Weekly dose of self-improvement

The easy 4 step problem-solving process (+ examples)

This is the 4 step problem-solving process that I taught to my students for math problems, but it works for academic and social problems as well.

Ed Latimore

Every problem may be different, but effective problem solving asks the same four questions and follows the same method.

  • What’s the problem? If you don’t know exactly what the problem is, you can’t come up with possible solutions. Something is wrong. What are we going to do about this? This is the foundation and the motivation.
  • What do you need to know? This is the most important part of the problem. If you don’t know exactly what the problem is, you can’t come up with possible solutions.
  • What do you already know? You already know something related to the problem that will help you solve the problem. It’s not always obvious (especially in the real world), but you know (or can research) something that will help.
  • What’s the relationship between the two? Here is where the heavy brainstorming happens. This is where your skills and abilities come into play. The previous steps set you up to find many potential solutions to your problem, regardless of its type.

When I used to tutor kids in math and physics , I would drill this problem-solving process into their heads. This methodology works for any problem, regardless of its complexity or difficulty. In fact, if you look at the various advances in society, you’ll see they all follow some variation of this problem-solving technique.

“The gap between understanding and misunderstanding can best be bridged by thought!” ― Ernest Agyemang Yeboah

Generally speaking, if you can’t solve the problem then your issue is step 3 or step 4; you either don’t know enough or you’re missing the connection.

Good problem solvers always believe step 3 is the issue. In this case, it’s a simple matter of learning more. Less skilled problem solvers believe step 4 is the root cause of their difficulties. In this instance, they simply believe they have limited problem-solving skills.

This is a fixed versus growth mindset and it makes a huge difference in the effort you put forth and the belief you have in yourself to make use of this step-by-step process. These two mindsets make a big difference in your learning because, at its core, learning is problem-solving.

Let’s dig deeper into the 4 steps. In this way, you can better see how to apply them to your learning journey.

Step 1: What’s the problem?

The ability to recognize a specific problem is extremely valuable.

Most people only focus on finding solutions. While a “solutions-oriented” mindset is a good thing, sometimes it pays to focus on the problem. When you focus on the problem, you often make it easier to find a viable solution to it.

When you know the exact nature of the problem, you shorten the time frame needed to find a solution. This reminds me of a story I was once told.

When does the problem-solving process start?

The process starts after you’ve identified the exact nature of the problem.

Homeowners love a well-kept lawn but hate mowing the grass.

Many companies and inventors raced to figure out a more time-efficient way to mow the lawn. Some even tried to design robots that would do the mowing. They all were chasing the solution, but only one inventor took the time to understand the root cause of the problem.

Most people figured that the problem was the labor required to maintain a lawn. The actual problem was just the opposite: maintaining a lawn was labor-intensive. The rearrangement seems trivial, but it reveals the true desire: a well-maintained lawn.

The best solution? Remove maintenance from the equation. A lawn made of artificial grass solved the problem . Hence, an application of Astroturf was discovered.

This way, the law always looked its best. Taking a few moments to apply critical thinking identified the true nature of the problem and yielded a powerful solution.

An example of choosing the right problem to work the problem-solving process on

One thing I’ve learned from tutoring high school students in math : they hate word problems.

This is because they make the student figure out the problem. Finding the solution to a math problem is already stressful. Forcing the student to also figure out what problem needs solving is another level of hell.

Word problems are not always clear about what needs to be solved. They also have the annoying habit of adding extraneous information. An ordinary math problem does not do this. For example, compare the following two problems:

What’s the height of h?

solving simple trig problem

A radio station tower was built in two sections. From a point 87 feet from the base of the tower, the angle of elevation of the top of the first section is 25º, and the angle of elevation of the top of the second section is 40º. To the nearest foot, what is the height of the top section of the tower?

solving complex trig problem

The first is a simple problem. The second is a complex problem. The end goal in both is the same.

The questions require the same knowledge (trigonometric functions), but the second is more difficult for students. Why? The second problem does not make it clear what the exact problem is. Before mathematics can even begin, you must know the problem, or else you risk solving the wrong one.

If you understand the problem, finding the solution is much easier. Understanding this, ironically, is the biggest problem for people.

Problem-solving is a universal language

Speaking of people, this method also helps settle disagreements.

When we disagree, we rarely take the time to figure out the exact issue. This happens for many reasons, but it always results in a misunderstanding. When each party is clear with their intentions, they can generate the best response.

Education systems fail when they don’t consider the problem they’re supposed to solve. Foreign language education in America is one of the best examples.

The problem is that students can’t speak the target language. It seems obvious that the solution is to have students spend most of their time speaking. Unfortunately, language classes spend a ridiculous amount of time learning grammar rules and memorizing vocabulary.

The problem is not that the students don’t know the imperfect past tense verb conjugations in Spanish. The problem is that they can’t use the language to accomplish anything. Every year, kids graduate from American high schools without the ability to speak another language, despite studying one for 4 years.

Well begun is half done

Before you begin to learn something, be sure that you understand the exact nature of the problem. This will make clear what you need to know and what you can discard. When you know the exact problem you’re tasked with solving, you save precious time and energy. Doing this increases the likelihood that you’ll succeed.

Step 2: What do you need to know?

All problems are the result of insufficient knowledge. To solve the problem, you must identify what you need to know. You must understand the cause of the problem. If you get this wrong, you won’t arrive at the correct solution.

Either you’ll solve what you thought was the problem, only to find out this wasn’t the real issue and now you’ve still got trouble or you won’t and you still have trouble. Either way, the problem persists.

If you solve a different problem than the correct one, you’ll get a solution that you can’t use. The only thing that wastes more time than an unsolved problem is solving the wrong one.

Imagine that your car won’t start. You replace the alternator, the starter, and the ignition switch. The car still doesn’t start. You’ve explored all the main solutions, so now you consider some different solutions.

Now you replace the engine, but you still can’t get it to start. Your replacements and repairs solved other problems, but not the main one: the car won’t start.

Then it turns out that all you needed was gas.

This example is a little extreme, but I hope it makes the point. For something more relatable, let’s return to the problem with language learning.

You need basic communication to navigate a foreign country you’re visiting; let’s say Mexico. When you enroll in a Spanish course, they teach you a bunch of unimportant words and phrases. You stick with it, believing it will eventually click.

When you land, you can tell everyone your name and ask for the location of the bathroom. This does not help when you need to ask for directions or tell the driver which airport terminal to drop you off at.

Finding the solution to chess problems works the same way

The book “The Amateur Mind” by IM Jeremy Silman improved my chess by teaching me how to analyze the board.

It’s only with a proper analysis of imbalances that you can make the best move. Though you may not always choose the correct line of play, the book teaches you how to recognize what you need to know . It teaches you how to identify the problem—before you create an action plan to solve it.

Chess book to help learn problem solving

The problem-solving method always starts with identifying the problem or asking “What do you need to know?”. It’s only after you brainstorm this that you can move on to the next step.

Learn the method I used to earn a physics degree, learn Spanish, and win a national boxing title

  • I was a terrible math student in high school who wrote off mathematics. I eventually overcame my difficulties and went on to earn a B.A. Physics with a minor in math
  • I pieced together the best works on the internet to teach myself Spanish as an adult
  • *I didn’t start boxing until the very old age of 22, yet I went on to win a national championship, get a high-paying amateur sponsorship, and get signed by Roc Nation Sports as a profession.

I’ve used this method to progress in mentally and physically demanding domains.

While the specifics may differ, I believe that the general methods for learning are the same in all domains.

This free e-book breaks down the most important techniques I’ve used for learning.

problem solving investigation the four step plan

Step 3: What do you already know?

The only way to know if you lack knowledge is by gaining some in the first place. All advances and solutions arise from the accumulation and implementation of prior information. You must first consider what it is that you already know in the context of the problem at hand.

Isaac Newton once said, “If I have seen further, it is by standing on the shoulders of giants.” This is Newton’s way of explaining that his advancements in physics and mathematics would be impossible if it were not for previous discoveries.

Mathematics is a great place to see this idea at work. Consider the following problem:

What is the domain and range of y=(x^2)+6?

This simple algebra problem relies on you knowing a few things already. You must know:

  • The definition of “domain” and “range”
  • That you can never square any real number and get a negative

Once you know those things, this becomes easy to solve. This is also how we learn languages.

An example of the problem-solving process with a foreign language

Anyone interested in serious foreign language study (as opposed to a “crash course” or “survival course”) should learn the infinitive form of verbs in their target language. You can’t make progress without them because they’re the root of all conjugations. It’s only once you have a grasp of the infinitives that you can completely express yourself. Consider the problem-solving steps applied in the following example.

I know that I want to say “I don’t eat eggs” to my Mexican waiter. That’s the problem.

I don’t know how to say that, but last night I told my date “No bebo alcohol” (“I don’t drink alcohol”). I also know the infinitive for “eat” in Spanish (comer). This is what I already know.

Now I can execute the final step of problem-solving.

Step 4: What’s the relationship between the two?

I see the connection. I can use all of my problem-solving strategies and methods to solve my particular problem.

I know the infinitive for the Spanish word “drink” is “beber” . Last night, I changed it to “bebo” to express a similar idea. I should be able to do the same thing to the word for “eat”.

“No como huevos” is a pretty accurate guess.

In the math example, the same process occurs. You don’t know the answer to “What is the domain and range of y=(x^2)+6?” You only know what “domain” and “range” mean and that negatives aren’t possible when you square a real number.

A domain of all real numbers and a range of all numbers equal to and greater than six is the answer.

This is relating what you don’t know to what you already do know. The solutions appear simple, but walking through them is an excellent demonstration of the process of problem-solving.

In most cases, the solution won’t be this simple, but the process or finding it is the same. This may seem trivial, but this is a model for thinking that has served the greatest minds in history.

A recap of the 4 steps of the simple problem-solving process

  • What’s the problem? There’s something wrong. There’s something amiss.
  • What do you need to know? This is how to fix what’s wrong.
  • What do you already know? You already know something useful that will help you find an effective solution.
  • What’s the relationship between the previous two? When you use what you know to help figure out what you don’t know, there is no problem that won’t yield.

Learning is simply problem-solving. You’ll learn faster if you view it this way.

What was once complicated will become simple.

What was once convoluted will become clear.

Ed Latimore

Ed Latimore

I’m a writer, competitive chess player, Army veteran, physicist, and former professional heavyweight boxer. My work focuses on self-development, realizing your potential, and sobriety—speaking from personal experience, having overcome both poverty and addiction.

