• Our Mission

3 Simple Strategies to Improve Students’ Problem-Solving Skills

These strategies are designed to make sure students have a good understanding of problems before attempting to solve them.

Two students in math class

Research provides a striking revelation about problem solvers. The best problem solvers approach problems much differently than novices. For instance, one meta-study showed that when experts evaluate graphs , they tend to spend less time on tasks and answer choices and more time on evaluating the axes’ labels and the relationships of variables within the graphs. In other words, they spend more time up front making sense of the data before moving to addressing the task.

While slower in solving problems, experts use this additional up-front time to more efficiently and effectively solve the problem. In one study, researchers found that experts were much better at “information extraction” or pulling the information they needed to solve the problem later in the problem than novices. This was due to the fact that they started a problem-solving process by evaluating specific assumptions within problems, asking predictive questions, and then comparing and contrasting their predictions with results. For example, expert problem solvers look at the problem context and ask a number of questions:

  • What do we know about the context of the problem?
  • What assumptions are underlying the problem? What’s the story here?
  • What qualitative and quantitative information is pertinent?
  • What might the problem context be telling us? What questions arise from the information we are reading or reviewing?
  • What are important trends and patterns?

As such, expert problem solvers don’t jump to the presented problem or rush to solutions. They invest the time necessary to make sense of the problem.

Now, think about your own students: Do they immediately jump to the question, or do they take time to understand the problem context? Do they identify the relevant variables, look for patterns, and then focus on the specific tasks?

If your students are struggling to develop the habit of sense-making in a problem- solving context, this is a perfect time to incorporate a few short and sharp strategies to support them.

3 Ways to Improve Student Problem-Solving

1. Slow reveal graphs: The brilliant strategy crafted by K–8 math specialist Jenna Laib and her colleagues provides teachers with an opportunity to gradually display complex graphical information and build students’ questioning, sense-making, and evaluating predictions.

For instance, in one third-grade class, students are given a bar graph without any labels or identifying information except for bars emerging from a horizontal line on the bottom of the slide. Over time, students learn about the categories on the x -axis (types of animals) and the quantities specified on the y -axis (number of baby teeth).

The graphs and the topics range in complexity from studying the standard deviation of temperatures in Antarctica to the use of scatterplots to compare working hours across OECD (Organization for Economic Cooperation and Development) countries. The website offers a number of graphs on Google Slides and suggests questions that teachers may ask students. Furthermore, this site allows teachers to search by type of graph (e.g., scatterplot) or topic (e.g., social justice).

2. Three reads: The three-reads strategy tasks students with evaluating a word problem in three different ways . First, students encounter a problem without having access to the question—for instance, “There are 20 kangaroos on the grassland. Three hop away.” Students are expected to discuss the context of the problem without emphasizing the quantities. For instance, a student may say, “We know that there are a total amount of kangaroos, and the total shrinks because some kangaroos hop away.”

Next, students discuss the important quantities and what questions may be generated. Finally, students receive and address the actual problem. Here they can both evaluate how close their predicted questions were from the actual questions and solve the actual problem.

To get started, consider using the numberless word problems on educator Brian Bushart’s site . For those teaching high school, consider using your own textbook word problems for this activity. Simply create three slides to present to students that include context (e.g., on the first slide state, “A salesman sold twice as much pears in the afternoon as in the morning”). The second slide would include quantities (e.g., “He sold 360 kilograms of pears”), and the third slide would include the actual question (e.g., “How many kilograms did he sell in the morning and how many in the afternoon?”). One additional suggestion for teams to consider is to have students solve the questions they generated before revealing the actual question.

3. Three-Act Tasks: Originally created by Dan Meyer, three-act tasks follow the three acts of a story . The first act is typically called the “setup,” followed by the “confrontation” and then the “resolution.”

This storyline process can be used in mathematics in which students encounter a contextual problem (e.g., a pool is being filled with soda). Here students work to identify the important aspects of the problem. During the second act, students build knowledge and skill to solve the problem (e.g., they learn how to calculate the volume of particular spaces). Finally, students solve the problem and evaluate their answers (e.g., how close were their calculations to the actual specifications of the pool and the amount of liquid that filled it).

Often, teachers add a fourth act (i.e., “the sequel”), in which students encounter a similar problem but in a different context (e.g., they have to estimate the volume of a lava lamp). There are also a number of elementary examples that have been developed by math teachers including GFletchy , which offers pre-kindergarten to middle school activities including counting squares , peas in a pod , and shark bait .

Students need to learn how to slow down and think through a problem context. The aforementioned strategies are quick ways teachers can begin to support students in developing the habits needed to effectively and efficiently tackle complex problem-solving.

Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

student problem solving

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules

8 Chapter 6 Supporting Student Problem-Solving

Across content areas, the standards address problem-solving in the form of being able to improvise, decide, inquire, and research. In fact, math and science standards are premised almost completely on problem-solving and inquiry. According to the literature, however, problem-solving and inquiry are often overlooked or addressed only superficially in classrooms, and in some subject areas, are not attended to at all.

OVERVIEW OF PROBLEM-SOLVING AND INQUIRY IN K–12 CLASSROOMS

In keeping with a learning focus, this chapter first discusses problem-solving and inquiry to provide a basis from which teachers can provide support for these goals with technology.

What Is Problem-solving?

Whereas production is a process that focuses on an end-product, problem-solving is a process that centers on a problem. Students apply critical and creative thinking skills to prior knowledge during the problem-solving process. The end result of problem-solving is typically some kind of decision, in other words, choosing a solution and then evaluating it.

There are two general kinds of problems. Close-ended problems are those with known solutions to which students can apply a process similar to one that they have already used. For example, if a student understands the single-digit process in adding 2 plus 2 to make 4, she most likely will be able to solve a problem that asks her to add 1 plus 1. Open-ended or loosely structured problems, on the other hand, are those with many or unknown solutions rather than one correct answer. These types of problems require the ability to apply a variety of strategies and knowledge to finding a solution. For example, an open-ended problem statement might read:

A politician has just discovered information showing that a statement he made to the public earlier in the week was incorrect. If he corrects himself he will look like a fool, but if he doesn’t and someone finds out the truth, he will be in trouble. What should he do or say about this?

Obviously, there is no simple answer to this question, and there is a lot of information to consider.

Many textbooks, teachers, and tests present or ask only for the results of problem-solving and not the whole process that students must go through in thinking about how to arrive at a viable solution. As a result, according to the literature, most people use their personal understandings to try to solve open-ended problems, but the bias of limited experience makes it hard for people to understand the trade-offs or contradictions that these problems present. To solve such problems, students need to be able to use both problem-solving skills and an effective inquiry process.

What Is Inquiry?

Inquiry in education is also sometimes called research, investigation, or guided discovery. During inquiry, students ask questions and then search for answers to those questions. In doing so, they come to new understandings in content and language. Although inquiry is an instructional strategy in itself, it is also a central component of problem-solving when students apply their new understandings to the problem at hand. Each question that the problem raises must be addressed by thorough and systematic investigation to arrive at a well-grounded solution. Therefore, the term “problem-solving” can be considered to include inquiry.

For students to understand both the question and ways of looking at the answer(s), resources such as historical accounts, literature, art, and eyewitness experiences must be used. In addition, each resource must be examined in light of what each different type of material contributes to the solution. Critical literacy, or reading beyond the text, then, is a fundamental aspect of inquiry and so of problem-solving. Search for critical literacy resources by using “critical literacy” and your grade level, and be sure to look at the tools provided in this text’s Teacher Toolbox.

What Is Problem-Based Learning?

Problem-based learning (PBL) is a teaching approach that combines critical thinking, problem- solving skills, and inquiry as students explore real-world problems. It is based on unstructured, complex, and authentic problems that are often presented as part of a project. PBL addresses many of the learning goals presented in this text and across the standards, including communication, creativity, and often production.

Research is being conducted in every area from business to education to see how we solve problems, what guides us, what information we have and use during problem-solving, and how we can become more efficient problem solvers. There are competing theories of how people learn to and do solve problems, and much more research needs to be done. However, we do know several things. First, problem-solving can depend on the context, the participants, and the stakeholders. In addition, studies show that content appears to be covered better by “traditional” instruction, but students retain better after problem-solving. PBL has been found effective at teaching content and problem-solving, and the use of technology can make those gains even higher (Chauhan, 2017). Research clearly shows that the more parts of a problem there are, the less successful students will be at solving it. However, effective scaffolding can help to support students’ problem-solving and overcomes some of the potential issues with it (Belland, Walker, Kim, & Lefler, 2017).

The PBL literature points out that both content knowledge and problem-solving skills are necessary to arrive at solutions, but individual differences among students affect their success, too. For example, field-independent students in general do better than field-dependent students in tasks. In addition, students from some cultures will not be familiar with this kind of learning, and others may not have the language to work with it. Teachers must consider all of these ideas and challenges in supporting student problem-solving.

Characteristics of effective technology-enhanced problem-based learning tasks

PBL tasks share many of the same characteristics of other tasks in this book, but some are specific to PBL. Generally, PBL tasks:

Involve learners in gaining and organizing knowledge of content. Inspiration and other concept-mapping tools like the app Popplet are useful for this.

Help learners link school activities to life, providing the “why” for doing the activity.

Give students control of their learning.

Have built-in and just-in-time scaffolding to help students. Tutorials are available all over the Web for content, language, and technology help.

Are fun and interesting.

Contain specific objectives for students to meet along the way to a larger goal.

Have guidance for the use of tools, especially computer technologies.

Include communication and collaboration (described in chapter 3).

Emphasize the process and the content.

Are central to the curriculum, not peripheral or time fillers.

Lead to additional content learning.

Have a measurable, although not necessarily correct, outcome.

More specifically, PBL tasks:

Use a problem that “appeals to human desire for resolution/stasis/harmony” and “sets up need for and context of learning which follows” (IMSA, 2005, p. 2).

Help students understand the range of problem-solving mechanisms available.

Focus on the merits of the question, the concepts involved, and student research plans.

Provide opportunities for students to examine the process of getting the answer (for example, looking back at the arguments).

Lead to additional “transfer” problems that use the knowledge gained in a different context.

Not every task necessarily exhibits all of these characteristics completely, but these lists can serve as guidelines for creating and evaluating tasks.

Student benefits of problem-solving

There are many potential benefits of using PBL in classrooms at all levels; however, the benefits depend on how well this strategy is employed. With effective PBL, students can become more engaged in their learning and empowered to become more autonomous in classroom work. This, in turn, may lead to improved attitudes about the classroom and thus to other gains such as increased abilities for social-problem solving. Students can gain a deeper understanding of concepts, acquire skills necessary in the real world, and transfer skills to become independent and self-directed learners and thinkers outside of school. For example, when students are encouraged to practice using problem-solving skills across a variety of situations, they gain experience in discovering not only different methods but which method to apply to what kind of problem. Furthermore, students can become more confident when their self-esteem and grade does not depend only on the specific answer that the teacher wants. In addition, during the problem-solving process students can develop better critical and creative thinking skills.

Students can also develop better language skills (both knowledge and communication) through problems that require a high level of interaction with others (Verga & Kotz, 2013). This is important for all learners, but especially for ELLs and others who do not have grade-level language skills. For students who may not understand the language or content or a specific question, the focus on process gives them more opportunities to access information and express their knowledge.

The problem-solving process

The use of PBL requires different processes for students and teachers. The teacher’s process involves careful planning. There are many ways for this to happen, but a general outline that can be adapted includes the following steps:

After students bring up a question, put it in the greater context of a problem to solve (using the format of an essential question; see chapter 4) and decide what the outcome should be–a recommendation, a summary, a process?

Develop objectives that represent both the goal and the specific content, language, and skills toward which students will work.

List background information and possible materials and content that will need to be addressed. Get access to materials and tools and prepare resource lists if necessary.

Write the specific problem. Make sure students know what their role is and what they are expected to do. Then go back and check that the problem and task meet the objectives and characteristics of effective PBL and the relevant standards. Reevaluate materials and tools.

Develop scaffolds that will be needed.

Evaluate and prepare to meet individual students’ needs for language, assistive tools, content review, and thinking skills and strategies

Present the problem to students, assess their understanding, and provide appropriate feedback as they plan and carry out their process.

The student process focuses more on the specific problem-solving task. PBL sources list different terms to describe each step, but the process is more or less the same. Students:

Define and frame the problem: Describe it, recognize what is being asked for, look at it from all sides, and say why they need to solve it.

Plan: Present prior knowledge that affects the problem, decide what further information and concepts are needed, and map what resources will be consulted and why.

Inquire: Gather and analyze the data, build and test hypotheses.

Look back: Review and evaluate the process and content. Ask “What do I understand from this result? What does it tell me?”

student problem solving

These steps are summarized in Figure 6.1.

Problem-solving strategies that teachers can demonstrate, model, and teach directly include trial and error, process of elimination, making a model, using a formula, acting out the problem, using graphics or drawing the problem, discovering patterns, and simplifying the problem (e.g., rewording, changing the setting, dividing it into simpler tasks). Even the popular KWL (Know, Want to Know, Learned) chart can help students frame questions. A KWL for a project asking whether a superstore should be built in the community might look like the one in Figure 6.2. Find out more about these strategies at http://literacy.kent.edu/eureka/strategies/discuss-prob.html .

Teaching problem-solving in groups involves the use of planning and other technologies. Using these tools, students post, discuss, and reflect on their joint problem-solving process using visual cues that they create. This helps students focus on both their process and the content. Throughout the teacher and student processes, participants should continue to examine cultural, emotional, intellectual, and other possible barriers to problem-solving.

student problem solving

Teachers and Problem-solving

The teacher’s role in PBL

During the teacher’s process of creating the problem context, the teacher must consider what levels of authenticity, complexity, uncertainty, and self-direction students can access and work within. Gordon (1998) broke loosely structured problems into three general types with increasing levels of these aspects. Still in use today, these are:

Academic challenges. An academic challenge is student work structured as a problem arising directly from an area of study. It is used primarily to promote greater understanding of selected subject matter. The academic challenge is crafted by transforming existing curricular material into a problem format.

Scenario challenges. These challenges cast students in real-life roles and ask them to perform these roles in the context of a reality-based or fictional scenario.

Real-life problems. These are actual problems in need of real solutions by real people or organizations. They involve students directly and deeply in the exploration of an area of study. And the solutions have the potential for actual implementation at the classroom, school, community, regional, national, or global level. (p. 3)

To demonstrate the application of this simple categorization, the learning activities presented later in this chapter follow this outline.

As discussed in other chapters in this book, during student work the teacher’s role can vary from director to shepherd, but when the teacher is a co-learner rather than a taskmaster, learners become experts. An often-used term for the teacher’s role in the literature about problem-solving is “coach.” As a coach, the teacher works to facilitate thinking skills and process, including working out group dynamics, keeping students on task and making sure they are participating, assessing their progress and process, and adjusting levels of challenge as students’ needs change. Teachers can provide hints and resources and work on a gradual release of responsibility to learners.

Challenges for teachers

For many teachers, the roles suggested above are easier said than done. To use a PBL approach, teachers must break out of the content-dissemination mode and help their students to do the same. Even when this happens, in many classrooms students have been trained to think that problem-solving is getting the one right answer, and it takes time, practice, and patience for them to understand otherwise. Some teachers feel that they are obligated to cover too much in the curriculum to spend time on PBL or that using real-world problems does not mesh well with the content, materials, and context of the classroom. However, twenty years ago Gordon (1998) noted, “whether it’s a relatively simple matter of deciding what to eat for breakfast or a more complex one such as figuring out how to reduce pollution in one’s community, in life we make decisions and do things that have concrete results. Very few of us do worksheets” (p. 2). He adds that not every aspect of students’ schoolwork needs to be real, but that connections should be made from the classroom to the real world. Educators around the world are still working toward making school more like life.

