Change Password

Your password must have 6 characters or more:.

  • a lower case character, 
  • an upper case character, 
  • a special character 

Password Changed Successfully

Your password has been changed

Create your account

Forget yout password.

Enter your email address below and we will send you the reset instructions

If the address matches an existing account you will receive an email with instructions to reset your password

Forgot your Username?

Enter your email address below and we will send you your username

If the address matches an existing account you will receive an email with instructions to retrieve your username

Psychiatry Online

  • Spring 2024 | VOL. 36, NO. 2 CURRENT ISSUE pp.A4-174
  • Winter 2024 | VOL. 36, NO. 1 pp.A5-81

The American Psychiatric Association (APA) has updated its Privacy Policy and Terms of Use , including with new information specifically addressed to individuals in the European Economic Area. As described in the Privacy Policy and Terms of Use, this website utilizes cookies, including for the purpose of offering an optimal online experience and services tailored to your preferences.

Please read the entire Privacy Policy and Terms of Use. By closing this message, browsing this website, continuing the navigation, or otherwise continuing to use the APA's websites, you confirm that you understand and accept the terms of the Privacy Policy and Terms of Use, including the utilization of cookies.

Case Study 1: A 55-Year-Old Woman With Progressive Cognitive, Perceptual, and Motor Impairments

  • Scott M. McGinnis , M.D. ,
  • Andrew M. Stern , M.D., Ph.D. ,
  • Jared K. Woods , M.D., Ph.D. ,
  • Matthew Torre , M.D. ,
  • Mel B. Feany , M.D., Ph.D. ,
  • Michael B. Miller , M.D., Ph.D. ,
  • David A. Silbersweig , M.D. ,
  • Seth A. Gale , M.D. ,
  • Kirk R. Daffner , M.D.

Search for more papers by this author

CASE PRESENTATION

A 55-year-old right-handed woman presented with a 3-year history of cognitive changes. Early symptoms included mild forgetfulness—for example, forgetting where she left her purse or failing to remember to retrieve a take-out order her family placed—and word-finding difficulties. Problems with depth perception affected her ability to back her car out of the driveway. When descending stairs, she had to locate her feet visually in order to place them correctly, such that when she carried her dog and her view was obscured, she had difficulty managing this activity. She struggled to execute relatively simple tasks, such as inserting a plug into an outlet. She lost the ability to type on a keyboard, despite being able to move her fingers quickly. Her symptoms worsened progressively for 3 years, over which time she developed a sad mood and anxiety. She was laid off from work as a nurse administrator. Her family members assumed responsibility for paying her bills, and she ceased driving.

Her past medical history included high blood pressure, Hashimoto’s thyroiditis with thyroid peroxidase antibodies, remote history of migraine, and anxiety. Medications included mirtazapine, levothyroxine, calcium, and vitamin D. She had no history of smoking, drinking alcohol, or recreational drug use. There was no known family history of neurologic diseases.

What Are Diagnostic Considerations Based on the History? How Might a Clinical Examination Help to Narrow the Differential Diagnosis?

Insidious onset and gradual progression of cognitive symptoms over the course of several years raise concern for a neurodegenerative disorder. It is helpful to consider whether or not the presentation fits with a recognized neurodegenerative clinical syndrome, a judgment based principally on familiarity with syndromes and pattern recognition. Onset of symptoms before age 65 should prompt consideration of syndromes in the spectrum of frontotemporal dementia (FTD) and atypical (nonamnesic) presentations of Alzheimer’s disease (AD) ( 1 , 2 ). This patient’s symptoms reflect relatively prominent early dysfunction in visual-spatial processing and body schema, as might be observed in posterior cortical atrophy (PCA), although the history also includes mention of forgetfulness and word-retrieval difficulties. A chief goal of the cognitive examination would be to survey major domains of cognition—attention, executive functioning, memory, language, visual-spatial functioning, and higher somatosensory and motor functioning—to determine whether any domains stand out as more prominently affected. In addition to screening for evidence of focal signs, a neurological examination in this context should assess for evidence of parkinsonism or motor neuron disease, which can coexist with cognitive changes in neurodegenerative presentations.

The patient’s young age and history of Hashimoto’s thyroiditis might also prompt consideration of Hashimoto’s encephalopathy (HE; also known as steroid-responsive encephalopathy), associated with autoimmune thyroiditis. This syndrome is most likely attributable to an autoimmune or inflammatory process affecting the central nervous system. The time course of HE is usually more subacute and rapidly progressive or relapsing-remitting, as opposed to the gradual progression over months to years observed in the present case ( 3 ).

The patient’s mental status examination included the Montreal Cognitive Assessment (MoCA), a brief global screen of cognition ( 4 ), on which she scored 12/30. There was evidence of dysfunction across multiple cognitive domains ( Figure 1 ). She was fully oriented to location, day, month, year, and exact date. When asked to describe a complex scene from a picture in a magazine, she had great difficulty doing so, focusing on different details but having trouble directing her saccades to pertinent visual information. She likewise had problems directing her gaze to specified objects in the room and problems reaching in front of her to touch target objects in either visual field. In terms of other symptoms of higher order motor and somatosensory functioning, she had difficulty demonstrating previously learned actions—for example, positioning her hand correctly to pantomime holding a brush and combing her hair. She was confused about which side of her body was the left and which was the right. She had difficulty with mental calculations, even relatively simple ones such as “18 minus 12.” In addition, she had problems writing a sentence in terms of both grammar and the appropriate spacing of words and letters on the page.

FIGURE 1. Selected elements of a 55-year-old patient’s cognitive examination at presentation a

a BNT-15=Boston Naming Test (15-Item); MoCA=Montreal Cognitive Assessment.

On elementary neurologic examination she had symmetrically brisk reflexes, with spread. She walked steadily with a narrow base, but when asked to pass through a doorway she had difficulty finding her way through it and bumped into the door jamb. Her elemental neurological examination was otherwise normal, including but not limited to brisk, full-amplitude vertical eye movements, normal visual fields, no evidence of peripheral neuropathy, and no parkinsonian signs such as slowness of movement, tremor, or rigidity.

How Does the Examination Contribute to Our Understanding of Diagnostic Considerations? What Additional Tests or Studies Are Indicated?

The most prominent early symptoms and signs localize predominantly to the parietal association cortex: The patient has impairments in visual construction, ability to judge spatial relationships, ability to synthesize component parts of a visual scene into a coherent whole (simultanagnosia or asimultagnosia), impaired visually guided reaching for objects (optic ataxia), and most likely impaired ability to shift her visual attention so as to direct saccades to targets in her field of view (oculomotor apraxia or ocular apraxia). The last three signs constitute Bálint syndrome, which localizes to disruption of dorsal visual networks (i.e., dorsal stream) with key nodes in the posterior parietal and prefrontal cortices bilaterally ( 5 ). She has additional salient symptoms and signs suggesting left inferior parietal dysfunction, including ideomotor limb apraxia and elements of Gerstmann syndrome, which comprises dysgraphia, acalculia, left-right confusion, and finger agnosia ( 6 ). Information was not included about whether she was explicitly examined for finger agnosia, but elements of her presentation suggested a more generalized disruption of body schema (i.e., her representation of the position and configuration of her body in space). Her less prominent impairment in lexical-semantic retrieval evidenced by impaired confrontation naming and category fluency likely localizes to the language network in the left hemisphere. Her impairments in attention and executive functions have less localizing value but would plausibly arise in the context of frontoparietal network dysfunction. At this point, it is unclear whether her impairment in episodic memory mostly reflects encoding and activation versus a rapid rate of forgetting (storage), as occurs in temporolimbic amnesia. Regardless, it does not appear to be the most salient feature of her presentation.

This localization, presenting with insidious onset and gradual progression, is characteristic of a PCA syndrome. If we apply consensus clinical diagnostic criteria proposed by a working group of experts, we find that our patient has many of the representative features of early disturbance of visual functions plus or minus other cognitive functions mediated by the posterior cerebral cortex ( Table 1 ) ( 7 ). Some functions such as limb apraxia also occur in corticobasal syndrome (CBS), a clinical syndrome defined initially in association with corticobasal degeneration (CBD) neuropathology, a 4-repeat tauopathy characterized by achromatic ballooned neurons, neuropil threads, and astrocytic plaques. However, our patient lacks other suggestive features of CBS, including extrapyramidal motor dysfunction (e.g., limb rigidity, bradykinesia, dystonia), myoclonus, and alien limb phenomenon ( Table 1 ) ( 8 ).

TABLE 1. Clinical features and neuropathological associations of posterior cortical atrophy and corticobasal syndrome

FeaturePosterior cortical atrophyCorticobasal syndrome
Cognitive and motor featuresVisual-perceptual: space perception deficit, simultanagnosia, object perception deficit, environmental agnosia, alexia, apperceptive prosopagnosia, and homonymous visual field defectMotor: limb rigidity or akinesia, limb dystonia, and limb myoclonus
Visual-motor: constructional dyspraxia, oculomotor apraxia, optic ataxia, and dressing apraxia
Other: left/right disorientation, acalculia, limb apraxia, agraphia, and finger agnosiaHigher cortical features: limb or orobuccal apraxia, cortical sensory deficit, and alien limb phenomena
Imaging features (MRI, FDG-PET, SPECT)Predominant occipito-parietal or occipito-temporal atrophy, and hypometabolism or hypoperfusionAsymmetric perirolandic, posterior frontal, parietal atrophy, and hypometabolism or hypoperfusion
Neuropathological associationsAD>CBD, LBD, TDP, JCDCBD>PSP, AD, TDP

a Consensus diagnostic criteria for posterior cortical atrophy per Crutch et al. ( 7 ) require at least three cognitive features and relative sparing of anterograde memory, speech-nonvisual language functions, executive functions, behavior, and personality. Diagnostic criteria for probable corticobasal syndrome per Armstrong et al. ( 8 ) require asymmetric presentation of at least two motor features and at least two higher cortical features. AD=Alzheimer’s disease; CBD=corticobasal degeneration; FDG-PET=[ 18 ]F-fluorodexoxyglucose positron emission tomography; JCD=Jakob-Creutzfeldt disease; LBD=Lewy body disease; PSP=progressive supranuclear palsy; SPECT=single-photon emission computed tomography; TDP=TDP–43 proteinopathy.

TABLE 1. Clinical features and neuropathological associations of posterior cortical atrophy and corticobasal syndrome a

In addition to a standard laboratory work-up for cognitive impairment, it is important to determine whether imaging of the brain provides evidence of neurodegeneration in a topographical distribution consistent with the clinical presentation. A first step in most cases would be to obtain an MRI of the brain that includes a high-resolution T 1 -weighted MRI sequence to assess potential atrophy, a T 2 /fluid-attenuated inversion recovery (FLAIR) sequence to assess the burden of vascular disease and rule out less likely etiological considerations (e.g., infection, autoimmune-inflammatory, neoplasm), a diffusion-weighted sequence to rule out subacute infarcts and prion disease (more pertinent to subacute or rapidly progressive cases), and a T 2 *-gradient echo or susceptibility weighted sequence to examine for microhemorrhages and superficial siderosis.

A lumbar puncture would serve two purposes. First, it would allow for the assessment of inflammation that might occur in HE, as approximately 80% of cases have some abnormality of CSF (i.e., elevated protein, lymphocytic pleiocytosis, or oligoclonal bands) ( 9 ). Second, in selected circumstances—particularly in cases with atypical nonamnesic clinical presentations or early-onset dementia in which AD is in the neuropathological differential diagnosis—we frequently pursue AD biomarkers of molecular neuropathology ( 10 , 11 ). This is most frequently accomplished with CSF analysis of amyloid-β-42, total tau, and phosphorylated tau levels. Amyloid positron emission tomography (PET) imaging, and most recently tau PET imaging, represent additional options that are approved by the U.S. Food and Drug Administration for clinical use. However, insurance often does not cover amyloid PET and currently does not reimburse tau PET imaging. [ 18 ]-F-fluorodeoxyglucose (FDG) PET and perfusion single-photon emission computed tomography imaging may provide indirect evidence for AD neuropathology via a pattern of hypometabolism or hypoperfusion involving the temporoparietal and posterior cingulate regions, though without molecular specificity. Pertinent to this case, a syndromic diagnosis of PCA is most commonly associated with underlying AD neuropathology—that is, plaques containing amyloid-β and neurofibrillary tangles containing tau ( 12 – 15 ).

The patient underwent MRI, demonstrating a minimal burden of T 2 /FLAIR hyperintensities and some degree of bilateral parietal volume loss with a left greater than right predominance ( Figure 2A ). There was relatively minimal medial temporal volume loss. Her basic laboratory work-up, including thyroid function, vitamin B 12 level, and treponemal antibody, was normal. She underwent a lumbar puncture; CSF studies revealed normal cell counts, protein, and glucose levels and low amyloid-β-42 levels at 165.9 pg/ml [>500 pg/ml] and elevated total and phosphorylated tau levels at 1,553 pg/ml [<350 pg/ml] and 200.4 pg/ml [<61 pg/ml], respectively.

FIGURE 2. MRI brain scan of the patient at presentation and 4 years later a

a Arrows denote regions of significant atrophy.

Considering This Additional Data, What Would Be an Appropriate Diagnostic Formulation?

For optimal clarity, we aim to provide a three-tiered approach to diagnosis comprising neurodegenerative clinical syndrome (e.g., primary amnesic, mixed amnesic and dysexecutive, primary progressive aphasia), level of severity (i.e., mild cognitive impairment; mild, moderate or severe dementia), and predicted underlying neuropathology (e.g., AD, Lewy body disease [LBD], frontotemporal lobar degeneration) ( 16 ). This approach avoids problematic conflations that cause confusion, for example when people equate AD with memory loss or dementia, whereas AD most strictly describes the neuropathology of plaques and tangles, regardless of the patient’s clinical symptoms and severity. This framework is important because there is never an exclusive, one-to-one correspondence between syndromic and neuropathological diagnosis. Syndromes arise from neurodegeneration that starts focally and progresses along the anatomical lines of large-scale brain networks that can be defined on the basis of both structural and functional connectivity, a concept detailed in the network degeneration hypothesis ( 17 ). It is important to note that neuropathologies defined on the basis of specific misfolded protein inclusions can target more than one large-scale network, and any given large-scale network can degenerate in association with more than one neuropathology.

The MRI results in this case support a syndromic diagnosis of PCA, with a posteriorly predominant pattern of atrophy. Given the patient’s loss of independent functioning in instrumental activities of daily living (ADLs), including driving and managing her finances, the patient would be characterized as having a dementia (also known as major neurocognitive disorder). The preservation of basic ADLs would suggest that the dementia was of mild severity. The CSF results provide supportive evidence for AD amyloid plaque and tau neurofibrillary tangle (NFT) neuropathology over other pathologies potentially associated with PCA syndrome (i.e., CBD, LBD, TDP-43 proteinopathy, and Jakob-Creutzfeldt disease) ( 13 , 14 ). The patient’s formulation would thus be best summarized as PCA at a level of mild dementia, likely associated with underlying AD neuropathology.

The patient’s symptoms progressed. One year after initial presentation, she had difficulty locating the buttons on her clothing or the food on her plate. Her word-finding difficulties worsened. Others observed stiffness of her right arm, a new symptom that was not present initially. She also had decreased ability using her right hand to hold everyday objects such as a comb, a brush, or a pen. On exam, she was noted to have rigidity of her right arm, impaired dexterity with her right hand for fine motor tasks, and a symmetrical tremor of the arms, apparent when holding objects or reaching. Her right hand would also intermittently assume a flexed, dystonic posture and would sometime move in complex ways without her having a sense of volitional control.

Four to 5 years after initial presentation, her functional status declined to the point where she was unable to feed, bathe, or dress herself. She was unable to follow simple instructions. She developed neuropsychiatric symptoms, including compulsive behaviors, anxiety, and apathy. Her right-sided motor symptoms progressed; she spent much of the time with her right arm flexed in abnormal postures or moving abnormally. She developed myoclonus of both arms. Her speech became slurred and monosyllabic. Her gait became less steady. She underwent a second MRI of the brain, demonstrating progressive bilateral atrophy involving the frontal and occipital lobes in addition to the parietal lobes and with more left > right asymmetry than was previously apparent ( Figure 2B ). Over time, she exhibited increasing weight loss. She was enrolled in hospice and ultimately passed away 8 years from the onset of symptoms.

Does Information About the Longitudinal Course of Her Illness Alter the Formulation About the Most Likely Underlying Neuropathological Process?

This patient developed clinical features characteristic of corticobasal syndrome over the longitudinal course of her disease. With time, it became apparent that she had lost volitional control over her right arm (characteristic of an alien limb phenomenon), and she developed signs more suggestive of basal ganglionic involvement (i.e., limb rigidity and possible dystonia). This presentation highlights the frequent overlap between neurodegenerative clinical syndromes; any given person may have elements of more than one syndrome, especially later in the course of a disease. In many instances, symptomatic features that are less prominent at presentation but evolve and progress can provide clues regarding the underlying neuropathological diagnosis. For example, a patient with primary progressive apraxia of speech or nonfluent-agrammatic primary progressive aphasia could develop the motor features of a progressive supranuclear palsy (PSP) clinical syndrome (e.g., supranuclear gaze impairment, axial rigidity, postural instability), which would suggest underlying PSP neuropathology (4-repeat tauopathy characterized by globose neurofibrillary tangles, tufted astrocytes, and oligodendroglial coiled bodies).

If CSF biomarker data were not suggestive of AD, the secondary elements of CBS would substantially increase the likelihood of underlying CBD neuropathology presenting with a PCA syndrome and evolving to a mixed PCA-CBS. But the CSF amyloid and tau levels are unambiguously suggestive of AD (i.e., very low amyloid-β-42 and very high p-tau levels), the neuropathology of which accounts for not only a vast majority of PCA presentations but also roughly a quarter of cases presenting with CBS ( 18 , 19 ). Thus, underlying AD appears most likely.

NEUROPATHOLOGY

On gross examination, the brain weighed 1,150 g, slightly less than the lower end of normal at 1,200 g. External examination demonstrated mild cortical atrophy with widening of the sulci, relatively symmetrical and uniform throughout the brain ( Figure 3A ). There was no evidence of atrophy of the brainstem or cerebellum. On cut sections, the hippocampus was mildly atrophic. The substantia nigra in the midbrain was intact, showing appropriate dark pigmentation as would be seen in a relatively normal brain. The remainder of the gross examination was unremarkable.

FIGURE 3. Mild cortical atrophy with posterior predominance and neurofibrillary tangles, granulovacuolar degeneration, and a Hirano body a

a Panel A shows the gross view of the brain, demonstrating mild cortical atrophy with posterior predominance (arrow). Panel B shows the hematoxylin and eosin of the hippocampus at high power, demonstrating neurofibrillary tangles, granulovacuolar degeneration, and a Hirano body.

Histological examination confirmed that the neurons in the substantia nigra were appropriately pigmented, with occasional extraneuronal neuromelanin and moderate neuronal loss. In the nucleus basalis of Meynert, NFTs were apparent on hematoxylin and eosin staining as dense fibrillar eosinophilic structures in the neuronal cytoplasm, confirmed by tau immunohistochemistry (IHC; Figure 4 ). Low-power examination of the hippocampus revealed neuronal loss in the subiculum and in Ammon’s horn, most pronounced in the cornu ammonis 1 (CA1) subfield, with a relatively intact neuronal population in the dentate gyrus. Higher power examination with hematoxylin and eosin demonstrated numerous NFTs, neurons exhibiting granulovacuolar degeneration, and Hirano bodies ( Figure 3B ). Tau IHC confirmed numerous NFTs in the CA1 region and the subiculum. Amyloid-β IHC demonstrated occasional amyloid plaques in this region, less abundant than tau pathology. An α-synuclein stain revealed scattered Lewy bodies in the hippocampus and in the amygdala.

FIGURE 4. Tau immunohistochemistry demonstrating neurofibrillary tangles (staining brown) in the nucleus basalis of Meynert, in the hippocampus, and in the cerebral cortex of the frontal, temporal, parietal, and occipital lobes

In the neocortex, tau IHC highlighted the extent of the NFTs, which were very prominent in all of the lobes from which sections were taken: frontal, temporal, parietal and occipital. Numerous plaques on amyloid-β stain were likewise present in all cortical regions examined. The tau pathology was confined to the gray matter, sparing white matter. There were no ballooned neurons and no astrocytic plaques—two findings one would expect to see in CBD ( Table 2 ).