Follow me on Twitter.

Pimsleur language system review—old but still good

Pimsleur language system review—old but still good

The Pimsleur language program offers a framework you can use to learn a language. I’ve used the program. Here are my experiences.

Pimsleur vs Duolingo— Choosing the best language learning app

Pimsleur vs Duolingo: Choosing the best language learning app

Pimsleur and Duolingo are two popular language-learning apps to help you learn a new language. This guide will help you decide which app will work best for you.

My Chess.com Chess Improvement Plan

My Chess.com Chess Improvement Plan

This is a plan that I’ll be implementing to improve my rating on Chess.com in the rapid and daily games. Not for OTB but could work.

Problem Solving - A step by step guide - LearnLeanSigma

The Art of Effective Problem Solving: A Step-by-Step Guide

Author: Daniel Croft

Daniel Croft is an experienced continuous improvement manager with a Lean Six Sigma Black Belt and a Bachelor's degree in Business Management. With more than ten years of experience applying his skills across various industries, Daniel specializes in optimizing processes and improving efficiency. His approach combines practical experience with a deep understanding of business fundamentals to drive meaningful change.

Whether we realise it or not, problem solving skills are an important part of our daily lives. From resolving a minor annoyance at home to tackling complex business challenges at work, our ability to solve problems has a significant impact on our success and happiness. However, not everyone is naturally gifted at problem-solving, and even those who are can always improve their skills. In this blog post, we will go over the art of effective problem-solving step by step.

You will learn how to define a problem, gather information, assess alternatives, and implement a solution, all while honing your critical thinking and creative problem-solving skills. Whether you’re a seasoned problem solver or just getting started, this guide will arm you with the knowledge and tools you need to face any challenge with confidence. So let’s get started!

Problem Solving Methodologies

Individuals and organisations can use a variety of problem-solving methodologies to address complex challenges. 8D and A3 problem solving techniques are two popular methodologies in the Lean Six Sigma framework.

Methodology of 8D (Eight Discipline) Problem Solving:

The 8D problem solving methodology is a systematic, team-based approach to problem solving. It is a method that guides a team through eight distinct steps to solve a problem in a systematic and comprehensive manner.

The 8D process consists of the following steps:

  • Form a team: Assemble a group of people who have the necessary expertise to work on the problem.
  • Define the issue: Clearly identify and define the problem, including the root cause and the customer impact.
  • Create a temporary containment plan: Put in place a plan to lessen the impact of the problem until a permanent solution can be found.
  • Identify the root cause: To identify the underlying causes of the problem, use root cause analysis techniques such as Fishbone diagrams and Pareto charts.
  • Create and test long-term corrective actions: Create and test a long-term solution to eliminate the root cause of the problem.
  • Implement and validate the permanent solution: Implement and validate the permanent solution’s effectiveness.
  • Prevent recurrence: Put in place measures to keep the problem from recurring.
  • Recognize and reward the team: Recognize and reward the team for its efforts.

Download the 8D Problem Solving Template

A3 Problem Solving Method:

The A3 problem solving technique is a visual, team-based problem-solving approach that is frequently used in Lean Six Sigma projects. The A3 report is a one-page document that clearly and concisely outlines the problem, root cause analysis, and proposed solution.

The A3 problem-solving procedure consists of the following steps:

  • Determine the issue: Define the issue clearly, including its impact on the customer.
  • Perform root cause analysis: Identify the underlying causes of the problem using root cause analysis techniques.
  • Create and implement a solution: Create and implement a solution that addresses the problem’s root cause.
  • Monitor and improve the solution: Keep an eye on the solution’s effectiveness and make any necessary changes.

Subsequently, in the Lean Six Sigma framework, the 8D and A3 problem solving methodologies are two popular approaches to problem solving. Both methodologies provide a structured, team-based problem-solving approach that guides individuals through a comprehensive and systematic process of identifying, analysing, and resolving problems in an effective and efficient manner.

Step 1 – Define the Problem

The definition of the problem is the first step in effective problem solving. This may appear to be a simple task, but it is actually quite difficult. This is because problems are frequently complex and multi-layered, making it easy to confuse symptoms with the underlying cause. To avoid this pitfall, it is critical to thoroughly understand the problem.

To begin, ask yourself some clarifying questions:

  • What exactly is the issue?
  • What are the problem’s symptoms or consequences?
  • Who or what is impacted by the issue?
  • When and where does the issue arise?

Answering these questions will assist you in determining the scope of the problem. However, simply describing the problem is not always sufficient; you must also identify the root cause. The root cause is the underlying cause of the problem and is usually the key to resolving it permanently.

Try asking “why” questions to find the root cause:

  • What causes the problem?
  • Why does it continue?
  • Why does it have the effects that it does?

By repeatedly asking “ why ,” you’ll eventually get to the bottom of the problem. This is an important step in the problem-solving process because it ensures that you’re dealing with the root cause rather than just the symptoms.

Once you have a firm grasp on the issue, it is time to divide it into smaller, more manageable chunks. This makes tackling the problem easier and reduces the risk of becoming overwhelmed. For example, if you’re attempting to solve a complex business problem, you might divide it into smaller components like market research, product development, and sales strategies.

To summarise step 1, defining the problem is an important first step in effective problem-solving. You will be able to identify the root cause and break it down into manageable parts if you take the time to thoroughly understand the problem. This will prepare you for the next step in the problem-solving process, which is gathering information and brainstorming ideas.

Step 2 – Gather Information and Brainstorm Ideas

Gathering information and brainstorming ideas is the next step in effective problem solving. This entails researching the problem and relevant information, collaborating with others, and coming up with a variety of potential solutions. This increases your chances of finding the best solution to the problem.

Begin by researching the problem and relevant information. This could include reading articles, conducting surveys, or consulting with experts. The goal is to collect as much information as possible in order to better understand the problem and possible solutions.

Next, work with others to gather a variety of perspectives. Brainstorming with others can be an excellent way to come up with new and creative ideas. Encourage everyone to share their thoughts and ideas when working in a group, and make an effort to actively listen to what others have to say. Be open to new and unconventional ideas and resist the urge to dismiss them too quickly.

Finally, use brainstorming to generate a wide range of potential solutions. This is the place where you can let your imagination run wild. At this stage, don’t worry about the feasibility or practicality of the solutions; instead, focus on generating as many ideas as possible. Write down everything that comes to mind, no matter how ridiculous or unusual it may appear. This can be done individually or in groups.

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the next step in the problem-solving process, which we’ll go over in greater detail in the following section.

Step 3 – Evaluate Options and Choose the Best Solution

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the third step in effective problem solving, and it entails weighing the advantages and disadvantages of each solution, considering their feasibility and practicability, and selecting the solution that is most likely to solve the problem effectively.

To begin, weigh the advantages and disadvantages of each solution. This will assist you in determining the potential outcomes of each solution and deciding which is the best option. For example, a quick and easy solution may not be the most effective in the long run, whereas a more complex and time-consuming solution may be more effective in solving the problem in the long run.

Consider each solution’s feasibility and practicability. Consider the following:

  • Can the solution be implemented within the available resources, time, and budget?
  • What are the possible barriers to implementing the solution?
  • Is the solution feasible in today’s political, economic, and social environment?

You’ll be able to tell which solutions are likely to succeed and which aren’t by assessing their feasibility and practicability.

Finally, choose the solution that is most likely to effectively solve the problem. This solution should be based on the criteria you’ve established, such as the advantages and disadvantages of each solution, their feasibility and practicability, and your overall goals.

It is critical to remember that there is no one-size-fits-all solution to problems. What is effective for one person or situation may not be effective for another. This is why it is critical to consider a wide range of solutions and evaluate each one based on its ability to effectively solve the problem.

Step 4 – Implement and Monitor the Solution

When you’ve decided on the best solution, it’s time to put it into action. The fourth and final step in effective problem solving is to put the solution into action, monitor its progress, and make any necessary adjustments.

To begin, implement the solution. This may entail delegating tasks, developing a strategy, and allocating resources. Ascertain that everyone involved understands their role and responsibilities in the solution’s implementation.

Next, keep an eye on the solution’s progress. This may entail scheduling regular check-ins, tracking metrics, and soliciting feedback from others. You will be able to identify any potential roadblocks and make any necessary adjustments in a timely manner if you monitor the progress of the solution.

Finally, make any necessary modifications to the solution. This could entail changing the solution, altering the plan of action, or delegating different tasks. Be willing to make changes if they will improve the solution or help it solve the problem more effectively.

It’s important to remember that problem solving is an iterative process, and there may be times when you need to start from scratch. This is especially true if the initial solution does not effectively solve the problem. In these situations, it’s critical to be adaptable and flexible and to keep trying new solutions until you find the one that works best.

To summarise, effective problem solving is a critical skill that can assist individuals and organisations in overcoming challenges and achieving their objectives. Effective problem solving consists of four key steps: defining the problem, generating potential solutions, evaluating alternatives and selecting the best solution, and implementing the solution.

You can increase your chances of success in problem solving by following these steps and considering factors such as the pros and cons of each solution, their feasibility and practicability, and making any necessary adjustments. Furthermore, keep in mind that problem solving is an iterative process, and there may be times when you need to go back to the beginning and restart. Maintain your adaptability and try new solutions until you find the one that works best for you.

  • Novick, L.R. and Bassok, M., 2005.  Problem Solving . Cambridge University Press.

Was this helpful?

Daniel croft.

Daniel Croft is a seasoned continuous improvement manager with a Black Belt in Lean Six Sigma. With over 10 years of real-world application experience across diverse sectors, Daniel has a passion for optimizing processes and fostering a culture of efficiency. He's not just a practitioner but also an avid learner, constantly seeking to expand his knowledge. Outside of his professional life, Daniel has a keen Investing, statistics and knowledge-sharing, which led him to create the website www.learnleansigma.com, a platform dedicated to Lean Six Sigma and process improvement insights.

Lean Manufacturing - A Beginners Guide - Feature Image - Learnleansigma

Getting Lean and Mean: A Beginner’s Guide to Lean Manufacturing

The Power of 5 Whys - Post Title

The Power of 5 Whys to get Results

Free lean six sigma templates.

Improve your Lean Six Sigma projects with our free templates. They're designed to make implementation and management easier, helping you achieve better results.