In addition, many standardized district and statewide tests do not measure process, so students do not want to spend time on it. However, teachers can overcome this thinking by demonstrating to students the ways in which they need to solve problems every day and how these strategies may transfer to testing situations.

Furthermore, PBL tasks and projects may take longer to develop and assess than traditional instruction. However, teachers can start slowly by helping students practice PBL in controlled environments with structure, then gradually release them to working independently. The guidelines in this chapter address some of these challenges.

GUIDELINES FOR TECHNOLOGY-SUPPORTED PROBLEM-SOLVING

Obviously, PBL is more than simply giving students a problem and asking them to solve it. The following guidelines describe other issues in PBL.

Designing Problem-Solving Opportunities

The guidelines described here can assist students in developing a PBL opportunity.

Guideline #1: Integrate reading and writing. Although an important part of solving problems, discussion alone is not enough for students to develop and practice problem-solving skills. Effective problem-solving and inquiry require students to think clearly and deeply about content, language, and process. Reading and writing tasks can encourage students to take time to think about these issues and to contextualize their thinking practice. They can also provide vehicles for teachers to understand student progress and to provide concrete feedback. Students who have strengths in these areas will be encouraged and those who need help can learn from their stronger partners, just as those who have strengths in speaking can model for and assist their peers during discussion. Even in courses that do not stress reading and writing, integrating these skills into tasks and projects can promote successful learning.

Guideline #2: Avoid plagiarism. The Internet is a great resource for student inquiry and problem-solving. However, when students read and write using Internet resources, they often cut and paste directly from the source. Sometimes this is an innocent mistake; students may be uneducated about the use of resources, perhaps they come from a culture where the concept of ownership is completely different than in the United States, or maybe their language skills are weak and they want to be able to express themselves better. In either case, two strategies can help avoid plagiarism: 1) The teacher can teach directly about plagiarism and copyright issues. Strategies including helping students learn how to cite sources, paraphrase, summarize, and restate; 2) The teacher can be as familiar as possible with the resources that students will use and check for plagiarism when it is suspected. To do so, the teacher can enter a sentence or phrase into any Web browser with quote marks around it and if the entry is exact, the original source will come up in the browser window. Essay checkers such as Turnitin (http://turnitin.com/) are also available online that will check a passage or an entire essay.

Guideline #3: Do not do what students can do. Teaching, and particularly teaching with technology, is often a difficult job, due in part to the time it takes teachers to prepare effective learning experiences. Planning, developing, directing, and assessing do not have to be solely the teacher’s domain, however. Students should take on many of these responsibilities, and at the same time gain in problem-solving, language, content, critical thinking, creativity, and other crucial skills. Teachers do not always need to click the mouse, write on the whiteboard, decide

criteria for a rubric, develop questions, decorate the classroom, or perform many classroom and learning tasks. Students can take ownership and feel responsibility. Although it is often difficult for teachers to give up some of their power, the benefits of having more time and shared responsibility can be transformational. Teachers can train themselves to ask, “Is this something students can do?”

Guideline #4: Make mistakes okay. Problem-solving often involves coming to dead ends, having to revisit data and reformulate ideas, and working with uncertainty. For students used to striving for correct answers and looking to the teacher as a final authority, the messiness of problem-solving can be disconcerting, frustrating, and even scary. Teachers can create environments of acceptance where reasoned, even if wrong, answers are recognized, acknowledged, and given appropriate feedback by the teacher and peers. Teachers already know that students come to the task with a variety of beliefs and information. In working with students’ prior knowledge, they can model how to be supportive of students’ faulty ideas and suggestions. They can also ask positive questions to get the students thinking about what they still need to know and how they can come to know it. They can both encourage and directly teach students to be supportive of mistakes and trials as part of their team-building and leadership skills.

In addition, teachers may need to help students to understand that even a well-reasoned argument or answer can meet with opposition. Students must not feel that they have made a bad decision just because everyone else, particularly the teacher, does not agree. Teachers can model for students that they are part of the learning process and they are impartial as to the outcome when the student’s position has been well defended.

PROBLEM-SOLVING AND INQUIRY TECHNOLOGIES

As with all the goals in this book, the focus of technology in problem-solving is not on the technology itself but on the learning experiences that the technology affords. Different tools exist to support different parts of the process. Some are as simple as handouts that students can print and complete, others as complex as modeling and visualization software. Many software tools that support problem-solving are made for experts in the field and are relatively difficult to learn and use. Examples of these more complicated programs include many types of computer-aided design software, advanced authoring tools, and complex expert systems. In the past there were few software tools for K–12 students that addressed the problem-solving process directly and completely, but more apps are being created all the time that do so. See the Teacher Tools for this text for examples.

Simple inquiry tools that help students perform their investigations during PBL are much more prevalent. The standard word processor, database, concept mapping/graphics and spreadsheet software can all assist students in answering questions and organizing and presenting data, but there are other tools more specifically designed to support inquiry. Software programs that can be used within the PBL framework are mentioned in other chapters in this text. These programs, such as the Tom Snyder Productions/Scholastic programs mentioned in chapter 2 address the overlapping goals of collaboration, production, critical thinking, creativity, and problem-solving. Interestingly, even video games might be used as problem-solving tools. Many of these games require users to puzzle out directions, to find missing artifacts, or to follow clues that are increasingly difficult to find and understand. One common tool with which students at all levels might be familiar is Minecraft (Mojang; https://minecraft.net/en-us/). The Internet has as many resources as teachers might need to use Minecraft across the disciplines to teach whole units and even gamify the classroom.

The following section presents brief descriptions of tools that can support the PBL process. The examples are divided into stand-alone tools that can be used on one or more desktops and Web-based tools.

Stand-Alone Tools

Example 1: Fizz and Martina’s Math Adventures (Tom Snyder Productions/Scholastic)

Students help Fizz and Martina, animated characters in this software, to solve problems by figuring out which data is relevant, performing appropriate calculations, and presenting their solutions. The five titles in this series are perfect for a one-computer classroom. Each software package combines computer-based video, easy navigation, and handouts and other resources as scaffolds. This software is useful in classrooms with ELLs because of the combination of visual, audio, and text-based reinforcement of input. It is also accessible to students with physical disabilities because it can run on one computer; students do not have to actually perform the mouse clicks to run the software themselves.

This software is much more than math. It includes a lot of language, focuses on cooperation and collaboration in teams, and promotes critical thinking as part of problem-solving. Equally important, it helps students to communicate mathematical ideas orally and in writing. See Figure 6.6 for the “getting started” screen from Fizz and Martina to view some of the choices that teachers and students have in using this package.

Example 2: I Spy Treasure Hunt, I Spy School Days, I Spy Spooky Mansion (Scholastic)

The language in these fun simulations consists of isolated, discrete words and phrases, making these programs useful for word study but not for overall concept learning. School Days, for example, focuses on both objects and words related to school. However, students work on extrapolation, trial and error, process of elimination, and other problem-solving strategies. It is difficult to get students away from the computer once they start working on any of the simulations in this series. Each software package has several separate hunts with a large number of riddles that, when solved, allow the user to put together a map or other clues to find the surprise at the end. Some of the riddles involve simply finding an item on the screen, but others require more thought such as figuring out an alternative representation for the item sought or using a process of elimination to figure out where to find it. All of the riddles are presented in both text and audio and can be repeated as many times as the student requires, making it easier for language learners, less literate students, and students with varied learning preferences to access the information. Younger students can also work with older students or an aide for close support so that students are focused. Free versions of the commercial software and similar types of programs such as escape rooms (e.g., escapes at 365 Escape {http://www.365escape.com/Room-Escape-Games.html] and www.primarygames.com) can be found across the Web.

There are many more software packages like these that can be part of a PBL task. See the Teacher Toolbox for ideas.

Example 3: Science Court (Tom Snyder Productions/Scholastic)

Twelve different titles in this series present humorous court cases that students must help to resolve. Whether the focus is on the water cycle, soil, or gravity, students use animated computer-based video, hands-on science activities, and group work to learn and practice science and the inquiry process. As students work toward solving the case, they examine not only the facts but also their reasoning processes. Like Fizz and Martina and much of TSP’s software, Science Court uses multimedia and can be used in the one-computer classroom (as described in chapter 2), making it accessible to diverse students.

Example 4: Geographic Information Systems (GIS)

The use of GIS to track threatened species, map hazardous waste or wetlands in the community, or propose solutions for other environmental problems supports student “spatial literacy and geographic competence” (Baker, 2005, n.p.), in addition to experimental and inquiry techniques, understanding of scale and resolution, and verification skills. Popular desktop-based GIS that students can access include Geodesy and ArcVoyager; many Web-based versions also exist. A GIS is not necessarily an easy tool to learn or use, but it can lead to real-world involvement and language, concept, and thinking skills development.

Web-Based Tools

Many technology-enhanced lessons and tools on the Web come premade. In other words, they were created for someone else’s students and context. Teachers must adapt these tools to fit their own teaching styles, student needs, goals, resources, and contextual variables. Teachers must learn to modify these resources to make them their own and help them to work effectively in their unique teaching situation. With this in mind, teachers can take advantage of the great ideas in the Web-based tools described below.

Example 1: WebQuest

A WebQuest is a Web-based inquiry activity that is highly structured in a preset format. Most teachers are aware of WebQuests—a Web search finds them mentioned in every state, subject area, and grade level, and they are popular topics at conferences and workshops. Created by Bernie Dodge and Tom March in 1995 (see http://webquest.org/), this activity has proliferated wildly.

Each WebQuest has six parts. The Quest starts with an introduction to excite student interest. The task description then explains to students the purpose of the Quest and what the outcome will be. Next, the process includes clear steps and the scaffolds, including resources, that students will need to accomplish the steps. The evaluation section provides rubrics and assessment guidelines, and the conclusion section provides closure. Finally, the teacher section includes hints and tips for other teachers to use the WebQuest.

Advantages to using WebQuests as inquiry and problem-solving tools include:

Students are focused on a specific topic and content and have a great deal of scaffolding.

Students focus on using information rather than looking for it, because resources are preselected.

Students use collaboration, critical thinking, and other important skills to complete their Quest.

Teachers across the United States have reported significant successes for students participating in Quests. However, because Quests can be created and posted by anyone, many found on the Web do not meet standards for inquiry and do not allow students autonomy to work in authentic settings and to solve problems. Teachers who want to use a WebQuest to meet specific goals should examine carefully both the content and the process of the Quest to make sure that they offer real problems as discussed in this chapter. A matrix of wonderful Quests that have been evaluated as outstanding by experts is available on the site.

Although very popular, WebQuests are also very structured. This is fine for students who have not moved to more open-ended problems, but to support a higher level of student thinking, independence, and concept learning, teachers can have students work in teams on Web Inquiry Projects ( http://webinquiry.org/ ).

Example 2: Virtual Field Trips

Virtual field trips are great for concept learning, especially for students who need extra support from photos, text, animation, video, and audio. Content for field trips includes virtual walks through museums, underwater explorations, house tours, and much more (see online field trips suggested by Steele-Carlin [2014] at http://www.educationworld.com/a_tech/tech/tech071.shtml ). However, the format of virtual field trips ranges from simple postcard-like displays to interactive video simulations, and teachers must review the sites before using them to make sure that they meet needs and goals.

With a virtual reality headset (now available for sale cheaply even at major department stores), teachers and students can go on Google Expeditions ( https://edu.google.com/expeditions/ ), 3D immersive field trips from Nearpod ( http://nearpod.com ), and even create their using resources from Larry Ferlazzo’s “Best Resources for Finding and Creating Virtual Field Trips” at http://larryferlazzo.edublogs.org/2009/08/11/the-best-resources-for-finding-and-creating-virtual-field-trips/.

Example 3: Raw Data Sites

Raw data sites abound on the Web, from the U.S. Census to the National Climatic Data Center, from databases full of language data to the Library of Congress. These sites can be used for content learning and other learning goals. Some amazing sites can be found where students can collect their own data. These include sites like John Walker’s (2003) Your Sky (www.fourmilab.to/yoursky) and Water on the Web (2005, waterontheweb.org). When working with raw data students have to draw their own conclusions based on evidence. This is another important problem-solving skill. Note that teachers must supervise and verify that data being entered for students across the world is accurate or

Example 4: Filamentality

Filamentality (https://keithstanger.com/filamentality.html) presents an open-ended problem with a lot of scaffolding. Students and/or teachers start with a goal and then create a Web site in one of five formats that range in level of inquiry and problem-solving from treasure hunts to WebQuests. The site provides lots of help and hints for those who need it, including “Mentality Tips” to help accomplish goals. It is free and easy to use, making it accessible to any teacher (or student) with an Internet connection.

Example 5: Problem Sites

Many education sites offer opportunities for students to solve problems. Some focus on language (e.g., why do we say “when pigs fly”?) or global history (e.g., what’s the real story behind Tut’s tomb?); see, for example, the resources and questions in The Ultimate STEM Guide for Students at http://www.mastersindatascience.org/blog/the-ultimate-stem-guide-for-kids-239-cool-sites-about-science-technology-engineering-and-math/. These problems range in level from very structured, academic problems to real-world unsolved mysteries.

The NASA SciFiles present problems in a format similar to WebQuests at https://knowitall.org/series/nasa-scifiles. In other parts of the Web site there are video cases, quizzes, and tools for problem-solving.

There is an amazing number of tools, both stand-alone and Web-based, to support problem-solving and inquiry, but no tool can provide all the features that meet the needs of all students. Most important in tool choice is that it meets the language, content, and skills goals of the project and students and that there is a caring and supportive teacher guiding the students in their choice and use of the tool.

Teacher Tools

There are many Web sites addressed specifically to teachers who are concerned that they are not familiar enough with PBL or that they do not have the tools to implement this instructional strategy. For example, from Now On at http://www.fno.org/ toolbox.html provides specific suggestions for how to integrate technology and inquiry. Search “problem-solving” on the amazing Edutopia site ( https://www.edutopia.org/ ) for ideas, guidelines, examples, and more.

LEARNING ACTIVITIES: PROBLEM-SOLVING AND INQUIRY

In addition to using the tools described in the previous section to teach problem-solving and inquiry, teachers can develop their own problems according to the guidelines throughout this chapter. Gordon’s (1998) scheme of problem-solving levels (described previously)—academic, scenario, and real life—is a simple and useful one. Teachers can refer to it to make sure that they are providing appropriate structure and guidance and helping students become independent thinkers and learners. This section uses Gordon’s levels to demonstrate the variety of problem-solving and inquiry activities in which students can participate. Each example is presented with the question/problem to be answered or solved, a suggestion of a process that students might follow, and some of the possible electronic tools that might help students to solve the problem.

Academic problems

Example 1: What Will Harry Do? (Literature)

Problem: At the end of the chapter, Harry Potter is faced with a decision to make. What will he do?

Process: Discuss the choices and consequences. Choose the most likely, based on past experience and an understanding of the story line. Make a short video to present the solution. Test it against Harry’s decision and evaluate both the proposed solution and the real one.

Tools: Video camera and video editing software.

Example 2: Treasure Hunt (History)

Problem: Students need resources to learn about the Civil War.

Process: Teacher provides a set of 10 questions to find specific resources online.

Tools: Web browser.

Example 3: Problem of the Week (Math)

Problem: Students should solve the math problem of the week.

Process: Students simplify the problem, write out their solution, post it to the site for feedback, then revise as necessary.

Tools: Current problems from the Math Forum@Drexel, http://mathforum.org/pow/

Example 1: World’s Best Problem Solver

Problem: You are a member of a committee that is going to give a prestigious international award for the world’s best problem-solver. You must nominate someone and defend your position to the committee, as the other committee members must do.

