Back Home

  • Search Search Search …
  • Search Search …

Taking a systems thinking approach to problem solving

systems thinking approach to problem solving

Systems thinking is an approach that considers a situation or problem holistically and as part of an overall system which is more than the sum of its parts. Taking the big picture perspective, and looking more deeply at underpinnings, systems thinking seeks and offers long-term and fundamental solutions rather than quick fixes and surface change.

Whether in environmental science, organizational change management, or geopolitics, some problems are so large, so complicated and so enduring that it’s hard to know where to begin when seeking a solution.

A systems thinking approach might be the ideal way to tackle essentially systemic problems. Our article sets out the basic concepts and ideas.

What is systems thinking?

Systems thinking is an approach that views an issue or problem as part of a wider, dynamic system. It entails accepting the system as an entity in its own right rather than just the sum of its parts, as well as understanding how individual elements of a system influence one another.

When we consider the concepts of a car, or a human being we are using a systems thinking perspective. A car is not just a collection of nuts, bolts, panels and wheels. A human being is not simply an assembly of bones, muscles, organs and blood.

In a systems thinking approach, as well as the specific issue or problem in question, you must also look at its wider place in an overall system, the nature of relationships between that issue and other elements of the system, and the tensions and synergies that arise from the various elements and their interactions.

The history of systems thinking is itself innately complex, with roots in many important disciplines of the 20th century including biology, computing and data science. As a discipline, systems thinking is still evolving today.

How can systems thinking be applied to problem solving?

A systems thinking approach to problem solving recognizes the problem as part of a wider system and addresses the whole system in any solution rather than just the problem area.

A popular way of applying a systems thinking lens is to examine the issue from multiple perspectives, zooming out from single and visible elements to the bigger and broader picture (e.g. via considering individual events, and then the patterns, structures and mental models which give rise to them).

Systems thinking is best applied in fields where problems and solutions are both high in complexity. There are a number of characteristics that can make an issue particularly compatible with a systems thinking approach:

  • The issue has high impact for many people.
  • The issue is long-term or chronic rather than a one-off incident.
  • There is no obvious solution or answer to the issue and previous attempts to solve it have failed.
  • We have a good knowledge of the issue’s environment and history through which we can sensibly place it in a systems context.

If your problem does not have most of these characteristics, systems thinking analysis may not work well in solving it.

Areas where systems thinking is often useful include health, climate change, urban planning, transport or ecology.

What is an example of a systems thinking approach to problem solving?

A tool called the iceberg mode l can be useful in learning to examine issues from a systems thinking perspective. This model frames an issue as an iceberg floating in a wider sea, with one small section above the water and three large sections unseen below.

The very tip of the iceberg, visible above the waterline, shows discrete events or occurrences which are easily seen and understood. For example, successive failures of a political party to win national elections.

Beneath the waterline and invisible, lie deeper and longer-term trends or patterns of behavior. In our example this might be internal fighting in the political party which overshadows and obstructs its public campaigning and weakens its leadership and reputation.

Even deeper under the water we can find underlying causes and supporting structures which underpin the patterns and trends.

For our failing political party, this could mean party rules and processes which encourage internal conflict and division rather than resolving them, and put off the best potential candidates from standing for the party in elections.

The electoral system in the country may also be problematic or unfair, making the party so fearful and defensive against losing its remaining support base, that it has no energy or cash to campaign on a more positive agenda and win new voters.

Mental models

At the very base of the iceberg, deepest under the water, lie the mental models that allow the rest of the iceberg to persist in this shape. These include the assumptions, attitudes, beliefs and motivations which drive the behaviors, patterns and events seen further up in the iceberg.

In this case, this could be the belief amongst senior party figures that they’ve won in the past and can therefore win again someday by repeating old campaigns. Or a widespread attitude amongst activists in all party wings that with the right party leader, all internal problems will melt away and voter preferences will turn overnight.

When is a systems thinking approach not helpful?

If you are looking for a quick answer to a simple question, or an immediate response to a single event, then systems thinking may overcomplicate the process of solving your problem and provide you with more information than is helpful, and in slower time than you need.

For example, if a volcano erupts and the local area needs to be immediately evacuated, applying a thorough systems thinking approach to life in the vicinity of an active volcano is unlikely to result in a more efficient crisis response or save more lives. After the event, systems thinking might be more constructive when considering town rebuilding, local logistics and transport links.

In general, if a problem is short-term, narrow and/or linear, systems thinking may not be the right model of thinking to use.

A final word…

The biggest problems in the real world are rarely simple in nature and expecting a quick and simple solution to something like climate change or cancer would be naive.

If you’d like to know more about applying systems thinking in real life there are many online resources, books and courses you can access, including in specific fields (e.g. FutureLearn’s course on Understanding Systems Thinking in Healthcare ).

Whether you think of it as zooming out to the big picture while retaining a focus on the small, or looking deeper under the water at the full shape of the iceberg, systems thinking can be a powerful tool for finding solutions that recognize the interactions and interdependence of individual elements in the real world.

You may also like

explain system approach to problem solving

Best Books on Systems Thinking: Top Picks for 2023

Systems thinking is an approach to problem-solving that embraces viewing complex systems as a whole, rather than focusing on individual components. This […]

Critical Thinking vs. Systems Thinking

Exploring Critical Thinking vs. Systems Thinking

There are many differences between Critical Thinking vs Systems Thinking. Critical Thinking involves examining and challenging thoughts or ideas, while Systems Thinking […]

Systems Thinking vs. Linear Thinking

Systems Thinking vs. Linear Thinking: Understanding the Key Differences

Systems Thinking and Linear Thinking are two approaches to problem-solving and decision-making that can significantly impact the effectiveness of a given solution. […]

Systems Thinking for School Leaders

Systems Thinking for School Leaders: A Comprehensive Approach to Educational Management

Systems thinking is a powerful approach that school leaders can harness to navigate the complex landscape of education. With increasing challenges, such […]

  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

Computer Notes

  • Computer Fundamental
  • Computer Memory
  • DBMS Tutorial
  • Operating System
  • Computer Networking
  • C Programming
  • C++ Programming
  • Java Programming
  • C# Programming
  • SQL Tutorial
  • Management Tutorial
  • Computer Graphics
  • Compiler Design
  • Style Sheet
  • JavaScript Tutorial
  • Html Tutorial
  • Wordpress Tutorial
  • Python Tutorial
  • PHP Tutorial
  • JSP Tutorial
  • AngularJS Tutorial
  • Data Structures
  • E Commerce Tutorial
  • Visual Basic
  • Structs2 Tutorial
  • Digital Electronics
  • Internet Terms
  • Servlet Tutorial
  • Software Engineering
  • Interviews Questions
  • Basic Terms
  • Troubleshooting

Header Right

Systems approach to problem solving.

By Dinesh Thakur

Systems approach is widely used in problem solving in different contexts. Researchers in the field of science and technology have used it for quite some time now. Business problems can also be analyzed and solved using this approach. The following steps are required for this:

We’ll be covering the following topics in this tutorial:

Defining the Problem

This is the step when the problem has to be defined. Sometimes one may confuse the symptoms or the exhibition of a behavior to be a problem but actually it may only be a symptom of a larger malaise. It may just exhibit the behavior of a larger phenomenon. It is vital to drill deep into an issue and clearly understand the problem rather than having a superficial understanding of the problem. One must appreciate that this in the initial stage of problem solving and if the problem itself is not correctly diagnosed then the solution will obviously be wrong. Systems approach is therefore used to understand the problem in granular detail to establish requirement and objectives in-depth. By using the systems approach the problem will be analyzed in its totality with inherent elements and their interrelationships and therefore this detailed analysis will bring out the actual problem and separate out the symptom from it.

Developing Alternative Solutions

This the logical next step in the systems approaches for problem solving. In this stage alternative solutions are generated. This requires creativity and innovation. In this stage-the analyst uses creativity to come up with possible solutions to the problem. Typically in this stage only the outline of solutions are generated rather than the actual solutions.

Selecting a Solution

In this step, the solution that suits the requirement and objectives in the most comprehensive manner is selected as the ‘best’ solution. This is done after evaluating all the possible solutions and then comparing the possible set of solutions to find the most suitable solution lot of mathematical, financial and technical models is used to select the most appropriate solution.

Designing the Solution

Once the most appropriate solution is chosen, it is then made into a design document to give it the shape of an actionable solution, as in the evaluation stage, only the outline of the solution is used. At this stage the details of the solution are worked out to create the blueprint for the solution. Several design diagrams are used to prepare the design document. At this stage the requirement specifications are again compared with the solution design to double check the suitability of the solution for the problem.

Implementing the Solution

It is the next step in the process. The solution that has been designed is implemented as per the specifications -laid down in the design document. During implementation care is taken to ensure that there are no deviations from the design.

Reviewing the Solution

This is the final step in the problem solving process where the review of the impact of the solution is noted. This is a stage for finding out if the desired result has been achieved that was set out.

A Systems Approach Example

Let us assume that A is the coach of the Indian cricket team. Let us also assume that the objective that A has been entrusted with is to secure a win over the touring Australian cricket team. The coach uses a systems approach to attain this objective. He starts by gathering information about his own team.