TABLE 2. Neuropathological features of this case compared with a case of corticobasal degeneration

FeatureCase of PCA/CBS due to ADExemplar case of CBD
Macroscopic findingsCortical atrophy: symmetric, mildCortical atrophy: often asymmetric, predominantly affecting perirolandic cortex
Substantia nigra: appropriately pigmentedSubstantia nigra: severely depigmented
Microscopic findingsTau neurofibrillary tangles and beta-amyloid plaquesPrimary tauopathy
No tau pathology in white matterTau pathology involves white matter
Hirano bodies, granulovacuolar degenerationBallooned neurons, astrocytic plaques, and oligodendroglial coiled bodies
(Lewy bodies, limbic)

a AD=Alzheimer’s disease; CBD=corticobasal degeneration; CBS=corticobasal syndrome; PCA=posterior cortical atrophy.

TABLE 2. Neuropathological features of this case compared with a case of corticobasal degeneration a

The case was designated by the neuropathology division as Alzheimer’s-type pathology, Braak stage V–VI (of VI), due to the widespread neocortical tau pathology, with LBD primarily in the limbic areas.

Our patient had AD neuropathology presenting atypically with a young age at onset (52 years old) and a predominantly visual-spatial and corticobasal syndrome as opposed to prominent amnesia. Syndromic diversity is a well-recognized phenomenon in AD. Nonamnesic presentations include not only PCA and CBS but also the logopenic variant of primary progressive aphasia and a behavioral-dysexecutive syndrome ( 20 ). Converging lines of evidence link the topographical distribution of NFTs with syndromic presentations and the pattern of hypometabolism and cortical atrophy. Neuropathological case reports and case series suggest that atypical AD syndromes arise in the setting of higher than normal densities of NFTs in networks subserving the functions compromised, including visual association areas in PCA-AD ( 21 ), the language network in PPA-AD ( 22 ), and frontal regions in behavioral-dysexecutive AD ( 23 ). In a large sample of close to 900 cases of pathologically diagnosed AD employing quantitative assessment of NFT density and distribution in selected neocortical and hippocampal regions, 25% of cases did not conform to a typical distribution of NFTs characterized in the Braak staging scheme ( 24 ). A subset of cases classified as hippocampal sparing with higher density of NFTs in the neocortex and lower density of NFTs in the hippocampus had a younger mean age at onset, higher frequency of atypical (nonamnesic) presentations, and more rapid rate of longitudinal decline than subsets defined as typical or limbic-predominant.

Tau PET, which detects the spatial distribution of fibrillary tau present in NFTs, has corroborated postmortem work in demonstrating distinct patterns of tracer uptake in different subtypes of AD defined by clinical symptoms and topographical distributions of atrophy ( 25 – 28 ). Amyloid PET, which detects the spatial distribution of fibrillar amyloid- β found in amyloid plaques, does not distinguish between typical and atypical AD ( 29 , 30 ). In a longitudinal study of 32 patients at early symptomatic stages of AD, the baseline topography of tau PET signal predicted subsequent atrophy on MRI at the single patient level, independent of baseline cortical thickness ( 31 ). This correlation was strongest in early-onset AD patients, who also tended to have higher tau signal and more rapid progression of atrophy than late-onset AD patients.

Differential vulnerability of selected large-scale brain networks in AD and in neurodegenerative disease more broadly remains poorly understood. There is evidence to support multiple mechanisms that are not mutually exclusive, including metabolic stress to key network nodes, trophic failure, transneuronal spread of pathological proteins (i.e., prion-like mechanisms), and shared vulnerability within network regions based on genetic or developmental factors ( 32 ). In the case of AD, cortical hub regions with high intrinsic functional connectivity to other regions across the brain appear to have high metabolic rates across the lifespan and to be foci of convergence of amyloid-β and tau accumulation ( 33 , 34 ). Tau NFT pathology appears to spread temporally along connected networks within the brain ( 35 ). Patients with primary progressive aphasia are more likely to have a personal or family history of developmental language-based learning disability ( 36 ), and patients with PCA are more likely to have a personal history of mathematical or visuospatial learning disability ( 37 ).

This case highlights the symptomatic heterogeneity in AD and the value of a three-tiered approach to diagnostic formulation in neurodegenerative presentations. It is important to remember that not all AD presents with amnesia and that early-onset AD tends to be more atypical and to progress more rapidly than late-onset AD. Multiple lines of evidence support a relationship between the burden and topographical distribution of tau NFT neuropathology and clinical symptomatology in AD, instantiating network-based neurodegeneration via mechanisms under ongoing investigation.

The authors report no financial relationships with commercial interests.

Supported by NIH grants K08 AG065502 (to Dr. Miller) and T32 HL007627 (to Dr. Miller).

The authors have confirmed that details of the case have been disguised to protect patient privacy.

1 Balasa M, Gelpi E, Antonell A, et al. : Clinical features and APOE genotype of pathologically proven early-onset Alzheimer disease . Neurology 2011 ; 76:1720–1725 Crossref , Medline ,  Google Scholar

2 Mercy L, Hodges JR, Dawson K, et al. : Incidence of early-onset dementias in Cambridgeshire, United Kingdom . Neurology 2008 ; 71:1496–1499 Crossref , Medline ,  Google Scholar

3 Kothbauer-Margreiter I, Sturzenegger M, Komor J, et al. : Encephalopathy associated with Hashimoto thyroiditis: diagnosis and treatment . J Neurol 1996 ; 243:585–593 Crossref , Medline ,  Google Scholar

4 Nasreddine ZS, Phillips NA, Bédirian V, et al. : The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment . J Am Geriatr Soc 2005 ; 53:695–699 Crossref , Medline ,  Google Scholar

5 Rizzo M, Vecera SP : Psychoanatomical substrates of Bálint’s syndrome . J Neurol Neurosurg Psychiatry 2002 ; 72:162–178 Crossref , Medline ,  Google Scholar

6 Rusconi E : Gerstmann syndrome: historic and current perspectives . Handb Clin Neurol 2018 ; 151:395–411 Crossref , Medline ,  Google Scholar

7 Crutch SJ, Schott JM, Rabinovici GD, et al. : Consensus classification of posterior cortical atrophy . Alzheimers Dement 2017 ; 13:870–884 Crossref , Medline ,  Google Scholar

8 Armstrong MJ, Litvan I, Lang AE, et al. : Criteria for the diagnosis of corticobasal degeneration . Neurology 2013 ; 80:496–503 Crossref , Medline ,  Google Scholar

9 Marshall GA, Doyle JJ : Long-term treatment of Hashimoto’s encephalopathy . J Neuropsychiatry Clin Neurosci 2006 ; 18:14–20 Link ,  Google Scholar

10 Johnson KA, Minoshima S, Bohnen NI, et al. : Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association . Alzheimers Dement 2013 ; 9:e-1–e-16 Crossref , Medline ,  Google Scholar

11 Shaw LM, Arias J, Blennow K, et al. : Appropriate use criteria for lumbar puncture and cerebrospinal fluid testing in the diagnosis of Alzheimer’s disease . Alzheimers Dement 2018 ; 14:1505–1521 Crossref , Medline ,  Google Scholar

12 Alladi S, Xuereb J, Bak T, et al. : Focal cortical presentations of Alzheimer’s disease . Brain 2007 ; 130:2636–2645 Crossref , Medline ,  Google Scholar

13 Renner JA, Burns JM, Hou CE, et al. : Progressive posterior cortical dysfunction: a clinicopathologic series . Neurology 2004 ; 63:1175–1180 Crossref , Medline ,  Google Scholar

14 Tang-Wai DF, Graff-Radford NR, Boeve BF, et al. : Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy . Neurology 2004 ; 63:1168–1174 Crossref , Medline ,  Google Scholar

15 Victoroff J, Ross GW, Benson DF, et al. : Posterior cortical atrophy: neuropathologic correlations . Arch Neurol 1994 ; 51:269–274 Crossref , Medline ,  Google Scholar

16 Dickerson BC, McGinnis SM, Xia C, et al. : Approach to atypical Alzheimer’s disease and case studies of the major subtypes . CNS Spectr 2017 ; 22:439–449 Crossref , Medline ,  Google Scholar

17 Seeley WW, Crawford RK, Zhou J, et al. : Neurodegenerative diseases target large-scale human brain networks . Neuron 2009 ; 62:42–52 Crossref , Medline ,  Google Scholar

18 Lee SE, Rabinovici GD, Mayo MC, et al. : Clinicopathological correlations in corticobasal degeneration . Ann Neurol 2011 ; 70:327–340 Crossref , Medline ,  Google Scholar

19 Whitwell JL, Jack CR Jr, Boeve BF, et al. : Imaging correlates of pathology in corticobasal syndrome . Neurology 2010 ; 75:1879–1887 Crossref , Medline ,  Google Scholar

20 Warren JD, Fletcher PD, Golden HL : The paradox of syndromic diversity in Alzheimer disease . Nat Rev Neurol 2012 ; 8:451–464 Crossref , Medline ,  Google Scholar

21 Hof PR, Archin N, Osmand AP, et al. : Posterior cortical atrophy in Alzheimer’s disease: analysis of a new case and re-evaluation of a historical report . Acta Neuropathol 1993 ; 86:215–223 Crossref , Medline ,  Google Scholar

22 Mesulam MM, Weintraub S, Rogalski EJ, et al. : Asymmetry and heterogeneity of Alzheimer’s and frontotemporal pathology in primary progressive aphasia . Brain 2014 ; 137:1176–1192 Crossref , Medline ,  Google Scholar

23 Blennerhassett R, Lillo P, Halliday GM, et al. : Distribution of pathology in frontal variant Alzheimer’s disease . J Alzheimers Dis 2014 ; 39:63–70 Crossref , Medline ,  Google Scholar

24 Murray ME, Graff-Radford NR, Ross OA, et al. : Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study . Lancet Neurol 2011 ; 10:785–796 Crossref , Medline ,  Google Scholar

25 Ossenkoppele R, Lyoo CH, Sudre CH, et al. : Distinct tau PET patterns in atrophy-defined subtypes of Alzheimer’s disease . Alzheimers Dement 2020 ; 16:335–344 Crossref , Medline ,  Google Scholar

26 Phillips JS, Das SR, McMillan CT, et al. : Tau PET imaging predicts cognition in atypical variants of Alzheimer’s disease . Hum Brain Mapp 2018 ; 39:691–708 Crossref , Medline ,  Google Scholar

27 Tetzloff KA, Graff-Radford J, Martin PR, et al. : Regional distribution, asymmetry, and clinical correlates of tau uptake on [18F]AV-1451 PET in atypical Alzheimer’s disease . J Alzheimers Dis 2018 ; 62:1713–1724 Crossref , Medline ,  Google Scholar

28 Xia C, Makaretz SJ, Caso C, et al. : Association of in vivo [18F]AV-1451 tau PET imaging results with cortical atrophy and symptoms in typical and atypical Alzheimer disease . JAMA Neurol 2017 ; 74:427–436 Crossref , Medline ,  Google Scholar

29 Formaglio M, Costes N, Seguin J, et al. : In vivo demonstration of amyloid burden in posterior cortical atrophy: a case series with PET and CSF findings . J Neurol 2011 ; 258:1841–1851 Crossref , Medline ,  Google Scholar

30 Lehmann M, Ghosh PM, Madison C, et al. : Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease . Brain 2013 ; 136:844–858 Crossref , Medline ,  Google Scholar

31 La Joie R, Visani AV, Baker SL, et al. : Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET . Sci Transl Med 2020 ; 12:12 Crossref ,  Google Scholar

32 Zhou J, Gennatas ED, Kramer JH, et al. : Predicting regional neurodegeneration from the healthy brain functional connectome . Neuron 2012 ; 73:1216–1227 Crossref , Medline ,  Google Scholar

33 Buckner RL, Sepulcre J, Talukdar T, et al. : Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease . J Neurosci 2009 ; 29:1860–1873 Crossref , Medline ,  Google Scholar

34 Hoenig MC, Bischof GN, Seemiller J, et al. : Networks of tau distribution in Alzheimer’s disease . Brain 2018 ; 141:568–581 Crossref , Medline ,  Google Scholar

35 Liu L, Drouet V, Wu JW, et al. : Trans-synaptic spread of tau pathology in vivo . PLoS One 2012 ; 7:e31302 Crossref , Medline ,  Google Scholar

36 Rogalski E, Johnson N, Weintraub S, et al. : Increased frequency of learning disability in patients with primary progressive aphasia and their first-degree relatives . Arch Neurol 2008 ; 65:244–248 Crossref , Medline ,  Google Scholar

37 Miller ZA, Rosenberg L, Santos-Santos MA, et al. : Prevalence of mathematical and visuospatial learning disabilities in patients with posterior cortical atrophy . JAMA Neurol 2018 ; 75:728–737 Crossref , Medline ,  Google Scholar

  • Jeffrey Maneval , M.D. ,
  • Kirk R. Daffner , M.D. ,
  • Scott M. McGinnis , M.D.
  • Seth A. Gale , M.A., M.D. ,
  • C. Alan Anderson , M.D. ,
  • David B. Arciniegas , M.D.

case study on cognitive psychology

  • Posterior Cortical Atrophy
  • Corticobasal Syndrome
  • Atypical Alzheimer Disease
  • Network Degeneration
  • Abnormal Psychology
  • Assessment (IB)
  • Biological Psychology
  • Cognitive Psychology
  • Criminology
  • Developmental Psychology
  • Extended Essay
  • General Interest
  • Health Psychology
  • Human Relationships
  • IB Psychology
  • IB Psychology HL Extensions
  • Internal Assessment (IB)
  • Love and Marriage
  • Post-Traumatic Stress Disorder
  • Prejudice and Discrimination
  • Qualitative Research Methods
  • Research Methodology
  • Revision and Exam Preparation
  • Social and Cultural Psychology
  • Studies and Theories
  • Teaching Ideas

Key Study: HM’s case study (Milner and Scoville, 1957)

Travis Dixon January 29, 2019 Biological Psychology , Cognitive Psychology , Key Studies

case study on cognitive psychology

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to email a link to a friend (Opens in new window)

HM’s case study is one of the most famous and important case studies in psychology, especially in cognitive psychology. It was the source of groundbreaking new knowledge on the role of the hippocampus in memory. 

Background Info

“Localization of function in the brain” means that different parts of the brain have different functions. Researchers have discovered this from over 100 years of research into the ways the brain works. One such study was Milner’s case study on Henry Molaison.

Gray739-emphasizing-hippocampus

The memory problems that HM experienced after the removal of his hippocampus provided new knowledge on the role of the hippocampus in memory formation (image: wikicommons)

At the time of the first study by Milner, HM was 29 years old. He was a mechanic who had suffered from minor epileptic seizures from when he was ten years old and began suffering severe seizures as a teenager. These may have been a result of a bike accident when he was nine. His seizures were getting worse in severity, which resulted in HM being unable to work. Treatment for his epilepsy had been unsuccessful, so at the age of 27 HM (and his family) agreed to undergo a radical surgery that would remove a part of his brain called the hippocampus . Previous research suggested that this could help reduce his seizures, but the impact it had on his memory was unexpected. The Doctor performing the radical surgery believed it was justified because of the seriousness of his seizures and the failures of other methods to treat them.

Methods and Results

In one regard, the surgery was successful as it resulted in HM experiencing less seizures. However, immediately after the surgery, the hospital staff and HM’s family noticed that he was suffering from anterograde amnesia (an inability to form new memories after the time of damage to the brain):

Here are some examples of his memory loss described in the case study:

  • He could remember something if he concentrated on it, but if he broke his concentration it was lost.
  • After the surgery the family moved houses. They stayed on the same street, but a few blocks away. The family noticed that HM as incapable of remembering the new address, but could remember the old one perfectly well. He could also not find his way home alone.
  • He could not find objects around the house, even if they never changed locations and he had used them recently. His mother had to always show him where the lawnmower was in the garage.
  • He would do the same jigsaw puzzles or read the same magazines every day, without ever apparently getting bored and realising he had read them before. (HM loved to do crossword puzzles and thought they helped him to remember words).
  • He once ate lunch in front of Milner but 30 minutes later was unable to say what he had eaten, or remember even eating any lunch at all.
  • When interviewed almost two years after the surgery in 1955, HM gave the date as 1953 and said his age was 27. He talked constantly about events from his childhood and could not remember details of his surgery.

Later testing also showed that he had suffered some partial retrograde amnesia (an inability to recall memories from before the time of damage to the brain). For instance, he could not remember that one of his favourite uncles passed away three years prior to his surgery or any of his time spent in hospital for his surgery. He could, however, remember some unimportant events that occurred just before his admission to the hospital.

Brenda_Milner

Brenda Milner studied HM for almost 50 years – but he never remembered her.

Results continued…

His memories from events prior to 1950 (three years before his surgery), however, were fine. There was also no observable difference to his personality or to his intelligence. In fact, he scored 112 points on his IQ after the surgery, compared with 104 previously. The IQ test suggested that his ability in arithmetic had apparently improved. It seemed that the only behaviour that was affected by the removal of the hippocampus was his memory. HM was described as a kind and gentle person and this did not change after his surgery.

The Star Tracing Task

In a follow up study, Milner designed a task that would test whether or not HMs procedural memory had been affected by the surgery. He was to trace an outline of a star, but he could only see the mirrored reflection. He did this once a day over a period of a few days and Milner observed that he became faster and faster. Each time he performed the task he had no memory of ever having done it before, but his performance kept improving. This is further evidence for localization of function – the hippocampus must play a role in declarative (explicit) memory but not procedural (implicit) memory.

memory_types

Cognitive psychologists have categorized memories into different types. HM’s study suggests that the hippocampus is essential for explicit (conscious) and declarative memory, but not implicit (unconscious) procedural memory.

Was his memory 100% gone? Another follow-up study

Lee_Harvey_Oswald_1963

Interestingly, HM showed signs of being able to remember famous people who had only become famous after his surgery, like Lee Harvey Oswald (who assassinated JFK in 1963). (Image: wikicommons)

Another fascinating follow-up study was conducted by two researchers who wanted to see if HM had learned anything about celebrities that became famous after his surgery. At first they tested his knowledge of celebrities from before his surgery, and he knew these just as well as controls. They then showed him two names at a time, one a famous name (e.g. Liza Minelli, Lee Harvey Oswald) and the other was a name randomly taken from the phonebook. He was asked to choose the famous name and he was correct on a significant number of trials (i.e. the statistics tests suggest he wasn’t just guessing). Even more incredible was that he remembered some details about these people when asked why they were famous. For example, he could remember that Lee Harvey Oswald assassinated the president. One explanation given for the memory of these facts is that there was an emotional component. E.g. He liked these people, or the assassination was so violent, that he could remember a few details. 

HM became a hugely important case study for neuro and cognitive Psychologists. He was interviewed and tested by over 100 psychologists during the 53 years after his operation. Directly after his surgery, he lived at home with his parents as he was unable to live independently. He moved to a nursing home in 1980 and stayed there until his death in 2008. HM donated his brain to science and it was sliced into 2,401 thin slices that will be scanned and published electronically.

Critical Thinking Considerations

  • How does this case study demonstrate localization of function in the brain? (e.g.c reating new long-term memories; procedural memories; storing and retrieving long term memories; intelligence; personality) ( Application )
  • What are the ethical considerations involved in this study? ( Analysis )
  • What are the strengths and limitations of this case study? ( Evaluation )
  • Why would ongoing studies of HM be important? (Think about memory, neuroplasticity and neurogenesis) ( Analysis/Synthesis/Evaluation )
  • How can findings from this case study be used to support and/or challenge the Multi-store Model of Memory? ( Application / Synthesis/Evaluation )
Exam Tips This study can be used for the following topics: Localization – the role of the hippocampus in memory Techniques to study the brain – MRI has been used to find out the exact location and size of damage to HM’s brain Bio and cognitive approach research method s – case study Bio and cognitive approach ethical considerations – anonymity Emotion and cognition – the follow-up study on HM and memories of famous people could be used in an essay to support the idea that emotion affects memory Models of memory – the multi-store model : HM’s study provides evidence for the fact that our memories all aren’t formed and stored in one place but travel from store to store (because his transfer from STS to LTS was damaged – if it was all in one store this specific problem would not occur)

Milner, Brenda. Scoville, William Beecher. “Loss of Recent Memory after Bilateral Hippocampal Lesions”. The Journal of Neurology, Neurosurgery and Psychiatry. 1957; 20: 11 21. (Accessed from web.mit.edu )

The man who couldn’t remember”. nova science now. an interview with brenda corkin . 06.01.2009.       .

