-world applications of this remarkable mathematical sequence. Discuss how it manifests in nature, art, and even financial markets. Unveil the hidden beauty behind these numbers and show how they shape the world around us.

  • The Mathematics of Music

Did you know that music and mathematics go hand in hand? Dive into the relationship between these two seemingly unrelated fields and develop your writing skills . Explore the connection between harmonics, frequencies, and mathematical ratios. Analyze how musical scales are constructed and why certain combinations of notes create pleasant melodies while others may sound dissonant. Explore the fascinating world where numbers and melodies intertwine.

  • The Geometry of Architecture

Architects have been using mathematical principles for centuries to create awe-inspiring structures. Explore the geometric concepts that underpin iconic architectural designs. From the symmetry of the Parthenon to the intricate tessellations in Islamic art, mathematics plays a crucial role in creating visually stunning buildings. Discuss the mathematical principles architects employ and how they enhance the functionality and aesthetics of their designs.

  • Fractals: Nature's Infinite Complexity

Step into the mesmerizing world of fractals, where infinite complexity arises from simple patterns. Did you know that the famous Mandelbrot set , a classic example of a fractal, has been studied extensively and generated using computers? In fact, it is estimated that the Mandelbrot set requires billions of calculations to generate just a single image! This showcases the computational power and mathematical precision involved in exploring the beauty of fractal geometry.

Explore the beauty and intricacy of fractal geometry, from the famous Mandelbrot set to the Sierpinski triangle. Discuss the self-similarity and infinite iteration that define fractals and how they can be found in natural phenomena such as coastlines, clouds, and even in the structure of our lungs. Examine how fractal mathematics is applied in computer graphics, art, and the study of chaotic systems. Let the captivating world of fractals unfold before your eyes.

  • The Game Theory Revolution

Game theory isn't just about playing games; it's a powerful tool used in various fields, from economics to biology. Dive into the world of strategic decision-making and explore how game theory helps us understand human behavior and predict outcomes. Discuss in your essay classic games like The Prisoner's Dilemma and examine how mathematical models can shed light on complex social interactions. Explore the cutting-edge applications of game theory in diverse fields, such as cybersecurity and evolutionary biology. If you still have difficulties choosing an idea for a math essay, find a reliable expert online. Ask them to write me an essay or provide any other academic assistance with your math assignments.

  • Chaos Theory and the Butterfly Effect

While writing an essay, explore the fascinating world of chaos theory and how small changes can lead to big consequences. Discuss the famous Butterfly Effect and how it exemplifies the sensitive dependence on initial conditions. Delve into the mathematical principles behind chaotic systems and their applications in weather forecasting, population dynamics, and cryptography. Unravel the hidden order within apparent randomness and showcase the far-reaching implications of chaos theory.

  • The Mathematics Behind Cryptography

In an increasingly digital world, cryptography plays a vital role in ensuring secure communication and data protection. Did you know that the global cybersecurity market is projected to reach a staggering $248.26 billion by 2023? This statistic emphasizes the growing importance of cryptography in safeguarding sensitive information.

Explore the mathematical foundations of cryptography and how it allows for the creation of unbreakable codes and encryption algorithms. Discuss the concepts of prime numbers, modular arithmetic, and public-key cryptography. Delve into the fascinating history of cryptography, from ancient times to modern-day encryption methods. In your essay, highlight the importance of mathematics in safeguarding sensitive information and the ongoing challenges faced by cryptographers.

General Education

Writing a math essay doesn't have to be a daunting task. By choosing a captivating topic and exploring the various mathematical concepts, you can turn your essay into a fascinating journey of discovery. Whether you're uncovering the beauty of the Fibonacci sequence, exploring the mathematical underpinnings of music, or delving into the game theory revolution, there's a world of possibilities waiting to be explored. So embrace the power of mathematics and let your creativity shine through your words!

Remember, these are just a few math essay ideas to get you started. Feel free to explore other mathematical concepts that ignite your curiosity. The world of mathematics is vast, and each concept has its own unique story to tell. So go ahead, unleash your inner mathematician, and embark on an exciting journey through the captivating realm of mathematical ideas!

Tobi Columb, a math expert, is a dedicated educator and explorer. He is deeply fascinated by the infinite possibilities of mathematics. Tobi's mission is to equip his students with the tools needed to excel in the realm of numbers. He also advocates for the benefits of a gluten-free lifestyle for students and people of all ages. Join Tobi on his transformative journey of mathematical mastery and holistic well-being.

Related Calculators

In case you have any suggestion, or if you would like to report a broken solver/calculator, please do not hesitate to contact us .

log in to your account

Reset password.

ESSAY SAUCE

ESSAY SAUCE

FOR STUDENTS : ALL THE INGREDIENTS OF A GOOD ESSAY

  • Mathematics essays

Our free mathematics essay examples include popular topics such as algorithms, applied mathematics, calculus, knot theory, linear algebra, and more.

Euler’s identity

Euler’s identity is an equality found in mathematics that has been compared to a Shakespearean sonnet and described as “the most beautiful equation.” It is a special case of a foundational equation in complex arithmetic called Euler’s Formula, which the late great physicist Richard Feynman called in his lectures “our jewel” and “the most remarkable formula in … Read more

The Banach-Tarski paradox

Mathematics is seen by many as a mysterious and often unsettling subject. Answers often hide behind layers and layers of complicated equations, formulas and ciphers, the application of advanced concepts to real life is limited and I often find myself more confused after class than when I first entered. However, the real beauty of Mathematics … Read more

Pascal’s triangle, binomial theorem

What is Pascal’s Triangle? Pascal’s Triangle was named after Blaise Pascal. Pascal’s triangle starts with the number 1 and goes down the scale. When you start with one, add more numbers in a triangular shape, like a pyramid of some sort. All the numbers on the surrounding right and left sides of the triangle are … Read more

My journey of teaching and learning mathematics since embarking on a PGCE Mathematics course

Before I came to study a Post Graduate Certificate (PGCE) Mathematics course at University College London Institute of Education (UCL IOE), I had been working as an Academic Tutor at a behavioural centre, linked to a mainstream secondary school for the past 7 months. Students placed here had either learning difficulties or behaviour issues experienced … Read more

Aircraft – mathematics

Math SL Internal Assessment Lift and Drag Introduction When you look at aircrafts, they look like they shouldn’t be able to leave the ground because of how big they are. I always watched aircrafts, take off and land, over and over. According to Newton’s Third Law, every action has an equal and opposite reaction, lift … Read more

The World of Mathematics

Mathematics is often considered a useless discipline because people think they do not use advanced math in their life. It is a misunderstanding. Not using advanced math does not mean it is not vital. If you trade stocks, you will read many stock analysis reports. These reports use mathematical knowledge. Many students in the United … Read more

The history of algebra

We all use algebra. Even if it’s for the simple stuff, we use some form of algebra in our everyday lives. While reading chapters 1-10, I came across the word algebra and became quite curious about the subject for I have never really understood nor cared for it honestly, I just figured it’s the usual … Read more

Mathematics introduction

Mathematics belongs to the science discourse community. The word science means knowledge and comes from the Latin “Scientia”. In university, science is made up of a lot of discourse communities, such as Mathematics, Physics, and Chemistry. By searching the definition of science in Webster’s New Collegiate Dictionary, science is “knowledge covering general truths of the … Read more

Niels Henrik Abel

For over two centuries, mathematicians had trouble in finding a solution to the quintic equation, that is until Niels Henrik Abel formulated a theory. Abel was a Norwegian mathematician born on August 5, 1802, and his talent and potential in the field of mathematics was already present at a young age, leading him to become … Read more

The narrative of zero

Numbers surround us. They stamp our days, light our evenings, foresee our climate, and keep us on course. They drive business and support human progress. The beginning of the numerals makes disarray between the historical backdrop of mathematics and the historical backdrop of our modern numerals. The narrative of zero alludes to something can be … Read more

Emmy Noether

She was more than a mathematician to the people she met and to the people she inspired. She even has managed to inspire people long after she has passed. Emmy Noether was born on March 23, 1882 in Bavaria Germany. Growing up she wanted to go to college but back then women weren’t allowed to … Read more

Bitopological Approximation Space with Application to Data Reduction in Multivalued Information Systems

Abstract: In this work we generalize Pawlak approximation space to bitopological approximation space. One binary relation can define two subbases of two topological spaces. Membership, equillity and inclusion relations using rough approximations are defined and studied in bitopological aapproximation space. Some new measures that measure the accuracy and the quality of approximations are defined and … Read more

Statistics overview

Statistics is a form of mathematical analysis that uses quantified models, representations and synopses for a given set of experimental data or real life studies. Statistical analysis involves the process of gathering and evaluating data and then summarizing the data into a mathematical form. Statistics is a term used to summarize a process that a … Read more

Numerical Weather Prediction

You turn on the television, and often the first channel that pops up is the weather. It’s going 24/7 with predictions that go from weekly all the way down to hourly, with conditions that go from humidity to temperature. But what goes on behind the scenes is heavily entrenched in mathematics– meteorology’s backbone is a … Read more

The Mathematics of Our Universe

Abstract In this report, we start by defining key aspects of classical Lagrangian mechanics including the principle of least action and how one can use this to derive the Euler-Lagrange equations. Momentum and Conservation laws shall also be introduced, deriving relations between position, momenta and the Lagrangian of a given system. Following this, we develop … Read more

Ideas for your next mathematics essay

Stuck for a title for your next essay? Here are some ideas to inspire you:

  • The Mathematics of Music: Exploring the Relationship between Mathematics and Music – This essay would examine the connections between music and mathematics, including the use of mathematical concepts in musical composition and the study of the mathematics of sound.
  • The Golden Ratio: A Mathematical and Aesthetic Marvel – This essay would discuss the concept of the golden ratio and its applications in art, architecture, and design. It would explore the beauty and symmetry of this mathematical principle.
  • Mathematics in Sports: Analyzing the Numbers Behind Athletic Performance – This essay would explore the use of mathematics in sports, including the use of statistics and analytics to analyze athletic performance and predict outcomes.
  • Chaos Theory: The Science of Nonlinear Systems – This essay would discuss the concept of chaos theory and its applications in various fields, such as meteorology, physics, and economics. It would explore the idea that small changes in initial conditions can have a significant impact on the final outcome of a system.
  • The Mathematics of Cryptography: Securing Information in the Digital Age – This essay would examine the use of mathematics in cryptography, including the principles of encryption and decryption, and how these concepts are applied to secure information in the digital age.
  • Fractals: The Beauty of Infinite Complexity – This essay would explore the concept of fractals and their applications in art, nature, and science. It would discuss the beauty and complexity of these repeating patterns found in nature and how they are used in various fields of study.
  • Mathematical Models in Biology: Understanding the Complexities of Life – This essay would discuss the use of mathematical models in biology, including the modeling of population growth, the spread of disease, and the behavior of organisms. It would explore how these models help scientists understand the complex systems that make up living organisms.
  • The Mathematics of Finance: Analyzing Investments and Markets – This essay would examine the use of mathematics in finance, including the principles of financial analysis, investments, and risk management. It would explore how mathematics is used to understand and predict market trends.
  • Geometry in Art: The Intersection of Math and Creativity – This essay would discuss the use of geometry in art, including the use of shapes, patterns, and symmetry. It would explore how artists use mathematical concepts to create beautiful and compelling works of art.
  • The History of Mathematics: From Ancient Times to Modern-Day Advances – This essay would trace the history of mathematics, from its origins in ancient civilizations to modern-day advancements in the field. It would explore the contributions of key mathematicians throughout history and the evolution of mathematical concepts and principles over time.

Essay Categories:

  • Accounting essays
  • Architecture essays
  • Business essays
  • Computer science essays
  • Criminology essays
  • Economics essays
  • Education essays
  • Engineering essays
  • English language essays
  • Environmental studies essays
  • Essay examples
  • Finance essays
  • Geography essays
  • Health essays
  • History essays
  • Hospitality and tourism essays
  • Human rights essays
  • Information technology essays
  • International relations
  • Leadership essays
  • Linguistics essays
  • Literature essays
  • Management essays
  • Marketing essays
  • Media essays
  • Medicine essays
  • Military essays
  • Miscellaneous essays
  • Music Essays
  • Nursing essays
  • Philosophy essays
  • Photography and arts essays
  • Politics essays
  • Project management essays
  • Psychology essays
  • Religious studies and theology essays
  • Sample essays
  • Science essays
  • Social work essays
  • Sociology essays
  • Sports essays
  • Types of essay
  • Zoology essays

Logo

How mathematical practices can improve your writing

Writing is similar to three specific mathematical practices: modelling, problem-solving and proving, writes Caroline Yoon. Here, she gives some tips on how to use these to improve academic writing

Caroline Yoon's avatar

Caroline Yoon

  • More on this topic

University maths teacher at white board

Created in partnership with

University of Auckland

You may also like

Make mathematics fun to learn

Popular resources

.css-1txxx8u{overflow:hidden;max-height:81px;text-indent:0px;} How to develop a researcher mindset as a PhD student

Formative, summative or diagnostic assessment a guide, emotions and learning: what role do emotions play in how and why students learn, how to assess and enhance students’ ai literacy, how hard can it be testing ai detection tools.

I feel for my students when I hand them their first essay assignment. Many are mathematicians, students and teachers who chose to study mathematics partly to avoid writing. But in my mathematics education courses, and in the discipline more generally, academic writing is part of our routine practice.

Mathematicians face some challenging stereotypes when it comes to writing. Writing is seen as ephemeral, subjective and context-dependent, whereas mathematics is seen as enduring, universal and context-free. Writing reflects self, but mathematics transcends it: they are distinct from each other.