Through systems approach he views his own Indian team as a system whose environment would include the other team in the competition, umpires, regulators, crowd and media. His system, i.e., team itself maybe conceptualized as having two subsystems, i.e., players and supporting staff for players. Each subsystem would have its own set of components/entities like the player subsystem will have openers, middle order batsmen, fast bowlers, wicket keeper, etc. The supporting staff subsystem would include bowling coach, batting coach, physiotherapist, psychologist, etc. All these entities would indeed have a bearing on the actual outcome of the game. The coach adopts a systems approach to determine the playing strategy that he will adopt to ensure that the Indian side wins. He analyses the issue in a stepwise manner as given below:

Step 1: Defining the problem-In this stage the coach tries to understand the past performance of his team and that of the other team in the competition. His objective is to defeat the competing team. He realizes that the problem he faces is that of losing the game. This is his main problem.

Step 2: Collecting data-The coach employs his supporting staff to gather data on the skills and physical condition of the players in the competing team by analyzing past performance data, viewing television footage of previous games, making psychological profiles of each player. The support staff analyses the data and comes up with the following observations:

  • Both teams use an aggressive strategy during the period of power play. The competing Australian team uses the opening players to spearhead this attack. However, recently the openers have had a personal fight and are facing interpersonal problems.
  • The game is being played in Mumbai and the local crowd support is estimated to be of some value amounting to around fifty runs. Also the crowd has come to watch the Indian team win. A loss here would cost the team in terms of morale.
  • The umpires are neutral and are not intimidated by large crowd support but are lenient towards sledging.

Step 3: Identifying alternatives-Based on the collected data the coach generates the following alternate strategies:

  • Play upon the minds of the opening players of the competitors by highlighting their personal differences using sledging alone.
  • Employ defensive tactics during power play when the openers are most aggressive and not using sledging.
  • Keep close in fielders who would sledge and employ the best attacking bowlers of the Indian team during the power play.

Step 4: Evaluating alternatives-After having generated different alternatives, the coach has to select only one. The first alternative may lead to loss of concentration on the part of openers and result in breakthroughs. However, there is a chance that the interpersonal differences between the two openers may have already been resolved before they come to the field and in such a case this strategy will fail. The second strategy provides a safer option in the sense that it will neutralize the aggressive game of the openers but there is limited chance of getting breakthroughs. The third option of employing aggressive close in fielders to play upon the internal personal differences of the openers and at the same time employing the best bowlers may lead to breakthroughs and may also restrict the aggressive openers.

Step 5: Selecting the best alternative-The coach selects the third alternative as it provides him with the opportunity of neutralizing the aggressive playing strategy of the openers as well as increases the chances of getting breakthrough wickets.

Step 6: Implementing and monitoring-The coach communicates his strategy to his players and support staff, instructs support staff to organize mock sessions and tactics to be employed to make the strategy a success. The players and support staff performance is monitored by the coach on a regular basis to ensure that the strategy is employed perfectly.

Simplifying a System or Applying Systems Approach For Problem Solving

The easiest way to simplify a system for better understanding is to follow a two-stage approach.

Partitioning the System into Black Boxes

This is the first stage of the simplification process, in this stage the system is partitioned into black boxes. Black boxes need limited knowledge to be constructed. To construct a black box one needs to know the input that goes into it, the output that comes out of it and its function. The knowledge of how the functionality is achieved is not required for constructing a black box. Black box partitioning helps in the comprehension of the system, as the entire system gets broken down into granular functionalities of a set of black boxes.

Organizing the Black Boxes into Hierarchies

This is the second stage of the simplification process, in this stage the black boxes constructed in the earlier phase are organized into hierarchies so that the relationships among the black boxes is easily established. Once, a hierarchy of the black boxes is established, the system becomes easier to understand as the internal working of the system becomes clearer.

You’ll also like:

  • What is Systems Approach? Definition and Meaning
  • Basic Concepts of the Systems Approach
  • Database Approach
  • Types of Systems
  • Information Systems Planning

Dinesh Thakur

Dinesh Thakur is a Freelance Writer who helps different clients from all over the globe. Dinesh has written over 500+ blogs, 30+ eBooks, and 10000+ Posts for all types of clients.

For any type of query or something that you think is missing, please feel free to Contact us .

Basic Course

  • Database System
  • Management System
  • Electronic Commerce

Programming

  • Structured Query (SQL)
  • Java Servlet

World Wide Web

  • Java Script
  • HTML Language
  • Cascading Style Sheet
  • Java Server Pages

MBA Knowledge Base

Business • Management • Technology

Home » Management Information Systems » Systems Approach to Problem Solving

Systems Approach to Problem Solving

The systems approach to problem solving used a systems orientation to define problems and opportunities and develop solutions. Studying a problem and formulating a solution involve the following interrelated activities:

  • Recognize and define a problem or opportunity using systems thinking.
  • Develop and evaluate alternative system solutions.
  • Select the system solution that best meets your requirements.
  • Design the selected system solution.
  • Implement and evaluate the success of the designed system.

1. Defining Problems and Opportunities

Problems and opportunities are identified in the first step of the systems approach. A problem can be defined as a basic condition that is causing undesirable results. An opportunity is a basic condition that presents the potential for desirable results. Symptoms must be separated from problems. Symptoms are merely signals of an underlying cause or problem.

Symptom: Sales of a company’s products are declining. Problem: Sales persons are losing orders because they cannot get current information on product prices and availability. Opportunity: We could increase sales significantly if sales persons could receive instant responses to requests for price quotations and product availability.

2. Systems Thinking

Systems thinking is to try to find systems, subsystems, and components of systems in any situation your are studying. This viewpoint ensures that important factors and their interrelationships are considered. This is also known as using a systems context, or having a systemic view of a situation. I example, the business organization or business process in which a problem or opportunity arises could be viewed as a system of input, processing, output, feedback, and control components. Then to understand a problem and save it, you would determine if these basic system functions are being properly performed.

The sales function of a business can be viewed as a system. You could then ask: Is poor sales performance (output) caused by inadequate selling effort (input), out-of-date sales procedures (processing), incorrect sales information (feedback), or inadequate sales management (control)? Figure illustrates this concept.

3. Developing Alternate Solutions

There are usually several different ways to solve any problem or pursue any opportunity. Jumping immediately from problem definition to a single solution is not a good idea. It limits your options and robs you of the chance to consider the advantages and disadvantages of several alternatives. You also lose the chance to combine the best points of several alternative solutions.

Where do alternative solutions come from/ experience is good source. The solutions that have worked, or at least been considered in the past, should be considered again. Another good source of solutions is the advice of others, including the recommendations of consultants and the suggestions of expert systems. You should also use your intuition and ingenuity to come up with a number of creative solutions. These could include what you think is an ideal solution. The, more realistic alternatives that recognize the limited financial, personnel, and other resources of most organizations could be developed. Also, decision support software packages can be used to develop and manipulate financial, marketing, and other business operations. This simulation process can help you generate a variety of alternative solutions. Finally, don’t forget that “doing nothing” about a problem or opportunity is a legitimate solution, with its own advantages and disadvantages.

4. Evaluating Alternate Solutions

Once alternative solutions have been developed, they must be evaluated so that the best solution can be identified. The goal of evaluation is to determine how well each alternative solution meets your business and personal requirements. These requirements are key characteristics and capabilities that you feed are necessary for your personal or business success.

If you were the sales manager of a company, you might develop very specific requirements for solving the sales-related information problems of your salespeople. You would probably insist that any computer-based solution for your sales force be very reliable and easy to use. You might also require that any proposed solution have low start-up costs, or have minimal operating costs compared to present sales processing methods.

Then you would develop evaluation criteria and determine how well each alternative solution meets these criteria. The criteria you develop will reflect how you previously defined business and personal requirements. For example, you will probably develop criteria for such factors as start-up costs, operating costs, ease of use, and reliability. Criteria may be ranked or weighted, based on their importance in meeting your requirements.

5. Selecting the Best Solution

Once all alternative solutions have been evaluated, you can being the process of selecting the best solution. Alternative solutions can be compared to each other because they have been evaluated using the same criteria.

Alternatives with a low accuracy evaluation (an accuracy score less than 10), or a low overall evaluation (an overall score less than 70) should be rejected. Therefore, alternative B for sales data entry is rejected, and alternative A, the use of laptop computers by sales reps, is selected.

6. Desingning and Implementing Solution

Once a solution has been selected, it must be designed and implemented. You may have to depend on other business end users technical staff to help you develop design specifications and an implementation plan. Typically, design specifications might describe the detailed characteristics and capabilities of the people, hardware, software, and data resources and information system activities needed by a new system. An implementation plan specifies the resources, activities, and timing needed for proper implementation. For example, the following items might be included in the design specifications and implementation plan for a computer-based sales support system:

  • Types and sources of computer hardware, and software to be acquired for the sales reps.
  • Operating procedures for the new sales support system.
  • Training of sales reps and other personnel.
  • Conversion procedures and timetable for final implementation.

7. Post Implementation Review

The final step of the systems approach recognizes that an implemented solution can fail to solve the problem for which it was developed. The real world has a way of confounding even the most well-designed solutions. Therefore, the results of implementing a solution should be monitored and evaluated. This is called a postimple-implemented. The focus of this step is to determine if the implemented solution has indeed helped the firm and selected subsystems meet their system objectives. If not, the systems approach assumes you will cycle back to a previous step and make another attempt to find a workable solution.

Related posts:

  • Operations Research approach of problem solving
  • Systems Approach to Management
  • How Creativity Helps in Problem Solving Process?
  • Case Study on Information Systems: Cisco Systems
  • The Concept of Systems
  • Types of Systems
  • Types of Information Systems
  • Strategic Information Systems
  • Business benefits of ERP systems
  • Role of a Systems Analyst in Organizations

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

logo-sm

Reqi Systems Engineering Articles

Understanding Systems Thinking: A Path to Insightful Problem-Solving

Understanding Systems Thinking: A Path to Insightful Problem-Solving

In today’s dynamic and complex business landscape, traditional problem-solving approaches often fall short in addressing persistent challenges. Enter systems thinking, a powerful methodology that offers a fresh perspective by considering the interconnectedness of various elements within a system. In this article, we delve into the fundamentals of systems thinking, exploring its principles, benefits, and practical tips for beginners. Whether you’re eager to introduce this approach in your organisation or looking to enhance your problem-solving skills, let’s embark on a journey of understanding the intricacies of systems thinking.