  Here’s a good video recreation documentary of HM’s case study…

Travis Dixon

Travis Dixon is an IB Psychology teacher, author, workshop leader, examiner and IA moderator.

Department of Psychology

Introduction to clinical neuropsychology: case studies in cognitive neuroscience (ec).

Much of what we know about the brain systems underlying perception, attention, memory, and language has been first derived from patients with brain lesions or other brain pathology. Despite our advances in functional brain imaging the study of clinical cases in neuropsychology is still important to determine the causal role of certain brain regions in contributing to a given cognitive process.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • My Bibliography
  • Collections
  • Citation manager

Save citation to file

Email citation, add to collections.

  • Create a new collection
  • Add to an existing collection

Add to My Bibliography

Your saved search, create a file for external citation management software, your rss feed.

  • Search in PubMed
  • Search in NLM Catalog
  • Add to Search

Olfactory memory: a case study in cognitive psychology

Affiliation.

  • 1 Department of Psychology, University of Ulster, Northern Ireland.
  • PMID: 8667286
  • DOI: 10.1080/00223980.1996.9915012

Over the last decade, interest in the general applicability of psychological research has increased significantly, leading to doubts among some critics of cognitive psychology regarding the usefulness of the modern information-processing approach. In particular, current cognitive models of memory address mainly visual and verbal information processing, with little acknowledgement of the existence of other sensory modalities. However, since the mid-1970's, the literature on olfactory memory has expanded rapidly, and it has remained relatively independent of mainstream memory research. This article outlines the olfactory literature, which has focused principally on examination of the Proustian characteristics of smell. The relationship between olfactory and other types of memory is also examined. The author notes that there is evidence that models of memory intended to be general have taken insufficient account of findings from olfaction and other sensory modalities, an approach that could be considered symptomatic of dangerous tendency to base purportedly general theories on databases that are too narrow.

PubMed Disclaimer

Similar articles

  • Phenomenal and access consciousness in olfaction. Stevenson RJ. Stevenson RJ. Conscious Cogn. 2009 Dec;18(4):1004-17. doi: 10.1016/j.concog.2009.09.005. Epub 2009 Oct 7. Conscious Cogn. 2009. PMID: 19815429 Review.
  • [Influence of attention on an auditory-verbal learning test in schizophrenic patients]. Huguelet P, Nicastro R, Zanello A. Huguelet P, et al. Encephale. 2002 Jul-Aug;28(4):291-7. Encephale. 2002. PMID: 12232538 French.
  • Interference with olfactory memory by visual and verbal tasks. Annett JM, Cook NM, Leslie JC. Annett JM, et al. Percept Mot Skills. 1995 Jun;80(3 Pt 2):1307-17. doi: 10.2466/pms.1995.80.3c.1307. Percept Mot Skills. 1995. PMID: 7478892
  • Cognition and olfaction: a review. Richardson JT, Zucco GM. Richardson JT, et al. Psychol Bull. 1989 May;105(3):352-60. doi: 10.1037/0033-2909.105.3.352. Psychol Bull. 1989. PMID: 2660177 Review.
  • Acquisition and retention of verbal associations to olfactory and abstract visual stimuli of varying similarity. Davis RG. Davis RG. J Exp Psychol Hum Learn. 1977 Jan;3(1):37-51. J Exp Psychol Hum Learn. 1977. PMID: 845550
  • Search in MeSH

LinkOut - more resources

Full text sources.

  • Taylor & Francis

Other Literature Sources

  • The Lens - Patent Citations
  • Citation Manager

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Is a Case Study?

Weighing the pros and cons of this method of research

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

case study on cognitive psychology

Cara Lustik is a fact-checker and copywriter.

case study on cognitive psychology

Verywell / Colleen Tighe

  • Pros and Cons

What Types of Case Studies Are Out There?

Where do you find data for a case study, how do i write a psychology case study.

A case study is an in-depth study of one person, group, or event. In a case study, nearly every aspect of the subject's life and history is analyzed to seek patterns and causes of behavior. Case studies can be used in many different fields, including psychology, medicine, education, anthropology, political science, and social work.

The point of a case study is to learn as much as possible about an individual or group so that the information can be generalized to many others. Unfortunately, case studies tend to be highly subjective, and it is sometimes difficult to generalize results to a larger population.

While case studies focus on a single individual or group, they follow a format similar to other types of psychology writing. If you are writing a case study, we got you—here are some rules of APA format to reference.  

At a Glance

A case study, or an in-depth study of a person, group, or event, can be a useful research tool when used wisely. In many cases, case studies are best used in situations where it would be difficult or impossible for you to conduct an experiment. They are helpful for looking at unique situations and allow researchers to gather a lot of˜ information about a specific individual or group of people. However, it's important to be cautious of any bias we draw from them as they are highly subjective.

What Are the Benefits and Limitations of Case Studies?

A case study can have its strengths and weaknesses. Researchers must consider these pros and cons before deciding if this type of study is appropriate for their needs.

One of the greatest advantages of a case study is that it allows researchers to investigate things that are often difficult or impossible to replicate in a lab. Some other benefits of a case study:

  • Allows researchers to capture information on the 'how,' 'what,' and 'why,' of something that's implemented
  • Gives researchers the chance to collect information on why one strategy might be chosen over another
  • Permits researchers to develop hypotheses that can be explored in experimental research

On the other hand, a case study can have some drawbacks:

  • It cannot necessarily be generalized to the larger population
  • Cannot demonstrate cause and effect
  • It may not be scientifically rigorous
  • It can lead to bias

Researchers may choose to perform a case study if they want to explore a unique or recently discovered phenomenon. Through their insights, researchers develop additional ideas and study questions that might be explored in future studies.

It's important to remember that the insights from case studies cannot be used to determine cause-and-effect relationships between variables. However, case studies may be used to develop hypotheses that can then be addressed in experimental research.

Case Study Examples

There have been a number of notable case studies in the history of psychology. Much of  Freud's work and theories were developed through individual case studies. Some great examples of case studies in psychology include:

  • Anna O : Anna O. was a pseudonym of a woman named Bertha Pappenheim, a patient of a physician named Josef Breuer. While she was never a patient of Freud's, Freud and Breuer discussed her case extensively. The woman was experiencing symptoms of a condition that was then known as hysteria and found that talking about her problems helped relieve her symptoms. Her case played an important part in the development of talk therapy as an approach to mental health treatment.
  • Phineas Gage : Phineas Gage was a railroad employee who experienced a terrible accident in which an explosion sent a metal rod through his skull, damaging important portions of his brain. Gage recovered from his accident but was left with serious changes in both personality and behavior.
  • Genie : Genie was a young girl subjected to horrific abuse and isolation. The case study of Genie allowed researchers to study whether language learning was possible, even after missing critical periods for language development. Her case also served as an example of how scientific research may interfere with treatment and lead to further abuse of vulnerable individuals.

Such cases demonstrate how case research can be used to study things that researchers could not replicate in experimental settings. In Genie's case, her horrific abuse denied her the opportunity to learn a language at critical points in her development.

This is clearly not something researchers could ethically replicate, but conducting a case study on Genie allowed researchers to study phenomena that are otherwise impossible to reproduce.

There are a few different types of case studies that psychologists and other researchers might use:

  • Collective case studies : These involve studying a group of individuals. Researchers might study a group of people in a certain setting or look at an entire community. For example, psychologists might explore how access to resources in a community has affected the collective mental well-being of those who live there.
  • Descriptive case studies : These involve starting with a descriptive theory. The subjects are then observed, and the information gathered is compared to the pre-existing theory.
  • Explanatory case studies : These   are often used to do causal investigations. In other words, researchers are interested in looking at factors that may have caused certain things to occur.
  • Exploratory case studies : These are sometimes used as a prelude to further, more in-depth research. This allows researchers to gather more information before developing their research questions and hypotheses .
  • Instrumental case studies : These occur when the individual or group allows researchers to understand more than what is initially obvious to observers.
  • Intrinsic case studies : This type of case study is when the researcher has a personal interest in the case. Jean Piaget's observations of his own children are good examples of how an intrinsic case study can contribute to the development of a psychological theory.

The three main case study types often used are intrinsic, instrumental, and collective. Intrinsic case studies are useful for learning about unique cases. Instrumental case studies help look at an individual to learn more about a broader issue. A collective case study can be useful for looking at several cases simultaneously.

The type of case study that psychology researchers use depends on the unique characteristics of the situation and the case itself.

There are a number of different sources and methods that researchers can use to gather information about an individual or group. Six major sources that have been identified by researchers are:

  • Archival records : Census records, survey records, and name lists are examples of archival records.
  • Direct observation : This strategy involves observing the subject, often in a natural setting . While an individual observer is sometimes used, it is more common to utilize a group of observers.
  • Documents : Letters, newspaper articles, administrative records, etc., are the types of documents often used as sources.
  • Interviews : Interviews are one of the most important methods for gathering information in case studies. An interview can involve structured survey questions or more open-ended questions.
  • Participant observation : When the researcher serves as a participant in events and observes the actions and outcomes, it is called participant observation.
  • Physical artifacts : Tools, objects, instruments, and other artifacts are often observed during a direct observation of the subject.

If you have been directed to write a case study for a psychology course, be sure to check with your instructor for any specific guidelines you need to follow. If you are writing your case study for a professional publication, check with the publisher for their specific guidelines for submitting a case study.

Here is a general outline of what should be included in a case study.

Section 1: A Case History

This section will have the following structure and content:

Background information : The first section of your paper will present your client's background. Include factors such as age, gender, work, health status, family mental health history, family and social relationships, drug and alcohol history, life difficulties, goals, and coping skills and weaknesses.

Description of the presenting problem : In the next section of your case study, you will describe the problem or symptoms that the client presented with.

Describe any physical, emotional, or sensory symptoms reported by the client. Thoughts, feelings, and perceptions related to the symptoms should also be noted. Any screening or diagnostic assessments that are used should also be described in detail and all scores reported.

Your diagnosis : Provide your diagnosis and give the appropriate Diagnostic and Statistical Manual code. Explain how you reached your diagnosis, how the client's symptoms fit the diagnostic criteria for the disorder(s), or any possible difficulties in reaching a diagnosis.

Section 2: Treatment Plan

This portion of the paper will address the chosen treatment for the condition. This might also include the theoretical basis for the chosen treatment or any other evidence that might exist to support why this approach was chosen.

  • Cognitive behavioral approach : Explain how a cognitive behavioral therapist would approach treatment. Offer background information on cognitive behavioral therapy and describe the treatment sessions, client response, and outcome of this type of treatment. Make note of any difficulties or successes encountered by your client during treatment.
  • Humanistic approach : Describe a humanistic approach that could be used to treat your client, such as client-centered therapy . Provide information on the type of treatment you chose, the client's reaction to the treatment, and the end result of this approach. Explain why the treatment was successful or unsuccessful.
  • Psychoanalytic approach : Describe how a psychoanalytic therapist would view the client's problem. Provide some background on the psychoanalytic approach and cite relevant references. Explain how psychoanalytic therapy would be used to treat the client, how the client would respond to therapy, and the effectiveness of this treatment approach.
  • Pharmacological approach : If treatment primarily involves the use of medications, explain which medications were used and why. Provide background on the effectiveness of these medications and how monotherapy may compare with an approach that combines medications with therapy or other treatments.

This section of a case study should also include information about the treatment goals, process, and outcomes.

When you are writing a case study, you should also include a section where you discuss the case study itself, including the strengths and limitiations of the study. You should note how the findings of your case study might support previous research. 

In your discussion section, you should also describe some of the implications of your case study. What ideas or findings might require further exploration? How might researchers go about exploring some of these questions in additional studies?

Need More Tips?

Here are a few additional pointers to keep in mind when formatting your case study:

  • Never refer to the subject of your case study as "the client." Instead, use their name or a pseudonym.
  • Read examples of case studies to gain an idea about the style and format.
  • Remember to use APA format when citing references .

Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach .  BMC Med Res Methodol . 2011;11:100.

Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach . BMC Med Res Methodol . 2011 Jun 27;11:100. doi:10.1186/1471-2288-11-100

Gagnon, Yves-Chantal.  The Case Study as Research Method: A Practical Handbook . Canada, Chicago Review Press Incorporated DBA Independent Pub Group, 2010.

Yin, Robert K. Case Study Research and Applications: Design and Methods . United States, SAGE Publications, 2017.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

PsyBlog

Cognitive Psychology: Experiments & Examples

Cognitive psychology reveals, for example, insights into how we think, reason, learn, remember, produce language and even how illogical our brains are.

cognitive psychology

Fifty years ago there was a revolution in cognitive psychology which changed the way we think about the mind.

The ‘cognitive revolution’ inspired cognitive psychologists to start thinking of the mind as a kind of organic computer, rather than as an impenetrable black box which would never be understood.

This metaphor has motivated cognitive psychology to investigate the software central to our everyday functioning, opening the way to insights into how we think, reason, learn, remember and produce language.

Here are 10 classic examples of cognitive psychology studies that have helped reveal how thinking works.

1. Cognitive psychology reveals how experts think

Without experts the human race would be sunk.

But what is it about how experts think which lets them achieve breakthroughs which we can all enjoy?

The answer is in how experts think about problems, compared with novices, cognitive psychology reveals.

That’s what Chi et al. (1981) found when they compared how experts and novices represented physics problems.

Novices tended to get stuck thinking about the surface details of the problem whereas experts saw the underlying principles that were operating.

It was partly this deeper, abstract way of approaching problems that made the experts more successful.

2. Short-term memory lasts 15-30 seconds

Short-term memory is a lot shorter than many think, cognitive psychologists find.

In fact it lasts about 15-30 seconds.

We know that because of a classic cognitive psychology study carried out by Lloyd and Margaret Peterson ( Peterson & Peterson, 1959 ).

Participants had to try and remember and recall three-letter strings, like FZX.

When tested, after 3 seconds they could recall 80 percent of them, after 18 seconds, though, they could only remember 10 percent.

That’s how short-term short-term memory is.

3. Cognitive psychology finds people are not logical

People find formal logic extremely difficult to cope with–that’s normal, cognitive psychology finds.

Here’s a quick test for you, and don’t be surprised if your brain overheats:

“You are shown a set of four cards placed on a table, each of which has a number on one side and a coloured patch on the other side. The visible faces of the cards show 3, 8, red and brown. Which card(s) must you turn over in order to test the truth of the proposition that if a card shows an even number on one face, then its opposite face is red?”

The answer is you have to turn over the ‘8’ and the brown card (for an explanation search for “Wason selection task” — even after hearing it, many people still can’t believe this is the correct answer).

If you got it right, then you’re in the minority (or you’ve seen the test before!).

When Wason conducted this classic experiment, less than 10 percent of people got it right (Wason, 1968).

Cognitive psychology finds that our brains are not set up for this kind of formal logic.

4. Example: framing in cognitive psychology

The way you frame a problem, argument or statement can have huge effects on how people perceive it.

For example, think about risk for a moment and the fact that people don’t like to take chances.

They dislike taking chances so much that even the whiff of negativity is enough to send people running for the hills.

That’s what cognitive psychologists Kahneman and Tversky (1981) demonstrated when they asked participants to imagine 600 people were affected by a deadly disease.

There was, they were told, a treatment, but it is risky.

If you decided to use the treatment, here are the odds:

“A 33% chance of saving all 600 people, 66% possibility of saving no one.”

When told this, 72 percent of people thought it was a good bet.

But, when presented the problem this way:

“A 33% chance that no people will die, 66% probability that all 600 will die.”

…the number choosing it dropped to 22 percent.

The beauty of the study is that the outcomes are identical, it’s just the framing that’s different.

Cognitive psychology shows that the way we think is heavily influenced by the terms in which issues are expressed.

5. Attention is like a spotlight

We actually have two sets of eyes — one set real and one virtual, cognitive psychology finds.

We have the real eyes moving around in their sockets, but we also have ‘virtual eyes’ looking around our field of vision, choosing what we pay attention to.

People are using their virtual eyes all the time: for example, when they watch each other using their peripheral vision.

You don’t need to look directly at an attractive stranger to eye them up, you can look ‘out of the corner of your eye’.

Cognitive psychologists have called this the ‘spotlight of attention’ and studies have actually measured its movement.

It means we can notice things in the fraction of a second before our eyes have a chance to reorient.

→ Read on: The Attentional Spotlight

6. The cocktail party effect in cognitive psychology

It’s not just vision which has a kind of spotlight, our hearing is also finely tuned, cognitive psychologists have discovered.

It’s like when you’re at a cocktail party and you can tune out all the voices, except the person you’re talking to.

Or, you can tune out the person you’re talking to and eavesdrop on a more interesting conversation behind.

A beautiful cognitive psychology demonstration of this was carried out in the 1950s by Cherry (1953) .

He found that people could even distinguish the same voice reading two different messages at the same time.

→ Read on: The Cocktail Party Effect

7. Children’s cognitive psychology example

If you take a toy duck and show it to a 12-month-old infant, then put your hand under a cushion, leave the duck there and bring your hand out, the child will only look in your hand, almost never under the cushion.

At this age, children behave as though things they can’t see don’t even exist.

As the famous child psychologist Jean Piaget noted:

“The child’s universe is still only a totality of pictures emerging from nothingness at the moment of action, to return to nothingness at the moment when the action is finished.”

And yet, just six months later, a child will typically look under the cushion, studies in cognitive psychology have found.

It has learnt that things that are hidden from view can continue to exist — this is known as object permanence .

This is just one miracle amongst many in developmental  psychology and cognitive psychology.

8. The McGurk effect in cognitive psychology

The brain is integrating information from all our senses to produce our experience, cognitive psychology shows.

This is brilliantly revealed by the McGurk effect ( McGurk & MacDonald, 1976 ).

Watch the following clip from a BBC documentary to see the effect in full.

You won’t believe it until you see and hear it yourself.

The sensation is quite odd:

9. Implanting false memories

People sometimes think of their memories as being laid down, then later either recalled or forgotten, with little change in the memories themselves between the two.

In fact, cognitive psychology shows that the reality is much more complex and, in some cases, alarming.

One of the most dramatic examples of these studies demonstrated that memories can be changed, or even implanted later, was carried out by Elizabeth Loftus.

In her study, a childhood memory of being lost in a mall was successfully implanted in some people’s mind, despite their families confirming nothing like it had ever happened to them.

Later research in cognitive psychology have found that 50 percent of participants could have a false memory successfully implanted.

→ Read on: Implanting False Memories

10. Why the incompetent don’t know they’re incompetent

There all kinds of cognitive biases operating in the mind, cognitive psychology has found.

The Dunning-Kruger effect , though, is a favourite because it explains why incompetent people don’t know they’re incompetent.

David Dunning and Justin Kruger found in their studies that people who are the most incompetent are the least aware of their own incompetence.

At the other end of the scale, the most competent are most aware of their own shortcomings.

→ Explore more: Cognitive Biases : Why We Make Irrational Decisions

' data-src=

Author: Dr Jeremy Dean

Psychologist, Jeremy Dean, PhD is the founder and author of PsyBlog. He holds a doctorate in psychology from University College London and two other advanced degrees in psychology. He has been writing about scientific research on PsyBlog since 2004. View all posts by Dr Jeremy Dean

case study on cognitive psychology

Join the free PsyBlog mailing list. No spam, ever.

  • Mental Health

What Is Cognitive Psychology?

case study on cognitive psychology

Cognitive psychology is the branch of psychology dedicated to studying how people think. The cognitive perspective in psychology focuses on how the interactions of thinking, emotion, creativity, and problem-solving abilities affect how and why you think the way you do. Cognitive psychology attempts to measure different types of intelligence, determine how you organize your thoughts, and compare different components of cognition. 

What Does a Cognitive Psychologist Do?

