Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 18 free facilitation resources we think you’ll love.

  • 47 useful online tools for workshop planning and meeting facilitation

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

example of problem solving cycle

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

example of problem solving cycle

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

' src=

Your list of techniques for problem solving can be helpfully extended by adding TRIZ to the list of techniques. TRIZ has 40 problem solving techniques derived from methods inventros and patent holders used to get new patents. About 10-12 are general approaches. many organization sponsor classes in TRIZ that are used to solve business problems or general organiztational problems. You can take a look at TRIZ and dwonload a free internet booklet to see if you feel it shound be included per your selection process.

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

example of problem solving cycle

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

example of problem solving cycle

Facilitation is more and more recognized as a key component of work, as employers and society are faced with bigger and more complex problems and ideas. From facilitating meetings to big, multi-stakeholder strategy development workshops, the facilitator's skillset is more and more in demand. In this article, we will go through a list of the best online facilitation resources, including newsletters, podcasts, communities, and 10 free toolkits you can bookmark and read to upskill and improve your facilitation practice. When designing activities and workshops, you'll probably start by using templates and methods you are familiar with. Soon enough, you'll need to expand your range and look for facilitation methods and…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

loading

How it works

For Business

Join Mind Tools

Article • 7 min read

PDCA (Plan Do Check Act)

Continually improving, in a methodical way.

By the Mind Tools Content Team

Also known as PDSA, the "Deming Wheel," and "Shewhart Cycle"

Imagine that your customer satisfaction score on a business ratings website has dipped. When you look at recent comments, you see that your customers are complaining about late delivery, and that products are being damaged in transit.

So, you decide to run a small pilot project for a month, using a new supplier to deliver your products to a sample set of customers. And you're pleased to see that the feedback is positive. As a result, you decide to use the new supplier for all your orders in the future.

What you've just done is a single loop called the PDCA Cycle. This is an established tool for achieving continuous improvement in your business.

The PDCA approach was pioneered by Dr William Deming, and we've worked closely with The Deming Institute to produce this article. In it, we outline the key principles of PDCA, and explain when and how to put them into practice.

Click here to view a transcript of this video.

What Is PDCA?

In the 1950s, management consultant Dr William Edwards Deming developed a method of identifying why some products or processes don't work as hoped. His approach has since become a popular strategy tool, used by many different types of organizations. It allows them to formulate theories about what needs to change, and then test them in a "continuous feedback loop."

Deming himself used the concept of Plan-Do- Study -Act (PDSA). He found that the focus on Check is more about the implementation of a change.

He preferred to focus instead on studying the results of any innovations, and to keep looking back at the initial plan. He stressed that the search for new knowledge is always guided by a theory – so you should be as sure as you can that your theory is right! [1]

The Four Phases of the PDCA Cycle

With the PDCA cycle you can solve problems and implement solutions in a rigorous, methodical way. Let's look at each of the four stages in turn:

First, identify and understand your problem or opportunity. Perhaps the standard of a finished product isn't high enough, or an aspect of your marketing process should be getting better results.

Explore the information available in full. Generate and screen ideas, and develop a robust implementation plan.

Be sure to state your success criteria and make them as measurable as possible. You'll return to them later in the Check stage.

Once you've identified a potential solution, test it safely with a small-scale pilot project. This will show whether your proposed changes achieve the desired outcome – with minimal disruption to the rest of your operation if they don't. For example, you could organize a trial within a department, in a limited geographical area, or with a particular demographic.

As you run the pilot project, gather data to show whether the change has worked or not. You'll use this in the next stage.

Next, analyze your pilot project's results against the criteria that you defined in Step 1, to assess whether your idea was a success.

If it wasn't, return to Step 1. If it was, advance to Step 4.

You may decide to try out more changes, and repeat the Do and Check phases. But if your original plan definitely isn't working, you'll need to return to Step 1.

This is where you implement your solution. But remember that PDCA/PDSA is a loop, not a process with a beginning and end. Your improved process or product becomes the new baseline, but you continue to look for ways to make it even better.

The four stages of the cycle are illustrated in Figure 1, below:

example of problem solving cycle

PDCA Model courtesy of The W. Edwards Deming Institute®.

When to Use PDCA

The PDCA/PDSA framework works well in all types of organizations. It can be used to improve any process or product, by breaking them down into smaller steps or development stages, and exploring ways to improve each one.

It's particularly helpful for implementing Total Quality Management or Six Sigma initiatives, and for improving business processes generally.

However, going through the PDCA/PDSA cycle can be much slower than a straightforward, "gung ho" implementation. So, it might not be the appropriate approach for dealing with an urgent problem.

It also requires significant buy-in from team members, and offers fewer opportunities for radical innovation – which may be what your organization needs instead.

How to Use PDCA to Improve Personal Performance

While PDCA/PDSA is an effective business tool, you can also use it to improve your own performance:

First, Plan: Identify what's holding you back personally, and how you want to progress. Look at the root causes of any issues, and set goals to overcome these obstacles.

Next, Do: When you've decided on your course of action, safely test different ways of getting the results that you want.

Then, Check: Review your progress regularly, adjust your behavior accordingly, and consider the consequences of your actions.

Finally, Act: Implement what's working, continually refine what isn't, and carry on the cycle of continuous improvement.

The PDCA/PDSA cycle is a continuous loop of planning, doing, checking (or studying), and acting. It provides a simple and effective approach for solving problems and managing change. The model is useful for testing improvement measures on a small scale before updating procedures and working practices.

The approach begins with a Planning phase in which problems are clearly identified and understood, and a theory for improvement is defined. Potential solutions are tested on a small scale in the Do phase, and the outcome is then studied and Checked.

Go through the Do and Check stages as many times as necessary before the full, polished solution is implemented, in the Act phase of the cycle.

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

7 surprises for new managers video.

Video Transcript

Virtually Perfect Meetings

8 Tips for Great Remote Meetings

Add comment

Comments (0)

Be the first to comment!

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Latest Updates

Article az45dcz

Pain Points Podcast - Presentations Pt 2

Article ad84neo

NEW! Pain Points - How Do I Decide?

Mind Tools Store

About Mind Tools Content

Discover something new today

Finding the Best Mix in Training Methods

Using Mediation To Resolve Conflict

Resolving conflicts peacefully with mediation

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Working from home successfully.

Overcoming the Challenges of Flexible Working

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

CIToolkit Logo

Continuous Improvement Toolkit

Effective Tools for Business and Life!

Applying the PDCA Cycle: A Blueprint for Continuous Improvement

PDCA Cycle

  • 5 MINUTES READ

Also known as Shewhart Cycle and Deming Wheel.

Variants include PDSA Cycle and OPDCA.

The Plan-Do-Check-Act Cycle (PDCA Cycle) is a four-step model for systematic problem solving and continuous improvement. It offers a simple and structured way for resolving business-related issues and creating positive change . This framework is widely recognized as the basis for enhancing the quality of processes, products, and services by following a logical sequence of four steps: Plan, Do, Check, and Act.

The PDCA cycle model can be applied in most kinds of projects and improvement activities, whether they are breakthrough changes or smaller incremental enhancements. For example, it can be effectively utilized when aiming to enhance employee skill levels within an organization, change the supplier of a product or service, or increase the quality of care and patient engagement within a hospital.

A common practical example of the PDCA cycle can be illustrated when dealing with customer complaints. This scenario involves steps like reviewing, categorizing, and prioritizing the existing complaints, generating potential solutions for addressing the most frequent complaints, conducting pilot surveys with sample customers to test new options, collecting and analyzing customer data and feedback, and ultimately implementing lessons learned on a larger scale. The above steps represent the PDCA cycle in action.

PDCA Cycle

The Four Phases of the PDCA Cycle

The PDCA cycle begins with the Planning phase which involves the identification of the problem and objectives. During this phase, a collaborative effort is made to agrees on the problem to be solved or the process to be improved. Subsequently, an in-depth analysis of the existing as-is situation is conducted, alternative solutions are identified, and the most promising solution is selected and scheduled for implementation.

In the Do phase, the selected solution is put into action on a limited scale. This phase also involves ongoing progress measurement, data collection, and feedback gathering to facilitate subsequent analyses.

The Check phase involves analyzing the collected data and feedback and comparing the outcome against pre-established objectives. This phase allows to evaluate how well the solution has worked and where further enhancement may be needed. Additionally, it involves the identification of unexpected issues and the gathering of key learnings. It is important to note that the Do and Check phases may need to be repeated until the desired results are achieved.

PDCA Guide

The Act phase is the point at which the chosen solution is fully integrated. This phase requires taking actions based on the insights acquired from the Check phase. A plan for full-scale implementation is carried out, taking into account the associated costs and benefits. The Act phase also concerned with standardizing , documenting, sustaining the improved process, as well as integrating it into the organization’s system.

The utilization of the PDCA cycle doesn’t necessarily stop once the Act phase is completed. The improved process often becomes the new baseline, which may prompt a return to the Plan phase. Multiple iterations of the PDCA cycle may be essential for a permanent resolution of the problem and the attainment of the desired future state. Each cycle brings one closer to their goals and extends their knowledge further.

example of problem solving cycle

A common example often used to illustrate the PDCA cycle is when a team is initiating a new product development.

example of problem solving cycle

Another example is when a lab team is planning to solve a customer complaint about the delayed test results at a laboratory.

example of problem solving cycle

In the 1990s, a modified version of the PDCA cycle was introduced. It was called PDSA cycle where ‘S’ stands for Study. It is believed that data analysis is important for any improvement effort, and “Checking” does not really imply studying and analyzing the data.

PDSA Cycle

OPDCA is another version of PDCA where ‘O’ stands for Observe . The Observe is added at the front of the cycle to emphasize the need to observe before creating any plan. The goal of observation is to find out what is really happening and what can be improved.

OPDCA Cycle

You may find it useful to use the following tools in each phase of the PDCA/PDSA cycle:

  • Plan – process mapping , brainstorming, waste analysis , prioritization matrix , improvement roadmap , gap analysis , and force field analysis .
  • Do – Gantt chart , dashboard, data collection methods , sampling, observation , check sheet , and control chart.
  • Check/Study – graphical analysis , statistical analysis, 5 whys , fishbone diagram , Pareto analysis , root cause analysis, and decision-making techniques .
  • Act – process mapping , Gantt chart , dashboard, control chart, control plan, visual management , and standard work .

example of problem solving cycle

Several tools are available to aid in planning and monitoring project activities using the PDCA model. One of the most straightforward methods is to use this  PDCA template .

Wrapping Up

PDCA represents the logical way of thinking we tend to follow when resolving problems and implementing continuous improvement. The objective is to make significant progress towards achieving the intended goal. Furthermore, it is important to note that the PDCA model stands at the core of almost all quality management systems. TQM, ISO standards and the A3 thinking process are all based around the PDCA philosophy.

Other Formats

example of problem solving cycle

Do you want to use the slides in your training courses?

example of problem solving cycle

PDCA Training Material – $18.85

Related Articles

Project Charter

Project Charter

Improvement Roadmap

Improvement Roadmap

Related Templates

PDCA Template

A3 Problem Solving

A3 Problem Solving Template

Kaizen Event Charter

Kaizen Event Charter Template

Written by:

CIToolkit Content Team

Triaster Process Library

by TickTick

PDCA Cycle Explained: 4 Steps for Continuous Learning and Improvement

PDCA Cycle

The Meaning of PDCA Cycle

PDCA Cycle (also known as PDSA Cycle or Deming Cycle), is a problem-solving method used for the continuous learning and improvement of a process or product. 

There are 4 basic steps in PDCA Cycle:

  • Plan : identify a problem and possible solutions
  • Do : execute the plan and test the solution(s)
  • Check : evaluate the results and lessons learned
  • Act : improve the plan/process for better solutions

These four steps incorporate inductive-deductive interplay and have been a simple and scientific approach for problem-solving (process-improving). It follows the curve of how we acquire knowledge through constant reflection, standardization, and modification.

The PDCA framework begins with a planning phase where a problem or a process to be improved is identified. This involves not only the goal setting and finding possible solutions, but also hypothesizing methods that can be used to reach the ultimate goal. Another thing that needs special attention is defining the success metrics. This simply means a clear evaluation matrix is ideally to be set beforehand.

Then, the solution(s) will be tested in the Do process. To detach the Do, there could be two steps: making the Do multiple To-Dos by splitting the task and defining them with a specific time, personnel, and steps, and collecting real-time data and feedback. 

Check includes analyzing the results and comparing them to the hypothesis in the Plan stage: how well the solution worked, how much the goal has been achieved, and whether the methods were proven feasible. If there are any unexpected issues, you may also need to find the causes and possible solutions. Note that there might be forth and back between Do and check.

The Act step closes the cycle, which involves adjustment on the initial goal or solutions and integration of all key learnings by the entire process, to standardize successful parts and avoid error recurrence. In a nutshell, the Act phase summarizes the current cycle and prepares for the next.

However, the PDCA cycle doesn’t stop here. Instead, it can repeat from the beginning with a modified version of the Plan. There is no end to it and sustainability should be its main pitch.

How PDCA Has Evolved

Usually used interchangeably with “PDSA Cycle”, “Deming Cycle”, “Deming wheel”, “Shewhart Cycle” etc, the PDCA model has indeed confronted some misunderstanding and confusion. It remains unexplained in most cases how PDCA became what it is today and what’s the difference between those mysterious terminologies and how they interact. According to Ronald D. Moen & Clifford L. Norman , its evolution could be summarized like the following:

Shewhart cycle (1939): Specification - Production - Inspection . 

