U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Turk J Anaesthesiol Reanim
  • v.44(4); 2016 Aug

Logo of tjar

What is Scientific Research and How Can it be Done?

Scientific researches are studies that should be systematically planned before performing them. In this review, classification and description of scientific studies, planning stage randomisation and bias are explained.

Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new information is revealed with respect to diagnosis, treatment and reliability of applications. The purpose of this review is to provide information about the definition, classification and methodology of scientific research.

Before beginning the scientific research, the researcher should determine the subject, do planning and specify the methodology. In the Declaration of Helsinki, it is stated that ‘the primary purpose of medical researches on volunteers is to understand the reasons, development and effects of diseases and develop protective, diagnostic and therapeutic interventions (method, operation and therapies). Even the best proven interventions should be evaluated continuously by investigations with regard to reliability, effectiveness, efficiency, accessibility and quality’ ( 1 ).

The questions, methods of response to questions and difficulties in scientific research may vary, but the design and structure are generally the same ( 2 ).

Classification of Scientific Research

Scientific research can be classified in several ways. Classification can be made according to the data collection techniques based on causality, relationship with time and the medium through which they are applied.

  • Observational
  • Experimental
  • Descriptive
  • Retrospective
  • Prospective
  • Cross-sectional
  • Social descriptive research ( 3 )

Another method is to classify the research according to its descriptive or analytical features. This review is written according to this classification method.

I. Descriptive research

  • Case series
  • Surveillance studies

II. Analytical research

  • Observational studies: cohort, case control and cross- sectional research
  • Interventional research: quasi-experimental and clinical research
  • Case Report: it is the most common type of descriptive study. It is the examination of a single case having a different quality in the society, e.g. conducting general anaesthesia in a pregnant patient with mucopolysaccharidosis.
  • Case Series: it is the description of repetitive cases having common features. For instance; case series involving interscapular pain related to neuraxial labour analgesia. Interestingly, malignant hyperthermia cases are not accepted as case series since they are rarely seen during historical development.
  • Surveillance Studies: these are the results obtained from the databases that follow and record a health problem for a certain time, e.g. the surveillance of cross-infections during anaesthesia in the intensive care unit.

Moreover, some studies may be experimental. After the researcher intervenes, the researcher waits for the result, observes and obtains data. Experimental studies are, more often, in the form of clinical trials or laboratory animal trials ( 2 ).

Analytical observational research can be classified as cohort, case-control and cross-sectional studies.

Firstly, the participants are controlled with regard to the disease under investigation. Patients are excluded from the study. Healthy participants are evaluated with regard to the exposure to the effect. Then, the group (cohort) is followed-up for a sufficient period of time with respect to the occurrence of disease, and the progress of disease is studied. The risk of the healthy participants getting sick is considered an incident. In cohort studies, the risk of disease between the groups exposed and not exposed to the effect is calculated and rated. This rate is called relative risk. Relative risk indicates the strength of exposure to the effect on the disease.

Cohort research may be observational and experimental. The follow-up of patients prospectively is called a prospective cohort study . The results are obtained after the research starts. The researcher’s following-up of cohort subjects from a certain point towards the past is called a retrospective cohort study . Prospective cohort studies are more valuable than retrospective cohort studies: this is because in the former, the researcher observes and records the data. The researcher plans the study before the research and determines what data will be used. On the other hand, in retrospective studies, the research is made on recorded data: no new data can be added.

In fact, retrospective and prospective studies are not observational. They determine the relationship between the date on which the researcher has begun the study and the disease development period. The most critical disadvantage of this type of research is that if the follow-up period is long, participants may leave the study at their own behest or due to physical conditions. Cohort studies that begin after exposure and before disease development are called ambidirectional studies . Public healthcare studies generally fall within this group, e.g. lung cancer development in smokers.

  • Case-Control Studies: these studies are retrospective cohort studies. They examine the cause and effect relationship from the effect to the cause. The detection or determination of data depends on the information recorded in the past. The researcher has no control over the data ( 2 ).

Cross-sectional studies are advantageous since they can be concluded relatively quickly. It may be difficult to obtain a reliable result from such studies for rare diseases ( 2 ).

Cross-sectional studies are characterised by timing. In such studies, the exposure and result are simultaneously evaluated. While cross-sectional studies are restrictedly used in studies involving anaesthesia (since the process of exposure is limited), they can be used in studies conducted in intensive care units.

  • Quasi-Experimental Research: they are conducted in cases in which a quick result is requested and the participants or research areas cannot be randomised, e.g. giving hand-wash training and comparing the frequency of nosocomial infections before and after hand wash.
  • Clinical Research: they are prospective studies carried out with a control group for the purpose of comparing the effect and value of an intervention in a clinical case. Clinical study and research have the same meaning. Drugs, invasive interventions, medical devices and operations, diets, physical therapy and diagnostic tools are relevant in this context ( 6 ).

Clinical studies are conducted by a responsible researcher, generally a physician. In the research team, there may be other healthcare staff besides physicians. Clinical studies may be financed by healthcare institutes, drug companies, academic medical centres, volunteer groups, physicians, healthcare service providers and other individuals. They may be conducted in several places including hospitals, universities, physicians’ offices and community clinics based on the researcher’s requirements. The participants are made aware of the duration of the study before their inclusion. Clinical studies should include the evaluation of recommendations (drug, device and surgical) for the treatment of a disease, syndrome or a comparison of one or more applications; finding different ways for recognition of a disease or case and prevention of their recurrence ( 7 ).

Clinical Research

In this review, clinical research is explained in more detail since it is the most valuable study in scientific research.

Clinical research starts with forming a hypothesis. A hypothesis can be defined as a claim put forward about the value of a population parameter based on sampling. There are two types of hypotheses in statistics.

  • H 0 hypothesis is called a control or null hypothesis. It is the hypothesis put forward in research, which implies that there is no difference between the groups under consideration. If this hypothesis is rejected at the end of the study, it indicates that a difference exists between the two treatments under consideration.
  • H 1 hypothesis is called an alternative hypothesis. It is hypothesised against a null hypothesis, which implies that a difference exists between the groups under consideration. For example, consider the following hypothesis: drug A has an analgesic effect. Control or null hypothesis (H 0 ): there is no difference between drug A and placebo with regard to the analgesic effect. The alternative hypothesis (H 1 ) is applicable if a difference exists between drug A and placebo with regard to the analgesic effect.

The planning phase comes after the determination of a hypothesis. A clinical research plan is called a protocol . In a protocol, the reasons for research, number and qualities of participants, tests to be applied, study duration and what information to be gathered from the participants should be found and conformity criteria should be developed.

The selection of participant groups to be included in the study is important. Inclusion and exclusion criteria of the study for the participants should be determined. Inclusion criteria should be defined in the form of demographic characteristics (age, gender, etc.) of the participant group and the exclusion criteria as the diseases that may influence the study, age ranges, cases involving pregnancy and lactation, continuously used drugs and participants’ cooperation.

The next stage is methodology. Methodology can be grouped under subheadings, namely, the calculation of number of subjects, blinding (masking), randomisation, selection of operation to be applied, use of placebo and criteria for stopping and changing the treatment.

I. Calculation of the Number of Subjects

The entire source from which the data are obtained is called a universe or population . A small group selected from a certain universe based on certain rules and which is accepted to highly represent the universe from which it is selected is called a sample and the characteristics of the population from which the data are collected are called variables. If data is collected from the entire population, such an instance is called a parameter . Conducting a study on the sample rather than the entire population is easier and less costly. Many factors influence the determination of the sample size. Firstly, the type of variable should be determined. Variables are classified as categorical (qualitative, non-numerical) or numerical (quantitative). Individuals in categorical variables are classified according to their characteristics. Categorical variables are indicated as nominal and ordinal (ordered). In nominal variables, the application of a category depends on the researcher’s preference. For instance, a female participant can be considered first and then the male participant, or vice versa. An ordinal (ordered) variable is ordered from small to large or vice versa (e.g. ordering obese patients based on their weights-from the lightest to the heaviest or vice versa). A categorical variable may have more than one characteristic: such variables are called binary or dichotomous (e.g. a participant may be both female and obese).

If the variable has numerical (quantitative) characteristics and these characteristics cannot be categorised, then it is called a numerical variable. Numerical variables are either discrete or continuous. For example, the number of operations with spinal anaesthesia represents a discrete variable. The haemoglobin value or height represents a continuous variable.

Statistical analyses that need to be employed depend on the type of variable. The determination of variables is necessary for selecting the statistical method as well as software in SPSS. While categorical variables are presented as numbers and percentages, numerical variables are represented using measures such as mean and standard deviation. It may be necessary to use mean in categorising some cases such as the following: even though the variable is categorical (qualitative, non-numerical) when Visual Analogue Scale (VAS) is used (since a numerical value is obtained), it is classified as a numerical variable: such variables are averaged.

Clinical research is carried out on the sample and generalised to the population. Accordingly, the number of samples should be correctly determined. Different sample size formulas are used on the basis of the statistical method to be used. When the sample size increases, error probability decreases. The sample size is calculated based on the primary hypothesis. The determination of a sample size before beginning the research specifies the power of the study. Power analysis enables the acquisition of realistic results in the research, and it is used for comparing two or more clinical research methods.

Because of the difference in the formulas used in calculating power analysis and number of samples for clinical research, it facilitates the use of computer programs for making calculations.

It is necessary to know certain parameters in order to calculate the number of samples by power analysis.

  • Type-I (α) and type-II (β) error levels
  • Difference between groups (d-difference) and effect size (ES)
  • Distribution ratio of groups
  • Direction of research hypothesis (H1)

a. Type-I (α) and Type-II (β) Error (β) Levels

Two types of errors can be made while accepting or rejecting H 0 hypothesis in a hypothesis test. Type-I error (α) level is the probability of finding a difference at the end of the research when there is no difference between the two applications. In other words, it is the rejection of the hypothesis when H 0 is actually correct and it is known as α error or p value. For instance, when the size is determined, type-I error level is accepted as 0.05 or 0.01.

Another error that can be made during a hypothesis test is a type-II error. It is the acceptance of a wrongly hypothesised H 0 hypothesis. In fact, it is the probability of failing to find a difference when there is a difference between the two applications. The power of a test is the ability of that test to find a difference that actually exists. Therefore, it is related to the type-II error level.

Since the type-II error risk is expressed as β, the power of the test is defined as 1–β. When a type-II error is 0.20, the power of the test is 0.80. Type-I (α) and type-II (β) errors can be intentional. The reason to intentionally make such an error is the necessity to look at the events from the opposite perspective.

b. Difference between Groups and ES

ES is defined as the state in which statistical difference also has clinically significance: ES≥0.5 is desirable. The difference between groups is the absolute difference between the groups compared in clinical research.

c. Allocation Ratio of Groups

The allocation ratio of groups is effective in determining the number of samples. If the number of samples is desired to be determined at the lowest level, the rate should be kept as 1/1.

d. Direction of Hypothesis (H1)

The direction of hypothesis in clinical research may be one-sided or two-sided. While one-sided hypotheses hypothesis test differences in the direction of size, two-sided hypotheses hypothesis test differences without direction. The power of the test in two-sided hypotheses is lower than one-sided hypotheses.

After these four variables are determined, they are entered in the appropriate computer program and the number of samples is calculated. Statistical packaged software programs such as Statistica, NCSS and G-Power may be used for power analysis and calculating the number of samples. When the samples size is calculated, if there is a decrease in α, difference between groups, ES and number of samples, then the standard deviation increases and power decreases. The power in two-sided hypothesis is lower. It is ethically appropriate to consider the determination of sample size, particularly in animal experiments, at the beginning of the study. The phase of the study is also important in the determination of number of subjects to be included in drug studies. Usually, phase-I studies are used to determine the safety profile of a drug or product, and they are generally conducted on a few healthy volunteers. If no unacceptable toxicity is detected during phase-I studies, phase-II studies may be carried out. Phase-II studies are proof-of-concept studies conducted on a larger number (100–500) of volunteer patients. When the effectiveness of the drug or product is evident in phase-II studies, phase-III studies can be initiated. These are randomised, double-blinded, placebo or standard treatment-controlled studies. Volunteer patients are periodically followed-up with respect to the effectiveness and side effects of the drug. It can generally last 1–4 years and is valuable during licensing and releasing the drug to the general market. Then, phase-IV studies begin in which long-term safety is investigated (indication, dose, mode of application, safety, effectiveness, etc.) on thousands of volunteer patients.

II. Blinding (Masking) and Randomisation Methods

When the methodology of clinical research is prepared, precautions should be taken to prevent taking sides. For this reason, techniques such as randomisation and blinding (masking) are used. Comparative studies are the most ideal ones in clinical research.

Blinding Method

A case in which the treatments applied to participants of clinical research should be kept unknown is called the blinding method . If the participant does not know what it receives, it is called a single-blind study; if even the researcher does not know, it is called a double-blind study. When there is a probability of knowing which drug is given in the order of application, when uninformed staff administers the drug, it is called in-house blinding. In case the study drug is known in its pharmaceutical form, a double-dummy blinding test is conducted. Intravenous drug is given to one group and a placebo tablet is given to the comparison group; then, the placebo tablet is given to the group that received the intravenous drug and intravenous drug in addition to placebo tablet is given to the comparison group. In this manner, each group receives both the intravenous and tablet forms of the drug. In case a third party interested in the study is involved and it also does not know about the drug (along with the statistician), it is called third-party blinding.

Randomisation Method

The selection of patients for the study groups should be random. Randomisation methods are used for such selection, which prevent conscious or unconscious manipulations in the selection of patients ( 8 ).

No factor pertaining to the patient should provide preference of one treatment to the other during randomisation. This characteristic is the most important difference separating randomised clinical studies from prospective and synchronous studies with experimental groups. Randomisation strengthens the study design and enables the determination of reliable scientific knowledge ( 2 ).

The easiest method is simple randomisation, e.g. determination of the type of anaesthesia to be administered to a patient by tossing a coin. In this method, when the number of samples is kept high, a balanced distribution is created. When the number of samples is low, there will be an imbalance between the groups. In this case, stratification and blocking have to be added to randomisation. Stratification is the classification of patients one or more times according to prognostic features determined by the researcher and blocking is the selection of a certain number of patients for each stratification process. The number of stratification processes should be determined at the beginning of the study.

As the number of stratification processes increases, performing the study and balancing the groups become difficult. For this reason, stratification characteristics and limitations should be effectively determined at the beginning of the study. It is not mandatory for the stratifications to have equal intervals. Despite all the precautions, an imbalance might occur between the groups before beginning the research. In such circumstances, post-stratification or restandardisation may be conducted according to the prognostic factors.

The main characteristic of applying blinding (masking) and randomisation is the prevention of bias. Therefore, it is worthwhile to comprehensively examine bias at this stage.

Bias and Chicanery

While conducting clinical research, errors can be introduced voluntarily or involuntarily at a number of stages, such as design, population selection, calculating the number of samples, non-compliance with study protocol, data entry and selection of statistical method. Bias is taking sides of individuals in line with their own decisions, views and ideological preferences ( 9 ). In order for an error to lead to bias, it has to be a systematic error. Systematic errors in controlled studies generally cause the results of one group to move in a different direction as compared to the other. It has to be understood that scientific research is generally prone to errors. However, random errors (or, in other words, ‘the luck factor’-in which bias is unintended-do not lead to bias ( 10 ).

Another issue, which is different from bias, is chicanery. It is defined as voluntarily changing the interventions, results and data of patients in an unethical manner or copying data from other studies. Comparatively, bias may not be done consciously.

In case unexpected results or outliers are found while the study is analysed, if possible, such data should be re-included into the study since the complete exclusion of data from a study endangers its reliability. In such a case, evaluation needs to be made with and without outliers. It is insignificant if no difference is found. However, if there is a difference, the results with outliers are re-evaluated. If there is no error, then the outlier is included in the study (as the outlier may be a result). It should be noted that re-evaluation of data in anaesthesiology is not possible.