This is a false dichotomy that can discourage mathematicians from writing. It suggests writing is outside the natural skill set of the mathematician, and that one’s mathematics training not only neglects one’s development as a writer but actively prevents it. Rather than capitulate to this false dichotomy, I propose we turn it around to examine how writing is similar to three specific mathematical practices: modelling, problem-solving and proving.

Three mathematical practices that can improve your writing

Mathematical modelling.

Let us consider a hypothetical mathematics education student who has spent weeks thinking, reading and talking about her essay topic, but only starts writing it the night before it is due. She writes one draft only – the one she hands in – and is disappointed with the low grade her essay receives.

She wishes she had started earlier but she was still trying to figure out what she wanted to say up until the moment she started writing. It was only the pressure of the deadline that forced her to start; without it, she would have spent even more time thinking and reading to develop her ideas. After all, she reasons, there is no point writing when you do not know what to write about!

This “think first, write after” approach, sometimes known as the “writing up” model is a dangerous trap many students fall into, and is at odds with the way writing works. The approach allows no room for imperfect drafts that are a necessary part of the writing process . Writing experts trade on the generative power of imperfect writing; they encourage writers to turn off their internal critics and allow themselves to write badly as a way of overcoming writing inertia and discovering new ideas. The “shitty first draft” is an ideal (and achievable) first goal in the writing process. Anyone can produce a sketchy first draft that generates material that can be worked on, improved and eventually rewritten into a more sharable form.

Mathematical modelling offers a compelling metaphor for the generative power of imperfect writing. Like polished writing, polished mathematical models are seldom produced in the first attempt. A modeller typically begins with some understanding of the real situation to be modelled. The modeller considers variables and relationships from his or her understanding of the real situation and writes them into an initial mathematical model.

The model is his or her mathematical description of the situation, written in mathematical notation, and the modeller who publishes a mathematical model has typically created and discarded multiple drafts along the way, just as the writer who publishes a piece of writing has typically written and discarded multiple drafts along the way.

  • Resource collection:  Skills every early career academic needs
  • Top tips to improve the teaching of mathematics in universities
  • One write way to student success in mathematics

Problem-solving

Writing an original essay is like trying to solve a mathematics problem. There is no script to follow; it must be created by simultaneously determining one’s goals and figuring out how to achieve them. In both essay writing and mathematical problem-solving, getting stuck is natural and expected. It is even a special kind of thrill.

This observation might come as a surprise to mathematicians who do not think of their problem-solving activity as writing. But doing mathematics, the ordinary everyday act of manipulating mathematical relationships and objects to notice new levels of structure and pattern, involves scratching out symbols and marks, and moving ideas around the page or board.

Why do I care that mathematicians acknowledge their natural language of symbols and signs as writing? Quite frankly because they are good at it. They have spent years honing their ability to use writing to restructure their thoughts, to dissect their ideas, identify new arguments. They possess an analytic discipline that most writers struggle with.

Yet few of my mathematics education students take advantage of this in their academic writing. They want their writing to come out in consecutive, polished sentences and become discouraged when it does not. They do not use their writing to analyse and probe their arguments as they do when they are stuck on mathematical problems. By viewing writing only as a medium for communicating perfectly formed thoughts, they deny themselves their own laboratories, their own thinking tools.

I am not suggesting that one’s success in solving mathematical problems automatically translates into successful essay writing. But the metaphor of writing as problem-solving might encourage a mathematics education student not to give up too easily when she finds herself stuck in her writing.

Our hypothetical student now has a good draft that she is happy with. She is satisfied it represents her knowledge of the subject matter and has read extensively to check the accuracy of its content. A friend reads the draft and remarks that it is difficult to understand. Our student is unperturbed. She puts it down to her friend’s limited knowledge of the subject and is confident her more knowledgeable teacher will understand her essay.

But the essay is not an inert record judged on the number of correct facts it contains. It is also a rhetorical act that seeks to engage the public. It addresses an audience, it tries to persuade, to inspire some response or action.

Mathematical proofs are like expository essays in this regard; they must convince an audience. When undergraduate mathematics students learn to construct proofs of their own, a common piece of advice is to test them on different audiences. The phrase “Convince yourself, convince a friend, convince an enemy” becomes relevant in this respect.

Mathematicians do not have to see themselves as starting from nothing when they engage in academic writing. Rather, they can use mathematical principles they have already honed in their training, but which they might not have formerly recognised as tools for improving their academic writing.

Practical tips for productive writing beliefs and behaviours

  • Writing can generate ideas. Free writing is a good way to start. Set a timer and write continuously for 10 minutes without editing. These early drafts will be clumsy, but there will also be some gold that can be mined and developed.
  • Writing can be used to analyse and organise ideas. When stuck, try to restructure your ideas. Identify the main point in each paragraph and play around with organising their flow. 
  • Writing is a dialogue with the public. Seek out readers’ interpretations of your writing and listen to their impressions. Read your writing out loud to yourself: you will hear it differently!

Caroline Yoon is an associate professor of mathematics at the University of Auckland.

This is an edited version of the journal article “The writing mathematician” by Caroline Yoon, published in For the Learning of Mathematics  and collected in The Best Writing on Mathematics , edited by  Mircea Pitici  (Princeton University Press).

If you would like advice and insight from academics and university staff delivered direct to your inbox each week,  sign up for the Campus newsletter .

How to develop a researcher mindset as a PhD student

A diy guide to starting your own journal, contextual learning: linking learning to the real world, what does a university faculty senate do, hybrid learning through podcasts: a practical approach, how exactly does research get funded.

Register for free

and unlock a host of features on the THE site

Become a Writer Today

Essays About Math: Top 10 Examples and Writing Prompts 

Love it or hate it, an understanding of math is said to be crucial to success. So, if you are writing essays about math, read our top essay examples.  

Mathematics is the study of numbers, shapes, and space using reason and usually a special system of symbols and rules for organizing them . It can be used for a variety of purposes, from calculating a business’s profit to estimating the mass of a black hole. However, it can be considered “controversial” to an extent.

Most students adore math or regard it as their least favorite. No other core subject has the same infamy as math for generating passionate reactions both for and against it. It has applications in every field, whether basic operations or complex calculus problems. Knowing the basics of math is necessary to do any work properly. 

If you are writing essays about Math, we have compiled some essay examples for you to get started. 

1. Mathematics: Problem Solving and Ideal Math Classroom by Darlene Gregory 

2. math essay by prasanna, 3. short essay on the importance of mathematics by jay prakash.

  • 4.  Math Anxiety by Elias Wong

5. Why Math Isn’t as Useless as We Think by Murtaza Ali

1. mathematics – do you love or hate it, 2. why do many people despise math, 3. how does math prepare you for the future, 4. is mathematics an essential skill, 5. mathematics in the modern world.

“The trait of the teacher that is being strict is we know that will really help the students to change. But it will give a stress and pressure to students and that is one of the causes why students begin to dislike math. As a student I want a teacher that is not so much strict and giving considerations to his students. A teacher that is not giving loads of things to do and must know how to understand the reasons of his students.”

Gregory discusses the reasons for most students’ hatred of math and how teachers handle the subject in class. She says that math teachers do not explain the topics well, give too much work, and demand nothing less than perfection. To her, the ideal math class would involve teachers being more considerate and giving less work. 

You might also be interested in our ordinal number explainer.

“Math is complicated to learn, and one needs to focus and concentrate more. Math is logical sometimes, and the logic needs to be derived out. Maths make our life easier and more straightforward. Math is considered to be challenging because it consists of many formulas that have to be learned, and many symbols and each symbol generally has its significance.”

In her essay, Prasanna gives readers a basic idea of what math is and its importance. She additionally lists down some of the many uses of mathematics in different career paths, namely managing finances, cooking, home modeling and construction, and traveling. Math may seem “useless” and “annoying” to many, but the essay gives readers a clear message: we need math to succeed. 

“In this modern age of Science and Technology, emphasis is given on Science such as Physics, Chemistry, Biology, Medicine and Engineering. Mathematics, which is a Science by any criterion, also is an efficient and necessary tool being employed by all these Sciences. As a matter of fact, all these Sciences progress only with the aid of Mathematics. So it is aptly remarked, ‘Mathematics is a Science of all Sciences and art of all arts.’”

As its title suggests, Prakash’s essay briefly explains why math is vital to human nature. As the world continues to advance and modernize, society emphasizes sciences such as medicine, chemistry, and physics. All sciences employ math; it cannot be studied without math. It also helps us better our reasoning skills and maximizes the human mind. It is not only necessary but beneficial to our everyday lives. 

4.   Math Anxiety by Elias Wong

“Math anxiety affects different not only students but also people in different ways. It’s important to be familiar with the thoughts you have about yourself and the situation when you encounter math. If you are aware of unrealistic or irrational thoughts you can work to replace those thoughts with more positive and realistic ones.”

Wong writes about the phenomenon known as “math anxiety.” This term is used to describe many people’s hatred or fear of math- they feel that they are incapable of doing it. This anxiety is caused mainly by students’ negative experiences in math class, which makes them believe they cannot do well. Wong explains that some people have brains geared towards math and others do not, but this should not stop people from trying to overcome their math anxiety. Through review and practice of basic mathematical skills, students can overcome them and even excel at math. 

“We see that math is not an obscure subject reserved for some pretentious intellectual nobility. Though we may not be aware of it, mathematics is embedded into many different aspects of our lives and our world — and by understanding it deeply, we may just gain a greater understanding of ourselves.”

Similar to some of the previous essays, Ali’s essay explains the importance of math. Interestingly, he tells a story of the life of a person name Kyle. He goes through the typical stages of life and enjoys typical human hobbies, including Rubik’s cube solving. Throughout this “Kyle’s” entire life, he performed the role of a mathematician in various ways. Ali explains that math is much more prevalent in our lives than we think, and by understanding it, we can better understand ourselves. 

Writing Prompts on Essays about Math

Math is a controversial subject that many people either passionately adore or despise. In this essay, reflect on your feelings towards math, and state your position on the topic. Then, give insights and reasons as to why you feel this way. Perhaps this subject comes easily to you, or perhaps it’s a subject that you find pretty challenging. For an insightful and compelling essay, you can include personal anecdotes to relate to your argument. 

Essays about Math: Why do many people despise math?

It is well-known that many people despise math. In this essay, discuss why so many people do not enjoy maths and struggle with this subject in school. For a compelling essay, gather interview data and statistics to support your arguments. You could include different sections correlating to why people do not enjoy this subject.

In this essay, begin by reading articles and essays about the importance of studying math. Then, write about the different ways that having proficient math skills can help you later in life. Next, use real-life examples of where maths is necessary, such as banking, shopping, planning holidays, and more! For an engaging essay, use some anecdotes from your experiences of using math in your daily life.

Many people have said that math is essential for the future and that you shouldn’t take a math class for granted. However, many also say that only a basic understanding of math is essential; the rest depends on one’s career. Is it essential to learn calculus and trigonometry? Choose your position and back up your claim with evidence. 

Prasanna’s essay lists down just a few applications math has in our daily lives. For this essay, you can choose any activity, whether running, painting, or playing video games, and explain how math is used there. Then, write about mathematical concepts related to your chosen activity and explain how they are used. Finally, be sure to link it back to the importance of math, as this is essentially the topic around which your essay is based. 

If you are interested in learning more, check out our essay writing tips !

For help with your essays, check out our round-up of the best essay checkers

general mathematics essay

Martin is an avid writer specializing in editing and proofreading. He also enjoys literary analysis and writing about food and travel.

View all posts

Help | Advanced Search

Mathematics (since February 1992)

For a specific paper , enter the identifier into the top right search box.

  • new (most recent mailing, with abstracts)
  • recent (last 5 mailings)
  • current month's math listings
  • specific year/month: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 all months 01 (Jan) 02 (Feb) 03 (Mar) 04 (Apr) 05 (May) 06 (Jun) 07 (Jul) 08 (Aug) 09 (Sep) 10 (Oct) 11 (Nov) 12 (Dec)
  • Catch-up: Changes since: 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 01 (Jan) 02 (Feb) 03 (Mar) 04 (Apr) 05 (May) 06 (Jun) 07 (Jul) 08 (Aug) 09 (Sep) 10 (Oct) 11 (Nov) 12 (Dec) 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 , view results without with abstracts
  • Search within the math archive
  • Article statistics by year: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992