Table of Contents

Understanding Systems Thinking

Practical tips for beginners, the benefits of systems thinking, when to apply systems thinking, getting started, utilising systems thinking tools, indicators of progress in systems thinking.

Systems thinking encompasses a broad range of principles, tools, and a philosophical mindset. It involves understanding the circular nature of the world we live in, recognising the role of structures in shaping the conditions we face, and acknowledging the existence of powerful laws governing systems. By adopting a systems thinking approach, we gain a deeper understanding of the consequences of our actions, allowing us to make more informed decisions.

  • Study Archetypes: Dive into the classic stories and patterns to enhance your understanding.
  • Practice Frequently: Analyse real-world scenarios, such as newspaper articles and current headlines, through a systems lens.
  • Apply Systems Thinking Everywhere: Extend your application of systems thinking beyond the workplace to gain a holistic perspective.
  • Embrace Different Perspectives: Use systems thinking to explore alternative viewpoints and understand how others perceive a system.
  • Accept the Learning Curve: Recognise that becoming skilled in utilising systems thinking tools takes time and practice. Embrace the journey!

Systems thinking offers several compelling reasons to adopt its principles in problem-solving endeavours. By broadening our thinking and enabling us to articulate problems in novel ways, it expands the range of choices available for resolving complex issues. Furthermore, systems thinking emphasises the importance of considering the interconnectedness of various elements, highlighting that every decision has ripple effects throughout the system. By anticipating these impacts, we can make informed choices and minimise unintended consequences.

Ideally, systems thinking is suited for problems with the following characteristics:

  • Importance: The issue at hand holds significant significance.
  • Chronicity: The problem persists over time, rather than being a one-time event.
  • Familiarity: The problem has a known history, indicating previous attempts at resolution.
  • Previous Failures: Past efforts to solve the problem have been unsuccessful.

When approaching a problem through systems thinking, it’s crucial to foster a blame-free environment. Instead of focusing on assigning blame, encourage curiosity within the team. Prompt discussions by asking thought-provoking questions like, “What aspects of this problem are we failing to comprehend?”

To ensure a comprehensive analysis, employ the iceberg framework. Encourage the team to describe the problem by examining its events, patterns, and underlying structures. Additionally, diverse perspectives are essential. Involve individuals from various departments or functional areas to capture a comprehensive range of mental models.

One of the fundamental tools in systems thinking is the causal loop diagram. When using this tool, remember that simplicity is key. Start with a small and straightforward diagram, gradually adding elements as necessary. The diagram should reflect the story your group aims to depict accurately. Don’t fret about creating a diagram that includes every variable; focus on capturing the causal relationships that matter most.

Another valuable resource in systems thinking is the use of archetypes. These classic stories serve as powerful illustrations of systems behaviour. Keep the application of archetypes simple and relatable, allowing individuals to draw parallels between the archetypes and their own problems.

As you progress in your journey of applying systems thinking, it’s essential to gauge your proficiency and recognise when you have truly grasped its principles. Here are some indicators that can help you determine if you’re on the right track:

  • Asking Different Kinds of Questions: A hallmark of systems thinking is a shift in the types of questions you ask. Instead of focusing solely on immediate causes and effects, you start exploring the underlying systemic structures and interconnections. You find yourself inquiring about feedback loops, dependencies, and unintended consequences, seeking a more holistic understanding of the system at play.
  • Recognising Cautionary Flags: With a growing understanding of systems thinking, you become attuned to catchphrases that may oversimplify complex problems. For instance, when someone suggests, “The problem is we need more (sales staff, revenue),” you instinctively recognise the need to delve deeper. You redirect the discussion towards systemic factors, understanding that increasing staff or revenue alone may not address the root causes.
  • Detecting Archetypes and Balancing Processes: As you deepen your knowledge of systems thinking, you begin to identify recurring patterns or archetypes in stories and real-world situations. These archetypes, such as “The Tragedy of the Commons” or “Shifting the Burden,” illustrate common systemic behaviours. Recognising these archetypes enables you to spot imbalances and reinforcing processes within a system, facilitating a more comprehensive analysis of complex issues.
  • Surfacing Mental Models: Systems thinking invites a deep exploration of mental models—the deeply held beliefs, assumptions, and perspectives that shape our understanding of the world. As you progress, you become adept at recognising and challenging your own mental models and those of others. By surfacing and examining these mental models, you can uncover potential biases and broaden your perspective, enabling more robust problem-solving.
  • Identifying Leverage Points: Leverage points are strategic areas within a system where interventions can have a significant and lasting impact. With increasing proficiency in systems thinking, you start recognising these leverage points, understanding which actions can create meaningful change. This heightened awareness empowers you to identify leverage points in classic systems stories and apply them creatively to real-world challenges.

Systems thinking is a transformative approach to problem-solving, offering a powerful lens through which to understand complex issues. By embracing these principles and utilising its tools, you can unlock fresh insights and uncover interconnected patterns. Whether you’re just beginning your journey or seeking to refine your skills, systems thinking empowers you to tackle challenges more comprehensively, paving the way for effective and sustainable solutions.

Remember, systems thinking is not just a method; it’s a lifelong practice that cultivates curiosity, clarity, compassion, choice, and courage. Embrace this holistic approach, and you’ll witness a paradigm shift in the way you perceive the world and address complex problems.

Related Posts

Agile vs. Traditional Project Management

Leave a Reply Cancel reply

You must be logged in to post a comment.

Hey! You are using an outdated browser. Please upgrade your browser to improve your experience.

The Systems Thinker -

Systems Thinking: What, Why, When, Where, and How?

I f you’re reading The Systems Thinker®, you probably have at least a general sense of the benefits of applying systems thinking in the work-place. But even if you’re intrigued by the possibility of looking at business problems in new ways, you may not know how to go about actually using these principles and tools. The following tips are designed to get you started, whether you’re trying to introduce systems thinking in your company or attempting to implement the tools in an organization that already supports this approach.

What Does Systems Thinking Involve?

Tips for beginners.

  • Study the archetypes.
  • Practice frequently, using newspaper articles and the day’s headlines.
  • Use systems thinking both at work and at home.
  • Use systems thinking to gain insight into how others may see a system differently.
  • Accept the limitations of being in-experienced; it may take you a while to become skilled at using the tools. The more practice, the quicker the process!
  • Recognize that systems thinking is a lifelong practice

It’s important to remember that the term “systems thinking” can mean different things to different people. The discipline of systems thinking is more than just a collection of tools and methods – it’s also an underlying philosophy. Many beginners are attracted to the tools, such as causal loop diagrams and management flight simulators, in hopes that these tools will help them deal with persistent business problems. But systems thinking is also a sensitivity to the circular nature of the world we live in; an awareness of the role of structure in creating the conditions we face; a recognition that there are powerful laws of systems operating that we are unaware of; a realization that there are consequences to our actions that we are oblivious to. Systems thinking is also a diagnostic tool. As in the medical field, effective treatment follows thorough diagnosis. In this sense, systems thinking is a disciplined approach for examining problems more completely and accurately before acting. It allows us to ask better questions before jumping to conclusions. Systems thinking often involves moving from observing events or data, to identifying patterns of behavior overtime, to surfacing the underlying structures that drive those events and patterns. By understanding and changing structures that are not serving us well (including our mental models and perceptions), we can expand the choices available to us and create more satisfying, long-term solutions to chronic problems. In general, a systems thinking perspective requires curiosity, clarity, compassion, choice, and courage. This approach includes the willingness to see a situation more fully, to recognize that we are interrelated, to acknowledge that there are often multiple interventions to a problem, and to champion interventions that may not be popular (see “The Systems Orientation: From Curiosity to Courage,”V5N9).

Why Use Systems Thinking?

Systems thinking expands the range of choices available for solving a problem by broadening our thinking and helping us articulate problems in new and different ways. At the same time, the principles of systems thinking make us aware that there are no perfect solutions; the choices we make will have an impact on other parts of the system. By anticipating the impact of each trade-off, we can minimize its severity or even use it to our own advantage. Systems thinking therefore allows us to make informed choices. Systems thinking is also valuable for telling compelling stories that describe how a system works. For example, the practice of drawing causal loop diagrams forces a team to develop shared pictures, or stories, of a situation. The tools are effective vehicles for identifying, describing, and communicating your understanding of systems, particularly in groups.

When Should We Use Systems Thinking?

Problems that are ideal for a systems thinking intervention have the following characteristics:

  • The issue is important.
  • The problem is chronic, not a one-time event.
  • The problem is familiar and has a known history.
  • People have unsuccessfully tried to solve the problem before.

Where Should We Start?

When you begin to address an issue, avoid assigning blame (which is a common place for teams to start a discussion!). Instead, focus on items that people seem to be glossing over and try to arouse the group’s curiosity about the problem under discussion. To focus the conversation, ask, “What is it about this problem that we don’t understand?”

In addition, to get the full story out, emphasize the iceberg framework. Have the group describe the problem from all three angles: events, patterns, and structure (see “The Iceberg”). Finally, we often assume that everyone has the same picture of the past or knows the same information. It’s therefore important to get different perspectives in order to make sure that all viewpoints are represented and that solutions are accepted by the people who need to implement them. When investigating a problem, involve people from various departments or functional areas; you may be surprised to learn how different their mental models are from yours.