He brought up this method from the viewpoint of Quality Control.

Deming Wheel (1950): Design the product - Make the product - Sell it - Test it .

Deming built off the Shewhart cycle and emphasized the four steps should be rotated constantly to aim for the product quality. This has gained increasing popularity when Deming participated in the Japanese Union of Scientists and Engineers (JUSE).

PDCA Cycle (the 1950s):  Plan - Do - Check - Act.

A Japanese executive reworked the Deming Wheel and translated it into the PDCA Cycle for problem-solving. PDCA emphasizes more on the establishment of standards during the process and the ongoing modification of those standards. 

Extended PDCA Cycle (1985): Plan - Do - Check - Act .

Kaoru Ishikawa refined the PDCA model to include more steps in the Plan and Do steps: Identify the goals and methods to use; involve in training and education during implementation.

PDSA Cycle (1985): Plan - Do - Study - Act .

Deming claimed that the ownership of PDCA Cycle was never recognized by anyone and the word “check” was used incorrectly because it means “to hold back”. Therefore, he replaced it with “study” to emphasize the importance of the continuous learning-improvement model.

How to Implement - PDCA Examples

Now, you’ve got a clear idea of what the PDCA Cycle is and how it changes over time. As a simple and structured method widely adopted in Quality Control and Total Quality Management, can it also be applied in wider areas, such as personal growth and business development? Yes, I’ll give you a couple of examples.

PDCA example

Benefits of PDCA Cycle

Among all those other methods, why does the PDCA model shade some lights in the history, especially known for the “Japanese Quality” and is still widely used today? Some key benefits of it need to be valued.

PDCA methodology emphasizes minimizing errors and maximizing outcomes. When applied to business development, e.g. a product’s iterations, it could ensure a developing path where the product is shaped better and better to the market and customers. It’s the same when it comes to personal growth. It also leaves space for constant check and reflection, which can avoid wasting time on the mistakes or making the same mistakes.

PDCA framework follows a learning curve and enhances the learning-improvement process continually. This is the key factor defining PDCA as a scientific and methodical way to gain knowledge. With knowledge building up, people’s ability goes up. 

PDCA model encourages a growth mindset. Seeing continuous improvements is a good way to enhance individuals’ self-esteem levels and bring a great sense of accomplishment. People tend to find meaning in the things they do. Imagine if one stops making progress, they would stay in the static and lose meaning in repetitive work and life. 

  • PDCA Cycle is a simple and scientific way for problem-solving and process improvement.
  • PDCA Cycle involves four key steps: Plan, Do, Check and Act.
  • PDCA works slightly differently from Deming Cycle, Shewhart Cycle, and PDSA.
  • PDCA Cycle is a never-ending process that can be used on a continual basis.
  • PDCA Cycle can be used for quality control, business development, and personal growth.

Related Posts:

example of problem solving cycle

Minimalism: How I Finally Found the True Beauty of Living with Less

example of problem solving cycle

Steering towards Your Most Important Goals in Work and Life with OKRs

example of problem solving cycle

Time Blocking: How It Helps You Take Control of Your Time

example of problem solving cycle

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Problem-Solving Strategies and Obstacles

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

example of problem solving cycle

Sean is a fact-checker and researcher with experience in sociology, field research, and data analytics.

example of problem solving cycle

JGI / Jamie Grill / Getty Images

  • Application
  • Improvement

From deciding what to eat for dinner to considering whether it's the right time to buy a house, problem-solving is a large part of our daily lives. Learn some of the problem-solving strategies that exist and how to use them in real life, along with ways to overcome obstacles that are making it harder to resolve the issues you face.

What Is Problem-Solving?

In cognitive psychology , the term 'problem-solving' refers to the mental process that people go through to discover, analyze, and solve problems.

A problem exists when there is a goal that we want to achieve but the process by which we will achieve it is not obvious to us. Put another way, there is something that we want to occur in our life, yet we are not immediately certain how to make it happen.

Maybe you want a better relationship with your spouse or another family member but you're not sure how to improve it. Or you want to start a business but are unsure what steps to take. Problem-solving helps you figure out how to achieve these desires.

The problem-solving process involves:

  • Discovery of the problem
  • Deciding to tackle the issue
  • Seeking to understand the problem more fully
  • Researching available options or solutions
  • Taking action to resolve the issue

Before problem-solving can occur, it is important to first understand the exact nature of the problem itself. If your understanding of the issue is faulty, your attempts to resolve it will also be incorrect or flawed.

Problem-Solving Mental Processes

Several mental processes are at work during problem-solving. Among them are:

  • Perceptually recognizing the problem
  • Representing the problem in memory
  • Considering relevant information that applies to the problem
  • Identifying different aspects of the problem
  • Labeling and describing the problem

Problem-Solving Strategies

There are many ways to go about solving a problem. Some of these strategies might be used on their own, or you may decide to employ multiple approaches when working to figure out and fix a problem.

An algorithm is a step-by-step procedure that, by following certain "rules" produces a solution. Algorithms are commonly used in mathematics to solve division or multiplication problems. But they can be used in other fields as well.

In psychology, algorithms can be used to help identify individuals with a greater risk of mental health issues. For instance, research suggests that certain algorithms might help us recognize children with an elevated risk of suicide or self-harm.

One benefit of algorithms is that they guarantee an accurate answer. However, they aren't always the best approach to problem-solving, in part because detecting patterns can be incredibly time-consuming.

There are also concerns when machine learning is involved—also known as artificial intelligence (AI)—such as whether they can accurately predict human behaviors.

Heuristics are shortcut strategies that people can use to solve a problem at hand. These "rule of thumb" approaches allow you to simplify complex problems, reducing the total number of possible solutions to a more manageable set.

If you find yourself sitting in a traffic jam, for example, you may quickly consider other routes, taking one to get moving once again. When shopping for a new car, you might think back to a prior experience when negotiating got you a lower price, then employ the same tactics.

While heuristics may be helpful when facing smaller issues, major decisions shouldn't necessarily be made using a shortcut approach. Heuristics also don't guarantee an effective solution, such as when trying to drive around a traffic jam only to find yourself on an equally crowded route.

Trial and Error

A trial-and-error approach to problem-solving involves trying a number of potential solutions to a particular issue, then ruling out those that do not work. If you're not sure whether to buy a shirt in blue or green, for instance, you may try on each before deciding which one to purchase.

This can be a good strategy to use if you have a limited number of solutions available. But if there are many different choices available, narrowing down the possible options using another problem-solving technique can be helpful before attempting trial and error.

In some cases, the solution to a problem can appear as a sudden insight. You are facing an issue in a relationship or your career when, out of nowhere, the solution appears in your mind and you know exactly what to do.

Insight can occur when the problem in front of you is similar to an issue that you've dealt with in the past. Although, you may not recognize what is occurring since the underlying mental processes that lead to insight often happen outside of conscious awareness .

Research indicates that insight is most likely to occur during times when you are alone—such as when going on a walk by yourself, when you're in the shower, or when lying in bed after waking up.

How to Apply Problem-Solving Strategies in Real Life

If you're facing a problem, you can implement one or more of these strategies to find a potential solution. Here's how to use them in real life:

  • Create a flow chart . If you have time, you can take advantage of the algorithm approach to problem-solving by sitting down and making a flow chart of each potential solution, its consequences, and what happens next.
  • Recall your past experiences . When a problem needs to be solved fairly quickly, heuristics may be a better approach. Think back to when you faced a similar issue, then use your knowledge and experience to choose the best option possible.
  • Start trying potential solutions . If your options are limited, start trying them one by one to see which solution is best for achieving your desired goal. If a particular solution doesn't work, move on to the next.
  • Take some time alone . Since insight is often achieved when you're alone, carve out time to be by yourself for a while. The answer to your problem may come to you, seemingly out of the blue, if you spend some time away from others.

Obstacles to Problem-Solving

Problem-solving is not a flawless process as there are a number of obstacles that can interfere with our ability to solve a problem quickly and efficiently. These obstacles include:

  • Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions. Thus, they may not even try some potential options.
  • Functional fixedness : This term refers to the tendency to view problems only in their customary manner. Functional fixedness prevents people from fully seeing all of the different options that might be available to find a solution.
  • Irrelevant or misleading information: When trying to solve a problem, it's important to distinguish between information that is relevant to the issue and irrelevant data that can lead to faulty solutions. The more complex the problem, the easier it is to focus on misleading or irrelevant information.
  • Mental set: A mental set is a tendency to only use solutions that have worked in the past rather than looking for alternative ideas. A mental set can work as a heuristic, making it a useful problem-solving tool. However, mental sets can also lead to inflexibility, making it more difficult to find effective solutions.

How to Improve Your Problem-Solving Skills

In the end, if your goal is to become a better problem-solver, it's helpful to remember that this is a process. Thus, if you want to improve your problem-solving skills, following these steps can help lead you to your solution:

  • Recognize that a problem exists . If you are facing a problem, there are generally signs. For instance, if you have a mental illness , you may experience excessive fear or sadness, mood changes, and changes in sleeping or eating habits. Recognizing these signs can help you realize that an issue exists.
  • Decide to solve the problem . Make a conscious decision to solve the issue at hand. Commit to yourself that you will go through the steps necessary to find a solution.
  • Seek to fully understand the issue . Analyze the problem you face, looking at it from all sides. If your problem is relationship-related, for instance, ask yourself how the other person may be interpreting the issue. You might also consider how your actions might be contributing to the situation.
  • Research potential options . Using the problem-solving strategies mentioned, research potential solutions. Make a list of options, then consider each one individually. What are some pros and cons of taking the available routes? What would you need to do to make them happen?
  • Take action . Select the best solution possible and take action. Action is one of the steps required for change . So, go through the motions needed to resolve the issue.
  • Try another option, if needed . If the solution you chose didn't work, don't give up. Either go through the problem-solving process again or simply try another option.

You can find a way to solve your problems as long as you keep working toward this goal—even if the best solution is simply to let go because no other good solution exists.

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. doi:10.3389/fnhum.2018.00261

Dunbar K. Problem solving . A Companion to Cognitive Science . 2017. doi:10.1002/9781405164535.ch20

Stewart SL, Celebre A, Hirdes JP, Poss JW. Risk of suicide and self-harm in kids: The development of an algorithm to identify high-risk individuals within the children's mental health system . Child Psychiat Human Develop . 2020;51:913-924. doi:10.1007/s10578-020-00968-9

Rosenbusch H, Soldner F, Evans AM, Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code . Soc Personal Psychol Compass . 2021;15(2):e12579. doi:10.1111/spc3.12579

Mishra S. Decision-making under risk: Integrating perspectives from biology, economics, and psychology . Personal Soc Psychol Rev . 2014;18(3):280-307. doi:10.1177/1088868314530517

Csikszentmihalyi M, Sawyer K. Creative insight: The social dimension of a solitary moment . In: The Systems Model of Creativity . 2015:73-98. doi:10.1007/978-94-017-9085-7_7

Chrysikou EG, Motyka K, Nigro C, Yang SI, Thompson-Schill SL. Functional fixedness in creative thinking tasks depends on stimulus modality .  Psychol Aesthet Creat Arts . 2016;10(4):425‐435. doi:10.1037/aca0000050

Huang F, Tang S, Hu Z. Unconditional perseveration of the short-term mental set in chunk decomposition .  Front Psychol . 2018;9:2568. doi:10.3389/fpsyg.2018.02568

National Alliance on Mental Illness. Warning signs and symptoms .

Mayer RE. Thinking, problem solving, cognition, 2nd ed .

Schooler JW, Ohlsson S, Brooks K. Thoughts beyond words: When language overshadows insight. J Experiment Psychol: General . 1993;122:166-183. doi:10.1037/0096-3445.2.166

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

7.3 Problem-Solving

Learning objectives.

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

   People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

The study of human and animal problem solving processes has provided much insight toward the understanding of our conscious experience and led to advancements in computer science and artificial intelligence. Essentially much of cognitive science today represents studies of how we consciously and unconsciously make decisions and solve problems. For instance, when encountered with a large amount of information, how do we go about making decisions about the most efficient way of sorting and analyzing all the information in order to find what you are looking for as in visual search paradigms in cognitive psychology. Or in a situation where a piece of machinery is not working properly, how do we go about organizing how to address the issue and understand what the cause of the problem might be. How do we sort the procedures that will be needed and focus attention on what is important in order to solve problems efficiently. Within this section we will discuss some of these issues and examine processes related to human, animal and computer problem solving.

PROBLEM-SOLVING STRATEGIES

   When people are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

Problems themselves can be classified into two different categories known as ill-defined and well-defined problems (Schacter, 2009). Ill-defined problems represent issues that do not have clear goals, solution paths, or expected solutions whereas well-defined problems have specific goals, clearly defined solutions, and clear expected solutions. Problem solving often incorporates pragmatics (logical reasoning) and semantics (interpretation of meanings behind the problem), and also in many cases require abstract thinking and creativity in order to find novel solutions. Within psychology, problem solving refers to a motivational drive for reading a definite “goal” from a present situation or condition that is either not moving toward that goal, is distant from it, or requires more complex logical analysis for finding a missing description of conditions or steps toward that goal. Processes relating to problem solving include problem finding also known as problem analysis, problem shaping where the organization of the problem occurs, generating alternative strategies, implementation of attempted solutions, and verification of the selected solution. Various methods of studying problem solving exist within the field of psychology including introspection, behavior analysis and behaviorism, simulation, computer modeling, and experimentation.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (table below). For example, a well-known strategy is trial and error. The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

   Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Further problem solving strategies have been identified (listed below) that incorporate flexible and creative thinking in order to reach solutions efficiently.