Categories within Mathematics

  • math.AG - Algebraic Geometry ( new , recent , current month ) Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
  • math.AT - Algebraic Topology ( new , recent , current month ) Homotopy theory, homological algebra, algebraic treatments of manifolds
  • math.AP - Analysis of PDEs ( new , recent , current month ) Existence and uniqueness, boundary conditions, linear and non-linear operators, stability, soliton theory, integrable PDE's, conservation laws, qualitative dynamics
  • math.CT - Category Theory ( new , recent , current month ) Enriched categories, topoi, abelian categories, monoidal categories, homological algebra
  • math.CA - Classical Analysis and ODEs ( new , recent , current month ) Special functions, orthogonal polynomials, harmonic analysis, ODE's, differential relations, calculus of variations, approximations, expansions, asymptotics
  • math.CO - Combinatorics ( new , recent , current month ) Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
  • math.AC - Commutative Algebra ( new , recent , current month ) Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
  • math.CV - Complex Variables ( new , recent , current month ) Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
  • math.DG - Differential Geometry ( new , recent , current month ) Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
  • math.DS - Dynamical Systems ( new , recent , current month ) Dynamics of differential equations and flows, mechanics, classical few-body problems, iterations, complex dynamics, delayed differential equations
  • math.FA - Functional Analysis ( new , recent , current month ) Banach spaces, function spaces, real functions, integral transforms, theory of distributions, measure theory
  • math.GM - General Mathematics ( new , recent , current month ) Mathematical material of general interest, topics not covered elsewhere
  • math.GN - General Topology ( new , recent , current month ) Continuum theory, point-set topology, spaces with algebraic structure, foundations, dimension theory, local and global properties
  • math.GT - Geometric Topology ( new , recent , current month ) Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
  • math.GR - Group Theory ( new , recent , current month ) Finite groups, topological groups, representation theory, cohomology, classification and structure
  • math.HO - History and Overview ( new , recent , current month ) Biographies, philosophy of mathematics, mathematics education, recreational mathematics, communication of mathematics, ethics in mathematics
  • math.IT - Information Theory ( new , recent , current month ) math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
  • math.KT - K-Theory and Homology ( new , recent , current month ) Algebraic and topological K-theory, relations with topology, commutative algebra, and operator algebras
  • math.LO - Logic ( new , recent , current month ) Logic, set theory, point-set topology, formal mathematics
  • math.MP - Mathematical Physics ( new , recent , current month ) math.MP is an alias for math-ph. Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
  • math.MG - Metric Geometry ( new , recent , current month ) Euclidean, hyperbolic, discrete, convex, coarse geometry, comparisons in Riemannian geometry, symmetric spaces
  • math.NT - Number Theory ( new , recent , current month ) Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
  • math.NA - Numerical Analysis ( new , recent , current month ) Numerical algorithms for problems in analysis and algebra, scientific computation
  • math.OA - Operator Algebras ( new , recent , current month ) Algebras of operators on Hilbert space, C^*-algebras, von Neumann algebras, non-commutative geometry
  • math.OC - Optimization and Control ( new , recent , current month ) Operations research, linear programming, control theory, systems theory, optimal control, game theory
  • math.PR - Probability ( new , recent , current month ) Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
  • math.QA - Quantum Algebra ( new , recent , current month ) Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
  • math.RT - Representation Theory ( new , recent , current month ) Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
  • math.RA - Rings and Algebras ( new , recent , current month ) Non-commutative rings and algebras, non-associative algebras, universal algebra and lattice theory, linear algebra, semigroups
  • math.SP - Spectral Theory ( new , recent , current month ) Schrodinger operators, operators on manifolds, general differential operators, numerical studies, integral operators, discrete models, resonances, non-self-adjoint operators, random operators/matrices
  • math.ST - Statistics Theory ( new , recent , current month ) Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
  • math.SG - Symplectic Geometry ( new , recent , current month ) Hamiltonian systems, symplectic flows, classical integrable systems

260 Interesting Math Topics for Essays & Research Papers

Mathematics is the science of numbers and shapes. Writing about it can give you a fresh perspective and help to clarify difficult concepts. You can even use mathematical writing as a tool in problem-solving.

In this article, you will find plenty of interesting math topics. Besides, you will learn about branches of mathematics that you can choose from. And if the thought of letters and numbers makes your head swim, try our custom writing service . Our professionals will craft a paper for you in no time!

And now, let’s proceed to math essay topics and tips.

🔝 Top 10 Interesting Math Topics

✅ branches of mathematics, ✨ fun math topics.

  • 🏫 Math Topics for High School
  • 🎓 College Math Topics
  • 🤔 Advanced Math
  • 📚 Math Research
  • ✏️ Math Education
  • 💵 Business Math

🔍 References

  • Number theory in everyday life.
  • Logicist definitions of mathematics.
  • Multivariable vs. vector calculus.
  • 4 conditions of functional analysis.
  • Random variable in probability theory.
  • How is math used in cryptography?
  • The purpose of homological algebra.
  • Concave vs. convex in geometry.
  • The philosophical problem of foundations.
  • Is numerical analysis useful for machine learning?

What exactly is mathematics ? First and foremost, it is very old. Ancient Greeks and Persians were already utilizing mathematical tools. Nowadays, we consider it an interdisciplinary language.

Biologists, linguists, and sociologists alike use math in their work. And not only that, we all deal with it in our daily lives. For instance, it manifests in the measurement of time. We often need it to calculate how much our groceries cost and how much paint we need to buy to cover a wall.

Albert Einstein quote.

Simply put, mathematics is a universal instrument for problem-solving. We can divide pure math into three branches: geometry, arithmetic, and algebra. Let’s take a closer look:

  • Geometry By studying geometry, we try to comprehend our physical surroundings. Geometric shapes can be simple, like a triangle. Or, they can form complicated figures, like a rhombicosidodecahedron.
  • Arithmetic Arithmetic deals with numbers and simple operations: subtraction, addition, division, and multiplication.
  • Algebra Algebra is used when the exact numbers are unclear. Instead, they are replaced with letters. Businesses often need algebra to predict their sales.

It’s true that most high school students don’t like math. However, that doesn’t mean it can’t be a fun and compelling subject. In the following section, you will find plenty of enthralling mathematical topics for your paper.

If you’re struggling to start working on your essay, we have some fun and cool math topics to offer. They will definitely engage you and make the writing process enjoyable. Besides, fun math topics can show everyone that even math can be entertaining or even a bit silly.

  • The link between mathematics and art – analyzing the Golden Ratio in Renaissance-era paintings.
  • An evaluation of Georg Cantor’s set theory.
  • The best approaches to learning math facts and developing number sense.
  • Different approaches to probability as explored through analyzing card tricks.
  • Chess and checkers – the use of mathematics in recreational activities.
  • The five types of math used in computer science.
  • Real-life applications of the Pythagorean Theorem .
  • A study of the different theories of mathematical logic.
  • The use of game theory in social science.
  • Mathematical definitions of infinity and how to measure it.
  • What is the logic behind unsolvable math problems?
  • An explanation of mean, mode, and median using classroom math grades.
  • The properties and geometry of a Möbius strip.
  • Using truth tables to present the logical validity of a propositional expression.
  • The relationship between Pascal’s Triangle and The Binomial Theorem.
  • The use of different number types: the history.
  • The application of differential geometry in modern architecture.
  • A mathematical approach to the solution of a Rubik’s Cube.
  • Comparison of predictive and prescriptive statistical analyses.
  • Explaining the iterations of the Koch snowflake.
  • The importance of limits in calculus.
  • Hexagons as the most balanced shape in the universe.
  • The emergence of patterns in chaos theory.
  • What were Euclid’s contributions to the field of mathematics?
  • The difference between universal algebra and abstract algebra.

🏫 Math Essay Topics for High School

When writing a math paper, you want to demonstrate that you understand a concept. It can be helpful if you need to prepare for an exam. Choose a topic from this section and decide what you want to discuss.

  • Explain what we need Pythagoras’ theorem for.
  • What is a hyperbola?
  • Describe the difference between algebra and arithmetic.
  • When is it unnecessary to use a calculator ?
  • Find a connection between math and the arts.
  • How do you solve a linear equation?
  • Discuss how to determine the probability of rolling two dice.
  • Is there a link between philosophy and math?
  • What types of math do you use in your everyday life?
  • What is the numerical data?
  • Explain how to use the binomial theorem.
  • What is the distributive property of multiplication?
  • Discuss the major concepts in ancient Egyptian mathematics .
  • Why do so many students dislike math?
  • Should math be required in school?
  • How do you do an equivalent transformation?
  • Why do we need imaginary numbers?
  • How can you calculate the slope of a curve?
  • What is the difference between sine, cosine, and tangent?
  • How do you define the cross product of two vectors?
  • What do we use differential equations for?
  • Investigate how to calculate the mean value.
  • Define linear growth.
  • Give examples of different number types.
  • How can you solve a matrix?

🎓 College Math Topics for a Paper

Sometimes you need more than just formulas to explain a complex idea. That’s why knowing how to express yourself is crucial. It is especially true for college-level mathematics. Consider the following ideas for your next research project:

  • What do we need n-dimensional spaces for?
  • Explain how card counting works.
  • Discuss the difference between a discrete and a continuous probability distribution .
  • How does encryption work?
  • Describe extremal problems in discrete geometry.
  • What can make a math problem unsolvable?
  • Examine the topology of a Möbius strip.

Three main types of geometry.

  • What is K-theory?
  • Discuss the core problems of computational geometry.
  • Explain the use of set theory .
  • What do we need Boolean functions for?
  • Describe the main topological concepts in modern mathematics.
  • Investigate the properties of a rotation matrix.
  • Analyze the practical applications of game theory.
  • How can you solve a Rubik’s cube mathematically?
  • Explain the math behind the Koch snowflake.
  • Describe the paradox of Gabriel’s Horn.
  • How do fractals form?
  • Find a way to solve Sudoku using math.
  • Why is the Riemann hypothesis still unsolved?
  • Discuss the Millennium Prize Problems.
  • How can you divide complex numbers?
  • Analyze the degrees in polynomial functions.
  • What are the most important concepts in number theory?
  • Compare the different types of statistical methods.

🤔 Advanced Topics in Math to Write a Paper on

Once you have passed the trials of basic math, you can move on to the advanced section. This area includes topology, combinatorics, logic, and computational mathematics. Check out the list below for enticing topics to write about:

  • What is an abelian group?
  • Explain the orbit-stabilizer theorem.
  • Discuss what makes the Burnside problem influential.
  • What fundamental properties do holomorphic functions have?
  • How does Cauchy’s integral theorem lead to Cauchy’s integral formula?
  • How do the two Picard theorems relate to each other?
  • When is a trigonometric series called a Fourier series?
  • Give an example of an algorithm used for machine learning.
  • Compare the different types of knapsack problems.
  • What is the minimum overlap problem?
  • Describe the Bernoulli scheme.
  • Give a formal definition of the Chinese restaurant process.
  • Discuss the logistic map in relation to chaos.
  • What do we need the Feigenbaum constants for?
  • Define a difference equation.
  • Explain the uses of the Fibonacci sequence.
  • What is an oblivious transfer?
  • Compare the Riemann and the Ruelle zeta functions.
  • How can you use elementary embeddings in model theory?
  • Analyze the problem with the wholeness axiom and Kunen’s inconsistency theorem.
  • How is Lie algebra used in physics ?
  • Define various cases of algebraic cycles.
  • Why do we need étale cohomology groups to calculate algebraic curves?
  • What does non-Euclidean geometry consist of?
  • How can two lines be ultraparallel?

📚 Math Research Topics for a Paper

Choosing the right topic is crucial for a successful research paper in math. It should be hard enough to be compelling, but not exceeding your level of competence. If possible, stick to your area of knowledge. This way your task will become more manageable. Here are some ideas:

  • Write about the history of calculus.
  • Why are unsolved math problems significant?
  • Find reasons for the gender gap in math students.
  • What are the toughest mathematical questions asked today?
  • Examine the notion of operator spaces.
  • How can we design a train schedule for a whole country?
  • What makes a number big?

Mathematical writing should be well-structured, precise, and easy readable

  • How can infinities have various sizes?
  • What is the best mathematical strategy to win a game of Go?
  • Analyze natural occurrences of random walks in biology.
  • Explain what kind of mathematics was used in ancient Persia.
  • Discuss how the Iwasawa theory relates to modular forms.
  • What role do prime numbers play in encryption?
  • How did the study of mathematics evolve?
  • Investigate the different Tower of Hanoi solutions.
  • Research Napier’s bones. How can you use them?
  • What is the best mathematical way to find someone who is lost in a maze?
  • Examine the Traveling Salesman Problem. Can you find a new strategy?
  • Describe how barcodes function.
  • Study some real-life examples of chaos theory. How do you define them mathematically?
  • Compare the impact of various ground-breaking mathematical equations .
  • Research the Seven Bridges of Königsberg. Relate the problem to the city of your choice.
  • Discuss Fisher’s fundamental theorem of natural selection.
  • How does quantum computing work?
  • Pick an unsolved math problem and say what makes it so difficult.

✏️ Math Education Research Topics

For many teachers, the hardest part is to keep the students interested. When it comes to math, it can be especially challenging. It’s crucial to make complicated concepts easy to understand. That’s why we need research on math education.

  • Compare traditional methods of teaching math with unconventional ones.
  • How can you improve mathematical education in the U.S.?
  • Describe ways of encouraging girls to pursue careers in STEM fields.
  • Should computer programming be taught in high school?
  • Define the goals of mathematics education .
  • Research how to make math more accessible to students with learning disabilities .
  • At what age should children begin to practice simple equations?
  • Investigate the effectiveness of gamification in algebra classes.
  • What do students gain from taking part in mathematics competitions?
  • What are the benefits of moving away from standardized testing ?
  • Describe the causes of “ math anxiety .” How can you overcome it?
  • Explain the social and political relevance of mathematics education.
  • Define the most significant issues in public school math teaching.
  • What is the best way to get children interested in geometry?
  • How can students hone their mathematical thinking outside the classroom?
  • Discuss the benefits of using technology in math class.
  • In what way does culture influence your mathematical education?
  • Explore the history of teaching algebra.
  • Compare math education in various countries.

E. T. Bell quote.

  • How does dyscalculia affect a student’s daily life?
  • Into which school subjects can math be integrated?
  • Has a mathematics degree increased in value over the last few years?
  • What are the disadvantages of the Common Core Standards?
  • What are the advantages of following an integrated curriculum in math?
  • Discuss the benefits of Mathcamp.