Cognitive psychologists do clinical research, training, education, and clinical practice. They use the insights gained from studying how people think and process information to help people develop new ways of dealing with problem behaviors and live better lives. Cognitive psychologists have special knowledge of applied behavior analysis, behavior therapy, learning theories, and emotional processing theories. 

They know how to apply this knowledge to the human condition and use it in the treatment of: 

  • Anxiety disorders
  • Academic performance
  • Personality disorders
  • Substance abuse
  • Depressive disorders
  • Relationship problems
  • Autism spectrum disorder
  • Emotional regulation 

The History of Cognitive Psychology

Cognitive psychology gained popularity in the 1950s to 1970s as researchers became more interested in how thinking affects behavior. This period is called the "cognitive revolution" and represented a shift in thinking and focus for psychologists. Before this time, the behaviorist approach dominated psychology. The behaviorists only studied external behavior that could be measured.

Behaviorists believed it was pointless to try to study the mind because there was no way to see or objectively measure what happened in someone's thoughts. The mind was seen as a black box that couldn't be measured. 

The cognitive approach gave rise to the idea that internal mental behavior could be studied using experiments. Cognitive psychology assumes that there is an internal process that occurs between when a stimulus happens and when you respond to it.

These processes are called mediational processes and can involve memory, perception, attention, problem-solving, or other processes. Cognitive psychologists believe if you want to understand behavior, you have to understand the mediational processes that cause it.

Cognitive Psychology Examples

Some examples of studies and work in cognitive psychology include: 

Experts think differently. Beginners think literally when they try to solve a problem. They tend to focus on the surface details when they're presented with an unfamiliar situation. Experts are able to see the underlying connections and think of the problem more abstractly. 

Short-term memory. Your short-term memory is probably a lot shorter than you think. A classic study in cognitive psychology found that participants in a study could only recall 10% of random three-letter strings after 18 seconds. After 3 seconds, the participants could recall 80% of the letter strings, so there was a significant drop after 15 additional seconds. 

Mapping the brain. Some cognitive psychologists are working on the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative. This project has been compared to the human genome project. It's an attempt to learn more about the 100 billion brain cells, including the connections between them and how they relate to behavior and health.

Cognitive Psychology Perspective in Practice

Cognitive psychology perspectives can be used to improve many areas of life, including how children learn. Researchers Pooja K. Agarwal and Henry L. Roediger III used insights from their cognitive psychology studies to develop better practices to encourage learning in the classroom. They used experiments to determine how students learn and apply their knowledge as well as disprove outdated theories. 

Experts used to believe that memory could be improved with practice, a theory that has been disproven. Another popular theory that has been debunked is that errors interfere with learning. The opposite is actually true. You learn from your mistakes, so making errors improves your ability to learn. While most educators have moved beyond those theories, there are still some unproven ones that linger, like the notion that different people have different learning styles. 

In addition to disproving theories that don't work, cognitive psychology shines a light on theories that do work. After combing through over 100 years of studies, researchers found four different practices that increased students' ability to learn: 

  • Retrieval practice, which is quickly bringing the information you're learning to mind
  • Getting feedback that lets you know what you don't know
  • Spaced practice, which is returning to the material periodically over time
  • Interleaving, which is practicing a mix of skills

Careers in Cognitive Psychology

Cognitive psychologists can work at universities doing research or teaching. They can also work in the private sector in organizational psychology, software development, or human-computer interaction. Another option for cognitive psychologists is working in a clinical setting treating patients for issues related to mental processes, like: 

  • Alzheimer's disease
  • Speech problems
  • Memory issues
  • Sensory difficulties

You can work in some entry-level jobs with a bachelor's degree in cognitive psychology, but most opportunities will be available to people with a master's or doctorate degree. Most research done by people with master's degrees is supervised by cognitive psychologists with doctorate degrees. 

photo of woman held up by hands

Top doctors in ,

Find more top doctors on, related links.

  • Mental Health Home
  • Mental Health News & Features
  • Mental Health Reference
  • Mental Health Quizzes
  • Mental Health Slideshows
  • Mental Health Blogs
  • Mental Health Videos
  • Find a Psychiatrist
  • Anxiety & Panic Disorders
  • Bipolar Disorder
  • Crisis Assistance
  • Eating Disorders
  • Health & Balance
  • Personality Disorders
  • Schizophrenia
  • Social Media and Mental Health
  • Stress Management
  • Substance Abuse & Addiction
  • More Related Topics

case study on cognitive psychology

helpful professor logo

15 Famous Experiments and Case Studies in Psychology

15 Famous Experiments and Case Studies in Psychology

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

Learn about our Editorial Process

psychology theories, explained below

Psychology has seen thousands upon thousands of research studies over the years. Most of these studies have helped shape our current understanding of human thoughts, behavior, and feelings.

The psychology case studies in this list are considered classic examples of psychological case studies and experiments, which are still being taught in introductory psychology courses up to this day.

Some studies, however, were downright shocking and controversial that you’d probably wonder why such studies were conducted back in the day. Imagine participating in an experiment for a small reward or extra class credit, only to be left scarred for life. These kinds of studies, however, paved the way for a more ethical approach to studying psychology and implementation of research standards such as the use of debriefing in psychology research .

Case Study vs. Experiment

Before we dive into the list of the most famous studies in psychology, let us first review the difference between case studies and experiments.

  • It is an in-depth study and analysis of an individual, group, community, or phenomenon. The results of a case study cannot be applied to the whole population, but they can provide insights for further studies.
  • It often uses qualitative research methods such as observations, surveys, and interviews.
  • It is often conducted in real-life settings rather than in controlled environments.
  • An experiment is a type of study done on a sample or group of random participants, the results of which can be generalized to the whole population.
  • It often uses quantitative research methods that rely on numbers and statistics.
  • It is conducted in controlled environments, wherein some things or situations are manipulated.

See Also: Experimental vs Observational Studies

Famous Experiments in Psychology

1. the marshmallow experiment.

Psychologist Walter Mischel conducted the marshmallow experiment at Stanford University in the 1960s to early 1970s. It was a simple test that aimed to define the connection between delayed gratification and success in life.

The instructions were fairly straightforward: children ages 4-6 were presented a piece of marshmallow on a table and they were told that they would receive a second piece if they could wait for 15 minutes without eating the first marshmallow.

About one-third of the 600 participants succeeded in delaying gratification to receive the second marshmallow. Mischel and his team followed up on these participants in the 1990s, learning that those who had the willpower to wait for a larger reward experienced more success in life in terms of SAT scores and other metrics.

This case study also supported self-control theory , a theory in criminology that holds that people with greater self-control are less likely to end up in trouble with the law!

The classic marshmallow experiment, however, was debunked in a 2018 replication study done by Tyler Watts and colleagues.

This more recent experiment had a larger group of participants (900) and a better representation of the general population when it comes to race and ethnicity. In this study, the researchers found out that the ability to wait for a second marshmallow does not depend on willpower alone but more so on the economic background and social status of the participants.

2. The Bystander Effect

In 1694, Kitty Genovese was murdered in the neighborhood of Kew Gardens, New York. It was told that there were up to 38 witnesses and onlookers in the vicinity of the crime scene, but nobody did anything to stop the murder or call for help.

Such tragedy was the catalyst that inspired social psychologists Bibb Latane and John Darley to formulate the phenomenon called bystander effect or bystander apathy .

Subsequent investigations showed that this story was exaggerated and inaccurate, as there were actually only about a dozen witnesses, at least two of whom called the police. But the case of Kitty Genovese led to various studies that aim to shed light on the bystander phenomenon.

Latane and Darley tested bystander intervention in an experimental study . Participants were asked to answer a questionnaire inside a room, and they would either be alone or with two other participants (who were actually actors or confederates in the study). Smoke would then come out from under the door. The reaction time of participants was tested — how long would it take them to report the smoke to the authorities or the experimenters?

The results showed that participants who were alone in the room reported the smoke faster than participants who were with two passive others. The study suggests that the more onlookers are present in an emergency situation, the less likely someone would step up to help, a social phenomenon now popularly called the bystander effect.

3. Asch Conformity Study

Have you ever made a decision against your better judgment just to fit in with your friends or family? The Asch Conformity Studies will help you understand this kind of situation better.

In this experiment, a group of participants were shown three numbered lines of different lengths and asked to identify the longest of them all. However, only one true participant was present in every group and the rest were actors, most of whom told the wrong answer.

Results showed that the participants went for the wrong answer, even though they knew which line was the longest one in the first place. When the participants were asked why they identified the wrong one, they said that they didn’t want to be branded as strange or peculiar.

This study goes to show that there are situations in life when people prefer fitting in than being right. It also tells that there is power in numbers — a group’s decision can overwhelm a person and make them doubt their judgment.

4. The Bobo Doll Experiment

The Bobo Doll Experiment was conducted by Dr. Albert Bandura, the proponent of social learning theory .

Back in the 1960s, the Nature vs. Nurture debate was a popular topic among psychologists. Bandura contributed to this discussion by proposing that human behavior is mostly influenced by environmental rather than genetic factors.

In the Bobo Doll Experiment, children were divided into three groups: one group was shown a video in which an adult acted aggressively toward the Bobo Doll, the second group was shown a video in which an adult play with the Bobo Doll, and the third group served as the control group where no video was shown.

The children were then led to a room with different kinds of toys, including the Bobo Doll they’ve seen in the video. Results showed that children tend to imitate the adults in the video. Those who were presented the aggressive model acted aggressively toward the Bobo Doll while those who were presented the passive model showed less aggression.

While the Bobo Doll Experiment can no longer be replicated because of ethical concerns, it has laid out the foundations of social learning theory and helped us understand the degree of influence adult behavior has on children.

5. Blue Eye / Brown Eye Experiment

Following the assassination of Martin Luther King Jr. in 1968, third-grade teacher Jane Elliott conducted an experiment in her class. Although not a formal experiment in controlled settings, A Class Divided is a good example of a social experiment to help children understand the concept of racism and discrimination.

The class was divided into two groups: blue-eyed children and brown-eyed children. For one day, Elliott gave preferential treatment to her blue-eyed students, giving them more attention and pampering them with rewards. The next day, it was the brown-eyed students’ turn to receive extra favors and privileges.

As a result, whichever group of students was given preferential treatment performed exceptionally well in class, had higher quiz scores, and recited more frequently; students who were discriminated against felt humiliated, answered poorly in tests, and became uncertain with their answers in class.

This study is now widely taught in sociocultural psychology classes.

6. Stanford Prison Experiment

One of the most controversial and widely-cited studies in psychology is the Stanford Prison Experiment , conducted by Philip Zimbardo at the basement of the Stanford psychology building in 1971. The hypothesis was that abusive behavior in prisons is influenced by the personality traits of the prisoners and prison guards.

The participants in the experiment were college students who were randomly assigned as either a prisoner or a prison guard. The prison guards were then told to run the simulated prison for two weeks. However, the experiment had to be stopped in just 6 days.

The prison guards abused their authority and harassed the prisoners through verbal and physical means. The prisoners, on the other hand, showed submissive behavior. Zimbardo decided to stop the experiment because the prisoners were showing signs of emotional and physical breakdown.

Although the experiment wasn’t completed, the results strongly showed that people can easily get into a social role when others expect them to, especially when it’s highly stereotyped .

7. The Halo Effect

Have you ever wondered why toothpastes and other dental products are endorsed in advertisements by celebrities more often than dentists? The Halo Effect is one of the reasons!

The Halo Effect shows how one favorable attribute of a person can gain them positive perceptions in other attributes. In the case of product advertisements, attractive celebrities are also perceived as intelligent and knowledgeable of a certain subject matter even though they’re not technically experts.

The Halo Effect originated in a classic study done by Edward Thorndike in the early 1900s. He asked military commanding officers to rate their subordinates based on different qualities, such as physical appearance, leadership, dependability, and intelligence.

The results showed that high ratings of a particular quality influences the ratings of other qualities, producing a halo effect of overall high ratings. The opposite also applied, which means that a negative rating in one quality also correlated to negative ratings in other qualities.

Experiments on the Halo Effect came in various formats as well, supporting Thorndike’s original theory. This phenomenon suggests that our perception of other people’s overall personality is hugely influenced by a quality that we focus on.

8. Cognitive Dissonance

There are experiences in our lives when our beliefs and behaviors do not align with each other and we try to justify them in our minds. This is cognitive dissonance , which was studied in an experiment by Leon Festinger and James Carlsmith back in 1959.

In this experiment, participants had to go through a series of boring and repetitive tasks, such as spending an hour turning pegs in a wooden knob. After completing the tasks, they were then paid either $1 or $20 to tell the next participants that the tasks were extremely fun and enjoyable. Afterwards, participants were asked to rate the experiment. Those who were given $1 rated the experiment as more interesting and fun than those who received $20.

The results showed that those who received a smaller incentive to lie experienced cognitive dissonance — $1 wasn’t enough incentive for that one hour of painstakingly boring activity, so the participants had to justify that they had fun anyway.

Famous Case Studies in Psychology

9. little albert.

In 1920, behaviourist theorists John Watson and Rosalie Rayner experimented on a 9-month-old baby to test the effects of classical conditioning in instilling fear in humans.

This was such a controversial study that it gained popularity in psychology textbooks and syllabi because it is a classic example of unethical research studies done in the name of science.

In one of the experiments, Little Albert was presented with a harmless stimulus or object, a white rat, which he wasn’t scared of at first. But every time Little Albert would see the white rat, the researchers would play a scary sound of hammer and steel. After about 6 pairings, Little Albert learned to fear the rat even without the scary sound.

Little Albert developed signs of fear to different objects presented to him through classical conditioning . He even generalized his fear to other stimuli not present in the course of the experiment.

10. Phineas Gage

Phineas Gage is such a celebrity in Psych 101 classes, even though the way he rose to popularity began with a tragic accident. He was a resident of Central Vermont and worked in the construction of a new railway line in the mid-1800s. One day, an explosive went off prematurely, sending a tamping iron straight into his face and through his brain.

Gage survived the accident, fortunately, something that is considered a feat even up to this day. He managed to find a job as a stagecoach after the accident. However, his family and friends reported that his personality changed so much that “he was no longer Gage” (Harlow, 1868).

New evidence on the case of Phineas Gage has since come to light, thanks to modern scientific studies and medical tests. However, there are still plenty of mysteries revolving around his brain damage and subsequent recovery.

11. Anna O.

Anna O., a social worker and feminist of German Jewish descent, was one of the first patients to receive psychoanalytic treatment.

Her real name was Bertha Pappenheim and she inspired much of Sigmund Freud’s works and books on psychoanalytic theory, although they hadn’t met in person. Their connection was through Joseph Breuer, Freud’s mentor when he was still starting his clinical practice.

Anna O. suffered from paralysis, personality changes, hallucinations, and rambling speech, but her doctors could not find the cause. Joseph Breuer was then called to her house for intervention and he performed psychoanalysis, also called the “talking cure”, on her.

Breuer would tell Anna O. to say anything that came to her mind, such as her thoughts, feelings, and childhood experiences. It was noted that her symptoms subsided by talking things out.

However, Breuer later referred Anna O. to the Bellevue Sanatorium, where she recovered and set out to be a renowned writer and advocate of women and children.

12. Patient HM

H.M., or Henry Gustav Molaison, was a severe amnesiac who had been the subject of countless psychological and neurological studies.

Henry was 27 when he underwent brain surgery to cure the epilepsy that he had been experiencing since childhood. In an unfortunate turn of events, he lost his memory because of the surgery and his brain also became unable to store long-term memories.

He was then regarded as someone living solely in the present, forgetting an experience as soon as it happened and only remembering bits and pieces of his past. Over the years, his amnesia and the structure of his brain had helped neuropsychologists learn more about cognitive functions .

Suzanne Corkin, a researcher, writer, and good friend of H.M., recently published a book about his life. Entitled Permanent Present Tense , this book is both a memoir and a case study following the struggles and joys of Henry Gustav Molaison.

13. Chris Sizemore

Chris Sizemore gained celebrity status in the psychology community when she was diagnosed with multiple personality disorder, now known as dissociative identity disorder.

Sizemore has several alter egos, which included Eve Black, Eve White, and Jane. Various papers about her stated that these alter egos were formed as a coping mechanism against the traumatic experiences she underwent in her childhood.

Sizemore said that although she has succeeded in unifying her alter egos into one dominant personality, there were periods in the past experienced by only one of her alter egos. For example, her husband married her Eve White alter ego and not her.

Her story inspired her psychiatrists to write a book about her, entitled The Three Faces of Eve , which was then turned into a 1957 movie of the same title.

14. David Reimer

When David was just 8 months old, he lost his penis because of a botched circumcision operation.

Psychologist John Money then advised Reimer’s parents to raise him as a girl instead, naming him Brenda. His gender reassignment was supported by subsequent surgery and hormonal therapy.

Money described Reimer’s gender reassignment as a success, but problems started to arise as Reimer was growing up. His boyishness was not completely subdued by the hormonal therapy. When he was 14 years old, he learned about the secrets of his past and he underwent gender reassignment to become male again.

Reimer became an advocate for children undergoing the same difficult situation he had been. His life story ended when he was 38 as he took his own life.

15. Kim Peek

Kim Peek was the inspiration behind Rain Man , an Oscar-winning movie about an autistic savant character played by Dustin Hoffman.

The movie was released in 1988, a time when autism wasn’t widely known and acknowledged yet. So it was an eye-opener for many people who watched the film.

In reality, Kim Peek was a non-autistic savant. He was exceptionally intelligent despite the brain abnormalities he was born with. He was like a walking encyclopedia, knowledgeable about travel routes, US zip codes, historical facts, and classical music. He also read and memorized approximately 12,000 books in his lifetime.

This list of experiments and case studies in psychology is just the tip of the iceberg! There are still countless interesting psychology studies that you can explore if you want to learn more about human behavior and dynamics.

You can also conduct your own mini-experiment or participate in a study conducted in your school or neighborhood. Just remember that there are ethical standards to follow so as not to repeat the lasting physical and emotional harm done to Little Albert or the Stanford Prison Experiment participants.

Asch, S. E. (1956). Studies of independence and conformity: I. A minority of one against a unanimous majority. Psychological Monographs: General and Applied, 70 (9), 1–70. https://doi.org/10.1037/h0093718

Bandura, A., Ross, D., & Ross, S. A. (1961). Transmission of aggression through imitation of aggressive models. The Journal of Abnormal and Social Psychology, 63 (3), 575–582. https://doi.org/10.1037/h0045925

Elliott, J., Yale University., WGBH (Television station : Boston, Mass.), & PBS DVD (Firm). (2003). A class divided. New Haven, Conn.: Yale University Films.

Festinger, L., & Carlsmith, J. M. (1959). Cognitive consequences of forced compliance. The Journal of Abnormal and Social Psychology, 58 (2), 203–210. https://doi.org/10.1037/h0041593

Haney, C., Banks, W. C., & Zimbardo, P. G. (1973). A study of prisoners and guards in a simulated prison. Naval Research Review , 30 , 4-17.

Latane, B., & Darley, J. M. (1968). Group inhibition of bystander intervention in emergencies. Journal of Personality and Social Psychology, 10 (3), 215–221. https://doi.org/10.1037/h0026570

Mischel, W. (2014). The Marshmallow Test: Mastering self-control. Little, Brown and Co.

Thorndike, E. (1920) A Constant Error in Psychological Ratings. Journal of Applied Psychology , 4 , 25-29. http://dx.doi.org/10.1037/h0071663

Watson, J. B., & Rayner, R. (1920). Conditioned emotional reactions. Journal of experimental psychology , 3 (1), 1.

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 101 Class Group Name Ideas (for School Students)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 19 Top Cognitive Psychology Theories (Explained)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 119 Bloom’s Taxonomy Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ All 6 Levels of Understanding (on Bloom’s Taxonomy)

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Clinical Practice Guideline for the Treatment of Depression

Case Examples

Examples of recommended interventions in the treatment of depression across the lifespan.

title-depression-examples

Children/Adolescents

A 15-year-old Puerto Rican female

The adolescent was previously diagnosed with major depressive disorder and treated intermittently with supportive psychotherapy and antidepressants. Her more recent episodes related to her parents’ marital problems and her academic/social difficulties at school. She was treated using cognitive-behavioral therapy (CBT).