Process: Consult and list possible nominees. Use the process of elimination to determine possible nominees. Research the nominees using several different resources. Weigh the evidence and make a choice. Prepare a statement and support.

Tools: Biography.com has over 25,000 biographies, and Infoplease (infoplease.com) and the Biographical Dictionary (http://www.s9.com/) provide biographies divided into categories for easy searching.

Example 2: Curator

Problem: Students are a committee of curators deciding what to hang in a new community art center. They have access to any painting in the world but can only hang 15 pieces in their preset space. Their goals are to enrich art appreciation in the community, make a name for their museum, and make money.

Process: Students frame the problem, research and review art from around the world, consider characteristics of the community and other relevant factors, choose their pieces, and lay them out for presentation to the community.

Tools: Art museum Web sites, books, and field trips for research and painting clips; computer-aided design, graphics, or word processing software to lay out the gallery for viewing.

Example 3: A New National Anthem

Problem: Congress has decided that the national anthem is too difficult to remember and sing and wants to adopt a new, easier song before the next Congress convenes. They want input from musicians across the United States. Students play the roles of musicians of all types.

Process: Students define the problem (e.g., is it that “The Star-Spangled Banner” is too difficult or that Congress needs to be convinced that it is not?). They either research and choose new songs or research and defend the current national anthem. They prepare presentations for members of Congress.

Tools: Music sites and software, information sites on the national anthem.

Real-life problems

Example 1: Racism in School

Problem: There have been several incidents in our school recently that seem to have been racially motivated. The principal is asking students to consider how to make our school a safe learning environment for all students.

Process: Determine what is being asked—the principal wants help. Explore the incidents and related issues. Weigh the pros and cons of different solutions. Prepare solutions to present to the principal.

Tools: Web sites and other resources about racism and solutions, graphic organizers to organize the information, word processor or presentation software for results. Find excellent free tools for teachers and students at the Southern Poverty Law Center’s Teaching Tolerance Web site at www.tolerance.org.

Example 2: Homelessness vs. Education

Problem: The state legislature is asking for public input on the next budget. Because of a projected deficit, political leaders are deciding which social programs, including education and funding for the homeless, should be cut and to what extent. They are interested in hearing about the effects of these programs on participants and on where cuts could most effectively be made.

Process: Decide what the question is (e.g., how to deal with the deficit? How to cut education or funding for the homeless? Which programs are more important? Something else?). Perform a cost-benefit analysis using state data. Collect other data by interviewing and researching. Propose and weigh different solution schemes and propose a suggestion. Use feedback to improve or revise.

Tools: Spreadsheet for calculations, word processor for written solution, various Web sites and databases for costs, electronic discussion list or email for interviews.

Example 3: Cleaning Up

Problem: Visitors and residents in our town have been complaining about the smell from the university’s experimental cattle farms drifting across the highway to restaurants and stores in the shopping center across the street. They claim that it makes both eating and shopping unpleasant and that something must be done.

Process: Conduct onsite interviews and investigation. Determine the source of the odor. Measure times and places where the odor is discernible. Test a variety of solutions. Choose the most effective solution and write a proposal supported by a poster for evidence.

Tools: Online and offline sources of information on cows, farming, odor; database to organize and record data; word processing and presentation software for describing the solution.

These activities can all be adapted and different tools and processes used. As stated previously, the focus must be both on the content to be learned and the skills to be practiced and acquired. More problem-solving activity suggestions and examples can be found at site at http://www.2learn.ca/.

ASSESSING LEARNER PROBLEM-SOLVING AND INQUIRY

Many of the assessments described in other chapters of this text, for example, rubrics, performance assessments, observation, and student self-reflection, can also be employed to assess problem-solving and inquiry. Most experts on problem-solving and inquiry agree that schools need to get away from testing that does not involve showing process or allowing students to problem-solve; rather, teachers should evaluate problem-solving tasks as if they were someone in the real-world context of the problem. For example, if students are studying an environmental issue, teachers can evaluate their work throughout the project from the standpoint of someone in the field, being careful that their own biases do not cloud their judgment on controversial issues. Rubrics, multiple-choice tests, and other assessment tools mentioned in other chapters of this text can account for the multiple outcomes that are possible in content, language, and skills learning. These resources can be used as models for assessing problem-solving skills in a variety of tasks. Find hundreds of problem-solving rubrics by searching the Web for “problem-solving rubrics” or check Pinterest for teacher-created rubrics.

In addition to the techniques mentioned above, many teachers suggest keeping a weekly problem-solving notebook (also known as a math journal or science journal), in which students record problem solutions, strategies they used, similarities with other problems, extensions of the problem, and an investigation of one or more of the extensions. Using this notebook to assess students’ location and progress in problem-solving could be very effective, and it could even be convenient if learners can keep them online as a blog or in a share cloud space.

FROM THE CLASSROOM

Research and Plagiarism

We’ve been working on summaries all year and the idea that copying word for word is plagiarism. When they come to me (sixth grade) they continue to struggle with putting things in their own words so [Microsoft Encarta] Researcher not only provides a visual (a reference in APA format) that this is someone else’s work, but allows me to see the information they used to create their report as Researcher is an electronic filing system. It’s as if students were printing out the information and keeping it in a file that they will use to create their report. But instead of having them print everything as they go to each individual site they can copy and paste until later. When they finish their research they come back to their file, decide what information they want to use, and can print it out all at once. This has made it easier for me because the students turn this in with their report. So, I would say it not only allows students to learn goals of summarizing, interpreting, or synthesizing, it helps me to address them in greater depth and it’s easier on me! (April, middle school teacher)

I evaluated a WebQuest for middle elementary (third–fourth grades), although it seems a little complicated for that age group. The quest divides students into groups and each person in the group is given a role to play (a botanist, museum curator, ethnobotanist, etc.). The task is for students to find out how plants were used for medicinal purposes in the Southwest many years ago. Students then present their findings, in a format that they can give to a national museum. Weird. It was a little complicated and not well done. I liked the topic and thought it was interesting, but a lot of work would need to be done to modify it so that all students could participate. (Jennie, first-grade teacher).

CHAPTER REVIEW

Define problem-solving and inquiry.

The element that distinguishes problem-solving or problem-based learning from other strategies is that the focal point is a problem that students must work toward solving. A proposed solution is typically the outcome of problem-solving. During the inquiry part of the process, students ask questions and then search for answers to those questions.

Understand the interaction between problem-solving and other instructional goals. Although inquiry is also an important instructional strategy and can stand alone, it is also a central component of problem-solving because students must ask questions and investigate the answers to solve the problem. In addition, students apply critical and creative thinking skills to prior knowledge during the problem-solving process, and they communicate, collaborate, and often produce some kind of concrete artifact.

Discuss guidelines and tools for encouraging effective student problem-solving.

It is often difficult for teachers to not do what students can do, but empowering students in this way can lead to a string of benefits. Other guidelines, such as avoiding plagiarism, integrating reading and writing, and making it okay for students to make mistakes, keep the problem-solving process on track. Tools to assist in this process range from word processing to specially designed inquiry tools.

Create and adapt effective technology-enhanced tasks to support problem-solving. Teachers can design their own tasks following guidelines from any number of sources, but they can also find ready-made problems in books, on the Web, and in some software pack-ages. Teachers who do design their own have plenty of resources available to help. A key to task development is connecting classroom learning to the world outside of the classroom.

Assess student technology-supported problem-solving.

In many ways the assessment of problem-solving and inquiry tasks is similar to the assessment of other goals in this text. Matching goals and objectives to assessment and ensuring that students receive formative feedback throughout the process will make success more likely.

Baker, T. (2005). The history and application of GIS in education. KANGIS: K12 GIS Community. Available from http://kangis.org/learning/ed_docs/gisNed1.cfm.

Belland, B., Walker, A., Kim, N., & Lefler, M. (2017). Synthesizing results from empirical research on computer-based scaffolding in STEM education: A meta-analysis. Review of Educational Research, 87(2), pp. 309-344.

Chauhan, S. (2017). A meta-analysis of the impact of technology on learning effectiveness of elementary students. Computers & Education, 105, pp. 14-30.

Dooly, M. (2005, March/April). The Internet and language teaching: A sure way to interculturality? ESL Magazine, 44, 8–10.

Gordon, R. (1998, January).Balancing real-world problems with real-world results. Phi Delta Kappan, 79(5), 390–393. [electronic version]

IMSA (2005). How does PBL compare with other instructional approaches? Available: http://www2 .imsa.edu/programs/pbln/tutorials/intro/intro7.php.

Molebash, P., & Dodge, B. (2003). Kickstarting inquiry with WebQuests and web inquiry projects. Social Education, 671(3), 158–162.

Verga, L., & Kotz, S. A. (2013). How relevant is social interaction in second language learning? Frontiers in Human Neuroscience, 7, 550. http://doi.org/10.3389/fnhum.2013.00550

Creative Commons License

Share This Book

Feedback/errata, leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Increase Font Size

Menu Trigger

New Designs for School 5 Steps to Teaching Students a Problem-Solving Routine

student problem solving

Jeff Heyck-Williams (He, His, Him) Director of the Two Rivers Learning Institute in Washington, DC

Two Rivers and joyful math

We’ve all had the experience of truly purposeful, authentic learning and know how valuable it is. Educators are taking the best of what we know about learning, student support, effective instruction, and interpersonal skill-building to completely reimagine schools so that students experience that kind of purposeful learning all day, every day.

Students can use the 5 steps in this simple routine to solve problems across the curriculum and throughout their lives.

When I visited a fifth-grade class recently, the students were tackling the following problem:

If there are nine people in a room and every person shakes hands exactly once with each of the other people, how many handshakes will there be? How can you prove your answer is correct using a model or numerical explanation?

There were students on the rug modeling people with Unifix cubes. There were kids at one table vigorously shaking each other’s hand. There were kids at another table writing out a diagram with numbers. At yet another table, students were working on creating a numeric expression. What was common across this class was that all of the students were productively grappling around the problem.

On a different day, I was out at recess with a group of kindergarteners who got into an argument over a vigorous game of tag. Several kids were arguing about who should be “it.” Many of them insisted that they hadn’t been tagged. They all agreed that they had a problem. With the assistance of the teacher they walked through a process of identifying what they knew about the problem and how best to solve it. They grappled with this very real problem to come to a solution that all could agree upon.

Then just last week, I had the pleasure of watching a culminating showcase of learning for our 8th graders. They presented to their families about their project exploring the role that genetics plays in our society. Tackling the problem of how we should or should not regulate gene research and editing in the human population, students explored both the history and scientific concerns about genetics and the ethics of gene editing. Each student developed arguments about how we as a country should proceed in the burgeoning field of human genetics which they took to Capitol Hill to share with legislators. Through the process students read complex text to build their knowledge, identified the underlying issues and questions, and developed unique solutions to this very real problem.

Problem-solving is at the heart of each of these scenarios, and an essential set of skills our students need to develop. They need the abilities to think critically and solve challenging problems without a roadmap to solutions. At Two Rivers Public Charter School in Washington, D.C., we have found that one of the most powerful ways to build these skills in students is through the use of a common set of steps for problem-solving. These steps, when used regularly, become a flexible cognitive routine for students to apply to problems across the curriculum and their lives.

The Problem-Solving Routine

At Two Rivers, we use a fairly simple routine for problem solving that has five basic steps. The power of this structure is that it becomes a routine that students are able to use regularly across multiple contexts. The first three steps are implemented before problem-solving. Students use one step during problem-solving. Finally, they finish with a reflective step after problem-solving.

Problem Solving from Two Rivers Public Charter School

Before Problem-Solving: The KWI

The three steps before problem solving: we call them the K-W-I.

The “K” stands for “know” and requires students to identify what they already know about a problem. The goal in this step of the routine is two-fold. First, the student needs to analyze the problem and identify what is happening within the context of the problem. For example, in the math problem above students identify that they know there are nine people and each person must shake hands with each other person. Second, the student needs to activate their background knowledge about that context or other similar problems. In the case of the handshake problem, students may recognize that this seems like a situation in which they will need to add or multiply.

The “W” stands for “what” a student needs to find out to solve the problem. At this point in the routine the student always must identify the core question that is being asked in a problem or task. However, it may also include other questions that help a student access and understand a problem more deeply. For example, in addition to identifying that they need to determine how many handshakes in the math problem, students may also identify that they need to determine how many handshakes each individual person has or how to organize their work to make sure that they count the handshakes correctly.

The “I” stands for “ideas” and refers to ideas that a student brings to the table to solve a problem effectively. In this portion of the routine, students list the strategies that they will use to solve a problem. In the example from the math class, this step involved all of the different ways that students tackled the problem from Unifix cubes to creating mathematical expressions.

This KWI routine before problem solving sets students up to actively engage in solving problems by ensuring they understand the problem and have some ideas about where to start in solving the problem. Two remaining steps are equally important during and after problem solving.

The power of teaching students to use this routine is that they develop a habit of mind to analyze and tackle problems wherever they find them.

During Problem-Solving: The Metacognitive Moment

The step that occurs during problem solving is a metacognitive moment. We ask students to deliberately pause in their problem-solving and answer the following questions: “Is the path I’m on to solve the problem working?” and “What might I do to either stay on a productive path or readjust my approach to get on a productive path?” At this point in the process, students may hear from other students that have had a breakthrough or they may go back to their KWI to determine if they need to reconsider what they know about the problem. By naming explicitly to students that part of problem-solving is monitoring our thinking and process, we help them become more thoughtful problem solvers.

After Problem-Solving: Evaluating Solutions

As a final step, after students solve the problem, they evaluate both their solutions and the process that they used to arrive at those solutions. They look back to determine if their solution accurately solved the problem, and when time permits they also consider if their path to a solution was efficient and how it compares to other students’ solutions.

The power of teaching students to use this routine is that they develop a habit of mind to analyze and tackle problems wherever they find them. This empowers students to be the problem solvers that we know they can become.

Jeff Heyck-Williams (He, His, Him)

Director of the two rivers learning institute.

Jeff Heyck-Williams is the director of the Two Rivers Learning Institute and a founder of Two Rivers Public Charter School. He has led work around creating school-wide cultures of mathematics, developing assessments of critical thinking and problem-solving, and supporting project-based learning.

Read More About New Designs for School

Boston culinary partnership program

Cultivating Equitable Learners: Why Pathway and Literacy Partners are Key to BPS Student’s Success

Nika Hollingsworth (she/her/hers)

June 5, 2024

high school science experiment

NGLC Invites Applications from New England High School Teams for Our Fall 2024 Learning Excursion

March 21, 2024

NGLC's Bravely 2024-2025

Bring Your Vision for Student Success to Life with NGLC and Bravely

March 13, 2024

student problem solving

Why Every Educator Needs to Teach Problem-Solving Skills

Strong problem-solving skills will help students be more resilient and will increase their academic and career success .

Want to learn more about how to measure and teach students’ higher-order skills, including problem solving, critical thinking, and written communication?

Problem-solving skills are essential in school, careers, and life.

Problem-solving skills are important for every student to master. They help individuals navigate everyday life and find solutions to complex issues and challenges. These skills are especially valuable in the workplace, where employees are often required to solve problems and make decisions quickly and effectively.

Problem-solving skills are also needed for students’ personal growth and development because they help individuals overcome obstacles and achieve their goals. By developing strong problem-solving skills, students can improve their overall quality of life and become more successful in their personal and professional endeavors.

student problem solving

Problem-Solving Skills Help Students…

   develop resilience.

Problem-solving skills are an integral part of resilience and the ability to persevere through challenges and adversity. To effectively work through and solve a problem, students must be able to think critically and creatively. Critical and creative thinking help students approach a problem objectively, analyze its components, and determine different ways to go about finding a solution.  

This process in turn helps students build self-efficacy . When students are able to analyze and solve a problem, this increases their confidence, and they begin to realize the power they have to advocate for themselves and make meaningful change.