🧮 Algebra Topics for a Paper

The elegance of algebra stems from its simplicity. It gives us the ability to express complex problems in short equations. The world was changed forever when Einstein wrote down the simple formula E=mc². Now, if your algebra seminar requires you to write a paper, look no further! Here are some brilliant prompts:

  • Give an example of an induction proof.
  • What are F-algebras used for?
  • What are number problems?
  • Show the importance of abstract algebraic thinking .
  • Investigate the peculiarities of Fermat’s last theorem.
  • What are the essentials of Boolean algebra?
  • Explore the relationship between algebra and geometry.
  • Compare the differences between commutative and noncommutative algebra.
  • Why is Brun’s constant relevant?
  • How do you factor quadratics?
  • Explain Descartes’ Rule of Signs.
  • What is the quadratic formula?
  • Compare the four types of sequences and define them.
  • Explain how partial fractions work.
  • What are logarithms used for?
  • Describe the Gaussian elimination.
  • What does Cramer’s rule state?
  • Explore the difference between eigenvectors and eigenvalues.
  • Analyze the Gram-Schmidt process in two dimensions.
  • Explain what is meant by “range” and “domain” in algebra.
  • What can you do with determinants?
  • Learn about the origin of the distance formula.
  • Find the best way to solve math word problems.
  • Compare the relationships between different systems of equations.
  • Explore how the Rubik’s cube relates to group theory.

📏 Geometry Topics for a Research Paper

Shapes and space are the two staples of geometry. Since its appearance in ancient times, it has evolved into a major field of study. Geometry’s most recent addition, topology, explores what happens to an object if you stretch, shrink, and fold it. Things can get pretty crazy from here! The following list contains 25 interesting geometry topics:

  • What are the Archimedean solids?
  • Find real-life uses for a rhombicosidodecahedron.
  • What is studied in projective geometry?
  • Compare the most common types of transformations.
  • Explain how acute square triangulation works.
  • Discuss the Borromean ring configuration.
  • Investigate the solutions to Buffon’s needle problem.
  • What is unique about right triangles?

The role of study of non-Euclidean geometry

  • Describe the notion of Dirac manifolds.
  • Compare the various relationships between lines.
  • What is the Klein bottle?
  • How does geometry translate into other disciplines, such as chemistry and physics?
  • Explore Riemannian manifolds in Euclidean space.
  • How can you prove the angle bisector theorem?
  • Do a research on M.C. Escher’s use of geometry.
  • Find applications for the golden ratio .
  • Describe the importance of circles.
  • Investigate what the ancient Greeks knew about geometry.
  • What does congruency mean?
  • Study the uses of Euler’s formula.
  • How do CT scans relate to geometry?
  • Why do we need n-dimensional vectors?
  • How can you solve Heesch’s problem?
  • What are hypercubes?
  • Analyze the use of geometry in Picasso’s paintings.

➗ Calculus Topics to Write a Paper on

You can describe calculus as a more complicated algebra. It’s a study of change over time that provides useful insights into everyday problems. Applied calculus is required in a variety of fields such as sociology, engineering, or business. Consult this list of compelling topics on a calculus paper:

  • What are the differences between trigonometry, algebra, and calculus?
  • Explain the concept of limits.
  • Describe the standard formulas needed for derivatives.
  • How can you find critical points in a graph?
  • Evaluate the application of L’Hôpital’s rule.
  • How do you define the area between curves?
  • What is the foundation of calculus?

Calculus was developed by Isaac Newton and Gottfried Leibnitz.

  • How does multivariate calculus work?
  • Discuss the use of Stokes’ theorem.
  • What does Leibniz’s integral rule state?
  • What is the Itô stochastic integral?
  • Explore the influence of nonstandard analysis on probability theory.
  • Research the origins of calculus.
  • Who was Maria Gaetana Agnesi?
  • Define a continuous function.
  • What is the fundamental theorem of calculus?
  • How do you calculate the Taylor series of a function?
  • Discuss the ways to resolve Runge’s phenomenon.
  • Explain the extreme value theorem.
  • What do we need predicate calculus for?
  • What are linear approximations?
  • When does an integral become improper?
  • Describe the Ratio and Root Tests.
  • How does the method of rings work?
  • Where do we apply calculus in real-life situations?

💵 Business Math Topics to Write About

You don’t have to own a company to appreciate business math. Its topics range from credits and loans to insurance, taxes, and investment. Even if you’re not a mathematician, you can use it to handle your finances. Sounds interesting? Then have a look at the following list:

  • What are the essential skills needed for business math?
  • How do you calculate interest rates?
  • Compare business and consumer math.
  • What is a discount factor?
  • How do you know that an investment is reasonable?
  • When does it make sense to pay a loan with another loan?
  • Find useful financing techniques that everyone can use.
  • How does critical path analysis work?
  • Explain how loans work.
  • Which areas of work utilize operations research?
  • How do businesses use statistics?
  • What is the economic lot scheduling problem?
  • Compare the uses of different chart types.
  • What causes a stock market crash?
  • How can you calculate the net present value?
  • Explore the history of revenue management.
  • When do you use multi-period models?
  • Explain the consequences of depreciation.
  • Are annuities a good investment?
  • Would the U.S. financially benefit from discontinuing the penny?
  • What caused the United States housing crash in 2008?
  • How do you calculate sales tax?
  • Describe the notions of markups and markdowns.
  • Investigate the math behind debt amortization.
  • What is the difference between a loan and a mortgage?

With all these ideas, you are perfectly equipped for your next math paper. Good luck!

  • What Is Calculus?: Southern State Community College
  • What Is Mathematics?: Tennessee Tech University
  • What Is Geometry?: University of Waterloo
  • What Is Algebra?: BBC
  • Ten Simple Rules for Mathematical Writing: Ohio State University
  • Practical Algebra Lessons: Purplemath
  • Topics in Geometry: Massachusetts Institute of Technology
  • The Geometry Junkyard: All Topics: Donald Bren School of Information and Computer Sciences
  • Calculus I: Lamar University
  • Business Math for Financial Management: The Balance Small Business
  • What Is Mathematics: Life Science
  • What Is Mathematics Education?: University of California, Berkeley
  • Share to Facebook
  • Share to Twitter
  • Share to LinkedIn
  • Share to email

220 Cause and Effect Essay Topics: Fun & Interesting

Cause and effect essays examine how an event happened and what consequences it had. Gaining weight after eating lots of fast food is an example of a cause-and-effect relationship. Possible topics cover a variety of subjects ranging from mental health to history and politics. This article gives you an outline...

160 Excellent Analysis Essay Topics & Questions

An analysis essay aims to break down the subject in order to understand it. You can choose to analyze a text, a process, or an idea. This article will help you write a great essay! Selecting an interesting topic makes writing a lot easier. We’ve prepared a list of excellent...

185 Health Topics to Write about

Everybody knows that being healthy requires effort. We should exercise regularly and maintain a balanced diet. However, the reward is worth it. A healthy lifestyle prevents chronic illnesses and leads to better body performance. Besides, if you improve your physical well-being, your mental health will strengthen as well! In this...

180 Environmental Research Topics & Questions to Write about

Environment affects us all, whether we want it or not. Political leaders and students alike discuss ways to tackle environmental topics & issues. Some might argue about the role humans play in all this. The fact remains that our environment is a delicate matter. That’s why we must educate ourselves...

180 Ethics Topics & Ethical Questions to Debate

Our code of ethics is derived from what we think is right or wrong. On top of that, we have to agree to the moral standards established by the society we live in. Conventional norms generally label theft, murder, or harassment as bad. However, there are many influences that impact...

457 Definition Essay Topics and Writing Tips

A definition explains the meaning of a term or a concept. In a dictionary, you’ll find a definition in a single sentence. A definition paper, however, encompasses several paragraphs. Such an essay, amongst other things, can include personal experience and examples. To write a successful definition paper, you need to...

270 Good Descriptive Essay Topics and Writing Tips

As simple as it is, the purpose of the descriptive essay is to explain or portray its subject. It can focus on any topic or issue you want to write about. Be sure that any middle school, high school, or college student can manage this type of creative writing assignment!...

160+ Best Rhetorical Analysis Topics

Rhetorical analysis essay focuses on assessing the method used for delivering a message. This assignment isn’t about giving an opinion on the topic. The purpose is to analyze how the author presents the argument and whether or not they succeeded. Keep reading to find out more strategies and prompts for...

164 Narrative Essay Topics for School & College Students

A narrative essay tells a story about a series of events. At the core of this kind of essay can be a personal experience or a fictional plot. Any story can be a basis for a narrative essay! Narratives can look similar to descriptions. Still, they are different. A descriptive...

242 Process Analysis Essay Topics for High School & College

Similar to the instructions in a recipe book, process essays convey information in a step-by-step format. In this type of paper, you follow a structured chronological process. You can also call it a how-to essay. A closely related type is a process analysis essay. Here you have to carefully consider...

150 Classification Essay Topics and Ideas

In a classification essay, you divide the subject into categories. To create these categories, you single out certain attributes of things. You can classify them according to their characteristics, themes, or traits. Sounds complicated? Be sure that any high school or college student can manage this type of essay!

275 Excellent Evaluation Essay Topics for College Students

Throughout your high school years, you are likely to write many evaluative papers. In an evaluation essay you aim is to justify your point of view through evidence.

I need a writer on algebra. I am a PhD student.Can i be helped by anybody/expert?

Please I want to do my MPhil research on algebra if you can help me

shall your university help me on research in mathematics ?

how I get the full pdf of those tittles

Print as pdf.

“What is Mathematics?” and why we should ask, where one should experience and learn that, and how to teach it

  • Conference paper
  • Open Access
  • First Online: 02 November 2017
  • Cite this conference paper

You have full access to this open access conference paper

general mathematics essay

  • Günter M. Ziegler 3 &
  • Andreas Loos 4  

Part of the book series: ICME-13 Monographs ((ICME13Mo))

111k Accesses

9 Citations

3 Altmetric

“What is Mathematics?” [with a question mark!] is the title of a famous book by Courant and Robbins, first published in 1941, which does not answer the question. The question is, however, essential: The public image of the subject (of the science, and of the profession) is not only relevant for the support and funding it can get, but it is also crucial for the talent it manages to attract—and thus ultimately determines what mathematics can achieve, as a science, as a part of human culture, but also as a substantial component of economy and technology. In this lecture we thus

discuss the image of mathematics (where “image” might be taken literally!),

sketch a multi-facetted answer to the question “What is Mathematics?,”

stress the importance of learning “What is Mathematics” in view of Klein’s “double discontinuity” in mathematics teacher education,

present the “Panorama project” as our response to this challenge,

stress the importance of telling stories in addition to teaching mathematics, and finally,

suggest that the mathematics curricula at schools and at universities should correspondingly have space and time for at least three different subjects called Mathematics.

This paper is a slightly updated reprint of: Günter M. Ziegler and Andreas Loos, Learning and Teaching “ What is Mathematics ”, Proc. International Congress of Mathematicians, Seoul 2014, pp. 1201–1215; reprinted with kind permission by Prof. Hyungju Park, the chairman of ICM 2014 Organizing Committee.

You have full access to this open access chapter,  Download conference paper PDF

Similar content being viewed by others

general mathematics essay

The Missing Element for Teachers: Learning What Mathematics Is

general mathematics essay

Educational Paths to Mathematics: Which Paths Forward to What Mathematics?

general mathematics essay

Mathematics at the Center of Distinct Fields: A Response to Michael and Ted

What is mathematics.

Defining mathematics. According to Wikipedia in English, in the March 2014 version, the answer to “What is Mathematics?” is

Mathematics is the abstract study of topics such as quantity (numbers), [2] structure, [3] space, [2] and change. [4][5][6] There is a range of views among mathematicians and philosophers as to the exact scope and definition of mathematics. [7][8] Mathematicians seek out patterns (Highland & Highland, 1961 , 1963 ) and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof. When mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, and the systematic study of the shapes and motions of physical objects. Practical mathematics has been a human activity for as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry.

None of this is entirely wrong, but it is also not satisfactory. Let us just point out that the fact that there is no agreement about the definition of mathematics, given as part of a definition of mathematics, puts us into logical difficulties that might have made Gödel smile. Footnote 1

The answer given by Wikipedia in the current German version, reads (in our translation):

Mathematics […] is a science that developed from the investigation of geometric figures and the computing with numbers. For mathematics , there is no commonly accepted definition; today it is usually described as a science that investigates abstract structures that it created itself by logical definitions using logic for their properties and patterns.

This is much worse, as it portrays mathematics as a subject without any contact to, or interest from, a real world.

The borders of mathematics. Is mathematics “stand-alone”? Could it be defined without reference to “neighboring” subjects, such as physics (which does appear in the English Wikipedia description)? Indeed, one possibility to characterize mathematics describes the borders/boundaries that separate it from its neighbors. Even humorous versions of such “distinguishing statements” such as

“Mathematics is the part of physics where the experiments are cheap.”

“Mathematics is the part of philosophy where (some) statements are true—without debate or discussion.”

“Mathematics is computer science without electricity.” (So “Computer science is mathematics with electricity.”)

contain a lot of truth and possibly tell us a lot of “characteristics” of our subject. None of these is, of course, completely true or completely false, but they present opportunities for discussion.

What we do in mathematics . We could also try to define mathematics by “what we do in mathematics”: This is much more diverse and much more interesting than the Wikipedia descriptions! Could/should we describe mathematics not only as a research discipline and as a subject taught and learned at school, but also as a playground for pupils, amateurs, and professionals, as a subject that presents challenges (not only for pupils, but also for professionals as well as for amateurs), as an arena for competitions, as a source of problems, small and large, including some of the hardest problems that science has to offer, at all levels from elementary school to the millennium problems (Csicsery, 2008 ; Ziegler, 2011 )?

What we teach in mathematics classes . Education bureaucrats might (and probably should) believe that the question “What is Mathematics?” is answered by high school curricula. But what answers do these give?