5S Floor Marking Best Practices

In lean manufacturing, the 5S System is a foundational tool, involving the steps: Sort, Set…

How to Measure the ROI of Continuous Improvement Initiatives

When it comes to business, knowing the value you’re getting for your money is crucial,…

8D Problem-Solving: Common Mistakes to Avoid

In today’s competitive business landscape, effective problem-solving is the cornerstone of organizational success. The 8D…

The Evolution of 8D Problem-Solving: From Basics to Excellence

In a world where efficiency and effectiveness are more than just buzzwords, the need for…

8D: Tools and Techniques

Are you grappling with recurring problems in your organization and searching for a structured way…

How to Select the Right Lean Six Sigma Projects: A Comprehensive Guide

Going on a Lean Six Sigma journey is an invigorating experience filled with opportunities for…

loading

ASQ logo

  • About Problem Solving
  • Related Topics

Problem Solving Resources

Case studies, problem solving related topics.

  • Brainstorming
  • Continuous Improvement
  • Eight Disciplines (8D)
  • Fishbone Diagram
  • Nine Windows
  • Shainin System™
  • Total Quality Management (TQM)
  • Quality Resources /
  • Problem Solving

What is Problem Solving?

Quality Glossary Definition: Problem solving

Problem solving is the act of defining a problem; determining the cause of the problem; identifying, prioritizing, and selecting alternatives for a solution; and implementing a solution.

  • The problem-solving process
  • Problem solving resources

Problem Solving visual

Problem Solving Chart

Boeing

The Problem-Solving Process

In order to effectively manage and run a successful organization, leadership must guide their employees and develop problem-solving techniques. Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below.

1. Define the problem

Diagnose the situation so that your focus is on the problem, not just its symptoms. Helpful problem-solving techniques include using flowcharts to identify the expected steps of a process and cause-and-effect diagrams to define and analyze root causes .

The sections below help explain key problem-solving steps. These steps support the involvement of interested parties, the use of factual information, comparison of expectations to reality, and a focus on root causes of a problem. You should begin by:

  • Reviewing and documenting how processes currently work (i.e., who does what, with what information, using what tools, communicating with what organizations and individuals, in what time frame, using what format).
  • Evaluating the possible impact of new tools and revised policies in the development of your "what should be" model.

2. Generate alternative solutions

Postpone the selection of one solution until several problem-solving alternatives have been proposed. Considering multiple alternatives can significantly enhance the value of your ideal solution. Once you have decided on the "what should be" model, this target standard becomes the basis for developing a road map for investigating alternatives. Brainstorming and team problem-solving techniques are both useful tools in this stage of problem solving.

Many alternative solutions to the problem should be generated before final evaluation. A common mistake in problem solving is that alternatives are evaluated as they are proposed, so the first acceptable solution is chosen, even if it’s not the best fit. If we focus on trying to get the results we want, we miss the potential for learning something new that will allow for real improvement in the problem-solving process.

3. Evaluate and select an alternative

Skilled problem solvers use a series of considerations when selecting the best alternative. They consider the extent to which:

  • A particular alternative will solve the problem without causing other unanticipated problems.
  • All the individuals involved will accept the alternative.
  • Implementation of the alternative is likely.
  • The alternative fits within the organizational constraints.

4. Implement and follow up on the solution

Leaders may be called upon to direct others to implement the solution, "sell" the solution, or facilitate the implementation with the help of others. Involving others in the implementation is an effective way to gain buy-in and support and minimize resistance to subsequent changes.

Regardless of how the solution is rolled out, feedback channels should be built into the implementation. This allows for continuous monitoring and testing of actual events against expectations. Problem solving, and the techniques used to gain clarity, are most effective if the solution remains in place and is updated to respond to future changes.

You can also search articles , case studies , and publications  for problem solving resources.

Innovative Business Management Using TRIZ

Introduction To 8D Problem Solving: Including Practical Applications and Examples

The Quality Toolbox

Root Cause Analysis: The Core of Problem Solving and Corrective Action

One Good Idea: Some Sage Advice ( Quality Progress ) The person with the problem just wants it to go away quickly, and the problem-solvers also want to resolve it in as little time as possible because they have other responsibilities. Whatever the urgency, effective problem-solvers have the self-discipline to develop a complete description of the problem.

Diagnostic Quality Problem Solving: A Conceptual Framework And Six Strategies  ( Quality Management Journal ) This paper contributes a conceptual framework for the generic process of diagnosis in quality problem solving by identifying its activities and how they are related.

Weathering The Storm ( Quality Progress ) Even in the most contentious circumstances, this approach describes how to sustain customer-supplier relationships during high-stakes problem solving situations to actually enhance customer-supplier relationships.

The Right Questions ( Quality Progress ) All problem solving begins with a problem description. Make the most of problem solving by asking effective questions.

Solving the Problem ( Quality Progress ) Brush up on your problem-solving skills and address the primary issues with these seven methods.

Refreshing Louisville Metro’s Problem-Solving System  ( Journal for Quality and Participation ) Organization-wide transformation can be tricky, especially when it comes to sustaining any progress made over time. In Louisville Metro, a government organization based in Kentucky, many strategies were used to enact and sustain meaningful transformation.

Certification

Quality Improvement Associate Certification--CQIA

Certified Quality Improvement Associate Question Bank

Lean Problem-Solving Tools

Problem Solving Using A3

NEW   Root Cause Analysis E-Learning

Quality 101

Making the Connection In this exclusive QP webcast, Jack ReVelle, ASQ Fellow and author, shares how quality tools can be combined to create a powerful problem-solving force.

Adapted from The Executive Guide to Improvement and Change , ASQ Quality Press.

Featured Advertisers

problem solving investigation the four step plan

CIToolkit Logo

Continuous Improvement Toolkit

Effective Tools for Business and Life!

Applying the PDCA Cycle: A Blueprint for Continuous Improvement

PDCA Cycle

  • 5 MINUTES READ

Also known as Shewhart Cycle and Deming Wheel.

Variants include PDSA Cycle and OPDCA.

The Plan-Do-Check-Act Cycle (PDCA Cycle) is a four-step model for systematic problem solving and continuous improvement. It offers a simple and structured way for resolving business-related issues and creating positive change . This framework is widely recognized as the basis for enhancing the quality of processes, products, and services by following a logical sequence of four steps: Plan, Do, Check, and Act.

The PDCA cycle model can be applied in most kinds of projects and improvement activities, whether they are breakthrough changes or smaller incremental enhancements. For example, it can be effectively utilized when aiming to enhance employee skill levels within an organization, change the supplier of a product or service, or increase the quality of care and patient engagement within a hospital.

A common practical example of the PDCA cycle can be illustrated when dealing with customer complaints. This scenario involves steps like reviewing, categorizing, and prioritizing the existing complaints, generating potential solutions for addressing the most frequent complaints, conducting pilot surveys with sample customers to test new options, collecting and analyzing customer data and feedback, and ultimately implementing lessons learned on a larger scale. The above steps represent the PDCA cycle in action.

PDCA Cycle

The Four Phases of the PDCA Cycle

The PDCA cycle begins with the Planning phase which involves the identification of the problem and objectives. During this phase, a collaborative effort is made to agrees on the problem to be solved or the process to be improved. Subsequently, an in-depth analysis of the existing as-is situation is conducted, alternative solutions are identified, and the most promising solution is selected and scheduled for implementation.

In the Do phase, the selected solution is put into action on a limited scale. This phase also involves ongoing progress measurement, data collection, and feedback gathering to facilitate subsequent analyses.

The Check phase involves analyzing the collected data and feedback and comparing the outcome against pre-established objectives. This phase allows to evaluate how well the solution has worked and where further enhancement may be needed. Additionally, it involves the identification of unexpected issues and the gathering of key learnings. It is important to note that the Do and Check phases may need to be repeated until the desired results are achieved.

PDCA Guide

The Act phase is the point at which the chosen solution is fully integrated. This phase requires taking actions based on the insights acquired from the Check phase. A plan for full-scale implementation is carried out, taking into account the associated costs and benefits. The Act phase also concerned with standardizing , documenting, sustaining the improved process, as well as integrating it into the organization’s system.

The utilization of the PDCA cycle doesn’t necessarily stop once the Act phase is completed. The improved process often becomes the new baseline, which may prompt a return to the Plan phase. Multiple iterations of the PDCA cycle may be essential for a permanent resolution of the problem and the attainment of the desired future state. Each cycle brings one closer to their goals and extends their knowledge further.

problem solving investigation the four step plan

A common example often used to illustrate the PDCA cycle is when a team is initiating a new product development.

problem solving investigation the four step plan

Another example is when a lab team is planning to solve a customer complaint about the delayed test results at a laboratory.

problem solving investigation the four step plan

In the 1990s, a modified version of the PDCA cycle was introduced. It was called PDSA cycle where ‘S’ stands for Study. It is believed that data analysis is important for any improvement effort, and “Checking” does not really imply studying and analyzing the data.

PDSA Cycle

OPDCA is another version of PDCA where ‘O’ stands for Observe . The Observe is added at the front of the cycle to emphasize the need to observe before creating any plan. The goal of observation is to find out what is really happening and what can be improved.

OPDCA Cycle

You may find it useful to use the following tools in each phase of the PDCA/PDSA cycle:

  • Plan – process mapping , brainstorming, waste analysis , prioritization matrix , improvement roadmap , gap analysis , and force field analysis .
  • Do – Gantt chart , dashboard, data collection methods , sampling, observation , check sheet , and control chart.
  • Check/Study – graphical analysis , statistical analysis, 5 whys , fishbone diagram , Pareto analysis , root cause analysis, and decision-making techniques .
  • Act – process mapping , Gantt chart , dashboard, control chart, control plan, visual management , and standard work .

problem solving investigation the four step plan

Several tools are available to aid in planning and monitoring project activities using the PDCA model. One of the most straightforward methods is to use this  PDCA template .

Wrapping Up

PDCA represents the logical way of thinking we tend to follow when resolving problems and implementing continuous improvement. The objective is to make significant progress towards achieving the intended goal. Furthermore, it is important to note that the PDCA model stands at the core of almost all quality management systems. TQM, ISO standards and the A3 thinking process are all based around the PDCA philosophy.