Additional Problem Solving Strategies :

  • Abstraction – refers to solving the problem within a model of the situation before applying it to reality.
  • Analogy – is using a solution that solves a similar problem.
  • Brainstorming – refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal solution is reached.
  • Divide and conquer – breaking down large complex problems into smaller more manageable problems.
  • Hypothesis testing – method used in experimentation where an assumption about what would happen in response to manipulating an independent variable is made, and analysis of the affects of the manipulation are made and compared to the original hypothesis.
  • Lateral thinking – approaching problems indirectly and creatively by viewing the problem in a new and unusual light.
  • Means-ends analysis – choosing and analyzing an action at a series of smaller steps to move closer to the goal.
  • Method of focal objects – putting seemingly non-matching characteristics of different procedures together to make something new that will get you closer to the goal.
  • Morphological analysis – analyzing the outputs of and interactions of many pieces that together make up a whole system.
  • Proof – trying to prove that a problem cannot be solved. Where the proof fails becomes the starting point or solving the problem.
  • Reduction – adapting the problem to be as similar problems where a solution exists.
  • Research – using existing knowledge or solutions to similar problems to solve the problem.
  • Root cause analysis – trying to identify the cause of the problem.

The strategies listed above outline a short summary of methods we use in working toward solutions and also demonstrate how the mind works when being faced with barriers preventing goals to be reached.

One example of means-end analysis can be found by using the Tower of Hanoi paradigm . This paradigm can be modeled as a word problems as demonstrated by the Missionary-Cannibal Problem :

Missionary-Cannibal Problem

Three missionaries and three cannibals are on one side of a river and need to cross to the other side. The only means of crossing is a boat, and the boat can only hold two people at a time. Your goal is to devise a set of moves that will transport all six of the people across the river, being in mind the following constraint: The number of cannibals can never exceed the number of missionaries in any location. Remember that someone will have to also row that boat back across each time.

Hint : At one point in your solution, you will have to send more people back to the original side than you just sent to the destination.

The actual Tower of Hanoi problem consists of three rods sitting vertically on a base with a number of disks of different sizes that can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top making a conical shape. The objective of the puzzle is to move the entire stack to another rod obeying the following rules:

  • 1. Only one disk can be moved at a time.
  • 2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod.
  • 3. No disc may be placed on top of a smaller disk.

example of problem solving cycle

  Figure 7.02. Steps for solving the Tower of Hanoi in the minimum number of moves when there are 3 disks.

example of problem solving cycle

Figure 7.03. Graphical representation of nodes (circles) and moves (lines) of Tower of Hanoi.

The Tower of Hanoi is a frequently used psychological technique to study problem solving and procedure analysis. A variation of the Tower of Hanoi known as the Tower of London has been developed which has been an important tool in the neuropsychological diagnosis of executive function disorders and their treatment.

GESTALT PSYCHOLOGY AND PROBLEM SOLVING

As you may recall from the sensation and perception chapter, Gestalt psychology describes whole patterns, forms and configurations of perception and cognition such as closure, good continuation, and figure-ground. In addition to patterns of perception, Wolfgang Kohler, a German Gestalt psychologist traveled to the Spanish island of Tenerife in order to study animals behavior and problem solving in the anthropoid ape.

As an interesting side note to Kohler’s studies of chimp problem solving, Dr. Ronald Ley, professor of psychology at State University of New York provides evidence in his book A Whisper of Espionage  (1990) suggesting that while collecting data for what would later be his book  The Mentality of Apes (1925) on Tenerife in the Canary Islands between 1914 and 1920, Kohler was additionally an active spy for the German government alerting Germany to ships that were sailing around the Canary Islands. Ley suggests his investigations in England, Germany and elsewhere in Europe confirm that Kohler had served in the German military by building, maintaining and operating a concealed radio that contributed to Germany’s war effort acting as a strategic outpost in the Canary Islands that could monitor naval military activity approaching the north African coast.

While trapped on the island over the course of World War 1, Kohler applied Gestalt principles to animal perception in order to understand how they solve problems. He recognized that the apes on the islands also perceive relations between stimuli and the environment in Gestalt patterns and understand these patterns as wholes as opposed to pieces that make up a whole. Kohler based his theories of animal intelligence on the ability to understand relations between stimuli, and spent much of his time while trapped on the island investigation what he described as  insight , the sudden perception of useful or proper relations. In order to study insight in animals, Kohler would present problems to chimpanzee’s by hanging some banana’s or some kind of food so it was suspended higher than the apes could reach. Within the room, Kohler would arrange a variety of boxes, sticks or other tools the chimpanzees could use by combining in patterns or organizing in a way that would allow them to obtain the food (Kohler & Winter, 1925).

While viewing the chimpanzee’s, Kohler noticed one chimp that was more efficient at solving problems than some of the others. The chimp, named Sultan, was able to use long poles to reach through bars and organize objects in specific patterns to obtain food or other desirables that were originally out of reach. In order to study insight within these chimps, Kohler would remove objects from the room to systematically make the food more difficult to obtain. As the story goes, after removing many of the objects Sultan was used to using to obtain the food, he sat down ad sulked for a while, and then suddenly got up going over to two poles lying on the ground. Without hesitation Sultan put one pole inside the end of the other creating a longer pole that he could use to obtain the food demonstrating an ideal example of what Kohler described as insight. In another situation, Sultan discovered how to stand on a box to reach a banana that was suspended from the rafters illustrating Sultan’s perception of relations and the importance of insight in problem solving.

Grande (another chimp in the group studied by Kohler) builds a three-box structure to reach the bananas, while Sultan watches from the ground.  Insight , sometimes referred to as an “Ah-ha” experience, was the term Kohler used for the sudden perception of useful relations among objects during problem solving (Kohler, 1927; Radvansky & Ashcraft, 2013).

Solving puzzles.

   Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (see figure) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

   Here is another popular type of puzzle (figure below) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

   Take a look at the “Puzzling Scales” logic puzzle below (figure below). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

What steps did you take to solve this puzzle? You can read the solution at the end of this section.

Pitfalls to problem solving.

   Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

   Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in the table below.

Were you able to determine how many marbles are needed to balance the scales in the figure below? You need nine. Were you able to solve the problems in the figures above? Here are the answers.

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

   Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

References:

Openstax Psychology text by Kathryn Dumper, William Jenkins, Arlene Lacombe, Marilyn Lovett and Marion Perlmutter licensed under CC BY v4.0. https://openstax.org/details/books/psychology

Review Questions:

1. A specific formula for solving a problem is called ________.

a. an algorithm

b. a heuristic

c. a mental set

d. trial and error

2. Solving the Tower of Hanoi problem tends to utilize a  ________ strategy of problem solving.

a. divide and conquer

b. means-end analysis

d. experiment

3. A mental shortcut in the form of a general problem-solving framework is called ________.

4. Which type of bias involves becoming fixated on a single trait of a problem?

a. anchoring bias

b. confirmation bias

c. representative bias

d. availability bias

5. Which type of bias involves relying on a false stereotype to make a decision?

6. Wolfgang Kohler analyzed behavior of chimpanzees by applying Gestalt principles to describe ________.

a. social adjustment

b. student load payment options

c. emotional learning

d. insight learning

7. ________ is a type of mental set where you cannot perceive an object being used for something other than what it was designed for.

a. functional fixedness

c. working memory

Critical Thinking Questions:

1. What is functional fixedness and how can overcoming it help you solve problems?

2. How does an algorithm save you time and energy when solving a problem?

Personal Application Question:

1. Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

anchoring bias

availability heuristic

confirmation bias

functional fixedness

hindsight bias

problem-solving strategy

representative bias

trial and error

working backwards

Answers to Exercises

algorithm:  problem-solving strategy characterized by a specific set of instructions

anchoring bias:  faulty heuristic in which you fixate on a single aspect of a problem to find a solution

availability heuristic:  faulty heuristic in which you make a decision based on information readily available to you

confirmation bias:  faulty heuristic in which you focus on information that confirms your beliefs

functional fixedness:  inability to see an object as useful for any other use other than the one for which it was intended

heuristic:  mental shortcut that saves time when solving a problem

hindsight bias:  belief that the event just experienced was predictable, even though it really wasn’t

mental set:  continually using an old solution to a problem without results

problem-solving strategy:  method for solving problems

representative bias:  faulty heuristic in which you stereotype someone or something without a valid basis for your judgment

trial and error:  problem-solving strategy in which multiple solutions are attempted until the correct one is found

working backwards:  heuristic in which you begin to solve a problem by focusing on the end result

Creative Commons License

Share This Book

  • Increase Font Size

The Stages of the Problem Solving Cycle in Cognitive Psychology – Understanding, Planning, Execution, Evaluation, and Reflection

  • Post author By bicycle-u
  • Post date 08.12.2023

Problem solving is a fundamental aspect of human cognition. It involves the ability to identify and define a problem, generate potential solutions, evaluate those solutions, and select the most appropriate one. The problem solving cycle is a key concept in cognitive psychology that helps us understand how individuals approach and solve problems.

In the problem solving cycle , individuals first must recognize and define the problem they are facing. This involves identifying the specific issue or obstacle that needs to be overcome. Once the problem is clearly defined, individuals can then move on to the next stage of the cycle.

Next, individuals engage in the process of generating potential solutions . This may involve brainstorming ideas, seeking out information or advice, or experimenting with different approaches. The goal is to come up with as many possible solutions as possible, without judgment or evaluation.

Once a range of potential solutions has been generated, individuals then evaluate these solutions based on their feasibility and effectiveness . This involves assessing the advantages and disadvantages of each solution and considering the potential outcomes of implementing them. It may also involve consulting others or seeking additional information to inform the evaluation process.

Finally, individuals select the most appropriate solution from the evaluated options. This decision-making process takes into account various factors such as the individual’s goals, resources, and constraints. Once a solution has been selected, individuals can then implement and evaluate its effectiveness, closing the problem solving cycle.

The problem solving cycle is a dynamic and iterative process that can be applied to a wide range of problems and situations. It provides a framework for understanding how individuals approach and solve problems, and it can be useful in both personal and professional settings. By understanding the various stages of the problem solving cycle, individuals can become more effective problem solvers and make better decisions.

Understanding the Problem Solving Process

In cognitive psychology, the problem solving process is a key concept in understanding how individuals navigate and overcome challenges. Problem solving is a cyclical process that involves identifying a problem, developing a strategy to solve it, implementing the strategy, and then evaluating the results.

Identifying the problem: The first step in the problem solving cycle is identifying the problem at hand. This may involve defining the problem, gathering information and relevant data, and understanding the desired outcome.

Developing a strategy: Once the problem is identified, individuals must develop a strategy or plan of action to solve it. This may involve brainstorming ideas, evaluating potential solutions, and selecting the best approach.

Implementing the strategy: After a strategy is developed, it must be put into action. This may involve executing specific steps, utilizing resources, and adjusting the strategy as needed.

Evaluating the results: The final step in the problem solving cycle is evaluating the results of the implemented strategy. This may involve assessing the effectiveness of the solution, determining if the desired outcome was achieved, and making any necessary adjustments or improvements.

The Role of Cognitive Psychology

Cognitive psychology plays a crucial role in understanding the problem solving process. It focuses on how individuals perceive, think, and reason about problems, as well as the various strategies and mental processes involved in solving them.

Research in cognitive psychology has shown that problem solving is not purely a linear process, but rather a dynamic and iterative cycle. Individuals may iterate through the different stages of the problem solving cycle multiple times as they encounter new information or face unexpected challenges.

The study of problem solving in cognitive psychology has led to the development of various theories and models, such as the Gestalt theory, which emphasizes the importance of insight and reorganizing information, and the information processing model, which highlights the role of attention, memory, and decision-making in problem solving.

The Importance of Problem Solving Skills

Problem solving is a key concept in cognitive psychology. It is a process that involves identifying, analyzing, and coming up with solutions to problems. Problem solving skills are essential in various aspects of life, including personal and professional contexts.

Mastering problem solving skills enables individuals to tackle challenges and overcome obstacles effectively. It helps in critical thinking, decision making, and finding innovative solutions. Problem solving skills are also important in the field of psychology, as they are often used to understand and address complex psychological issues.

Enhancing Cognitive Abilities

Problem solving activities stimulate and enhance cognitive abilities. They require individuals to think critically, analyze information, and use logical reasoning. By engaging in problem solving, individuals improve their cognitive processes, such as memory, attention, and problem representation.

Building Resilience

Developing problem solving skills also helps in building resilience. It teaches individuals to approach challenges with a proactive mindset and seek solutions rather than giving up. This resilience can be applied in various aspects of life, including personal relationships, work, and education.

In conclusion, problem solving skills play a crucial role in cognitive psychology and various aspects of life. They enhance cognitive abilities, promote critical thinking, and build resilience. Developing and honing problem solving skills is essential for personal growth and success in today’s complex world.