Statistical evaluation methods should be determined at the design stage so as not to encounter unexpected results in clinical research. The data should be evaluated before the end of the study and without entering into details in research that are time-consuming and involve several samples. This is called an interim analysis . The date of interim analysis should be determined at the beginning of the study. The purpose of making interim analysis is to prevent unnecessary cost and effort since it may be necessary to conclude the research after the interim analysis, e.g. studies in which there is no possibility to validate the hypothesis at the end or the occurrence of different side effects of the drug to be used. The accuracy of the hypothesis and number of samples are compared. Statistical significance levels in interim analysis are very important. If the data level is significant, the hypothesis is validated even if the result turns out to be insignificant after the date of the analysis.

Another important point to be considered is the necessity to conclude the participants’ treatment within the period specified in the study protocol. When the result of the study is achieved earlier and unexpected situations develop, the treatment is concluded earlier. Moreover, the participant may quit the study at its own behest, may die or unpredictable situations (e.g. pregnancy) may develop. The participant can also quit the study whenever it wants, even if the study has not ended ( 7 ).

In case the results of a study are contrary to already known or expected results, the expected quality level of the study suggesting the contradiction may be higher than the studies supporting what is known in that subject. This type of bias is called confirmation bias. The presence of well-known mechanisms and logical inference from them may create problems in the evaluation of data. This is called plausibility bias.

Another type of bias is expectation bias. If a result different from the known results has been achieved and it is against the editor’s will, it can be challenged. Bias may be introduced during the publication of studies, such as publishing only positive results, selection of study results in a way to support a view or prevention of their publication. Some editors may only publish research that extols only the positive results or results that they desire.

Bias may be introduced for advertisement or economic reasons. Economic pressure may be applied on the editor, particularly in the cases of studies involving drugs and new medical devices. This is called commercial bias.

In recent years, before beginning a study, it has been recommended to record it on the Web site www.clinicaltrials.gov for the purpose of facilitating systematic interpretation and analysis in scientific research, informing other researchers, preventing bias, provision of writing in a standard format, enhancing contribution of research results to the general literature and enabling early intervention of an institution for support. This Web site is a service of the US National Institutes of Health.

The last stage in the methodology of clinical studies is the selection of intervention to be conducted. Placebo use assumes an important place in interventions. In Latin, placebo means ‘I will be fine’. In medical literature, it refers to substances that are not curative, do not have active ingredients and have various pharmaceutical forms. Although placebos do not have active drug characteristic, they have shown effective analgesic characteristics, particularly in algology applications; further, its use prevents bias in comparative studies. If a placebo has a positive impact on a participant, it is called the placebo effect ; on the contrary, if it has a negative impact, it is called the nocebo effect . Another type of therapy that can be used in clinical research is sham application. Although a researcher does not cure the patient, the researcher may compare those who receive therapy and undergo sham. It has been seen that sham therapies also exhibit a placebo effect. In particular, sham therapies are used in acupuncture applications ( 11 ). While placebo is a substance, sham is a type of clinical application.

Ethically, the patient has to receive appropriate therapy. For this reason, if its use prevents effective treatment, it causes great problem with regard to patient health and legalities.

Before medical research is conducted with human subjects, predictable risks, drawbacks and benefits must be evaluated for individuals or groups participating in the study. Precautions must be taken for reducing the risk to a minimum level. The risks during the study should be followed, evaluated and recorded by the researcher ( 1 ).

After the methodology for a clinical study is determined, dealing with the ‘Ethics Committee’ forms the next stage. The purpose of the ethics committee is to protect the rights, safety and well-being of volunteers taking part in the clinical research, considering the scientific method and concerns of society. The ethics committee examines the studies presented in time, comprehensively and independently, with regard to ethics and science; in line with the Declaration of Helsinki and following national and international standards concerning ‘Good Clinical Practice’. The method to be followed in the formation of the ethics committee should be developed without any kind of prejudice and to examine the applications with regard to ethics and science within the framework of the ethics committee, Regulation on Clinical Trials and Good Clinical Practice ( www.iku.com ). The necessary documents to be presented to the ethics committee are research protocol, volunteer consent form, budget contract, Declaration of Helsinki, curriculum vitae of researchers, similar or explanatory literature samples, supporting institution approval certificate and patient follow-up form.

Only one sister/brother, mother, father, son/daughter and wife/husband can take charge in the same ethics committee. A rector, vice rector, dean, deputy dean, provincial healthcare director and chief physician cannot be members of the ethics committee.

Members of the ethics committee can work as researchers or coordinators in clinical research. However, during research meetings in which members of the ethics committee are researchers or coordinators, they must leave the session and they cannot sign-off on decisions. If the number of members in the ethics committee for a particular research is so high that it is impossible to take a decision, the clinical research is presented to another ethics committee in the same province. If there is no ethics committee in the same province, an ethics committee in the closest settlement is found.

Thereafter, researchers need to inform the participants using an informed consent form. This form should explain the content of clinical study, potential benefits of the study, alternatives and risks (if any). It should be easy, comprehensible, conforming to spelling rules and written in plain language understandable by the participant.

This form assists the participants in taking a decision regarding participation in the study. It should aim to protect the participants. The participant should be included in the study only after it signs the informed consent form; the participant can quit the study whenever required, even when the study has not ended ( 7 ).

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - C.Ö.Ç., A.D.; Design - C.Ö.Ç.; Supervision - A.D.; Resource - C.Ö.Ç., A.D.; Materials - C.Ö.Ç., A.D.; Analysis and/or Interpretation - C.Ö.Ç., A.D.; Literature Search - C.Ö.Ç.; Writing Manuscript - C.Ö.Ç.; Critical Review - A.D.; Other - C.Ö.Ç., A.D.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

UM-Flint Home

TODAY'S HOURS:

Research Process

  • Select a Topic
  • Find Background Info
  • Focus Topic
  • List Keywords
  • Search for Sources
  • Evaluate & Integrate Sources
  • Cite and Track Sources

What is Scientific Research?

Research study design, natural vs. social science, qualitative vs. quantitative research, more information on qualitative research in the social sciences, acknowledgements.

Thank you to Julie Miller, reference intern, for helping to create this page.

Some people use the term research loosely, for example:

  • People will say they are researching different online websites to find the best place to buy a new appliance or locate a lawn care service.
  • TV news may talk about conducting research when they conduct a viewer poll on current event topic such as an upcoming election.
  • Undergraduate students working on a term paper or project may say they are researching the internet to find information.
  • Private sector companies may say they are conducting research to find a solution for a supply chain holdup.

However, none of the above is considered “scientific research” unless:

  • The research contributes to a body of science by providing new information through ethical study design or
  • The research follows the scientific method, an iterative process of observation and inquiry.

The Scientific Method

  • Make an observation: notice a phenomenon in your life or in society or find a gap in the already published literature.
  • Ask a question about what you have observed.
  • Hypothesize about a potential answer or explanation.
  • Make predictions if our hypothesis is correct.
  • Design an experiment or study that will test your prediction.
  • Test the prediction by conducting an experiment or study; report the outcomes of your study.
  • Iterate! Was your prediction correct? Was the outcome unexpected? Did it lead to new observations?

The scientific method is not separate from the Research Process as described in the rest of this guide, in fact the Research Process is directly related to the observation stage of the scientific method. Understanding what other scientists and researchers have already studied will help you focus your area of study and build on their knowledge.

Designing your experiment or study is important for both natural and social scientists. Sage Research Methods (SRM) has an excellent "Project Planner" that guides you through the basic stages of research design. SRM also has excellent explanations of qualitative and quantitative research methods for the social sciences.

For the natural sciences, Springer Nature Experiments and Protocol Exchange have guidance on quantitative research methods.

U-M login required

Books, journals, reference books, videos, podcasts, data-sets, and case studies on social science research methods.

Sage Research Methods includes over 2,000 books, reference books, journal articles, videos, datasets, and case studies on all aspects of social science research methodology. Browse the methods map or the list of methods to identify a social science method to pursue further. Includes a project planning tool and the "Which Stats Test" tool to identify the best statistical method for your project. Includes the notable "little green book" series (Quantitative Applications in the Social Sciences) and the "little blue book" series (Qualitative Research Methods).

Platform connecting researchers with protocols and methods.

Springer Nature Experiments has been designed to help users/researchers find and evaluate relevant protocols and methods across the whole Springer Nature protocols and methods portfolio using one search. This database includes:

  • Nature Protocols
  • Nature Reviews Methods Primers
  • Nature Methods
  • Springer Protocols

Open access for all users

Open repository for sharing scientific research protocols. These protocols are posted directly on the Protocol Exchange by authors and are made freely available to the scientific community for use and comment.

Includes these topics:

  • Biochemistry
  • Biological techniques
  • Chemical biology
  • Chemical engineering
  • Cheminformatics
  • Climate science
  • Computational biology and bioinformatics
  • Drug discovery
  • Electronics
  • Energy sciences
  • Environmental sciences
  • Materials science
  • Molecular biology
  • Molecular medicine
  • Neuroscience
  • Organic chemistry
  • Planetary science

Qualitative research is primarily exploratory. It is used to gain an understanding of underlying reasons, opinions, and motivations. Qualitative research is also used to uncover trends in thought and opinions and to dive deeper into a problem by studying an individual or a group.

Qualitative methods usually use unstructured or semi-structured techniques. The sample size is typically smaller than in quantitative research.

Example: interviews and focus groups.

Quantitative research is characterized by the gathering of data with the aim of testing a hypothesis. The data generated are numerical, or, if not numerical, can be transformed into useable statistics.

Quantitative data collection methods are more structured than qualitative data collection methods and sample sizes are usually larger.

Example: survey

Note: The above descriptions of qualitative and quantitative research are mainly for research in the Social Sciences, rather than for Natural Sciences as most natural sciences rely on quantitative methods for their experiments.

Qualitative research is approaching the world in its natural setting and in a way that reveals the particularities rather than doing studies in a controlled setting. It aims to understand, describe, and sometimes explain social phenomena in a number of different ways:

  • Experiences of individuals or groups
  • Interactions and communications
  • Documents (texts, images, film, or sounds, and digital documents)
  • Experiences or interactions

Qualitative researchers seek to understand how people conceptualize the world around them, what they are doing, how they are doing it or what is happening to them in terms that are significant and that offer meaningful learnings.

Qualitative researchers develop and refine concepts (or hypotheses, if they are used) in the process of research and of collecting data. Cases (its history and complexity) are an important context for understanding the issue that is studied. A major part of qualitative research is based on text and writing – from field notes and transcripts to descriptions and interpretations and finally to the presentation of the findings and of the research as a whole.

For more information, see:

Cover Art

  • << Previous: Cite and Track Sources
  • Last Updated: May 21, 2024 1:45 PM
  • URL: https://libguides.umflint.edu/research
  • Privacy Policy

Research Method

Home » Scientific Research – Types, Purpose and Guide

Scientific Research – Types, Purpose and Guide

Table of Contents

Scientific Research

Scientific Research

Definition:

Scientific research is the systematic and empirical investigation of phenomena, theories, or hypotheses, using various methods and techniques in order to acquire new knowledge or to validate existing knowledge.

It involves the collection, analysis, interpretation, and presentation of data, as well as the formulation and testing of hypotheses. Scientific research can be conducted in various fields, such as natural sciences, social sciences, and engineering, and may involve experiments, observations, surveys, or other forms of data collection. The goal of scientific research is to advance knowledge, improve understanding, and contribute to the development of solutions to practical problems.

Types of Scientific Research

There are different types of scientific research, which can be classified based on their purpose, method, and application. In this response, we will discuss the four main types of scientific research.

Descriptive Research

Descriptive research aims to describe or document a particular phenomenon or situation, without altering it in any way. This type of research is usually done through observation, surveys, or case studies. Descriptive research is useful in generating ideas, understanding complex phenomena, and providing a foundation for future research. However, it does not provide explanations or causal relationships between variables.

Exploratory Research

Exploratory research aims to explore a new area of inquiry or develop initial ideas for future research. This type of research is usually conducted through observation, interviews, or focus groups. Exploratory research is useful in generating hypotheses, identifying research questions, and determining the feasibility of a larger study. However, it does not provide conclusive evidence or establish cause-and-effect relationships.

Experimental Research

Experimental research aims to test cause-and-effect relationships between variables by manipulating one variable and observing the effects on another variable. This type of research involves the use of an experimental group, which receives a treatment, and a control group, which does not receive the treatment. Experimental research is useful in establishing causal relationships, replicating results, and controlling extraneous variables. However, it may not be feasible or ethical to manipulate certain variables in some contexts.

Correlational Research

Correlational research aims to examine the relationship between two or more variables without manipulating them. This type of research involves the use of statistical techniques to determine the strength and direction of the relationship between variables. Correlational research is useful in identifying patterns, predicting outcomes, and testing theories. However, it does not establish causation or control for confounding variables.

Scientific Research Methods

Scientific research methods are used in scientific research to investigate phenomena, acquire knowledge, and answer questions using empirical evidence. Here are some commonly used scientific research methods:

Observational Studies

This method involves observing and recording phenomena as they occur in their natural setting. It can be done through direct observation or by using tools such as cameras, microscopes, or sensors.

Experimental Studies

This method involves manipulating one or more variables to determine the effect on the outcome. This type of study is often used to establish cause-and-effect relationships.

Survey Research

This method involves collecting data from a large number of people by asking them a set of standardized questions. Surveys can be conducted in person, over the phone, or online.

Case Studies

This method involves in-depth analysis of a single individual, group, or organization. Case studies are often used to gain insights into complex or unusual phenomena.

Meta-analysis

This method involves combining data from multiple studies to arrive at a more reliable conclusion. This technique can be used to identify patterns and trends across a large number of studies.

Qualitative Research

This method involves collecting and analyzing non-numerical data, such as interviews, focus groups, or observations. This type of research is often used to explore complex phenomena and to gain an understanding of people’s experiences and perspectives.

Quantitative Research

This method involves collecting and analyzing numerical data using statistical techniques. This type of research is often used to test hypotheses and to establish cause-and-effect relationships.

Longitudinal Studies

This method involves following a group of individuals over a period of time to observe changes and to identify patterns and trends. This type of study can be used to investigate the long-term effects of a particular intervention or exposure.

Data Analysis Methods

There are many different data analysis methods used in scientific research, and the choice of method depends on the type of data being collected and the research question. Here are some commonly used data analysis methods:

  • Descriptive statistics: This involves using summary statistics such as mean, median, mode, standard deviation, and range to describe the basic features of the data.
  • Inferential statistics: This involves using statistical tests to make inferences about a population based on a sample of data. Examples of inferential statistics include t-tests, ANOVA, and regression analysis.
  • Qualitative analysis: This involves analyzing non-numerical data such as interviews, focus groups, and observations. Qualitative analysis may involve identifying themes, patterns, or categories in the data.
  • Content analysis: This involves analyzing the content of written or visual materials such as articles, speeches, or images. Content analysis may involve identifying themes, patterns, or categories in the content.
  • Data mining: This involves using automated methods to analyze large datasets to identify patterns, trends, or relationships in the data.
  • Machine learning: This involves using algorithms to analyze data and make predictions or classifications based on the patterns identified in the data.

Application of Scientific Research

Scientific research has numerous applications in many fields, including:

  • Medicine and healthcare: Scientific research is used to develop new drugs, medical treatments, and vaccines. It is also used to understand the causes and risk factors of diseases, as well as to develop new diagnostic tools and medical devices.
  • Agriculture : Scientific research is used to develop new crop varieties, to improve crop yields, and to develop more sustainable farming practices.
  • Technology and engineering : Scientific research is used to develop new technologies and engineering solutions, such as renewable energy systems, new materials, and advanced manufacturing techniques.
  • Environmental science : Scientific research is used to understand the impacts of human activity on the environment and to develop solutions for mitigating those impacts. It is also used to monitor and manage natural resources, such as water and air quality.
  • Education : Scientific research is used to develop new teaching methods and educational materials, as well as to understand how people learn and develop.
  • Business and economics: Scientific research is used to understand consumer behavior, to develop new products and services, and to analyze economic trends and policies.
  • Social sciences : Scientific research is used to understand human behavior, attitudes, and social dynamics. It is also used to develop interventions to improve social welfare and to inform public policy.