This takes us back to the nineteenth century controversies about what mathematics should be taught at school and at the Universities. In the German version this was a fierce debate. On the one side it saw the classical educational ideal as formulated by Wilhelm von Humboldt (who was involved in the concept for and the foundation 1806 of the Berlin University, now named Humboldt Universität, and to a certain amount shaped the modern concept of a university); here mathematics had a central role, but this was the classical “Greek” mathematics, starting from Euclid’s axiomatic development of geometry, the theory of conics, and the algebra of solving polynomial equations, not only as cultural heritage, but also as a training arena for logical thinking and problem solving. On the other side of the fight were the proponents of “Realbildung”: Realgymnasien and the technical universities that were started at that time tried to teach what was needed in commerce and industry: calculation and accounting, as well as the mathematics that could be useful for mechanical and electrical engineering—second rate education in the view of the classical German Gymnasium.

This nineteenth century debate rests on an unnatural separation into the classical, pure mathematics, and the useful, applied mathematics; a division that should have been overcome a long time ago (perhaps since the times of Archimedes), as it is unnatural as a classification tool and it is also a major obstacle to progress both in theory and in practice. Nevertheless the division into “classical” and “current” material might be useful in discussing curriculum contents—and the question for what purpose it should be taught; see our discussion in the Section “ Three Times Mathematics at School? ”.

The Courant–Robbins answer . The title of the present paper is, of course, borrowed from the famous and very successful book by Richard Courant and Herbert Robbins. However, this title is a question—what is Courant and Robbins’ answer? Indeed, the book does not give an explicit definition of “What is Mathematics,” but the reader is supposed to get an idea from the presentation of a diverse collection of mathematical investigations. Mathematics is much bigger and much more diverse than the picture given by the Courant–Robbins exposition. The presentation in this section was also meant to demonstrate that we need a multi-facetted picture of mathematics: One answer is not enough, we need many.

Why Should We Care?

The question “What is Mathematics?” probably does not need to be answered to motivate why mathematics should be taught, as long as we agree that mathematics is important.

However, a one-sided answer to the question leads to one-sided concepts of what mathematics should be taught.

At the same time a one-dimensional picture of “What is Mathematics” will fail to motivate kids at school to do mathematics, it will fail to motivate enough pupils to study mathematics, or even to think about mathematics studies as a possible career choice, and it will fail to motivate the right students to go into mathematics studies, or into mathematics teaching. If the answer to the question “What is Mathematics”, or the implicit answer given by the public/prevailing image of the subject, is not attractive, then it will be very difficult to motivate why mathematics should be learned—and it will lead to the wrong offers and the wrong choices as to what mathematics should be learned.

Indeed, would anyone consider a science that studies “abstract” structures that it created itself (see the German Wikipedia definition quoted above) interesting? Could it be relevant? If this is what mathematics is, why would or should anyone want to study this, get into this for a career? Could it be interesting and meaningful and satisfying to teach this?

Also in view of the diversity of the students’ expectations and talents, we believe that one answer is plainly not enough. Some students might be motivated to learn mathematics because it is beautiful, because it is so logical, because it is sometimes surprising. Or because it is part of our cultural heritage. Others might be motivated, and not deterred, by the fact that mathematics is difficult. Others might be motivated by the fact that mathematics is useful, it is needed—in everyday life, for technology and commerce, etc. But indeed, it is not true that “the same” mathematics is needed in everyday life, for university studies, or in commerce and industry. To other students, the motivation that “it is useful” or “it is needed” will not be sufficient. All these motivations are valid, and good—and it is also totally valid and acceptable that no single one of these possible types of arguments will reach and motivate all these students.

Why do so many pupils and students fail in mathematics, both at school and at universities? There are certainly many reasons, but we believe that motivation is a key factor. Mathematics is hard. It is abstract (that is, most of it is not directly connected to everyday-life experiences). It is not considered worth-while. But a lot of the insufficient motivation comes from the fact that students and their teachers do not know “What is Mathematics.”

Thus a multi-facetted image of mathematics as a coherent subject, all of whose many aspects are well connected, is important for a successful teaching of mathematics to students with diverse (possible) motivations.

This leads, in turn, to two crucial aspects, to be discussed here next: What image do students have of mathematics? And then, what should teachers answer when asked “What is Mathematics”? And where and how and when could they learn that?

The Image of Mathematics

A 2008 study by Mendick, Epstein, and Moreau ( 2008 ), which was based on an extensive survey among British students, was summarized as follows:

Many students and undergraduates seem to think of mathematicians as old, white, middle-class men who are obsessed with their subject, lack social skills and have no personal life outside maths. The student’s views of maths itself included narrow and inaccurate images that are often limited to numbers and basic arithmetic.

The students’ image of what mathematicians are like is very relevant and turns out to be a massive problem, as it defines possible (anti-)role models, which are crucial for any decision in the direction of “I want to be a mathematician.” If the typical mathematician is viewed as an “old, white, male, middle-class nerd,” then why should a gifted 16-year old girl come to think “that’s what I want to be when I grow up”? Mathematics as a science, and as a profession, looses (or fails to attract) a lot of talent this way! However, this is not the topic of this presentation.

On the other hand the first and the second diagnosis of the quote from Mendick et al. ( 2008 ) belong together: The mathematicians are part of “What is Mathematics”!

And indeed, looking at the second diagnosis, if for the key word “mathematics” the images that spring to mind don’t go beyond a per se meaningless “ \( a^{2} + b^{2} = c^{2} \) ” scribbled in chalk on a blackboard—then again, why should mathematics be attractive, as a subject, as a science, or as a profession?

We think that we have to look for, and work on, multi-facetted and attractive representations of mathematics by images. This could be many different, separate images, but this could also be images for “mathematics as a whole.”

Four Images for “What Is Mathematics?”

Striking pictorial representations of mathematics as a whole (as well as of other sciences!) and of their change over time can be seen on the covers of the German “Was ist was” books. The history of these books starts with the series of “How and why” Wonder books published by Grosset and Dunlop, New York, since 1961, which was to present interesting subjects (starting with “Dinosaurs,” “Weather,” and “Electricity”) to children and younger teenagers. The series was published in the US and in Great Britain in the 1960s and 1970s, but it was and is much more successful in Germany, where it was published (first in translation, then in volumes written in German) by Ragnar Tessloff since 1961. Volume 18 in the US/UK version and Volume 12 in the German version treats “Mathematics”, first published in 1963 (Highland & Highland, 1963 ), but then republished with the same title but a new author and contents in 2001 (Blum, 2001 ). While it is worthwhile to study the contents and presentation of mathematics in these volumes, we here focus on the cover illustrations (see Fig.  1 ), which for the German edition exist in four entirely different versions, the first one being an adaption of the original US cover of (Highland & Highland, 1961 ).

The four covers of “Was ist was. Band 12: Mathematik” (Highland & Highland, 1963 ; Blum, 2001 )

All four covers represent a view of “What is Mathematics” in a collage mode, where the first one represents mathematics as a mostly historical discipline (starting with the ancient Egyptians), while the others all contain a historical allusion (such as pyramids, Gauß, etc.) alongside with objects of mathematics (such as prime numbers or \( \pi \) , dices to illustrate probability, geometric shapes). One notable object is the oddly “two-colored” Möbius band on the 1983 cover, which was changed to an entirely green version in a later reprint.

One can discuss these covers with respect to their contents and their styles, and in particular in terms of attractiveness to the intended buyers/readers. What is over-emphasized? What is missing? It seems more important to us to

think of our own images/representations for “What is Mathematics”,

think about how to present a multi-facetted image of “What is Mathematics” when we teach.

Indeed, the topics on the covers of the “Was ist was” volumes of course represent interesting (?) topics and items discussed in the books. But what do they add up to? We should compare this to the image of mathematics as represented by school curricula, or by the university curricula for teacher students.

In the context of mathematics images, let us mention two substantial initiatives to collect and provide images from current mathematics research, and make them available on internet platforms, thus providing fascinating, multi-facetted images of mathematics as a whole discipline:

Guy Métivier et al.: “Image des Maths. La recherche mathématique en mots et en images” [“Images of Maths. Mathematical research in words and images”], CNRS, France, at images.math.cnrs.fr (texts in French)

Andreas D. Matt, Gert-Martin Greuel et al.: “IMAGINARY. open mathematics,” Mathematisches Forschungsinstitut Oberwolfach, at imaginary.org (texts in German, English, and Spanish).

The latter has developed from a very successful travelling exhibition of mathematics images, “IMAGINARY—through the eyes of mathematics,” originally created on occasion of and for the German national science year 2008 “Jahr der Mathematik. Alles was zählt” [“Year of Mathematics 2008. Everything that counts”], see www.jahr-der-mathematik.de , which was highly successful in communicating a current, attractive image of mathematics to the German public—where initiatives such as the IMAGINARY exhibition had a great part in the success.

Teaching “What Is Mathematics” to Teachers

More than 100 years ago, in 1908, Felix Klein analyzed the education of teachers. In the introduction to the first volume of his “Elementary Mathematics from a Higher Standpoint” he wrote (our translation):

At the beginning of his university studies, the young student is confronted with problems that do not remind him at all of what he has dealt with up to then, and of course, he forgets all these things immediately and thoroughly. When after graduation he becomes a teacher, he has to teach exactly this traditional elementary mathematics, and since he can hardly link it with his university mathematics, he soon readopts the former teaching tradition and his studies at the university become a more or less pleasant reminiscence which has no influence on his teaching (Klein, 1908 ).

This phenomenon—which Klein calls the double discontinuity —can still be observed. In effect, the teacher students “tunnel” through university: They study at university in order to get a degree, but nevertheless they afterwards teach the mathematics that they had learned in school, and possibly with the didactics they remember from their own school education. This problem observed and characterized by Klein gets even worse in a situation (which we currently observe in Germany) where there is a grave shortage of Mathematics teachers, so university students are invited to teach at high school long before graduating from university, so they have much less university education to tunnel at the time when they start to teach in school. It may also strengthen their conviction that University Mathematics is not needed in order to teach.

How to avoid the double discontinuity is, of course, a major challenge for the design of university curricula for mathematics teachers. One important aspect however, is tied to the question of “What is Mathematics?”: A very common highschool image/concept of mathematics, as represented by curricula, is that mathematics consists of the subjects presented by highschool curricula, that is, (elementary) geometry, algebra (in the form of arithmetic, and perhaps polynomials), plus perhaps elementary probability, calculus (differentiation and integration) in one variable—that’s the mathematics highschool students get to see, so they might think that this is all of it! Could their teachers present them a broader picture? The teachers after their highschool experience studied at university, where they probably took courses in calculus/analysis, linear algebra, classical algebra, plus some discrete mathematics, stochastics/probability, and/or numerical analysis/differential equations, perhaps a programming or “computer-oriented mathematics” course. Altogether they have seen a scope of university mathematics where no current research becomes visible, and where most of the contents is from the nineteenth century, at best. The ideal is, of course, that every teacher student at university has at least once experienced how “doing research on your own” feels like, but realistically this rarely happens. Indeed, teacher students would have to work and study and struggle a lot to see the fascination of mathematics on their own by doing mathematics; in reality they often do not even seriously start the tour and certainly most of them never see the “glimpse of heaven.” So even if the teacher student seriously immerges into all the mathematics on the university curriculum, he/she will not get any broader image of “What is Mathematics?”. Thus, even if he/she does not tunnel his university studies due to the double discontinuity, he/she will not come back to school with a concept that is much broader than that he/she originally gained from his/her highschool times.

Our experience is that many students (teacher students as well as classical mathematics majors) cannot name a single open problem in mathematics when graduating the university. They have no idea of what “doing mathematics” means—for example, that part of this is a struggle to find and shape the “right” concepts/definitions and in posing/developing the “right” questions and problems.

And, moreover, also the impressions and experiences from university times will get old and outdated some day: a teacher might be active at a school for several decades—while mathematics changes! Whatever is proved in mathematics does stay true, of course, and indeed standards of rigor don’t change any more as much as they did in the nineteenth century, say. However, styles of proof do change (see: computer-assisted proofs, computer-checkable proofs, etc.). Also, it would be good if a teacher could name “current research focus topics”: These do change over ten or twenty years. Moreover, the relevance of mathematics in “real life” has changed dramatically over the last thirty years.

The Panorama Project

For several years, the present authors have been working on developing a course [and eventually a book (Loos & Ziegler, 2017 )] called “Panorama der Mathematik” [“Panorama of Mathematics”]. It primarily addresses mathematics teacher students, and is trying to give them a panoramic view on mathematics: We try to teach an overview of the subject, how mathematics is done, who has been and is doing it, including a sketch of main developments over the last few centuries up to the present—altogether this is supposed to amount to a comprehensive (but not very detailed) outline of “What is Mathematics.” This, of course, turns out to be not an easy task, since it often tends to feel like reading/teaching poetry without mastering the language. However, the approach of Panorama is complementing mathematics education in an orthogonal direction to the classic university courses, as we do not teach mathematics but present (and encourage to explore ); according to the response we get from students they seem to feel themselves that this is valuable.

Our course has many different components and facets, which we here cast into questions about mathematics. All these questions (even the ones that “sound funny”) should and can be taken seriously, and answered as well as possible. For each of them, let us here just provide at most one line with key words for answers:

When did mathematics start?

Numbers and geometric figures start in stone age; the science starts with Euclid?

How large is mathematics? How many Mathematicians are there?

The Mathematics Genealogy Project had 178854 records as of 12 April 2014.

How is mathematics done, what is doing research like?

Collect (auto)biographical evidence! Recent examples: Frenkel ( 2013 ) , Villani ( 2012 ).

What does mathematics research do today? What are the Grand Challenges?

The Clay Millennium problems might serve as a starting point.

What and how many subjects and subdisciplines are there in mathematics?

See the Mathematics Subject Classification for an overview!

Why is there no “Mathematical Industry”, as there is e.g. Chemical Industry?