The Four Stages of Problem Solving

Problem solving is a cognitive process that involves the use of mental processes to find a solution to a problem. It is a cycle that is often studied in cognitive psychology. The problem solving cycle consists of four stages, which are:

1. Understanding the Problem

In this stage, the individual must first understand and define the problem. This involves gathering information, analyzing the problem, and identifying the key elements that need to be addressed. It is important to have a clear understanding of the problem before moving on to the next stage.

2. Generating Potential Solutions

Once the problem is understood, the next stage involves generating potential solutions. This requires using both logical and creative thinking to come up with possible ways to solve the problem. It is important to consider different perspectives and explore a variety of options.

3. Evaluating and Selecting Solutions

After generating potential solutions, the individual must evaluate and select the most appropriate solution. This involves weighing the pros and cons of each potential solution and considering factors such as feasibility, effectiveness, and practicality. The goal is to select a solution that is likely to lead to the desired outcome.

4. Implementing and Evaluating the Solution

Once a solution has been selected, the final stage involves implementing the solution and evaluating its effectiveness. This may involve taking action, making changes, and monitoring the results. It is important to assess whether the solution has solved the problem and to make adjustments if needed.

In conclusion, problem solving is a cognitive process that involves four stages: understanding the problem, generating potential solutions, evaluating and selecting solutions, and implementing and evaluating the solution. By following this problem solving cycle, individuals can effectively approach and solve a wide range of problems.

Identifying the Problem

The first step in the problem solving cycle is identifying the problem. In cognitive psychology, this step involves recognizing that there is a problem to be solved and understanding what it entails.

When identifying a problem, it is important to clearly define and articulate what the issue is. This can involve breaking the problem down into smaller components or examining the factors that contribute to the problem.

Factors to consider when identifying a problem:

  • What is the desired outcome or goal?
  • What are the obstacles or challenges that need to be overcome?
  • What are the potential causes or explanations for the problem?

Identifying the problem involves gathering information and analyzing it to gain a better understanding of the situation. This can include conducting research, gathering data, or seeking input from others who may have expertise or experience in the area.

Once the problem has been clearly identified, it can then be approached using the problem solving cycle. By breaking down the problem into smaller steps and systematically working through each one, individuals can increase their chances of finding an effective solution.

Defining the Problem

Defining the problem is a crucial step in the problem-solving cycle. In the context of cognitive psychology, a problem can be defined as a situation or task that requires a solution. This could be a complex mathematical equation, a riddle, or a real-life challenge. The process of defining the problem involves clarifying the specific requirements or constraints of the situation and understanding what needs to be solved. By clearly defining the problem, it becomes easier to identify potential strategies and solutions.

When defining a problem, it is important to consider both the immediate and underlying issues. Often, the surface-level problem may not be the root cause, and addressing only the symptoms may not lead to a satisfactory solution. Therefore, it is essential to dig deeper and identify the underlying factors that contribute to the problem.

Clarifying the requirements

One aspect of defining the problem is clarifying the specific requirements or constraints that need to be considered. These requirements can include the desired outcome, the available resources, the time frame, and any limitations or restrictions. By understanding these requirements, it becomes easier to focus on finding a solution that meets the given criteria.

Understanding the problem space

Another important aspect of defining the problem is understanding the problem space. The problem space refers to the set of all possible solutions and strategies that can be explored to solve the problem. By understanding the problem space, individuals can develop a clearer understanding of the scope of the problem and the potential avenues for finding a solution.

Generating Solution Options

In cognitive psychology, problem solving is a key concept that explores how individuals go about finding solutions to problems. One important aspect of the problem solving cycle is generating solution options.

When faced with a problem, individuals engage in cognitive processes to come up with potential solutions. This often involves brainstorming, where individuals generate a list of possible options.

There are various strategies that individuals can use to generate solution options. One common approach is divergent thinking, which involves thinking creatively and generating a large number of potential solutions. This can be done by considering different perspectives, exploring alternative possibilities, and challenging assumptions.

Another strategy is convergent thinking, which involves evaluating and narrowing down the potential solutions. This can be done by considering the feasibility and practicality of each option, as well as weighing the potential risks and benefits.

It is important for individuals to consider a wide range of solution options, as this increases the likelihood of finding an effective solution. This can be achieved by using techniques such as mind mapping, where individuals visually organize their thoughts and ideas to generate new connections and possibilities.

By generating a variety of solution options, individuals can increase their chances of finding the most suitable and effective solution to a problem. This stage of the problem solving cycle is crucial in the overall problem solving process.

Evaluating and Selecting the Best Solution

Once you have gone through the problem solving cycle and generated potential solutions, the next step is to evaluate and select the best solution. This is an essential part of the problem solving process, as it involves critically analyzing each potential solution and determining which one is the most effective and feasible.

When evaluating potential solutions, it is important to consider various factors. One key factor is the effectiveness of each solution in actually solving the problem at hand. Will the solution address the root cause of the problem, or just temporarily alleviate the symptoms?

In addition to effectiveness, it is also important to consider the feasibility of each solution. Is the solution realistic and practical to implement? Does it require significant resources or time that may not be available? These are all important considerations to take into account when evaluating potential solutions.

Furthermore, it is important to consider the potential consequences of each solution. Will the solution create any new problems or unintended side effects? Will it have any negative impacts on other areas or stakeholders? These potential consequences must be carefully considered before making a final decision.

Finally, it is important to approach the evaluation process with an open and flexible mindset. It is not uncommon for new information or perspectives to emerge during the evaluation process, which may alter the assessment of potential solutions. Remaining open to new information and being willing to adapt the evaluation criteria is crucial in selecting the best solution.

By carefully evaluating each potential solution and considering factors such as effectiveness, feasibility, and potential consequences, you can effectively select the best solution to the problem at hand. This is an essential step in the problem solving cycle, as it moves you closer to a successful resolution.

Implementing the Solution

Once the problem-solving cycle has been completed in cognitive psychology, the next step is to implement the solution. This phase involves taking the proposed solution and putting it into action.

Before implementation, it is crucial to evaluate the solution thoroughly. This evaluation helps ensure that the proposed solution is practical and feasible.

Evaluating the Solution

The evaluation process involves considering possible obstacles and risks that could hinder the successful implementation of the solution. By identifying these potential challenges, steps can be taken to mitigate them.

In addition, evaluating the solution also involves conducting a cost-benefit analysis. This analysis takes into account the potential costs and benefits associated with implementing the solution. It helps determine whether the solution is worth pursuing.

Putting the Solution into Action

Once the solution has been thoroughly evaluated, it is time to put it into action. This requires careful planning and coordination.

During the implementation phase, it is important to closely monitor the progress and make any necessary adjustments. This ensures that the solution is effectively addressing the problem at hand.

Furthermore, clear communication is vital during implementation. All relevant stakeholders should be informed and involved in the process to ensure everyone is working towards a common goal.

By implementing the solution effectively, the problem-solving cycle in cognitive psychology can come to a successful conclusion.

Monitoring and Evaluating the Outcome

Monitoring and evaluating the outcome is a crucial step in the problem-solving process in cognitive psychology. After identifying and implementing a solution, it is important to assess whether the problem has been effectively solved and whether the desired outcome has been achieved.

Evaluating the Effectiveness of the Solution

One way to monitor and evaluate the outcome is to assess the effectiveness of the solution. This involves determining whether the chosen solution has successfully addressed the problem and whether it has led to the desired result. Cognitive psychologists often use various measures and metrics to evaluate the effectiveness of problem-solving strategies. These may include objective measures such as test scores or subjective measures such as self-report questionnaires.

By evaluating the effectiveness of the solution, cognitive psychologists can determine whether further adjustments or modifications are necessary. If the outcome is not satisfactory, they can go back to the problem-solving cycle and repeat the steps to find a more suitable solution.

Reflecting on the Process

In addition to evaluating the effectiveness of the solution, it is also important to reflect on the problem-solving process itself. This involves considering the strategies and techniques used, as well as identifying any obstacles or challenges encountered. By reflecting on the process, cognitive psychologists can gain valuable insights into how they approached the problem and how they can improve their problem-solving skills in the future.

Reflection can be done through self-reflection or by seeking feedback from others, such as colleagues or experts in the field. This feedback can provide alternative perspectives and help identify areas for improvement.

In conclusion, monitoring and evaluating the outcome is a critical aspect of the problem-solving cycle in cognitive psychology. By assessing the effectiveness of the solution and reflecting on the process, cognitive psychologists can continually improve their problem-solving skills and contribute to the development of this field.

The Role of Cognitive Processes in Problem Solving

In the field of cognitive psychology, problem solving is a fundamental aspect of human thinking. It involves the use of various cognitive processes to analyze a problem, develop possible solutions, and determine the best course of action.

One key cognitive process involved in problem solving is perception. This process allows individuals to perceive and understand the problem at hand, by gathering information from the environment and organizing it into meaningful patterns. Perception helps identify the relevant aspects of a problem and guides the problem-solving process.

Another important cognitive process in problem solving is reasoning. Reasoning involves logical thinking and the ability to draw conclusions based on available information. It helps individuals make sense of the problem and generate possible solutions. Reasoning also helps evaluate the potential outcomes of each solution and select the most appropriate one.

Memory plays a crucial role in problem solving as well. It allows individuals to recall relevant information from past experiences and apply it to the current problem. Memory aids in recognizing patterns, generating hypotheses, and retrieving information necessary for problem solving. Without memory, it would be challenging to solve problems efficiently.

Moreover, attention and concentration are essential cognitive processes in problem solving. They help individuals focus on the relevant aspects of a problem and block out distractions. Attention allows individuals to allocate cognitive resources effectively and process information in a systematic manner. Concentration enables individuals to stay engaged in problem solving and persevere until a solution is found.

The role of cognitive processes in problem solving is vital as they provide the framework for effective problem-solving strategies. Understanding how perception, reasoning, memory, attention, and concentration contribute to problem solving helps researchers and practitioners develop interventions and techniques to improve problem-solving skills.

In conclusion, cognitive processes are crucial in problem solving. Perception, reasoning, memory, attention, and concentration work together to help individuals analyze problems, generate solutions, and make informed decisions. By studying and understanding these cognitive processes, researchers can enhance problem-solving abilities, ultimately leading to more effective problem-solving strategies in various fields of study and practice.

How Cognitive Biases can Impact Problem Solving

Cognitive biases are inherent tendencies in human thinking that can lead to errors or deviations from rationality. These biases can have a significant impact on problem solving, as they can influence the way individuals perceive, interpret, and evaluate information.

Confirmation Bias

One common cognitive bias that can affect problem solving is confirmation bias. This bias leads individuals to favor information that confirms their existing beliefs or hypotheses while disregarding or downplaying information that contradicts them. In problem-solving scenarios, confirmation bias can prevent individuals from considering alternative solutions or exploring different perspectives, potentially leading to a less effective problem-solving process.

Availability Heuristic

The availability heuristic is another cognitive bias that can impact problem solving. This bias involves relying on easily accessible information or examples when making judgments or decisions. In problem-solving situations, this bias can lead individuals to overlook less accessible information or fail to consider all relevant factors. This can limit the effectiveness of problem solving by restricting the range of potential solutions or failing to consider alternative approaches.

  • Overcoming cognitive biases in problem solving

Recognizing and overcoming cognitive biases is crucial for effective problem solving. Strategies such as actively seeking out diverse perspectives, questioning assumptions, and considering alternative explanations can help mitigate the impact of cognitive biases. Additionally, fostering an environment that encourages open-mindedness, critical thinking, and intellectual humility can also support more effective problem-solving processes.

By understanding how cognitive biases can impact problem solving, psychologists and individuals alike can work towards improving their problem-solving skills and decision-making processes. By recognizing and addressing these biases, individuals can enhance their ability to approach problems with greater objectivity, flexibility, and creativity.

The Relationship Between Problem Solving and Decision Making

Problem solving and decision making are closely interconnected in cognitive psychology. When faced with a problem, individuals engage in a cognitive process known as problem solving, which involves identifying and evaluating possible solutions in order to reach a desired goal or outcome. Decision making, on the other hand, refers to the act of choosing one particular solution from the options generated during the problem-solving process.

The problem-solving cycle, a key concept in cognitive psychology, highlights the iterative nature of problem solving and decision making. This cycle consists of several steps, including problem identification, problem analysis, solution generation, solution evaluation, and solution implementation. During the problem identification phase, individuals recognize and define the problem they are facing. Problem analysis involves gathering information and analyzing the underlying causes and factors contributing to the problem. Once a thorough analysis is conducted, individuals can generate potential solutions through creative thinking and brainstorming.

After generating potential solutions, individuals must evaluate the effectiveness and feasibility of each option. This involves considering the potential consequences and weighing the pros and cons of each alternative. By carefully assessing each solution, individuals can make an informed decision and choose the most suitable course of action. Finally, the chosen solution is implemented, and individuals monitor the outcomes to determine whether the problem has been effectively resolved.

It is important to note that problem solving and decision making are not linear processes, but rather they involve feedback loops and revisions as new information becomes available or as the initial solution proves to be ineffective. Successful problem solving and decision making require flexibility, critical thinking, and adaptability to changing circumstances.