How to Conduct Scientific Research

Conducting scientific research involves several steps, including:

  • Identify a research question: Start by identifying a question or problem that you want to investigate. This question should be clear, specific, and relevant to your field of study.
  • Conduct a literature review: Before starting your research, conduct a thorough review of existing research in your field. This will help you identify gaps in knowledge and develop hypotheses or research questions.
  • Develop a research plan: Once you have a research question, develop a plan for how you will collect and analyze data to answer that question. This plan should include a detailed methodology, a timeline, and a budget.
  • Collect data: Depending on your research question and methodology, you may collect data through surveys, experiments, observations, or other methods.
  • Analyze data: Once you have collected your data, analyze it using appropriate statistical or qualitative methods. This will help you draw conclusions about your research question.
  • Interpret results: Based on your analysis, interpret your results and draw conclusions about your research question. Discuss any limitations or implications of your findings.
  • Communicate results: Finally, communicate your findings to others in your field through presentations, publications, or other means.

Purpose of Scientific Research

The purpose of scientific research is to systematically investigate phenomena, acquire new knowledge, and advance our understanding of the world around us. Scientific research has several key goals, including:

  • Exploring the unknown: Scientific research is often driven by curiosity and the desire to explore uncharted territory. Scientists investigate phenomena that are not well understood, in order to discover new insights and develop new theories.
  • Testing hypotheses: Scientific research involves developing hypotheses or research questions, and then testing them through observation and experimentation. This allows scientists to evaluate the validity of their ideas and refine their understanding of the phenomena they are studying.
  • Solving problems: Scientific research is often motivated by the desire to solve practical problems or address real-world challenges. For example, researchers may investigate the causes of a disease in order to develop new treatments, or explore ways to make renewable energy more affordable and accessible.
  • Advancing knowledge: Scientific research is a collective effort to advance our understanding of the world around us. By building on existing knowledge and developing new insights, scientists contribute to a growing body of knowledge that can be used to inform decision-making, solve problems, and improve our lives.

Examples of Scientific Research

Here are some examples of scientific research that are currently ongoing or have recently been completed:

  • Clinical trials for new treatments: Scientific research in the medical field often involves clinical trials to test new treatments for diseases and conditions. For example, clinical trials may be conducted to evaluate the safety and efficacy of new drugs or medical devices.
  • Genomics research: Scientists are conducting research to better understand the human genome and its role in health and disease. This includes research on genetic mutations that can cause diseases such as cancer, as well as the development of personalized medicine based on an individual’s genetic makeup.
  • Climate change: Scientific research is being conducted to understand the causes and impacts of climate change, as well as to develop solutions for mitigating its effects. This includes research on renewable energy technologies, carbon capture and storage, and sustainable land use practices.
  • Neuroscience : Scientists are conducting research to understand the workings of the brain and the nervous system, with the goal of developing new treatments for neurological disorders such as Alzheimer’s disease and Parkinson’s disease.
  • Artificial intelligence: Researchers are working to develop new algorithms and technologies to improve the capabilities of artificial intelligence systems. This includes research on machine learning, computer vision, and natural language processing.
  • Space exploration: Scientific research is being conducted to explore the cosmos and learn more about the origins of the universe. This includes research on exoplanets, black holes, and the search for extraterrestrial life.

When to use Scientific Research

Some specific situations where scientific research may be particularly useful include:

  • Solving problems: Scientific research can be used to investigate practical problems or address real-world challenges. For example, scientists may investigate the causes of a disease in order to develop new treatments, or explore ways to make renewable energy more affordable and accessible.
  • Decision-making: Scientific research can provide evidence-based information to inform decision-making. For example, policymakers may use scientific research to evaluate the effectiveness of different policy options or to make decisions about public health and safety.
  • Innovation : Scientific research can be used to develop new technologies, products, and processes. For example, research on materials science can lead to the development of new materials with unique properties that can be used in a range of applications.
  • Knowledge creation : Scientific research is an important way of generating new knowledge and advancing our understanding of the world around us. This can lead to new theories, insights, and discoveries that can benefit society.

Advantages of Scientific Research

There are many advantages of scientific research, including:

  • Improved understanding : Scientific research allows us to gain a deeper understanding of the world around us, from the smallest subatomic particles to the largest celestial bodies.
  • Evidence-based decision making: Scientific research provides evidence-based information that can inform decision-making in many fields, from public policy to medicine.
  • Technological advancements: Scientific research drives technological advancements in fields such as medicine, engineering, and materials science. These advancements can improve quality of life, increase efficiency, and reduce costs.
  • New discoveries: Scientific research can lead to new discoveries and breakthroughs that can advance our knowledge in many fields. These discoveries can lead to new theories, technologies, and products.
  • Economic benefits : Scientific research can stimulate economic growth by creating new industries and jobs, and by generating new technologies and products.
  • Improved health outcomes: Scientific research can lead to the development of new medical treatments and technologies that can improve health outcomes and quality of life for people around the world.
  • Increased innovation: Scientific research encourages innovation by promoting collaboration, creativity, and curiosity. This can lead to new and unexpected discoveries that can benefit society.

Limitations of Scientific Research

Scientific research has some limitations that researchers should be aware of. These limitations can include:

  • Research design limitations : The design of a research study can impact the reliability and validity of the results. Poorly designed studies can lead to inaccurate or inconclusive results. Researchers must carefully consider the study design to ensure that it is appropriate for the research question and the population being studied.
  • Sample size limitations: The size of the sample being studied can impact the generalizability of the results. Small sample sizes may not be representative of the larger population, and may lead to incorrect conclusions.
  • Time and resource limitations: Scientific research can be costly and time-consuming. Researchers may not have the resources necessary to conduct a large-scale study, or may not have sufficient time to complete a study with appropriate controls and analysis.
  • Ethical limitations : Certain types of research may raise ethical concerns, such as studies involving human or animal subjects. Ethical concerns may limit the scope of the research that can be conducted, or require additional protocols and procedures to ensure the safety and well-being of participants.
  • Limitations of technology: Technology may limit the types of research that can be conducted, or the accuracy of the data collected. For example, certain types of research may require advanced technology that is not yet available, or may be limited by the accuracy of current measurement tools.
  • Limitations of existing knowledge: Existing knowledge may limit the types of research that can be conducted. For example, if there is limited knowledge in a particular field, it may be difficult to design a study that can provide meaningful results.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Documentary Research

Documentary Research – Types, Methods and...

Original Research

Original Research – Definition, Examples, Guide

Humanities Research

Humanities Research – Types, Methods and Examples

Historical Research

Historical Research – Types, Methods and Examples

Artistic Research

Artistic Research – Methods, Types and Examples

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

what makes a research study scientific

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

17k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Chapter 1 Science and Scientific Research

What is research? Depending on who you ask, you will likely get very different answers to this seemingly innocuous question. Some people will say that they routinely research different online websites to find the best place to buy goods or services they want. Television news channels supposedly conduct research in the form of viewer polls on topics of public interest such as forthcoming elections or government-funded projects. Undergraduate students research the Internet to find the information they need to complete assigned projects or term papers. Graduate students working on research projects for a professor may see research as collecting or analyzing data related to their project. Businesses and consultants research different potential solutions to remedy organizational problems such as a supply chain bottleneck or to identify customer purchase patterns. However, none of the above can be considered “scientific research” unless: (1) it contributes to a body of science, and (2) it follows the scientific method. This chapter will examine what these terms mean.

What is science? To some, science refers to difficult high school or college-level courses such as physics, chemistry, and biology meant only for the brightest students. To others, science is a craft practiced by scientists in white coats using specialized equipment in their laboratories. Etymologically, the word “science” is derived from the Latin word scientia meaning knowledge. Science refers to a systematic and organized body of knowledge in any area of inquiry that is acquired using “the scientific method” (the scientific method is described further below). Science can be grouped into two broad categories: natural science and social science. Natural science is the science of naturally occurring objects or phenomena, such as light, objects, matter, earth, celestial bodies, or the human body. Natural sciences can be further classified into physical sciences, earth sciences, life sciences, and others. Physical sciences consist of disciplines such as physics (the science of physical objects), chemistry (the science of matter), and astronomy (the science of celestial objects). Earth sciences consist of disciplines such as geology (the science of the earth). Life sciences include disciplines such as biology (the science of human bodies) and botany (the science of plants). In contrast, social science is the science of people or collections of people, such as groups, firms, societies, or economies, and their individual or collective behaviors. Social sciences can be classified into disciplines such as psychology (the science of human behaviors), sociology (the science of social groups), and economics (the science of firms, markets, and economies).

The natural sciences are different from the social sciences in several respects. The natural sciences are very precise, accurate, deterministic, and independent of the person m aking the scientific observations. For instance, a scientific experiment in physics, such as measuring the speed of sound through a certain media or the refractive index of water, should always yield the exact same results, irrespective of the time or place of the experiment, or the person conducting the experiment. If two students conducting the same physics experiment obtain two different values of these physical properties, then it generally means that one or both of those students must be in error. However, the same cannot be said for the social sciences, which tend to be less accurate, deterministic, or unambiguous. For instance, if you measure a person’s happiness using a hypothetical instrument, you may find that the same person is more happy or less happy (or sad) on different days and sometimes, at different times on the same day. One’s happiness may vary depending on the news that person received that day or on the events that transpired earlier during that day. Furthermore, there is not a single instrument or metric that can accurately measure a person’s happiness. Hence, one instrument may calibrate a person as being “more happy” while a second instrument may find that the same person is “less happy” at the same instant in time. In other words, there is a high degree of measurement error in the social sciences and there is considerable uncertainty and little agreement on social science policy decisions. For instance, you will not find many disagreements among natural scientists on the speed of light or the speed of the earth around the sun, but you will find numerous disagreements among social scientists on how to solve a social problem such as reduce global terrorism or rescue an economy from a recession. Any student studying the social sciences must be cognizant of and comfortable with handling higher levels of ambiguity, uncertainty, and error that come with such sciences, which merely reflects the high variability of social objects.

Sciences can also be classified based on their purpose. Basic sciences , also called pure sciences, are those that explain the most basic objects and forces, relationships between them, and laws governing them. Examples include physics, mathematics, and biology. Applied sciences , also called practical sciences, are sciences that apply scientific knowledge from basic sciences in a physical environment. For instance, engineering is an applied science that applies the laws of physics and chemistry for practical applications such as building stronger bridges or fuel efficient combustion engines, while medicine is an applied science that applies the laws of biology for solving human ailments. Both basic and applied sciences are required for human development. However, applied sciences cannot stand on their own right, but instead relies on basic sciences for its progress. Of course, the industry and private enterprises tend to focus more on applied sciences given their practical value, while universities study both basic and applied sciences.

Scientific Knowledge

The purpose of science is to create scientific knowledge. Scientific knowledge refers to a generalized body of laws and theories to explain a phenomenon or behavior of interest that are acquired using the scientific method. Laws are observed patterns of phenomena or behaviors, while theories are systematic explanations of the underlying phenomenon or behavior. For instance, in physics, the Newtonian Laws of Motion describe what happens when an object is in a state of rest or motion (Newton’s First Law), what force is needed to move a stationary object or stop a moving object (Newton’s Second Law), and what happens when two objects collide (Newton’s Third Law). Collectively, the three laws constitute the basis of classical mechanics – a theory of moving objects. Likewise, the theory of optics explains the properties of light and how it behaves in different media, electromagnetic theory explains the properties of electricity and how to generate it, quantum mechanics explains the properties of subatomic \particles, and thermodynamics explains the properties of energy and mechanical work. An introductory college level text book in physics will likely contain separate chapters devoted to each of these theories. Similar theories are also available in social sciences. For instance, cognitive dissonance theory in psychology explains how people react when their observations of an event is different from what they expected of that event, general deterrence theory explains why some people engage in improper or criminal behaviors, such as illegally download music or commit software piracy, and the theory of planned behavior explains how people make conscious reasoned choices in their everyday lives.

The goal of scientific research is to discover laws and postulate theories that can explain natural or social phenomena, or in other words, build scientific knowledge. It is important to understand that this knowledge may be imperfect or even quite far from the truth. Sometimes, there may not be a single universal truth, but rather an equilibrium of “multiple truths.” We must understand that the theories, upon which scientific knowledge is based, are only explanations of a particular phenomenon, as suggested by a scientist. As such, there may be good or poor explanations, depending on the extent to which those explanations fit well with reality, and consequently, there may be good or poor theories. The progress of science is marked by our progression over time from poorer theories to better theories, through better observations using more accurate instruments and more informed logical reasoning.

We arrive at scientific laws or theories through a process of logic and evidence. Logic (theory) and evidence (observations) are the two, and only two, pillars upon which scientific knowledge is based. In science, theories and observations are interrelated and cannot exist without each other. Theories provide meaning and significance to what we observe, and observations help validate or refine existing theory or construct new theory. Any other means of knowledge acquisition, such as faith or authority cannot be considered science.

Scientific Research

Given that theories and observations are the two pillars of science, scientific research operates at two levels: a theoretical level and an empirical level. The theoretical level is concerned with developing abstract concepts about a natural or social phenomenon and relationships between those concepts (i.e., build “theories”), while the empirical level is concerned with testing the theoretical concepts and relationships to see how well they reflect our observations of reality, with the goal of ultimately building better theories. Over time, a theory becomes more and more refined (i.e., fits the observed reality better), and the science gains maturity. Scientific research involves continually moving back and forth between theory and observations. Both theory and observations are essential components of scientific research. For instance, relying solely on observations for making inferences and ignoring theory is not considered valid scientific research.

Depending on a researcher’s training and interest, scientific inquiry may take one of two possible forms: inductive or deductive. In inductive research , the goal of a researcher is to infer theoretical concepts and patterns from observed data. In deductive research , the goal of the researcher is to test concepts and patterns known from theory using new empirical data. Hence, inductive research is also called theory-building research, and deductive research is theory-testing research. Note here that the goal of theory-testing is not just to test a theory, but possibly to refine, improve, and extend it. Figure 1.1 depicts the complementary nature of inductive and deductive research. Note that inductive and deductive research are two halves of the research cycle that constantly iterates between theory and observations. You cannot do inductive or deductive research if you are not familiar with both the theory and data components of research. Naturally, a complete researcher is one who can traverse the entire research cycle and can handle both inductive and deductive research.

It is important to understand that theory-building (inductive research) and theory-testing (deductive research) are both critical for the advancement of science. Elegant theories are not valuable if they do not match with reality. Likewise, mountains of data are also useless until they can contribute to the construction to meaningful theories. Rather than viewing these two processes in a circular relationship, as shown in Figure 1.1, perhaps they can be better viewed as a helix, with each iteration between theory and data contributing to better explanations of the phenomenon of interest and better theories. Though both inductive and deductive research are important for the advancement of science, it appears that inductive (theory-building) research is more valuable when there are few prior theories or explanations, while deductive (theory-testing) research is more productive when there are many competing theories of the same phenomenon and researchers are interested in knowing which theory works best and under what circumstances.

Theories lead to testing hypothesis which leads to observations, which lead to generalization from observations, which again leads to theories.

Figure 1.1. The Cycle of Research

Theory building and theory testing are particularly difficult in the social sciences, given the imprecise nature of the theoretical concepts, inadequate tools to measure them, and the presence of many unaccounted factors that can also influence the phenomenon of interest. It is also very difficult to refute theories that do not work. For instance, Karl Marx’s theory of communism as an effective means of economic production withstood for decades, before it was finally discredited as being inferior to capitalism in promoting economic growth and social welfare. Erstwhile communist economies like the Soviet Union and China eventually moved toward more capitalistic economies characterized by profit-maximizing private enterprises. However, the recent collapse of the mortgage and financial industries in the United States demonstrates that capitalism also has its flaws and is not as effective in fostering economic growth and social welfare as previously presumed. Unlike theories in the natural sciences, social science theories are rarely perfect, which provides numerous opportunities for researchers to improve those theories or build their own alternative theories.