There is! See e.g. Telecommunications, Financial Industry, etc.

What are the “key concepts” in mathematics? Do they still “drive research”?

Numbers, shapes, dimensions, infinity, change, abstraction, …; they do.

What is mathematics “good for”?

It is a basis for understanding the world, but also for technological progress.

Where do we do mathematics in everyday life?

Not only where we compute, but also where we read maps, plan trips, etc.

Where do we see mathematics in everyday life?

There is more maths in every smart phone than anyone learns in school.

What are the greatest achievements of mathematics through history?

Make your own list!

An additional question is how to make university mathematics more “sticky” for the tunneling teacher students, how to encourage or how to force them to really connect to the subject as a science. Certainly there is no single, simple, answer for this!

Telling Stories About Mathematics

How can mathematics be made more concrete? How can we help students to connect to the subject? How can mathematics be connected to the so-called real world?

Showing applications of mathematics is a good way (and a quite beaten path). Real applications can be very difficult to teach since in most advanced, realistic situation a lot of different mathematical disciplines, theories and types of expertise have to come together. Nevertheless, applications give the opportunity to demonstrate the relevance and importance of mathematics. Here we want to emphasize the difference between teaching a topic and telling about it. To name a few concrete topics, the mathematics behind weather reports and climate modelling is extremely difficult and complex and advanced, but the “basic ideas” and simplified models can profitably be demonstrated in highschool, and made plausible in highschool level mathematical terms. Also success stories like the formula for the Google patent for PageRank (Page, 2001 ), see Langville and Meyer ( 2006 ), the race for the solution of larger and larger instances of the Travelling Salesman Problem (Cook, 2011 ), or the mathematics of chip design lend themselves to “telling the story” and “showing some of the maths” at a highschool level; these are among the topics presented in the first author’s recent book (Ziegler, 2013b ), where he takes 24 images as the starting points for telling stories—and thus developing a broader multi-facetted picture of mathematics.

Another way to bring maths in contact with non-mathematicians is the human level. Telling stories about how maths is done and by whom is a tricky way, as can be seen from the sometimes harsh reactions on www.mathoverflow.net to postings that try to excavate the truth behind anecdotes and legends. Most mathematicians see mathematics as completely independent from the persons who explored it. History of mathematics has the tendency to become gossip , as Gian-Carlo Rota once put it (Rota, 1996 ). The idea seems to be: As mathematics stands for itself, it has also to be taught that way.

This may be true for higher mathematics. However, for pupils (and therefore, also for teachers), transforming mathematicians into humans can make science more tangible, it can make research interesting as a process (and a job?), and it can be a starting/entry point for real mathematics. Therefore, stories can make mathematics more sticky. Stories cannot replace the classical approaches to teaching mathematics. But they can enhance it.

Stories are the way by which knowledge has been transferred between humans for thousands of years. (Even mathematical work can be seen as a very abstract form of storytelling from a structuralist point of view.) Why don’t we try to tell more stories about mathematics, both at university and in school—not legends, not fairy tales, but meta-information on mathematics—in order to transport mathematics itself? See (Ziegler, 2013a ) for an attempt by the first author in this direction.

By stories, we do not only mean something like biographies, but also the way of how mathematics is created or discovered: Jack Edmonds’ account (Edmonds, 1991 ) of how he found the blossom shrink algorithm is a great story about how mathematics is actually done . Think of Thomas Harriot’s problem about stacking cannon balls into a storage space and what Kepler made out of it: the genesis of a mathematical problem. Sometimes scientists even wrap their work into stories by their own: see e.g. Leslie Lamport’s Byzantine Generals (Lamport, Shostak, & Pease, 1982 ).

Telling how research is done opens another issue. At school, mathematics is traditionally taught as a closed science. Even touching open questions from research is out of question, for many good and mainly pedagogical reasons. However, this fosters the image of a perfect science where all results are available and all problems are solved—which is of course completely wrong (and moreover also a source for a faulty image of mathematics among undergraduates).

Of course, working with open questions in school is a difficult task. None of the big open questions can be solved with an elementary mathematical toolbox; many of them are not even accessible as questions. So the big fear of discouraging pupils is well justified. On the other hand, why not explore mathematics by showing how questions often pop up on the way? Posing questions in and about mathematics could lead to interesting answers—in particular to the question of “What is Mathematics, Really?”

Three Times Mathematics at School?

So, what is mathematics? With school education in mind, the first author has argued in Ziegler ( 2012 ) that we are trying cover three aspects the same time, which one should consider separately and to a certain extent also teach separately:

A collection of basic tools, part of everyone’s survival kit for modern-day life—this includes everything, but actually not much more than, what was covered by Adam Ries’ “Rechenbüchlein” [“Little Book on Computing”] first published in 1522, nearly 500 years ago;

A field of knowledge with a long history, which is a part of our culture and an art, but also a very productive basis (indeed a production factor) for all modern key technologies. This is a “story-telling” subject.

An introduction to mathematics as a science—an important, highly developed, active, huge research field.

Looking at current highschool instruction, there is still a huge emphasis on Mathematics I, with a rather mechanical instruction on arithmetic, “how to compute correctly,” and basic problem solving, plus a rather formal way of teaching Mathematics III as a preparation for possible university studies in mathematics, sciences or engineering. Mathematics II, which should provide a major component of teaching “What is Mathematics,” is largely missing. However, this part also could and must provide motivation for studying Mathematics I or III!

What Is Mathematics, Really?

There are many, and many different, valid answers to the Courant-Robbins question “What is Mathematics?”

A more philosophical one is given by Reuben Hersh’s book “What is Mathematics, Really?” Hersh ( 1997 ), and there are more psychological ones, on the working level. Classics include Jacques Hadamard’s “Essay on the Psychology of Invention in the Mathematical Field” and Henri Poincaré’s essays on methodology; a more recent approach is Devlin’s “Introduction to Mathematical Thinking” Devlin ( 2012 ), or Villani’s book ( 2012 ).

And there have been many attempts to describe mathematics in encyclopedic form over the last few centuries. Probably the most recent one is the gargantuan “Princeton Companion to Mathematics”, edited by Gowers et al. ( 2008 ), which indeed is a “Princeton Companion to Pure Mathematics.”

However, at a time where ZBMath counts more than 100,000 papers and books per year, and 29,953 submissions to the math and math-ph sections of arXiv.org in 2016, it is hopeless to give a compact and simple description of what mathematics really is, even if we had only the “current research discipline” in mind. The discussions about the classification of mathematics show how difficult it is to cut the science into slices, and it is even debatable whether there is any meaningful way to separate applied research from pure mathematics.

Probably the most diplomatic way is to acknowledge that there are “many mathematics.” Some years ago Tao ( 2007 ) gave an open list of mathematics that is/are good for different purposes—from “problem-solving mathematics” and “useful mathematics” to “definitive mathematics”, and wrote:

As the above list demonstrates, the concept of mathematical quality is a high-dimensional one, and lacks an obvious canonical total ordering. I believe this is because mathematics is itself complex and high-dimensional, and evolves in unexpected and adaptive ways; each of the above qualities represents a different way in which we as a community improve our understanding and usage of the subject.

In this sense, many answers to “What is Mathematics?” probably show as much about the persons who give the answers as they manage to characterize the subject.

According to Wikipedia , the same version, the answer to “Who is Mathematics” should be:

Mathematics , also known as Allah Mathematics , (born: Ronald Maurice Bean [1] ) is a hip hop producer and DJ for the Wu-Tang Clan and its solo and affiliate projects. This is not the mathematics we deal with here.

Blum, W. (2001). Was ist was. Band 12: Mathematik , Tessloff Verlag, Nürnberg. Revised version, with new cover, 2010.

Google Scholar  

Cook, W. (2011). In pursuit of the traveling salesman: Mathematics at the limits of computation . Princeton NJ: Princeton University Press.

Courant, R., & Robbins, H. (1941). What is mathematics? an elementary approach to ideas and methods (2nd ed.), Oxford: Oxford University Press. Stewart, I (ed), 1996.

Csicsery, G. (2008). Hard problems. the road to the world’s toughest math contest , Documentary film, 82 minutes (feature)/45 minutes (classroom version), Washington, DC: Mathematical Association of America.

Devlin, K. J. (2012). Introduction to mathematical thinking , published by Keith Devlin, Palo Alto CA.

Edmonds, J. (1991). A glimpse of heaven, In: J. K. Lenstra, A. Schrijver, & A. Rinnooy Kan (eds.) History of mathematical programming—A collection of personal reminiscences (pp. 32–54). Amsterdam: CWI and North-Holland.

Frenkel, E. (2013). Love & math. The heart of hidden reality . Philadelphia PA: Basic Books/Perseus Books.

Gowers, Timothy, Leader, Imre, & Barrow-Green, June (Eds.). (2008). The princeton companion to mathematics . Princeton NJ: Princeton University Press.

Highland, E. H., & Highland, H. J. (1961). The how and why wonder book of mathematics . New York: Grosset & Dunlop.

Highland, E. H., & Highland, H. J. (1963). Was ist was. Band 12: Mathematik , Neuer Tessloff Verlag, Hamburg, 1963. Revised edition 1969. New cover 1983.

Hersh, R. (1997). What is mathematics, really? . Oxford: Oxford University Press.

Klein, F.(1933). Elementarmathematik vom höheren Standpunkte aus. Teil I: Arithmetik, Algebra, Analysis , B. G. Teubner, Leipzig, 1908. Vierte Auflage. Heidelberg: Springer.

Lamport, L., Shostak, R., & Pease, M. (1982). The byzantine generals problem. ACM Transactions on Programming Languages and Systems, 4, 382–401.

Article   Google Scholar  

Langville, A. N., & Meyer, C. D. (2006). Google’s pagerank and beyond. The science of search engine rankings . Princeton and Oxford: Princeton University Press.

Loos, A., & Ziegler, G. M. (2017). Panorama der Mathematik . Heidelberg: Springer Spectrum, to appear.

Mendick, H., Epstein, D., & Moreau, M.-P. (2008). Mathematical images and identities: Education, entertainment, social justice . London: Institute for Policy Studies in Education, London Metropolitan University.

Page, L. (2001) Method for node ranking in a linked database , United States Patent No. US 6,285,999 B1, (submitted: January 9, 1998), http://www.google.com/patents/US6285999

Rota, G.-C. (1996). Indiscrete thoughts . Basel: Birkhäuser.

Tao, T. (2007). What is good mathematics? Bulletin of the American Mathematical Society, 44 (4), 623–634.

Villani, C. (2012). Théorème vivant . Paris: Bernard Grasset. (in French).

Ziegler, G. M. (2011). Three competitions. In D. Schleicher & M. Lackmann (Eds.), Invitation to mathematics. From competition to research (pp. 195–205). Berlin: Springer.

Chapter   Google Scholar  

Ziegler, G. M. (2012). Mathematics school education provides answers—To which questions? EMS Newsletter (84), 8–11.

Ziegler, G. M.(2013a). Do I count? stories from mathematics , Boca Raton FL: CRC Press/Taylor & Francis. English translation of “Darf ich Zahlen? Geschichten aus der Mathematik”, Piper, München, 2010.

Ziegler, G. M. (2013b). Mathematik—Das ist doch keine Kunst! . München: Knaus.

Download references

Acknowledgment

The authors’ work has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 247029, the DFG Research Center Matheon, and the the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”.

Author information

Authors and affiliations.

Institut Für Mathematik, FU Berlin, Arnimallee 2, 14195, Berlin, Germany

Günter M. Ziegler

Zeit Online, Askanischer Platz 1, 10963, Berlin, Germany

Andreas Loos

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Günter M. Ziegler .

Editor information

Editors and affiliations.

Faculty of Education, Universität Hamburg, Hamburg, Hamburg, Germany

Gabriele Kaiser

Rights and permissions

Open Access Except where otherwise noted, this chapter is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this paper

Cite this paper.

Ziegler, G.M., Loos, A. (2017). “What is Mathematics?” and why we should ask, where one should experience and learn that, and how to teach it. In: Kaiser, G. (eds) Proceedings of the 13th International Congress on Mathematical Education. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-319-62597-3_5

Download citation

DOI : https://doi.org/10.1007/978-3-319-62597-3_5

Published : 02 November 2017

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-62596-6

Online ISBN : 978-3-319-62597-3

eBook Packages : Education Education (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

general mathematics essay

45,000+ students realised their study abroad dream with us. Take the first step today

Meet top uk universities from the comfort of your home, here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

general mathematics essay

Verification Code

An OTP has been sent to your registered mobile no. Please verify

general mathematics essay

Thanks for your comment !

Our team will review it before it's shown to our readers.

Leverage Edu

  • School Education /

Essay on Importance of Mathematics in our Daily Life in 100, 200, and 350 words.

general mathematics essay

  • Updated on  
  • Dec 22, 2023

Essay on Importance of Mathematics in our Daily Life

Mathematics is one of the core aspects of education. Without mathematics, several subjects would cease to exist. It’s applied in the science fields of physics, chemistry, and even biology as well. In commerce accountancy, business statistics and analytics all revolve around mathematics. But what we fail to see is that not only in the field of education but our lives also revolve around it. There is a major role that mathematics plays in our lives. Regardless of where we are, or what we are doing, mathematics is forever persistent. Let’s see how maths is there in our lives via our blog essay on importance of mathematics in our daily life. 