In summary, problem solving and decision making are intertwined cognitive processes within the problem-solving cycle. Problem solving involves identifying and evaluating possible solutions, while decision making involves choosing the most appropriate solution. By understanding the relationship between problem solving and decision making, individuals can enhance their problem-solving skills and make more effective decisions in various aspects of life and work.

The Effect of Expertise on Problem Solving

In the cognitive psychology field, the problem solving cycle is a key concept that involves several stages: understanding the problem, devising a plan, executing the plan, and evaluating the solution. An important factor that can influence problem solving abilities is expertise.

Experts, who have extensive knowledge and experience in a specific domain, often exhibit superior problem solving skills compared to novices. This is because experts have a large mental database of problem-solving strategies and a deep understanding of the underlying concepts. They can quickly recognize patterns and make accurate decisions based on their knowledge.

Research has shown that experts are able to solve problems more efficiently and effectively than novices. They are able to quickly identify the relevant information and ignore irrelevant details, which allows them to focus on the core of the problem. Experts also have a better ability to generate and evaluate multiple potential solutions, leading to more creative problem solving.

Furthermore, experts are more likely to use metacognitive strategies, such as self-monitoring and self-regulation, during the problem solving process. They are able to reflect on their own thinking and adjust their strategies as needed. This metacognitive awareness helps experts to overcome obstacles and adapt their problem solving approach as necessary.

However, it is important to note that expertise is domain-specific. An individual may be an expert in one area but not in another. For example, a chess grandmaster may struggle with solving complex math problems. Therefore, expertise does not guarantee proficiency in all problem-solving domains.

In conclusion, expertise plays a significant role in problem solving. Experts have a deeper understanding of the problem domain, possess a larger repertoire of strategies, and exhibit metacognitive awareness. These factors contribute to their more efficient and effective problem solving abilities compared to novices.

Developing Problem Solving Skills through Practice

In the field of psychology, problem solving is considered an essential cognitive skill that helps individuals navigate through various challenges and obstacles. The problem solving cycle, a key concept in cognitive psychology, emphasizes the importance of practice in developing and honing problem solving skills.

Practice plays a crucial role in problem solving as it helps individuals familiarize themselves with different problem-solving techniques and strategies. By engaging in regular practice, individuals can strengthen their analytical thinking, creative problem solving, and decision-making abilities.

Through practice, individuals learn to approach problems systematically, breaking down complex tasks into smaller, more manageable steps. This systematic approach allows individuals to identify the root causes of a problem, generate potential solutions, and evaluate the effectiveness of each solution.

In addition to improving analytical thinking, practice also helps individuals develop their creative problem solving skills. By repeatedly facing various problems, individuals become more comfortable with thinking outside the box and exploring unconventional solutions. This creative thinking enables individuals to come up with innovative and effective solutions to complex problems.

Moreover, practice enhances individuals’ decision-making abilities. As individuals engage in problem solving practice, they become more skilled at assessing different options, weighing the pros and cons, and making informed decisions. This ability to make sound decisions is crucial in both personal and professional contexts.

In conclusion, developing problem solving skills requires consistent practice. By engaging in regular problem solving practice, individuals can improve their analytical thinking, creative problem solving, and decision-making abilities. The problem solving cycle emphasizes the importance of practice in developing these skills, and individuals who actively engage in practice are more likely to become adept problem solvers.

Teaching Problem Solving Skills in Education

Problem solving skills are an essential component of education, as they enable students to analyze and tackle complex issues across various subject areas. By teaching problem solving skills, educators help students develop critical thinking abilities and cognitive strategies that can be applied in real-life situations.

The Problem Solving Cycle

One effective approach to teaching problem solving skills is through the use of the problem solving cycle. The problem solving cycle is a key concept in cognitive psychology, which involves a systematic approach to identifying, analyzing, and resolving problems.

First, students are introduced to a problem or a question that requires analysis and solution. They are encouraged to define the problem clearly and understand its scope. This initial step helps students develop problem awareness and identify potential barriers or constraints that may affect the problem-solving process.

Next, students engage in information gathering and analysis. They gather relevant data, facts, and evidence, and apply critical thinking skills to evaluate and interpret the information. This step helps students develop analytical skills and generate possible solutions.

Once students have gathered and analyzed the information, they move on to the generation of potential solutions. This involves brainstorming and exploring different approaches to the problem, encouraging creativity and flexibility in thinking. Students are encouraged to think outside the box and consider multiple perspectives.

After generating potential solutions, students evaluate each option based on effectiveness, feasibility, and potential consequences. They consider the advantages and disadvantages of each solution, weighing the pros and cons. This step helps students develop decision-making skills and enhances their ability to critically evaluate potential solutions.

Finally, students select the most appropriate solution and implement it. They develop an action plan, outlining the steps needed to solve the problem. This requires effective communication skills, as students may need to collaborate and communicate their ideas with others.

Benefits of Teaching Problem Solving Skills

Teaching problem solving skills in education offers numerous benefits to students. Firstly, it enhances their cognitive abilities, allowing them to think critically and logically. This helps students become more independent learners and problem solvers.

Additionally, teaching problem solving skills improves students’ creativity and innovation. By encouraging them to think outside the box and explore different solutions, educators foster a mindset of curiosity and exploration.

Moreover, problem solving skills are transferable to various contexts, both within and outside of the classroom. Students can apply these skills to academic subjects, as well as to real-life situations, such as social issues, personal challenges, and future career paths.

In conclusion, teaching problem solving skills in education is crucial for students’ cognitive development and future success. By implementing the problem solving cycle and fostering critical thinking abilities, educators empower students with the skills necessary to navigate complex challenges and become lifelong learners.

Real-World Applications of the Problem Solving Cycle

The problem solving cycle is a fundamental concept in cognitive psychology that has numerous applications in real-world situations. This cycle involves a series of steps that individuals go through in order to identify, analyze, and solve problems.

1. Business

In the business world, problem solving is essential for success. From identifying market trends and determining customer needs to finding solutions to production issues or administrative challenges, the problem solving cycle is used to tackle a variety of business-related problems.

2. Education

The problem solving cycle is also highly applicable in education. Teachers often use this approach to help students develop critical thinking skills and solve complex problems. By following this cycle, students learn to break down problems, gather relevant information, analyze various options, and come up with effective solutions.

3. Medicine

Medical professionals frequently employ the problem solving cycle when diagnosing and treating patients. By systematically gathering patient history, evaluating symptoms, conducting tests, and analyzing data, doctors are able to identify the underlying problem and develop appropriate treatment plans.

4. Engineering

In the field of engineering, the problem solving cycle is crucial for designing and implementing solutions. Engineers use this approach to identify and address technical challenges, improve existing systems, and develop innovative technologies. By following this cycle, engineers can efficiently solve complex problems and ensure the success of their projects.

5. Everyday Life

Lastly, the problem solving cycle is applicable to everyday life. Whether it’s figuring out the best route to work, resolving conflicts in relationships, or making important decisions, individuals use this cycle to identify issues, explore possible solutions, and make informed choices.

The problem solving cycle is a versatile concept that finds widespread applications in various domains. From business and education to medicine and engineering, this approach facilitates effective problem solving and decision making. By following the steps of the cycle, individuals and organizations can overcome challenges and achieve their goals.

The Future of Problem Solving Research

In the field of cognitive psychology, research on problem solving is an ongoing and dynamic area of study. As technology continues to advance and our understanding of the cognitive processes involved in problem solving deepens, the future of problem solving research looks promising.

Advancements in Technology

Advancements in technology have already had a significant impact on problem solving research. The use of computer simulations and virtual environments has allowed researchers to create realistic problem-solving scenarios and collect data in a controlled environment. This technology has also allowed for the development of intelligent tutoring systems that can provide personalized feedback and guidance to individuals as they work through various problem-solving tasks.

In the future, we can expect even more sophisticated technologies to be developed, which will enhance our ability to study problem solving. For example, virtual reality technology may allow researchers to create immersive problem-solving environments that closely mimic real-life situations. This could provide researchers with valuable insights into how individuals approach and solve complex problems in a realistic setting.

Integration of Cognitive Processes

As our understanding of cognitive processes continues to grow, future research on problem solving will likely focus on the integration of various cognitive processes. Problem solving is a complex task that involves numerous cognitive processes, such as attention, memory, decision-making, and reasoning. Understanding how these processes interact and influence problem-solving performance will be crucial in developing effective strategies for problem solving.

Researchers may also explore the role of emotions in problem solving. Emotions can have a significant impact on cognitive processes and decision-making. Understanding how emotions influence problem-solving performance may provide valuable insights into how individuals can improve their problem-solving abilities.

Collaborative Problem Solving

Collaborative problem solving, or problem solving in a group setting, is another area that holds great potential for future research. Many real-world problems require collaboration and teamwork to solve effectively. Research on collaborative problem solving can provide valuable insights into how individuals interact and communicate with each other during problem-solving tasks, and how team dynamics impact problem-solving performance.

Furthermore, advancements in communication technology have made it easier than ever for individuals to collaborate remotely. Studying how individuals solve problems in virtual teams or online communities can provide valuable insights into the dynamics of collaborative problem solving in today’s interconnected world.

Continued Development of the Problem Solving Cycle

The problem solving cycle, which involves the stages of problem identification, solution generation, solution implementation, and solution evaluation, will continue to be a key concept in problem solving research. Researchers will seek to understand how individuals move through these stages, the strategies they employ at each stage, and how their problem-solving performance can be optimized.

By understanding the cognitive processes involved in each stage of the problem solving cycle, researchers can develop interventions and strategies to help individuals become more effective problem solvers.

In conclusion, the future of problem solving research in cognitive psychology looks promising. Advancements in technology, a deeper understanding of cognitive processes, the study of collaborative problem solving, and the continued development of the problem solving cycle will all contribute to our understanding of problem solving and help individuals become more effective in solving complex problems.

Questions and answers:

What is the problem-solving cycle.

The problem-solving cycle is a key concept in cognitive psychology that refers to the sequence of steps or processes involved in solving a problem.

What are the stages of the problem-solving cycle?

The problem-solving cycle typically consists of four stages: problem identification, problem definition, strategy selection, and solution implementation.

How does problem identification occur in the problem-solving cycle?

Problem identification involves recognizing that there is a problem or a discrepancy between a desired state and the current state.

What is problem definition in the problem-solving cycle?

Problem definition involves clearly specifying or defining the problem in a way that allows for a focused approach to finding a solution.

What is strategy selection in the problem-solving cycle?

Strategy selection involves choosing an appropriate approach or method to solve the problem, such as using a specific algorithm or heuristic.

What is the problem-solving cycle in cognitive psychology?

The problem-solving cycle is a concept in cognitive psychology that outlines the steps individuals go through when tackling a problem. It involves identifying the problem, gathering information, generating possible solutions, evaluating the solutions, and implementing the best one.

How does the problem-solving cycle help in problem-solving?

The problem-solving cycle provides a structured approach to problem-solving by breaking it down into manageable steps. By following this cycle, individuals can better understand the problem, explore various solutions, evaluate their effectiveness, and ultimately make an informed decision on how to solve the problem.

Related posts:

  • A Comprehensive Guide to the Problem Solving Cycle in Psychology – Strategies, Techniques, and Applications
  • The Importance of Implementing the Problem Solving Cycle in Education to Foster Critical Thinking and Problem-Solving Skills in Students
  • The Step-by-Step Problem Solving Cycle for Effective Solutions
  • The Comprehensive Guide to the Problem Solving Cycle in PDF Format
  • The Importance of the Problem Solving Cycle in Business Studies – Strategies for Success
  • A Comprehensive Guide on the Problem Solving Cycle – Step-by-Step Approach with Real-Life Example
  • The Seven Essential Steps of the Problem Solving Cycle
  • Exploring the Problem Solving Cycle in Computer Science – Strategies, Techniques, and Tools

Plan, Do, Check, Act (PDCA)

PDCA is an improvement cycle based on the scientific method of proposing a change in a process, implementing the change, measuring the results, and taking appropriate action. It also is known as the Deming Cycle or Deming Wheel after W. Edwards Deming, who introduced the concept in Japan in the 1950s. It is also known as PDSA, where the “S” stands for “study”.

The PDCA cycle has four stages:

  • Plan — determine goals for a process and needed changes to achieve them.
  • Do — implement the changes.
  • Check — evaluate the results in terms of performance
  • Act — standardize and stabilize the change or begin the cycle again, depending on the results

An image of the PDCA cycle.

PDCA is the foundation of continuous improvement or kaizen. Leaders set targets (plan) against a stable baseline of performance. Teams implement improvements (Do) to achieve the targets. Then they measure (Check) the change to evaluate performance against the target. If the team has achieved a measurable gain, it standardizes (Act) the new method by updating the standardized work. This ensures the improvement is stable.

A graphic showing PDCA cycles moving up a hill to demonstrate how PDCA leads to steady performance improvement.

History of PDCA

Walter A. Shewhart was the first to develop a repeating cycle for improvement dubbed the Shewhart Cycle:

Edward Deming expanded the Shewart cycle into a four-step pattern for Japanese audiences. The Deming cycle related heavily to the concept of product quality, innovation, and learning-by-doing over the entire life cycle of a product.

Specifically, the Deming cycle runs:

1.  Design  the product with appropriate testing. 2.  Make  the product and test it in production and in the lab. 3.  Sell  the product to the market. 4.  Test  the customer experience and redesign for improvement.