Conducting scientific research, therefore, requires two sets of skills – theoretical and methodological – needed to operate in the theoretical and empirical levels respectively. Methodological skills (“know-how”) are relatively standard, invariant across disciplines, and easily acquired through doctoral programs. However, theoretical skills (“know-what”) is considerably harder to master, requires years of observation and reflection, and are tacit skills that cannot be “taught” but rather learned though experience. All of the greatest scientists in the history of mankind, such as Galileo, Newton, Einstein, Neils Bohr, Adam Smith, Charles Darwin, and Herbert Simon, were master theoreticians, and they are remembered for the theories they postulated that transformed the course of science. Methodological skills are needed to be an ordinary researcher, but theoretical skills are needed to be an extraordinary researcher!

Scientific Method

In the preceding sections, we described science as knowledge acquired through a scientific method. So what exactly is the “scientific method”? Scientific method refers to a standardized set of techniques for building scientific knowledge, such as how to make valid observations, how to interpret results, and how to generalize those results. The scientific method allows researchers to independently and impartially test preexisting theories and prior findings, and subject them to open debate, modifications, or enhancements. The scientific method must satisfy four characteristics:

  • Replicability: Others should be able to independently replicate or repeat a scientific study and obtain similar, if not identical, results.
  • Precision: Theoretical concepts, which are often hard to measure, must be defined with such precision that others can use those definitions to measure those concepts and test that theory.
  • Falsifiability: A theory must be stated in a way that it can be disproven. Theories that cannot be tested or falsified are not scientific theories and any such knowledge is not scientific knowledge. A theory that is specified in imprecise terms or whose concepts are not accurately measurable cannot be tested, and is therefore not scientific. Sigmund Freud’s ideas on psychoanalysis fall into this category and is therefore not considered a

“theory”, even though psychoanalysis may have practical utility in treating certain types of ailments.

  • Parsimony: When there are multiple explanations of a phenomenon, scientists must always accept the simplest or logically most economical explanation. This concept is called parsimony or “Occam’s razor.” Parsimony prevents scientists from pursuing overly complex or outlandish theories with endless number of concepts and relationships that may explain a little bit of everything but nothing in particular.

Any branch of inquiry that does not allow the scientific method to test its basic laws or theories cannot be called “science.” For instance, theology (the study of religion) is not science because theological ideas (such as the presence of God) cannot be tested by independent observers using a replicable, precise, falsifiable, and parsimonious method. Similarly, arts, music, literature, humanities, and law are also not considered science, even though they are creative and worthwhile endeavors in their own right.

The scientific method, as applied to social sciences, includes a variety of research approaches, tools, and techniques, such as qualitative and quantitative data, statistical analysis, experiments, field surveys, case research, and so forth. Most of this book is devoted to learning about these different methods. However, recognize that the scientific method operates primarily at the empirical level of research, i.e., how to make observations and analyze and interpret these observations. Very little of this method is directly pertinent to the theoretical level, which is really the more challenging part of scientific research.

Types of Scientific Research

Depending on the purpose of research, scientific research projects can be grouped into three types: exploratory, descriptive, and explanatory. Exploratory research is often conducted in new areas of inquiry, where the goals of the research are: (1) to scope out the magnitude or extent of a particular phenomenon, problem, or behavior, (2) to generate some initial ideas (or “hunches”) about that phenomenon, or (3) to test the feasibility of undertaking a more extensive study regarding that phenomenon. For instance, if the citizens of a country are generally dissatisfied with governmental policies regarding during an economic recession, exploratory research may be directed at measuring the extent of citizens’ dissatisfaction, understanding how such dissatisfaction is manifested, such as the frequency of public protests, and the presumed causes of such dissatisfaction, such as ineffective government policies in dealing with inflation, interest rates, unemployment, or higher taxes. Such research may include examination of publicly reported figures, such as estimates of economic indicators, such as gross domestic product (GDP), unemployment, and consumer price index, as archived by third-party sources, obtained through interviews of experts, eminent economists, or key government officials, and/or derived from studying historical examples of dealing with similar problems. This research may not lead to a very accurate understanding of the target problem, but may be worthwhile in scoping out the nature and extent of the problem and serve as a useful precursor to more in-depth research.

Descriptive research is directed at making careful observations and detailed documentation of a phenomenon of interest. These observations must be based on the scientific method (i.e., must be replicable, precise, etc.), and therefore, are more reliable than casual observations by untrained people. Examples of descriptive research are tabulation of demographic statistics by the United States Census Bureau or employment statistics by the Bureau of Labor, who use the same or similar instruments for estimating employment by sector or population growth by ethnicity over multiple employment surveys or censuses. If any changes are made to the measuring instruments, estimates are provided with and without the changed instrumentation to allow the readers to make a fair before-and-after comparison regarding population or employment trends. Other descriptive research may include chronicling ethnographic reports of gang activities among adolescent youth in urban populations, the persistence or evolution of religious, cultural, or ethnic practices in select communities, and the role of technologies such as Twitter and instant messaging in the spread of democracy movements in Middle Eastern countries.

Explanatory research seeks explanations of observed phenomena, problems, or behaviors. While descriptive research examines the what, where, and when of a phenomenon, explanatory research seeks answers to why and how types of questions. It attempts to “connect the dots” in research, by identifying causal factors and outcomes of the target phenomenon. Examples include understanding the reasons behind adolescent crime or gang violence, with the goal of prescribing strategies to overcome such societal ailments. Most academic or doctoral research belongs to the explanation category, though some amount of exploratory and/or descriptive research may also be needed during initial phases of academic research. Seeking explanations for observed events requires strong theoretical and interpretation skills, along with intuition, insights, and personal experience. Those who can do it well are also the most prized scientists in their disciplines.

History of Scientific Thought

Before closing this chapter, it may be interesting to go back in history and see how science has evolved over time and identify the key scientific minds in this evolution. Although instances of scientific progress have been documented over many centuries, the terms “science,” “scientists,” and the “scientific method” were coined only in the 19 th century. Prior to this time, science was viewed as a part of philosophy, and coexisted with other branches of philosophy such as logic, metaphysics, ethics, and aesthetics, although the boundaries between some of these branches were blurred.

In the earliest days of human inquiry, knowledge was usually recognized in terms of theological precepts based on faith. This was challenged by Greek philosophers such as Plato, Aristotle, and Socrates during the 3 rd century BC, who suggested that the fundamental nature of being and the world can be understood more accurately through a process of systematic logical reasoning called rationalism . In particular, Aristotle’s classic work Metaphysics (literally meaning “beyond physical [existence]”) separated theology (the study of Gods) from ontology (the study of being and existence) and universal science (the study of first principles, upon which logic is based). Rationalism (not to be confused with “rationality”) views reason as the source of knowledge or justification, and suggests that the criterion of truth is not sensory but rather intellectual and deductive, often derived from a set of first principles or axioms (such as Aristotle’s “law of non-contradiction”).

The next major shift in scientific thought occurred during the 16 th century, when British philosopher Francis Bacon (1561-1626) suggested that knowledge can only be derived from observations in the real world. Based on this premise, Bacon emphasized knowledge acquisition as an empirical activity (rather than as a reasoning activity), and developed empiricism as an influential branch of philosophy. Bacon’s works led to the popularization of inductive methods of scientific inquiry, the development of the “scientific method” (originally called the “Baconian method”), consisting of systematic observation, measurement, and experimentation, and may have even sowed the seeds of atheism or the rejection of theological precepts as “unobservable.”

Empiricism continued to clash with rationalism throughout the Middle Ages, as philosophers sought the most effective way of gaining valid knowledge. French philosopher Rene Descartes sided with the rationalists, while British philosophers John Locke and David Hume sided with the empiricists. Other scientists, such as Galileo Galilei and Sir Issac Newton, attempted to fuse the two ideas into natural philosophy (the philosophy of nature), to focus specifically on understanding nature and the physical universe, which is considered to be the precursor of the natural sciences. Galileo (1564-1642) was perhaps the first to state that the laws of nature are mathematical, and contributed to the field of astronomy through an innovative combination of experimentation and mathematics.

In the 18 th century, German philosopher Immanuel Kant sought to resolve the dispute between empiricism and rationalism in his book Critique of Pure Reason , by arguing that experience is purely subjective and processing them using pure reason without first delving into the subjective nature of experiences will lead to theoretical illusions. Kant’s ideas led to the development of German idealism , which inspired later development of interpretive techniques such as phenomenology, hermeneutics, and critical social theory.

At about the same time, French philosopher Auguste Comte (1798–1857), founder of the discipline of sociology, attempted to blend rationalism and empiricism in a new doctrine called positivism . He suggested that theory and observations have circular dependence on each other. While theories may be created via reasoning, they are only authentic if they can be verified through observations. The emphasis on verification started the separation of modern science from philosophy and metaphysics and further development of the “scientific method” as the primary means of validating scientific claims. Comte’s ideas were expanded by Emile Durkheim in his development of sociological positivism (positivism as a foundation for social research) and Ludwig Wittgenstein in logical positivism.

In the early 20 th century, strong accounts of positivism were rejected by interpretive sociologists (antipositivists) belonging to the German idealism school of thought. Positivism was typically equated with quantitative research methods such as experiments and surveys and without any explicit philosophical commitments, while antipositivism employed qualitative methods such as unstructured interviews and participant observation. Even practitioners of positivism, such as American sociologist Paul Lazarsfield who pioneered large-scale survey research and statistical techniques for analyzing survey data, acknowledged potential problems of observer bias and structural limitations in positivist inquiry. In response, antipositivists emphasized that social actions must be studied though interpretive means based upon an understanding the meaning and purpose that individuals attach to their personal actions, which inspired Georg Simmel’s work on symbolic interactionism, Max Weber’s work on ideal types, and Edmund Husserl’s work on phenomenology.

In the mid-to-late 20 th century, both positivist and antipositivist schools of thought were subjected to criticisms and modifications. British philosopher Sir Karl Popper suggested that human knowledge is based not on unchallengeable, rock solid foundations, but rather on a set of tentative conjectures that can never be proven conclusively, but only disproven. Empirical evidence is the basis for disproving these conjectures or “theories.” This metatheoretical stance, called postpositivism (or postempiricism), amends positivism by suggesting that it is impossible to verify the truth although it is possible to reject false beliefs, though it retains the positivist notion of an objective truth and its emphasis on the scientific method.

Likewise, antipositivists have also been criticized for trying only to understand society but not critiquing and changing society for the better. The roots of this thought lie in Das Capital , written by German philosophers Karl Marx and Friedrich Engels, which critiqued capitalistic societies as being social inequitable and inefficient, and recommended resolving this inequity through class conflict and proletarian revolutions. Marxism inspired social revolutions in countries such as Germany, Italy, Russia, and China, but generally failed to accomplish the social equality that it aspired. Critical research (also called critical theory) propounded by Max Horkheimer and Jurgen Habermas in the 20 th century, retains similar ideas of critiquing and resolving social inequality, and adds that people can and should consciously act to change their social and economic circumstances, although their ability to do so is constrained by various forms of social, cultural and political domination. Critical research attempts to uncover and critique the restrictive and alienating conditions of the status quo by analyzing the oppositions, conflicts and contradictions in contemporary society, and seeks to eliminate the causes of alienation and domination (i.e., emancipate the oppressed class). More on these different research philosophies and approaches will be covered in future chapters of this book.

  • Social Science Research: Principles, Methods, and Practices. Authored by : Anol Bhattacherjee. Provided by : University of South Florida. Located at : http://scholarcommons.usf.edu/oa_textbooks/3/ . License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike

Med School Insiders

Understanding Scientific Research – A Comprehensive Guide

  • By Kevin Jubbal, M.D.
  • January 18, 2020
  • Accompanying Video , Pre-med
  • High School , Reading , Research

Reading primary literature – meaning research articles – is intimidating, confusing, and seems out of reach for most people who aren’t trained scientists. But it doesn’t have to be that way. Let’s cover how to make reading research articles easy, fun, and approachable.

As Richard Feynman once said, “the first principle is that you must not fool yourself — and you are the easiest person to fool.” We’ll equip you with the tools and strategies to not be fooled with regards to scientific research moving forward.

As part of my neuroscience major in college, we were required to read dozens of research articles related to the field. We spent hours going over every single article, dissecting its strengths, weaknesses, and working to accurately assess what value the paper provided to the scientific community.

Yet despite reading dozens of these neuroscience papers, when I entered medical school, I still didn’t enjoy reading the primary literature. In fact, I avoided doing so unless absolutely necessary. It wasn’t until I began doing research of my own, read hundreds of papers, and published dozens of my own include a scrolling screenshot or recording of my own publication list at kevinjubbal.com that it all began to click. Being able to understand and assess the scientific literature is so important to parse out the noise from the truth, but it doesn’t have to take you years as it did for me.

1 | The Types of Research Studies

When it comes to scientific studies, there are different levels of evidence. Not all studies are created equal, and the study design is a big part of how strong the evidence is.

At the top, randomized controlled trials are the gold standard, the cream of the crop. Below that, prospective cohort and case-control studies. Prospective means you follow the subjects over time to see the outcomes of interest. Third, we have retrospective cohort or case-control studies, meaning you already have the outcomes of interest, but look back historically and make interpretations. Fourth, we have case series and case reports, which are investigations into individual patient cases. There are other levels, such as systematic reviews, meta-analyses, expert opinion, and others, but for simplicity, we’ll stick to these four levels.

This ranking may not make sense just yet, and that’s ok. We’ll now cover the elements of research, and how they apply to each type of research study, and it will all begin to come together.

Epidemiology , coming from the Greek term epidēmia, translates to “prevalence of disease”. It is the branch of medicine dealing with the incidence, distribution, and control of diseases. If the primary aim of science is discovering the truth and determining cause and effect, then it’s important to note that most observational epidemiological studies cannot establish causality, and therefore they cannot soundly accept or reject a hypothesis. Strong correlations found in observational studies can be compelling enough to take seriously, but there are limitations.

When it comes to observational studies , compared to experimental studies, we have cohort, case-control, and cross-sectional. Without diving into the differences of each type of observational study, understand this generally entails observing large groups of individuals and recording their exposure to risk factors to find associations with possible causes of disease. If they’re retrospective, they’re looking back in time to identify particular characteristics associated with the outcome of interest. These types of studies are prone to confounding and other biases, which can take us further from the truth. We’ll cover this in more detail shortly. Prospective cohort studies recruit subjects and collect baseline information before the subjects have developed the outcome of interest. The advantage of prospective studies is they reduce several types of biases that are commonplace in retrospective studies.

There are four steps to the scientific method :

  • Make an observation
  • Come up with a (falsifiable) hypothesis based on this observation
  • Test the hypothesis through an experiment
  • Accept or reject hypothesis based on experiment results

To determine causality, meaning if a cause results in an effect (like whether or not red meat causes cancer), the hypothesis must be adequately tested. This is the part that is most commonly overlooked , particularly in disciplines such as nutrition, because doing experiments necessary to establish causality presents several obstacles. For that reason, many researchers turn to doing easier observational studies, and I’m guilty of this too, but the problem is that most of these don’t get us closer to the truth.

The gold standard for determining causality is a well designed randomized controlled trial, or RCT for short. The researchers create inclusion and exclusion criteria to gather a group of subjects qualified for the study. Then, they randomize subjects into two groups. For example, one group receives drug A, and the other group receives a placebo.

By randomly allocating participants into the treatment or control group, much of the bias from observational studies is substantially reduced. In short, finding cause and effect becomes much easier. If randomized controlled trials are so much better, then why aren’t they always used?

First, they can be very expensive. One report looking at all RCTs funded by the US National Institute of Neurological Disorders and Stroke found 28 trials with a total cost of $335 million.

Second, RCTs take a long time. According to one study , the median time from the start of enrollment to publication was 5 and a half years .

Third, not all RCTs are created equal, and it’s quite challenging to conduct a high-quality RCT. These studies must have adequate randomization, stratification, blinding, sample size, power, proper selection of endpoints, clearly defined selection criteria, and more.