Chafey, M.I.J., Bernal, G., & Rossello, J. (2009). Clinical Case Study: CBT for Depression in A Puerto Rican Adolescent. Challenges and Variability in Treatment Response. Depression and Anxiety , 26, 98-103.  https://doi.org/10.1002/da.20457

Sam, a 15-year-old adolescent

Sam was team captain of his soccer team, but an unexpected fight with another teammate prompted his parents to meet with a clinical psychologist. Sam was diagnosed with major depressive disorder after showing an increase in symptoms over the previous three months. Several recent challenges in his family and romantic life led the therapist to recommend interpersonal psychotherapy for adolescents (IPT-A).

Hall, E.B., & Mufson, L. (2009). Interpersonal Psychotherapy for Depressed Adolescents (IPT-A): A Case Illustration. Journal of Clinical Child & Adolescent Psychology, 38 (4), 582-593. https://doi.org/10.1080/15374410902976338

© Society of Clinical Child and Adolescent Psychology (Div. 53) APA, https://sccap53.org/, reprinted by permission of Taylor & Francis Ltd, http://www.tandfonline.com on behalf of the Society of Clinical Child and Adolescent Psychology (Div. 53) APA.

General Adults

Mark, a 43-year-old male

Mark had a history of depression and sought treatment after his second marriage ended. His depression was characterized as being “controlled by a pattern of interpersonal avoidance.” The behavior/activation therapist asked Mark to complete an activity record to help steer the treatment sessions.

Dimidjian, S., Martell, C.R., Addis, M.E., & Herman-Dunn, R. (2008). Chapter 8: Behavioral activation for depression. In D.H. Barlow (Ed.) Clinical handbook of psychological disorders: A step-by-step treatment manual (4th ed., pp. 343-362). New York: Guilford Press.

Reprinted with permission from Guilford Press.

Denise, a 59-year-old widow

Denise is described as having “nonchronic depression” which appeared most recently at the onset of her husband’s diagnosis with brain cancer. Her symptoms were loneliness, difficulty coping with daily life, and sadness. Treatment included filling out a weekly activity log and identifying/reconstructing automatic thoughts.

Young, J.E., Rygh, J.L., Weinberger, A.D., & Beck, A.T. (2008). Chapter 6: Cognitive therapy for depression. In D.H. Barlow (Ed.) Clinical handbook of psychological disorders: A step-by-step treatment manual (4th ed., pp. 278-287). New York, NY: Guilford Press.

Nancy, a 25-year-old single, white female

Nancy described herself as being “trapped by her relationships.” Her intake interview confirmed symptoms of major depressive disorder and the clinician recommended cognitive-behavioral therapy. 

Persons, J.B., Davidson, J. & Tompkins, M.A. (2001). A Case Example: Nancy. In Essential Components of Cognitive-Behavior Therapy For Depression (pp. 205-242). Washington, D.C.: American Psychological Association. http://dx.doi.org/10.1037/10389-007

While APA owns the rights to this text, some exhibits are property of the San Francisco Bay Area Center for Cognitive Therapy, which has granted the APA permission for use.

Luke, a 34-year-old male graduate student

Luke is described as having treatment-resistant depression and while not suicidal, hoped that a fatal illness would take his life or that he would just disappear. His treatment involved mindfulness-based cognitive therapy, which helps participants become aware of and recharacterize their overwhelming negative thoughts. It involves regular practice of mindfulness techniques and exercises as one component of therapy.

Sipe, W.E.B., & Eisendrath, S.J. (2014). Chapter 3 — Mindfulness-Based Cognitive Therapy For Treatment-Resistant Depression. In R.A. Baer (Ed.), Mindfulness-Based Treatment Approaches (2nd ed., pp. 66-70). San Diego: Academic Press.

Reprinted with permission from Elsevier.

Sara, a 35-year-old married female

Sara was referred to treatment after having a stillbirth. Sara showed symptoms of grief, or complicated bereavement, and was diagnosed with major depression, recurrent. The clinician recommended interpersonal psychotherapy (IPT) for a duration of 12 weeks.

Bleiberg, K.L., & Markowitz, J.C. (2008). Chapter 7: Interpersonal psychotherapy for depression. In D.H. Barlow (Ed.) Clinical handbook of psychological disorders: a treatment manual (4th ed., pp. 315-323). New York, NY: Guilford Press.

Peggy, a 52-year-old white, Italian-American widow

Peggy had a history of chronic depression, which flared during her husband’s illness and ultimate death. Guilt was a driving factor of her depressive symptoms, which lasted six months after his death. The clinician treated Peggy with psychodynamic therapy over a period of two years.

Bishop, J., & Lane , R.C. (2003). Psychodynamic Treatment of a Case of Grief Superimposed On Melancholia. Clinical Case Studies , 2(1), 3-19. https://doi.org/10.1177/1534650102239085

Several case examples of supportive therapy

Winston, A., Rosenthal, R.N., & Pinsker, H. (2004). Introduction to Supportive Psychotherapy . Arlington, VA : American Psychiatric Publishing.

Older Adults

Several case examples of interpersonal psychotherapy & pharmacotherapy

Miller, M. D., Wolfson, L., Frank, E., Cornes, C., Silberman, R., Ehrenpreis, L.…Reynolds, C. F., III. (1998). Using Interpersonal Psychotherapy (IPT) in a Combined Psychotherapy/Medication Research Protocol with Depressed Elders: A Descriptive Report With Case Vignettes. Journal of Psychotherapy Practice and Research , 7(1), 47-55.

psychology

Psychology Case Study Examples: A Deep Dive into Real-life Scenarios

Psychology Case Study Examples

Peeling back the layers of the human mind is no easy task, but psychology case studies can help us do just that. Through these detailed analyses, we’re able to gain a deeper understanding of human behavior, emotions, and cognitive processes. I’ve always found it fascinating how a single person’s experience can shed light on broader psychological principles.

Over the years, psychologists have conducted numerous case studies—each with their own unique insights and implications. These investigations range from Phineas Gage’s accidental lobotomy to Genie Wiley’s tragic tale of isolation. Such examples not only enlighten us about specific disorders or occurrences but also continue to shape our overall understanding of psychology .

As we delve into some noteworthy examples , I assure you’ll appreciate how varied and intricate the field of psychology truly is. Whether you’re a budding psychologist or simply an eager learner, brace yourself for an intriguing exploration into the intricacies of the human psyche.

Understanding Psychology Case Studies

Diving headfirst into the world of psychology, it’s easy to come upon a valuable tool used by psychologists and researchers alike – case studies. I’m here to shed some light on these fascinating tools.

Psychology case studies, for those unfamiliar with them, are in-depth investigations carried out to gain a profound understanding of the subject – whether it’s an individual, group or phenomenon. They’re powerful because they provide detailed insights that other research methods might miss.

Let me share a few examples to clarify this concept further:

  • One notable example is Freud’s study on Little Hans. This case study explored a 5-year-old boy’s fear of horses and related it back to Freud’s theories about psychosexual stages.
  • Another classic example is Genie Wiley (a pseudonym), a feral child who was subjected to severe social isolation during her early years. Her heartbreaking story provided invaluable insights into language acquisition and critical periods in development.

You see, what sets psychology case studies apart is their focus on the ‘why’ and ‘how’. While surveys or experiments might tell us ‘what’, they often don’t dig deep enough into the inner workings behind human behavior.

It’s important though not to take these psychology case studies at face value. As enlightening as they can be, we must remember that they usually focus on one specific instance or individual. Thus, generalizing findings from single-case studies should be done cautiously.

To illustrate my point using numbers: let’s say we have 1 million people suffering from condition X worldwide; if only 20 unique cases have been studied so far (which would be quite typical for rare conditions), then our understanding is based on just 0.002% of the total cases! That’s why multiple sources and types of research are vital when trying to understand complex psychological phenomena fully.

Number of People with Condition X Number Of Unique Cases Studied Percentage
1,000,000 20 0.002%

In the grand scheme of things, psychology case studies are just one piece of the puzzle – albeit an essential one. They provide rich, detailed data that can form the foundation for further research and understanding. As we delve deeper into this fascinating field, it’s crucial to appreciate all the tools at our disposal – from surveys and experiments to these insightful case studies.

Importance of Case Studies in Psychology

I’ve always been fascinated by the human mind, and if you’re here, I bet you are too. Let’s dive right into why case studies play such a pivotal role in psychology.

One of the key reasons they matter so much is because they provide detailed insights into specific psychological phenomena. Unlike other research methods that might use large samples but only offer surface-level findings, case studies allow us to study complex behaviors, disorders, and even treatments at an intimate level. They often serve as a catalyst for new theories or help refine existing ones.

To illustrate this point, let’s look at one of psychology’s most famous case studies – Phineas Gage. He was a railroad construction foreman who survived a severe brain injury when an iron rod shot through his skull during an explosion in 1848. The dramatic personality changes he experienced after his accident led to significant advancements in our understanding of the brain’s role in personality and behavior.

Moreover, it’s worth noting that some rare conditions can only be studied through individual cases due to their uncommon nature. For instance, consider Genie Wiley – a girl discovered at age 13 having spent most of her life locked away from society by her parents. Her tragic story gave psychologists valuable insights into language acquisition and critical periods for learning.

Finally yet importantly, case studies also have practical applications for clinicians and therapists. Studying real-life examples can inform treatment plans and provide guidance on how theoretical concepts might apply to actual client situations.

  • Detailed insights: Case studies offer comprehensive views on specific psychological phenomena.
  • Catalyst for new theories: Real-life scenarios help shape our understanding of psychology .
  • Study rare conditions: Unique cases can offer invaluable lessons about uncommon disorders.
  • Practical applications: Clinicians benefit from studying real-world examples.

In short (but without wrapping up), it’s clear that case studies hold immense value within psychology – they illuminate what textbooks often can’t, offering a more nuanced understanding of human behavior.

Different Types of Psychology Case Studies

Diving headfirst into the world of psychology, I can’t help but be fascinated by the myriad types of case studies that revolve around this subject. Let’s take a closer look at some of them.

Firstly, we’ve got what’s known as ‘Explanatory Case Studies’. These are often used when a researcher wants to clarify complex phenomena or concepts. For example, a psychologist might use an explanatory case study to explore the reasons behind aggressive behavior in children.

Second on our list are ‘Exploratory Case Studies’, typically utilized when new and unexplored areas of research come up. They’re like pioneers; they pave the way for future studies. In psychological terms, exploratory case studies could be conducted to investigate emerging mental health conditions or under-researched therapeutic approaches.

Next up are ‘Descriptive Case Studies’. As the name suggests, these focus on depicting comprehensive and detailed profiles about a particular individual, group, or event within its natural context. A well-known example would be Sigmund Freud’s analysis of “Anna O”, which provided unique insights into hysteria.

Then there are ‘Intrinsic Case Studies’, which delve deep into one specific case because it is intrinsically interesting or unique in some way. It’s sorta like shining a spotlight onto an exceptional phenomenon. An instance would be studying savants—individuals with extraordinary abilities despite significant mental disabilities.

Lastly, we have ‘Instrumental Case Studies’. These aren’t focused on understanding a particular case per se but use it as an instrument to understand something else altogether—a bit like using one puzzle piece to make sense of the whole picture!

So there you have it! From explanatory to instrumental, each type serves its own unique purpose and adds another intriguing layer to our understanding of human behavior and cognition.

Exploring Real-Life Psychology Case Study Examples

Let’s roll up our sleeves and delve into some real-life psychology case study examples. By digging deep, we can glean valuable insights from these studies that have significantly contributed to our understanding of human behavior and mental processes.

First off, let me share the fascinating case of Phineas Gage. This gentleman was a 19th-century railroad construction foreman who survived an accident where a large iron rod was accidentally driven through his skull, damaging his frontal lobes. Astonishingly, he could walk and talk immediately after the accident but underwent dramatic personality changes, becoming impulsive and irresponsible. This case is often referenced in discussions about brain injury and personality change.

Next on my list is Genie Wiley’s heart-wrenching story. She was a victim of severe abuse and neglect resulting in her being socially isolated until she was 13 years old. Due to this horrific experience, Genie couldn’t acquire language skills typically as other children would do during their developmental stages. Her tragic story offers invaluable insight into the critical periods for language development in children.

Then there’s ‘Little Hans’, a classic Freudian case that delves into child psychology. At just five years old, Little Hans developed an irrational fear of horses -or so it seemed- which Sigmund Freud interpreted as symbolic anxiety stemming from suppressed sexual desires towards his mother—quite an interpretation! The study gave us Freud’s Oedipus Complex theory.

Lastly, I’d like to mention Patient H.M., an individual who became amnesiac following surgery to control seizures by removing parts of his hippocampus bilaterally. His inability to form new memories post-operation shed light on how different areas of our brains contribute to memory formation.

Each one of these real-life psychology case studies gives us a unique window into understanding complex human behaviors better – whether it’s dissecting the role our brain plays in shaping personality or unraveling the mysteries of fear, language acquisition, and memory.

How to Analyze a Psychology Case Study

Diving headfirst into a psychology case study, I understand it can seem like an intimidating task. But don’t worry, I’m here to guide you through the process.

First off, it’s essential to go through the case study thoroughly. Read it multiple times if needed. Each reading will likely reveal new information or perspectives you may have missed initially. Look out for any patterns or inconsistencies in the subject’s behavior and make note of them.

Next on your agenda should be understanding the theoretical frameworks that might be applicable in this scenario. Is there a cognitive-behavioral approach at play? Or does psychoanalysis provide better insights? Comparing these theories with observed behavior and symptoms can help shed light on underlying psychological issues.

Now, let’s talk data interpretation. If your case study includes raw data like surveys or diagnostic tests results, you’ll need to analyze them carefully. Here are some steps that could help:

  • Identify what each piece of data represents
  • Look for correlations between different pieces of data
  • Compute statistics (mean, median, mode) if necessary
  • Use graphs or charts for visual representation

Keep in mind; interpreting raw data requires both statistical knowledge and intuition about human behavior.

Finally, drafting conclusions is key in analyzing a psychology case study. Based on your observations, evaluations of theoretical approaches and interpretations of any given data – what do you conclude about the subject’s mental health status? Remember not to jump to conclusions hastily but instead base them solidly on evidence from your analysis.

In all this journey of analysis remember one thing: every person is unique and so are their experiences! So while theories and previous studies guide us, they never define an individual completely.

Applying Lessons from Psychology Case Studies

Let’s dive into how we can apply the lessons learned from psychology case studies. If you’ve ever studied psychology, you’ll know that case studies offer rich insights. They shed light on human behavior, mental health issues, and therapeutic techniques. But it’s not just about understanding theory. It’s also about implementing these valuable lessons in real-world situations.

One of the most famous psychological case studies is Phineas Gage’s story. This 19th-century railroad worker survived a severe brain injury which dramatically altered his personality. From this study, we gained crucial insight into how different brain areas are responsible for various aspects of our personality and behavior.

  • Lesson: Recognizing that damage to specific brain areas can result in personality changes, enabling us to better understand certain mental conditions.

Sigmund Freud’s work with a patient known as ‘Anna O.’ is another landmark psychology case study. Anna displayed what was then called hysteria – symptoms included hallucinations and disturbances in speech and physical coordination – which Freud linked back to repressed memories of traumatic events.

  • Lesson: The importance of exploring an individual’s history for understanding their current psychological problems – a principle at the heart of psychoanalysis.

Then there’s Genie Wiley’s case – a girl who suffered extreme neglect resulting in impaired social and linguistic development. Researchers used her tragic circumstances as an opportunity to explore theories around language acquisition and socialization.

  • Lesson: Reinforcing the critical role early childhood experiences play in shaping cognitive development.

Lastly, let’s consider the Stanford Prison Experiment led by Philip Zimbardo examining how people conform to societal roles even when they lead to immoral actions.

  • Lesson: Highlighting that situational forces can drastically impact human behavior beyond personal characteristics or morality.

These examples demonstrate that psychology case studies aren’t just academic exercises isolated from daily life. Instead, they provide profound lessons that help us make sense of complex human behaviors, mental health issues, and therapeutic strategies. By understanding these studies, we’re better equipped to apply their lessons in our own lives – whether it’s navigating personal relationships, working with diverse teams at work or even self-improvement.

Challenges and Critiques of Psychological Case Studies

Delving into the world of psychological case studies, it’s not all rosy. Sure, they offer an in-depth understanding of individual behavior and mental processes. Yet, they’re not without their share of challenges and criticisms.

One common critique is the lack of generalizability. Each case study is unique to its subject. We can’t always apply what we learn from one person to everyone else. I’ve come across instances where results varied dramatically between similar subjects, highlighting the inherent unpredictability in human behavior.

Another challenge lies within ethical boundaries. Often, sensitive information surfaces during these studies that could potentially harm the subject if disclosed improperly. To put it plainly, maintaining confidentiality while delivering a comprehensive account isn’t always easy.

Distortion due to subjective interpretations also poses substantial difficulties for psychologists conducting case studies. The researcher’s own bias may color their observations and conclusions – leading to skewed outcomes or misleading findings.

Moreover, there’s an ongoing debate about the scientific validity of case studies because they rely heavily on qualitative data rather than quantitative analysis. Some argue this makes them less reliable or objective when compared with other research methods such as experiments or surveys.

To summarize:

  • Lack of generalizability
  • Ethical dilemmas concerning privacy
  • Potential distortion through subjective interpretation
  • Questions about scientific validity

While these critiques present significant challenges, they do not diminish the value that psychological case studies bring to our understanding of human behavior and mental health struggles.

Conclusion: The Impact of Case Studies in Understanding Human Behavior

Case studies play a pivotal role in shedding light on human behavior. Throughout this article, I’ve discussed numerous examples that illustrate just how powerful these studies can be. Yet it’s the impact they have on our understanding of human psychology where their true value lies.

Take for instance the iconic study of Phineas Gage. It was through his tragic accident and subsequent personality change that we began to grasp the profound influence our frontal lobes have on our behavior. Without such a case study, we might still be in the dark about this crucial aspect of our neurology.

Let’s also consider Genie, the feral child who showed us the critical importance of social interaction during early development. Her heartbreaking story underscores just how vital appropriate nurturing is for healthy mental and emotional growth.

Here are some key takeaways from these case studies:

  • Our brain structure significantly influences our behavior.
  • Social interaction during formative years is vital for normal psychological development.
  • Studying individual cases can reveal universal truths about human nature.

What stands out though, is not merely what these case studies teach us individually but collectively. They remind us that each person constitutes a unique combination of various factors—biological, psychological, and environmental—that shape their behavior.

One cannot overstate the significance of case studies in psychology—they are more than mere stories or isolated incidents; they’re windows into the complexities and nuances of human nature itself.

In wrapping up, I’d say that while statistics give us patterns and trends to understand groups, it’s these detailed narratives offered by case studies that help us comprehend individuals’ unique experiences within those groups—making them an invaluable part of psychological research.

Related Posts

Cracking the Anxious Avoidant Code

Cracking the Anxious-Avoidant Code

deflection

Deflection: Unraveling the Science Behind Material Bending

Last updated 27/06/24: Online ordering is currently unavailable due to technical issues. We apologise for any delays responding to customers while we resolve this. For further updates please visit our website: https://www.cambridge.org/news-and-insights/technical-incident

We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings .

Login Alert

case study on cognitive psychology

  • > Critical Thinking in Psychology
  • > The Case Study Perspective on Psychological Research

case study on cognitive psychology

Book contents

  • Frontmatter
  • List of Illustrations and Tables
  • List of Contributors
  • 1 The Nature and Nurture of Critical Thinking
  • 2 Evaluating Experimental Research
  • 3 Critical Thinking in Quasi-Experimentation
  • 4 Evaluating Surveys and Questionnaires
  • 5 Critical Thinking in Designing and Analyzing Research
  • 6 The Case Study Perspective on Psychological Research
  • 7 Informal Logical Fallacies
  • 8 Designing Studies to Avoid Confounds
  • 9 Evaluating Theories
  • 10 Not All Experiments Are Created Equal
  • 11 Making Claims in Papers and Talks
  • 12 Critical Thinking in Clinical Inference
  • 13 Evaluating Parapsychological Claims
  • 14 Why Would Anyone Do or Believe Such a Thing?
  • 15 The Belief Machine
  • 16 Critical Thinking and Ethics in Psychology
  • 17 Critical Thinking in Psychology
  • Author Index
  • Subject Index

6 - The Case Study Perspective on Psychological Research

Published online by Cambridge University Press:  05 June 2012

The case study approach has a rich history in psychology as a method for observing the ways in which individuals may demonstrate abnormal thinking and behavior, for collecting evidence concerning the circumstances and consequences surrounding such disorders, and for providing data to generate and test models of human behavior (see Yin, 1998, for an overview). Nevertheless, the most typical methods for scientifically studying human cognition involve testing groups of healthy people – typically, college undergraduates. In their statistics and research methods courses, psychology students are trained to study the effects of manipulations that are significant across groups of participants despite considerable variation at the level of the individual. They are trained to be skeptical of reasoning from an individual case that goes against the general trend, and to be suspicious of the compelling anecdote that may be introduced to defend some position about how cognition or social interactions might work. Given this state of affairs, are the practitioners of the case study approach misguided, or can valid conclusions be drawn from findings with one patient? Can case reports that detail a client's symptoms and reactions to psychotherapy constitute scientific data? What about case studies that investigate how brain damage affects particular cognitive processes? The goal of this chapter is to demonstrate how single-case-study approaches in clinical psychology and cognitive neuropsychology have contributed to the advancement of theories and models of human cognition and to address the common concerns that researchers often have about case study methodology.

Access options

Save book to kindle.

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle .

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service .

  • The Case Study Perspective on Psychological Research
  • By Randi Martin , Rice University, Rachel Hull , Rice University
  • Edited by Robert J. Sternberg , Yale University, Connecticut , Henry L. Roediger III , Washington University, St Louis , Diane F. Halpern , Claremont McKenna College, California
  • Book: Critical Thinking in Psychology
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804632.007

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox .

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive .

Melissa Shepard MD

  • Neuroscience

The Neuroscience of Behavior: Five Famous Cases

Five patients who shaped our understanding of behavior and the brain..

Posted January 16, 2020 | Reviewed by Lybi Ma

“Considering everything, it seems we are dealing here with a special illness… There are certainly more psychiatric illnesses than are listed in our textbooks.” —Alois Alzheimer (In: Benjamin, 2018)

Once thought to be the product of demonic possession, immorality, or imbalanced humors, we now know that psychiatric symptoms are often caused by changes in the brain. Read on to learn about the people who helped us understand the brain as the driving force behind our behaviors.

By Henry Jacob Bigelow; Ratiu et al.

Phineas Gage

In 1848, John Harlow first described the case of a 25-year-old railroad foreman named Phineas Gage. Gage was a "temperate" man: hardworking, polite, and well-liked by all those around him. One day, Gage was struck through the skull by an iron rod launched in an accidental explosion. The rod traveled through the prefrontal cortex of his brain. Remarkably, he survived with no deficits in his motor function or memory . However, his family and friends noticed major changes in his personality . He became impatient, unreliable, vulgar, and was even described as developing the "animal passions of a strong man." This was the first glimpse into the important role of the prefrontal cortex in personality and social behavior (David, 2009; Thiebaut de Schotten, 2015; Benjamin, 2018).

Louis Victor Leborgne

Pierre Broca first published the case of 50-year-old Louis Victor Leborgne in 1861. Despite normal intelligence , Leborgne inexplicably lost the ability to speak. His nickname was Tan, after this became the only word he ever uttered. He was otherwise unaffected and seemed to follow directions and understand others without difficulty. After he died, Broca examined his brain, finding an abnormal area of brain tissue only in the left anterior frontal lobe. This suggested that the left and right sides of the brain were not always symmetric in their functions, as previously thought. Broca later went on to describe several other similar cases, cementing the role of the left anterior frontal lobe (now called Broca’s area) as a crucial region for producing (but not understanding) language (Dronkers, 2007; David, 2009; Thiebaut de Schotten, 2015).

Unknown, Public Domain.

Auguste Deter

Psychiatrist and neuropathologist Aloysius Alzheimer described the case of Auguste Deter, a 56-year-old woman who passed away in 1906 after she developed strange behaviors, hallucinations, and memory loss. When Alzheimer looked at her brain under the microscope, he described amyloid plaques and neurofibrillary tangles that we now know are a hallmark of the disease that bears his name. This significant discovery was the first time that a biological molecule such as a protein was linked to a psychiatric illness (Shorter, 1997; David, 2009; Kalia & Costa e Silva, 2015).

In 1933, Spafford Ackerly described the case of "JP” who, beginning at a very young age, would do crude things like defecate on others' belongings, expose himself, and masturbate in front of other children at school. These behaviors worsened as he aged, leading to his arrest as a teenager . He was examined by Ackerly who found that the boy had a large cyst, likely present from birth, that caused severe damage to his prefrontal cortices. Like the case of Phineas Gage, JP helped us understand the crucial role that the prefrontal cortex plays in judgment, decision-making , social behaviors, and personality (Benjamin, 2018).

HM (Henry Gustav Molaison)

William Scoville first described the case of HM, a 29-year-old man whom he had treated two years earlier with an experimental surgery to remove his medial temporal lobes (including the hippocampus and amygdala on both sides). The hope was that the surgery would control his severe epilepsy, and it did seem to help. But with that improvement came a very unexpected side effect: HM completely lost the ability to form certain kinds of new memories. While he was still able to form new implicit or procedural memories (like tying shoes or playing the piano), he was no longer able to form new semantic or declarative memories (like someone’s name or major life events). This taught us that memories were localized to a specific brain region, not distributed throughout the whole brain as previously thought (David, 2009; Thiebaut de Schotten, 2015; Benjamin, 2018).

Facebook /LinkedIn image: Gorodenkoff/Shutterstock

Benjamin, S., MacGillivray, L., Schildkrout, B., Cohen-Oram, A., Lauterbach, M.D., & Levin, L.L. (2018). Six landmark case reports essential for neuropsychiatric literacy. J Neuropsychiatry Clin Neurosci, 30 , 279-290.

Shorter, E., (1997). A history of psychiatry: From the era of the asylum to the age of Prozac. New York: John Wiley & Sons, Inc.

Thiebaut de Schotten, M., Dell'Acqua, F., Ratiu, P. Leslie, A., Howells, H., Cabanis, E., Iba-Zizen, M.T., Plaisant, O., Simmons, A, Dronkers, N.F., Corkin, S., & Catani, M. (2015). From Phineas Gage and Monsieur Leborgne to H.M.: Revisiting disconnection syndromes. Cerebral Cortex, 25 , 4812-4827.

David, A.S., Fleminger, S., Kopelman, M.D., Lovestone, S., & Mellers, J. (2009). Lishman's organic psychiatry: A textbook of neuropsychiatry. Hoboken, NJ: Wiley-Blackwell.

Kalia, M., & Costa e Silva, J. (2015). Biomarkers of psychiatric diseases: Current status and future prospects. Metabolism, 64, S11-S15.

Dronkers, N.F., Plaisant, O., Iba-Zizen, M.T., & Cabanis, E.A. (2007). Paul Broca's historic cases: High resolution MR Imaging of the brains of Leborgne and Lelong. Brain , 130, 1432–1441.

Scoville, W.B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiat., 20, 11-21.

Melissa Shepard MD

Melissa Shepard, MD , is an assistant professor of psychiatry at the Johns Hopkins School of Medicine.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

May 2024 magazine cover

At any moment, someone’s aggravating behavior or our own bad luck can set us off on an emotional spiral that could derail our entire day. Here’s how we can face triggers with less reactivity and get on with our lives.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting

Case Study Research Method in Psychology

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews).

The case study research method originated in clinical medicine (the case history, i.e., the patient’s personal history). In psychology, case studies are often confined to the study of a particular individual.

The information is mainly biographical and relates to events in the individual’s past (i.e., retrospective), as well as to significant events that are currently occurring in his or her everyday life.

The case study is not a research method, but researchers select methods of data collection and analysis that will generate material suitable for case studies.

Freud (1909a, 1909b) conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

This makes it clear that the case study is a method that should only be used by a psychologist, therapist, or psychiatrist, i.e., someone with a professional qualification.

There is an ethical issue of competence. Only someone qualified to diagnose and treat a person can conduct a formal case study relating to atypical (i.e., abnormal) behavior or atypical development.

case study

 Famous Case Studies

  • Anna O – One of the most famous case studies, documenting psychoanalyst Josef Breuer’s treatment of “Anna O” (real name Bertha Pappenheim) for hysteria in the late 1800s using early psychoanalytic theory.
  • Little Hans – A child psychoanalysis case study published by Sigmund Freud in 1909 analyzing his five-year-old patient Herbert Graf’s house phobia as related to the Oedipus complex.
  • Bruce/Brenda – Gender identity case of the boy (Bruce) whose botched circumcision led psychologist John Money to advise gender reassignment and raise him as a girl (Brenda) in the 1960s.
  • Genie Wiley – Linguistics/psychological development case of the victim of extreme isolation abuse who was studied in 1970s California for effects of early language deprivation on acquiring speech later in life.
  • Phineas Gage – One of the most famous neuropsychology case studies analyzes personality changes in railroad worker Phineas Gage after an 1848 brain injury involving a tamping iron piercing his skull.

Clinical Case Studies

  • Studying the effectiveness of psychotherapy approaches with an individual patient
  • Assessing and treating mental illnesses like depression, anxiety disorders, PTSD
  • Neuropsychological cases investigating brain injuries or disorders

Child Psychology Case Studies

  • Studying psychological development from birth through adolescence
  • Cases of learning disabilities, autism spectrum disorders, ADHD
  • Effects of trauma, abuse, deprivation on development

Types of Case Studies

  • Explanatory case studies : Used to explore causation in order to find underlying principles. Helpful for doing qualitative analysis to explain presumed causal links.
  • Exploratory case studies : Used to explore situations where an intervention being evaluated has no clear set of outcomes. It helps define questions and hypotheses for future research.
  • Descriptive case studies : Describe an intervention or phenomenon and the real-life context in which it occurred. It is helpful for illustrating certain topics within an evaluation.
  • Multiple-case studies : Used to explore differences between cases and replicate findings across cases. Helpful for comparing and contrasting specific cases.
  • Intrinsic : Used to gain a better understanding of a particular case. Helpful for capturing the complexity of a single case.
  • Collective : Used to explore a general phenomenon using multiple case studies. Helpful for jointly studying a group of cases in order to inquire into the phenomenon.

Where Do You Find Data for a Case Study?

There are several places to find data for a case study. The key is to gather data from multiple sources to get a complete picture of the case and corroborate facts or findings through triangulation of evidence. Most of this information is likely qualitative (i.e., verbal description rather than measurement), but the psychologist might also collect numerical data.

1. Primary sources

  • Interviews – Interviewing key people related to the case to get their perspectives and insights. The interview is an extremely effective procedure for obtaining information about an individual, and it may be used to collect comments from the person’s friends, parents, employer, workmates, and others who have a good knowledge of the person, as well as to obtain facts from the person him or herself.
  • Observations – Observing behaviors, interactions, processes, etc., related to the case as they unfold in real-time.
  • Documents & Records – Reviewing private documents, diaries, public records, correspondence, meeting minutes, etc., relevant to the case.

2. Secondary sources

  • News/Media – News coverage of events related to the case study.
  • Academic articles – Journal articles, dissertations etc. that discuss the case.
  • Government reports – Official data and records related to the case context.
  • Books/films – Books, documentaries or films discussing the case.

3. Archival records

Searching historical archives, museum collections and databases to find relevant documents, visual/audio records related to the case history and context.

Public archives like newspapers, organizational records, photographic collections could all include potentially relevant pieces of information to shed light on attitudes, cultural perspectives, common practices and historical contexts related to psychology.

4. Organizational records

Organizational records offer the advantage of often having large datasets collected over time that can reveal or confirm psychological insights.

Of course, privacy and ethical concerns regarding confidential data must be navigated carefully.

However, with proper protocols, organizational records can provide invaluable context and empirical depth to qualitative case studies exploring the intersection of psychology and organizations.

  • Organizational/industrial psychology research : Organizational records like employee surveys, turnover/retention data, policies, incident reports etc. may provide insight into topics like job satisfaction, workplace culture and dynamics, leadership issues, employee behaviors etc.
  • Clinical psychology : Therapists/hospitals may grant access to anonymized medical records to study aspects like assessments, diagnoses, treatment plans etc. This could shed light on clinical practices.
  • School psychology : Studies could utilize anonymized student records like test scores, grades, disciplinary issues, and counseling referrals to study child development, learning barriers, effectiveness of support programs, and more.

How do I Write a Case Study in Psychology?

Follow specified case study guidelines provided by a journal or your psychology tutor. General components of clinical case studies include: background, symptoms, assessments, diagnosis, treatment, and outcomes. Interpreting the information means the researcher decides what to include or leave out. A good case study should always clarify which information is the factual description and which is an inference or the researcher’s opinion.

1. Introduction

  • Provide background on the case context and why it is of interest, presenting background information like demographics, relevant history, and presenting problem.
  • Compare briefly to similar published cases if applicable. Clearly state the focus/importance of the case.

2. Case Presentation

  • Describe the presenting problem in detail, including symptoms, duration,and impact on daily life.
  • Include client demographics like age and gender, information about social relationships, and mental health history.
  • Describe all physical, emotional, and/or sensory symptoms reported by the client.
  • Use patient quotes to describe the initial complaint verbatim. Follow with full-sentence summaries of relevant history details gathered, including key components that led to a working diagnosis.
  • Summarize clinical exam results, namely orthopedic/neurological tests, imaging, lab tests, etc. Note actual results rather than subjective conclusions. Provide images if clearly reproducible/anonymized.
  • Clearly state the working diagnosis or clinical impression before transitioning to management.

3. Management and Outcome

  • Indicate the total duration of care and number of treatments given over what timeframe. Use specific names/descriptions for any therapies/interventions applied.
  • Present the results of the intervention,including any quantitative or qualitative data collected.
  • For outcomes, utilize visual analog scales for pain, medication usage logs, etc., if possible. Include patient self-reports of improvement/worsening of symptoms. Note the reason for discharge/end of care.

4. Discussion

  • Analyze the case, exploring contributing factors, limitations of the study, and connections to existing research.
  • Analyze the effectiveness of the intervention,considering factors like participant adherence, limitations of the study, and potential alternative explanations for the results.
  • Identify any questions raised in the case analysis and relate insights to established theories and current research if applicable. Avoid definitive claims about physiological explanations.
  • Offer clinical implications, and suggest future research directions.

5. Additional Items

  • Thank specific assistants for writing support only. No patient acknowledgments.
  • References should directly support any key claims or quotes included.
  • Use tables/figures/images only if substantially informative. Include permissions and legends/explanatory notes.
  • Provides detailed (rich qualitative) information.
  • Provides insight for further research.
  • Permitting investigation of otherwise impractical (or unethical) situations.

Case studies allow a researcher to investigate a topic in far more detail than might be possible if they were trying to deal with a large number of research participants (nomothetic approach) with the aim of ‘averaging’.

Because of their in-depth, multi-sided approach, case studies often shed light on aspects of human thinking and behavior that would be unethical or impractical to study in other ways.

Research that only looks into the measurable aspects of human behavior is not likely to give us insights into the subjective dimension of experience, which is important to psychoanalytic and humanistic psychologists.

Case studies are often used in exploratory research. They can help us generate new ideas (that might be tested by other methods). They are an important way of illustrating theories and can help show how different aspects of a person’s life are related to each other.

The method is, therefore, important for psychologists who adopt a holistic point of view (i.e., humanistic psychologists ).

Limitations

  • Lacking scientific rigor and providing little basis for generalization of results to the wider population.
  • Researchers’ own subjective feelings may influence the case study (researcher bias).
  • Difficult to replicate.
  • Time-consuming and expensive.
  • The volume of data, together with the time restrictions in place, impacted the depth of analysis that was possible within the available resources.

Because a case study deals with only one person/event/group, we can never be sure if the case study investigated is representative of the wider body of “similar” instances. This means the conclusions drawn from a particular case may not be transferable to other settings.

Because case studies are based on the analysis of qualitative (i.e., descriptive) data , a lot depends on the psychologist’s interpretation of the information she has acquired.

This means that there is a lot of scope for Anna O , and it could be that the subjective opinions of the psychologist intrude in the assessment of what the data means.

For example, Freud has been criticized for producing case studies in which the information was sometimes distorted to fit particular behavioral theories (e.g., Little Hans ).

This is also true of Money’s interpretation of the Bruce/Brenda case study (Diamond, 1997) when he ignored evidence that went against his theory.

Breuer, J., & Freud, S. (1895).  Studies on hysteria . Standard Edition 2: London.

Curtiss, S. (1981). Genie: The case of a modern wild child .

Diamond, M., & Sigmundson, K. (1997). Sex Reassignment at Birth: Long-term Review and Clinical Implications. Archives of Pediatrics & Adolescent Medicine , 151(3), 298-304

Freud, S. (1909a). Analysis of a phobia of a five year old boy. In The Pelican Freud Library (1977), Vol 8, Case Histories 1, pages 169-306

Freud, S. (1909b). Bemerkungen über einen Fall von Zwangsneurose (Der “Rattenmann”). Jb. psychoanal. psychopathol. Forsch ., I, p. 357-421; GW, VII, p. 379-463; Notes upon a case of obsessional neurosis, SE , 10: 151-318.

Harlow J. M. (1848). Passage of an iron rod through the head.  Boston Medical and Surgical Journal, 39 , 389–393.

Harlow, J. M. (1868).  Recovery from the Passage of an Iron Bar through the Head .  Publications of the Massachusetts Medical Society. 2  (3), 327-347.

Money, J., & Ehrhardt, A. A. (1972).  Man & Woman, Boy & Girl : The Differentiation and Dimorphism of Gender Identity from Conception to Maturity. Baltimore, Maryland: Johns Hopkins University Press.

Money, J., & Tucker, P. (1975). Sexual signatures: On being a man or a woman.

Further Information

  • Case Study Approach
  • Case Study Method
  • Enhancing the Quality of Case Studies in Health Services Research
  • “We do things together” A case study of “couplehood” in dementia
  • Using mixed methods for evaluating an integrative approach to cancer care: a case study

Print Friendly, PDF & Email

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Neurosci

Cognitive psychology-based artificial intelligence review

1 School of Information Science and Technology, Northwest University, Xi’an, China

Mengqing Wu

Xuezhu wang.

2 Medical Big Data Research Center, Northwest University, Xi’an, China

3 School of Mathematics, Northwest University, Xi’an, China

Most of the current development of artificial intelligence is based on brain cognition, however, this replication of biology cannot simulate the subjective emotional and mental state changes of human beings. Due to the imperfections of existing artificial intelligence, this manuscript summarizes and clarifies that artificial intelligence system combined with cognitive psychology is the research direction of artificial intelligence. It aims to promote the development of artificial intelligence and give computers human advanced cognitive abilities, so that computers can recognize emotions, understand human feelings, and eventually achieve dialog and empathy with humans and other artificial intelligence. This paper emphasizes the development potential and importance of artificial intelligence to understand, possess and discriminate human mental states, and argues its application value with three typical application examples of human–computer interaction: face attraction, affective computing, and music emotion, which is conducive to the further and higher level of artificial intelligence research.

Introduction

At present, in the development of artificial intelligence (AI), the scientific community is mostly based on brain cognition research ( Nadji-Tehrani and Eslami, 2020 ), which is to reproduce the real physiological activities of our human brain through computer software. This replication of the biology of the human brain cannot well simulate the subjective psychological changes ( Zador, 2019 ). For example, in terms of memory, human memory forgetting is non-active, and the more we want to forget the more memorable it becomes, while machine forgetting is an active deletion, which deviates from our psychological expectations. In the process of promoting the progress of artificial intelligence, psychology and its derived philosophy of mind play an important role directly or indirectly, can be considered as one of the fundamental supporting theories of AI. For example: The current reinforcement learning theory in AI is inspired by the behaviorist theory in psychology, i.e., how an organism gradually develops expectations of stimuli in response to rewarding or punishing stimuli given by the environment, resulting in habitual behavior that yields maximum benefit. The current challenges faced by the artificial intelligence community – the emotional response of artificial intelligence machines, decision making in ambiguous states also need to rely on breakthroughs in the corresponding fields of psychology. Psychology and its derived philosophy of mind can be considered as one of the fundamental support theories for artificial intelligence ( Miller, 2019 ). Cognitive psychology is mainly a psychological science that studies the advanced mental processes of human cognition, including the degree of thinking, deciding, reasoning, motivation and emotion. The most important feature that distinguishes humans from machines is that humans process external input by feeding back different attitudes toward things through our already internalized knowledge units about the external world, stimulating different subjective emotional orientations such as satisfaction, dissatisfaction, love, dislike and so on. These labeled emotional traits are generated by human cognitive psychology. By measuring subjective emotional changes, the internal knowledge structure is updated and the artificial intelligence machine is guided to re-learn, so that human attitudes, preferences and other subjective emotional experiences are given in AI ( Kriegeskorte and Douglas, 2018 ; Pradhan et al., 2020 ).