An image of the Deming and Shewhart cycles.

In 1951, the Japanese Union of Scientists and Engineers (JUSE) altered Deming’s framework into the more recognizable PDCA cycle. Although well over half a century has passed since the introduction of the Deming cycle to executives in Japan, most open-ended approaches still seek to repeat learning cycles as rapidly as possible, for obtaining customer feedback and making improvements in all pertinent areas.

The language may change slightly, but the basic thinking has not changed much. Consider the three-phase concept— Build ,  Measure ,  Learn —popularized by Eric Ries in his book,  The Lean Startup . His iterative process is fundamentally similar to both the original Shewhart and Deming cycles. Words may change or be slightly altered, but the timeless, classic concepts stay the same.

Additional Resources

  • Test Your PDCA Thinking By Reading Your A3 Backwards
  • Create a Real A3, Do More Than Fill In Boxes
  • Hazards at the Huddle Board: How to Coach a Team Away from “Fast Thinking” to Disciplined PDCA
  • Practical Guidance for Using Humble Inquiry in PDCA Problem Solving and Coaching
  • The Key to Lean — Plan, Do, Check, Act!
  • Four Types of Problems — Art Smalley

Privacy Overview

Consuunt

  • Your Project

What is the PDCA Model?

The PDCA Model is a Problem-Solving tool that suggests 4 simple Steps to achieve Goals efficiently .

  • Its Name is an acronym for the Steps suggested: P lan, D o, C heck, A ct.

These steps can (or should) be repeated cyclically in order to improve the results obtained.

As in many other Continuous-Improvement tools, the more you repeat the cycle, the closer you will be to finding the solution or reaching the end goal .

Four Steps of the PDCA Model

1. Plan : In this first Step, you should:

  • Define the Problem or the Goal you want to achieve.
  • Design a Strategy or a Method to do it.

2. Do :  In this Step, you should:

  • Implement the necessary actions to comply with the Plan.

3: Check : In this Step, you should:

  • Check the results obtained.
  • Choose and Use the right metrics .
  • Find out what worked and what didn’t .

4: Act : In this Step, you should:

  • Adopt the modifications that have proven to work.
  • Come up with a new Plan to fix what isn’t working yet.

This cycle is meant to be repeated frequently :

  • If you have not been able to reach your initial Goal, you must repeat it until you have achieved it.
  • If you have reached your initial Goal, you should look for the Next one .

Let’s see the first example so that you understand it better:

PDCA Model example

example of problem solving cycle

Imagine that you own a Restaurant specialized in ribs .

  • You think people are a little “tired” of your recipe.

You want to discover a new recipe that will drive your customers crazy.

Since you are not a very methodical person, you decide to use the PDCA Model:

Your Goal is to find a new successful Recipe for your Ribs .

  • You’ll start offering 5 alternatives to your Clients.
  • Every week, you will keep the top 3 and introduce 2 new ones .

You’ll use an iterative process to find which ingredients and cooking processes your customers like best .

The first week, you prepare the 5 best recipes you know , listing all the ingredients that each one has and what cooking processes you followed.

  • Once you have feedback, you’ll make different modifications.

At the end of every week, you check the most successful recipes.

  • The ingredients they have (spices, amount of salt, rib supplier, etc).
  • The cooking process used (which charcoal yo used, how much time you employed, etc).

Your goal in this step is to see if your recipes are going in the right direction .

Once you have checked the best recipes, you analyze and decide what new recipes you will use next week .

  • After 3 months of research, you end up with a successful recipe that has been undefeated for 4 consecutive weeks .

As you may be thinking right now, this model can be used in very different situations in very different ways.

But why is it important that you use it?

Why is the PDCA Model important?

In general, people tend to be chaotic when looking for solutions to their problems.

  • Once we’ve found a “solution” we don’t look for a better option .

The PDCA Method offers you 4 simple Steps to follow and encourages you to keep improving your results permanently .

As we always say: Just because something is intuitive doesn’t mean it’s obvious .

But, when should you use this Tool?

When should you use the PDCA Model?

This is one of the few methods that can be used in any situation .

Even if you don’t use it explicitly, you can act according to its dynamics :

  • To Plan something, Do it, Check your results and Modify what needs to be modified.

If is a very simple and flexible Model that can be very useful:

  • For Starting new Projects.
  • To improve a Product or Service.
  • To improve Personal Skills.

You can even use it to lose a few kilos.

PDCA Model examples

Now, we will share with you some examples of different situations where the PDCA Model can be of great help .

Let’s begin:

Clothing Store - PDCA Model example

example of problem solving cycle

Now, let’s imagine you have started your own Clothing Store .

  • However, you’re still not sure which product line would best suit your customers’ preferences.

You decide to use the PDCA Model:

Every 2 weeks, you’ll introduce 2 new product lines .

At the end of those 2 weeks, you’ll analyze:

  • Which products brought more customers.
  • Which products gave you the most benefits.

Depending on the results obtained, you’ll decide which new product-lines you’ll introduce the next 2 weeks .

  • You’ll repeat this process for the next 6 months.

Every 2 weeks, you introduce the new products.

You decide promote the new products as special opportunities .

  • This way you won’t give a chaotic impression to your customers.

At the end of every 2 weeks you analyze your results:

  • Number of clients you have received.
  • Customer preferences.
  • Benefits obtained.

Have the changes taken effect?

Finally, you decide what new product lines you will introduce the next 2 weeks .

  • Since you would need some time to talk to your suppliers, you could introduce a 1 month delay in your operations.

The products that work best will give you an idea of ​​what to do.

  • After 6 months, you find the product line that bests suits your customers’ preferences and maximizes your profits .

Blogging - PDCA Model example

example of problem solving cycle

Now, we’re going to imagine that you have just started your own Blog .

  • This is a very common situation.

Therefore, you decide to use the PDCA Method:

Since Google needs time to Rank content correctly, you will develop a 1-year plan .

The first 6 months, you’ll write about 5 different Topics that you like the most .

  • If you want to have a successful Blog, you need to love what you write about.

After those 6 months, you’ll decide what 3 Topics you’ll write about the next 6 months .

  • By choosing the 3 most popular Topics.

Finally, after 1 year, you’ll chose your final main Blog Topic .

Every week, you’ll write 2 good Blog Posts .

  • In the first 6 months, you’ll have written 10 Posts of each Topic.

After 6 months you analyze:

  • Which Topics were most popular.
  • What Post Structure was most successful (length, appearance).

Google offers an infinity of tools and metrics for this.

Were your assumptions and predictions correct?

After 6 months, you decide what Topics to focus on and what Structure you will follow the next 6 months.

  • After an exhausting year, you finally have found your niche and your results do not stop growing .

Personal Trainer - PDCA Model example

example of problem solving cycle

Now, you are a Personal Trainer .

  • You have different clients that you train regularly.

You are thinking of a new type of training but you are not sure how to design it.

You then decide to use the PDCA Method:

You decide to offer 4 of your Clients a new training method.

You will test different versions of it and measure the Weight loss and Customer satisfaction of each version .

After 2 months , you’ll decide what modifications you can make to each training method and you’ll repeat the whole process with 4 new Clients .

You’ll repeat this cycle 3 times: you’ll need 6 months .

Every week, you prepare the training of your 4 “special” Clients closely, measuring :

  • Their satisfaction (with a simple and quick test).
  • Their weight loss .
  • Their health in general.

Every 2 months, you collect all the results obtained and decide what works best and what doesn’t .

  • By doing this you can introduce further modifications for the training of the new 4 clients.

Finally, you introduce the modifications necessary for the new training programs and you offer it to 4 different Clients .

  • After 6 months you end up with a new effective training that people love .

Summarizing

The PDCA Model is an iterative problem-solving tool that proposes 4 simple Steps to achieve Goals efficiently.

  • These steps should be repeated cyclically until the Goal has been achieved.

The 4 Steps proposed are:

  • Plan : Prepare your Goals and Strategy.
  • Do : Take the necessary actions.
  • Check : Test your results.
  • Act : Introduce the necessary modifications.
  • The PDCA Method offers 4 simple Steps to follow.

It is a very simple and flexible model that can be used in many situations.

  • Economies of Scale
  • Business Plan for Beginners
  • Business Plan Basics
  • How to write a Business Plan
  • Cash Flow Calculation
  • Raising Funds for a Business
  • 4 C’s of Credit
  • Business Plan Templates
  • Customer Insight
  • Customer Experience
  • Customer Pain Points
  • 4C Marketing Model
  • RATER Model
  • Augmented Product
  • Product Mix
  • Unique Selling Proposition
  • DAGMAR Model
  • Marketing Storytelling
  • Content Marketing
  • Psychographics
  • Barnum Effect
  • Market Segmentation
  • Market Research & Big Data
  • Marketing to Generation Z
  • 4P Marketing Mix
  • 7P Marketing Mix
  • Sales Funnel
  • Loyalty Ladder
  • RACE Planning
  • Push and Pull Marketing
  • Marketing Strategy
  • Marketing Templates
  • Starting your own business
  • From Startup to a Business
  • Entrepreneur FAQs
  • Start your Business Idea
  • Entrepreneur Golden Rules
  • Innovate or Imitate?
  • Design Thinking
  • SCAMPER Model
  • AAR Process
  • Work From Home
  • Growth strategies for Startups
  • VMOST Analysis
  • 3P Framework
  • SOAR Analysis
  • TELOS Analysis
  • 5 C’s of Entrepreneurship
  • Crowdfunding
  • BATNA & ZOPA Negotiation
  • Entrepreneur with no Money
  • Entrepreneurship Templates
  • Strategy vs Tactics
  • Mission and Vision
  • Business Values
  • Value Chain
  • Scenario Planning
  • Porter 6 Forces
  • Bowman’s Strategy Clock
  • GE-McKinsey Matrix
  • Delta Model
  • PEST Analysis
  • PESTEL Analysis
  • SWOT Analysis
  • VRIO Framework
  • Strategy Canvas
  • Competitive Advantages
  • Porter’s Four Corners
  • 5 Ps of Strategy
  • Porter’s Generic Strategies
  • Porter’s Diamond Model
  • Wardley Map
  • Core Competencies
  • Resource Based View
  • Bridges Transition Model
  • CAGE Distance Framework
  • McKinsey’s 3 Horizons
  • Vertical Integration
  • Horizontal Integration
  • Blue Ocean Strategy
  • Red Ocean Strategy
  • Porter 5 Forces
  • Ansoff Matrix
  • McKinsey 7S Framework
  • CATWOE Analysis
  • Strategy Pyramid
  • Bain’s RAPID Framework
  • Balanced Scorecard
  • Resources and Capabilities
  • Strategy of Apple
  • Strategy of Amazon
  • Strategy of Starbucks
  • Strategy Templates
  • Communicate Effectively
  • COIN Conversation Model
  • SCARF Model
  • SBI Feedback Model
  • CEDAR Feedback Model
  • How to behave at a meeting
  • Gibbs’ Reflective Cycle
  • Bloom’s Taxonomy
  • 5E Learning Model
  • 9-Box Performance Grid
  • SEEDS Bias Model
  • Halo Effect
  • Pygmalion Rosenthal Effect
  • Dunning-Kruger Effect
  • How to be an Entrepreneur
  • How to be a Leader
  • Mintzberg Managerial Roles
  • Cog’s Ladder
  • The Peter Principle
  • How to Negotiate
  • Teamwork Skills and Profiles
  • Gantt Chart
  • RACI Matrix
  • Eisenhower Matrix
  • MoSCoW Method
  • FMEA Process
  • Problem Solving
  • Ishikawa Fishbone diagram
  • 5 Whys Method
  • 8 Disciplines Method
  • ADDIE Model
  • ORAPAPA Method
  • Cynefin Framework
  • Just In Time
  • SMART Goals
  • KISS Principle
  • Birkinshaw’s 4 Dimensions
  • Parkinson’s Law
  • OGSM Framework
  • OKR Methodology
  • APQP Framework
  • Theory of Constraints
  • Success through Organization
  • ADKAR Model
  • Lewin’s Change Model
  • Kotter’s 8-Step Model
  • The Greiner Curve
  • GAP Analysis
  • Planning Templates
  • Mean, Median and Mode
  • Define your Data
  • Pareto Principle 80/20 Rule
  • Decision Matrix
  • Decision Tree
  • TARA Framework
  • Root Cause Analysis
  • Simplex Process
  • Forecasting Methods
  • Product Life Cycle
  • How to use Google Trends
  • Correlation vs Causation

© 2024 - Consuunt .

We're not around right now. But you can send us an email and we'll get back to you, asap.

Log in with your credentials

Forgot your details.

culture partners logo

Culture Development

Workplace problem-solving examples: real scenarios, practical solutions.

  • March 11, 2024

In today’s fast-paced and ever-changing work environment, problems are inevitable. From conflicts among employees to high levels of stress, workplace problems can significantly impact productivity and overall well-being. However, by developing the art of problem-solving and implementing practical solutions, organizations can effectively tackle these challenges and foster a positive work culture. In this article, we will delve into various workplace problem scenarios and explore strategies for resolution. By understanding common workplace problems and acquiring essential problem-solving skills, individuals and organizations can navigate these challenges with confidence and success.