Other Formats

problem solving investigation the four step plan

Do you want to use the slides in your training courses?

problem solving investigation the four step plan

PDCA Training Material – $18.85

Related Articles

Project Charter

Project Charter

Improvement Roadmap

Improvement Roadmap

Related Templates

PDCA Template

A3 Problem Solving

A3 Problem Solving Template

Kaizen Event Charter

Kaizen Event Charter Template

Written by:

CIToolkit Content Team

Triaster Process Library

MRSC logo

  • Rosters & E-Bidding

Have a Research Question?

  • Research Tools
  • Explore Topics
  • Stay Informed
  • Publications

Easy Problem Solving Using the 4-step Method

June 7, 2017  by  Jennifer Haury Category:  Guest Author ,  Management

problem solving investigation the four step plan

At a recent hospital town forum, hospital leaders are outlining the changes coming when a lone, brave nurse raises her hand and says, “We just can’t take any more changes. They are layered on top of each other and each one is rolled out in a different way. We are exhausted and it’s overloading us all.”  

 “Flavor of the Month” Fatigue

Change fatigue. You hear about it in every industry, from government sectors to software design to manufacturing to healthcare and more. When policy and leadership changes and process improvement overlap it’s no surprise when people complain about “flavor of the month,” and resist it just so they can keep some routine to their days.

In a time where change is required just to keep up with the shifting environment, one way to ease fatigue is to standardize HOW we change. If we use a best practice for solving problems, we can ensure that the right people are involved and problems are solved permanently, not temporarily. Better yet, HOW we change can become the habit and routine we long for.

The 4-step Problem Solving Method

The model we’ve used with clients is based on the A3 problem-solving methodology used by many “lean” production-based companies. In addition to being simpler, our 4-step method is visual, which helps remind the user what goes into each box.

The steps are as follows

  • Develop a Problem Statement
  • Determine Root Causes
  • Rank Root Causes in Order of Importance
  • Create an Action Plan

Step 1: Develop a Problem Statement

Developing a good problem statement always seems a lot easier than it generally turns out to be.  For example, this statement: “We don’t have enough staff,” frequently shows up as a problem statement. However, it suggests the solution—“GET MORE STAFF” — and fails to address the real problem that more staff might solve, such as answering phones in a timely manner.

The trick is to develop a problem statement that does not suggest a solution.  Avoiding the following words/phrases: “lack of,” “no,” “not enough,” or “too much” is key. When I start to fall into the trap of suggesting a solution, I ask: “So what problem does that cause?” This usually helps to get to a more effective problem statement.

“Haury-post_6-5-17_1.jpg"

Once you’ve developed a problem statement, you’ll need to define your target goal, measure your actual condition, then determine the gap. If we ran a restaurant and our problem was: “Customers complaining about burnt toast during morning shift,” the target goal might be: “Toast golden brown 100% of morning shift.”

Focus on a tangible, achievable target goal then measure how often that target is occurring. If our actual condition is: “Toast golden brown 50% of the time,” then our gap is: “Burnt toast 50% of the time.” That gap is now a refined problem to take to Step 2.

Step 2:  Determine Root Causes

In Step 2, we want to understand the root causes. For example, if the gap is burnt toast 50% of the time, what are all the possible reasons why?

This is when you brainstorm. It could be an inattentive cook or a broken pop-up mechanism. Cooks could be using different methods to time the toasting process or some breads toast more quickly.  During brainstorming, you’ll want to include everyone in the process since observing these interactions might also shed light on why the problem is occurring.

“Haury-post_6-5-17_2.jpg"

Once we have an idea of why, we then use the 5-why process to arrive at a root cause.  Ask “Why?” five times or until it no longer makes sense to ask. Root causes can be tricky.  For example, if the pop up mechanism is broken you could just buy a new toaster, right? But if you asked WHY it broke, you may learn cooks are pressing down too hard on the pop up mechanism, causing it to break. In this case, the problem would just reoccur if you bought a new toaster.

When you find you are fixing reoccurring problems that indicates you haven’t solved for the root cause. Through the 5-why process, you can get to the root cause and fix the problem permanently.

Step 3: Rank Root Causes

Once you know what’s causing the problem (and there may be multiple root causes), it’s time to move to Step 3 to understand which causes, if solved for, would close your gap. Here you rank the root causes in order of importance by looking at which causes would have the greatest impact in closing the gap.

Haury-post_6-5-17_3.jpg"

There may be times when you don’t want to go after your largest root cause (perhaps because it requires others to change what they are doing, will take longer, or is dependent on other things getting fixed, etc). Sometimes you’ll find it’s better to start with a solution that has a smaller impact but can be done quickly.

Step 4: Create an Action Plan

In Step 4 you create your action plan — who is going to do what and by when. Documenting all of this and making it visible helps to communicate the plan to others and helps hold them accountable during implementation.

This is where your countermeasures or experiments to fix the problem are detailed. Will we train our chefs on how to use a new “pop-up mechanism” free toaster? Will we dedicate one toaster for white bread and one for wheat?  

Haury-post_6-5-17_4.jpg

Make sure to measure your results after you’ve implemented your plan to see if your target is met. If not, that’s okay; just go through the steps again until the problem is resolved.

Final Thoughts

Using the 4-step method has been an easy way for teams to change how they solve problems. One team I was working with started challenging their “solution jumps” and found this method was a better way to avoid assumptions which led to never really solving their problems.  It was easy to use in a conference room and helped them make their thinking visual so everyone could be involved and engaged in solving the problems their team faced. 

Do you have a problem-solving method that you use at your worksite?  Let us know in the comments below. 

MRSC is a private nonprofit organization serving local governments in Washington State. Eligible government agencies in Washington State may use our free, one-on-one Ask MRSC service to get answers to legal, policy, or financial questions.

Photo of Jennifer Haury

About Jennifer Haury

Jennifer Haury is the CEO of All Angles Consulting, LLC and guest authored this post for MRSC.

Jennifer has over 28 years learning in the healthcare industry (17 in leadership positions or consulting in performance improvement and organizational anthropology) and is a Lean Six Sigma Black Belt.

She is a trusted, experienced leader with a keen interest in performance improvement and organizational anthropology. Jennifer is particularly concerned with the sustainability of continuous improvement programs and the cultural values and beliefs that translate into behaviors that either get in our own way or help us succeed in transforming our work.

The views expressed in guest columns represent the opinions of the author and do not necessarily reflect those of MRSC.

Blog Archives

Weekly e-news.

problem solving investigation the four step plan

Get the latest local government news, analysis, and training opportunities in Washington State with MRSC’s Weekly Insights .

Related Materials

problem solving investigation the four step plan

Reducing Barriers for Childcare Facilities, Part 2

problem solving investigation the four step plan

With the rise of AI, workforce planning is critical. But many governments don’t do it.

problem solving investigation the four step plan

Strategic Planning

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

problem solving investigation the four step plan

Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.

problem solving investigation the four step plan

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Problem-Solving Investigation - The Four Step Plan - Notes PowerPoint

problem solving investigation the four step plan

  • Google Slides™

Description

This resource will help your students understand the Four Step Plan, get used to note-taking, and practice their problem-solving techniques.

Introduce "The Four Step Plan" for problem-solving with this note-taking PowerPoint.

Each slide includes a model of what students' notes should look like. The presentation includes two example math problems to get your class started! Ideal for mathematics and math problems, but can be used in other problem-solving scenarios as well.

Questions & Answers

Middle school mathsters.

  • We're hiring
  • Help & FAQ
  • Privacy policy
  • Student privacy
  • Terms of service
  • Tell us what you think

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 18 free facilitation resources we think you’ll love.

  • 47 useful online tools for workshop planning and meeting facilitation

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

problem solving investigation the four step plan

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

problem solving investigation the four step plan

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

' src=

Your list of techniques for problem solving can be helpfully extended by adding TRIZ to the list of techniques. TRIZ has 40 problem solving techniques derived from methods inventros and patent holders used to get new patents. About 10-12 are general approaches. many organization sponsor classes in TRIZ that are used to solve business problems or general organiztational problems. You can take a look at TRIZ and dwonload a free internet booklet to see if you feel it shound be included per your selection process.

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

problem solving investigation the four step plan

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

problem solving investigation the four step plan

Facilitation is more and more recognized as a key component of work, as employers and society are faced with bigger and more complex problems and ideas. From facilitating meetings to big, multi-stakeholder strategy development workshops, the facilitator's skillset is more and more in demand. In this article, we will go through a list of the best online facilitation resources, including newsletters, podcasts, communities, and 10 free toolkits you can bookmark and read to upskill and improve your facilitation practice. When designing activities and workshops, you'll probably start by using templates and methods you are familiar with. Soon enough, you'll need to expand your range and look for facilitation methods and…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