Research on artificial intelligence is still in the developmental stage in terms of simulating human memory, attention, perception, knowledge representation, emotions, intentions, desires, and other aspects ( Shi and Li, 2018 ). As the existing AI is not perfect, the AI system combined with cognitive psychology is the research direction of AI: Promote the development of artificial intelligence, endow the computer with the ability to simulate the advanced cognition of human beings, and carry out learning and thinking, so that computers can recognize emotions, understand human feelings, and finally achieve dialog and empathy with humans and other AI.

In terms of existing research results and methods, artificial intelligence combines new theories and methods such as psychology, brain science and computer science to conduct artificial intelligence machine simulation on people’s psychological activities, reproduce people’s psychology, integrate and promote each other, and jointly create more universal and autonomous artificial intelligence, which can better realize human–computer interaction ( Yang et al., 2018 ) and further improve the level of social intelligence. At the same time, with the development of psychology, the scope of research and the choice of research objects are more extensive and universal, making artificial intelligence products have the conditions for rapid penetration into the field of psychology, resulting in research products such as facial expression-based emotion recognition system, public opinion analysis based on big data analysis technology, intelligent medical image grading or diagnosis, suicide early warning system and intelligent surveillance management system, which in turn promotes the development of psychology and shortens the research cycle of psychology ( Branch, 2019 ).

The review of artificial intelligence based on cognitive psychology at this stage is not comprehensive enough. This manuscript does the following: (a) introduce the current situation and progress of artificial intelligence research on cognitive psychology in recent years; (b) analyze the experimental data on the application examples of cognitive psychology in artificial intelligence; (c) summarize and outlook the related development trend.

Research status

Research related to artificial intelligence in cognitive psychology is trending in recent years. In the mid-1980s, the term “Kansei Engineeirng” was introduced in the Japanese science and technology community ( Ali et al., 2020 ). They interpret sensibility as human psychological characteristics, study people’s perceptual needs with engineering methods, and then conduct in-depth research on people’s perceptual information, and the scope of their research is the human psychological perceptual activities.

Professor Wang Zhiliang of University of Science and Technology Beijing proposed the concept of “artificial psychology” on this basis: The artificial psychological theory is to use the method of information science to realize the more comprehensive content of people’s psychological activities. He broadened the range of psychological characteristics involved in “Kansei Engineeirng,” including low-level psychological activities and high-level processes of psychological activities. It is the reflection of human brain on objective reality, which makes artificial psychology have a new meaning and broader content.

Minsky, one of the founders of artificial intelligence, proposed the theory of “society of mind” in his 1985 monograph “The Society of Mind” ( Auxier, 2006 ), which attempts to combine the approaches of developmental psychology, dynamic psychology and cognitive psychology with the ideas of artificial intelligence and computational theory. Since then, the research on endowing the computer with emotional ability and enabling the computer to understand and express emotions has set off an upsurge in the computer field.

In 1978, deepmind team put forward the theory of mind ( Rabinowitz et al., 2018 ). In a broad sense, it refers to the ability of human beings to understand the psychological state of themselves and others, including expectations, beliefs and intentions, and to predict and explain other people’s behaviors based on this. In 2017, in the case study of deepmind team, the research team selected “shape preference” as the entry point for detecting neural networks. It found that, like human beings, the network’s perception of shape exceeded its preference for color and material, which proved that neural networks also have “shape preference” ( Ritter et al., 2017 ). In 2018, the Deepmind team open sourced the simulation psychology laboratory Psychlab, which uses knowledge in cognitive psychology and other fields to study the behavior of artificial agents in controlled environments, thereby simulating human behavior ( Leibo et al., 2018 ).

In 2020, Taylor incorporated cognitive psychology into the emerging field of explainable artificial intelligence (XAI) with the aim of improving the interpretability, fairness, and transparency of machine learning. Figure 1 shows the evolution of AI in cognitive psychology ( Taylor and Taylor, 2021 ).

An external file that holds a picture, illustration, etc.
Object name is fnins-16-1024316-g001.jpg

The evolution of artificial intelligence in cognitive psychology.

Example of cognitive psychological artificial intelligence applications

Cognitive psychology has been very instructive for the development of AI, and current AI design makes extensive reference to human cognitive models. The process of human mental activity is simulated in various aspects such as attention, encoding, and memory. Cognitive psychological artificial intelligence has been researched in many fields. In this manuscript, we study the basic contents and latest progress of psychology and brain science, and systematically analyze and summarize three typical application scenarios: face attraction, affective computing, and music emotion. These examples guide the learning of AI through the higher mental processes of human cognition, including subjective mental orientations such as thinking and emotion. Artificial intelligence is trained to recognize emotions, understand human feelings, and replicate the human psyche, which in turn accelerates research in cognitive psychology.

Face attraction

Different aesthetic judgments of human faces are one of the most common manifestations of human visual psychology, which is an important source of social emotion generation and plays a role in human social interaction and communication ( Han et al., 2020 ). In daily life, most people think that beauty is a subjective feeling, however, scientists have broken the long-held belief that beauty lacks objectivity and found a high degree of consistency in human perception of facial beauty across race, age, gender, social class, and cultural background. This observation also suggests that face attractiveness reflects to some extent general human psychological commonalities.

SCUT-FBP5500, a database for face attractiveness prediction, was collected and released by the Human–Computer Interaction Laboratory of South China University of Technology. The dataset has 5,500 face frontal photos with different attributes (male/female, age and so on) and different feature labels including face feature point coordinates, face value score (1∼5), face value score distribution and so on. These mental preference features were experimentally used as training data to form mental state embeddings. Then different computer models (AlexNet, ResNet-18, ResNeXt-50) were used for classification, regression and ranking to form a deep learning-based face attractiveness template ( Huang, 2017 ). Evaluate the benchmark according to various measurement indicators, including Pearson correlation coefficient (PC), maximum absolute error (MAE) and root mean square error (RMSE) evaluation model. We used the five-fold method to analyze the performance of the face attractiveness templates under different computer models, and found that the Pearson correlation coefficient was above 0.85, the maximum absolute error was around 0.25, and the root mean square error was between 0.3 and 0.4 ( Liang et al., 2018 ).

Elham Vahdati proposes and evaluates a face facial attractiveness prediction method using facial parts as well as a multi-task learning scheme. First, face attractiveness prediction is performed using a deep convolutional neural network (CNN) pre-trained on a massive face dataset to automatically learn advanced face representations. Next, the deep model is extended to other facial attribute recognition tasks using a multi-task learning scheme to learn the best shared features for three related tasks (such as facial beauty assessment, gender recognition, and race recognition). To further improve the accuracy of the attractiveness computation, specific regions of the face image (such as left eye, nose, and mouth) as well as the entire face are fed into a multi-stream CNN (such as three dual-stream networks). Each dual-stream network uses partial features of the face and the full face as input. Extensive experiments were conducted on the SCUT-FBP5500 benchmark dataset, with a significant improvement in accuracy ( Vahdati and Suen, 2021 ).

Irina Lebedeva, Fangli Ying learned a large number of aesthetic preferences shared by many people during the meta-training process. The model is then used on new individuals with a small sample of rated images in the meta-testing phase. These experiments were conducted on a facial beauty dataset that included faces of different races, genders, and age groups and were scored by hundreds of volunteers with different social and cultural backgrounds. The results show that the proposed method is effective in learning individual beauty preferences from a limited number of annotated images and outperforms existing techniques for predicting facial beauty in terms of quantitative comparisons ( Lebedeva et al., 2022 ).

We summarize the theoretical concepts of artificial intelligence based on cognitive psychology, and do relevant research on this basis. Since the database of face attractiveness needs to be characterized by large samples, diversity and universality, in 2016, we built a Chinese face database containing different ethnicities of different genders. In 2017, considering that the contour structure, geometric features and texture features of faces change with age, in order to study the impact of different face features on the evaluation of face attractiveness under different age groups, we built a middle-aged and elderly face database. In 2018, we used migration learning to migrate the face feature point templates of face recognition to the construction of face attractiveness face templates, and constructed a geometric feature-based face attractiveness evaluation model. In 2019, we established a face database of Chinese males in different eras, and studied the aesthetic characteristics and trends of Chinese males from the perspective of era development. An 81-point face feature point template for face attractiveness analysis was also proposed through feature vector analysis of face image quantification and light model. In 2020, a comprehensive facial attractiveness evaluation system was proposed considering the combined effects of face structure features, facial structure features, and skin texture features on face attractiveness scores, and the experimental results are shown in Table 1 , when these three features are integrated with each other, the Pearson correlation coefficient reached the highest value of 0.806 ( Zhao et al., 2019a , b , c ; Zhao et al., 2020 ).

Performance of face attractiveness prediction with different features.

Predictive performanceFSLBPF × SF × LBPS × LBPF × S × LBP
LR0.5020.6160.6580.6830.6540.6370.722
KNN0.6190.6720.6940.7530.7710.7820.794
SVM-LIN0.6490.7380.7120.7680.7320.7240.797
SVM-RBF0.7020.7130.7410.7630.7540.7810.806

Through years of research at the intersection of artificial intelligence + face attractiveness, it is shown that although it may be difficult to establish a clear, interpretable and accepted set of rules to define face attractiveness. However, it is possible to explore the relationship between ordinary faces and attractive faces, and the qualitative study of face aesthetic preferences can be described quantitatively by artificial intelligence. The results highly fit contemporary aesthetic standards, demonstrating that it is feasible for computers to simulate advanced human cognitive abilities to recognize emotions and understand human feelings, and that the development of artificial intelligence based on cognitive psychology has potential and significance.

Affective computing

Emotion is a psychological state of positive or negative attitude toward external things and objective reality, and can be defined as a group of psychological phenomena expressed in the form of emotions, feelings or passions. Emotions not only refer to human emotions, but also refer to all human sensory, physical, psychological and spiritual feelings. Damasio found in his research that due to the defect of the channel between the cerebral cortex (Cortex: control of logical reasoning) and the limbic system (Limbic System: control of emotion), his “patients” despite having normal or even supernormal rational thinking and logical reasoning. However, their decision-making ability has encountered serious obstacles ( Bechara et al., 2000 ), proving that human intelligence is not only manifested in normal rational thinking and logical reasoning abilities, but also in rich emotional abilities.

More than 40 years ago, Nobel Laureate Herbert Simon emphasized in cognitive psychology that problem solving should incorporate the influence of emotions ( Simon, 1987 ). As one of the founders of artificial intelligence, Professor Marvin Minsky of the Massachusetts Institute of technology of the United States first proposed the ability to make computers have emotion. In his monograph the society of mind, he emphasized that emotion is an indispensable and important ability for machines to achieve intelligence. The concept of affective computing was first introduced by Picard (1995), when she stated that “affective computing is computing that can measure and analyze and influence emotions in response to human outward expressions” ( Picard, 2003 ). This opened up a new field of computer science, with the idea that computers should have emotions and be able to recognize and express them as humans do, thus making human–computer interaction more natural.

As an important means of interpersonal communication, emotion conveys the information of emotional state and explains complex psychological activities and behavioral motives through physiological indicators such as human language text, intonation volume change, facial expression, action posture and brain wave.

In, Ekman (1972) an American professor of psychology, proposed a method for the expression of facial emotions (Facial Motor Coding System FACS) ( Buhari et al., 2020 ). By the combination of different coding and motor units, complex expression changes can be formed on the face. Facial motion coding system FACS can analyze emotions using deep region and multi-label learning (DRML) architecture, using feedforward functions to induce important facial regions, and able to learn weights to capture structural information of the face. The resulting network is end-to-end trainable and converges faster than alternative models with better learning of AU relationships ( Zhao et al., 2016 ). The corresponding emotion computation formula can be derived based on the facial motion encoding, as Table 2 shown.

Emotion formula.

ExpressionFormula of AU
HappinessAU6 + AU12
SadnessAU1 + AU4 + AU15
SurpriseAU1 + AU2 + AU5 + AU26
FearAU1 + AU2 + AU4 + AU5 +
AU7 + AU20 + AU26
AngerAU4 + AU5 + AU7 + AU23
DisgustAU9 + AU15 + AU16
ContemptAU12 + AU14

In the process of human information interaction, speech is the most common way for people to communicate. As the most basic audiovisual signal, speech cannot only identify different vocalists, but also effectively distinguish different emotional states. International research on emotional speech focuses on the analysis of acoustic features of emotions, such as rhythm, sound source, resonance peaks and spectrum and so on ( Albanie et al., 2018 ). In recent years, deep learning has been widely studied and has many applications in speech emotion computation. Dongdong Li proposed a bidirectional long short-term memory network with directed self-attention (BLSTM-DSA). Long Short Term Memory (LSTM) neural networks can learn long-term dependencies from learned local features. In addition, Bi-directional Long Short-Term Memory(Bi-LSTM) can make the structure more robust through the direction mechanism, and the direction analysis can better identify the hidden emotions in sentences. Also, the autocorrelation of speech frames can be used to deal with the problem of missing information, thus introducing a self-attention mechanism in Speech Emotion Recognition (SER). When evaluated on the Interactive Emotional Binary Motion Capture (IEMOCAP) database and the Berlin Emotional Speech Database (EMO-DB), BLSTM-DSA achieves a recognition rate of over 70% for each algorithm on the speech emotion recognition task ( Li et al., 2021 ).

Human posture often carries emotional information during interaction. Researchers have combined human posture with artificial intelligence to quantitatively assess the external representation of a person’s mental state in the face of different situations through a series of movement and body information capture devices. For example, the intelligent seat is applied to the driver’s seat of the vehicle to dynamically monitor the emotional state of the driver and give timely warnings. Some scientists in Italy also conduct automatic emotional analysis on office staff through a series of posture analysis to design a more comfortable office environment.

Electroencephalographic(EEG) is a graph obtained by amplifying and recording the spontaneous biological potential of the brain from the scalp through precise electronic instruments. It has been widely used in the field of emotion recognition. The DEAP dataset used to study human emotional states ( Luo et al., 2020 ), recording EEG and peripheral physiological signals from 32 participants watching 40 one-minute long music video clips. Participants rated each video according to arousal, potency, like/dislike, dominance, and familiarity. Correlations between EEG signal frequencies and participants’ ratings were investigated by emotional label retrieval, and decision fusion was performed on classification results from different modalities. The experiments obtained an average recognition rate of up to 84.2% and up to 98% by identifying a single emotional state, while for two, three and four emotions, the average recognition rate was up to 90.2, 84.2, and 80.9%, respectively. Table 3 shows the validated classification accuracy of the DEAP dataset based on different recognition models ( Khateeb et al., 2021 ).

Classification accuracy of deap dataset based on different recognition models.

StimulusClassifierEmotionsSubjectsAccuracy
VideoGELM43269.67
AudioMLP43078.11
VideoNearest neighbour43273.62
VideoDomain-adaptation51439.05
VideoSVMValence-dominance1063.04
VideoK-NN23069.50

Our research group has also carried out relevant research on multimodal affective computing, and has a patent for automatic diagnosis of depression based on speech and facial expression: By combining facial gesture features, we propose a new double dictionary idea with gesture robustness. In 2016, feature extraction and evaluation of depressed speech were performed, and in the following year, we proposed to use the change of expression of depressed patients as one of the evaluation indicators to determine whether they suffer from depression as well. Figures 2 and ​ and3 3 shows the data.

An external file that holds a picture, illustration, etc.
Object name is fnins-16-1024316-g002.jpg

Speech emotion recognition rate.

An external file that holds a picture, illustration, etc.
Object name is fnins-16-1024316-g003.jpg

Face facial emotion recognition rate.

In 2018, a new automatic depression assistant discrimination algorithm integrating speech and facial expression was proposed. Firstly, the signal enhancement was performed for depressed speech; the fundamental frequency and the first three resonance peaks features were extracted by the inverse spectral method, and the energy, short-time average amplitude and Mel-Frequency Ceptral Coefficients(MFCC) features were extracted; the speech recognition model and the facial expression recognition model were established to assist in judging whether a person has depression; finally, the Adaboost algorithm based on back propagation(BP) neural network was proposed and validated in a practical situation for an automatic depression-assisted detection system. As Table 4 shown, the recognition rate of the depression detection algorithm based on fused speech and facial emotion reached 81.14%. The development of artificial intelligence provides a more objective judgment basis for the diagnosis of depression in psychological medical health, which has cutting-edge and application value ( Zhao et al., 2019d ).

The integration of voice and facial expression recognition rate.

Speech recognition results (%)Facial expression recognition results (%)After fusion recognition results (%)
Before the speech signal enhancement62.485.575.75
Enhanced speech signal78.885.582.29

Affective computing is a combination of computational science with physiology science, psychological science, cognitive science and other disciplines. Based on the common cognition and knowledge structure of human on different emotional expressions, it studies the emotions in the process of human-human interaction and human–computer interaction, and guides the design of artificial intelligence with emotion recognition and feedback functions, understands human emotional intentions and makes appropriate responses to achieve human–computer emotional interaction.

Music emotion

Extensive research on musical emotions suggests that music can trigger emotional activity in listeners. Scientists believe that when a person is in a beautiful and pleasant musical environment, the body secretes an active substance that is beneficial to health and helps eliminate psychological factors that cause tension, anxiety, depression and other adverse psychological states ( Rahman et al., 2021 ). People’s preference for different kinds of music is not without rules, after psychological cognition and data test, there is a precise music signal α value can measure the ear-pleasant degree. The closer the music signal α is to the value 1, the better it sounds. The value of α also can be obtained by artificial intelligence ( Banerjee et al., 2016 ). This shows that people’s psychological state toward music can be judged by machines, and further research can be based on this law to simulate good-sounding music in line with public aesthetics and realize the interaction between emotions and machines.

As Figure 4 , a team of researchers from the University of Reading and the University of Plymouth in the UK developed and evaluated an affective brain-computer music interface (aBCMI) for detecting a user’s current emotional state and attempting to modulate it by playing music generated by a music composition system based on specific emotional goals.

An external file that holds a picture, illustration, etc.
Object name is fnins-16-1024316-g004.jpg

The proposed affective brain-computer music interface (aBCMI). The system consists of five key elements: (A) . The user of the system (B) . The user’s physiological signal acquisition module (including the electroencephalogram (EEG), electrocardiogram (ECG) and respiration rate) (C) . An emotional state detection system for identifying a current emotional state that a user is experiencing (D) . A case-based reasoning system that determines how a user moves from his current emotional state to a new target emotional state (E) . The music generator is used to play music for the user. The case-based reasoning system identifies the most appropriate emotional trajectory and moves them to the target emotional state.

The affective state detection method achieved statistically significant online single-trial classification accuracy in classifying user potency in seven-eighths of participants and in classifying user arousal in three-eighths of participants. The mean accuracy for affective state detection was 53.96% (chemotaxis) and 53.80% (arousal) ( Daly et al., 2016 ). The experimental data also demonstrate that the aBCMI system is able to detect the emotional states of most of the participants and generate music based on their emotional states to achieve “happy” and “calm” mental states. By visualizing abstract mental states, extracting features from changes in emotional states, and quantifying different emotions in different musical environments, the aBCMI system can effectively characterize and provide feedback to regulate current emotional states, realizing the combination of psychology and artificial intelligence.

Musical emotion regulation aims to record physiological indicators from users with a signal acquisition component in order to capture the cognitive and physiological processes associated with their current affective state. Features are extracted from the physiological signals that most likely correspond to changes in the user’s affective state. Then the case-based reasoning system is used to determine the best method to transfer them to the target emotional state, so as to move the user to the target emotional state.