How Do We Use Systems Thinking Tools?

Causal Loop Diagrams. First, remember that less is better. Start small and simple; add more elements to the story as necessary. Show the story in parts. The number of elements in a loop should be determined by the needs of the story and of the people using the diagram. A simple description might be enough to stimulate dialogue and provide a new way to see a problem. In other situations, you may need more loops to clarify the causal relationships you are surfacing.

THE ICEBERG

THE ICEBERG

The Archetypes. When using the archetypes, or the classic stories in systems thinking, keep it simple and general. If the group wants to learn more about an individual archetype, you can then go into more detail. Don’t try to “sell” the archetypes; people will learn more if they see for themselves the parallels between the archetypes and their own problems. You can, however, try to demystify the archetypes by relating them to common experiences we all share.

How Do We Know That We’ve “Got It”?

Here’s how you can tell you’ve gotten a handle on systems thinking:

  • You’re asking different kinds of questions than you asked before.
  • You’re hearing “catchphrases” that raise cautionary flags. For example, you find yourself refocusing the discussion when someone says, “The problem is we need more (sales staff, revenue).”
  • You’re beginning to detect the archetypes and balancing and reinforcing processes in stories you hear or read.
  • You’re surfacing mental models (both your own and those of others).
  • You’re recognizing the leverage points for the classic systems stories.

Once you’ve started to use systems thinking for inquiry and diagnosis, you may want to move on to more complex ways to model systems-accumulator and flow diagrams, management flight simulators, or simulation software. Or you may find that adopting a systems thinking perspective and using causal loop diagrams provide enough insights to help you tackle problems. However you proceed, systems thinking will forever change the way you think about the world and approach issues. Keep in mind the tips we’ve listed here, and you’re on your way!

Michael Goodman is principal at Innovation Associates Organizational Learning

Related Articles

Moving from blame to accountability.

When something goes wrong in an organization, the first question that is often posed is, “Whose fault is…

The “Thinking” in Systems Thinking: How Can We Make It Easier to Master?

Despite significant advances in personal computers and systems thinking software over the last decade, learning to apply systems…

What is Your Organization’s Core Theory of Success?

Managers in today’s organizations are continually confronted with new challenges and increased performance expectations. At the same time,…

Breaking the Cycle of Organizational Addiction

Every so often in the world of business, we see an enterprise that, after years of steady progress…

Sign up to stay in the loop

Receive updates of new articles and save your favorites..

  • First Name *
  • Last Name *
  • Password * Enter Password Confirm Password

Academics & Programs

Faculty & research, ulmer career management center, alumni & friends, news & events.

  • Resources for:
  • Current Students
  • Staff & Faculty Resources
  • Recruiters & Employers
  • Press & Media

About the College of Business

The UofL College of Business enhances the intellectual and economic vitality of our city, the region, and the broader business world through our academic programs, research, and community outreach activities. We strongly believe that lives improve through entrepreneurship, innovation, critical and rigorous thinking, diverse ideas, and people.

The University of Louisville College of Business offers a wide variety of degree programs to help you accelerate your success and achieve your professional goals. Whether you’re laying a strong foundation for your business career, taking the next big step on your professional journey, or building specialized industry expertise, we’ve got you covered.

UofL College of Business faculty pride themselves on real-world experience and depth of research. They value innovation, critical thinking, and the exchange of new ideas. Our distinguished faculty will help you achieve your goals — before and after graduation.

The Ulmer Career Management Center is a state-of-the-art resource connecting local, regional, and international employers with high-potential College of Business students and alumni.

The UofL College of Business continues to succeed thanks to the commitment and resources of alumni and friends. Learn about our latest initiatives, the impact of our alumni on our mission, and how you can stay involved.

Get up-to-date on the latest news from the College of Business community.

  • Staff & Faculty

Systems Thinking: How to Solve Problems So They Stay Solved

From production to customer service and marketing, organizations are made up of a series of interconnected parts. While each function may appear to operate efficiently on its own, a change in just one cog can throw the whole system out of whack. The problems that arise in interconnected organizations can be difficult to solve.

Systems thinking is problem-solving approach that examines the relationships between functions in an organization. Systems thinking is powerful because it enables you to predict the consequences of a potential change. This problem-solving method can also help you eliminate silos, see different viewpoints, and remain focused on the big picture.

Ultimately, systems thinking empowers you to solve problems so that they stay solved. Instead of offering quick-fix solutions that work only in the short term, systems thinking helps you make decisions that benefit your organization in the long run.

You will learn how to:

  • Apply systems thinking in the workplace in ways that benefit you and your organization: encouraging innovation, learning from mistakes, and enhancing leadership and management skills.
  • Apply the tools of systems thinking to solve a problem.
  • Minimize the unintended consequences of major decisions.

Seminar Fee

$430 (includes instruction, seminar manual, refreshments, certificate of completion and parking)

Stay Notified of Upcoming Classes

Interested to learn about our other programs? Check out our other Seminars . Or sign up and we will keep you informed about future educational offerings.

  • Search all Louisville
  • Search College of Business

What 'systems thinking' actually means - and why it matters for innovation today

explain system approach to problem solving

Systems thinking helps us see the part of the iceberg that's beneath the water Image:  Ezra Jeffrey

.chakra .wef-1c7l3mo{-webkit-transition:all 0.15s ease-out;transition:all 0.15s ease-out;cursor:pointer;-webkit-text-decoration:none;text-decoration:none;outline:none;color:inherit;}.chakra .wef-1c7l3mo:hover,.chakra .wef-1c7l3mo[data-hover]{-webkit-text-decoration:underline;text-decoration:underline;}.chakra .wef-1c7l3mo:focus,.chakra .wef-1c7l3mo[data-focus]{box-shadow:0 0 0 3px rgba(168,203,251,0.5);} Christian Tooley

explain system approach to problem solving

.chakra .wef-9dduvl{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-9dduvl{font-size:1.125rem;}} Explore and monitor how .chakra .wef-15eoq1r{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;color:#F7DB5E;}@media screen and (min-width:56.5rem){.chakra .wef-15eoq1r{font-size:1.125rem;}} Innovation is affecting economies, industries and global issues

A hand holding a looking glass by a lake

.chakra .wef-1nk5u5d{margin-top:16px;margin-bottom:16px;line-height:1.388;color:#2846F8;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-1nk5u5d{font-size:1.125rem;}} Get involved with our crowdsourced digital platform to deliver impact at scale

Stay up to date:.

  • Systems thinking can help us grasp the interconnectedness of our world.
  • During the uncertainty of the pandemic, it can spur innovation.

We are currently living through VUCA (volatile, uncertain, complex and ambiguous) times.

As innovators, general professionals, key workers, citizens and humans, everything we do is ever more interdependent on each other. ‘No man is an island’ is a well-known phrase, yet in practice, how often do we understand the interconnectedness of everything around us? Enter systems thinking.

In some circles, there has been a lot of hype around taking an "ecosystems view" during this global pandemic, which frankly is not something new. Systems thinking has been an academic school of thought used in engineering, policy-making and more recently adapted by businesses to ensure their products and services are considering the ‘systems’ that they operate within.

Defining innovation

Every firm defines innovation in a different way. I enjoy using the four-quadrant model (see figure below) for simplicity: incremental innovation utilises your existing technology within your current market; architectural innovation is applying your technology in different markets; disruptive innovation involves applying new technology to current markets; and radical innovation displaces an entire business model.

explain system approach to problem solving

During COVID-19, we are seeing a mixture of these. Many firms will start with incremental changes, adapting their products to a new period of uncertainty. With the right methodology and balance of internal and external capabilities, there is potential for radical and disruptive innovation that meets new needs, or fundamentally, creates new needs based on our current circumstances. Systems thinking is essential in untapping these types of innovation and ensuring they flourish long-term.

A dynamic duo

‘Systems thinking’ does not have one set toolkit but can vary across different disciplines, for example, in service design some may consider a ‘blueprint’ a high-level way to investigate one’s ‘systems of interest’. Crucially, this school of thought is even more powerful when combined with more common approaches, such as human-centered design (HCD).

The latter is bottom-up – looking in detail at a specific problem statement, empathising with its users and developing solutions to target them. Whereas the former is top-down – understanding the bigger picture, from policy and economics to partnerships and revenue streams. Systems thinking unpacks the value chain within an organisation and externally. It complements design thinking: together they’re a dynamic duo.

For starters, this philosophy needs to enter our everyday thinking. Yes, it is crucial for innovation, but an easy first step is to use systems thinking casually throughout your life. How is this purchase affecting other systems in the supply chain? What is the local economic impact of me shopping at the larger supermarket? Who will be the most negatively impacted if I don’t practice social distancing?

explain system approach to problem solving

This mapping tool from the World Economic Forum is central in understanding causal relationships and effects during COVID-19. It helps to drive systems-informed decision making. Once this becomes mainstream, we can begin integrating data for systems modelling tools that will help us map impact across the multiple layers of influence from this pandemic. So, what does this mean for businesses?

Systems thinking for business

To illustrate how systems thinking applies in business, let's use a simplified example of a bank branch.

Event: COVID-19 declared a pandemic, lockdown implemented for all people and businesses, except key workers and essential firms. Branches are shutting, people are afraid to go to non-essential establishments.

Patterns/trends: what trends have there been over time? Scientists have warned us about being ‘pandemic-ready’ for years, but we have had misinformation or a lack of transparency from other ‘systems’ who should have been driving this.