  • Inspiration
 Place Value Through Millions
 Place Value Through Millions
 Compare and Order Whole Number Through Millions
 Compare and Order Whole Number Through Millions
 Hands On: Model Fractions and Decimals
 Hands On: Model Fractions and Decimals
 Represent Decimals
 Represent Decimals
 Hands On: Understanding Place Value
 Hands On: Understanding Place Value
 Place Value Through Thousandths
 Place Value Through Thousandths
 Compare Decimals
 Compare Decimals
 Order Whole Numbers and Decimals
 Order Whole Numbers and Decimals
 Problem Solving Investigation: Use the Four Step Plan
 Problem Solving Investigation: Use the Four Step Plan
 Prime Factorization
 Prime Factorization
 Hands On: Prime Factorization Patterns
 Hands On: Prime Factorization Patterns
 Powers and Exponents
 Powers and Exponents
 Multiplication Patterns
 Multiplication Patterns
 Problem Solving Investigation: Make a Table
 Problem Solving Investigation: Make a Table
 Hands On: Use Partial Products and the Distributive Property
 Hands On: Use Partial Products and the Distributive Property
 The Distributive Property
 The Distributive Property
 Estimate Products
 Estimate Products
 Multiply by One-Digit Numbers
 Multiply by One-Digit Numbers
 Multiply by Two-Digit Numbers
 Multiply by Two-Digit Numbers
 Relate Division to Multiplication
 Relate Division to Multiplication
 Hands On: Division Models
 Hands On: Division Models
 Two-Digit Dividends
 Two-Digit Dividends
 Division Patterns
 Division Patterns
 Estimate Quotients
 Estimate Quotients
 Hands On: Division Models with Greater Numbers
 Hands On: Division Models with Greater Numbers
 Hands On: Distributive Property and Partial Quotients
 Hands On: Distributive Property and Partial Quotients
 Divide Three-and Four-Digit Dividends
 Divide Three-and Four-Digit Dividends
 Place the First Digit
 Place the First Digit
 Quotients with Zeros
 Quotients with Zeros
 Hands On: Models to Interpret the Remainder
 Hands On: Models to Interpret the Remainder
 Interpret the Remainder
 Interpret the Remainder
 Problem Solving Investigation: Determine Extra or Missing Information
 Problem Solving Investigation: Determine Extra or Missing Information
 Estimate Quotients
 Estimate Quotients
 Hands On: Divide Using Base-Ten Blocks
 Hands On: Divide Using Base-Ten Blocks
 Divide by a Two-Digit Divisor
 Divide by a Two-Digit Divisor
 Adjust Quotients
 Adjust Quotients
 Divide Greater Numbers
 Divide Greater Numbers
 Problem Solving Investigation: Solve a Simpler Problem
 Problem Solving Investigation: Solve a Simpler Problem
 Round Decimals
 Round Decimals
 Estimate Sums and Differences
 Estimate Sums and Differences
 Problem Solving Investigation: Estimate or Exact Answer
 Problem Solving Investigation: Estimate or Exact Answer
 Hands On: Add Decimals Using Base-Ten Blocks
 Hands On: Add Decimals Using Base-Ten Blocks
 Hands On: Add Decimals Using Models
 Hands On: Add Decimals Using Models
 Add Decimals
 Add Decimals
 Addition Properties
 Addition Properties
 Hands On: Subtract Decimals Using Base-Ten Blocks
 Hands On: Subtract Decimals Using Base-Ten Blocks
 Hands On: Subtract Decimals Using Models
 Hands On: Subtract Decimals Using Models
 Subtract Decimals
 Subtract Decimals
 Estimate Products of Whole Numbers and Decimals
 Estimate Products of Whole Numbers and Decimals
 Hands On: Use Models to Multiply
 Hands On: Use Models to Multiply
 Multiply Decimals by Whole Numbers
 Multiply Decimals by Whole Numbers
 Hands On: Use Models to Multiply Decimals
 Hands On: Use Models to Multiply Decimals
 Multiply Decimals
 Multiply Decimals
 Multiply Decimals by Powers of Ten
 Multiply Decimals by Powers of Ten
 Problem Solving Investigation: Look for a Pattern
 Problem Solving Investigation: Look for a Pattern
 Multiplication Properties
 Multiplication Properties
 Estimate Quotients
 Estimate Quotients
 Hands On: Divide Decimals
 Hands On: Divide Decimals
 Divide Decimals by Whole Numbers
 Divide Decimals by Whole Numbers
 Hands On: Use Models to Divide Decimals
 Hands On: Use Models to Divide Decimals
 Divide Decimals
 Divide Decimals
 Divide Decimals by Powers of Ten
 Divide Decimals by Powers of Ten
 Hands On: Numerical Expressions
 Hands On: Numerical Expressions
 Order of Operations
 Order of Operations
 Write Numerical Expressions
 Write Numerical Expressions
 Problem Solving Investigation: Work Backward
 Problem Solving Investigation: Work Backward
 Hands On: Generate Patterns
 Hands On: Generate Patterns
 Patterns
 Patterns
 Hands On: Map Locations
 Hands On: Map Locations
 Ordered Pairs
 Ordered Pairs
 Graph Patterns
 Graph Patterns
 Fractions and Division
 Fractions and Division
 Greatest Common Factor
 Greatest Common Factor
 Simplest Form
 Simplest Form
 Problem Solving Investigation: Guess, Check, and Revise
 Problem Solving Investigation: Guess, Check, and Revise
 Least Common Multiple
 Least Common Multiple
 Compare Fractions
 Compare Fractions
 Hands On: Use Models to Write Fractions as Decimals
 Hands On: Use Models to Write Fractions as Decimals
 Write Fractions as Decimals
 Write Fractions as Decimals
 Rounding Fractions
 Rounding Fractions
 Add Like Fractions
 Add Like Fractions
 Subtract Like Fractions
 Subtract Like Fractions
 Hands On: Use Models to Add Unlike Fractions
 Hands On: Use Models to Add Unlike Fractions
 Add Unlike Fractions
 Add Unlike Fractions
 Hands On: Use Models to Subtract Unlike Fractions
 Hands On: Use Models to Subtract Unlike Fractions
 Subtract Unlike Fractions
 Subtract Unlike Fractions
 Problem Solving Investigation: Determine Reasonable Answers
 Problem Solving Investigation: Determine Reasonable Answers
 Estimate Sums and Differences
 Estimate Sums and Differences
 Hands On: Use Models to Add Mixed Numbers
 Hands On: Use Models to Add Mixed Numbers
 Add Mixed Numbers
 Add Mixed Numbers
 Subtract Mixed Numbers
 Subtract Mixed Numbers
 Subtract with Renaming
 Subtract with Renaming
 Hands On: Part of a Number
 Hands On: Part of a Number
 Estimate Products of Fractions
 Estimate Products of Fractions
 Hands On: Model Fraction Multiplication
 Hands On: Model Fraction Multiplication
 Multiply Whole Numbers and Fractions
 Multiply Whole Numbers and Fractions
 Hands On: Use Models to Multiply Fractions
 Hands On: Use Models to Multiply Fractions
 Multiply Fractions
 Multiply Fractions
 Multiply Mixed Numbers
 Multiply Mixed Numbers
 Hands On: Multiplication as Scaling
 Hands On: Multiplication as Scaling
 Hands On: Division and Unit Fractions
 Hands On: Division and Unit Fractions
 Divide Whole Numbers by Unit Fractions
 Divide Whole Numbers by Unit Fractions
 Divide Unit Fractions by Whole Numbers
 Divide Unit Fractions by Whole Numbers
 Problem Solving Investigation: Draw a Diagram
 Problem Solving Investigation: Draw a Diagram
 Hands On: Measure with a Ruler
 Hands On: Measure with a Ruler
 Convert Customary Units of Length
 Convert Customary Units of Length
 Problem Solving Investigation: Use Logical Reasoning
 Problem Solving Investigation: Use Logical Reasoning
 Hands On: Estimate and Measure Weight
 Hands On: Estimate and Measure Weight
 Convert Customary Units of Weight
 Convert Customary Units of Weight
 Hands On: Estimate and Measure Capacity
 Hands On: Estimate and Measure Capacity
 Convert Customary Units of Capacity
 Convert Customary Units of Capacity
 Display Measurement Data on a Line Plot
 Display Measurement Data on a Line Plot
 Hands On: Metric Rulers
 Hands On: Metric Rulers
 Convert Metric Units of Length
 Convert Metric Units of Length
 Hands On: Estimate and Measure Metric Mass
 Hands On: Estimate and Measure Metric Mass
 Convert Metric Units of Mass
 Convert Metric Units of Mass
 Convert Metric Units of Capacity
 Convert Metric Units of Capacity
 Polygons
 Polygons
 Hands On: Sides and Angles of Triangles
 Hands On: Sides and Angles of Triangles
 Classify Triangles
 Classify Triangles
 Hands On: Side and Angles of Quadrilaterals
 Hands On: Side and Angles of Quadrilaterals
 Classify Quadrilaterals
 Classify Quadrilaterals
 Hands On: Build Three-Dimensional Figures
 Hands On: Build Three-Dimensional Figures
 Three-Dimensional Figures
 Three-Dimensional Figures
 Hands On: Use Models to Find Volume
 Hands On: Use Models to Find Volume
 Volume of Prisms
 Volume of Prisms
 Hands On: Build Composite Figures
 Hands On: Build Composite Figures
 Volume of Composite Figures
 Volume of Composite Figures
 Problems Solving Investigation: Make a Model
 Problems Solving Investigation: Make a Model
  • A. Robison Elementary
  • Adam Elementary School
  • Andre' Elementary School
  • Anthony Middle School
  • Aragon Middle School
  • Arnold Middle School
  • Ault Elementary School
  • Bane Elementary School
  • Bang Elementary School
  • Birkes Elementary School
  • Black Elementary School
  • Bleyl Middle School
  • Byrd Elementary
  • Brautigam Center
  • Bridgeland High School
  • Brosnahan Elementary School
  • Campbell Middle School
  • Carlton Center
  • Carpenter Center
  • Cook Middle School
  • Copeland Elementary
  • Cy-Fair High School
  • Cypress Creek High School
  • Cypress Falls High School
  • Cypress Lakes High School
  • Cypress Park High School
  • Cypress Ranch High School
  • Cypress Ridge High School
  • Cypress Springs High School
  • Cypress Woods High School
  • Danish Elementary School
  • Dean Middle School
  • Duryea Elementary School
  • Emery Elementary School
  • Emmott Elementary School
  • Farney Elementary School
  • Fiest Elementary School
  • Francone Elementary School
  • Frazier Elementary School
  • Gleason Elementary School
  • Goodson Middle School
  • Hairgrove Elementary School
  • Hamilton Elementary School
  • Hamilton Middle School
  • Hancock Elementary School
  • Hemmenway Elementary School
  • Holbrook Elementary School
  • Holmsley Elementary School
  • Hoover Elementary (PK-2) School
  • Hopper Middle School
  • Horne Elementary School
  • Jersey Village High School
  • Jowell Elementary (3-5) School
  • Kahla Middle School
  • Keith Elementary School
  • Kirk Elementary School
  • Labay Middle School
  • Lamkin Elementary School
  • Langham Creek High School
  • Lee Elementary School
  • Lieder Elementary School
  • Lowery Elementary School
  • M. Robinson Elementary School
  • Matzke Elementary School
  • McFee Elementary
  • McGown Elementary School
  • Metcalf Elementary School
  • Millsap Elementary School
  • Moore Elementary School
  • Owens Elementary School
  • Pope Elementary School
  • Post Elementary School
  • Postma Elementary School
  • Reed Elementary School
  • Rennell Elementary School
  • Rowe Middle School
  • Salyards Middle School
  • Sampson Elementary School
  • Sheridan Elementary School
  • Smith Middle School
  • Spillane Middle School
  • Sprague Middle School
  • Swenke Elementary School
  • Thornton Middle School
  • Tipps Elementary School
  • Truitt Middle School
  • Walker Elementary School
  • Warner Elementary School
  • Watkins Middle School
  • Wells Elementary School
  • Willbern Elementary School
  • Wilson Elementary School
  • Woodard Elementary School
  • Yeager Elementary School

Search

THE FOUR-STEP PROBLEM SOLVING PLAN

Overview of “Four-Step Problem Solving”

The “Four-Step Problem Solving” plan helps elementary math students to employ sound reasoning and to develop mathematical language while they complete a four-step problem-solving process. This problem-solving plan consists of four steps: details, main idea, strategy, and how. As students work through each step, they may use “graphic representations” to organize their ideas, to provide evidence of their mathematical thinking, and to show their strategy for arriving at a solution.