Men in Hardhats

Understanding Workplace Problems

Before we can effectively solve workplace problems , it is essential to gain a clear understanding of the issues at hand. Identifying common workplace problems is the first step toward finding practical solutions. By recognizing these challenges, organizations can develop targeted strategies and initiatives to address them.

Identifying Common Workplace Problems

One of the most common workplace problems is conflict. Whether it stems from differences in opinions, miscommunication, or personality clashes, conflict can disrupt collaboration and hinder productivity. It is important to note that conflict is a natural part of any workplace, as individuals with different backgrounds and perspectives come together to work towards a common goal. However, when conflict is not managed effectively, it can escalate and create a toxic work environment.

In addition to conflict, workplace stress and burnout pose significant challenges. High workloads, tight deadlines, and a lack of work-life balance can all contribute to employee stress and dissatisfaction. When employees are overwhelmed and exhausted, their performance and overall well-being are compromised. This not only affects the individuals directly, but it also has a ripple effect on the entire organization.

Another common workplace problem is poor communication. Ineffective communication can lead to misunderstandings, delays, and errors. It can also create a sense of confusion and frustration among employees. Clear and open communication is vital for successful collaboration and the smooth functioning of any organization.

The Impact of Workplace Problems on Productivity

Workplace problems can have a detrimental effect on productivity levels. When conflicts are left unresolved, they can create a tense work environment, leading to decreased employee motivation and engagement. The negative energy generated by unresolved conflicts can spread throughout the organization, affecting team dynamics and overall performance.

Similarly, high levels of stress and burnout can result in decreased productivity, as individuals may struggle to focus and perform optimally. When employees are constantly under pressure and overwhelmed, their ability to think creatively and problem-solve diminishes. This can lead to a decline in the quality of work produced and an increase in errors and inefficiencies.

Poor communication also hampers productivity. When information is not effectively shared or understood, it can lead to misunderstandings, delays, and rework. This not only wastes time and resources but also creates frustration and demotivation among employees.

Furthermore, workplace problems can negatively impact employee morale and job satisfaction. When individuals are constantly dealing with conflicts, stress, and poor communication, their overall job satisfaction and engagement suffer. This can result in higher turnover rates, as employees seek a healthier and more supportive work environment.

In conclusion, workplace problems such as conflict, stress, burnout, and poor communication can significantly hinder productivity and employee well-being. Organizations must address these issues promptly and proactively to create a positive and productive work atmosphere. By fostering open communication, providing support for stress management, and promoting conflict resolution strategies, organizations can create a work environment that encourages collaboration, innovation, and employee satisfaction.

Office Supplies

The Art of Problem Solving in the Workplace

Now that we have a clear understanding of workplace problems, let’s explore the essential skills necessary for effective problem-solving in the workplace. By developing these skills and adopting a proactive approach, individuals can tackle problems head-on and find practical solutions.

Problem-solving in the workplace is a complex and multifaceted skill that requires a combination of analytical thinking, creativity, and effective communication. It goes beyond simply identifying problems and extends to finding innovative solutions that address the root causes.

Essential Problem-Solving Skills for the Workplace

To effectively solve workplace problems, individuals should possess a range of skills. These include strong analytical and critical thinking abilities, excellent communication and interpersonal skills, the ability to collaborate and work well in a team, and the capacity to adapt to change. By honing these skills, individuals can approach workplace problems with confidence and creativity.

Analytical and critical thinking skills are essential for problem-solving in the workplace. They involve the ability to gather and analyze relevant information, identify patterns and trends, and make logical connections. These skills enable individuals to break down complex problems into manageable components and develop effective strategies to solve them.

Effective communication and interpersonal skills are also crucial for problem-solving in the workplace. These skills enable individuals to clearly articulate their thoughts and ideas, actively listen to others, and collaborate effectively with colleagues. By fostering open and honest communication channels, individuals can better understand the root causes of problems and work towards finding practical solutions.

Collaboration and teamwork are essential for problem-solving in the workplace. By working together, individuals can leverage their diverse skills, knowledge, and perspectives to generate innovative solutions. Collaboration fosters a supportive and inclusive environment where everyone’s ideas are valued, leading to more effective problem-solving outcomes.

The ability to adapt to change is another important skill for problem-solving in the workplace. In today’s fast-paced and dynamic work environment, problems often arise due to changes in technology, processes, or market conditions. Individuals who can embrace change and adapt quickly are better equipped to find solutions that address the evolving needs of the organization.

The Role of Communication in Problem Solving

Communication is a key component of effective problem-solving in the workplace. By fostering open and honest communication channels, individuals can better understand the root causes of problems and work towards finding practical solutions. Active listening, clear and concise articulation of thoughts and ideas, and the ability to empathize are all valuable communication skills that facilitate problem-solving.

Active listening involves fully engaging with the speaker, paying attention to both verbal and non-verbal cues, and seeking clarification when necessary. By actively listening, individuals can gain a deeper understanding of the problem at hand and the perspectives of others involved. This understanding is crucial for developing comprehensive and effective solutions.

Clear and concise articulation of thoughts and ideas is essential for effective problem-solving communication. By expressing oneself clearly, individuals can ensure that their ideas are understood by others. This clarity helps to avoid misunderstandings and promotes effective collaboration.

Empathy is a valuable communication skill that plays a significant role in problem-solving. By putting oneself in the shoes of others and understanding their emotions and perspectives, individuals can build trust and rapport. This empathetic connection fosters a supportive and collaborative environment where everyone feels valued and motivated to contribute to finding solutions.

In conclusion, problem-solving in the workplace requires a combination of essential skills such as analytical thinking, effective communication, collaboration, and adaptability. By honing these skills and fostering open communication channels, individuals can approach workplace problems with confidence and creativity, leading to practical and innovative solutions.

Real Scenarios of Workplace Problems

Now, let’s explore some real scenarios of workplace problems and delve into strategies for resolution. By examining these practical examples, individuals can develop a deeper understanding of how to approach and solve workplace problems.

Conflict Resolution in the Workplace

Imagine a scenario where two team members have conflicting ideas on how to approach a project. The disagreement becomes heated, leading to a tense work environment. To resolve this conflict, it is crucial to encourage open dialogue between the team members. Facilitating a calm and respectful conversation can help uncover underlying concerns and find common ground. Collaboration and compromise are key in reaching a resolution that satisfies all parties involved.

In this particular scenario, let’s dive deeper into the dynamics between the team members. One team member, let’s call her Sarah, strongly believes that a more conservative and traditional approach is necessary for the project’s success. On the other hand, her colleague, John, advocates for a more innovative and out-of-the-box strategy. The clash between their perspectives arises from their different backgrounds and experiences.

As the conflict escalates, it is essential for a neutral party, such as a team leader or a mediator, to step in and facilitate the conversation. This person should create a safe space for both Sarah and John to express their ideas and concerns without fear of judgment or retribution. By actively listening to each other, they can gain a better understanding of the underlying motivations behind their respective approaches.

During the conversation, it may become apparent that Sarah’s conservative approach stems from a fear of taking risks and a desire for stability. On the other hand, John’s innovative mindset is driven by a passion for pushing boundaries and finding creative solutions. Recognizing these underlying motivations can help foster empathy and create a foundation for collaboration.

As the dialogue progresses, Sarah and John can begin to identify areas of overlap and potential compromise. They may realize that while Sarah’s conservative approach provides stability, John’s innovative ideas can inject fresh perspectives into the project. By combining their strengths and finding a middle ground, they can develop a hybrid strategy that incorporates both stability and innovation.

Ultimately, conflict resolution in the workplace requires effective communication, active listening, empathy, and a willingness to find common ground. By addressing conflicts head-on and fostering a collaborative environment, teams can overcome challenges and achieve their goals.

Dealing with Workplace Stress and Burnout

Workplace stress and burnout can be debilitating for individuals and organizations alike. In this scenario, an employee is consistently overwhelmed by their workload and experiencing signs of burnout. To address this issue, organizations should promote a healthy work-life balance and provide resources to manage stress effectively. Encouraging employees to take breaks, providing access to mental health support, and fostering a supportive work culture are all practical solutions to alleviate workplace stress.

In this particular scenario, let’s imagine that the employee facing stress and burnout is named Alex. Alex has been working long hours, often sacrificing personal time and rest to meet tight deadlines and demanding expectations. As a result, Alex is experiencing physical and mental exhaustion, reduced productivity, and a sense of detachment from work.

Recognizing the signs of burnout, Alex’s organization takes proactive measures to address the issue. They understand that employee well-being is crucial for maintaining a healthy and productive workforce. To promote a healthy work-life balance, the organization encourages employees to take regular breaks and prioritize self-care. They emphasize the importance of disconnecting from work during non-working hours and encourage employees to engage in activities that promote relaxation and rejuvenation.

Additionally, the organization provides access to mental health support services, such as counseling or therapy sessions. They recognize that stress and burnout can have a significant impact on an individual’s mental well-being and offer resources to help employees manage their stress effectively. By destigmatizing mental health and providing confidential support, the organization creates an environment where employees feel comfortable seeking help when needed.

Furthermore, the organization fosters a supportive work culture by promoting open communication and empathy. They encourage managers and colleagues to check in with each other regularly, offering support and understanding. Team members are encouraged to collaborate and share the workload, ensuring that no one person is overwhelmed with excessive responsibilities.

By implementing these strategies, Alex’s organization aims to alleviate workplace stress and prevent burnout. They understand that a healthy and balanced workforce is more likely to be engaged, productive, and satisfied. Through a combination of promoting work-life balance, providing mental health support, and fostering a supportive work culture, organizations can effectively address workplace stress and create an environment conducive to employee well-being.

Practical Solutions to Workplace Problems

Now that we have explored real scenarios, let’s discuss practical solutions that organizations can implement to address workplace problems. By adopting proactive strategies and establishing effective policies, organizations can create a positive work environment conducive to problem-solving and productivity.

Implementing Effective Policies for Problem Resolution

Organizations should have clear and well-defined policies in place to address workplace problems. These policies should outline procedures for conflict resolution, channels for reporting problems, and accountability measures. By ensuring that employees are aware of these policies and have easy access to them, organizations can facilitate problem-solving and prevent issues from escalating.

Promoting a Positive Workplace Culture

A positive workplace culture is vital for problem-solving. By fostering an environment of respect, collaboration, and open communication, organizations can create a space where individuals feel empowered to address and solve problems. Encouraging teamwork, recognizing and appreciating employees’ contributions, and promoting a healthy work-life balance are all ways to cultivate a positive workplace culture.

The Role of Leadership in Problem Solving

Leadership plays a crucial role in facilitating effective problem-solving within organizations. Different leadership styles can impact how problems are approached and resolved.

Leadership Styles and Their Impact on Problem-Solving

Leaders who adopt an autocratic leadership style may make decisions independently, potentially leaving their team members feeling excluded and undervalued. On the other hand, leaders who adopt a democratic leadership style involve their team members in the problem-solving process, fostering a sense of ownership and empowerment. By encouraging employee participation, organizations can leverage the diverse perspectives and expertise of their workforce to find innovative solutions to workplace problems.

Encouraging Employee Participation in Problem Solving

To harness the collective problem-solving abilities of an organization, it is crucial to encourage employee participation. Leaders can create opportunities for employees to contribute their ideas and perspectives through brainstorming sessions, team meetings, and collaborative projects. By valuing employee input and involving them in decision-making processes, organizations can foster a culture of inclusivity and drive innovative problem-solving efforts.

In today’s dynamic work environment, workplace problems are unavoidable. However, by understanding common workplace problems, developing essential problem-solving skills, and implementing practical solutions, individuals and organizations can navigate these challenges effectively. By fostering a positive work culture, implementing effective policies, and encouraging employee participation, organizations can create an environment conducive to problem-solving and productivity. With proactive problem-solving strategies in place, organizations can thrive and overcome obstacles, ensuring long-term success and growth.

Related Stories

  • May 23, 2024

Software for Company Culture

Edgar schein models on organizational culture, best culture consulting firms, what can we help you find.

Classroom Management Toolbox

Eastern Washington University

example of problem solving cycle

Problem Solving Cycle

example of problem solving cycle

This tool would be taught to the students at the beginning of the year, and then a poster of the cycle would be put in the room to remind students of the cycle so they can use it when they have a conflict with another student. The cycle is identify the problem, brainstorm ideas, weigh pros and cons, overcome obstacles, action steps, and then to reflect on the whole situation. Each of these steps will allow for students to self-identify the problem, what they think is causing the problem, and steps that need to be taken in order to solve the problem. The teacher should only intervene in the situation if the students are unable to go through the cycle successfully by themselves. This process teaches students to rely on themselves to solve problems rather than just having the teacher solve the problem for them.

This tool is in the corrective phase because it is being used to correct the behaviors and problems between students. This cycle also restores the conflicts in hope of starting a better relationship between students. Students will use this tool to solve problems with a student, and then can use the same steps again when another problem arises with perhaps a different student. This tool is mostly student centered but can become collaborative because it is up to the students the first time through the cycle to try to take all the steps to solving the problems themselves. However, if the students unsuccessfully go through the cycle without coming to an agreement on how to solve the problem, the teacher will then help to complete cycle so the students are able to come to an agreement on how to solve the issue.

More Information – Tool Source: Pinterest

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Campus Safety

509.359.6498 Office

509.359.6498 Cheney

509.359.6498 Spokane

[email protected]

Records & Registration

509.359.2321

[email protected]

Need Tech Assistance?