When students gain confidence in their ability to work through problems and attain their goals, they also begin to build a growth mindset . According to leading resilience researcher, Carol Dweck, “in a growth mindset, people believe that their most basic abilities can be developed through dedication and hard work—brains and talent are just the starting point. This view creates a love of learning and a resilience that is essential for great accomplishment.”

icon-resilience

    Set and Achieve Goals

Students who possess strong problem-solving skills are better equipped to set and achieve their goals. By learning how to identify problems, think critically, and develop solutions, students can become more self-sufficient and confident in their ability to achieve their goals. Additionally, problem-solving skills are used in virtually all fields, disciplines, and career paths, which makes them important for everyone. Building strong problem-solving skills will help students enhance their academic and career performance and become more competitive as they begin to seek full-time employment after graduation or pursue additional education and training.

CAE Portal Icon 280

  Resolve Conflicts

In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes “thinking outside the box” and approaching a conflict by searching for different solutions. This is a very different (and more effective!) method than a more stagnant approach that focuses on placing blame or getting stuck on elements of a situation that can’t be changed.

While it’s natural to get frustrated or feel stuck when working through a conflict, students with strong problem-solving skills will be able to work through these obstacles, think more rationally, and address the situation with a more solution-oriented approach. These skills will be valuable for students in school, their careers, and throughout their lives.

Perspectives

    Achieve Success

We are all faced with problems every day. Problems arise in our personal lives, in school and in our jobs, and in our interactions with others. Employers especially are looking for candidates with strong problem-solving skills. In today’s job market, most jobs require the ability to analyze and effectively resolve complex issues. Students with strong problem-solving skills will stand out from other applicants and will have a more desirable skill set.

In a recent opinion piece published by The Hechinger Report , Virgel Hammonds, Chief Learning Officer at KnowledgeWorks, stated “Our world presents increasingly complex challenges. Education must adapt so that it nurtures problem solvers and critical thinkers.” Yet, the “traditional K–12 education system leaves little room for students to engage in real-world problem-solving scenarios.” This is the reason that a growing number of K–12 school districts and higher education institutions are transforming their instructional approach to personalized and competency-based learning, which encourage students to make decisions, problem solve and think critically as they take ownership of and direct their educational journey.

graduate-icon

Problem-Solving Skills Can Be Measured and Taught

Research shows that problem-solving skills can be measured and taught. One effective method is through performance-based assessments which require students to demonstrate or apply their knowledge and higher-order skills to create a response or product or do a task.

What Are Performance-Based Assessments?

student problem solving

With the No Child Left Behind Act (2002), the use of standardized testing became the primary way to measure student learning in the U.S. The legislative requirements of this act shifted the emphasis to standardized testing, and this led to a  decline in nontraditional testing methods .

But   many educators, policy makers, and parents have concerns with standardized tests. Some of the top issues include that they don’t provide feedback on how students can perform better, they don’t value creativity, they are not representative of diverse populations, and they can be disadvantageous to lower-income students.

While standardized tests are still the norm, U.S. Secretary of Education Miguel Cardona is encouraging states and districts to move away from traditional multiple choice and short response tests and instead use performance-based assessment, competency-based assessments, and other more authentic methods of measuring students abilities and skills rather than rote learning. 

Performance-based assessments  measure whether students can apply the skills and knowledge learned from a unit of study. Typically, a performance task challenges students to use their higher-order skills to complete a project or process. Tasks can range from an essay to a complex proposal or design.

Preview a Performance-Based Assessment

Want a closer look at how performance-based assessments work?  Preview CAE’s K–12 and Higher Education assessments and see how CAE’s tools help students develop critical thinking, problem-solving, and written communication skills.

Performance-Based Assessments Help Students Build and Practice Problem-Solving Skills

In addition to effectively measuring students’ higher-order skills, including their problem-solving skills, performance-based assessments can help students practice and build these skills. Through the assessment process, students are given opportunities to practically apply their knowledge in real-world situations. By demonstrating their understanding of a topic, students are required to put what they’ve learned into practice through activities such as presentations, experiments, and simulations. 

This type of problem-solving assessment tool requires students to analyze information and choose how to approach the presented problems. This process enhances their critical thinking skills and creativity, as well as their problem-solving skills. Unlike traditional assessments based on memorization or reciting facts, performance-based assessments focus on the students’ decisions and solutions, and through these tasks students learn to bridge the gap between theory and practice.

Performance-based assessments like CAE’s College and Career Readiness Assessment (CRA+) and Collegiate Learning Assessment (CLA+) provide students with in-depth reports that show them which higher-order skills they are strongest in and which they should continue to develop. This feedback helps students and their teachers plan instruction and supports to deepen their learning and improve their mastery of critical skills.

student problem solving

Explore CAE’s Problem-Solving Assessments

CAE offers performance-based assessments that measure student proficiency in higher-order skills including problem solving, critical thinking, and written communication.

  • College and Career Readiness Assessment (CCRA+) for secondary education and
  • Collegiate Learning Assessment (CLA+) for higher education.

Our solution also includes instructional materials, practice models, and professional development.

We can help you create a program to build students’ problem-solving skills that includes:

  • Measuring students’ problem-solving skills through a performance-based assessment    
  • Using the problem-solving assessment data to inform instruction and tailor interventions
  • Teaching students problem-solving skills and providing practice opportunities in real-life scenarios
  • Supporting educators with quality professional development

Get started with our problem-solving assessment tools to measure and build students’ problem-solving skills today! These skills will be invaluable to students now and in the future.

student problem solving

Ready to Get Started?

Learn more about cae’s suite of products and let’s get started measuring and teaching students important higher-order skills like problem solving..

  • Utility Menu

University Logo

GA4 Tracking Code

Home

fa51e2b1dc8cca8f7467da564e77b5ea

  • Make a Gift
  • Join Our Email List
  • Problem Solving in STEM

Solving problems is a key component of many science, math, and engineering classes.  If a goal of a class is for students to emerge with the ability to solve new kinds of problems or to use new problem-solving techniques, then students need numerous opportunities to develop the skills necessary to approach and answer different types of problems.  Problem solving during section or class allows students to develop their confidence in these skills under your guidance, better preparing them to succeed on their homework and exams. This page offers advice about strategies for facilitating problem solving during class.

How do I decide which problems to cover in section or class?

In-class problem solving should reinforce the major concepts from the class and provide the opportunity for theoretical concepts to become more concrete. If students have a problem set for homework, then in-class problem solving should prepare students for the types of problems that they will see on their homework. You may wish to include some simpler problems both in the interest of time and to help students gain confidence, but it is ideal if the complexity of at least some of the in-class problems mirrors the level of difficulty of the homework. You may also want to ask your students ahead of time which skills or concepts they find confusing, and include some problems that are directly targeted to their concerns.

You have given your students a problem to solve in class. What are some strategies to work through it?

  • Try to give your students a chance to grapple with the problems as much as possible.  Offering them the chance to do the problem themselves allows them to learn from their mistakes in the presence of your expertise as their teacher. (If time is limited, they may not be able to get all the way through multi-step problems, in which case it can help to prioritize giving them a chance to tackle the most challenging steps.)
  • When you do want to teach by solving the problem yourself at the board, talk through the logic of how you choose to apply certain approaches to solve certain problems.  This way you can externalize the type of thinking you hope your students internalize when they solve similar problems themselves.
  • Start by setting up the problem on the board (e.g you might write down key variables and equations; draw a figure illustrating the question).  Ask students to start solving the problem, either independently or in small groups.  As they are working on the problem, walk around to hear what they are saying and see what they are writing down. If several students seem stuck, it might be a good to collect the whole class again to clarify any confusion.  After students have made progress, bring the everyone back together and have students guide you as to what to write on the board.
  • It can help to first ask students to work on the problem by themselves for a minute, and then get into small groups to work on the problem collaboratively.
  • If you have ample board space, have students work in small groups at the board while solving the problem.  That way you can monitor their progress by standing back and watching what they put up on the board.
  • If you have several problems you would like to have the students practice, but not enough time for everyone to do all of them, you can assign different groups of students to work on different – but related - problems.

When do you want students to work in groups to solve problems?

  • Don’t ask students to work in groups for straightforward problems that most students could solve independently in a short amount of time.
  • Do have students work in groups for thought-provoking problems, where students will benefit from meaningful collaboration.
  • Even in cases where you plan to have students work in groups, it can be useful to give students some time to work on their own before collaborating with others.  This ensures that every student engages with the problem and is ready to contribute to a discussion.

What are some benefits of having students work in groups?

  • Students bring different strengths, different knowledge, and different ideas for how to solve a problem; collaboration can help students work through problems that are more challenging than they might be able to tackle on their own.
  • In working in a group, students might consider multiple ways to approach a problem, thus enriching their repertoire of strategies.
  • Students who think they understand the material will gain a deeper understanding by explaining concepts to their peers.

What are some strategies for helping students to form groups?  

  • Instruct students to work with the person (or people) sitting next to them.
  • Count off.  (e.g. 1, 2, 3, 4; all the 1’s find each other and form a group, etc)
  • Hand out playing cards; students need to find the person with the same number card. (There are many variants to this.  For example, you can print pictures of images that go together [rain and umbrella]; each person gets a card and needs to find their partner[s].)
  • Based on what you know about the students, assign groups in advance. List the groups on the board.
  • Note: Always have students take the time to introduce themselves to each other in a new group.

What should you do while your students are working on problems?

  • Walk around and talk to students. Observing their work gives you a sense of what people understand and what they are struggling with. Answer students’ questions, and ask them questions that lead in a productive direction if they are stuck.
  • If you discover that many people have the same question—or that someone has a misunderstanding that others might have—you might stop everyone and discuss a key idea with the entire class.

After students work on a problem during class, what are strategies to have them share their answers and their thinking?

  • Ask for volunteers to share answers. Depending on the nature of the problem, student might provide answers verbally or by writing on the board. As a variant, for questions where a variety of answers are relevant, ask for at least three volunteers before anyone shares their ideas.
  • Use online polling software for students to respond to a multiple-choice question anonymously.
  • If students are working in groups, assign reporters ahead of time. For example, the person with the next birthday could be responsible for sharing their group’s work with the class.
  • Cold call. To reduce student anxiety about cold calling, it can help to identify students who seem to have the correct answer as you were walking around the class and checking in on their progress solving the assigned problem. You may even want to warn the student ahead of time: "This is a great answer! Do you mind if I call on you when we come back together as a class?"
  • Have students write an answer on a notecard that they turn in to you.  If your goal is to understand whether students in general solved a problem correctly, the notecards could be submitted anonymously; if you wish to assess individual students’ work, you would want to ask students to put their names on their notecard.  
  • Use a jigsaw strategy, where you rearrange groups such that each new group is comprised of people who came from different initial groups and had solved different problems.  Students now are responsible for teaching the other students in their new group how to solve their problem.
  • Have a representative from each group explain their problem to the class.
  • Have a representative from each group draw or write the answer on the board.

What happens if a student gives a wrong answer?

  • Ask for their reasoning so that you can understand where they went wrong.
  • Ask if anyone else has other ideas. You can also ask this sometimes when an answer is right.
  • Cultivate an environment where it’s okay to be wrong. Emphasize that you are all learning together, and that you learn through making mistakes.
  • Do make sure that you clarify what the correct answer is before moving on.
  • Once the correct answer is given, go through some answer-checking techniques that can distinguish between correct and incorrect answers. This can help prepare students to verify their future work.

How can you make your classroom inclusive?

  • The goal is that everyone is thinking, talking, and sharing their ideas, and that everyone feels valued and respected. Use a variety of teaching strategies (independent work and group work; allow students to talk to each other before they talk to the class). Create an environment where it is normal to struggle and make mistakes.
  • See Kimberly Tanner’s article on strategies to promoste student engagement and cultivate classroom equity. 

A few final notes…

  • Make sure that you have worked all of the problems and also thought about alternative approaches to solving them.
  • Board work matters. You should have a plan beforehand of what you will write on the board, where, when, what needs to be added, and what can be erased when. If students are going to write their answers on the board, you need to also have a plan for making sure that everyone gets to the correct answer. Students will copy what is on the board and use it as their notes for later study, so correct and logical information must be written there.

For more information...

Tipsheet: Problem Solving in STEM Sections

Tanner, K. D. (2013). Structure matters: twenty-one teaching strategies to promote student engagement and cultivate classroom equity . CBE-Life Sciences Education, 12(3), 322-331.

  • Designing Your Course
  • A Teaching Timeline: From Pre-Term Planning to the Final Exam
  • The First Day of Class
  • Group Agreements
  • Classroom Debate
  • Flipped Classrooms
  • Leading Discussions
  • Polling & Clickers
  • Teaching with Cases
  • Engaged Scholarship
  • Devices in the Classroom
  • Beyond the Classroom
  • On Professionalism
  • Getting Feedback
  • Equitable & Inclusive Teaching
  • Advising and Mentoring
  • Teaching and Your Career
  • Teaching Remotely
  • Tools and Platforms
  • The Science of Learning
  • Bok Publications
  • Other Resources Around Campus

Teaching problem solving: Let students get ‘stuck’ and ‘unstuck’

Subscribe to the center for universal education bulletin, kate mills and km kate mills literacy interventionist - red bank primary school helyn kim helyn kim former brookings expert @helyn_kim.

October 31, 2017

This is the second in a six-part  blog series  on  teaching 21st century skills , including  problem solving ,  metacognition , critical thinking , and collaboration , in classrooms.

In the real world, students encounter problems that are complex, not well defined, and lack a clear solution and approach. They need to be able to identify and apply different strategies to solve these problems. However, problem solving skills do not necessarily develop naturally; they need to be explicitly taught in a way that can be transferred across multiple settings and contexts.

Here’s what Kate Mills, who taught 4 th grade for 10 years at Knollwood School in New Jersey and is now a Literacy Interventionist at Red Bank Primary School, has to say about creating a classroom culture of problem solvers:

Helping my students grow to be people who will be successful outside of the classroom is equally as important as teaching the curriculum. From the first day of school, I intentionally choose language and activities that help to create a classroom culture of problem solvers. I want to produce students who are able to think about achieving a particular goal and manage their mental processes . This is known as metacognition , and research shows that metacognitive skills help students become better problem solvers.

I begin by “normalizing trouble” in the classroom. Peter H. Johnston teaches the importance of normalizing struggle , of naming it, acknowledging it, and calling it what it is: a sign that we’re growing. The goal is for the students to accept challenge and failure as a chance to grow and do better.

I look for every chance to share problems and highlight how the students— not the teachers— worked through those problems. There is, of course, coaching along the way. For example, a science class that is arguing over whose turn it is to build a vehicle will most likely need a teacher to help them find a way to the balance the work in an equitable way. Afterwards, I make it a point to turn it back to the class and say, “Do you see how you …” By naming what it is they did to solve the problem , students can be more independent and productive as they apply and adapt their thinking when engaging in future complex tasks.

After a few weeks, most of the class understands that the teachers aren’t there to solve problems for the students, but to support them in solving the problems themselves. With that important part of our classroom culture established, we can move to focusing on the strategies that students might need.

Here’s one way I do this in the classroom:

I show the broken escalator video to the class. Since my students are fourth graders, they think it’s hilarious and immediately start exclaiming, “Just get off! Walk!”

When the video is over, I say, “Many of us, probably all of us, are like the man in the video yelling for help when we get stuck. When we get stuck, we stop and immediately say ‘Help!’ instead of embracing the challenge and trying new ways to work through it.” I often introduce this lesson during math class, but it can apply to any area of our lives, and I can refer to the experience and conversation we had during any part of our day.