In this step, the student is a reader, a thinker, and an analyzer. First, the student reads over the problem and finds any proper nouns (capitalized words). If unusual names of people or places cause confusion, the student may substitute a familiar name and see if the question now makes sense. It may help the student to re-read the problem, summarize the problem, or visualize what is happening. When the student identifies the main idea, he or she should write it down, using words or phrases; that is, complete sentences are unnecessary. Students need to ask themselves questions such as the ones shown below.

  • “What is the main idea in the question of this problem?”
  • “What are we looking for?”
  • “What do we want to find out?”

The student reads the problem again, sentence by sentence, slowly and carefully. The student identifies and records any details, using numbers, words, and phrases. The student looks for extra information—that is, facts in the reading that do not figure into the answer. In this step, the student should also look for hidden numbers, which may be indicated but not clearly expressed. (Example: The problem may refer to “Frank and his three friends.” In solving the problem, the student needs to understand that there are actually four people, even though “four” or “4” is not mentioned in the reading.) Students ask themselves the following kinds of questions.

  • “What are the details needed to answer the question?”
  • “What are the important details?”
  • “What is going on that can help me answer the question?”
  • “What details do I need?”

The student chooses a math strategy (or strategies) to find a solution to the problem and uses that strategy to find the answer/solve the problem. Possible strategies, as outlined in the Texas Essential Knowledge and Skills (TEKS) curriculum, include the following.

  • use or draw a picture
  • look for a pattern
  • write a number sentence
  • use actions (operations) such as add, subtract, multiply, divide
  • make or use a table
  • make or use a list
  • work a simpler problem
  • work backwards to solve a problem
  • act out the situation

The preceding list is just a sampling of the strategies used in elementary mathematics. There are many strategies that students can employ related to questions such as the following.

  • “What am I going to do to solve this problem?”
  • “What is my strategy?”
  • “What can I do with the details to get the answer?”

To make sure that their answer is reasonable and that they understand the process clearly, students use words or phrases to describe how they solved the problem. Students may ask themselves questions such as the following.

  • “How did I solve the problem?”
  • “What strategy did I use?”
  • “What were my steps?”

In this step, students must explain the solution strategy they have selected. They must provide reasons for and offer proof of the soundness of their strategy. This step gives students the opportunity to communicate their understanding of math concepts and math vocabulary represented in the problem they solved and to justify their thinking.

Responses on these four parts need not be lengthy—a list of words and numbers might be used for the details, and phrases might be used for the “Main Idea” and “How.”

Benefits of Using “Four-Step Problem Solving Plan”

One of the method's major benefits to students is that it forces them to operate at high levels of thinking. Teachers, using the tried-and-true Bloom’s Taxonomy to describe levels of thinking, want to take students beyond the lower levels and help them reach the upper levels of thinking. Doing the multiple step method requires students to record their thinking about three steps in the process, in addition to actually "working the problem."

A second benefit of extending the process from three steps to four is that having students think at these levels will deepen their understanding of mathematics and improve their fluency in using math language. In the short term, students' performance on assessments will improve, and confidence in their mathematical ability will grow. In the long term, this rigor in elementary school mathematics will prepare students for increased rigor in secondary mathematics, beginning particularly in grade 7.

Another benefit of using “Four-Step Problem Solving” is that it will increase teachers’ ability to identify specific problems students are having and provide them with information to give specific corrective feedback to students.

Extracting and writing the main idea and details and then showing the strategies to solve problems should also help students establish good test-taking habits for online testing.

Educational Research Supporting “Four-Step Problem Solving”

Although scholarly articles do not mention “Four-Step Problem Solving” by name, most educational experts do advocate the use of multi-step problem-solving methods that foster students’ performing at complex levels of thinking. The number of steps often ranges from four to eight.

Conclusions drawn from studying the work of meta-researcher Dr. Robert Marzano published in the book Classroom Instruction That Works (Marzano, Pickering, Pollock) as well as numerous other research studies, indicate that significant improvement in student achievement occurs when teachers use these strategies.

Instructional Strategy

Average

Relationship to

Summarizing and Note-taking

34 points

Main Idea, Details, How

Arguing (in the sense of defending or justifying one's thinking)

29 points

How

Articulating generalizations and principles

29 points

How

Providing feedback to students (“corrective,” timely, specific)

29 points

Grading

Using nonlinguistic representations

27 points

Strategy

Using advance (graphic) organizers

22 points

All Steps

The National Council of Teachers of Mathematics endorses the use of such strategies as those appearing in “Four-Step Problem Solving”—particularly the step requiring students to explain their answers—as effective for producing students’ math competency, as described in NCTM publications such as Principles and Standards for School Mathematics. Excerpts from NCTM documents validate the district's problem-solving strategy. Some of the key ideas and teaching standards identified include the following.

  • Teachers need to investigate how their students arrive at answers. Correct answers don't necessarily equate to correct thinking.
  • Students need to explore various ways to think about math problems and their solutions.
  • Students need to learn to analyze and solve problems on their own.
  • Students' discourse in a mathematics classroom should focus on their thinking process as they solved a problem.

Relationship of “Four-Step Problem Solving” and the TEKS

Although the TEKS for elementary math do not mention a graphic organizer for problem-solving, they do require that students in grades 1-5 learn and do the following things in the area of “Underlying Processes and Mathematical Tools.”

  • The student applies mathematics to solve problems connected to everyday experiences and activities in and outside of school.
  • Identify the mathematics in everyday situations.
  • Solve problems that incorporate understanding the problem, making a plan, carrying out the plan, and evaluating the solution for reasonableness.
  • Select or develop an appropriate problem-solving plan or strategy, including drawing a picture, looking for a pattern, systematic guessing and checking, acting it out, making a table, working a simpler problem, or working backwards to solve a problem.
  • Use tools such as real objects, manipulatives, and technology to solve problems.
  • The student communicates about mathematics using informal language.
  • Explain and record observations using objects, words, pictures, numbers, and technology.
  • Relate informal language to mathematical language and symbols.
  • The student uses logical reasoning to make sense of his or her world.
  • Make generalizations from patterns or sets of examples and nonexamples.
  • Justify why an answer is reasonable and explain the solution process.

Instructional Methods Behind “Four-Step Problem Solving”

Teachers will use a variety of techniques as they instruct students regarding “Four-Step Problem Solving.” They will

  • model use of the “Four-Step Problem Solving Plan” with graphic representations as they guide students through the four-step problem-solving process;
  • use a think-aloud method to share their reasoning with students;
  • employ questioning strategies that provoke students to higher levels of thinking; and
  • foster rich dialogue, both in whole-class discussions and for partner/table activities.

For success with “Four-Step Problem Solving,” talking must occur prior to writing. Students will be shown how to bridge the span between math and language to express their reasoning in a way that uses logical sequences and proper math vocabulary terms. Once students have mastered the ability to communicate out loud with the teacher and with peers, they can transition to developing the skill of conducting an “internal dialogue” for solving problems independently.

Students Using “Four-Step Problem Solving”

Use of a common graphic organizer at all schools would greatly benefit our ever-shifting population of students—not only those whose families move often, but also those affected by boundary changes we continue to experience as we grow. District-wide staff development has focused on acquainting all elementary math teaching staff with “Four-Step Problem Solving,” and outlining expectations for students’ problem-solving knowledge and skills outlined in the TEKS at each grade-level.

Because it is the steps in the problem that are important, not the graphic representation itself, vertical math teams on each campus, working with the building principal, have the option of selecting or designing a graphic organizer, as long as it fulfills the four-step approach. Alternatives to “The Q” include a four-pane “window pane” or a simple list of the four steps. Another scheme adopted by some schools is being called SQ-RQ-CQ-HQ, which uses the old three steps plus a new fourth step—the “HQ” is the "how" step. Schools using SQ-RQ-CQ-HQ should consider how the advent of online testing will impact its use.

Putting “The Four-Step Problem Solving Plan” into Action

In class, students will use “Four-Step Problem Solving” in a variety of circumstances.

  • Students will participate in whole-class discussion and completion of “Four-Step Problem Solving” pages as the teacher explains math problems to the group. To guide students through the steps, teachers may place a “Four-Step Problem Solving Organizer” transparency on the overhead, affix a “Four-Step Problem Solving Organizer” visual aid to the white board, use a “Four-Step Problem Solving Organizer” poster, or simply draw a “Four-Step Problem Solving Organizer” on the board to fill in the areas of the graphic organizer so that students observe how to solve the problems.
  • Students will work in pairs to complete daily work with a partner using four-step problem solving. Having a partner allows the students to discuss aspects of the problem-solving process, a grouping arrangement which helps them develop the language skills needed for completing the steps of the problem-solving process.
  • Students will complete assignments on their own using the four steps, allowing teachers to gauge their ability to master the steps needed to complete the problem-solving process.

Students can expect to see “Four-Step Problem Solving” used in all phases of math instruction, including assessments. Students will be given problems and asked to identify the main idea, details, and process used, as well as solve for a calculation.

The district’s expectation is that students will ultimately use “Four-Step Problem Solving” for all story problems, unless directed otherwise. When students clearly understand the process and concepts they are studying, teachers may choose to limit the writing of the “how.” Improved student achievement comes in classrooms that routinely and consistently use all four steps of the process.

Using this approach should reduce the number of problems students are assigned. Completing the “Four-Step Problem Solving” should take only a few minutes. As students become familiar with the graphic organizer, they will be able to increase the pace of their work. Students can save time by writing only the main idea (instead of copying the entire question) and by using words or phrases in describing the “how” (instead of complete sentences).

For years, researchers of results on the National Assessment of Educational Progress (  NAEP  ) and the Trends in International Mathematics and Science Study (  TIMSS  ) have cited curricular and instructional differences between U.S. schools and schools in countries that outperform us in mathematics. For example, Japanese students study fewer concepts and work fewer problems than American students do. In Japan , students spend their time in exploring multiple approaches to solving a problem, thereby deepening their understanding of mathematics. Depth of understanding is our goal for students, too, and we believe that the four-step problem-solving plan will help us achieve this goal.