However, what about banking patterns? More customer service has moved online, digital banks and fintech developments have decreased the urgency for face-to-face business in branches. Are there trends in customer behaviours? More consumers are searching for all their products and services online, and this was common before the pandemic had begun.

Underlying structures: what has influenced these patterns and how are they interconnected? A growing desire for digitalised experiences and convenience is popular in financial services and customers will begin to seek and only interact with businesses who have the infrastructure to operate this way. A minimal number of touchpoints is seen as desirable, providing quicker, stress-free experiences, as consumers want to spend less time on these engagements when work-life balance has become more integrated, and therefore is important to preserve.

Mental models: what assumptions, beliefs and values do people hold about the system? Behavioural economics tells us that customers will adapt and change their consumer spending habits. Used to the convenience of online, less relevance will be seen for branches, and banks will need to further adapt. The ‘new normal’ will contain old and new beliefs. Which ones keep bank branches in place? Human contact and customer service? The agency in dealing with your finances face-to-face? Will a new experience or service be required to keep bank branches relevant or are online digital banks all consumers will need?

Beyond this, do banks have an ethical obligation to monitor spending habits to identify signs of debt and underlying mental health problems? What relationship should banks have with data? How do they balance intuitive service with consumer privacy?

Going through the layers of this iceberg unearths part of the power from using systems thinking and exemplifies how to guide your strategy in a sustainable way.

Only focusing on events? You’re reacting.

Thinking about patterns/trends? You’re anticipating.

Unpicking underlying structures? You’re designing.

Understanding mental models? You’re transforming.

Transformative thinking is how we innovate and systems thinking is essential for this journey.

explain system approach to problem solving

We’ve only explored the tip of the iceberg (pun intended) on the philosophy of systems thinking. There are many in-depth tools available to discover the approach in more depth.

Ask yourselves if you want to survive the VUCA future ahead. Do you want your organisation to have the capacity to innovate and sustain itself? Are you willing to change your thought pattern to consider the systems in which we all live in?

If the answers to any of the questions above are yes, then you are on the right path to mastering systems thinking to successfully innovate.

The more we begin to use systems thinking every day, the better our innovation will become. We can all be architects for a better world with sustainable growth if we understand the core tenants of this approach. To echo my introduction, no customer, or citizen, or business, or policy, or company, or idea itself is an island. Whatever ‘new normal’ we have, systems thinking should drive this future and will ensure innovation is pursued with knowledge of the complex intricacies that we are living through.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

The Agenda .chakra .wef-n7bacu{margin-top:16px;margin-bottom:16px;line-height:1.388;font-weight:400;} Weekly

A weekly update of the most important issues driving the global agenda

.chakra .wef-1dtnjt5{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;} More on Leadership .chakra .wef-17xejub{-webkit-flex:1;-ms-flex:1;flex:1;justify-self:stretch;-webkit-align-self:stretch;-ms-flex-item-align:stretch;align-self:stretch;} .chakra .wef-nr1rr4{display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;white-space:normal;vertical-align:middle;text-transform:uppercase;font-size:0.75rem;border-radius:0.25rem;font-weight:700;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;line-height:1.2;-webkit-letter-spacing:1.25px;-moz-letter-spacing:1.25px;-ms-letter-spacing:1.25px;letter-spacing:1.25px;background:none;padding:0px;color:#B3B3B3;-webkit-box-decoration-break:clone;box-decoration-break:clone;-webkit-box-decoration-break:clone;}@media screen and (min-width:37.5rem){.chakra .wef-nr1rr4{font-size:0.875rem;}}@media screen and (min-width:56.5rem){.chakra .wef-nr1rr4{font-size:1rem;}} See all

explain system approach to problem solving

Progress for women in the workplace stagnating in four key areas, global study reveals

May 21, 2024

explain system approach to problem solving

The ‘4 Cs’ of being a Chief Sustainability Officer

Gareth Francis

May 17, 2024

explain system approach to problem solving

‘I have a fantastic team, and I don’t speak first’: Leadership lessons from Hydro's Hilde Merete Aasheim

David Elliott

May 15, 2024

explain system approach to problem solving

From Athens to Dhaka: how chief heat officers are battling the heat

Angeli Mehta

May 8, 2024

explain system approach to problem solving

This is what businesses need to be focusing on in 2024, according to top leaders

Victoria Masterson

April 16, 2024

explain system approach to problem solving

3 ways leaders can activate responsible leadership in uncertain times

Ida Jeng Christensen

April 8, 2024

A Practical Guide to Problem-Solving Techniques in Systems Engineering

A Practical Guide to Problem-Solving Techniques in Systems Engineering

In the world of systems engineering, identifying and addressing issues is a significant part of the job. To ensure the smooth operation of complex systems, engineers employ various practical problem-solving techniques. Problem-solving techniques are not limited to solving issues specific to any one system, but can also be applied when generating new product ideas and solutions.

We'll start by exploring some common analytical and systematic problem-solving techniques, including thought experiments, the 5 Whys, and root cause analysis, before looking at some more creative techniques.

Analytical and Systematic Problem-Solving Techniques

Thought experiments.

A thought experiment is a disciplined imagination process that engineers use to ponder a problem or system without conducting physical experiments. By using hypothetical scenarios, engineers can predict potential challenges and find solutions without the cost and time of real-world testing.

For instance, consider the design of an urban traffic control system. Engineers can create a thought experiment about how the system would handle an emergency, such as a major traffic accident during rush hour. This mental exercise could help identify potential bottlenecks or gaps in the system, allowing engineers to design more effective controls or contingency plans.

The 5 Whys technique, originally developed by Toyota, is a simple yet effective method to drill down to the root of a problem. By repeatedly asking "why?" in response to the previous answer, engineers can uncover the underlying cause behind an issue.

Imagine a server crash in a data centre. The 5 Whys process might look like this:

  • Why did the server crash? Because it overheated.
  • Why did it overheat? Because the cooling system failed.
  • Why did the cooling system fail? Because the coolant was not circulating.
  • Why was the coolant not circulating? Because the pump was broken.
  • Why was the pump broken? Because it was not maintained as per the recommended schedule.

Through this process, we learn that the root cause of the server crash was inadequate maintenance, not merely a random hardware failure.

Root Cause Analysis (RCA)

Root cause analysis (RCA) is a systematic process for identifying the underlying causes of faults or problems. RCA aims to prevent the same problems from recurring by eliminating the root cause rather than treating the symptoms.

For example, suppose a manufacturing assembly line is regularly shutting down due to equipment failure. Rather than just fixing or replacing the equipment each time, an RCA might uncover that a specific part is consistently under high stress due to improper alignment, causing it to fail. By correcting this alignment, the systems engineer can prevent the problem from recurring.

Fault Tree Analysis (FTA)

Fault Tree Analysis (FTA) is a top-down, deductive analysis method used to explore the many different causes of a specific failure or undesirable outcome. It graphically represents the logical relationships between subsystem failures, potential human errors, and external events in the form of a tree.

Suppose a software system suffers from frequent downtime. The FTA would start with the undesired event at the top (downtime), and then branch out into various potential causes such as software bugs, hardware failure, network issues, and so on. Each of these branches can then be subdivided further into more specific faults, allowing the engineer to understand all potential causes of the problem and prioritise the most likely or serious ones for remediation.

Simulation Modelling

Simulation modelling is a powerful tool that allows systems engineers to predict the behaviour of a system under different conditions. By creating a digital twin of a real-world system, engineers can understand the system's response to changes in variables, identify potential issues, and test solutions.

For instance, in a complex logistics operation, a simulation model can be used to understand the impact of adding a new product line or increasing order volume. This could reveal potential bottlenecks or inefficiencies, allowing proactive adjustments to be made before they become real-world problems.

Creative Problem-Solving Techniques

Beyond the analytical and systematic problem-solving techniques traditionally used in engineering, there are numerous creative methods that can be applied. These techniques stimulate lateral thinking, enabling you to view problems from a fresh perspective and identify innovative solutions. Here are a few examples:

Brainstorming

Brainstorming is perhaps one of the most commonly used creative problem-solving techniques. It involves gathering a group of people and encouraging them to freely share their thoughts and ideas related to a specific problem. The key is to refrain from any judgment or criticism during the brainstorming process to encourage free thought and out-of-the-box ideas.

SCAMPER is a creative-thinking technique that uses seven types of transformations: Substitute, Combine, Adapt, Modify, Put to another use, Eliminate, and Reverse. By examining a problem through these different lenses, you can generate novel solutions. For example, if you're trying to enhance the efficiency of a manufacturing process, you might "Adapt" a method from a completely different industry or "Combine" two existing processes into one.

Mind Mapping

Mind Mapping is a visual tool that helps structure information, enabling you to better analyse, comprehend, and generate new ideas. Starting with a central concept, you add nodes branching out into related subtopics. This can reveal unexpected connections and encourage creative problem-solving.

Six Thinking Hats

This technique, devised by Edward de Bono, involves viewing a problem from six distinct perspectives, symbolised by hats of different colours. The white hat considers facts and information, the red hat looks at the issue emotionally, the black hat uses caution and considers risks, the yellow hat optimistically thinks about benefits, the green hat encourages creativity, and the blue hat manages the process and oversees the big picture.

Analogy Thinking

Analogy thinking, or analogous thinking, is a method of comparing the problem at hand to other similar situations or phenomena. By drawing parallels, you might find creative solutions that you would not have considered otherwise. For example, an engineer might draw inspiration from the natural world, such as how a bird flies or a tree distributes nutrients, to solve a complex mechanical or systems problem.