Table of Contents

  • 1 Essay on Importance of Mathematics in our Daily life in 100 words 
  • 2 Essay on Importance of Mathematics in our Daily life in 200 words
  • 3 Essay on Importance of Mathematics in our Daily Life in 350 words

Essay on Importance of Mathematics in our Daily life in 100 words 

Mathematics is a powerful aspect even in our day-to-day life. If you are a cook, the measurements of spices have mathematics in them. If you are a doctor, the composition of medicines that make you provide prescription is made by mathematics. Even if you are going out for just some groceries, the scale that is used for weighing them has maths, and the quantity like ‘dozen apples’ has maths in it. No matter the task, one way or another it revolves around mathematics. Everywhere we go, whatever we do, has maths in it. We just don’t realize that. Maybe from now on, we will, as mathematics is an important aspect of our daily life.

Also Read:- Importance of Internet

Essay on Importance of Mathematics in our Daily life in 200 words

Mathematics, as a subject, is one of the most important subjects in our lives. Irrespective of the field, mathematics is essential in it. Be it physics, chemistry, accounts, etc. mathematics is there. The use of mathematics proceeds in our daily life to a major extent. It will be correct to say that it has become a vital part of us. Imagining our lives without it would be like a boat without a sail. It will be a shock to know that we constantly use mathematics even without realising the same. 

From making instalments to dialling basic phone numbers it all revolves around mathematics. 

Let’s take an example from our daily life. In the scenario of going out shopping, we take an estimate of hours. Even while buying just simple groceries, we take into account the weight of vegetables for scaling, weighing them on the scale and then counting the cash to give to the cashier. We don’t even realise it and we are already counting numbers and doing calculations. 

Without mathematics and numbers, none of this would be possible.

Hence we can say that mathematics helps us make better choices, more calculated ones throughout our day and hence make our lives simpler. 

Also Read:-   My Aim in Life

Essay on Importance of Mathematics in our Daily Life in 350 words

Mathematics is what we call a backbone, a backbone of science. Without it, human life would be extremely difficult to imagine. We cannot live even a single day without making use of mathematics in our daily lives. Without mathematics, human progress would come to a halt. 

Maths helps us with our finances. It helps us calculate our daily, monthly as well as yearly expenses. It teaches us how to divide and prioritise our expenses. Its knowledge is essential for investing money too. We can only invest money in property, bank schemes, the stock market, mutual funds, etc. only when we calculate the figures. Let’s take an example from the basic routine of a day. Let’s assume we have to make tea for ourselves. Without mathematics, we wouldn’t be able to calculate how many teaspoons of sugar we need, how many cups of milk and water we have to put in, etc. and if these mentioned calculations aren’t made, how would one be able to prepare tea? 

In such a way, mathematics is used to decide the portions of food, ingredients, etc. Mathematics teaches us logical reasoning and helps us develop problem-solving skills. It also improves our analytical thinking and reasoning ability. To stay in shape, mathematics helps by calculating the number of calories and keeping the account of the same. It helps us in deciding the portion of our meals. It will be impossible to think of sports without mathematics. For instance, in cricket, run economy, run rate, strike rate, overs bowled, overs left, number of wickets, bowling average, etc. are calculated. It also helps in predicting the result of the match. When we are on the road and driving, mathetics help us keep account of our speeds, the distance we have travelled, the amount of fuel left, when should we refuel our vehicles, etc. 

We can go on and on about how mathematics is involved in our daily lives. In conclusion, we can say that the universe revolves around mathematics. It encompasses everything and without it, we cannot imagine our lives. 

Also Read:- Essay on Pollution

Ans: Mathematics is a powerful aspect even in our day-to-day life. If you are a cook, the measurements of spices have mathematics in them. If you are a doctor, the composition of medicines that make you provide prescription is made by mathematics. Even if you are going out for just some groceries, the scale that is used for weighing them has maths, and the quantity like ‘dozen apples’ has maths in it. No matter the task, one way or another it revolves around mathematics. Everywhere we go, whatever we do, has maths in it. We just don’t realize that. Maybe from now on, we will, as mathematics is an important aspect of our daily life.

Ans: Mathematics, as a subject, is one of the most important subjects in our lives. Irrespective of the field, mathematics is essential in it. Be it physics, chemistry, accounts, etc. mathematics is there. The use of mathematics proceeds in our daily life to a major extent. It will be correct to say that it has become a vital part of us. Imagining our lives without it would be like a boat without a sail. It will be a shock to know that we constantly use mathematics even without realising the same.  From making instalments to dialling basic phone numbers it all revolves around mathematics. Let’s take an example from our daily life. In the scenario of going out shopping, we take an estimate of hours. Even while buying just simple groceries, we take into account the weight of vegetables for scaling, weighing them on the scale and then counting the cash to give to the cashier. We don’t even realise it and we are already counting numbers and doing calculations. Without mathematics and numbers, none of this would be possible. Hence we can say that mathematics helps us make better choices, more calculated ones throughout our day and hence make our lives simpler.  

Ans: Archimedes is considered the father of mathematics.

Related Reads:

Hope you find this information useful. For more information on such informative topics for your school, visit our essay writing and follow Leverage Edu.

' src=

Deepansh Gautam

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

general mathematics essay

Connect With Us

general mathematics essay

45,000+ students realised their study abroad dream with us. Take the first step today.

general mathematics essay

Resend OTP in

general mathematics essay

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

January 2024

September 2024

What is your budget to study abroad?

general mathematics essay

How would you describe this article ?

Please rate this article

We would like to hear more.

Have something on your mind?

general mathematics essay

Make your study abroad dream a reality in January 2022 with

general mathematics essay

India's Biggest Virtual University Fair

general mathematics essay

Essex Direct Admission Day

Why attend .

general mathematics essay

Don't Miss Out

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Early math review

Kindergarten, basic geometry and measurement, pre-algebra, algebra basics, high school geometry, trigonometry, statistics and probability, high school statistics, ap®︎/college statistics, college algebra, precalculus, differential calculus, integral calculus, ap®︎/college calculus ab, ap®︎/college calculus bc, multivariable calculus, differential equations, linear algebra, 6th grade (illustrative mathematics), 7th grade (illustrative mathematics), 8th grade (illustrative mathematics), algebra 1 (illustrative mathematics), 3rd grade (eureka math/engageny), 4th grade (eureka math/engageny), 5th grade (eureka math/engageny), 6th grade (eureka math/engageny), 7th grade (eureka math/engageny), 8th grade (eureka math/engageny), algebra 1 (eureka math/engageny), geometry (eureka math/engageny), algebra 2 (eureka math/engageny), precalculus (eureka math/engageny), 3rd grade foundations (eureka math/engageny), 4th grade foundations (eureka math/engageny), 5th grade foundations (eureka math/engageny), 6th grade foundations (eureka math/engageny), 7th grade foundations (eureka math/engageny), 8th grade foundations (eureka math/engageny), integrated math 1, integrated math 2, integrated math 3, arithmetic (all content), algebra (all content), geometry (all content), get ready for 3rd grade, get ready for 4th grade, get ready for 5th grade, get ready for 6th grade, get ready for 7th grade, get ready for 8th grade, get ready for algebra 1, get ready for geometry, get ready for algebra 2, get ready for precalculus, map recommended practice, get ready for ap® calculus, get ready for ap® statistics, grade 6 math (fl b.e.s.t.), grade 7 math (fl b.e.s.t.), grade 8 math (fl b.e.s.t.), algebra 1 (fl b.e.s.t.), geometry (fl b.e.s.t.), algebra 2 (fl b.e.s.t.), grade 6 (va sol), grade 7 (va sol), grade 8 (va sol), grade 3 (fl b.e.s.t.), grade 4 math (fl b.e.s.t.), grade 5 math (fl b.e.s.t.), class 9 (od), class 10 (od).

FTCE/FELE Logo

  • Certification Requirements
  • Fees and Payment Information
  • Requesting Alternative Testing Arrangements
  • Your Test Appointment

Quick Links

  • PDFs and Forms
  • Frequently Asked Questions

Register Now Button

  • General Knowledge Test (GK)

General Knowledge Test (GK) (082)

The General Knowledge Test assesses the skills and knowledge all candidates need to begin effective careers as professional educators .

The General Knowledge Test consists of four subtests:

  • Essay Subtest (825)
  • English Language Skills (ELS) Subtest (826)
  • Reading Subtest (827)
  • Mathematics Subtest (828)

For more information about the history and development of the General Knowledge Test, see "About the FTCE/FELE: General Knowledge (GK) Test ."

Registration Information

You are not required to take all four subtests of this exam for your first attempt. You can split the subtests into two appointments of two subtests each, four appointments of a single subtest each, or any other combination desired.

When registering, you must create a separate registration for each testing appointment. For example, to split the subtests into two appointments, you must create two registrations, each with two subtests.

The subtests selected on a registration cannot be changed. If you have a current registration but want to change the subtests to be given in a single testing appointment, you will need to cancel your current registration and create one or more new registrations with the desired combination of subtests.

Tests may include test questions that are being evaluated for future administrations and that do not affect an examinee's score.

Copyright © 2024 Pearson Education, Inc. or its affiliate(s). All rights reserved. Pearson, 300 Venture Way, Hadley, MA 01035

  • Math Article
  • What is Mathematics

What is Mathematics?

Class Registration Banner

Mathematics is one of the most important subjects. Mathematics is a subject of numbers, shapes, data, measurements and also logical activities. It has a huge scope in every field of our life, such as medicine, engineering, finance, natural science, economics, etc. We are all surrounded by a mathematical world.

The concepts, theories and formulas that we learn in Maths books have huge applications in real-life. To find the solutions for various problems we need to learn the formulas and concepts. Therefore, it is important to learn this subject to understand its various applications and significance.

What Is The Definition of Mathematics?

Mathematics simply means to learn or to study or gain knowledge. The theories and concepts given in mathematics help us understand and solve various types of problems in academic as well as in real life situations.

Mathematics is a subject of logic. Learning mathematics will help students to grow their problem-solving and logical reasoning skills. Solving mathematical problems is one of the best brain exercises.

Basic Mathematics

The fundamentals of mathematics begin with arithmetic operations such as addition, subtraction, multiplication and division. These are the basics that every student learns in their elementary school. Here is a brief of these operations.

  • Addition: Sum of numbers (Eg. 1 + 2 = 3)
  • Subtraction: Difference between two or more numbers (Eg. 5 – 4 = 1)
  • Multiplication: Product of two or more numbers (Eg. 3 x 9 = 27)
  • Division: Dividing a number into equal parts (Eg. 10 ÷ 2 = 5, 10 is divided in 2 equal parts)

History of Mathematics

Mathematics is a historical subject. It has been explored by various mathematicians across the world since centuries, in different civilizations. Archimedes, from the BC century is known to be the Father of Mathematics. He introduced formulas to calculate surface area and volume of solids. Whereas, Aryabhatt, born in 476 CE, is known as the Father of Indian Mathematics.

In the 6th century BC, the study of mathematics began with the Pythagoreans, as a “demonstrative discipline”. The word mathematics originated from the Greek word “mathema”, which means “subject of instruction”.

Another mathematician, named Euclid, introduced the axiom, postulates, theorems and proofs, which are also used in today’s mathematics.

History of Mathematics has been an ancient study and is described by each part of the world, in a varying method. There were many mathematicians who have given different theories for many concepts, which we are applying in modern mathematics.

Numbers, which we use for calculations, had variations in the medieval period. The Romans introduced the Roman numerals that uses English alphabets to represent a number, such as:

Branches of Mathematics

The main branches of mathematics are:

  • Number System
  • Trigonometry
  • Probability and Statistics

These mathematical concepts fall under pure mathematics . These form the base of mathematics. In our academics we will come across all these theories and fundamentals to solve questions based on them.

Applied mathematics is another form, where mathematicians, scientists or technicians use mathematical concepts to solve practical problems. It describes the professional use of mathematics.

Symbols in Mathematics

Some of the basic and most important symbols, used in mathematics, are listed below in the table.

These are the most common symbols used in basic mathematical calculations. To get more maths symbols click here.

Properties in Mathematics

In mathematics, we learn about four major properties of numbers. They are:

  • Commutative Property
  • Associative property
  • Distributive Property
  • Identity Property

These are the four basic properties of numbers. These properties are also applicable to some other mathematical concepts such as algebra.

Rules in Mathematics

The most common rule used in mathematics is the BODMAS rule. As per this rule, the arithmetic operations are performed based on the brackets and order of operations. By the full form of BODMAS, we can easily understand this logic.

BODMAS – Brackets Orders Division Multiplication Addition and Subtraction

Therefore, the first priority here is given to the brackets then division>multiplication>addition>subtraction.

For example, if we have to solve [5+(3 x 5)÷2], then using the BODMAS rule, first multiply 3 and 5, within the brackets.

→ 5+(3 x 5)÷2 = 5 + 15÷2

Now divide 15 by 2

Formulas in Mathematics

Here are some common formulas used in mathematics to solve multiple problems.

  • Area and Perimeter Formula
  • Coordinate Geometry Formulas
  • Heron’s Formula
  • Quadratic Formula
  • Differentiation Formulas
  • Distance Formula
  • Section Formula & Conic Sections
  • Standard Deviation Formula
  • Trigonometry Formulas

Topics in Mathematics

Let us see some important topics for each Class (from 1 to 12) that are covered under mathematics.