Research shows that just because students know the strategies does not mean they will engage in the appropriate strategies. Therefore, I try to provide opportunities where students can explicitly practice learning how, when, and why to use which strategies effectively  so that they can become self-directed learners.

For example, I give students a math problem that will make many of them feel “stuck”. I will say, “Your job is to get yourselves stuck—or to allow yourselves to get stuck on this problem—and then work through it, being mindful of how you’re getting yourselves unstuck.” As students work, I check-in to help them name their process: “How did you get yourself unstuck?” or “What was your first step? What are you doing now? What might you try next?” As students talk about their process, I’ll add to a list of strategies that students are using and, if they are struggling, help students name a specific process. For instance, if a student says he wrote the information from the math problem down and points to a chart, I will say: “Oh that’s interesting. You pulled the important information from the problem out and organized it into a chart.” In this way, I am giving him the language to match what he did, so that he now has a strategy he could use in other times of struggle.

The charts grow with us over time and are something that we refer to when students are stuck or struggling. They become a resource for students and a way for them to talk about their process when they are reflecting on and monitoring what did or did not work.

For me, as a teacher, it is important that I create a classroom environment in which students are problem solvers. This helps tie struggles to strategies so that the students will not only see value in working harder but in working smarter by trying new and different strategies and revising their process. In doing so, they will more successful the next time around.

Related Content

Esther Care, Helyn Kim, Alvin Vista

October 17, 2017

David Owen, Alvin Vista

November 15, 2017

Loren Clarke, Esther Care

December 5, 2017

Global Education K-12 Education

Global Economy and Development

Center for Universal Education

Phillip Levine, Luke Pardue

June 5, 2024

Carly D. Robinson, Katharine Meyer, Susanna Loeb

June 4, 2024

Monica Bhatt, Jonathan Guryan, Jens Ludwig

June 3, 2024

  • Join our email list
  • Post an article

How can we help you?

6 strategies to instill problem-solving skills in students.

Critical Thinking In Students: 6 Top Strategies

Why Developing Problem-Solving Skills Is Important

Problem-solving is defined as the ability to quickly solve any given problem with ease. This requires convergent and divergent thinking skills. Convergent thinking is a process aimed to deduce a concrete solution to a problem. And, the process of exploring all the possible solutions to analyze and generate creative ideas is called divergent thinking.

People with good problem-solving skills are indeed an asset to society. Problem-solving also plays a vital role in child development. These skillsets are much sought-after in this competitive world and are therefore imperative for general life and workplace success .

Problem-solving is an important 21st-century skill because it determines one’s personal development, employment prospects, and overall contribution to society.

6 Practical Ways To Foster Critical Thinking In Students

1. promote skill building through self-directed learning .

Research [1] proved that self-directed learning promotes critical thinking in students as it allows them to fully explore their creative and imaginative sides. It fosters the ability of independent thinking in students and eventually promotes a sense of self-actualization in them. Today, the principle of autonomous learning is applied in most visionary schooling platforms because it is the most credible way to inculcate this new-age skill in young learners.

This methodology perfectly suits middle and high school students because they enjoy the process of discovery learning and are capable of drawing conclusions in the light of facts.

As a parent, you need to be a facilitator in this process and understand the importance of problem-solving skills in kids. The simplest way to do this is to allow some independent thinking time after the instructional delivery and encourage multiple original ideas by promoting divergent thinking. All this fosters advanced reasoning abilities in students and promotes critical thinking for advanced problem-solving.

Top educators from great-quality accredited online schools make use of these strategies, along with several other eLearning skills , and guide the learners throughout the process of gathering, prioritizing, interpreting, and concluding information.

2. Encourage Brainstorming In A Non-Judgmental Environment

Problem-solving in child development is a game-changer for success later in life. So, try to create the right atmosphere for kids at home to nurture this core competency.

A non-judgmental environment is always free from negative criticism and sarcasm. Allow children to voice opinions freely and make sure there is enough positive reinforcement for all genuine attempts.

Individual brainstorming is the best to craft creative solutions for less complex issues because it allows individuals to break free from regular, conventional ideas while interacting in a more positive environment.

Support your kid for more and more lateral/parallel thinking and appreciate all out-of-box/innovative responses.

3. Strengthen The Components Of Problem-Solving 

Another way to foster problem-solving skills in learners is by strengthening the decision-making component of the problem-solving process. Decision-making skills are imperative to solve problems because they help to weigh the advantages and disadvantages before reaching a conclusion.

Encourage kids to make choices between possible alternatives and make this fun by trying out everyday basic choices like food, books, movies, sports, etc. Make sure you allow kids to take charge of these decisions and intervene with your logical and valid inputs. Remember that it is essential to understand the importance of problem-solving skills in kids. So, try to create enough such opportunities for young learners.

These practices will develop habits of analyzing situations from multiple dimensions and eventually, children will learn to research and preempt the repercussions of their individual choices.

4. Use The Best Techniques Of Some Researched Theories

Some great psychological theories can be easily applied in real-life situations. As a parent, you can foster these relevant problem-solving skills in the child by incorporating some components of popular theories.

Let me explain this through some examples:

Use the theory of "psychological distancing" [2] to disconnect children from their emotions while solving the problem. It will help them see the bigger picture of the issue by viewing it from a wider perspective. This strategy eliminates the chances of biases and selective understanding based on personal preferences and therefore, helps in viewing issues through multiple perspectives.

Another helpful strategy can be the "heuristic framework" [3], which can help foster advanced thinking abilities by breaking information into smaller and more comprehensive parts. With middle and high schoolers, you can try its component of backward planning effectively. This strategy can be mindfully implemented in any day-to-day situation, like planning for a get-together or estimating monthly expenses for budget planning. Encourage responses in a way that starts from the most distant challenges like month-end crunch/emergency funds, etc., and look for these solutions before planning the immediate requirements.

5. Be A Positive Role Model

As parents, we can also foster problem-solving skills through numerous informal interactions and behaviors. Our own approach toward solving problems largely influences our children's abilities because there is a powerful impact on the family atmosphere and parenting in the critical habit formation stages.

Look for opportunities to involve children in problematic situations and create some hypothetical ones if you do not have real ones. Involve children in discussions that need deep thinking; for example, preparations for extreme weather change or changing some business strategies (like hoarding raw material) to bring down the investments of a family business.

Be a structured and organized problem solver yourself and present your thoughts in the most logical and sequential manner. Support children's efforts throughout and share your input about their dilemmas. The importance of problem-solving skills in kids is evident. So, try to be an ideal role model for kids all the time.

6. Observe, Facilitate, And Share Feedback

Last but not least, be a guide and mentor for your students at all times. Observe them and be ready to intervene as and when it is required. Avoid interrupting and criticizing directly at any point in time because these competencies are best developed in a positive learning environment .

So, make sure you share enough positive feedback and facilitate this process throughout. However, do not give any direct answers to make the task easy for children. Instead, guide them through the pathway that can lead to possible and relevant solutions. Encourage multiple solutions and prejudice-free opinions and allow enough time for kids to derive conclusions. Re-explain the steps of the process (identifying, analyzing, solving, and reviewing, etc.) repeatedly, and motivate children for more and more divergent thinking.

Problem-solving skills are an asset for our kids in all stages of life. So, put your best foot forward and support your child in and out to acquire these 21st-century relevant skillsets for a tremendously successful and happy life ahead!

References:

[1] Self-Directed Learning Strategy: A Tool for Promoting Critical Thinking and Problem Solving Skills among Social Studies Students

[2] Construal-Level Theory of Psychological Distance

[3] 7.3 Problem-Solving

  • 7 eLearning Gamification Tips To Enhance Problem Solving Skills
  • 4 Ways To Foster Problem-Solving Skills In Modern eLearning Environments
  • 7 Tips To Enhance Problem-Solving Skills In Online Training
  • Harnessing Problem-Solving Skills For Career Success
  • Gamification For Learning: Strategies And Examples

Resilient Educator logo

ChatGPT for Teachers

Trauma-informed practices in schools, teacher well-being, cultivating diversity, equity, & inclusion, integrating technology in the classroom, social-emotional development, covid-19 resources, invest in resilience: summer toolkit, civics & resilience, all toolkits, degree programs, trauma-informed professional development, teacher licensure & certification, how to become - career information, classroom management, instructional design, lifestyle & self-care, online higher ed teaching, current events, 5 problem-solving activities for the classroom.

5 Problem-Solving Activities for the Classroom

Problem-solving skills are necessary in all areas of life, and classroom problem solving activities can be a great way to get students prepped and ready to solve real problems in real life scenarios. Whether in school, work or in their social relationships, the ability to critically analyze a problem, map out all its elements and then prepare a workable solution is one of the most valuable skills one can acquire in life.

Educating your students about problem solving skills from an early age in school can be facilitated through classroom problem solving activities. Such endeavors encourage cognitive as well as social development, and can equip students with the tools they’ll need to address and solve problems throughout the rest of their lives. Here are five classroom problem solving activities your students are sure to benefit from as well as enjoy doing:

1. Brainstorm bonanza

Having your students create lists related to whatever you are currently studying can be a great way to help them to enrich their understanding of a topic while learning to problem-solve. For example, if you are studying a historical, current or fictional event that did not turn out favorably, have your students brainstorm ways that the protagonist or participants could have created a different, more positive outcome. They can brainstorm on paper individually or on a chalkboard or white board in front of the class.

2. Problem-solving as a group

Have your students create and decorate a medium-sized box with a slot in the top. Label the box “The Problem-Solving Box.” Invite students to anonymously write down and submit any problem or issue they might be having at school or at home, ones that they can’t seem to figure out on their own. Once or twice a week, have a student draw one of the items from the box and read it aloud. Then have the class as a group figure out the ideal way the student can address the issue and hopefully solve it.

3. Clue me in

This fun detective game encourages problem-solving, critical thinking and cognitive development. Collect a number of items that are associated with a specific profession, social trend, place, public figure, historical event, animal, etc. Assemble actual items (or pictures of items) that are commonly associated with the target answer. Place them all in a bag (five-10 clues should be sufficient.) Then have a student reach into the bag and one by one pull out clues. Choose a minimum number of clues they must draw out before making their first guess (two- three). After this, the student must venture a guess after each clue pulled until they guess correctly. See how quickly the student is able to solve the riddle.

4. Survivor scenarios

Create a pretend scenario for students that requires them to think creatively to make it through. An example might be getting stranded on an island, knowing that help will not arrive for three days. The group has a limited amount of food and water and must create shelter from items around the island. Encourage working together as a group and hearing out every child that has an idea about how to make it through the three days as safely and comfortably as possible.

5. Moral dilemma

Create a number of possible moral dilemmas your students might encounter in life, write them down, and place each item folded up in a bowl or bag. Some of the items might include things like, “I saw a good friend of mine shoplifting. What should I do?” or “The cashier gave me an extra $1.50 in change after I bought candy at the store. What should I do?” Have each student draw an item from the bag one by one, read it aloud, then tell the class their answer on the spot as to how they would handle the situation.

Classroom problem solving activities need not be dull and routine. Ideally, the problem solving activities you give your students will engage their senses and be genuinely fun to do. The activities and lessons learned will leave an impression on each child, increasing the likelihood that they will take the lesson forward into their everyday lives.

You may also like to read

  • Classroom Activities for Introverted Students
  • Activities for Teaching Tolerance in the Classroom
  • 5 Problem-Solving Activities for Elementary Classrooms
  • 10 Ways to Motivate Students Outside the Classroom
  • Motivating Introverted Students to Excel in the Classroom
  • How to Engage Gifted and Talented Students in the Classroom

Categorized as: Tips for Teachers and Classroom Resources

Tagged as: Assessment Tools ,  Engaging Activities

  • Online & Campus Doctorate (EdD) in Higher Edu...
  • Degrees and Certificates for Teachers & Educa...
  • Programming Teacher: Job Description and Sala...

SELECT COUNTRY

  • Overview of OWIS Singapore
  • Mission, Vision and Values
  • Creating Global Citizens
  • Parent Partnerships
  • Global Schools Foundation (GSF)
  • Academic & Examination Board (AEB)
  • Awards & Accreditations
  • Admissions Overview
  • Apply Online
  • Book a Tour
  • Application Process
  • School Fees
  • Scholarship
  • Admissions Events and Webinars
  • Entry Requirements
  • Student Contract & CPE-related Information
  • Agent Connect Programme
  • Learning & Curricula at OWIS
  • IB Primary Years Programme (Ages 3 to 11)
  • Modified Cambridge (Ages 12 to 14)
  • Cambridge IGCSE (Ages 15 to 16)
  • IB Diploma Programme (Ages 17 to 18)
  • Chinese-English Bilingual Programme (Ages 7 to 11)
  • Co-scholastic Learning Programmes
  • English as an Additional Language (EAL) Programme
  • After-School Programme (CCAs)
  • Overview of OWIS Nanyang
  • Welcome Message
  • Early Childhood
  • Primary School
  • Secondary School
  • Learning Environment
  • Academic Results & University Offers
  • Pastoral Care & Student Well-Being
  • School Calendar
  • Join Our Open House
  • Overview of OWIS Suntec
  • Overview of OWIS Digital Campus
  • Blogs & Insights
  • School Stories
  • In the Media
  • E-books & Downloads
  • Public vs Private School
  • Relocating to Singapore

OWIS SINGAPORE

Strategies to develop problem-solving skills in students.

David Swanson

  • November 14, 2023

OWIS Nanyang | Secondary Students in Maths Lesson | Problem-Solving Skills | International School in Singapore

Students need the freedom to brainstorm, develop solutions and make mistakes — this is truly the only way to prepare them for life outside the classroom. When students are immersed in a learning environment that only offers them step-by-step guides and encourages them to focus solely on memorisation, they are not gaining the skills necessary to help them navigate in the complex, interconnected environment of the real world.

Choosing a school that emphasises the importance of future-focussed skills will ensure your child has the abilities they need to survive and thrive anywhere in the world. What are future-focussed skills? Students who are prepared for the future need to possess highly developed communication skills, self-management skills, research skills, thinking skills, social skills and problem-solving skills. In this blog, I would like to focus on problem-solving skills.

What Are Problem-Solving Skills?

The Forage defines problem-solving skills as those that allow an individual to identify a problem, come up with solutions, analyse the options and collaborate to find the best solution for the issue.

Importance of Problem-Solving in the Classroom Setting

Learning how to solve problems effectively and positively is a crucial part of child development. When children are allowed to solve problems in a classroom setting, they can test those skills in a safe and nurturing environment. Generally, when they face age-appropriate issues, they can begin building those skills in a healthy and positive manner.

Without exposure to challenging situations and scenarios, children will not be equipped with the foundational problem-solving skills needed to tackle complex issues in the real world. Experts predict that problem-solving skills will eventually be more sought after in job applicants than hard skills related to that specific profession. Students must be given opportunities in school to resolve conflicts, address complex problems and come up with their own solutions in order to develop these skills.

Benefits of Problem-Solving Skills for Students

student problem solving

Learning how to solve problems offers students many advantages, such as:

Improving Academic Results

When students have a well-developed set of problem-solving skills, they are often better critical and analytical thinkers as well. They are able to effectively use these 21st-century skills when completing their coursework, allowing them to become more successful in all academic areas. By prioritising problem-solving strategies in the classroom, teachers often find that academic performance improves.

Developing Confidence

Giving students the freedom to solve problems and create their own solutions is essentially permitting them to make their own choices. This sense of independence — and the natural resilience that comes with it — allows students to become confident learners who aren’t intimidated by new or challenging situations. Ultimately, this prepares them to take on more complex challenges in the future, both on a professional and social level.

Preparing Students for Real-World Challenges

The challenges we are facing today are only growing more complex, and by the time students have graduated, they are going to be facing issues that we may not even have imagined. By arming them with real-world problem-solving experience, they will not feel intimidated or stifled by those challenges; they will be excited and ready to address them. They will know how to discuss their ideas with others, respect various perspectives and collaborate to develop a solution that best benefits everyone involved.