Dapeng Li and Xiaoguang Liu have also combined incremental music teaching methods to assist therapy. The combination of contextual teaching and artificial intelligence attention theory makes the assisted treatment system more targeted. The design of treatment content more fully takes into account the patient’s actual situation. When designing the music teaching-assisted treatment context, the physician will fully consider various factors of the patient, from the perspective of mobilizing the patient’s interest in the music learning work, to achieve the full activity of brain neurons and more fully access the pathological information around the lesion to promote autoimmunity and subsequent treatment ( Li and Liu, 2022 ).

The evocation of musical emotions is based on functional connections between sensory, emotional and cognitive areas of the brain, including subcortical reward networks common to humans and other animals, such as the nucleus accumbens, amygdala and dopaminergic systems, as well as the evolutionary end of the cerebral cortex with complex cognitive functions. Musical emotions regulate the activity of almost all limbic and paralimbic structures of the brain. Music can induce different emotions, and we can also use music emotions to guide the development of artificial intelligence. Further research is expected in such fields as music generation, education, medical treatment and so on.

Summary and outlook

Through systematic analysis and application examples, this manuscript points out that the artificial intelligence system combined with cognitive psychology is the development direction of artificial intelligence: to promote the development of artificial intelligence, to give computers the ability to simulate human’s advanced cognition, and to learn and think, so that computers can recognize emotions and understand human feelings, and finally realize dialog and empathy with human beings and other artificial intelligence. Artificial intelligence with human psychological cognition cannot only simulate the rational thinking of “brain,” but also reproduce the perceptual thinking of “heart,” and can realize the emotional interaction between people and machines, machines and machines, similar to human communication.

Nowadays, the theory of artificial intelligence based on cognitive psychology also has imperfections: due to the differences in race, region and growth environment, the evaluation criteria for each subject are not completely consistent, and the random sampling difference is even greater Moreover, mental activities are generally ambiguous and chaotic.

The future interdisciplinary combination of AI and psychology will focus on the following aspects: big data medical, human–computer interaction, brain-computer interface, general artificial intelligence and so on. Through the combination of cognitive science in psychology and AI, breakthroughs in many aspects will be achieved based on multimodal data and extraction of high-dimensional data. The two accomplish each other, complementing each other and developing together.

This manuscript provides a research direction for the development of artificial intelligence to simulate machines with human emotions and to realize human–computer interaction. It has the characteristics of cutting-edge science, which is not only of great theoretical significance, but also has good development potential and application prospects. It is hoped that it can provide research basis for follow-up researchers.

Author contributions

JZ formulated the research manuscript idea, provided substantial edits to the manuscript and final draft, and aided in the interpretation of the manuscript. MW wrote the main body of the manuscript, participated in revisions, and submitted the final manuscript. LZ contributed to the formulation of the research manuscript idea, provided substantial edits to the manuscript and the final draft, and aided in the interpretation of the manuscript. XW and JJ participated in the conception of the idea and revised the manuscript. All authors contributed to the article and approved the submitted version.

This work was supported by National Natural Science Foundation of China: 12071369 and Key Research and Development Program of Shaanxi (No. 2019ZDLSF02-09-02).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

  • Albanie S., Nagrani A., Vedaldi A., Zisserman A. (2018). “ Emotion recognition in speech using cross-modal transfer in the wild ,” in Proceedings of the 26th ACM international conference on multimedia (New York, NY: Association for Computing Machinery; ), 292–301. 10.1145/3240508.3240578 [ CrossRef ] [ Google Scholar ]
  • Ali S., Wang G., Riaz S. (2020). Aspect based sentiment analysis of ridesharing platform reviews for kansei engineering. IEEE Access 8 173186–173196. 10.1109/ACCESS.2020.3025823 [ CrossRef ] [ Google Scholar ]
  • Auxier R. E. (2006). The pluralist: An editorial statement. The pluralist. Champaign, IL: University of Illinois Press, v–viii. [ Google Scholar ]
  • Banerjee A., Sanyal S., Patranabis A., Banerjee K., Guhathakurta T., Sengupta R., et al. (2016). Study on brain dynamics by non linear analysis of music induced EEG signals. Phys. A Stat. Mech. Appl. 444 110–120. 10.1016/j.physa.2015.10.030 [ CrossRef ] [ Google Scholar ]
  • Bechara A., Damasio H., Damasio A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cereb. Cortex 10 295–307. 10.1093/cercor/10.3.295 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Branch B. (2019). Artificial intelligence applications and psychology: An overview. Neuropsychopharmacol. Hung. 21 119–126. [ PubMed ] [ Google Scholar ]
  • Buhari A. M., Ooi C. P., Baskaran V. M., Phan R. C., Wong K., Tan W. H. (2020). Facs-based graph features for real-time micro-expression recognition. J. Imaging 6 : 130 . 10.3390/jimaging6120130 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Daly I., Williams D., Kirke A., Weaver J., Malik A., Hwang F., et al. (2016). Affective brain–computer music interfacing. J. Neural Eng. 13 : 046022 . [ PubMed ] [ Google Scholar ]
  • Han S., Liu S., Li Y., Li W., Wang X., Gan Y., et al. (2020). Why do you attract me but not others? Retrieval of person knowledge and its generalization bring diverse judgments of facial attractiveness. Soc. Neurosci. 15 505–515. 10.1080/17470919.2020.1787223 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Huang C. (2017). “ Combining convolutional neural networks for emotion recognition ,” in Proceedings of the 2017 IEEE MIT undergraduate research technology conference (URTC) (Cambridge, MA: IEEE; ), 1–4. 10.1109/URTC.2017.8284175 [ CrossRef ] [ Google Scholar ]
  • Khateeb M., Anwar S. M., Alnowami M. (2021). Multi-domain feature fusion for emotion classification using DEAP dataset. IEEE Access 9 12134–12142. 10.1109/ACCESS.2021.3051281 [ CrossRef ] [ Google Scholar ]
  • Kriegeskorte N., Douglas P. K. (2018). Cognitive computational neuroscience. Nat. Neurosci. 21 1148–1160. 10.1038/s41593-018-0210-5 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lebedeva I., Ying F., Guo Y. (2022). Personalized facial beauty assessment: A meta-learning approach. Vis. Comput. 1–13. 10.1007/s00371-021-02387-w [ CrossRef ] [ Google Scholar ]
  • Leibo J. Z., d’Autume C. D. M., Zoran D., Amos D., Beattie C., Anderson K., et al. (2018). Psychlab: A psychology laboratory for deep reinforcement learning agents. arXiv [Preprint]. arXiv:1801.08116, [ Google Scholar ]
  • Li D., Liu X. (2022). Design of an incremental music Teaching and assisted therapy system based on artificial intelligence attention mechanism. Occup. Ther. Int. 2022 : 7117986 . 10.1155/2022/7117986 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Retracted
  • Li D., Liu J., Yang Z., Sun L., Wang Z. (2021). Speech emotion recognition using recurrent neural networks with directional self-attention. Expert Syst. Appl. 173 : 114683 . 10.1016/j.eswa.2021.114683 [ CrossRef ] [ Google Scholar ]
  • Liang L., Lin L., Jin L., Xie D., Li M. (2018). “ SCUT-FBP5500: A diverse benchmark dataset for multi-paradigm facial beauty prediction ,” in Proceedings of the 2018 24th international conference on pattern recognition (ICPR) (Beijing: IEEE; ), 1598–1603. 10.1109/ICPR.2018.8546038 [ CrossRef ] [ Google Scholar ]
  • Luo Y., Fu Q., Xie J., Qin Y., Wu G., Liu J., et al. (2020). EEG-based emotion classification using spiking neural networks. IEEE Access 8 46007–46016. 10.1109/ACCESS.2020.2978163 [ CrossRef ] [ Google Scholar ]
  • Miller T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 267 1–38. 10.1016/j.artint.2018.07.007 [ CrossRef ] [ Google Scholar ]
  • Nadji-Tehrani M., Eslami A. (2020). A brain-inspired framework for evolutionary artificial general intelligence. IEEE Trans. Neural Netw. Learn. Syst. 31 5257–5271. 10.1109/TNNLS.2020.2965567 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Picard R. W. (2003). Affective computing: Challenges. Int. J. Hum. Comput. Stud. 59 55–64. 10.1016/S1071-5819(03)00052-1 [ CrossRef ] [ Google Scholar ]
  • Pradhan N., Singh A. S., Singh A. (2020). Cognitive computing: Architecture, technologies and intelligent applications. Mach. Learn. Cogn. Comput. Mob. Commun. Wirel. Netw. 3 25–50. 10.1002/9781119640554.ch2 [ CrossRef ] [ Google Scholar ]
  • Rabinowitz N., Perbet F., Song F., Zhang C., Eslami S. A., Botvinick M. (2018). “ Machine theory of mind ,” in Proceedings of the international conference on machine learning (Orlando, FL: PMLR; ), 4218–4227. [ Google Scholar ]
  • Rahman J. S., Gedeon T., Caldwell S., Jones R., Jin Z. (2021). Towards effective music therapy for mental health care using machine learning tools: Human affective reasoning and music genres. J. Artif. Intell. Soft Comput. Res. 11 5–20. 10.2478/jaiscr-2021-0001 [ CrossRef ] [ Google Scholar ]
  • Ritter S., Barrett D. G., Santoro A., Botvinick M. M. (2017). “ Cognitive psychology for deep neural networks: A shape bias case study ,” in Proceedings of the international conference on machine learning (Cancun: PMLR; ), 2940–2949. [ Google Scholar ]
  • Shi Y., Li C. (2018). “ Exploration of computer emotion decision based on artificial intelligence ,” in Proceedings of the 2018 international conference on virtual reality and intelligent systems (ICVRIS) (Hunan: IEEE; ), 293–295. 10.1109/ICVRIS.2018.00078 [ CrossRef ] [ Google Scholar ]
  • Simon H. A. (1987). Making management decisions: The role of intuition and emotion. Acad. Manag. Perspect. 1 57–64. 10.5465/ame.1987.4275905 [ CrossRef ] [ Google Scholar ]
  • Taylor J. E. T., Taylor G. W. (2021). Artificial cognition: How experimental psychology can help generate explainable artificial intelligence. Psychon. Bull. Rev. 28 454–475. 10.3758/s13423-020-01825-5 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Vahdati E., Suen C. Y. (2021). Facial beauty prediction from facial parts using multi-task and multi-stream convolutional neural networks. Int. J. Pattern Recognit. Artif. Intell. 35 : 2160002 . 10.1142/S0218001421600028 [ CrossRef ] [ Google Scholar ]
  • Yang G. Z., Dario P., Kragic D. (2018). Social robotics—trust, learning, and social interaction. Sci. Rob. 3 : eaau8839 . 10.1126/scirobotics.aau8839 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zador A. M. (2019). A critique of pure learning and what artificial neural networks can learn from animal brains. Nat. Commun. 10 1–7. 10.1038/s41467-019-11786-6 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zhao J., Cao M., Xie X., Zhang M., Wang L. (2019a). Data-driven facial attractiveness of Chinese male with epoch characteristics. IEEE Access 7 10956–10966. 10.1109/ACCESS.2019.2892137 [ CrossRef ] [ Google Scholar ]
  • Zhao J., Deng F., Jia J., Wu C., Li H., Shi Y., et al. (2019b). A new face feature point matrix based on geometric features and illumination models for facial attraction analysis. Discrete Contin. Dyn. Syst. S 12 1065–1072. 10.3934/dcdss.2019073 [ CrossRef ] [ Google Scholar ]
  • Zhao J., Su W., Jia J., Zhang C., Lu T. (2019c). Research on depression detection algorithm combine acoustic rhythm with sparse face recognition. Cluster Comput. 22 7873–7884. 10.1007/s10586-017-1469-0 [ CrossRef ] [ Google Scholar ]
  • Zhao J., Zhang M., He C., Zuo K. (2019d). Data-driven research on the matching degree of eyes, eyebrows and face shapes. Front. Psychol. 10 : 1466 . 10.3389/fpsyg.2019.0146 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zhao J., Zhang M., He C., Xie X., Li J. (2020). A novel facial attractiveness evaluation system based on face shape, facial structure features and skin. Cogn. Neurodynamics 14 643–656. 10.1007/s11571-020-09591-9 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zhao K., Chu W. S., Zhang H. (2016). “ Deep region and multi-label learning for facial action unit detection ,” in Proceedings of the IEEE conference on computer vision and pattern recognition (Las Vegas, NV: IEEE; ), 3391–3399. 10.1109/CVPR.2015.7298833 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Study.com

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

IMAGES

  1. Case Study: Definition, Examples, Types, and How to Write

    case study on cognitive psychology

  2. Case Study : Cognitive Behavioral Therapy

    case study on cognitive psychology

  3. (PDF) CLARITY: A case study application of a cognitive behavioural

    case study on cognitive psychology

  4. Psychology

    case study on cognitive psychology

  5. Case study

    case study on cognitive psychology

  6. Cognitive Approach In Psychology

    case study on cognitive psychology

VIDEO

  1. Senior Project: Psychology

  2. Unit 5- COGNITIVE PSYCHOLOGY: Memory

  3. Integrative Science Symposium: Psychology in an Economic World

  4. Dementia and Personhood: Facts and Myths (Conclusion)

  5. PROBLEM SOLVING IN COGNITIVE PSYCHOLOGY

  6. My experience of Cognitive Behaviour Therapy (CBT)

COMMENTS

  1. Case Study 1: A 55-Year-Old Woman With Progressive Cognitive

    CASE PRESENTATION. A 55-year-old right-handed woman presented with a 3-year history of cognitive changes. Early symptoms included mild forgetfulness—for example, forgetting where she left her purse or failing to remember to retrieve a take-out order her family placed—and word-finding difficulties.

  2. Key Study: HM's case study (Milner and Scoville, 1957)

    HM's case study is one of the most famous and important case studies in psychology, especially in cognitive psychology. It was the source of groundbreaking new knowledge on the role of the hippocampus in memory. Background Info "Localization of function in the brain" means that different parts of the brain have different functions ...

  3. Case Study: Cognitive Behavioral Therapy

    Monson, C. M. & Shnaider, P. (2014). Treating PTSD with cognitive-behavioral therapies: Interventions that work. Washington, DC: American Psychological Association. Updated July 31, 2017. Date created: 2017. This case example explains how Jill's therapist used a cognitive intervention with a written worksheet as a starting point for engaging in ...

  4. Patient H.M. Case Study In Psychology: Henry Gustav Molaison

    H.M. soon became a major case study of interest for psychologists and neuroscientists who studied his memory deficits and cognitive abilities to better understand the hippocampus and its function. When H.M. died on December 2, 2008, at the age of 82, he left behind a lifelong legacy of scientific contribution.

  5. Cognitive Approach In Psychology

    Cognitive psychology is the scientific study of the mind as an information processor. It concerns how we take in information from the outside world, and how we make sense of that information. Cognitive psychology studies mental processes, including how people perceive, think, remember, learn, solve problems, and make decisions.

  6. Cognitive Psychology: The Science of How We Think

    Cognitive psychology is the study of internal mental processes—all of the workings inside your brain, including perception, thinking, memory, attention, language, problem-solving, and learning. Learning about how people think and process information helps researchers and psychologists understand the human brain and assist people with ...

  7. The Case of Molly L.: Use of a Family Cognitive-Behavioral Treatment

    The present case study illustrates how a family cognitive-behavioral therapy (FCBT) was used to treat a 9-year-old girl diagnosed with separation anxiety disorder and agoraphobia without panic. The first half of treatment focused on teaching specific coping skills, whereas the second half consisted of exposure tasks that provided opportunities ...

  8. Case Series in Cognitive Neuropsychology: Promise, Perils and Proper

    Abstract. Schwartz & Dell (2010) advocated for a major role for case series investigations in cognitive neuropsychology. They defined the key features of this approach and presented a number of arguments and examples illustrating the benefits of case series studies and their contribution to computational cognitive neuropsychology.

  9. Introduction to Clinical Neuropsychology: Case Studies in Cognitive

    Despite our advances in functional brain imaging the study of clinical cases in neuropsychology is still important to determine the causal role of certain brain regions in contributing to a given cognitive process. Much of what we know about the brain systems underlying perception, attention, memory, and language has been first derived from ...

  10. Olfactory memory: a case study in cognitive psychology

    Olfactory memory: a case study in cognitive psychology J Psychol. 1996 May;130(3):309-19. doi: 10.1080/00223980.1996.9915012. Author J M Annett 1 ... leading to doubts among some critics of cognitive psychology regarding the usefulness of the modern information-processing approach. In particular, current cognitive models of memory address ...

  11. PDF Case Example: Nancy

    A Case Example: Nanry I. 207 she felt sad all the time, felt discouraged about the future, felt guilty all the time, was self-critical, cried often, had difficulty making decisions, had difficulty getting anything done, and had early morning awaken- ings. Her total BDI score was 21, indicating a moderate level of depres- sive symptoms.

  12. Case Study: Definition, Examples, Types, and How to Write

    A case study is an in-depth study of one person, group, or event. In a case study, nearly every aspect of the subject's life and history is analyzed to seek patterns and causes of behavior. Case studies can be used in many different fields, including psychology, medicine, education, anthropology, political science, and social work.

  13. Cognitive Psychology: Experiments & Examples

    Cognitive Psychology: Experiments & Examples. Cognitive psychology reveals, for example, insights into how we think, reason, learn, remember, produce language and even how illogical our brains are. Fifty years ago there was a revolution in cognitive psychology which changed the way we think about the mind. The 'cognitive revolution ...

  14. Cognitive Psychology: How Scientists Study the Mind

    A classic study in cognitive psychology found that participants in a study could only recall 10% of random three-letter strings after 18 seconds. After 3 seconds, the participants could recall 80% ...

  15. 15 Famous Experiments and Case Studies in Psychology

    6. Stanford Prison Experiment. One of the most controversial and widely-cited studies in psychology is the Stanford Prison Experiment, conducted by Philip Zimbardo at the basement of the Stanford psychology building in 1971. The hypothesis was that abusive behavior in prisons is influenced by the personality traits of the prisoners and prison ...

  16. Case Examples

    Her more recent episodes related to her parents' marital problems and her academic/social difficulties at school. She was treated using cognitive-behavioral therapy (CBT). Chafey, M.I.J., Bernal, G., & Rossello, J. (2009). Clinical Case Study: CBT for Depression in A Puerto Rican Adolescent. Challenges and Variability in Treatment Response.

  17. Psychology Case Study Examples: A Deep Dive into Real-life Scenarios

    One notable example is Freud's study on Little Hans. This case study explored a 5-year-old boy's fear of horses and related it back to Freud's theories about psychosexual stages. Another classic example is Genie Wiley (a pseudonym), a feral child who was subjected to severe social isolation during her early years.

  18. 6

    Summary. The case study approach has a rich history in psychology as a method for observing the ways in which individuals may demonstrate abnormal thinking and behavior, for collecting evidence concerning the circumstances and consequences surrounding such disorders, and for providing data to generate and test models of human behavior (see Yin ...

  19. The Neuroscience of Behavior: Five Famous Cases

    Source: By Henry Jacob Bigelow; Ratiu et al. Phineas Gage. In 1848, John Harlow first described the case of a 25-year-old railroad foreman named Phineas Gage. Gage was a "temperate" man ...

  20. Case Study Research Method in Psychology

    Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews). The case study research method originated in clinical medicine (the case history, i.e., the patient's personal history). In psychology, case studies are ...

  21. Cognitive psychology-based artificial intelligence review

    Cognitive psychology is mainly a psychological science that studies the advanced mental processes of human cognition, including the degree of thinking, deciding, reasoning, motivation and emotion. ... In 2017, in the case study of deepmind team, the research team selected "shape preference" as the entry point for detecting neural networks ...

  22. Psychology Case Study: Cognitive Bias

    An Introduction to Cognitive Bias. The word bias means a prejudice in favor or against a specific person, place, or thing. When we speak of cognitive bias, we are talking more specifically about a ...

  23. Case Study Cognitive Psychology

    This document provides a case study analysis in cognitive psychology. It summarizes key aspects of cognitive psychology evident in the case, including biopsychology, attention, language processing, memory, and the relationship between brain structures and mental processes. The case involves a student ("SDM") who has difficulties with written expression, processing speed, and other cognitive ...