In conclusion, problem-solving in systems engineering represents a harmonious blend of art and science. It's not about completely discarding systematic, logical techniques, but instead complementing them with creative strategies. This combination of traditional and creative methods equips systems engineers with the tools to predict, identify, and address issues effectively and efficiently. By fostering a balance between analytical and innovative thinking, fresh insights can be gained and novel solutions developed. This fusion is often where the most impactful solutions are found. As these techniques are regularly practiced and mastered, they can lead to smoother operations, reduced downtime, and ultimately more successful projects. The artistry lies in the creativity, and the science in the application and understanding of these tools, culminating in an exciting, evolving, and rewarding field.

This content was generated using OpenAI's GPT Large Language Model (with some human curation!). Check out the post "Explain it like I'm 5: What is ChatGPT?" to learn more.

The Power of Active Inference in Systems Engineering

Applications of the pyramid principle in systems engineering, you might also like..., stock and flow modelling, the art of debugging, the importance of model testing and types.

Patching System Leaks

Patching System Leaks

Developing and Implementing Information Systems

  • First Online: 01 January 2013

Cite this chapter

explain system approach to problem solving

  • Jun Xu 3 &
  • Mohammed Quaddus 4  

2603 Accesses

In this chapter, we will describe the system approach to problem solving, explain the steps of the systems development life cycle, point out the need for successful project management, change management and risk management, and compare different development approaches organisations can apply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Unable to display preview.  Download preview PDF.

Bibliography

Bloch, M., Blumberg, S. & Laartz, J. 2012, “Delivering large-scale IT projects on time, on budget, and on vlaue’, McKinsey Technology Office , October 2012, pp. 1–6.

Google Scholar  

Haag, S., Baltzan, P. & Phillips, A. 2008, Business Driven Technology , 2nd edn, McGraw-Hill Irwin, Boston, USA.

Hoffer, J.A., George, J.F. & Valacich, J.S. 2005, Modern Systems Analysis and Design , 4th edn, Prentice Hall.

Jones, J., Aguirre, D. & Calderone, M. 2004, “10 Principles of Change Management”, Strategy  +  Business , April 2004, pp. 1–5.

McKeown, P. 2000, Information Technology and the Networked Economy , Thomson Learning, Boston.

Nelson, R.R. 2007, “IT Project Management: Infamous Failures, Classic Mistakes, and Best Practices”, MIS Quarterly Executive , Vol. 6, No. 2, pp. 67–78.

O’Brien, J. A. & Marakas, G. M. 2011, Management Information Systems , 10th Edition, McGraw-Hill, New York, USA.

Pearlson, K. E. & Saunders, C. S. 2010, Managing and Using Information Systems: A Strategic Approach , Fourth Edition, John Wiley & Sons, USA.

Roberts, R. Sarrazin, H. & Sikes, J. 2010, ‘Reshaping IT management for turbulent times’, McKinsey on Business Technology , Number 21, pp. 2–9.

Wang, K. W. 2010, ‘Creating Competitive Advantage with IT Architecture’, McKinsey on Business Technology , Number 18, Winter 2010, pp. 18–21.

Download references

Author information

Authors and affiliations.

Southern Cross Business School, Southern Cross University, Brett Street, Tweed Heads, NSW, 2485, Australia

Graduate School of Business, Curtin University, Perth, Australia

Mohammed Quaddus

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Jun Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 ATLANTIS PRESS

About this chapter

Xu, J., Quaddus, M. (2013). Developing and Implementing Information Systems. In: Managing Information Systems. Atlantis Press, Paris. https://doi.org/10.2991/978-94-91216-89-3_4

Download citation

DOI : https://doi.org/10.2991/978-94-91216-89-3_4

Published : 29 January 2013

Publisher Name : Atlantis Press, Paris

Print ISBN : 978-94-91216-88-6

Online ISBN : 978-94-91216-89-3

eBook Packages : Business and Economics Business and Management (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

Societies and partnerships

Atlantis Press

  • Find a journal
  • Track your research

National Academies Press: OpenBook

Bridging the Evidence Gap in Obesity Prevention: A Framework to Inform Decision Making (2010)

Chapter: 4 defining the problem: the importance of taking a systems perspective, 4 defining the problem: the importance of taking a systems perspective.

O besity is a multifaceted problem that warrants complex thinking and a broad systems perspective to frame the problem, understand potential causes, identify critical leverage points of influence, and take effective action. Linear approaches to complex public health problems such as the obesity crisis are clearly useful, but cannot address the multiple dimensions of the real world and the many influences on the energy balance equation (Foresight, 2007). It is necessary to embrace complexity and to develop strategies and implement change at multiple levels to influence human behavior and reverse the current upward trends in weight. A systems perspective offers a new approach to obesity research and action that can meet this challenge (Huang et al., 2009).

The systems approach has a nearly 50-year history since its development by Forrester at the Massachusetts Institute of Technology (Forrester, 1991). Increasingly, obesity scholars are looking to other disciplines, from biology to psychology to computer sciences and engineering, that use this approach. In the health arena, the approach has been used to elucidate seemingly intractable problems, including cardiovascular disease (Homer et al., 2004), diabetes (Milstein et al., 2007), mental health (Smith et al., 2004), public health emergencies (Hoard et al., 2005), and tobacco control (National Cancer Institute, 2007).

The complex issue of obesity lends itself to a systems approach quite well. Like tobacco control, which employed diverse and multilevel strategies (Abrams et al., 2003, 2010), progress in the obesity field will require a paradigm shift toward an interdisciplinary knowledge base that integrates systems theory with concepts and practice from community development, social ecology, social networks, and public health (Best et al., 2003).

This chapter explains how systems thinking expands upon the multilevel, multisector strategies already proposed or in use to prevent obesity. It provides a primer on the concepts of such thinking and examines how the systems approach can be applied to identify the determinants, strategies, and actions that must be considered to address the obesity crisis. The chapter provides several practical examples of how systems thinking can be used in both small and large ways to expand the boundaries of current models and advance effective change in public health. The chapter also links the systems approach and its application to the L.E.A.D. framework ( Figure 4-1 ), describing how it enhances the ability to generate, use, and learn from evidence and explaining how specific content pertaining to each step of the framework will differ according to the system on which one is focusing. Box 4-1 defines the key systems concepts pertinent to the discussion.

UNDERSTANDING A SYSTEMS APPROACH

As explained in Chapter 2 , multilevel, multisector strategies, often based on ecological models (e.g., Figure 1-5 in Chapter 1 ), 1 have gained widespread acceptance for understanding the determinants of obesity and for framing prevention and control activities (Glass and McAtee, 2006). While these models acknowledge the multiple levels of a system and show their interrelationships, however, they may not always be complex enough to capture the dynamic interactions and the short- and long-term feedback loops among the many influences on the energy balance (Foresight, 2007; Sterman, 2006). Systems investigation can complement other methods by capturing this complexity, translating it into actions that can have an impact on the obesity problem and making it possible to predict unintended consequences and time-delayed effects (Mabry et al., 2008).

FIGURE 4-1 The Locate Evidence, Evaluate Evidence, Assemble Evidence, Inform Decisions (L.E.A.D.) framework for obesity prevention decision making.

FIGURE 4-1 The L ocate Evidence, E valuate Evidence, A ssemble Evidence, Inform D ecisions (L.E.A.D.) framework for obesity prevention decision making.

NOTE: The element of the framework addressed in this chapter is highlighted.

A systems approach requires seeing the whole picture and not just a fragment, understanding the broader context, appreciating interactions among levels, and taking an interdisciplinary approach (Leischow and Milstein, 2006). A systems approach highlights the importance of the circumstances, or context, in which an action is taken in order to understand its implementation and potential impact. Thus while investigators must, for practical reasons, establish boundaries to define the system being studied, they must also recognize that each system exists within and interacts with a hierarchy of nested systems (Midgley, 2000). In addition, appreciating leverage points or points of power within a system can help explain how a small shift in one element of a complex system can produce larger changes in other elements (Meadows, 1999). These advantages of systems investigation are particularly important for interventions targeting obesity, given their far-reaching impact on the population; solutions should be designed to maximize benefit and minimize negative consequences.

The systems approach offers a further advantage with respect to the well-recognized gap between research and practice, which limits the extent to which advances in research translate to advances in improving public health. Most efforts to

link research to practice and policy have merely highlighted the challenges of transferring knowledge from single-discipline, highly controlled research to practice settings. Interdisciplinary investigation using a systems approach can potentially help close this gap (Mabry et al., 2008).

A systems approach to solving health problems requires new tools, including data, methods, theories, and statistical analysis different from those traditionally used in linear approaches. No single discipline can provide these tools. Therefore, it is necessary to approach health research with a collaborative team of investigators who bring knowledge and expertise from a variety of disciplines and sectors (Leischow et al., 2008). The theoretical frameworks and methodologies that result from such collaboration can generate new conceptual syntheses, new measurement techniques (e.g., social network analysis), and interdisciplinary fields of inquiry (e.g., behavioral genetics) with the capacity to tackle complex population health problems (Fowler et al., 2009).

Sterman (2006) explains how the dynamics of a system work, using policy resistance as an example. His explanation, reproduced in Box 4-2 , encompasses the key concepts and variables in systems thinking: stocks, flows, feedback processes (positive or self-reinforcing and negative or self-correcting), side effects, and time delays.