The ultimate goal is that students learn to do the four steps without the use of a pre-printed form. This ability becomes necessary on assessments such as TAKS, since security rules prohibit the teacher from distributing any materials. In 2007, when students may first be expected to take TAKS online, students will need a plan for problem-solving on blank paper to ensure that they don’t just, randomly select an answer—they can’t underline and circle on the computer monitor’s glass.

Assessment and Grading with “The Four-Step Problem Solving Plan”

Assignments using “The Four-Step Problem Solving Plan” may include daily work, homework, quizzes, and tests (including district-developed benchmarks). CFISD’s grade-averaging software includes options for all these categories. As with other assignments, grades may be taken for individuals or for partners/groups. Experienced teachers are already familiar with all these grading scenarios.

Teachers may use a rubric for evaluating student work. The rubric describes expectations for students’ responses and guides teachers in giving feedback. Rubrics may be used in many subjects in school, especially for reviewing students’ written compositions in language arts.

A range of “partial credit” options is possible, depending on the teacher’s judgment regarding the student’s reasoning and thoroughness. Students may be asked to redo incomplete portions to earn back points. Each campus makes a decision about whether the process will be included in one grade or if process will be a separate grade.

Knowledge of students’ thinking will help the teacher to provide the feedback and/or the re-teaching that will get a struggling student back on track, or it will allow the teacher to identify students who have advanced understanding in mathematics so that their curriculum can be adjusted. Looking at students' work and giving feedback may require additional time because the teacher is examining each student's thought processes, not just checking for a correct numeric answer.

Because students’ success in communicating their understanding of a math concept does not require that they use formal language mechanics (complete sentences, perfect spelling, etc.) when completing “The Four-Step Problem Solving Plan,” the rubric does not address these skills, leading math teachers to focus and assign grades that represent the students’ mastery of math concepts.

  • Questions or Feedback? |
  • Web Community Manager Privacy Policy (Updated) |
  • Texas Go Math
  • Big Ideas Math
  • Engageny Math
  • McGraw Hill My Math
  • enVision Math
  • 180 Days of Math
  • Math in Focus Answer Key
  • Math Expressions Answer Key
  • Privacy Policy

CCSS Math Answers

McGraw Hill My Math Grade 4 Chapter 1 Lesson 6 Answer Key Problem Solving Investigation: Use the Four-Step Plan

All the solutions provided in McGraw Hill Math Grade 4 Answer Key PDF Chapter 1 Lesson 6 Problem Solving Investigation: Use the Four-Step Plan  will give you a clear idea of the concepts.

McGraw-Hill My Math Grade 4 Answer Key Chapter 1 Lesson 6 Problem Solving Investigation: Use the Four-Step Plan

1. Understand What facts do you know? Ben, Andy, and Kelly each live in a different city. The populations for each city are: ____; ____; and _____ What do you need to find? the population of _____ city 2. Plan I can order and round the populations. 3. Solve Order the populations from least to greatest. 225,395; 372,952; 373,926 ____ lives in the city with the least population. Round the remaining populations to the nearest thousand. 372,952 rounds to _____. 373,926 rounds to ____ Kelly lives in the city with the population that rounds to 374,000. So, Ben must live in the city that has a population of _____ 4. Check Does your answer make sense? Explain. Answer: Given that, Order the populations from least to greatest. 225,395; 372,952; 373,926. 225,395 lives in the city with the least population. 372,952 rounds to the nearest thousand is 373,000 373,926 rounded to the nearest thousand is 374,000. Kelly lives in the city with the population that rounds to 374,000. So, Ben must live in the city that has a population of 373,926.

Practice the Strategy

McGraw Hill My Math Grade 4 Chapter 1 Lesson 6 Answer Key Problem Solving Investigation Use the Four-Step Plan 9

Apply the Strategy

Solve each problem by using the four-step plan.

McGraw Hill My Math Grade 4 Chapter 1 Lesson 6 Answer Key Problem Solving Investigation Use the Four-Step Plan 8

Question 2. A restaurant made more than $80,000 but less than $90,000 last month. There is a 6 in the ones place, a 3 in the thousands place, a 7 in the hundreds place, and a 1 in the tens place. How much money did the restaurant make last month? Answer: Given that, The restaurant made more than $80,000 less than $90,000 last month. There is 6 in the ones place. 3 in the thousands place. 7 in the hundreds place 1 in the tens place. Therefore the restaurant make in the last month is 83,716. The 83,716 is middle of $80,000 and $90,000.

Question 3. Amy, Lisa, Angie, and Doug live in different states. The populations of those states are 885,122; 5,024,748; 4,492,076; and 2,951,996. Lisa lives in the state with the greatest population. Doug lives in the state with a 2 in the thousands place of the population. Amy lives in the state with the least population. What is the population of Angie’s state? Answer: Given that, The Amy, Lisa, Angie, and Doug live in different states. The population of 4 different states are 885,122; 5,024,748; 4,492,076; and 2,951,996. Lisa lives in the greatest population state that is 885,122. Doug lives in the state with a 2 in the thousands place of the population that is 4,492,076. Amy lives in the least population state that is 2,951,996. Therefore the Angie’s lives in the 5,024,748 population state.

Question 4. The New Meadowlands Stadium in New Jersey seats a large number of fans. There are zeros in the tens and ones places, a 2 in the thousands place, an 8 in the ten thousands place, and a 5 in the hundreds place. How many people does the stadium seat? Answer: Given that, The New Meadowlands Stadium in New Jersey seats a large number of fans. There are zeros in the tens and ones places. 2 in the thousands place 8 in the ten thousands place 5 in the hundreds place Therefore the people in the stadium seat is 82,500.

Review the Strategies

Use any strategy to solve each problem.

  • Make a table.
  • Choose an operation.
  • Act it out.
  • Draw a picture.

McGraw Hill My Math Grade 4 Chapter 1 Lesson 6 Answer Key Problem Solving Investigation Use the Four-Step Plan 10

Question 6. The population of a city has 6 digits. There is a 3 in the tens place, a 5 in the hundred thousands place, a 6 in the ones place, and a 9 in the rest of the places. What is the population of the city? Answer: Given that, The population of a city has 6 digits. There are 3 in the tens place 5 in the hundred thousands place. 6 in the ones place 9 in the rest of the places. Therefore the population of the city is 9,500,036.

Question 7. A warehouse stores cans of paint. There is a 3 in the hundreds place, a 7 in the thousands place, a 5 in the ten thousands place, and an 8 in the rest of the places. This number has 5 digits. How many cans of paint are in the warehouse? Answer: Given that, The warehouses stores cans of paints There are 3 in the hundreds place 7 in the thousands place 5 in the ten thousands place 8 in the rest of the places. The number is a 5 digit number. Therefore the number of cans of paint are in the warehouses is 87,358.

Question 8. Mathematical PRACTICE 7 Identify Structure A car’s mileage is a five-digit number. There is a 3 in the ten thousands place, the ones place, and the tens place. There is a 9 in the hundreds place and the thousands place. What is the car’s mileage? Answer: Given that, The mileage of a car is 5 digits number. The number 3 in the ten thousands place, ones place, and tens place. There is a 9 in the hundreds place and the thousands place. Therefore the car mileage is 39,933.

McGraw Hill My Math Grade 4 Chapter 1 Lesson 6 My Homework Answer Key

Problem Solving

Question 1. A five-digit number has a 3 in the hundreds place, a 7 in the greatest place-value position, a 9 in the ones place, an 8 in the thousands place, and a 6 in the tens place. What is the number? Use the four-step plan. Answer: Given that, The five digit number has 3 in the hundreds place. 7 in the greatest place value position. 9 in the ones place. 8 in the thousands place 6 in the tens place. Therefore the five digits number is 78,369.

Question 2. Use the digits 1—7 to create a seven-digit number that can be rounded to 6,300,000. Answer: The number that can be rounded to the 6,300,000 is We need to assume that the thousands place value is less than or equal to 4 and the number in the ten thousands place is also a 4 or less than 4. Therefore the number is 6,342,517. The number 6,342,517 rounded to 6,300,000.

Question 3. A seven-digit number has a 0 in the ones place, a 6 in the ten thousands place, an 8 in the millions place, and fives in each of the remaining places. What is the number? Answer: Given that, The number is 7 digits number. The number in the ones place is 0. 6 in the ten thousands place. 8 in the millions place 5 in each remaining places. Therefore the 7 digits number is 8,565,550.

McGraw Hill My Math Grade 4 Chapter 1 Lesson 6 Answer Key Problem Solving Investigation Use the Four-Step Plan 11

Question 5. Betsy, Carl, and Dave each live in different cities. The populations of the cities are 194,032; 23,853; and 192,034. Betsy lives in the city with the least population. Carl does not live in the city with the greatest population. What is the population of Dave’s city? Answer: Given that, Betsy, Carl, and Dave each live in different cities. The populations of the cities are 194,032; 23,853; 192,034. Betsy lives in the least population city that is 23,853. Carl does not live in the greatest population city that is 192,034. Therefore the Dave’s lives in the 194,032 population city it is the greatest population city.

Question 6. Mathematical PRACTICE 6 Explain to a Friend Explain how the value of the 7 in 327.902 will chan2e if you move it to the tens place. Answer: The 7 in the thousands place means it is 7000. If you change it to tens place its value is 70.

Leave a Comment Cancel Reply

You must be logged in to post a comment.

  • Share full article

For more audio journalism and storytelling, download New York Times Audio , a new iOS app available for news subscribers.

The Daily logo

  • Apple Podcasts
  • Google Podcasts

Real Teenagers, Fake Nudes: The Rise of Deepfakes in American Schools

Students are using artificial intelligence to create sexually explicit images of their classmates..

problem solving investigation the four step plan

Hosted by Sabrina Tavernise

Featuring Natasha Singer

Produced by Sydney Harper and Shannon M. Lin

Edited by Marc Georges

Original music by Marion Lozano ,  Elisheba Ittoop and Dan Powell

Engineered by Chris Wood

Listen and follow The Daily Apple Podcasts | Spotify | Amazon Music | YouTube

Warning: this episode contains strong language, descriptions of explicit content and sexual harassment

A disturbing new problem is sweeping American schools: Students are using artificial intelligence to create sexually explicit images of their classmates and then share them without the person depicted even knowing.