Fourth, ethical considerations. If you’re assigning someone to be in the control or experimental group, you can assign them to something you think will be helpful, like a medication or other treatment, or not have an effect, like placebo or control group. But you wouldn’t be able to assign someone to a group that you would expect to harm them – can you imagine assigning some teenagers to smoke cigarettes and some not to? This is a key distinction between RCTs and observational studies. While RCTs seek to establish cause-and-effect relationships that are beneficial, epidemiologists seek to establish associations that are harmful.

2 | Relative Risk vs Absolute Risk

To better understand the strengths and weaknesses of any particular research study, we’ll need to explore statistics. Don’t worry, we’ll keep it to basic statistics, nothing too crazy.

Relative risk , in its simplest terms, is the relative difference in risk between two groups. If a certain drug decreases the risk of colon cancer from 0.2% to 0.1%, that’s a 50% relative risk reduction. Decreasing the initial risk, 0.2%, by 50%, gives you a risk of 0.1%. The actual change in the rate of the event occurring would be the absolute risk reduction , which in this instance would be 0.1%, because 0.2% – 0.1% = 0.1%.

The way most studies, and especially journalists, summarize and report the results is through relative risk changes. This is much more headline-worthy but obscures the truth where the absolute risk would be more useful at communicating true impact. But what’s more likely to get clicks? “New drug reduces colon cancer risk by 50%!” That would be relative risk reduction. Alternatively, “New drug reduces colon cancer risk from 2 per 1000 to 1 per 1000”. That would be absolute risk reduction.

3 | Confounding & Biases

In the world of research, bias is anything that causes false conclusions and is potentially misleading.

Let’s start with one of the biggest offenders: confounding .

what makes a research study scientific

A confounding variable is one that influences both the independent and dependent variables but wasn’t accounted for in the study. For example, let’s say we’re studying the correlation between bicycling and the sale of ice-cream. As the bicycling rate increases, so does the sale of ice cream. The researchers conclude that bicycling causes people to consume ice cream. The third variable, weather, confounds the relationship between bicycling and ice cream, as when it’s hot outside, people are more likely to bicycle and also more likely to buy ice cream.

Another bias that isn’t properly appreciated, particularly in the world of nutrition, is the healthy user bias . Health-conscious people are more likely to do certain activities. For example, most health-conscious people have heard that red meat is bad, and therefore they’re less likely to eat red meat. People who eat more red meat are less health-conscious, and therefore are also more likely to smoke, not exercise, and consume soft drinks. When an observational study comes out comparing those who eat red meat to those who don’t, we cannot actually conclude it’s due to the red meat and not these other factors. Even when researchers are aware of these factors, they are virtually impossible to properly account for.

Selection bias refers to the study population not being representative of the target population, usually due to errors in the selection of subjects into a study, or the likelihood of them staying in the study. In the “ lost to follow-up” bias , researchers are unable to follow up with certain subjects, so they don’t know what happened to them, such as whether they developed the outcome of interest. This leads to a selection bias when the loss to follow up is not the same across the exposed and unexposed groups.

There are many other biases, but we don’t have time to explore each and everyone here.

4 | Randomization & Statistics

Good research minimizes the effects of confounding and biases. How do we do that?

Randomization is a method where study participants are randomly assigned to a treatment or control group. Randomization is a key part of being able to distinguish cause and effect, as proper randomization eliminates confounding. You cannot do this in observational studies, as subjects self-select themselves into whichever group.

When confounding variables are inevitably present, there are statistical methods to “control” or “adjust for” the confounders. The two are stratification and multivariate models.

Stratification fixes the level of the confounders and produces subgroups within which the confounder does not vary. This allows for evaluation of the exposure-outcome association within each stratum of the confounder. This works because the confounder does not vary across the exposure-outcome at each level.

Multivariate models are better at controlling for a greater number of confounders. There are various types, one of the most common of which is linear regression . In its simplest terms, regression is fitting the best straight line to a dataset. Think back to algebra and y = mx + b. We’re trying to find the equation that best predicts the linear relationship between the observed data, being y, and the experimental variable, being x. Logistical regression deals with more complex relationships with multiple continuous variables.

The important thing to note is that confounding often still persists, even after adjustment. There are almost an infinite number of possibilities that can confound an observation, but researchers can only eliminate or control for the ones they are aware of.

Alex Reinhart, author of Statistics Done Wrong, points out that it’s common to interpret results by saying, “If weight increases by one pound, with all other variables held constant, then heart attack rates increase by X percent. You can quote the numbers from the regression equation, but in the real world, the process of gaining a pound of weight also involves other changes. Nobody ever gains a pound with all other variables held constant, so your regression equation doesn’t translate to reality.”

Because confounding is such a central limitation to observational research, we must be careful when drawing conclusions from these types of studies. With observational epidemiology, it’s incredibly difficult to prove an association right or wrong. While a small minority of these associations may be causal, the overwhelming majority are not. Therefore, we should err on the side of skepticism.

5 | Power & Significance

When you propose a hypothesis in a research study, there are two forms: the null hypothesis , meaning there is no relationship between the two phenomena, and the alternative hypothesis , meaning there is a relationship. The study seeks to provide data to suggest one over the other — note that science doesn’t prove things, as you could in math, but rather provides evidence for or against.

The p -value is the scoring metric that makes the final call. It’s the probability of obtaining test results from chance alone, assuming the null hypothesis is correct. In other words, it’s the likelihood that no relationship exists, but the findings occurred due to chance alone. A smaller p -value more strongly rejects a null hypothesis. A larger p -value means a larger chance that the effect you are seeing is due to chance, thus supporting the null hypothesis.

A p -value cutoff is assigned by the researchers to determine the cutoff at which statistical significance is achieved. We call this number α, and it is usually set to 0.05, meaning 5%, or sometimes lower. If the p-value is less than 0.05, we say the results are “statistically significant,” and the null hypothesis is rejected.

what makes a research study scientific

There’s a chance we’re wrong, and we have terms for this, too. When there’s no true effect, but we think there is, we call this a false positive, or a Type I error . We failed to reject the null hypothesis even when it was true. The opposite, where there is an effect but we think there isn’t, is called a Type II error . We accepted the null hypothesis when we shouldn’t have. The chance of committing a Type II error is called β.

Statistical power is the probability that a study will correctly find a real effect, meaning a true positive. This translates to Power = 1 – β. Power is influenced by four factors:

  • Probability of a false positive (α, or Type I error rate)
  • Sample size (N)
  • Effect size (the magnitude of difference between groups)
  • Probability of a false negative (β, or Type II error rate)

Keep this in mind, as we’ll be coming back to it.

A corollary to p -values are confidence intervals . To find the confidence interval, you take 1 – α, so if α is commonly set to 0.05, the confidence interval would be 0.95, or 95%. When reading a study, you can quickly determine if statistical significance was achieved by whether or not the confidence intervals include the number 1.00. If it’s larger, like 1.05 – 1.27, then a positive association is present with statistical significance, and if it’s smaller, like 0.56 – 0.89, then a negative association is present with statistical significance.

Confidence intervals are commonly misunderstood. With a 95% confidence interval of 1.05 – 1.27, this doesn’t mean that we are 95% confident that the true effect is between 1.05-1.27. Rather, if we were to take 100 different samples and compute a 95% confidence interval for each sample, then 95 of the 100 confidence intervals will contain the true value. In other words, a 95% confidence interval states that 95% of experiments conducted in this exact manner will include the true value, but 5% will not.

Lastly, let’s clarify statistical significance versus practical significance . A study can find statistical significance but have no practical significance. This is more common than you think. A common case where this happens is when the sample size is too large. The larger the sample size, the greater the probability the study will reach statistical significance. At these extremes, even minute differences in outcomes can be statistically significant. If a study finds that a new intervention reduces weight by 0.5 pounds, who cares? It’s not clinically relevant.

The reverse is also true, where a study demonstrates practical significance, yet was unable to achieve statistical significance. If we revisit the four factors that influence power, we see that sample size is the most easily manipulated to over- or underpower a study. Often times, observational studies are overpowered with thousands of subjects, such that any minute difference may yield a statistically significant result. Other studies experience the opposite, whereby they have a small number of subjects, and even if there is a real difference, statistical significance cannot be demonstrated.

Each of these components in isolation isn’t enough to make you an expert at deciphering research studies. However, when you put each piece in context and understand the why of how sound science is conducted, you’ll become far better equipped to think critically and make sense of the primary literature yourself, without having to rely on lazy thinking and black and white summaries from journalists.

If you made it to the end of this post, congratulations! This was an incredibly challenging post to make, as there’s so much to research, but I hope you learned something that will make reading research articles in the future easier and more productive.

Picture of Kevin Jubbal, M.D.

Kevin Jubbal, M.D.

Pre-med high school student

Summer Success for High School Students Interested in Medicine

Are you a high school student interested in medicine? We detail five strategies to help you get ahead of the curve during the summer.

Counting money with hands - blue background

How to Study With a Full-Time Job

If you’re a student who needs to work while completing your education, this guide will teach you how to balance both at the same time.

apple sitting on top of books

Study Techniques 101: The Good, the OK, and the Useless

Study strategies are NOT created equal. Here’s what you want in a study strategy to get the best results with the least effort.

Leave a Reply Cancel reply

Join the Insider Newsletter

Join the Insider Newsletter

Receive regular exclusive MSI content, news, and updates! No spam. One-click unsubscribe.

Customer Note Premed Preclinical Med Student Clinical Med Student

You have Successfully Subscribed!

Department of Health & Human Services

Module 1: Introduction: What is Research?

Module 1

Learning Objectives

By the end of this module, you will be able to:

  • Explain how the scientific method is used to develop new knowledge
  • Describe why it is important to follow a research plan

Text Box: The Scientific Method

The Scientific Method consists of observing the world around you and creating a  hypothesis  about relationships in the world. A hypothesis is an informed and educated prediction or explanation about something. Part of the research process involves testing the  hypothesis , and then examining the results of these tests as they relate to both the hypothesis and the world around you. When a researcher forms a hypothesis, this acts like a map through the research study. It tells the researcher which factors are important to study and how they might be related to each other or caused by a  manipulation  that the researcher introduces (e.g. a program, treatment or change in the environment). With this map, the researcher can interpret the information he/she collects and can make sound conclusions about the results.

Research can be done with human beings, animals, plants, other organisms and inorganic matter. When research is done with human beings and animals, it must follow specific rules about the treatment of humans and animals that have been created by the U.S. Federal Government. This ensures that humans and animals are treated with dignity and respect, and that the research causes minimal harm.

No matter what topic is being studied, the value of the research depends on how well it is designed and done. Therefore, one of the most important considerations in doing good research is to follow the design or plan that is developed by an experienced researcher who is called the  Principal Investigator  (PI). The PI is in charge of all aspects of the research and creates what is called a  protocol  (the research plan) that all people doing the research must follow. By doing so, the PI and the public can be sure that the results of the research are real and useful to other scientists.

Module 1: Discussion Questions

  • How is a hypothesis like a road map?
  • Who is ultimately responsible for the design and conduct of a research study?
  • How does following the research protocol contribute to informing public health practices?

PDF

Email Updates

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Scientific Method Steps in Psychology Research

Steps, Uses, and Key Terms

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

what makes a research study scientific

Emily is a board-certified science editor who has worked with top digital publishing brands like Voices for Biodiversity, Study.com, GoodTherapy, Vox, and Verywell.

what makes a research study scientific

Verywell / Theresa Chiechi

How do researchers investigate psychological phenomena? They utilize a process known as the scientific method to study different aspects of how people think and behave.

When conducting research, the scientific method steps to follow are:

  • Observe what you want to investigate
  • Ask a research question and make predictions
  • Test the hypothesis and collect data
  • Examine the results and draw conclusions
  • Report and share the results 

This process not only allows scientists to investigate and understand different psychological phenomena but also provides researchers and others a way to share and discuss the results of their studies.

Generally, there are five main steps in the scientific method, although some may break down this process into six or seven steps. An additional step in the process can also include developing new research questions based on your findings.

What Is the Scientific Method?

What is the scientific method and how is it used in psychology?

The scientific method consists of five steps. It is essentially a step-by-step process that researchers can follow to determine if there is some type of relationship between two or more variables.

By knowing the steps of the scientific method, you can better understand the process researchers go through to arrive at conclusions about human behavior.

Scientific Method Steps

While research studies can vary, these are the basic steps that psychologists and scientists use when investigating human behavior.

The following are the scientific method steps:

Step 1. Make an Observation

Before a researcher can begin, they must choose a topic to study. Once an area of interest has been chosen, the researchers must then conduct a thorough review of the existing literature on the subject. This review will provide valuable information about what has already been learned about the topic and what questions remain to be answered.

A literature review might involve looking at a considerable amount of written material from both books and academic journals dating back decades.

The relevant information collected by the researcher will be presented in the introduction section of the final published study results. This background material will also help the researcher with the first major step in conducting a psychology study: formulating a hypothesis.

Step 2. Ask a Question

Once a researcher has observed something and gained some background information on the topic, the next step is to ask a question. The researcher will form a hypothesis, which is an educated guess about the relationship between two or more variables

For example, a researcher might ask a question about the relationship between sleep and academic performance: Do students who get more sleep perform better on tests at school?

In order to formulate a good hypothesis, it is important to think about different questions you might have about a particular topic.

You should also consider how you could investigate the causes. Falsifiability is an important part of any valid hypothesis. In other words, if a hypothesis was false, there needs to be a way for scientists to demonstrate that it is false.

Step 3. Test Your Hypothesis and Collect Data

Once you have a solid hypothesis, the next step of the scientific method is to put this hunch to the test by collecting data. The exact methods used to investigate a hypothesis depend on exactly what is being studied. There are two basic forms of research that a psychologist might utilize: descriptive research or experimental research.

Descriptive research is typically used when it would be difficult or even impossible to manipulate the variables in question. Examples of descriptive research include case studies, naturalistic observation , and correlation studies. Phone surveys that are often used by marketers are one example of descriptive research.

Correlational studies are quite common in psychology research. While they do not allow researchers to determine cause-and-effect, they do make it possible to spot relationships between different variables and to measure the strength of those relationships. 

Experimental research is used to explore cause-and-effect relationships between two or more variables. This type of research involves systematically manipulating an independent variable and then measuring the effect that it has on a defined dependent variable .

One of the major advantages of this method is that it allows researchers to actually determine if changes in one variable actually cause changes in another.

While psychology experiments are often quite complex, a simple experiment is fairly basic but does allow researchers to determine cause-and-effect relationships between variables. Most simple experiments use a control group (those who do not receive the treatment) and an experimental group (those who do receive the treatment).

Step 4. Examine the Results and Draw Conclusions

Once a researcher has designed the study and collected the data, it is time to examine this information and draw conclusions about what has been found.  Using statistics , researchers can summarize the data, analyze the results, and draw conclusions based on this evidence.

So how does a researcher decide what the results of a study mean? Not only can statistical analysis support (or refute) the researcher’s hypothesis; it can also be used to determine if the findings are statistically significant.

When results are said to be statistically significant, it means that it is unlikely that these results are due to chance.

Based on these observations, researchers must then determine what the results mean. In some cases, an experiment will support a hypothesis, but in other cases, it will fail to support the hypothesis.

So what happens if the results of a psychology experiment do not support the researcher's hypothesis? Does this mean that the study was worthless?

Just because the findings fail to support the hypothesis does not mean that the research is not useful or informative. In fact, such research plays an important role in helping scientists develop new questions and hypotheses to explore in the future.

After conclusions have been drawn, the next step is to share the results with the rest of the scientific community. This is an important part of the process because it contributes to the overall knowledge base and can help other scientists find new research avenues to explore.

Step 5. Report the Results

The final step in a psychology study is to report the findings. This is often done by writing up a description of the study and publishing the article in an academic or professional journal. The results of psychological studies can be seen in peer-reviewed journals such as  Psychological Bulletin , the  Journal of Social Psychology ,  Developmental Psychology , and many others.