USES OF SYSTEMS THINKING, APPROACHES, MAPPING, AND MODELING

Systems can be small or large and often coincide with the levels defined in an ecological model. For example, a school can be thought of as a micro-system within a larger community; as a meso-system within the even larger national, political, and social milieu; or as a macro-system within a global-system context. This section provides several examples of how systems thinking pertains to public health problems: body mass index (BMI) screening in schools, tobacco control in the United States, obesity modeling in the United States, and obesity prevention in the United Kingdom.

BMI Screening in Schools

The monitoring of childhood growth has been a contentious issue for several decades (James and Lobstein, 2009). In recent years, school districts have been under pressure to respond to the childhood obesity epidemic. Despite limited evidence on the value of schools providing individually directed help for children with higher BMIs, the establishment of school-based surveillance to document obesity prevalence and to inform the development of prevention and treatment policies has been recommended (e.g., Massachusetts Department of Public Health, 2009). Although the measurement of weight and height within schools appears relatively simple and in fact has been taking place for decades, the development of rigorous measurement and reporting protocols has been limited until recently. This lack of a well-defined process, together with the failure to take a systems perspective, can result in a number of unintended consequences and perturbations to the system. For example, children may feel embarrassed or stigmatized during the process, parents may feel unequipped to act on the information they receive, health care providers in the community may not be educated about obesity treatment, the community may lack adequate pediatric programming to which children can be referred, and schools may forego other screening programs to make room for BMI screening (for example, hearing and vision screenings were cut back when the Massachusetts Public Health Council voted to require BMI screening of schoolchildren [Mullen, 2009]). In addition, although obesity rates may be high, insufficient funds or a lack of political will may prevent the school system from accessing the funding and assistance needed to address these unintended consequences, leaving the community feeling frustrated and helpless.

The Tobacco Control Movement

Although historically the tobacco control movement targeted individuals and their behaviors, it evolved into a multilevel systems approach to the problem (Abrams, 2007). Clearly, individual behavior change was the goal, but strategies involving industry, legislation, public health programming and messaging, and the health care system worked together to create that change. None of the strategies implemented as part of the movement worked alone. State by state, it was demonstrated that a combi-

nation of strategies was better than any single intervention, and the more components that were used, the better (CDC, 1999; Levy et al., 2007). The movement can be seen as a good example to inform the field of obesity prevention.

To explore this paradigm shift, a pilot project, the Initiative on the Study and Implementation of Systems (ISIS), was conducted with funding from the National Cancer Institute (NCI) (Best et al., 2006). ISIS was designed to (1) explore how systems thinking approaches might improve understanding of the factors contributing to tobacco use, (2) inform strategic decision making on which efforts might be most effective for reducing tobacco use, and (3) serve as an exemplar for addressing other public health problems. Contextually, tobacco control can be viewed as a system comprising smaller systems and existing within the broader systems of public health; economics; and society at the local, regional, and global levels. Figure 4-2 shows the evolution of tobacco control approaches toward systems thinking (NCI, 2007).

The ISIS project was an attempt to understand the whole problem of tobacco use comprehensively, and ultimately to address the problem through systems change. As a result of strategic planning, the ISIS group identified four priority areas ( Figure 4-3 ) that together serve as a synergistic foundation for understanding and improving public health from a systems perspective (Leischow et al., 2008; NCI,

FIGURE 4-2 Evolution of tobacco control approaches toward systems thinking.

FIGURE 4-2 Evolution of tobacco control approaches toward systems thinking.

NOTES: Quitlines indicate telephone hotlines for smoking cessation. ASSIST = American Stop Smoking Intervention Study for Cancer Prevention; COMMIT = Community Intervention Trial for Smoking Cessation; ISIS = Initiative on the Study and Implementation of Systems; NCI = National Cancer Institute.

SOURCE: NCI, 2007.

FIGURE 4-3 Priority areas identified by the Initiative on the Study and Implementation of Systems (ISIS) group.

FIGURE 4-3 Priority areas identified by the Initiative on the Study and Implementation of Systems (ISIS) group.

SOURCE: Reprinted from Leischow et al., Copyright © 2008, with permission from Elsevier.

2007). Simulation modeling, conducted in the third of ISIS’s priority areas, has been useful for exploring the impact of changes in various parameters within the complex systems that have an impact on population-level outcomes related to tobacco use behaviors and policies (Abrams et al., 2010; Levy et al., 2010a,b).

Mapping of Obesity Causality in the United States

System dynamics modeling can help map causality by addressing risks and outcomes; when performed prospectively, it can be used to predict future outcomes, and when performed retrospectively, it can be used to understand how strategies and delivery systems interacted with a population during an intervention. The process proceeds iteratively through the general steps shown in Figure 4-4 , beginning with the identification of a persistent problem (Milstein and Homer, 2006). Milstein and Homer

FIGURE 4-4 Iterative steps in system dynamics modeling.

FIGURE 4-4 Iterative steps in system dynamics modeling.

SOURCE: Milstein and Homer, 2006.

(2009) use system dynamics modeling to map the forces that contribute to the persistent obesity problem (see Figure 4-5 ). This exercise helps in understanding the causes of obesity, the broader systems to which they belong, and how they are thought to interact. Such mapping can therefore elucidate potential mechanisms and dynamic pathways on which intervention strategies should focus.

Once such maps have been developed, they can be converted into computer simulation models that can be used to identify interventions and policies with the potential to alleviate the problem. These experiments are followed by sensitivity analyses to assess areas of uncertainty in the models and to guide future research. Once the models have been finalized, stakeholders are convened to participate in “action labs,” in which the models allow them to discover for themselves the likely consequences of alternative policy scenarios (Milstein and Homer, 2009).

A broad array of modeling techniques are used for different purposes in many different fields. Because of the complexity of the obesity problem, the most suitable modeling techniques will have several characteristics (Hammond, 2009). First, because of the scale of the epidemic, models may provide the most insight if they capture multiple levels of analysis. Second, to capture the dynamics of such a complex system, models must be able to incorporate individual heterogeneity and adaptation over time. Finally, models must be able not only to provide a better understanding of the problem and the mechanisms behind it, but also to aid in the design of new and better interventions to slow and reverse the epidemic.

Obesity Prevention in the United Kingdom

The most comprehensive effort to both understand and map the obesity epidemic and formulate a national action plan was carried out by the Foresight Group in the United Kingdom (Foresight, 2007). The Foresight Tackling Obesities: Future Choices Project was aimed at producing a sustainable response to obesity in the United Kingdom over the 40 years following the plan’s release. Using a systems approach, the group pursued objectives that included using the scientific evidence base across a wide range of disciplines to identify the many factors that influence obesity, looking beyond the obvious to achieve an integrated understanding of the relationships among these factors and their relative importance, building on this evidence to identify effective interventions, analyzing how future levels of obesity might change, and identifying what the most effective future responses might be. A detailed causal loop obesity system map was produced to display the interrelationships among the various contributors to energy balance; a simplified version of this map is shown in Figure 4-6 .

In addition, a strategic framework was developed to identify gaps in current initiatives that would have to be filled to mount an integrated policy response. Its authors identify six key elements of this framework (Jebb, 2009):

FIGURE 4-5 The obesity “system”: a broad causal map.

FIGURE 4-5 The obesity “system”: a broad causal map.

NOTES: Blue arrows indicate same-direction links; green arrows indicate opposite-direction links; R loops indicate reinforcing processes; B loops indicate balancing processes. All parameters vary by such factors as age, sex, race/ethnicity, income, and geography.

SOURCE: Milstein and Homer, 2009. Reprinted with permission.

FIGURE 4-6 Simplified version of the causal loop obesity system map showing the interrelationships among various contributors to energy balance. The map was developed by the UK Foresight Group to understand and chart the obesity epidemic in order to inform a national action plan.

FIGURE 4-6 Simplified version of the causal loop obesity system map showing the interrelationships among various contributors to energy balance. The map was developed by the UK Foresight Group to understand and chart the obesity epidemic in order to inform a national action plan.

SOURCES: Vandenbroeck et al., 2007.

systematic change that addresses the diverse determinants of obesity simultaneously to minimize the risk of compensatory actions;

integrated interventions at all levels of society—individual, family, local, national and international—recognizing that individual choices are shaped by the wider context;

interventions across the life course to reinforce and sustain long-term behavior change;

diverse interventions that combine focused initiatives (which impose change), “enablers” (which inform and facilitate change), and “amplifiers” (which address social norms and the cultural context);

actions planned over time such that early initiatives build a climate for subsequent interventions; and

ongoing evidence gathering, including population-level surveillance and evaluation of interventions.

The Foresight Group identified as a key research challenge “the evaluation of new policy initiatives at all levels (process audits, behaviors and biomarkers, long-term health and economic outcomes)” (Jebb, 2009, p. 39). These types of causal loops magnify the need for new ways of evaluating and incorporating evidence not only from research studies, but also from the real-world experience of obesity initiatives undertaken not just within a particular country but around the world.

Although outcomes of systems approaches such as the Foresight Group’s causal loop system map appear complex, they are useful for informing practical, real-world intervention strategies. For example, Foresight’s Tackling Obesities: Future Choices Project was used to inform a cross-government strategy for England that was part of a sustained program to reduce obesity and support healthy weight maintenance (Cross-Government Obesity Unit, 2010).