Natasha Singer, who covers technology, business and society for The Times, discusses the rise of deepfake nudes and one girl’s fight to stop them.

On today’s episode

Natasha Singer , a reporter covering technology, business and society for The New York Times.

A girl and her mother stand next to each other wearing black clothing. They are looking into the distance and their hair is blowing in the wind.

Background reading

Using artificial intelligence, middle and high school students have fabricated explicit images of female classmates and shared the doctored pictures.

Spurred by teenage girls, states have moved to ban deepfake nudes .

There are a lot of ways to listen to The Daily. Here’s how.

We aim to make transcripts available the next workday after an episode’s publication. You can find them at the top of the page.

The Daily is made by Rachel Quester, Lynsea Garrison, Clare Toeniskoetter, Paige Cowett, Michael Simon Johnson, Brad Fisher, Chris Wood, Jessica Cheung, Stella Tan, Alexandra Leigh Young, Lisa Chow, Eric Krupke, Marc Georges, Luke Vander Ploeg, M.J. Davis Lin, Dan Powell, Sydney Harper, Mike Benoist, Liz O. Baylen, Asthaa Chaturvedi, Rachelle Bonja, Diana Nguyen, Marion Lozano, Corey Schreppel, Rob Szypko, Elisheba Ittoop, Mooj Zadie, Patricia Willens, Rowan Niemisto, Jody Becker, Rikki Novetsky, John Ketchum, Nina Feldman, Will Reid, Carlos Prieto, Ben Calhoun, Susan Lee, Lexie Diao, Mary Wilson, Alex Stern, Sophia Lanman, Shannon Lin, Diane Wong, Devon Taylor, Alyssa Moxley, Summer Thomad, Olivia Natt, Daniel Ramirez and Brendan Klinkenberg.

Our theme music is by Jim Brunberg and Ben Landsverk of Wonderly. Special thanks to Sam Dolnick, Paula Szuchman, Lisa Tobin, Larissa Anderson, Julia Simon, Sofia Milan, Mahima Chablani, Elizabeth Davis-Moorer, Jeffrey Miranda, Maddy Masiello, Isabella Anderson, Nina Lassam and Nick Pitman.

Natasha Singer writes about technology, business and society. She is currently reporting on the far-reaching ways that tech companies and their tools are reshaping public schools, higher education and job opportunities. More about Natasha Singer

Advertisement

IMAGES

  1. Master the Art of Problem Solving with our 4 Step Method

    problem solving investigation the four step plan

  2. 4 steps problem solving process powerpoint guide

    problem solving investigation the four step plan

  3. 4 step problem solving

    problem solving investigation the four step plan

  4. What Is The 4 Step Problem Solving Process

    problem solving investigation the four step plan

  5. Problem Solving with the 4-Step Plan Math Posters

    problem solving investigation the four step plan

  6. 4 Steps Problem Solving Template

    problem solving investigation the four step plan

VIDEO

  1. 8 8 Problem Solving Investigation-Strategy : Use Logical Reasoning

  2. Using four step plan on CI problems

  3. Ch. 1, L6-Ex. 2 Video

  4. Chapter 7 Lesson 4 "Problem Solving Investigation" pages 499-504

  5. 5th gr. Ch. 12 Lesson 12 Problem Solving Investigation: Make a Model

  6. 7.4 Grade 5 Chapter 7 Lesson 4 Problem solving Investigation Strategy: Work Backward

COMMENTS

  1. The easy 4 step problem-solving process (+ examples)

    Consider the problem-solving steps applied in the following example. I know that I want to say "I don't eat eggs" to my Mexican waiter. That's the problem. I don't know how to say that, but last night I told my date "No bebo alcohol" ("I don't drink alcohol"). I also know the infinitive for "eat" in Spanish (comer).

  2. The Four-step Problem-solving Process

    The following list of strategies, although not exhaustive, is very useful: 1. Look for a pattern. 2. Examine related problems and determine if the same technique can be applied. 3. Examine a simpler or special case of the problem to gain insight into the solution of the original problem. 4. Make a table.

  3. The Art of Effective Problem Solving: A Step-by-Step Guide

    Step 4 - Implement and Monitor the Solution. When you've decided on the best solution, it's time to put it into action. The fourth and final step in effective problem solving is to put the solution into action, monitor its progress, and make any necessary adjustments. To begin, implement the solution.

  4. PDF FOUR-STEP PLAN FOR PROBLEM SOLVING

    2. Plan See how the facts relate to each other. Make a plan for solving the problem. Estimate the answer. 3. Solve Use your plan to solve the problem. If your plan does not work, revise it or make a new plan. 4. Examine Reread the problem. Ask, "Is my answer close to my estimate?" Ask, "Does my answer make sense for the problem?" If not ...

  5. PDCA (Plan Do Check Act)

    Key Points. The PDCA/PDSA cycle is a continuous loop of planning, doing, checking (or studying), and acting. It provides a simple and effective approach for solving problems and managing change. The model is useful for testing improvement measures on a small scale before updating procedures and working practices.

  6. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  7. Applying the PDCA Cycle: A Blueprint for Continuous Improvement

    The Plan-Do-Check-Act Cycle (PDCA Cycle) is a four-step model for systematic problem solving and continuous improvement. It offers a simple and structured way for resolving business-related issues and creating positive change.This framework is widely recognized as the basis for enhancing the quality of processes, products, and services by following a logical sequence of four steps: Plan, Do ...

  8. PDF 4-Step Plan

    4-Step Plan Problem Solving Strategies EXPLORE 1. What do you know? 2. What do the terms mean? 3. What do you need to fi nd? PLAN 1. Choose a strategy. 2. How do the facts relate to each other? 3. Estimate the answer. SOLVE 1. Use your strategy to solve the problem. 2. Pay close attention to the details of the problem. 3. If the plan does not ...

  9. PDF 4-Step Process for Problem Solving

    Choose a strategy, or combination of strategies. Make a record of false starts, and your corrections. Carry out the plan. Clearly and precisely describe verbally each step of the plan. Verify that each step has been done correctly. Provide mathematical justification for the step (a convincing argument)

  10. PDF The 4-Step Problem-Solving Process

    The 4-Step Problem-Solving Process. This document is the third in a series intended to help school and district leaders maximize the effectiveness and fluidity of their multi-tiered system of supports (MTSS) across different learning environments. Specifically, the document is designed to support the use of problem solving to improve outcomes ...

  11. IDEA Model 4-Step Problem Solving

    How to Solve a Problem in Four Steps - The I.D.E.A. Model. A highly sought after skill, learn a simple yet effective four step problem solving process using the concept IDEA to identify the problem, develop solutions, execute a plan and then assess your results.

  12. MRSC

    The 4-step Problem Solving Method. The model we've used with clients is based on the A3 problem-solving methodology used by many "lean" production-based companies. In addition to being simpler, our 4-step method is visual, which helps remind the user what goes into each box. The steps are as follows. Develop a Problem Statement; Determine ...

  13. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  14. Problem-Solving Investigation

    This resource will help your students understand the Four Step Plan, get used to note-taking, and practice their problem-solving techniques. Introduce "The Four Step Plan" for problem-solving with this note-taking PowerPoint. Each slide includes a model of what students' notes should look like. The presentation includes two example math ...

  15. PDF 12/23/2019 Solution Engineering The Four-Step Model

    There are three basic choices: troubleshooting, performance improvement, and solution engineering. The approach to select is a function of the nature of the problem to be solved. The best clues regarding which approach to use stem from the manner in which the problem came about.

  16. 35 problem-solving techniques and methods for solving complex problems

    6. Discovery & Action Dialogue (DAD) One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions. With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so.

  17. PDF What do we need to know about the 4-step problem solving process?

    How do we ensure fidelity of implementation of the 4-step problem solving process? In addition to monitoring the fidelity with which instruction and intervention are delivered, and the impact on student learning, it is critical to monitor the degree to which we engage in the problem solving process with fidelity. Multiple studies have ...

  18. IXL skill plan

    Lesson 6: Problem-Solving Investigation: Use the Four-Step Plan 1. Comparison word problems with addition and subtraction 2 Chapter 2. Addition ... Lesson 4: Problem-Solving Investigation: Draw a Diagram Unit fractions 1. Unit fractions: modeling word problems 2. Unit fractions: word problems ...

  19. IXL skill plan

    Lesson 9: Problem Solving Investigation: Use the Four Step Plan 1. Add and subtract whole numbers: word problems 2 Chapter 2. Multiply Whole Numbers ... Lesson 4: Problem Solving Investigation: Guess, Check, and Revise 1. Guess-and-check problems

  20. Curriculum & Course Descriptions / The Four-Step Problem Solving Plan

    This problem-solving plan consists of four steps: details, main idea, strategy, and how. As students work through each step, they may use "graphic representations" to organize their ideas, to provide evidence of their mathematical thinking, and to show their strategy for arriving at a solution. Main Idea. In this step, the student is a ...

  21. PDF Homework Practice and Problem-Solving Practice Workbook

    Pdf Pass Homework Practice and Problem-Solving Practice Workbook 000i_0iv_CAG5FM_111966.indd i0i_0iv_CAG5FM_111966.indd i 44/2/08 2:29:30 PM/2/08 2:29:30 PM

  22. McGraw Hill My Math Grade 5 Chapter 1 Lesson 9 Answer Key Problem

    All the solutions provided in McGraw Hill Math Grade 5 Answer Key PDF Chapter 1 Lesson 9 Problem-Solving Investigation: Use the Four-Step Plan will give you a clear idea of the concepts. ... Solve each problem using the four-step plan. Question 1. The table shows the number of ounces of buffer Marti used in different recipes. She has 6 ounces ...

  23. McGraw Hill My Math Grade 4 Chapter 1 Lesson 6 Answer Key Problem

    All the solutions provided in McGraw Hill Math Grade 4 Answer Key PDF Chapter 1 Lesson 6 Problem Solving Investigation: Use the Four-Step Plan will give you a clear idea of the concepts. ... Solve each problem by using the four-step plan. Question 1. Mathematical PRACTICE 5 Use Math Tools Mr. Kramer is buying a car. The list of prices is shown ...

  24. Real Teenagers, Fake Nudes: The Rise of Deepfakes in American Schools

    Warning: this episode contains strong language, descriptions of explicit content and sexual harassment. A disturbing new problem is sweeping American schools: Students are using artificial ...