The structure of a journal article follows a specified format that has been outlined by the  American Psychological Association (APA) . In these articles, researchers:

  • Provide a brief history and background on previous research
  • Present their hypothesis
  • Identify who participated in the study and how they were selected
  • Provide operational definitions for each variable
  • Describe the measures and procedures that were used to collect data
  • Explain how the information collected was analyzed
  • Discuss what the results mean

Why is such a detailed record of a psychological study so important? By clearly explaining the steps and procedures used throughout the study, other researchers can then replicate the results. The editorial process employed by academic and professional journals ensures that each article that is submitted undergoes a thorough peer review, which helps ensure that the study is scientifically sound.

Once published, the study becomes another piece of the existing puzzle of our knowledge base on that topic.

Before you begin exploring the scientific method steps, here's a review of some key terms and definitions that you should be familiar with:

  • Falsifiable : The variables can be measured so that if a hypothesis is false, it can be proven false
  • Hypothesis : An educated guess about the possible relationship between two or more variables
  • Variable : A factor or element that can change in observable and measurable ways
  • Operational definition : A full description of exactly how variables are defined, how they will be manipulated, and how they will be measured

Uses for the Scientific Method

The  goals of psychological studies  are to describe, explain, predict and perhaps influence mental processes or behaviors. In order to do this, psychologists utilize the scientific method to conduct psychological research. The scientific method is a set of principles and procedures that are used by researchers to develop questions, collect data, and reach conclusions.

Goals of Scientific Research in Psychology

Researchers seek not only to describe behaviors and explain why these behaviors occur; they also strive to create research that can be used to predict and even change human behavior.

Psychologists and other social scientists regularly propose explanations for human behavior. On a more informal level, people make judgments about the intentions, motivations , and actions of others on a daily basis.

While the everyday judgments we make about human behavior are subjective and anecdotal, researchers use the scientific method to study psychology in an objective and systematic way. The results of these studies are often reported in popular media, which leads many to wonder just how or why researchers arrived at the conclusions they did.

Examples of the Scientific Method

Now that you're familiar with the scientific method steps, it's useful to see how each step could work with a real-life example.

Say, for instance, that researchers set out to discover what the relationship is between psychotherapy and anxiety .

  • Step 1. Make an observation : The researchers choose to focus their study on adults ages 25 to 40 with generalized anxiety disorder.
  • Step 2. Ask a question : The question they want to answer in their study is: Do weekly psychotherapy sessions reduce symptoms in adults ages 25 to 40 with generalized anxiety disorder?
  • Step 3. Test your hypothesis : Researchers collect data on participants' anxiety symptoms . They work with therapists to create a consistent program that all participants undergo. Group 1 may attend therapy once per week, whereas group 2 does not attend therapy.
  • Step 4. Examine the results : Participants record their symptoms and any changes over a period of three months. After this period, people in group 1 report significant improvements in their anxiety symptoms, whereas those in group 2 report no significant changes.
  • Step 5. Report the results : Researchers write a report that includes their hypothesis, information on participants, variables, procedure, and conclusions drawn from the study. In this case, they say that "Weekly therapy sessions are shown to reduce anxiety symptoms in adults ages 25 to 40."

Of course, there are many details that go into planning and executing a study such as this. But this general outline gives you an idea of how an idea is formulated and tested, and how researchers arrive at results using the scientific method.

Erol A. How to conduct scientific research ? Noro Psikiyatr Ars . 2017;54(2):97-98. doi:10.5152/npa.2017.0120102

University of Minnesota. Psychologists use the scientific method to guide their research .

Shaughnessy, JJ, Zechmeister, EB, & Zechmeister, JS. Research Methods In Psychology . New York: McGraw Hill Education; 2015.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

  • Skip to main content
  • Keyboard shortcuts for audio player

13.7 Cosmos & Culture

What makes science science.

Tania Lombrozo

Tania Lombrozo looks at how science establishes facts — and why it's the best way to do it.

In a post published last week, Adam Frank argued for the importance of public facts, and of science as a method for ascertaining them.

He emphasized the role of agreement in establishing public facts, and verifiable evidence as the crucial ingredient that makes agreement possible.

Today, I want to consider two additional aspects of science as a method for ascertaining public facts — that is, the facts that we should all accept together. The first is that scientific conclusions can change. And the second is that scientific methods can change.

Far from undercutting the value of public facts, understanding how and why these changes occur reveals why science is our best bet for getting the facts right.

First, the body of scientific knowledge is continually evolving. Scientists don't simply add more facts to our scientific repository; they question new evidence as it comes in, and they repeatedly reexamine prior conclusions. That means that the body of scientific knowledge isn't just growing, it's also changing.

At first glance, this change can be unsettling. How can we trust science, if scientific conclusions are continually subject to change ?

The key is that scientific conclusions don't change on a whim. They change in response to new evidence, new analyses and new arguments — the sorts of things we can publicly agree (or disagree) about, that we can evaluate together. And scientific conclusions are almost always based on induction, not deduction. That is, science involves drawing inferences from premises to conclusion, where the premises can affect the probability of the conclusions but don't establish them with certainty.

When you put these pieces together, the alternative to an evolving body of scientific knowledge is a non-starter. To embrace a static body of scientific knowledge is to reject the potential relevance of new information. It's a commitment to the idea that a conclusion based on all the evidence available is no better than a conclusion based on the subset of evidence we happened to obtain first. If a changing body of scientific knowledge is unsettling, this alternative is untenable.

A second feature of science is that scientific methods are continually evolving. Many of us learned "the" scientific method in grade school, a step-by-step procedure for doing science. But this recipe-book approach to science is oversimplified and misleading . Scientists employ a variety of methods, and these methods are refined as we learn more. New technologies, like telescopes or brain imaging devices, allow us to ask new questions in new ways. But equally important, strategies for analyzing data and drawing conclusions change as well. Statistical methods improve, as do experimental designs. The randomized controlled trial is a scientific innovation; a way to draw better conclusions about cause and effect. A double-blind experiment is a scientific innovation; a way to prevent subtle psychological processes from influencing the results.

What drives this methodological innovation? And what makes the outcome a set of methods we should trust?

In an undergraduate course that I'm teaching this semester, we introduce students to an unconventional definition of science. The course, Letters & Sciences 22: Sense and Sensibility and Science, comes from an interdisciplinary collaboration between a philosopher (John Campbell), a social psychologist (Robert MacCoun), a Nobel-prize-winning physicist (Saul Perlmutter), and a cognitive scientist (me).

On the first day of class, Prof. Perlmutter defines science as a collection of heuristic tricks that are constantly being invented to side-step our mental weaknesses and play to our strengths. On this view, science isn't a recipe, it's a warning. The warning is this: We are fallible.

But recognizing our fallibility, we can do better. Once we learn that placebo effects can occur, we design drug trials to compare drugs against placebos. Once we learn that repeated statistical significance testing can inflate the probability of a false positive, we build in corrective measures. And we shouldn't wait for these lessons to fortuitously come along; we should vigorously seek them out. A common theme in the course, concludes Perlmutter, is that science is about actively hunting for where we are wrong, for where we are fooling ourselves.

Scientific methods thus evolve alongside scientific conclusions, and the engine that drives this change is remarkably simple. In an essay published earlier this month at Edge.org , I argue that science is powerful because it involves the systematic evaluation of alternatives. To determine which evidence is worth pursuing, we consider which alternatives are plausible, and we seek out evidence that will discriminate between them. As we encounter new evidence or new arguments, we evaluate the possibility that alternative conclusions are now better supported, and alternative methods better guides to the truth.

Scientific thinking isn't just a tool for working scientists; it's an approach to getting the facts right by entertaining all the ways we might get the facts wrong. Only when viable alternatives have been eliminated can we be pretty confident we've got something right.

So let me end with a plea. The plea isn't for people to accept any particular scientific consensus, or any particular public fact. It's a plea for people to embrace the value of considering alternative possibilities, and evaluating those possibilities against the best evidence and arguments at our disposal. And it's a plea for us to do so together, with the kinds of evidence we can verify and share, and the kinds of arguments we can subject to public scrutiny. And if you're not convinced, please consider the alternatives.

Tania Lombrozo is a psychology professor at the University of California, Berkeley. She writes about psychology, cognitive science and philosophy, with occasional forays into parenting and veganism. You can keep up with more of what she is thinking on Twitter: @TaniaLombrozo

  • scientific knowledge
  • public facts
  • scientific methods
  • alternatives

Stephanie A. Sarkis Ph.D.

What Makes a Good Research Study?

Find out what separates a solid research study from a so-so one..

Posted March 31, 2018

123rf/Standard License

One day you read online that drinking coffee reduces the chances of having age-related memory decline . You start drinking coffee. The next month you read that drinking coffee increases your chances of having age-related memory decline. What gives? In this article, you will learn how to "decipher" research studies to figure out what a research study is really saying - and what it doesn't say. You'll also discover how to tell if the reporting on a particular study was accurate or not. Ask yourself the following six questions when looking at a research study. Keep in mind these are just six of the many factors that make up a "clean" study.

1. Did the study use a placebo , and were the staff blinded to treatment?

The brain is very susceptible to placebos. There is evidence that even when you tell study subjects (participants) that they are getting a placebo, they improve (Carvalho, et al., 2016). In pharmaceutical studies, the US Food and Drug Administration (FDA) requires pharmaceutical companies to do double-blind placebo-controlled studies. This means that the study subjects, the physicians dispensing the drug, and the clinicians rating the subjects' behavior don't know what subjects are getting - drug or placebo. This eliminates a lot of bias , and it helps show whether the drug actually works.

2. Was there a bogus/sham treatment?

A bogus/sham treatment is one in which subjects are given a treatment that looks very much like the real treatment, except for one major difference. The bogus/sham treatment doesn't actually provide the therapeutic part of the treatment. For example, some acupuncture studies use a sham/bogus treatment, such as a 2017 study by Ugurlu, et al. regarding acupuncture treatment for fibromyalgia .

Bogus/sham treatments, when compared to active treatments, help researchers discover whether the active treatment is what works, or the fact that people think they are getting the active treatment.

3. How many people were there in the study (N)?

Logic says the more people you have in a study, or the study's "N", the better chance you have of your study representing of the general population (the "generalizability" of a study). Let's say you're studying the effects of apple juice on ADHD symptoms, and you have a total N of ten people. By chance, seven of those ten people have severe ADHD, two have moderate ADHD, and one has mild ADHD. You now could throw off the results of your study because you have so many people with severe ADHD in the study. When you have more subjects, or a larger N, in a study, there is more of a chance that you would have people that have mild, moderate, and severe ADHD.

4. Were the study groups randomized?

A good study randomizes their subjects into the active treatment and placebo groups. This means that the subjects are in those particular groups by chance. This provides extra "backup" that the effects from a treatment were actually from that treatment, not from study staff bias.

5. Who conducted the research, and who is paying for it?

If the people that created a treatment are also testing a treatment, this is a concern. When you have a horse in the race, so to speak, it is more difficult to be unbiased. Another concern is if an entity with a vested interest in a particular study outcome is paying for that study. For example, if there is a study on the effectiveness of widgets, and the sole source of funding is Widgets are Wonderful, Inc., and the researchers are employees of Widgets are Wonderful, that study better have some seriously good methodology to help eliminate bias. Even better, an independent research group is funded by an organization without ties to the study outcome.

6. Was the article published in a refereed (peer-reviewed/scholarly) journal?

In a refereed journal, a manuscript is reviewed by other experts in the field before it is published as an article. The authors of the manuscript are not disclosed to the reviewers, in order to reduce possible bias. When we review manuscripts for a journal, there are three main categories: reject, meaning the article goes no further; accept, with revisions, meaning the authors must edit their article before resubmitting it for publication; and accept as written, which is rare, but once in a while there is a manuscript with such good research methodology and writing that no additional editing is needed.

When a journal is not refereed, the standard of inclusion into that journal is not as high. This means the quality of the research may not be up to the same standards. Look up the journal online to find out if it is a peer-reviewed journal.

If you don't have university access, you can at least access the abstracts of journal articles at Google Scholar . The abstract lets you know the study's methodology, the number of study subjects, the outcomes, and the author's conclusions.

You may also see the term "open-access" used to describe a journal. An open-access journal is one that users can freely access, without a subscription or fees. Some open-access journals are peer-reviewed, some are not.

Copyright 2018 Sarkis Media

Carvalho, C., Caetano, J. M., Cunha, L., Rebouta, P., Kaptchuk, T. J., & Kirsch, I. (2016). Open-label Placebo Treatment in Chronic Low Back Pain: A Randomized Controlled Trial. Pain, 157(12), 2766–2772. http://doi.org/10.1097/j.pain.0000000000000700

Uğurlu, F. G., Sezer, N., Aktekin, L., Fidan, F., Tok, F., & Akkuş, S. (2017). The effects of acupuncture versus sham acupuncture in the treatment of fibromyalgia: a randomized controlled clinical trial. Acta reumatologica portuguesa, (1).

Stephanie A. Sarkis Ph.D.

Stephanie Moulton Sarkis, Ph.D., N.C.C., D.C.M.H.S., L.M.H.C ., is the author of Gaslighting: Recognize Manipulative and Emotionally Abusive People — and Break Free .

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

May 2024 magazine cover

At any moment, someone’s aggravating behavior or our own bad luck can set us off on an emotional spiral that threatens to derail our entire day. Here’s how we can face our triggers with less reactivity so that we can get on with our lives.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience
  • Community and Engagement
  • Honors and Awards
  • Give Now 

Why Is It Important for Students to Understand How Scientific Decisions are Made? ‘If You Don’t Understand How Scientists Decide What Makes One Claim More Believable, Then It’s Actually Very Hard to Understand Science,’ Says STEM Education Department Head William Sandoval

what makes a research study scientific

For William Sandoval, head of the Department of STEM Education in the NC State College of Education, when preparing K-12 students to engage with real-world science, developing the skills to become career scientists is not nearly as important as helping them to engage with the science that will occur all around them in their everyday lives. 

To help facilitate this, Sandoval’s research has focused on how kids understand scientific argumentation and how scientists make the case for why people should believe the theories they’ve developed based on causal claims and evidence. 

The concept is known as epistemic cognition, or thinking about how people know what they know. 

“If we want kids to understand how science works, they have to understand the standards that scientists use to evaluate competing claims. If you don’t understand how scientists decide what makes one claim more believable, then it’s actually very hard to understand science,” Sandoval said. “Every person who gets a science education through high school is eventually going to encounter some scientific issue in their adult lives that they didn’t learn about in school because science moves really fast. If you never thought about the way the scientific community makes choices, it’s very hard to make sense of it all as an individual citizen.” 

How Do Kids Typically Think About Science?

Broadly speaking, research shows that, oftentimes, kids’ initially find many scientific concepts to be implausible because so many of the causal agents behind these theories are invisible and insensible. 

“You can’t feel your genes; you can’t feel an atom, so there are these causal agents in science that are very far away from our sensory experience, which makes them hard to understand,” Sandoval said. 

Despite this, research shows that children, even from a young age, believe that it’s much better to have evidence for a claim than to not have evidence. Therefore, teachers can draw on this by helping students understand the evidence behind the science they are learning through engagement in research, data collection or experimentation in the classroom. 

How Can Teachers Help Students Understand How Scientific Decisions Are Made?

At its core, Sandoval said, science is all about evaluating competing claims about how the world works. 