509.359.2247

[email protected]

EWU ACCESSIBILITY

509.359.6871

[email protected]

EWU Accessibility

Student Affairs

509.359.7924

[email protected]

University Housing

509.359.2451

[email protected]

Housing & Residential Life

Register to Vote

Register to Vote (RCW 29A.08.310)

509.359.6200

Eastern Washington University

© 2023 INSIDE.EWU.EDU

example of problem solving cycle

How PDCA Can Help Improve Organizational Efficiency

Updated: September 10, 2023 by Ken Feldman

example of problem solving cycle

Never-ending improvement is the heart of any continuous improvement effort.  The Deming Cycle, or PDCA, is one of the first formalized approaches to utilize an iterative approach to improving processes, and it still serves as a fundamental tool today for continuous improvement. 

This article will describe the stages of the Deming Cycle, the benefits of using the PDCA approach to improvement, an example of how it can be applied, and some best practices for successful use of the method for improving your processes.

Overview: What is the Deming Cycle (or PDCA)? 

The Deming Cycle (or Plan-Do-Check-Act (PDCA)) is a four-step iterative technique used to solve problems and to improve organizational processes. Dr. Walter A. Shewhart, the renowned physicist and statistician from Western Electric and Bell Labs, developed the original concept during the 1920s. His approach was a three-step linear problem-solving method. 

Dr. W. Edwards Deming, the famous quality-control pioneer and author of Deming’s 14 Points , popularized the technique in the 1950s and took Shewhart’s linear three-step process and revised it to be the iterative four-step circle and cycle we know today. This then became known as the Deming Cycle. 

So, what is PDCA and the Deming Cycle?

  • Plan: In this step, you investigate the current situation in order to fully understand the nature of the problem being solved.​ Be sure that you develop a plan and a framework to work from, and specify the desired outcomes and results.
  • Do: To identify the real problem by analyzing the data and defining and implementing a solution plan. The PDCA cycle focuses on smaller, incremental changes that help improve processes with minimal disruption. You should start with a small-scale pilot so as not to disrupt the organization should the solution not work as expected.
  • Check: To monitor the effect of the implementation plan and find countermeasures if necessary to further improve the solution. You should do a check during implementation to make sure that the project’s objectives are being met. Do a second check upon completion to allow for successes and failures to be addressed, and for future adjustments to be made based on lessons learned.
  • Act: I mplement your solutions and recommendations. Decide if the solution is effective, and either integrate it into standard work practices or abandon it. If you abandon it, you should ask what you’ve learned from the process and restart the cycle.

RELATED: PDCA vs. DMAIC

3 benefits of the deming cycle.

PDCA has been used for many decades because of its many benefits. Some of those are:

  • Facilitates continuous improvement:  The fact that PDCA is an iterative cycle encourages users to pursue ongoing and continuous improvement . The key is that it requires a commitment from leadership because the Deming Cycle is not a one-time event.
  • Flexibility:  The Deming Cycle can be used for a wide array of organizational processes regardless of the function.
  • Simple yet powerful: The concept and the steps are easy to understand. The tools needed are basic. Yet, the outcomes and solutions coming from PDCA can have a significant impact on the organization.

Why is the Deming Cycle important to understand? 

Not only are the Deming Cycle and PDCA important to understand, they are also important to implement and deploy in an organization.

  • Organizations and leaders must understand that all processes can be improved. PDCA is a great tool for starting on the journey to continuous improvement.
  • The Deming Cycle is a well documented and proven methodology. There is no need to start from scratch and reinvent the wheel when an effective solution already exists.
  • With this method, change can be quick and solutions implemented in a timely fashion so that your organization can see benefits right away.

An industry example of the Deming Cycle

One of the benefits of the Deming Cycle is the versatility of the process. It can be used in any number of functional areas. For example, a large manufacturing company started to experience an increase in reported eye injuries by forklift operators in their warehouse operation. They used PDCA to identify potential root causes, and the obvious recommendations to wear appropriate eye protection were the first implemented solutions.  

Unfortunately, eye injuries continued despite better compliance. The company completed a second round of PDCA with the conclusion that the standard eye protection didn’t properly fit everyone. A third go at the Deming Cycle found that debris was being dislodged from the racks when the forklift operators pulled off pallets of product. It was recommended that plastic shields be placed on the top of the forklift to catch the debris.  

Finally, a fourth round of the Deming Cycle concluded that an ongoing cleaning operation to remove and prevent debris from accumulating on the rack shelves was the only way to remove the true root cause. The problem was solved, and eye injuries disappeared.

4 best practices when thinking about the Deming Cycle

Even though the use of the Deming Cycle seems simple at first glance, there are a number of things you should be aware of to increase the probability of success of your PDCA effort. 

  • Be sure you have the support of not only senior leadership but the local leadership and process owner. While PDCA can be used at the local level, the synergy of having participation and support across the entire organization will result in a more efficient and effective process.
  • Identify and recruit the best members you can for participation in the project.
  • Stay focused and on task.
  • Try to gather as much data as is practical, and use the data to help drive your recommendations rather than just pure subjective hunches. 

Frequently Asked Questions (FAQ) about the Deming Cycle

What is the deming cycle.

The Deming Cycle, otherwise known as PDCA, is a four-step iterative process for solving problems and improving processes.

Who developed the PDCA methodology?  

Dr. Walter A. Shewhart developed the original concept of an improvement process based on Scientific Management. Dr. W. Edwards Deming popularized the concept of an improvement method but added the all-important need for an iterative approach and coined the term PDCA, which stands for Plan – Do – Check – Act

What is the difference between PDCA and PDSA ?

Dr. W. Edwards Deming revised the original term PDCA to PDSA because he felt that the use of Check was too closely aligned with the concept of inspection and success/failure. He felt that using the letter S for Study would put more emphasis on data and learning rather than just success and failure. 

RELATED: PDCA VS. OODA

Wrapping it up: deming cycle and pdca.

The Deming Cycle (or PDCA) is a simple, four-step iterative process that any organization can use to solve problems and improve business processes. By following the sequence of Plan – Do – Check – Act, your company can enjoy the benefits of creating a continuous improvement mindset while producing better products, delivering better service and providing a way for employees to engage and participate in making the organization a better place to work.

About the Author

' src=

Ken Feldman

IMAGES

  1. Problem Solving Cycle

    example of problem solving cycle

  2. The 5 Steps of Problem Solving

    example of problem solving cycle

  3. The problem solving cycle

    example of problem solving cycle

  4. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    example of problem solving cycle

  5. A3 Problem Solving Cycle Explained

    example of problem solving cycle

  6. Draw A Map Showing The Problem Solving Process

    example of problem solving cycle

VIDEO

  1. Problem Solving Cycle

  2. Problem Solving Cycle (PSC)

  3. COMPUTER SCIENCE,CLASS 11 (UNIT II

  4. C38 Example problem solving a Cauchy Euler equation with initial values

  5. Problem Solving Part I

  6. PROBLEM SOLVING CYCLE

COMMENTS

  1. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  2. What is a problem-solving cycle? With 9 steps to create one

    A problem-solving cycle involves developing a process for identifying and solving business problems. Because it's a cyclical process, you can repeat it as often as necessary. This approach to problem-solving involves a series of well-defined steps and is one of the most popular and effective methods that companies use to solve issues.

  3. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  4. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  5. 35 problem-solving techniques and methods for solving complex problems

    6. Discovery & Action Dialogue (DAD) One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions. With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so.

  6. PDCA (Plan Do Check Act)

    Key Points. The PDCA/PDSA cycle is a continuous loop of planning, doing, checking (or studying), and acting. It provides a simple and effective approach for solving problems and managing change. The model is useful for testing improvement measures on a small scale before updating procedures and working practices.

  7. Applying the PDCA Cycle: A Blueprint for Continuous Improvement

    The Plan-Do-Check-Act Cycle (PDCA Cycle) is a four-step model for systematic problem solving and continuous improvement. It offers a simple and structured way for resolving business-related issues and creating positive change.This framework is widely recognized as the basis for enhancing the quality of processes, products, and services by following a logical sequence of four steps: Plan, Do ...

  8. How to master the seven-step problem-solving process

    When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that's very similar to the disaggregation, prioritization, and work-planning steps—we do precisely the same thing, and often we use ...

  9. PDCA Cycle Explained: 4 Steps for Continuous Learning and Improvement

    The Meaning of PDCA Cycle. PDCA Cycle (also known as PDSA Cycle or Deming Cycle), is a problem-solving method used for the continuous learning and improvement of a process or product. There are 4 basic steps in PDCA Cycle: Plan: identify a problem and possible solutions; Do: execute the plan and test the solution(s)

  10. Problem-Solving Strategies and Obstacles

    Problem-solving is a vital skill for coping with various challenges in life. This webpage explains the different strategies and obstacles that can affect how you solve problems, and offers tips on how to improve your problem-solving skills. Learn how to identify, analyze, and overcome problems with Verywell Mind.

  11. 7.3 Problem-Solving

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A "rule of thumb" is an example of a heuristic.

  12. What Is the Plan-Do-Check-Act (PDCA) Cycle? +Examples

    The Plan-Do-Check-Act (PDCA) Cycle or Plan-Do-Study-Act (PDSA) Cycle is an iterative four-step problem-solving technique used to improve business processes continuously. This technique maintains a continuous feedback loop, allowing change leaders to formulate and test change theories. The PDCA Cycle, also known as the Deming Wheel or Shewhart ...

  13. The Problem Solving Cycle: A Key Concept in Cognitive Psychology

    Problem solving is a fundamental aspect of human cognition. It involves the ability to identify and define a problem, generate potential solutions, evaluate those solutions, and select the most appropriate one. The problem solving cycle is a key concept in cognitive psychology that helps us understand how individuals approach and solve problems.

  14. PDCA Cycle

    Understand the evolution of these variations. The Plan-do-check-act cycle (Figure 1) is a four-step model for carrying out change. Just as a circle has no end, the PDCA cycle should be repeated again and again for continuous improvement. The PDCA cycle is considered a project planning tool. Figure 1: Plan-do-check-act cycle.

  15. PDF The Six Step Problem Solving Model

    Problem solving models are used to address the many challenges that arise in the ... as a cycle, beginning with "1. Identify the Problem." ... next step. The steps are repeatable. At any point the group can return to an earlier step, and proceed from there. For example, once the real problem is identified - using "2. Determine the Root ...

  16. Plan, Do, Check, Act (PDCA)

    The PDCA cycle has four stages: Plan — determine goals for a process and needed changes to achieve them. Do — implement the changes. Check — evaluate the results in terms of performance. Act — standardize and stabilize the change or begin the cycle again, depending on the results. PDCA is the foundation of continuous improvement or kaizen.

  17. PDF The Psychology of Problem Solving

    Problem recognition, also referred to as problem finding, is one of the earliest stages of problem solving. Getzels (1982) classified problems based on how they were "found.". According to Getzels, there are three kinds of problems: those that are presented, those that are discovered, and those that are created.

  18. The McKinsey guide to problem solving

    The McKinsey guide to problem solving. Become a better problem solver with insights and advice from leaders around the world on topics including developing a problem-solving mindset, solving problems in uncertain times, problem solving with AI, and much more. Become a better problem solver with insights and advice from leaders around the world ...

  19. PDCA Model explained in an Easy way with Helpful Examples.

    The PDCA Model is an iterative problem-solving tool that proposes 4 simple Steps to achieve Goals efficiently. These steps should be repeated cyclically until the Goal has been achieved. The 4 Steps proposed are: Plan: Prepare your Goals and Strategy. Do: Take the necessary actions. Check: Test your results.

  20. Workplace Problem-Solving Examples: Real Scenarios, Practical Solutions

    Problem-solving in the workplace is a complex and multifaceted skill that requires a combination of analytical thinking, creativity, and effective communication. It goes beyond simply identifying problems and extends to finding innovative solutions that address the root causes. Essential Problem-Solving Skills for the Workplace

  21. Problem Solving Cycle

    The problem solving cycle gives students the steps and procedures they need to take in order to solve a problem between them and another student. This tool allows for students to solve problems themselves without teacher interference (unless it is needed) and develops their skills of solving problem. This tool would be taught to the students at ...

  22. How PDCA Can Help Improve Organizational Efficiency

    The Deming Cycle (or Plan-Do-Check-Act (PDCA)) is a four-step iterative technique used to solve problems and to improve organizational processes. Dr. Walter A. Shewhart, the renowned physicist and statistician from Western Electric and Bell Labs, developed the original concept during the 1920s. His approach was a three-step linear problem ...

  23. Using the Problem-Solving Cycle to Implement School Change

    The problem-solving cycle is an approach to problem solving that includes clearly defined steps, which allow organizations, including schools, to implement a consistent approach to problem solving ...

  24. Breaking Down The AI/GenAI Landscape And Solution Approaches

    Easing And Democratizing The AI Life Cycle. We are seeing the way AI workflows change thanks to generative AI. For example, for some use cases such as customer communications, rather than asking ...

  25. Solved Critically compare the link between the

    Critically compare the link between the problem-solving cycle and policy analysis process to a policy example in your organisation provide rail relevant examples to justify your arguments. Your solution's ready to go! Enhanced with AI, our expert help has broken down your problem into an easy-to-learn solution you can count on. Get my ...