The Best Problem-Solving Strategies for Students

student problem solving

No single approach or strategy will instil a set of problem-solving skills in students.  Every child is different, so educators should rely on a variety of strategies to develop this core competency in their students.  It is best if these skills are developed naturally.

These are some of the best strategies to support students problem-solving skills:

Project-Based Learning

By providing students with project-based learning experiences and allowing plenty of time for discussion, educators can watch students put their problem-solving skills into action inside their classrooms. This strategy is one of the most effective ways to fine-tune problem-solving skills in students.  During project-based learning, teachers may take notes on how the students approach a problem and then offer feedback to students for future development. Teachers can address their observations of interactions during project-based learning at the group level or they can work with students on an individual basis to help them become more effective problem-solvers.

Encourage Discussion and Collaboration in the Classroom Setting

Another strategy to encourage the development of problem-solving skills in students is to allow for plenty of discussion and collaboration in the classroom setting.  When students interact with one another, they are naturally developing problem solving skills.  Rather than the teacher delivering information and requiring the students to passively receive information, students can share thoughts and ideas with one another.  Getting students to generate their own discussion and communication requires thinking skills. 

Utilising an Inquiry-Based approach to Learning

Students should be presented with situations in which their curiosity is sparked and they are motivated to inquire further. Teachers should ask open-ended questions and encourage students to develop responses which require problem-solving. By providing students with complex questions for which a variety of answers may be correct, teachers get students to consider different perspectives and deal with potential disagreement, which requires problem-solving skills to resolve.

Model Appropriate Problem-Solving Skills

One of the simplest ways to instil effective problem-solving skills in students is to model appropriate and respectful strategies and behaviour when resolving a conflict or addressing an issue. Teachers can showcase their problem-solving skills by:

  • Identifying a problem when they come across one for the class to see
  • Brainstorming possible solutions with students
  • Collaborating with students to decide on the best solution
  • Testing that solution and examining the results with the students
  • Adapting as necessary to improve results or achieve the desired goal

Prioritise Student Agency in Learning

Recent research shows that self-directed learning is one of the most effective ways to nurture 21st-century competency development in young learners. Learning experiences that encourage student agency often require problem-solving skills.  When creativity and innovation are needed, students often encounter unexpected problems along the way that must be solved. Through self-directed learning, students experience challenges in a natural situation and can fine-tune their problem-solving skills along the way.  Self-directed learning provides them with a foundation in problem-solving that they can build upon in the future, allowing them to eventually develop more advanced and impactful problem-solving skills for real life.

21st-Century Skill Development at OWIS Singapore

Problem-solving has been identified as one of the core competencies that young learners must develop to be prepared to meet the dynamic needs of a global environment.  At OWIS Singapore, we have implemented an inquiry-driven, skills-based curriculum that allows students to organically develop critical future-ready skills — including problem-solving.  Our hands-on approach to education enables students to collaborate, explore, innovate, face-challenges, make mistakes and adapt as necessary.  As such, they learn problem-solving skills in an authentic manner.

For more information about 21st-century skill development, schedule a campus tour today.

About Author

David swanson, latest blogs.

student problem solving

  • June 6, 2024

Early Childhood Education at OWIS: How We Support Young Learners

Chess CCA lesson at OWIS Nanyang | Holistic development | Critical Thinking

  • June 4, 2024

Helping Secondary Students Thrive Through Co-Curricular Activities at OWIS Nanyang

Primary School students at OWIS Suntec learning music | Well-rounded education at International School near Orchard

  • May 25, 2024

Holistic Development at OWIS Singapore: How We Nurture the Whole Child

student problem solving

  • May 14, 2024

Cultivating Student Well-Being at OWIS Digital Campus for a Positive Educational Journey

OWIS Nanyang Drum Circle CCA Lesson - Music class - holistic development - international school in Singapore

  • May 9, 2024

Nurturing Young Learners Through Co-Curricular Activities at OWIS Nanyang

student problem solving

  • April 8, 2024

Transforming Experiential Learning Through Skill Studios at OWIS Digital Campus

Related blog posts.

student problem solving

  • Culture & Values
  • Holistic development
  • Testimonial

Fostering Confidence in Education: The Dynamic Blend of Diversity and Academic Excellence at OWIS Digital Campus*

  • December 18, 2023

student problem solving

Embarking on a Journey Through the Art Spaces at OWIS Digital Campus*

  • March 11, 2024

student problem solving

nanyang Campus

  • +65 6914 6700
  • [email protected]
  • 21 Jurong West Street 81, Singapore 649075
  • +65 8318 3027

Digital Campus

  • #01-02, Global Campus Village, 27 Punggol Field Walk, Singapore 828649

Suntec Campus

  • 1 Raffles Blvd, Singapore 039593

OWIS Nanyang is accredited for the IB PYP, Cambridge IGCSE and IB DP. OWIS Suntec is accredited for the IB PYP. CPE Registration Number: 200800495N | Validity Period: 24 February 2023 to 23 February 2027.

student problem solving

Quick Links:

Virtual and in-person Campus Tours Available

High Impact Tutoring Built By Math Experts

Personalized standards-aligned one-on-one math tutoring for schools and districts

Free ready-to-use math resources

Hundreds of free math resources created by experienced math teachers to save time, build engagement and accelerate growth

Free ready-to-use math resources

20 Effective Math Strategies To Approach Problem-Solving 

Katie Keeton

Math strategies for problem-solving help students use a range of approaches to solve many different types of problems. It involves identifying the problem and carrying out a plan of action to find the answer to mathematical problems.  

Problem-solving skills are essential to math in the general classroom and real-life. They require logical reasoning and critical thinking skills. Students must be equipped with strategies to help them find solutions to problems.

This article explores mathematical problem solving strategies, logical reasoning and critical thinking skills to help learners with solving math word problems independently in real-life situations. 

What are problem-solving strategies?

Problem-solving strategies in math are methods students can use to figure out solutions to math problems. Some problem-solving strategies: 

  • Draw a model
  • Use different approaches
  • Check the inverse to make sure the answer is correct

Students need to have a toolkit of math problem-solving strategies at their disposal to provide different ways to approach math problems. This makes it easier to find solutions and understand math better. 

Strategies can help guide students to the solution when it is difficult ot know when to start.

The ultimate guide to problem solving techniques

The ultimate guide to problem solving techniques

Download these ready-to-go problem solving techniques that every student should know. Includes printable tasks for students including challenges, short explanations for teachers with questioning prompts.

20 Math Strategies For Problem-Solving

Different problem-solving math strategies are required for different parts of the problem. It is unlikely that students will use the same strategy to understand and solve the problem. 

Here are 20 strategies to help students develop their problem-solving skills. 

Strategies to understand the problem

Strategies that help students understand the problem before solving it helps ensure they understand: 

  • The context
  • What the key information is
  • How to form a plan to solve it

Following these steps leads students to the correct solution and makes the math word problem easier .

Here are five strategies to help students understand the content of the problem and identify key information. 

1. Read the problem aloud

Read a word problem aloud to help understand it. Hearing the words engages auditory processing. This can make it easier to process and comprehend the context of the situation.

2. Highlight keywords 

When keywords are highlighted in a word problem, it helps the student focus on the essential information needed to solve it. Some important keywords help determine which operation is needed.  For example, if the word problem asks how many are left, the problem likely requires subtraction.  Ensure students highlight the keywords carefully and do not highlight every number or keyword. There is likely irrelevant information in the word problem.

3. Summarize the information

Read the problem aloud, highlight the key information and then summarize the information. Students can do this in their heads or write down a quick summary.  Summaries should include only the important information and be in simple terms that help contextualize the problem.

4. Determine the unknown

A common problem that students have when solving a word problem is misunderstanding what they are solving. Determine what the unknown information is before finding the answer.  Often, a word problem contains a question where you can find the unknown information you need to solve. For example, in the question ‘How many apples are left?’ students need to find the number of apples left over.

5. Make a plan

Once students understand the context of the word problem, have dentified the important information and determined the unknown, they can make a plan to solve it.  The plan will depend on the type of problem. Some problems involve more than one step to solve them as some require more than one answer.  Encourage students to make a list of each step they need to take to solve the problem before getting started.

Strategies for solving the problem 

1. draw a model or diagram.

Students may find it useful to draw a model, picture, diagram, or other visual aid to help with the problem solving process.  It can help to visualize the problem to understand the relationships between the numbers in the problem. In turn, this helps students see the solution.

math problem that needs a problem solving strategy

Similarly, you could draw a model to represent the objects in the problem:

math problem requiring problem solving

2. Act it out

This particular strategy is applicable at any grade level but is especially helpful in math investigation in elementary school . It involves a physical demonstration or students acting out the problem using movements, concrete resources and math manipulatives .  When students act out a problem, they can visualize and contectualize the word problem in another way and secure an understanding of the math concepts.  The examples below show how 1st-grade students could “act out” an addition and subtraction problem:

3. Work backwards

Working backwards is a popular problem-solving strategy. It involves starting with a possible solution and deciding what steps to take to arrive at that solution.  This strategy can be particularly helpful when students solve math word problems involving multiple steps. They can start at the end and think carefully about each step taken as opposed to jumping to the end of the problem and missing steps in between.

For example,

problem solving math question 1

To solve this problem working backwards, start with the final condition, which is Sam’s grandmother’s age (71) and work backwards to find Sam’s age. Subtract 20 from the grandmother’s age, which is 71.  Then, divide the result by 3 to get Sam’s age. 71 – 20 = 51 51 ÷ 3 = 17 Sam is 17 years old.

4. Write a number sentence

When faced with a word problem, encourage students to write a number sentence based on the information. This helps translate the information in the word problem into a math equation or expression, which is more easily solved.  It is important to fully understand the context of the word problem and what students need to solve before writing an equation to represent it.

5. Use a formula

Specific formulas help solve many math problems. For example, if a problem asks students to find the area of a rug, they would use the area formula (area = length × width) to solve.   Make sure students know the important mathematical formulas they will need in tests and real-life. It can help to display these around the classroom or, for those who need more support, on students’ desks.

Strategies for checking the solution 

Once the problem is solved using an appropriate strategy, it is equally important to check the solution to ensure it is correct and makes sense. 

There are many strategies to check the solution. The strategy for a specific problem is dependent on the problem type and math content involved.

Here are five strategies to help students check their solutions. 

1. Use the Inverse Operation

For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7. As good practice, encourage students to use the inverse operation routinely to check their work. 

2. Estimate to check for reasonableness

Once students reach an answer, they can use estimation or rounding to see if the answer is reasonable.  Round each number in the equation to a number that’s close and easy to work with, usually a multiple of ten.  For example, if the question was 216 ÷ 18 and the quotient was 12, students might round 216 to 200 and round 18 to 20. Then use mental math to solve 200 ÷ 20, which is 10.  When the estimate is clear the two numbers are close. This means your answer is reasonable. 

3. Plug-In Method

This method is particularly useful for algebraic equations. Specifically when working with variables.  To use the plug-in method, students solve the problem as asked and arrive at an answer. They can then plug the answer into the original equation to see if it works. If it does, the answer is correct.

Problem solving math problem 2

If students use the equation 20m+80=300 to solve this problem and find that m = 11, they can plug that value back into the equation to see if it is correct. 20m + 80 = 300 20 (11) + 80 = 300 220 + 80 = 300 300 = 300 ✓

4. Peer Review

Peer review is a great tool to use at any grade level as it promotes critical thinking and collaboration between students. The reviewers can look at the problem from a different view as they check to see if the problem was solved correctly.   Problem solvers receive immediate feedback and the opportunity to discuss their thinking with their peers. This strategy is effective with mixed-ability partners or similar-ability partners. In mixed-ability groups, the partner with stronger skills provides guidance and support to the partner with weaker skills, while reinforcing their own understanding of the content and communication skills.  If partners have comparable ability levels and problem-solving skills, they may find that they approach problems differently or have unique insights to offer each other about the problem-solving process.

5. Use a Calculator

A calculator can be introduced at any grade level but may be best for older students who already have a foundational understanding of basic math operations. Provide students with a calculator to allow them to check their solutions independently, accurately, and quickly. Since calculators are so readily available on smartphones and tablets, they allow students to develop practical skills that apply to real-world situations.  

Step-by-step problem-solving processes for your classroom

In his book, How to Solve It , published in 1945, mathematician George Polya introduced a 4-step process to solve problems. 

Polya’s 4 steps include:

  • Understand the problem
  • Devise a plan
  • Carry out the plan

Today, in the style of George Polya, many problem-solving strategies use various acronyms and steps to help students recall. 

Many teachers create posters and anchor charts of their chosen process to display in their classrooms. They can be implemented in any elementary, middle school or high school classroom. 

Here are 5 problem-solving strategies to introduce to students and use in the classroom.

CUBES math strategy for problem solving

How Third Space Learning improves problem-solving 

Resources .

Third Space Learning offers a free resource library is filled with hundreds of high-quality resources. A team of experienced math experts carefully created each resource to develop students mental arithmetic, problem solving and critical thinking. 

Explore the range of problem solving resources for 2nd to 8th grade students. 

One-on-one tutoring 

Third Space Learning offers one-on-one math tutoring to help students improve their math skills. Highly qualified tutors deliver high-quality lessons aligned to state standards. 

Former teachers and math experts write all of Third Space Learning’s tutoring lessons. Expertly designed lessons follow a “my turn, follow me, your turn” pedagogy to help students move from guided instruction and problem-solving to independent practice. 

Throughout each lesson, tutors ask higher-level thinking questions to promote critical thinking and ensure students are developing a deep understanding of the content and problem-solving skills.

student problem solving

Problem-solving

Educators can use many different strategies to teach problem-solving and help students develop and carry out a plan when solving math problems. Incorporate these math strategies into any math program and use them with a variety of math concepts, from whole numbers and fractions to algebra. 

Teaching students how to choose and implement problem-solving strategies helps them develop mathematical reasoning skills and critical thinking they can apply to real-life problem-solving.

READ MORE : 8 Common Core math examples

There are many different strategies for problem-solving; Here are 5 problem-solving strategies: • draw a model  • act it out  • work backwards  • write a number sentence • use a formula

Here are 10 strategies of problem-solving: • Read the problem aloud • Highlight keywords • Summarize the information • Determine the unknown • Make a plan • Draw a model  • Act it out  • Work backwards  • Write a number sentence • Use a formula

1. Understand the problem 2. Devise a plan 3. Carry out the plan 4. Look back

Some strategies you can use to solve challenging math problems are: breaking the problem into smaller parts, using diagrams or models, applying logical reasoning, and trying different approaches.

Related articles

Why Student Centered Learning Is Important: A Guide For Educators

Why Student Centered Learning Is Important: A Guide For Educators

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

Ultimate Guide to Metacognition [FREE]

Looking for a summary on metacognition in relation to math teaching and learning?

Check out this guide featuring practical examples, tips and strategies to successfully embed metacognition across your school to accelerate math growth.