One of the best ways to help students understand how to do this is to have them engage in scientific argumentation. Sandoval shared the following steps to help students in this endeavor: 

  • Identify topics within the curriculum that can elicit disagreement ; this can vary from asking elementary students how plants get water to how they inherit genetic traits from their parents: “Identify for everybody when there is disagreement and try to clarify what the nature of the disagreement is. Then, discuss with students how they are going to decide [which claim is valid] and what it will take for everyone to agree.” 
  • Give students an opportunity to come up with their own evidence-based claims: “Our current national standards want kids to be doing investigations of various kinds, so these are really good opportunities for kids to engage in these epistemic considerations about how we’re going to decide what we’re going to believe about this thing that we’re studying. Because, if they’re getting data themselves, they can argue about not just what the data show but how you got the data, whether you did it in a reasonable way or not and whether you’ve interpreted the data in a reasonable way.”
  • Have students with opposing claims engage in discussion: “We found that when this is public, that works better and part of the reason is that this holds kids accountable to each other. They also have to be held accountable to standards of evidence. So, that’s a really important role for the teacher to play is to kind of push kids to talk about what evidence they have for this claim over that claim.”
  • Come to a consensus: “Talk about the standards or the criteria that you’d use to resolve your disagreement. It’s not enough that I believe one thing and someone else believes another thing. You’ve got to push us to agree, so pushing to consensus seems to be the thing that really helps kids work through their understanding of the criteria.”

For teachers who want to engage their students in this type of scientific thinking, Sandoval recommends using free resources provided by the NGSX professional learning system along with the inquiryHub ,a research-practice partnership that develops materials, tools and processes to promote STEM learning. 

  • Research and Impact
  • Ask The Expert
  • homepage-news
  • resources for educators
  • science education
  • STEM Ed Research
  • William Sandoval

More From College of Education News

Catherine Hartman

Catherine Hartman Named Assistant Professor of Community College Leadership 

what makes a research study scientific

Leading the Way 

A headshot of a man in graduation regalia holding up a peace sign and making a funny face.

An Unforgettable Adventure: Meet Reginald Simon, MSA ‘24 

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

Study explains why the brain can robustly recognize images, even without color

Press contact :, media download.

Pawan Sinha looks at a wall of about 50 square photos. The photos are pictures of children with vision loss who have been helped by Project Prakash.

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license . You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

Pawan Sinha looks at a wall of about 50 square photos. The photos are pictures of children with vision loss who have been helped by Project Prakash.

Previous image Next image

Even though the human visual system has sophisticated machinery for processing color, the brain has no problem recognizing objects in black-and-white images. A new study from MIT offers a possible explanation for how the brain comes to be so adept at identifying both color and color-degraded images.

Using experimental data and computational modeling, the researchers found evidence suggesting the roots of this ability may lie in development. Early in life, when newborns receive strongly limited color information, the brain is forced to learn to distinguish objects based on their luminance, or intensity of light they emit, rather than their color. Later in life, when the retina and cortex are better equipped to process colors, the brain incorporates color information as well but also maintains its previously acquired ability to recognize images without critical reliance on color cues.

The findings are consistent with previous work showing that initially degraded visual and auditory input can actually be beneficial to the early development of perceptual systems.

“This general idea, that there is something important about the initial limitations that we have in our perceptual system, transcends color vision and visual acuity. Some of the work that our lab has done in the context of audition also suggests that there’s something important about placing limits on the richness of information that the neonatal system is initially exposed to,” says Pawan Sinha, a professor of brain and cognitive sciences at MIT and the senior author of the study.

The findings also help to explain why children who are born blind but have their vision restored later in life, through the removal of congenital cataracts, have much more difficulty identifying objects presented in black and white. Those children, who receive rich color input as soon as their sight is restored, may develop an overreliance on color that makes them much less resilient to changes or removal of color information.

MIT postdocs Marin Vogelsang and Lukas Vogelsang, and Project Prakash research scientist Priti Gupta, are the lead authors of the study, which appears today in Science . Sidney Diamond, a retired neurologist who is now an MIT research affiliate, and additional members of the Project Prakash team are also authors of the paper.

Seeing in black and white

The researchers’ exploration of how early experience with color affects later object recognition grew out of a simple observation from a study of children who had their sight restored after being born with congenital cataracts. In 2005, Sinha launched Project Prakash (the Sanskrit word for “light”), an effort in India to identify and treat children with reversible forms of vision loss.

Many of those children suffer from blindness due to dense bilateral cataracts. This condition often goes untreated in India, which has the world’s largest population of blind children, estimated between 200,000 and 700,000.

Children who receive treatment through Project Prakash may also participate in studies of their visual development, many of which have helped scientists learn more about how the brain's organization changes following restoration of sight, how the brain estimates brightness, and other phenomena related to vision.

In this study, Sinha and his colleagues gave children a simple test of object recognition, presenting both color and black-and-white images. For children born with normal sight, converting color images to grayscale had no effect at all on their ability to recognize the depicted object. However, when children who underwent cataract removal were presented with black-and-white images, their performance dropped significantly.

This led the researchers to hypothesize that the nature of visual inputs children are exposed to early in life may play a crucial role in shaping resilience to color changes and the ability to identify objects presented in black-and-white images. In normally sighted newborns, retinal cone cells are not well-developed at birth, resulting in babies having poor visual acuity and poor color vision. Over the first years of life, their vision improves markedly as the cone system develops.

Because the immature visual system receives significantly reduced color information, the researchers hypothesized that during this time, the baby brain is forced to gain proficiency at recognizing images with reduced color cues. Additionally, they proposed, children who are born with cataracts and have them removed later may learn to rely too much on color cues when identifying objects, because, as they experimentally demonstrated in the paper, with mature retinas, they commence their post-operative journeys with good color vision.

To rigorously test that hypothesis, the researchers used a standard convolutional neural network, AlexNet, as a computational model of vision. They trained the network to recognize objects, giving it different types of input during training. As part of one training regimen, they initially showed the model grayscale images only, then introduced color images later on. This roughly mimics the developmental progression of chromatic enrichment as babies’ eyesight matures over the first years of life.

Another training regimen comprised only color images. This approximates the experience of the Project Prakash children, because they can process full color information as soon as their cataracts are removed.

The researchers found that the developmentally inspired model could accurately recognize objects in either type of image and was also resilient to other color manipulations. However, the Prakash-proxy model trained only on color images did not show good generalization to grayscale or hue-manipulated images.

“What happens is that this Prakash-like model is very good with colored images, but it’s very poor with anything else. When not starting out with initially color-degraded training, these models just don’t generalize, perhaps because of their over-reliance on specific color cues,” Lukas Vogelsang says.

The robust generalization of the developmentally inspired model is not merely a consequence of it having been trained on both color and grayscale images; the temporal ordering of these images makes a big difference. Another object-recognition model that was trained on color images first, followed by grayscale images, did not do as well at identifying black-and-white objects.

“It’s not just the steps of the developmental choreography that are important, but also the order in which they are played out,” Sinha says.

The advantages of limited sensory input

By analyzing the internal organization of the models, the researchers found that those that begin with grayscale inputs learn to rely on luminance to identify objects. Once they begin receiving color input, they don’t change their approach very much, since they’ve already learned a strategy that works well. Models that began with color images did shift their approach once grayscale images were introduced, but could not shift enough to make them as accurate as the models that were given grayscale images first.

A similar phenomenon may occur in the human brain, which has more plasticity early in life, and can easily learn to identify objects based on their luminance alone. Early in life, the paucity of color information may in fact be beneficial to the developing brain, as it learns to identify objects based on sparse information.

“As a newborn, the normally sighted child is deprived, in a certain sense, of color vision. And that turns out to be an advantage,” Diamond says.

Researchers in Sinha’s lab have observed that limitations in early sensory input can also benefit other aspects of vision, as well as the auditory system. In 2022, they used computational models to show that early exposure to only low-frequency sounds, similar to those that babies hear in the womb, improves performance on auditory tasks that require analyzing sounds over a longer period of time, such as recognizing emotions. They now plan to explore whether this phenomenon extends to other aspects of development, such as language acquisition.

The research was funded by the National Eye Institute of NIH and the Intelligence Advanced Research Projects Activity.

Share this news article on:

Related links.

  • Project Prakash
  • Department of Brain and Cognitive Sciences

Related Topics

  • Brain and cognitive sciences

Related Articles

Against a decorative background is a profile view of a person’s brain scan. Overlayed on the brain are 4 brightly colored renderings of late-visual pathways, like stretchy taffy. The renderings stretch across the brain and are tangled in the center.

Scientists discover anatomical changes in the brains of the newly sighted

Photo from behind a person sitting at a desk, watching dot patterns on a monitor, while another person looks on.

After a lifetime of blindness, newly sighted can immediately identify human locomotion

baby in womb soundwave graphic

Early sound exposure in the womb shapes the auditory system

MIT neuroscientists tested children's spatial imagery abilities by asking them to mentally trace paths along a grid.

Vision is key to spatial skills

Previous item Next item

More MIT News

A little girl lies on a couch under a blanket while a woman holds a thermometer to the girl's mouth.

Understanding why autism symptoms sometimes improve amid fever

Read full story →

Three rows of five portrait photos

School of Engineering welcomes new faculty

Illustration shows a red, stylized computer chip and circuit board with flames and lava around it.

Turning up the heat on next-generation semiconductors

Sarah Milholland stands in front of an MIT building on a sunny day spring day. Leaves on the trees behind her are just beginning to emerge.

Sarah Millholland receives 2024 Vera Rubin Early Career Award

Grayscale photo of Nolen Scruggs seated on a field of grass

A community collaboration for progress

Headshots of Grant Knappe and Arjav Shah

MIT scholars will take commercial break with entrepreneurial scholarship

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

May 22, 2024

Innovative Thinking Could Make New Sickle Cell Treatments More Accessible

The cost of new gene-based sickle cell treatments isn’t the only barrier to access. Coming up with new ways to treat the whole disease—and person—could make treatment more equitable

By Shobita Parthasarathy

Digital illustration, healthy red blood cells flowing inside a vein

Pixelimage/Getty Images

Last fall, to great fanfare, US regulators approved two gene therapies for sickle cell disease , and the European Union and UK soon followed. Many people hope that these treatments will provide a “ functional cure ” for the genetic condition, which causes rigid, misshapen red blood cells that lead to anemia, episodes of extreme pain , blood vessel and organ damage, stroke risk and lower life expectancy. These sickle cell therapies also bring us closer to an age of “ CRISPR medicine ” in which new gene-editing tools could be used to fix a range of debilitating genetic diseases, including Duchenne muscular dystrophy and cancer.

For the eight million people across the world, including the 100,000 in the U.S., who have sickle cell disease, these gene therapies could be life-changers. Yet immediately after the approvals, attention turned to the prohibitive cost of the treatments. One company sells its therapy for $2.2 million, and the other does so for $3.1 million. Other gene-based treatments have similar price tags .

Reducing costs for these therapies is important. It is unlikely to make life much better for most people with sickle cell and those with other genetic diseases, however. Many will simply be unable or unwilling to take these treatments, which require multiple hospital visits (and often overnight stays) over the course of many months. Indeed, we already know that many people aren’t getting what treatments already exist in the U.S. for sickle cell for a variety of reasons. Of the people with the disease who have multiple pain episodes related to blood-flow blockage per year, only 35 percent receive the most common and cheapest medication, hydroxyurea, and the majority of them receive this medication by itself. Only 13.2 percent of people with multiple pain episodes receive one or more of any of the newer medications approved since 2017, either in combination with hydroxyurea or alone.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

People already struggle to get treatment for sickle cell disease, so reducing the cost of gene therapies will not make treatment any more accessible.

Understanding this, what if we were to treat barriers to care other than cost as innovation problems? What if the best way for technology to serve society, and particularly to advance equity, is for governments and innovators to focus on more than creating potentially lifesaving treatments? Some might argue that social and health challenges are simply not the responsibility of scientists or biotechnology companies. But if the goal is for people to be healthy rather than to simply put inaccessible products on the market, these challenges must be.

Currently, many scientists, physicians and people with the disease view the treatments as an important step toward racial equity after generations of discrimination and mistreatment—sickle cell disease mostly affects people of African, South Asian and Middle Eastern descent.

Yet many people with sickle cell disease have limited incomes and are unlikely to pay for the therapies out-of-pocket; 50 percent of people with the disease are on Medicaid. In response, both private insurers and the Centers for Medicare & Medicaid Services (CMS) are developing “ outcomes-based ” reimbursement plans for cell and gene therapies in general. Under these plans, drug companies would reimburse payers if a treatment is less successful than expected over a prespecified number of years.

But this is only part of the equation: many people with sickle cell simply do not have the care infrastructure—including a primary care physician or access to a specialist hematologist—needed to participate in the full course of the gene-therapy treatment. This absence of care infrastructure may be the result of precarities, including a lack of employment, housing, or health care or wariness of the scientific and medical institutions where people have experienced racism for decades. People working service jobs and receiving hourly wages cannot leave work easily or frequently. People who want to have children may not want to participate either because the new treatments involve chemotherapies that can affect fertility.

Beyond the idea of a functional cure, for most people with sickle cell, their immediate priority is to alleviate the extreme pain they experience. In fact, as described by Ghanian sickle cell expert Felix Israel Domeno Konotey-Ahulu in a 1975 article, the names for the disease in several West African languages— chwechweechwe (Ga), nwiiwii (Fante), nuidudui (Ewe) and ahotutuo (Twi)—are onomatopoetic representations of the relentless and repetitive gnawing pain people with sickle cell experience.

Because sickle cell disease is considered a blood disorder, however, scientists and industry have focused their attention on correcting the blood cell dysfunction. Little scientific effort is focused on developing new pain treatments for this population or studying the efficacy of existing therapies for managing pain. Instead, when people with this disease visit emergency departments seeking pain relief, they are often assumed to have a substance use disorder.

So how might we trigger innovation that responds to public needs and takes people’s lived experiences seriously? First, governments must change who sets research agendas and how. Technical experts, including high-level advisory committees, currently set priorities for most funding agencies. This leads to prioritizing scientific and industrial priorities, such as attention to novelty and efficiency, over the needs of the individuals affected by a disease.

People with sickle cell disease, for example, and other experts who understand the impacts of disease in society rarely play a role; of the members of the U.S. National Health, Lung and Blood Institute’s Sickle Cell Disease Advisory Committee, only two are grassroots advocates for people with the disease. This is the case for many underserved illnesses in society.

What if people who understand sickle cell disease historically, psychologically and socially sat on this committee? They might steer more attention toward pain and addressing racism in science, technology and medicine. They might also encourage collaborations across the clinical, social and basic research arms of the National Institutes of Health rather than defining research projects according to scientific or medical specialty.

Second, governments can steer funding toward interdisciplinary research projects that focus on more immediate benefits. They could encourage true collaborations among biomedical scientists, social scientists and people with the disease so that knowledge about the technology’s likely effects inform its design and development. (The National Science Foundation is trying to pioneer this approach through its new Responsible Design, Development and Deployment of Technologies program.) People with sickle cell disease and social scientists with relevant expertise could also sit on grant review committees to ensure that the portfolio of funded projects fits with their knowledge and concerns and doesn’t just focus on the molecular determinants of the disease.

Third, the private sector must also take responsibility. One way to create an incentive is through indexes, such as those that exist for environmental sustainability, that publicly assess the social and equity impacts of a company. These indexes would evaluate the real social consequences of a company’s products, including whether and how it included people with a disease in its innovation processes, rather than force people to simply trust claims about a technology’s transformative potential.

To develop technologies that successfully solve serious health and social problems and to ensure that people benefit from innovation, we need the public and private sectors to invest in high-impact interdisciplinary projects early in the innovation process and—above all—to value the expertise of individuals with a disease. Otherwise treatments that cost billions to create and cost millions to administer will continue to be out of reach for those who need them the most.

This is an opinion and analysis article, and the views expressed by the author or authors are not necessarily those of Scientific American.

ScienceDaily

New study highlights significant increases in cannabis use in United States

Long-term trends parallel changes in policy over 43 years.

A new study by a researcher at Carnegie Mellon University assessed cannabis use in the United States between 1979 and 2022, finding that a growing share of cannabis consumers report daily or near-daily use and that their numbers now exceed those of daily and near-daily alcohol drinkers. The study concludes that long-term trends in cannabis use parallel corresponding changes in policy over the same period. The study appears in Addiction .

"The data come from survey self-reports, but the enormous changes in rates of self-reported cannabis use, particularly of daily or near-daily use, suggest that changes in actual use have been considerable," says Jonathan P. Caulkins, professor of operations research and public policy at Carnegie Mellon's Heinz College, who conducted the study. "It is striking that high-frequency cannabis use is now more commonly reported than is high-frequency drinking."