Class 1 Mathematics

  • Numbers In Words
  • Addition And Subtraction Of Integers

Class 2 Mathematics

  • Counting Numbers
  • Place Value

Class 3 Mathematics

  • Multiplication Tables
  • Multiplication And Division Of Integers
  • Comparing Fractions
  • Introduction To Data

Class 4 Mathematics

  • Factors And Multiples
  • Multiplication And Division Of Decimals
  • Multiplying Fractions
  • Introduction to Large Numbers

Class 5 Mathematics

  • Dividing Fractions
  • Addition and Subtraction of Decimals
  • Lines and Angles Introduction
  • Area Of A Square – Introduction To Area

Class 6 Mathematics

  • Whole Numbers

Class 7 Mathematics

  • Lines And Angles
  • Percentage: Means Of Comparing Quantities
  • Visualising Solid Shapes

Class 8 Mathematics

  • Rational Numbers
  • Mensuration
  • Squares and Square Roots
  • Exponents And Powers

Class 9 Mathematics

  • Polynomials
  • Quadrilateral
  • Surface Areas and Volume

Class 10 Mathematics

  • Arithmetic Progression
  • Co-ordinate Geometry
  • Constructions
  • Probability And Statistics

Class 11 Mathematics

  • Relations and Functions
  • Trigonometric Functions
  • Linear Inequalities
  • Permutation And Combination
  • Conic Sections
  • Limits and Derivatives

Class 12 Mathematics

  • Inverse Trigonometric Functions
  • Determinants
  • Application of Integrals
  • Vector algebra
  • Linear Programming
  • Continuity And Differentiability

Frequently Asked Questions on Mathematics

Define mathematics..

Mathematics is a subject that deals with numbers, shapes, logic, quantity and arrangements. Mathematics teaches to solve problems based on numerical calculations and find the solutions.

Why is Mathematics an important subject for students?

Learning mathematics will help students to build their logical thinking and problem solving skills. It has huge applications in day to day life. The basic arithmetic operations such as addition, subtraction, multiplication and division are the most important part of our lives. Based on these operations, we do numerous calculations.

Who is the Father of Mathematics?

Archimedes, (287-212 BC) is known to be the Father of Mathematics.

Which part of mathematics does Trigonometry belong to?

Geometry is one of the most important branches of mathematics that includes trigonometry, where we deal with sides and angles of a right triangle. It has huge applications in the fields of construction and architecture.

What are the two forms of Mathematics?

Mathematics is described in two forms:

Pure mathematics and Applied mathematics

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

general mathematics essay

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

general mathematics essay

General Mathematics

Examination specifications and sample materials.

general mathematics essay

Past examinations and examination reports

Examinations relating to the current study design.

The following examinations relate to the current VCE Mathematics study design and other curriculum materials.

general mathematics essay

Examinations relating to previous study designs

Students and teachers should note that, with the introduction of a new study design, the following past examinations are not necessarily a guide to the current VCE examination for this study.

2016 to 2022

Past examinations

Exam reports

For examinations published prior to 2011, see the examination acknowledgements webpage.

Queensland Government coat of arms

  • Senior secondary
  • Senior External Examination

Subject resources

  • General Mathematics

Senior External Examination in General Mathematics

For implementation with Senior External Examination students in 2024. If you are looking for external assessment for General subjects, please visit the Senior secondary section.

This year's examination will be based on the General Mathematics General Senior External Examination Syllabus 2019 .

  • General Mathematics General Senior External Examination Syllabus 2019 (PDF, 1.6 MB)

Assessment reports and past papers

Assessment reports provide examination statistics and comments on overall candidate performance, and may include marking schemes and sample responses.

Past papers are sample examination papers from previous years. Examination papers may vary within the requirements of the syllabus.

  • Subject report 2023 (PDF, 4.0 MB)
  • Subject report 2022 (PDF, 3.4 MB)
  • SEE 1 — Question and response book (PDF, 932.4 KB)
  • SEE 1 — Stimulus book (PDF, 213.6 KB)
  • SEE 2 Paper 1 — Multiple choice question book (PDF, 1.2 MB)
  • SEE 2 Paper 1 — Question and response book (PDF, 1.8 MB)
  • SEE 2 Paper 2 — Question and response book (PDF, 1.3 MB)
  • SEE 1 and SEE 2 — Marking guide (PDF, 1.2 MB)
  • Subject report 2021 (PDF, 1.9 MB)
  • Subject reports factsheet 2021 (PDF, 166.6 KB)
  • SEE 1 — Question and response book (PDF, 1.4 MB)
  • SEE 1 — Stimulus book (PDF, 794.9 KB)
  • SEE 2 Paper 1 — Multiple choice question book (PDF, 466.2 KB)
  • SEE 2 Paper 1 — Question and response book (PDF, 6.1 MB)
  • SEE 2 Paper 2 — Question and response book (PDF, 890.0 KB)
  • SEE 1 and SEE 2 — Marking guide (PDF, 1.6 MB)
  • Subject report 2020 (PDF, 5.5 MB)
  • Subject reports factsheet 2020 (PDF, 170.2 KB)
  • SEE 1 — Question and response book (PDF, 1.3 MB)
  • SEE 1 — Stimulus book (PDF, 913.1 KB)
  • SEE 2 Paper 1 — Multiple choice question book (PDF, 1.3 MB)
  • SEE 2 Paper 1 — Question and response book (PDF, 829.5 KB)
  • SEE 2 Paper 2 — Question and response book (PDF, 784.2 KB)
  • SEE 1 and 2 – Marking guide (PDF, 938.1 KB)
  • Subject notice 1 — April 2019 (PDF, 399.3 KB)
  • Subject notice 2 — May 2019 (PDF, 148.8 KB)
  • Paper One — Question and response book (PDF, 651.0 KB)
  • Paper One — Resource book (PDF, 290.0 KB)
  • Paper Two — Question and response book (PDF, 465.1 KB)
  • Paper Two — Resource book (PDF, 292.3 KB)
  • Assessment report (PDF, 3.5 MB)
  • Subject notice 1 — April 2018 (PDF, 280.1 KB)
  • Subject notice 2 — June 2018 (PDF, 68.3 KB)
  • Paper One — Question and response book (PDF, 682.9 KB)
  • Paper One — Resource book (PDF, 253.8 KB)
  • Paper Two — Question and response book (PDF, 442.9 KB)
  • Paper Two — Resource book (PDF, 253.9 KB)
  • Assessment report (PDF, 8.3 MB)
  • Subject notice 2 — September 2017 (PDF, 74.8 KB)
  • Subject notice 1 — January 2017 (PDF, 431.9 KB)
  • Paper One — Question and response book (PDF, 531.0 KB)
  • Paper One — Resource book (PDF, 287.5 KB)
  • Paper Two — Question and response book (PDF, 564.4 KB)
  • Paper Two — Resource book (PDF, 286.0 KB)

More information

Email [email protected] or phone (07) 3864 0306, (07) 3864 0296.

Creative Commons Attribution 4.0 International (CC BY 4.0)

  • Modern Greek

IMAGES

  1. Mathematics to Me is Everything Mathematics Essay

    general mathematics essay

  2. The Nature of Mathematics Free Essay Example

    general mathematics essay

  3. Math Reflection Paper

    general mathematics essay

  4. General mathematics-sample-answers-10

    general mathematics essay

  5. Essay 'Importance Of Mathematics In The Modern World'

    general mathematics essay

  6. Reflection Paper

    general mathematics essay

VIDEO

  1. MTH100_Lecture02

  2. MTH100_Lecture27

  3. MTH100_Lecture43

  4. MTH100_Lecture18

  5. MTH100_Lecture41

  6. MTH100_Lecture38

COMMENTS

  1. Math Essay

    Long Essay on Math 500 Words in English. Long Essay on Math is usually given to classes 7, 8, 9, and 10. Mathematics is one of the common subjects that we study since our childhood. It is generally used in our daily life. Every person needs to learn some basics of it. Even counting money also includes math.

  2. Guide for Writing in Mathematics

    Using "I" in a reflective paper is generally appropriate, and for other types of writing, "we" may be used occasionally. Writing in mathematics should be careful of tense. When describing facts, use present tense (facts are true). When describing experiments or methods, use past tense (experiments were conducted).

  3. PDF A Guide to Writing Mathematics

    Mathematics papers adhere to the same standards as papers written for other classes. While it is a good idea to type your paper, you may have to leave out the formulas and insert them by hand later. It is perfectly acceptable to write formulas by hand in a math paper. Just make sure that your mathematical notation is legible.

  4. Math Essay Ideas for Students: Exploring Mathematical Concepts

    Discuss in your essay classic games like The Prisoner's Dilemma and examine how mathematical models can shed light on complex social interactions. Explore the cutting-edge applications of game theory in diverse fields, such as cybersecurity and evolutionary biology. If you still have difficulties choosing an idea for a math essay, find a ...

  5. Mathematics

    Mathematics, the science of structure, order, and relation that has evolved from counting, measuring, and describing the shapes of objects. Mathematics has been an indispensable adjunct to the physical sciences and technology and has assumed a similar role in the life sciences.

  6. Mathematics essays

    Our free mathematics essay examples include popular topics such as algorithms, applied mathematics, calculus, knot theory, linear algebra, and more. ... By searching the definition of science in Webster's New Collegiate Dictionary, science is "knowledge covering general truths of the … Read more. Categories Mathematics essays.

  7. The Guide on How to Write a Mathematics Essay

    Find all the relevant information in this math essay writing guide. Choosing a Topic for a Mathematics Essay. One of the most important tasks of writing a mathematics essay is the process of choosing a topic. There are two types of mathematics essays: History of math essays, Problem-solving mathematics essays.

  8. How mathematical practices can improve your writing

    Writing an original essay is like trying to solve a mathematics problem. There is no script to follow; it must be created by simultaneously determining one's goals and figuring out how to achieve them. In both essay writing and mathematical problem-solving, getting stuck is natural and expected. It is even a special kind of thrill.

  9. Essays About Math: Top 10 Examples and Writing Prompts

    Math may seem "useless" and "annoying" to many, but the essay gives readers a clear message: we need math to succeed. 3. Short essay on the importance of Mathematics by Jay Prakash. "In this modern age of Science and Technology, emphasis is given on Science such as Physics, Chemistry, Biology, Medicine and Engineering.

  10. Mathematics Essay Examples

    Stuck on your essay? Browse essays about Mathematics and find inspiration. Learn by example and become a better writer with Kibin's suite of essay help services.

  11. Some reflections on mathematics and mathematicians: Simple questions

    Mathematics is a set of rules and formulas that have been worked out by God knows who for God knows why, and the student's duty is to memorize all this stuff. This position can take to diverse mistaken answers to the question that heads this section. Kasner and Newman's point of view is that, "Mathematics is the science which uses easy ...

  12. Mathematics

    math.MP is an alias for math-ph. Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both ...

  13. 260 Interesting Math Topics for Essays & Research Papers

    Practical Algebra Lessons: Purplemath. Topics in Geometry: Massachusetts Institute of Technology. The Geometry Junkyard: All Topics: Donald Bren School of Information and Computer Sciences. Calculus I: Lamar University. Business Math for Financial Management: The Balance Small Business.

  14. "What is Mathematics?" and why we should ask, where one should

    Mathematics is the abstract study of topics such as quantity (numbers), [2] structure, [3] space, [2] and change. [4][5][6] There is a range of views among mathematicians and philosophers as to the exact scope and definition of mathematics. [7][8] Mathematicians seek out patterns (Highland & Highland, 1961, 1963) and use them to formulate new conjectures.. Mathematicians resolve the truth or ...

  15. Essay on Importance of Mathematics in our Daily Life in 100, 200, and

    Q.2. How mathematics is useful in our daily life essay? Ans: Mathematics, as a subject, is one of the most important subjects in our lives. Irrespective of the field, mathematics is essential in it. Be it physics, chemistry, accounts, etc. mathematics is there. The use of mathematics proceeds in our daily life to a major extent.

  16. PDF Style Guide For Writing Mathematical Proofs

    In general, writing style is the set of properties which can make an argument easier for the reader to follow. The details are up to you. But the e ect should be the same for every well-written piece of mathematics: the reader understands what you are trying to say and can follow your argument easily. 7. Created Date.

  17. Math

    The Mathematics 1 course, often taught in the 9th grade, covers Linear equations, inequalities, functions, and graphs; Systems of equations and inequalities; Extension of the concept of a function; Exponential models; Introductory statistics; and Geometric transformations and congruence. Khan Academy's Mathematics 1 course is built to deliver a ...

  18. General Mathematics: Senior High School SHS Teaching Guide

    The intention is to provide teachers a complete resource that addresses all expected learning competencies, as stated in the Department of Education's official curriculum guide. This resource is a teaching guide for General Mathematics. The structure is quite unique, reflective of the wide scope of General Mathematics: functions, business.

  19. General Knowledge Test (GK)

    The General Knowledge Test assesses the skills and knowledge all candidates need to begin effective careers as professional educators. The General Knowledge Test consists of four subtests: Essay Subtest (825) English Language Skills (ELS) Subtest (826) Reading Subtest (827) Mathematics Subtest (828) For more information about the history and ...

  20. Mathematics: Know Definition, History, Symbols, Branches of Mathematics

    Mathematics simply means to learn or to study or gain knowledge. The theories and concepts given in mathematics help us understand and solve various types of problems in academic as well as in real life situations. Mathematics is a subject of logic. Learning mathematics will help students to grow their problem-solving and logical reasoning skills.

  21. Pages

    2023 VCE General Mathematics 2 external assessment report Past examinations and examination reports. Examinations relating to previous study designs. Students and teachers should note that, with the introduction of a new study design, the following past examinations are not necessarily a guide to the current VCE examination for this study. ...

  22. Senior External Examination in General Mathematics

    General Mathematics General Senior External Examination Syllabus 2019 (PDF, 1.6 MB) Assessment reports and past papers Assessment reports provide examination statistics and comments on overall candidate performance, and may include marking schemes and sample responses. Past papers are sample examination papers from previous years.

  23. General Mathematics

    General Mathematics publishes high quality papers on pure and applied mathematics. To be published in this journal, a paper must contain new ideas and be of interest to a wide range of readers. Survey papers are also welcome. The journal appears in 2 numbers per year and has been published since 1993.