Privacy Overview

The Edvocate

  • Lynch Educational Consulting
  • Dr. Lynch’s Personal Website
  • Write For Us
  • The Tech Edvocate Product Guide
  • The Edvocate Podcast
  • Terms and Conditions
  • Privacy Policy
  • Assistive Technology
  • Best PreK-12 Schools in America
  • Child Development
  • Classroom Management
  • Early Childhood
  • EdTech & Innovation
  • Education Leadership
  • First Year Teachers
  • Gifted and Talented Education
  • Special Education
  • Parental Involvement
  • Policy & Reform
  • Best Colleges and Universities
  • Best College and University Programs
  • HBCU’s
  • Higher Education EdTech
  • Higher Education
  • International Education
  • The Awards Process
  • Finalists and Winners of The 2023 Tech Edvocate Awards
  • Award Seals
  • GPA Calculator for College
  • GPA Calculator for High School
  • Cumulative GPA Calculator
  • Grade Calculator
  • Weighted Grade Calculator
  • Final Grade Calculator
  • The Tech Edvocate
  • AI Powered Personal Tutor

Teaching Students About Morphological Awareness: Enhancing Literacy Skills

Teaching students about dave chappelle: a guide for educators, teaching students about the ionian sea: an enriching experience, teaching students about the santa clarita school shooting: a guide for educators, teaching students about the toyota previa: an innovative approach to automotive education, teaching students about super hero girls: empowering the next generation, teaching students about the iron curtain: a comprehensive guide, teaching students about tribes: enhancing cultural awareness and understanding, teaching students about age of bruce springsteen, teaching students about hotel pennsylvania: a journey through time and hospitality, strategies and methods to teach students problem solving and critical thinking skills.

student problem solving

The ability to problem solve and think critically are two of the most important skills that PreK-12 students can learn. Why? Because students need these skills to succeed in their academics and in life in general. It allows them to find a solution to issues and complex situations that are thrown there way, even if this is the first time they are faced with the predicament.

Okay, we know that these are essential skills that are also difficult to master. So how can we teach our students problem solve and think critically? I am glad you asked. In this piece will list and discuss strategies and methods that you can use to teach your students to do just that.

  • Direct Analogy Method

A method of problem-solving in which a problem is compared to similar problems in nature or other settings, providing solutions that could potentially be applied.

  • Attribute Listing

A technique used to encourage creative thinking in which the parts of a subject, problem, or task are listed, and then ways to change those component parts are examined.

  • Attribute Modifying

A technique used to encourage creative thinking in which the parts of a subject, problem, or task are listed, and then options for changing or improving each part are considered.

  • Attribute Transferring

A technique used to encourage creative thinking in which the parts of a subject, problem or task listed and then the problem solver uses analogies to other contexts to generate and consider potential solutions.

  • Morphological Synthesis

A technique used to encourage creative problem solving which extends on attribute transferring. A matrix is created, listing concrete attributes along the x-axis, and the ideas from a second attribute along with the y-axis, yielding a long list of idea combinations.

SCAMPER stands for Substitute, Combine, Adapt, Modify-Magnify-Minify, Put to other uses, and Reverse or Rearrange. It is an idea checklist for solving design problems.

  • Direct Analogy

A problem-solving technique in which an individual is asked to consider the ways problems of this type are solved in nature.

  • Personal Analogy

A problem-solving technique in which an individual is challenged to become part of the problem to view it from a new perspective and identify possible solutions.

  • Fantasy Analogy

A problem-solving process in which participants are asked to consider outlandish, fantastic or bizarre solutions which may lead to original and ground-breaking ideas.

  • Symbolic Analogy

A problem-solving technique in which participants are challenged to generate a two-word phrase related to the design problem being considered and that appears self-contradictory. The process of brainstorming this phrase can stimulate design ideas.

  • Implementation Charting

An activity in which problem solvers are asked to identify the next steps to implement their creative ideas. This step follows the idea generation stage and the narrowing of ideas to one or more feasible solutions. The process helps participants to view implementation as a viable next step.

  • Thinking Skills

Skills aimed at aiding students to be critical, logical, and evaluative thinkers. They include analysis, comparison, classification, synthesis, generalization, discrimination, inference, planning, predicting, and identifying cause-effect relationships.

Can you think of any additional problems solving techniques that teachers use to improve their student’s problem-solving skills?

The 4 Types of Brainstorming

Feeling lethargic it may all that screen ....

' src=

Matthew Lynch

Related articles more from author.

student problem solving

10 Tools to Help Teachers Develop Executive Functioning Classroom Skills

student problem solving

21 Ways to Help Students Realize Their Academic Potential

student problem solving

Listening, not testing, will improve children’s vocabulary

student problem solving

The Surprising History of the 18th Century’s Educational Influence

student problem solving

A Guide to Developmental Spelling

student problem solving

How Effective Teachers Communicate Their Needs to Their Principal

5 Effective Problem-Solving Strategies

student problem solving

Got a problem you’re trying to solve? Strategies like trial and error, gut instincts, and “working backward” can help. We look at some examples and how to use them.

We all face problems daily. Some are simple, like deciding what to eat for dinner. Others are more complex, like resolving a conflict with a loved one or figuring out how to overcome barriers to your goals.

No matter what problem you’re facing, these five problem-solving strategies can help you develop an effective solution.

An infographic showing five effective problem-solving strategies

What are problem-solving strategies?

To effectively solve a problem, you need a problem-solving strategy .

If you’ve had to make a hard decision before then you know that simply ruminating on the problem isn’t likely to get you anywhere. You need an effective strategy — or a plan of action — to find a solution.

In general, effective problem-solving strategies include the following steps:

  • Define the problem.
  • Come up with alternative solutions.
  • Decide on a solution.
  • Implement the solution.

Problem-solving strategies don’t guarantee a solution, but they do help guide you through the process of finding a resolution.

Using problem-solving strategies also has other benefits . For example, having a strategy you can turn to can help you overcome anxiety and distress when you’re first faced with a problem or difficult decision.

The key is to find a problem-solving strategy that works for your specific situation, as well as your personality. One strategy may work well for one type of problem but not another. In addition, some people may prefer certain strategies over others; for example, creative people may prefer to depend on their insights than use algorithms.

It’s important to be equipped with several problem-solving strategies so you use the one that’s most effective for your current situation.

1. Trial and error

One of the most common problem-solving strategies is trial and error. In other words, you try different solutions until you find one that works.

For example, say the problem is that your Wi-Fi isn’t working. You might try different things until it starts working again, like restarting your modem or your devices until you find or resolve the problem. When one solution isn’t successful, you try another until you find what works.

Trial and error can also work for interpersonal problems . For example, if your child always stays up past their bedtime, you might try different solutions — a visual clock to remind them of the time, a reward system, or gentle punishments — to find a solution that works.

2. Heuristics

Sometimes, it’s more effective to solve a problem based on a formula than to try different solutions blindly.

Heuristics are problem-solving strategies or frameworks people use to quickly find an approximate solution. It may not be the optimal solution, but it’s faster than finding the perfect resolution, and it’s “good enough.”

Algorithms or equations are examples of heuristics.

An algorithm is a step-by-step problem-solving strategy based on a formula guaranteed to give you positive results. For example, you might use an algorithm to determine how much food is needed to feed people at a large party.

However, many life problems have no formulaic solution; for example, you may not be able to come up with an algorithm to solve the problem of making amends with your spouse after a fight.

3. Gut instincts (insight problem-solving)

While algorithm-based problem-solving is formulaic, insight problem-solving is the opposite.

When we use insight as a problem-solving strategy we depend on our “gut instincts” or what we know and feel about a situation to come up with a solution. People might describe insight-based solutions to problems as an “aha moment.”

For example, you might face the problem of whether or not to stay in a relationship. The solution to this problem may come as a sudden insight that you need to leave. In insight problem-solving, the cognitive processes that help you solve a problem happen outside your conscious awareness.

4. Working backward

Working backward is a problem-solving approach often taught to help students solve problems in mathematics. However, it’s useful for real-world problems as well.

Working backward is when you start with the solution and “work backward” to figure out how you got to the solution. For example, if you know you need to be at a party by 8 p.m., you might work backward to problem-solve when you must leave the house, when you need to start getting ready, and so on.

5. Means-end analysis

Means-end analysis is a problem-solving strategy that, to put it simply, helps you get from “point A” to “point B” by examining and coming up with solutions to obstacles.

When using means-end analysis you define the current state or situation (where you are now) and the intended goal. Then, you come up with solutions to get from where you are now to where you need to be.

For example, a student might be faced with the problem of how to successfully get through finals season . They haven’t started studying, but their end goal is to pass all of their finals. Using means-end analysis, the student can examine the obstacles that stand between their current state and their end goal (passing their finals).

They could see, for example, that one obstacle is that they get distracted from studying by their friends. They could devise a solution to this obstacle by putting their phone on “do not disturb” mode while studying.

Let’s recap

Whether they’re simple or complex, we’re faced with problems every day. To successfully solve these problems we need an effective strategy. There are many different problem-solving strategies to choose from.

Although problem-solving strategies don’t guarantee a solution, they can help you feel less anxious about problems and make it more likely that you come up with an answer.

Last medically reviewed on November 1, 2022

8 sources collapsed

  • Chu Y, et al. (2011). Human performance on insight problem-solving: A review. https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1094&context=jps
  • Dumper K, et al. (n.d.) Chapter 7.3: Problem-solving in introductory psychology. https://opentext.wsu.edu/psych105/chapter/7-4-problem-solving/
  • Foulds LR. (2017). The heuristic problem-solving approach. https://www.tandfonline.com/doi/abs/10.1057/jors.1983.205
  • Gick ML. (1986). Problem-solving strategies. https://www.tandfonline.com/doi/abs/10.1080/00461520.1986.9653026
  • Montgomery ME. (2015). Problem solving using means-end analysis. https://sites.psu.edu/psych256sp15/2015/04/19/problem-solving-using-means-end-analysis/
  • Posamentier A, et al. (2015). Problem-solving strategies in mathematics. Chapter 3: Working backwards. https://www.worldscientific.com/doi/10.1142/9789814651646_0003
  • Sarathy V. (2018). Real world problem-solving. https://www.frontiersin.org/articles/10.3389/fnhum.2018.00261/full
  • Woods D. (2000). An evidence-based strategy for problem solving. https://www.researchgate.net/publication/245332888_An_Evidence-Based_Strategy_for_Problem_Solving

Read this next

Making big decisions can be a difficult task. Setting deadlines and asking for support can help you confidently move ahead.

Dealing with a problem can fee a lot more manageable when you have a plan. Try these 5 steps for becoming a better problem-solver.

A lack of communication in relationships doesn't have to be a dealbreaker. Learn how to improve your communication skills at work and at home.

Sleep deprivation, stress, or underlying health conditions can lead to an inability to focus. Self-help techniques can help improve your concentration.

Positive thinking is an essential practice to improve your overall health and well-being. Discover how to incorporate positive thinking into your…

Dreaming about babies can hold different meanings for everyone. Although theories vary, biological and psychological factors may influence your dreams.

If you're seeking to boost your concentration, practicing mindfulness, chewing gum, and brain games are just a few techniques to try. Learn how they…

Creating a schedule and managing stress are ways to make your days go by faster. Changing your perception of time can also improve your overall…

Experiencing unwanted and difficult memories can be challenging. But learning how to replace negative memories with positive ones may help you cope.

Engaging in brain exercises, like sudoku puzzles and learning new languages, enhances cognitive abilities and improves overall well-being.

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

Opinion | Teaching and Learning

When teaching students math, concepts matter more than process, by nicola hodkowski     jun 5, 2024.

When Teaching Students Math, Concepts Matter More Than Process

Ground Picture / Shutterstock

As a mathematics education researcher, I study how math instruction impacts students' learning, from following standard math procedures to understanding mathematical concepts. Focusing on the latter, conceptual understanding often involves understanding the “why” of a mathematical concept ; it’s the reasoning behind the math rather than the how or the steps it takes to get to an answer.

So often, in mathematics classrooms, students are shown steps and procedures for solving math problems and then required to demonstrate their rote memorization of these steps independently.

As a result, students' agency, knowledge and ability to transfer the concepts of mathematics suffer. Specifically, students experience diminished confidence in tackling mathematical problems and a decreased ability to apply mathematical reasoning in real-world situations. In addition, students may struggle with more advanced mathematical concepts and problem-solving tasks as they progress in their education.

While procedural fluency is important, conceptual understanding provides a framework for students to build mental relationships between math concepts. It allows students to connect new ideas to what they already know , creating increasing connections toward more advanced mathematics.

If we want mathematics achievement to improve, we need instruction to begin focusing on concepts instead of procedures.

Why Concept Matters More Than Procedure

Conceptual understanding builds on existing understanding to advance knowledge and focuses on the student’s ability to justify and explain. Procedural fluency, on the other hand, is about following steps to arrive at an answer and accuracy.

When considering how students will learn more advanced mathematics concepts, it is important to consider how they will engage with the problems presented to them in class and how those problems will contribute either to their greater conceptual understanding or greater procedural fluency. For example, consider these two math questions and ask yourself: What knowledge is needed to solve each problem?

student problem solving

Microchip Companies Create Child Care Programs to Win Federal Funds

By jessica kutz, the 19th.

Inclusive by Design: Sharing Insights for Crafting Accessible Conferences

Inclusive by Design: Sharing Insights for Crafting Accessible Conferences

By amy lomellini.

Early Educators Deserve Better, Starting With Health Care and Retirement Benefits

Early Educators Deserve Better, Starting With Health Care and Retirement Benefits

By hayley village.

Is Student Absenteeism a Growing Problem at Colleges, Too?

Student Engagement

Is student absenteeism a growing problem at colleges, too, by rebecca koenig.

Journalism that ignites your curiosity about education.

EdSurge is an editorially independent project of and

  • Product Index
  • Write for us
  • Advertising

FOLLOW EDSURGE

© 2024 All Rights Reserved

  • Share full article

Advertisement

Supported by

The Algebra Problem: How Middle School Math Became a National Flashpoint

Top students can benefit greatly by being offered the subject early. But many districts offer few Black and Latino eighth graders a chance to study it.

The arms of a student are seen leaning on a desk. One hand holds a pencil and works on algebra equations.

By Troy Closson

From suburbs in the Northeast to major cities on the West Coast, a surprising subject is prompting ballot measures, lawsuits and bitter fights among parents: algebra.

Students have been required for decades to learn to solve for the variable x, and to find the slope of a line. Most complete the course in their first year of high school. But top-achievers are sometimes allowed to enroll earlier, typically in eighth grade.

The dual pathways inspire some of the most fiery debates over equity and academic opportunity in American education.

Do bias and inequality keep Black and Latino children off the fast track? Should middle schools eliminate algebra to level the playing field? What if standout pupils lose the chance to challenge themselves?

The questions are so fraught because algebra functions as a crucial crossroads in the education system. Students who fail it are far less likely to graduate. Those who take it early can take calculus by 12th grade, giving them a potential edge when applying to elite universities and lifting them toward society’s most high-status and lucrative professions.

But racial and economic gaps in math achievement are wide in the United States, and grew wider during the pandemic. In some states, nearly four in five poor children do not meet math standards.

To close those gaps, New York City’s previous mayor, Bill de Blasio, adopted a goal embraced by many districts elsewhere. Every middle school would offer algebra, and principals could opt to enroll all of their eighth graders in the class. San Francisco took an opposite approach: If some children could not reach algebra by middle school, no one would be allowed to take it.

The central mission in both cities was to help disadvantaged students. But solving the algebra dilemma can be more complex than solving the quadratic formula.

New York’s dream of “algebra for all” was never fully realized, and Mayor Eric Adams’s administration changed the goal to improving outcomes for ninth graders taking algebra. In San Francisco, dismantling middle-school algebra did little to end racial inequities among students in advanced math classes. After a huge public outcry, the district decided to reverse course.

“You wouldn’t think that there could be a more boring topic in the world,” said Thurston Domina, a professor at the University of North Carolina. “And yet, it’s this place of incredibly high passions.”

“Things run hot,” he said.

In some cities, disputes over algebra have been so intense that parents have sued school districts, protested outside mayors’ offices and campaigned for the ouster of school board members.

Teaching math in middle school is a challenge for educators in part because that is when the material becomes more complex, with students moving from multiplication tables to equations and abstract concepts. Students who have not mastered the basic skills can quickly become lost, and it can be difficult for them to catch up.