Although prior research has compared cannabis-related and alcohol-related outcomes before and after state-level policy changes to changes over the same period in states without policy change, this study examined long-term trends for the United States as a whole. Caulkins looked at days of use, not just prevalence, and drew comparisons with alcohol, but did not attempt to identify causal effects.

The study used data from the U.S. National Survey on Drug Use and Health (and its predecessor, the National Household Survey on Drug Abuse), examining more than 1.6 million respondents across 27 surveys from 1979 to 2022. Caulkins contrasted rates of use in four milestone years that reflected significant policy change points: 1979 (when the first data became available and the relatively liberal policies of the 1970s ended), 1992 (the end of 12 years of conservative Reagan-Bush-era policies), 2008 (the year before the U.S. Department of Justice signaled explicit federal non-interference with state-level legalizations), and 2022 (the year for the most recent data available). Among the study's findings:

  • Reported cannabis use declined to a low in 1992, with partial increases through 2008 and substantial growth since then, particularly for measures of more intensive use.
  • Between 2008 and 2022, the per capita rate of reporting past-year use increased 120%, and days of use reported per capita increased 218% (in absolute terms, the rise was from 2.3 billion to 8.1 billion days per year).
  • From 1992 to 2022, the per capita rate of reporting daily or near-daily use rose 15-fold. While the 1992 survey recorded 10 times as many daily or near-daily alcohol users as cannabis users (8.9 million versus 0.9 million), the 2022 survey, for the first time, recorded more daily and near-daily users of cannabis than of alcohol (17.7 million versus 14.7 million).
  • While far more people drink than use cannabis, high-frequency drinking is less common. In 2022, the median drinker reported drinking on 4-5 days in the previous month versus using cannabis on 15-16 days in the previous month. In 2022, prior-month cannabis consumers were almost four times as likely to report daily or near-daily use (42% versus 11%) and 7.4 times more likely to report daily use (28% versus 3.8%).

"These trends mirror changes in policy, with declines during periods of greater restriction and growth during periods of policy liberalization," explains Caulkins. He notes that this does not mean that policy drove changes in use; both could have been manifestations of changes in underlying culture and attitudes. "But whichever way causal arrows point, cannabis use now appears to be on a fundamentally different scale than it was before legalization."

Among the study's limitations, Caulkins says that because the study relied on general population surveys, the data are self-reported, lack validation from biological samples, and exclude certain subpopulations that may use at different rates than the rest of the population.

  • Controlled Substances
  • Health Policy
  • Illegal Drugs
  • STEM Education
  • Educational Policy
  • Political Science
  • General anxiety disorder
  • Psychoactive drug
  • Clinical depression
  • Circadian rhythm
  • Functional training

Story Source:

Materials provided by Carnegie Mellon University . Note: Content may be edited for style and length.

Journal Reference :

  • Jonathan P. Caulkins. Changes in self‐reported cannabis use in the United States from 1979 to 2022 . Addiction , 2024; DOI: 10.1111/add.16519

Cite This Page :

Explore More

  • Future Climate Impacts Put Whale Diet at Risk
  • Charge Your Laptop in a Minute?
  • Caterpillars Detect Predators by Electricity
  • 'Electronic Spider Silk' Printed On Human Skin
  • Engineered Surfaces Made to Shed Heat
  • Innovative Material for Sustainable Building
  • Human Brain: New Gene Transcripts
  • Epstein-Barr Virus and Resulting Diseases
  • Origins of the Proton's Spin
  • Symbiotic Bacteria Communicate With Plants

Trending Topics

Strange & offbeat.

NASA Logo

NASA’s TESS Finds Intriguing World Sized Between Earth, Venus

Using observations by NASA’s TESS (Transiting Exoplanet Survey Satellite) and many other facilities, two international teams of astronomers have discovered a planet between the sizes of Earth and Venus only 40 light-years away. Multiple factors make it a candidate well-suited for further study using NASA’s James Webb Space Telescope .

Space scene of a thin atmosphere version of Gliese 12 b

TESS stares at a large swath of the sky for about a month at a time, tracking the brightness changes of tens of thousands of stars at intervals ranging from 20 seconds to 30 minutes. Capturing transits — brief, regular dimmings of stars caused by the passage of orbiting worlds — is one of the mission’s primary goals.

“We’ve found the nearest, transiting, temperate, Earth-size world located to date,” said Masayuki Kuzuhara, a project assistant professor at the Astrobiology Center in Tokyo, who co-led one research team with Akihiko Fukui, a project assistant professor at the University of Tokyo . “Although we don’t yet know whether it possesses an atmosphere, we’ve been thinking of it as an exo-Venus, with similar size and energy received from its star as our planetary neighbor in the solar system.”

The host star, called Gliese 12, is a cool red dwarf located almost 40 light-years away in the constellation Pisces. The star is only about 27% of the Sun’s size, with about 60% of the Sun’s surface temperature. The newly discovered world, named Gliese 12 b, orbits every 12.8 days and is Earth’s size or slightly smaller — comparable to Venus. Assuming it has no atmosphere, the planet has a surface temperature estimated at around 107 degrees Fahrenheit (42 degrees Celsius).

Astronomers say that the diminutive sizes and masses of red dwarf stars make them ideal for finding Earth-size planets. A smaller star means greater dimming for each transit, and a lower mass means an orbiting planet can produce a greater wobble , known as “reflex motion,” of the star. These effects make smaller planets easier to detect.

Illustration comparing Gliese 12 b models to Earth

The lower luminosities of red dwarf stars also means their habitable zones — the range of orbital distances where liquid water could exist on a planet’s surface — lie closer to them. This makes it easier to detect transiting planets within habitable zones around red dwarfs than those around stars emitting more energy.

The distance separating Gliese 12 and the new planet is just 7% of the distance between Earth and the Sun. The planet receives 1.6 times more energy from its star as Earth does from the Sun and about 85% of what Venus experiences.

“Gliese 12 b represents one of the best targets to study whether Earth-size planets orbiting cool stars can retain their atmospheres, a crucial step to advance our understanding of habitability on planets across our galaxy,” said Shishir Dholakia, a doctoral student at the Centre for Astrophysics at the University of Southern Queensland in Australia. He co-led a different research team with Larissa Palethorpe, a doctoral student at the University of Edinburgh and University College London .

Both teams suggest that studying Gliese 12 b may help unlock some aspects of our own solar system’s evolution.

“It is thought that Earth’s and Venus’s first atmospheres were stripped away and then replenished by volcanic outgassing and bombardments from residual material in the solar system,” Palethorpe explained. “The Earth is habitable, but Venus is not due to its complete loss of water. Because Gliese 12 b is between Earth and Venus in temperature, its atmosphere could teach us a lot about the habitability pathways planets take as they develop.”

One important factor in retaining an atmosphere is the storminess of its star. Red dwarfs tend to be magnetically active, resulting in frequent, powerful X-ray flares. However, analyses by both teams conclude that Gliese 12 shows no signs of extreme behavior.

A paper led by Kuzuhara and Fukui was published May 23 in The Astrophysical Journal Letters . The Dholakia and Palethorpe findings were published in Monthly Notices of the Royal Astronomical Society on the same day.

During a transit, the host star’s light passes through any atmosphere. Different gas molecules absorb different colors, so the transit provides a set of chemical fingerprints that can be detected by telescopes like Webb. 

“We know of only a handful of temperate planets similar to Earth that are both close enough to us and meet other criteria needed for this kind of study, called transmission spectroscopy, using current facilities,” said Michael McElwain, a research astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and a co-author of the Kuzuhara and Fukui paper. “To better understand the diversity of atmospheres and evolutionary outcomes for these planets, we need more examples like Gliese 12 b.”

TESS is a NASA Astrophysics Explorer mission managed by NASA Goddard and operated by MIT in Cambridge, Massachusetts. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts; MIT’s Lincoln Laboratory; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes, and observatories worldwide are participants in the mission.

By Francis Reddy NASA’s Goddard Space Flight Center , Greenbelt, Md. Media Contact: Claire Andreoli 301-286-1940 [email protected] NASA’s Goddard Space Flight Center, Greenbelt, Md.

Related Terms

  • Astrophysics
  • Astrophysics Division
  • Exoplanet Atmosphere
  • Exoplanet Discoveries
  • Exoplanet Exploration Program
  • Exoplanet Science
  • Exoplanet Transits
  • Goddard Space Flight Center
  • James Webb Space Telescope (JWST)
  • Terrestrial Exoplanets
  • TESS (Transiting Exoplanet Survey Satellite)
  • The Universe

Explore More

A close-up view of a spiral galaxy fills most of the scene. It has a bright, glowing spot at its core, broad spiral arms that hold many dark threads of dust, and pink glowing spots across the disk that mark areas of star formation. A faint halo that bleeds into the dark background surrounds the galaxy’s disk.

Hubble Captures a Bright Spiral in the Queen’s Hair

This illustration is awash in bright blues, with only areas of the black background of space peeking out near the edges. Just above center is a large white spiral galaxy that is forming within a large cloud of blue gas. Its spiral arms twirl clockwise. Immediately around the galaxy’s edges are larger light blue dots. The gas appears thicker and brighter blue below the galaxy and toward the bottom left in what looks like a loose, extended column. Other wispy blue gas appears all around the galaxy, extending to every edge of the illustration. There are two additional spiral galaxies, though they are about half the size of the one at the center. They appear toward the top left and bottom right, and both are connected to regions of blue gas. Several bright knots dot the brightest blue areas near the center, and toward the top right. The background is clearer and more obviously black along a wider area at the left edge, a sliver along the top right, and in triangles toward the bottom right corner.

Galaxies Actively Forming in Early Universe Caught Feeding on Cold Gas

what makes a research study scientific

New Images From Euclid Mission Reveal Wide View of the Dark Universe

With NASA contributions, the mission will complement dark energy studies to be made by the agency’s upcoming Nancy Grace Roman Space Telescope. The Euclid mission, led by ESA (the European Space Agency) with contributions from NASA, has released five new images that showcase the space telescope’s ability to explore two large-scale cosmic mysteries: dark matter […]

COMMENTS

  1. What is Scientific Research and How Can it be Done?

    Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new ...

  2. Scientific Research & Study Design

    The research contributes to a body of science by providing new information through ethical study design or. The research follows the scientific method, an iterative process of observation and inquiry. The Scientific Method. Make an observation: notice a phenomenon in your life or in society or find a gap in the already published literature.

  3. Research 101: Understanding Research Studies

    The basis of a scientific research study follows a common pattern: Define the question. Gather information and resources. Form hypotheses. Perform an experiment and collect data. Analyze the data ...

  4. Scientific Research Definition, Classifications & Purpose

    Scientific study is a method of obtaining information in order to address a previously identified problem or question. This often involves forming and testing a hypothesis, or an explanation for ...

  5. Scientific Research

    Scientific research is the systematic and empirical investigation of phenomena, theories, or hypotheses, using various methods and techniques in order to acquire new knowledge or to validate existing knowledge. It involves the collection, analysis, interpretation, and presentation of data, as well as the formulation and testing of hypotheses.

  6. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  7. Chapter 1 Science and Scientific Research

    The scientific method, as applied to social sciences, includes a variety of research approaches, tools, and techniques, such as qualitative and quantitative data, statistical analysis, experiments, field surveys, case research, and so forth. Most of this book is devoted to learning about these different methods.

  8. Understanding Scientific Research

    The advantage of prospective studies is they reduce several types of biases that are commonplace in retrospective studies. There are four steps to the scientific method: Make an observation. Come up with a (falsifiable) hypothesis based on this observation. Test the hypothesis through an experiment.

  9. Scientific method

    The scientific method is critical to the development of scientific theories, which explain empirical (experiential) laws in a scientifically rational manner. In a typical application of the scientific method, a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the ...

  10. Module 1: Introduction: What is Research?

    The National Academy of Sciences states that the object of research is to "extend human knowledge of the physical, biological, or social world beyond what is already known.". Research is different than other forms of discovering knowledge (like reading a book) because it uses a systematic process called the Scientific Method.

  11. The Scientific Method Steps, Uses, and Key Terms

    When conducting research, the scientific method steps to follow are: Observe what you want to investigate. Ask a research question and make predictions. Test the hypothesis and collect data. Examine the results and draw conclusions. Report and share the results. This process not only allows scientists to investigate and understand different ...

  12. What Makes Science Science?

    The first is that scientific conclusions can change. And the second is that scientific methods can change. Far from undercutting the value of public facts, understanding how and why these changes ...

  13. What Makes a Good Research Study?

    A good study randomizes their subjects into the active treatment and placebo groups. This means that the subjects are in those particular groups by chance. This provides extra "backup" that the ...

  14. What is Scientific Research and How is it Conducted?

    A research paper in a scientific journal usually describes the background to the study, the study methods, the results and the conclusions. Before publishing the paper, the journal will give it to expert scientists in the same field to see whether the research was carried out using appropriate methods and whether the results provide enough ...

  15. A Beginner's Guide to Conducting Reproducible Research

    The goal of the OSF is to enable research to be shared at every step of the scientific process—from developing a research idea and designing a study, to storing and analyzing collected data and writing and publishing reports or papers (Sullivan et al. 2019). Open Science Framework is integrated with many other reproducible research tools ...

  16. Reliability vs. Validity in Research

    Reliability is about the consistency of a measure, and validity is about the accuracy of a measure.opt. It's important to consider reliability and validity when you are creating your research design, planning your methods, and writing up your results, especially in quantitative research. Failing to do so can lead to several types of research ...

  17. Common misconceptions about the nature of science and scientific research

    Finally, scientific research involves interpreting and trying to make sense of those data — going beyond the data themselves to draw conclusions about the underlying phenomenon being studied. Driving the whole research endeavor are one or more research problems or questions that the researcher is trying to address and potentially solve. In ...

  18. Why I pursued interdisciplinary research as an aspiring ...

    Support nonprofit science journalism. Sophisticated, trustworthy reporting about science has never been more important. As part of the AAAS mission, Science has built a global award-winning network of reporters and editors that independently cover the most important developments in research and policy.

  19. Why Is It Important for Students to Understand How Scientific Decisions

    To help facilitate this, Sandoval's research has focused on how kids understand scientific argumentation and how scientists make the case for why people should believe the theories they've developed based on causal claims and evidence. The concept is known as epistemic cognition, or thinking about how people know what they know.

  20. Study explains why the brain can robustly recognize images, even

    MIT postdocs Marin Vogelsang and Lukas Vogelsang, and Project Prakash research scientist Priti Gupta, are the lead authors of the study, which appears today in Science. Sidney Diamond, a retired neurologist who is now an MIT research affiliate, and additional members of the Project Prakash team are also authors of the paper. Seeing in black and ...

  21. Fish oil supplements may cause harm, study finds. 'Is it time to dump

    However, a new study finds regular use of fish oil supplements may increase, not reduce, the risk of first-time stroke and atrial fibrillation among people in good cardiovascular health. Atrial ...

  22. Innovative Thinking Could Make New Sickle Cell Treatments More

    For the eight million people across the world, including the 100,000 in the U.S., who have sickle cell disease, these gene therapies could be life-changers. Yet immediately after the approvals ...

  23. Groundbreaking study connects genetic risk for autism to changes

    Geschwind's study on autism, one of nine published in the May 24 issue of Science, builds on decades of his group's research profiling the genes that increase the susceptibility to autism spectrum ...

  24. New study highlights significant increases in cannabis ...

    A new study assessed cannabis use in the United States between 1979 and 2022, finding that a growing share of cannabis consumers report daily or near-daily use and that their numbers now exceed ...

  25. NASA's TESS Finds Intriguing World Sized Between Earth, Venus

    Using observations by NASA's TESS (Transiting Exoplanet Survey Satellite) and many other facilities, two international teams of astronomers have discovered a planet between the sizes of Earth and Venus only 40 light-years away. Multiple factors make it a candidate well-suited for further study using NASA's James Webb Space Telescope. TESS stares at a large swath […]