Many school districts have traditionally responded to divergent achievement levels by simply separating children into distinct pathways, placing some in general math classes while offering others algebra as an accelerated option. Such sorting, known as tracking, appeals to parents who want their children to reach advanced math as quickly as possible.

But tracking has cast an uncomfortable spotlight on inequality. Around a quarter of all students in the United States take algebra in middle school. But only about 12 percent of Black and Latino eighth graders do, compared with roughly 24 percent of white pupils, a federal report found .

“That’s why middle school math is this flashpoint,” said Joshua Goodman, an associate professor of education and economics at Boston University. “It’s the first moment where you potentially make it very obvious and explicit that there are knowledge gaps opening up.”

In the decades-long war over math, San Francisco has emerged as a prominent battleground.

California once required that all eighth graders take algebra. But lower-performing middle school students often struggle when forced to enroll in the class, research shows. San Francisco later stopped offering the class in eighth grade. But the ban did little to close achievement gaps in more advanced math classes, recent research has found.

As the pendulum swung, the only constant was anger. Leading Bay Area academics disparaged one another’s research . A group of parents even sued the district last spring. “Denying students the opportunity to skip ahead in math when their intellectual ability clearly allows for it greatly harms their potential for future achievement,” their lawsuit said.

The city is now back to where it began: Middle school algebra — for some, not necessarily for all — will return in August. The experience underscored how every approach carries risks.

“Schools really don’t know what to do,” said Jon R. Star, an educational psychologist at Harvard who has studied algebra education. “And it’s just leading to a lot of tension.”

In Cambridge, Mass., the school district phased out middle school algebra before the pandemic. But some argued that the move had backfired: Families who could afford to simply paid for their children to take accelerated math outside of school.

“It’s the worst of all possible worlds for equity,” Jacob Barandes, a Cambridge parent, said at a school board meeting.

Elsewhere, many students lack options to take the class early: One of Philadelphia’s most prestigious high schools requires students to pass algebra before enrolling, preventing many low-income children from applying because they attend middle schools that do not offer the class.

In New York, Mr. de Blasio sought to tackle the disparities when he announced a plan in 2015 to offer algebra — but not require it — in all of the city’s middle schools. More than 15,000 eighth graders did not have the class at their schools at the time.

Since then, the number of middle schools that offer algebra has risen to about 80 percent from 60 percent. But white and Asian American students still pass state algebra tests at higher rates than their peers.

The city’s current schools chancellor, David Banks, also shifted the system’s algebra focus to high schools, requiring the same ninth-grade curriculum at many schools in a move that has won both support and backlash from educators.

And some New York City families are still worried about middle school. A group of parent leaders in Manhattan recently asked the district to create more accelerated math options before high school, saying that many young students must seek out higher-level instruction outside the public school system.

In a vast district like New York — where some schools are filled with children from well-off families and others mainly educate homeless children — the challenge in math education can be that “incredible diversity,” said Pedro A. Noguera, the dean of the University of Southern California’s Rossier School of Education.

“You have some kids who are ready for algebra in fourth grade, and they should not be denied it,” Mr. Noguera said. “Others are still struggling with arithmetic in high school, and they need support.”

Many schools are unequipped to teach children with disparate math skills in a single classroom. Some educators lack the training they need to help students who have fallen behind, while also challenging those working at grade level or beyond.

Some schools have tried to find ways to tackle the issue on their own. KIPP charter schools in New York have added an additional half-hour of math time to many students’ schedules, to give children more time for practice and support so they can be ready for algebra by eighth grade.

At Middle School 50 in Brooklyn, where all eighth graders take algebra, teachers rewrote lesson plans for sixth- and seventh-grade students to lay the groundwork for the class.

The school’s principal, Ben Honoroff, said he expected that some students would have to retake the class in high school. But after starting a small algebra pilot program a few years ago, he came to believe that exposing children early could benefit everyone — as long as students came into it well prepared.

Looking around at the students who were not enrolling in the class, Mr. Honoroff said, “we asked, ‘Are there other kids that would excel in this?’”

“The answer was 100 percent, yes,” he added. “That was not something that I could live with.”

Troy Closson reports on K-12 schools in New York City for The Times. More about Troy Closson

NXTLVL virtual classroom with individual student video headshots

Problem-Solving Olympiad Puts Power Skills to the Test

  • Share article

The inaugural NXTLVL Problem-Solving Olympiad brought students together online for a day of spirited competition, pushing them to their true potential. Middle school problem-solvers from four continents, including three of the top ten virtual schools ranked by World Schools, navigated complex challenges in teams. These challenges tested timeless Power Skills like creativity, critical thinking, collaboration, communication, emotional intelligence, and resilience.

NXTLVL is a pioneering edtech program that helps students develop Power Skills, preparing them for a rapidly evolving world driven by AI advancements and scientific innovations. Our game-based learning approach combines team challenges with expert coaching, equipping students with the skills needed to take on anything.

Many progressive schools, like those attending the Olympiad, are integrating competency-based education into their curricula, focusing on Power Skills to prepare their students for school, work and life.

Gabriel Hernandez, Director of Technology at our champion school Alverno Heights Academy believes “participation in such interactive activities not only enriches students’ learning experiences but also helps them develop essential skills that are beneficial for their personal and academic growth.”

The new Problem-Solving Olympiad offers an extraordinary learning environment for tomorrow’s problem-solvers to stretch their Power Skills by collaborating under pressure.

Schools from around the world took on the May Olympiad. Photo provided by NXTLVL.

Power Skill award winners

To emphasize the importance of Power Skills, we rewarded exceptional examples.

The Emotional Intelligence Award went to Minerva’s Virtual Academy, a globally recognized online school based in the UK, for “anticipating the needs and strategies of allies and opponents to navigate conflicts.”

Williamsburg Academy of Colorado picked up the Resilience Award for “perseverance in pushing through setbacks without losing momentum.”

Laurel Springs School earned the Critical Thinking Award for “demonstrating exceptional analytical thinking, decoding complex problems with logical and strategically sound solutions.”

The Communication and Creativity Awards went to the Prisma Online School for “mastering divergent thinking, consistently generating and synthesizing innovative ideas, while communicating them clearly.”

The Power Skills Awards. Photo provided by NXTLVL.

The Champions

We witnessed the peak of escalating intensity in the Championship Level as four teams battled it out for the main prize. Fourth place went to Prisma Online School, third place to Hill Top Preparatory School, and second place to Minerva’s Virtual Academy.

Our overall champions were a team from Alverno Heights Academy, an independent Catholic school from California. They epitomized teamwork, securing the Power Skill Award for collaboration. With a perfect balance of leadership and emotional intelligence, they leveraged each other’s diverse skills and perspectives. Their dynamism and synchronicity were evident from start to finish. Worthy winners indeed.

Hernandez added, “This Olympiad provides a unique platform for students to engage in communication and critical thinking skills, which are essential in today’s educational landscape. While traditional sports often focus on teamwork and collaboration, this competition allows educators to reach a broader spectrum of students and foster these important skills collectively.”

One of the Alverno Heights Academy students emphasized the importance of “teamwork, communication, and lots of planning before each round,” which was key to their success.

The 6 Power Skills trophies sit inside the champions’ trophy. Photo provided by NXTLVL.

The ultimate contest of wits

The Olympiad was a breathtaking experience. The speed at which all teams adapted to the surmounting challenges reminded us of what students are capable of when given the right platform. In just five hours, students transformed from being curious but uncertain to astute problem-solving teams.

Initially, they dove in without knowing the rules, requiring them to decode the game, develop hypotheses, and fine-tune their tactics. As the game evolved, they had to rework their strategies and adapt on the fly. This journey through failure, setbacks, and upended strategies led them to a finish line where the sweetness of victory was palpable.

The next level

Building on the success of the May event, we’re excited to announce the November Olympiad, which promises to be even more spectacular, expanding over multiple days to welcome more schools.

With early bird access, it’s free for the first four teams until July 1st.

Click here to register and give your students a head start on the future.

We extend a heartfelt thank you to the Elite Academic Academy for their invaluable support in hosting the event and the other schools that made it possible.

Alverno Heights Academy Boston College High School Colégio Bento Benedini Hill Top Preparatory School Laurel Springs School Leadership Academy of Utah Mesa Public Schools Minerva’s Virtual Academy Prisma Online School Repton Abu Dhabi Repton Al Barsha Repton Dubai Williamsburg Academy Williamsburg Academy of Colorado

Sign Up for EdWeek Tech Leader

IMAGES

  1. Download premium image of Students solving a math problem 192689

    student problem solving

  2. 4 Tips on Teaching Problem Solving (From a Student)

    student problem solving

  3. problem-solving-steps-poster

    student problem solving

  4. Children’s problem solving extends beyond the brain

    student problem solving

  5. 5 Problem-Solving Activities for the Classroom

    student problem solving

  6. Developing Problem-Solving Skills for Kids

    student problem solving

VIDEO

  1. DI Global Finals 2010 Closing Ceremonies

  2. Solving a problem by student...✍️ #kbs_maths_classes_khutauna #bharat_kumar

  3. Mathematical problem solving by our student @prathibha High school,Gwk

  4. Riemann Sum Notation: Student Problem Solving

  5. Introduction to Optimization: Student Problem Solving

  6. CLASS MTGS STUDENT PERSPECTIVE

COMMENTS

  1. 3 Ways to Improve Student Problem-Solving

    3. Three-Act Tasks: Originally created by Dan Meyer, three-act tasks follow the three acts of a story. The first act is typically called the "setup," followed by the "confrontation" and then the "resolution.". This storyline process can be used in mathematics in which students encounter a contextual problem (e.g., a pool is being ...

  2. Teaching Problem Solving

    Make students articulate their problem solving process . In a one-on-one tutoring session, ask the student to work his/her problem out loud. This slows down the thinking process, making it more accurate and allowing you to access understanding. When working with larger groups you can ask students to provide a written "two-column solution.".

  3. Teaching Problem Solving

    Problem solving is a necessary skill in all disciplines and one that the Sheridan Center is focusing on as part of the Brown Learning Collaborative, which provides students the opportunity to achieve new levels of excellence in six key skills traditionally honed in a liberal arts education ­- critical reading, writing, research, data ...

  4. 8 Chapter 6 Supporting Student Problem-Solving

    Problem-based learning (PBL) is a teaching approach that combines critical thinking, problem- solving skills, and inquiry as students explore real-world problems. It is based on unstructured, complex, and authentic problems that are often presented as part of a project.

  5. 5 Step Problem Solving Process Model for Students

    The three steps before problem solving: we call them the K-W-I. The "K" stands for "know" and requires students to identify what they already know about a problem. The goal in this step of the routine is two-fold. First, the student needs to analyze the problem and identify what is happening within the context of the problem.

  6. Why Every Educator Needs to Teach Problem-Solving Skills

    Resolve Conflicts. In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes "thinking outside the box" and approaching a conflict by searching for different solutions.

  7. 5 Steps to Teaching Students a Problem-Solving Routine

    The three steps before problem-solving: We call them the K-W-I. The "K" stands for "know" and requires students to identify what they already know about a problem. The goal in this step of ...

  8. Problem Solving in STEM

    Problem Solving in STEM. Solving problems is a key component of many science, math, and engineering classes. If a goal of a class is for students to emerge with the ability to solve new kinds of problems or to use new problem-solving techniques, then students need numerous opportunities to develop the skills necessary to approach and answer ...

  9. Teaching problem solving: Let students get 'stuck' and 'unstuck'

    Teaching problem solving: Let students get 'stuck' and 'unstuck'. This is the second in a six-part blog series on teaching 21st century skills, including problem solving , metacognition ...

  10. 4 Strategies to Build Your Students' Problem Solving Skills

    Here are a few effective strategies: Project-Based Learning: Projects that require planning, execution, and evaluation naturally involve problem-solving. For example, a project where students need to build a model bridge within a budget encourages them to solve logistical and financial problems. Group Work: Group work allows students to face ...

  11. 6 Strategies To Foster Problem-Solving Skills In Students

    The importance of problem-solving skills in kids is evident. So, try to be an ideal role model for kids all the time. 6. Observe, Facilitate, And Share Feedback. Last but not least, be a guide and mentor for your students at all times. Observe them and be ready to intervene as and when it is required.

  12. Art of Problem Solving

    Art of Problem Solving offers two other multifaceted programs. Beast Academy is our comic-based online math curriculum for students ages 6-13. And AoPS Academy brings our methodology to students grades 2-12 through small, in-person classes at local campuses. Through our three programs, AoPS offers the most comprehensive honors math pathway ...

  13. 5 Problem-Solving Activities for the Classroom

    2. Problem-solving as a group. Have your students create and decorate a medium-sized box with a slot in the top. Label the box "The Problem-Solving Box.". Invite students to anonymously write down and submit any problem or issue they might be having at school or at home, ones that they can't seem to figure out on their own.

  14. Strategies To Develop Problem-Solving Skills In Students

    Benefits of Problem-Solving Skills for Students. Learning how to solve problems offers students many advantages, such as: Improving Academic Results; When students have a well-developed set of problem-solving skills, they are often better critical and analytical thinkers as well. They are able to effectively use these 21st-century skills when ...

  15. 20 Effective Math Strategies For Problem Solving

    Here are five strategies to help students check their solutions. 1. Use the Inverse Operation. For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7.

  16. Strategies and Methods to Teach Students Problem Solving and Critical

    A problem-solving technique in which an individual is challenged to become part of the problem to view it from a new perspective and identify possible solutions. Fantasy Analogy A problem-solving process in which participants are asked to consider outlandish, fantastic or bizarre solutions which may lead to original and ground-breaking ideas.

  17. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In insight problem-solving, the cognitive processes that help you solve a problem happen outside your conscious awareness. 4. Working backward. Working backward is a problem-solving approach often ...

  18. Problem Solving

    Brief. Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education of K-12 students. However, knowing how to incorporate problem solving meaningfully into the mathematics curriculum is not necessarily obvious to mathematics teachers. (The term "problem solving" refers to mathematical ...

  19. Ways of Thinking in STEM-based Problem Solving: Teaching ...

    Taking a future-oriented approach, this book addresses students' ways of thinking in STEM-based problem solving. It provides a rich set of chapters that explore how we can advance important thinking skills in STEM education for K-12 students. STEM education is essential to understanding and solving many of the world's major challenges. However, the kind interdisciplinary modes of thinking ...

  20. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  21. When Teaching Students Math, Concepts Matter More Than Process

    Specifically, students experience diminished confidence in tackling mathematical problems and a decreased ability to apply mathematical reasoning in real-world situations. In addition, students may struggle with more advanced mathematical concepts and problem-solving tasks as they progress in their education.

  22. Boost Student Retention in Higher Ed with Problem Solving

    Enhancing student retention rates in higher education is a multifaceted challenge, but leveraging problem-solving skills can be a game-changer. It's about creating an environment where students ...

  23. The Algebra Problem: How Middle School Math Became a National

    Students have been required for decades to learn to solve for the variable x, and to find the slope of a line. Most complete the course in their first year of high school.

  24. Teaching Constant Rate-of-Change Problem-Solving to Secondary Students

    Four middle- and high-school students with or at risk of mathematics learning disabilities in the Intermountain West participated in the intervention. Results indicate evidence of a functional relation between the intervention and students' word problem-solving performance, and effects were maintained 2-4 weeks after the intervention.

  25. Problem-Solving Olympiad Puts Power Skills to the Test

    The inaugural NXTLVL Problem-Solving Olympiad brought students together online for a day of spirited competition, pushing them to their true potential. Middle school problem-solvers from four ...

  26. Logical thinking skills and problem solving skills of the Grade 12 STEM

    Creative thinking skills and problem-solving skills were among the competencies that must be possessed by students in the 21st-century, which need to be developed through the learning process, and ...