RELATION TO THE L.E.A.D. FRAMEWORK

The idea that evidence should be identified, evaluated, and summarized from a systems perspective is fundamental to the framework proposed in this report. A systems perspective broadens the traditional approach to locating, evaluating, and assembling evidence (which generally limits the evidence to results of rigorous randomized controlled trials) to encompass evidence that reflects the complexity of the problem. Users of the framework are encouraged to approach every aspect of decision making with a comprehensive lens, considering the complex context in which programs and policies will be implemented and how it may affect their implementation and impact. A systems perspective enables the decision maker to understand interactions among smaller systems within the larger system and identify potential synergies or harms that should be explored before implementation. Creating “what if” scenarios based on systems maps can help decision makers and stakeholders think about various approaches and where to focus efforts, as well as potential costs; elements that are critical in the design of interventions or program and policy evaluations; and feedback loops that can be sources of evaluation data (see Chapter 6 ).

APPLICATION AND FUTURE DIRECTIONS

According to Hammond (2009), the most effective models for addressing the obesity epidemic are likely to be those that capture multiple mechanisms at multiple levels,

integrate micro and macro data and dynamics, account for significant heterogeneities, and allow for policy experimentation. To fully realize the potential application of systems theory to obesity prevention, a number of strategies will be required. First, current and future leaders should be trained in the science and understanding of systems and their application to the obesity crisis. This training would include causal mapping, conceptualization of interventions, and computational and simulation modeling techniques. The application of these methods to the obesity epidemic will be challenging—there will be important data that are not yet available, uncertainty about a number of assumptions, and many key mechanisms whose inner workings are unknown (Hammond, 2009). In some cases, smaller systems will have to be studied independently, perhaps with relatively homogeneous populations, before being integrated into a more comprehensive model. Various combinations of models can then be explored and tested against the same outcome data, building slowly toward a model that encompasses the full breadth of the system by integrating all those narrower models. Second, empirical research should be funded and executed using systems theory as a guide. Focused studies can be used to confirm and quantify relationships and to test their effects. Ideally, this research would be carried out in conjunction with modeling studies to produce the most informative data and to guide future research. Third, both knowledge generators and users must work collaboratively with different disciplines to build interdisciplinary capacity.

Caution will be necessary regarding the use of models and the need to link their application with empirical research. The interplay between systems theory and research requires high-quality experimental and quasi-experimental designs. Systems thinking puts researchers in a better position to ask the right questions. Research applications allow a systems model to make the right predictions.

In conclusion, systems thinking in public health cannot be encompassed by a single discipline or even a single “systems thinking” approach (e.g., system dynamics models). Rather, it requires interdisciplinary integration of approaches to public health aimed at understanding and reconciling linear and nonlinear, qualitative and quantitative, and reductionistic and holistic thinking and methods to create a federation of systems approaches (NCI, 2007).

Abrams, D. B. 2007. Comprehensive smoking cessation policy for all smokers: systems integration to save lives and money. In Ending the tobacco problem: A blueprint for the nation , edited by R. J. Bonnie, K. Stratton, and R. B. Wallace. Washington, DC: The National Academies Press. Pp. A1-A50.

Abrams, D. B., F. Leslie, R. Mermelstein, K. Kobus, and R. R. Clayton. 2003. Transdisciplinary tobacco use research. Nicotine and Tobacco Research 5(Supplement 1):S5-S10.

Abrams, D. B., A. L. Graham, D. T. Levy, P. L. Mabry, and C. T. Orleans. 2010. Boosting population quits through evidence-based cessation treatment and policy. American Journal of Preventive Medicine 38(3, Supplement 1):S351-S363.

Anderson, R. M., B. T. Grenfell, and R. M. May. 1984. Oscillatory fluctuations in the incidence of infectious disease and the impact of vaccination: Time series analysis. Journal of Hygiene (London) 93(3):587-608.

Best, A., G. Moor, B. Holmes, P. I. Clark, T. Bruce, S. Leischow, K. Buchholz, and J. Krajnak. 2003. Health promotion dissemination and systems thinking: Towards an integrative model. American Journal of Health Behavior 27(Supplement 3).

Best, A., R. Tenkasi, W. Trochim, F. Lau, B. Holmes, T. Huerta, S. Moor, S. Leischow, and P. Clark. 2006. Systemic transformational change in tobacco control: An overview of the Initiative for the Study and Implementation of Systems (ISIS). In Innovations in health care: A reality check , edited by A. L. Casebeer, A. Harrison, and A. L. Mark. New York: Palgrave Macmillan.

Booth Sweeney, L., and J. D. Sterman. 2000. Bathtub dynamics: Initial results of a systems thinking inventory. System Dynamics Review 16:249-294.

Bush, G. W. 2002. President announces clear skies and global climate change initiatives. http://georgewbush-whitehouse.archives.gov/news/releases/2002/02/20020214-5.html (accessed March 16, 2010).

California Air Resources Board. 2010. Zero emission vehicle program. http://www.arb.ca.gov/msprog/zevprog/zevprog.htm (accessed March 16, 2010).

CDC (Centers for Disease Control and Prevention). 1999. Best practices for comprehensive tobacco control programs—April 1999. Atlanta, GA: U.S. Department of Health and Human Services, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health.

Cross-Government Obesity Unit. 2010. Healthy weight, healthy lives: Two years on. http://www.dh.gov.uk/prod_consum_dh/groups/dh_digitalassets/documents/digitalasset/dh_113495.pdf (accessed March 4, 2010.

Foresight. 2007. Tackling obesities: Future choice—Project report, 2nd edition. London: U.K. Government Office for Science.

Forrester, J. W. 1991. System dynamics and the lessons of 35 years. In The systemic basis of policy making in the 1990s , edited by K. B. De Greene. Cambridge, MA: MIT Press.

Fowler, J. H., C. T. Dawes, and N. A. Christakis. 2009. Model of genetic variation in human social networks. Proceedings of the National Academy of Sciences of the United States of America 106(6):1720-1724.

Glass, T. A., and M. J. McAtee. 2006. Behavioral science at the crossroads in public health: Extending horizons, envisioning the future. Social Science and Medicine 62(7):1650-1671.

Grassley, N. C., C. Fraser, and G. P. Garnett. 2005. Host immunity and synchronized epidemics of syphilis across the United States. Nature 433(7024):417-421.

Hammond, R. A. 2009. Complex systems modeling for obesity research. Preventing Chronic Disease 6(3):A96.

Hoard, M., J. Homer, W. Manley, P. Furbee, A. Haque, and J. Helmkamp. 2005. Systems modeling in support of evidence-based disaster planning for rural areas. International Journal of Hygiene and Environmental Health 208(1-2):117-125.

Homer, J., G. Hirsch, M. Minniti, and M. Pierson. 2004. Models for collaboration: How system dynamics helped a community organize cost-effective care for chronic illness. System Dynamics Review 20(3):199-222.

Houghton, J., Y. Ding, D. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson. 2001. Climate change 2001: The scientific basis. Cambridge, UK: Cambridge University Press.

Huang, T. T., A. Drewnowski, S. K. Kumanyika, and T. A. Glass. 2009. A systems-oriented multilevel framework for addressing obesity in the 21st century. Preventing Chronic Disease 6(3):A82.

James, W. P. T., and T. Lobstein. 2009. BMI screening and surveillance: An international perspective. Pediatrics 124(Supplement 1).

Jebb, S. 2009. Developing a strategic framework to prevent obesity. Presented at the IOM Workshop on the Application of Systems Thinking to the Development and Use of Evidence in Obesity Prevention Decision-Making, March 16, Irvine, CA.

Kahneman, D., E. Diener, and N. Schwarz. 1999. Well-being: The foundations of hedonic psychology. New York: Russel Sage.

Leischow, S. J., and B. Milstein. 2006. Systems thinking and modeling for public health practice. American Journal of Public Health 96(3):403-405.

Leischow, S. J., A. Best, W. M. Trochim, P. I. Clark, R. S. Gallagher, S. E. Marcus, and E. Matthews. 2008. Systems thinking to improve the public’s health. American Journal of Preventive Medicine 35(2, Supplement 1):S196-S203.

Levy, D. T., H. Ross, L. Powell, J. E. Bauer, and H. R. Lee. 2007. The role of public policies in reducing smoking prevalence and deaths caused by smoking in Arizona: Results from the Arizona tobacco policy simulation model. Journal of Public Health Management and Practice 13(1):59-67.

Levy, D. T., A. L. Graham, P. L. Mabry, D. B. Abrams, and C. T. Orleans. 2010a. Modeling the impact of smoking-cessation treatment policies on quit rates. American Journal of Preventive Medicine 38(3, Supplement 1).

Levy, D. T., P. L. Mabry, A. L. Graham, C. T. Orleans, and D. B. Abrams. 2010b. Reaching Healthy People 2010 by 2013: A SimSmoke simulation. American Journal of Preventive Medicine 38(3, Supplement 1).

Mabry, P. L., D. H. Olster, G. D. Morgan, and D. B. Abrams. 2008. Interdisciplinarity and systems science to improve population health. A view from the NIH Office of Behavioral and Social Sciences Research. American Journal of Preventive Medicine 35(Supplement 2).

Massachusetts Department of Public Health. 2009. BMI screening guidelines for schools. http://www.mass.gov/Eeohhs2/docs/dph/mass_in_motion/community_school_screening.pdf (accessed April 5, 2010).

Meadows, D. 1999. Leverage points: Places to intervene in a system. Hartland, VT: The Sustainability Institute.

Midgley, G. 2000. Systemic intervention: Philosophy, methodology and practice. New York: Kluwer Academic/Plenum.

Milstein, B., and J. Homer. 2006. Background on system dynamics simulation modeling with a summary of major public health studies. Atlanta, GA: CDC. http://www.caldiabetes.org/get_file.cfm?contentID=501&ContentFilesID=389 (accessed February 3, 2010).

Milstein, B., and J. Homer. 2009. System dynamics simulation in support of obesity prevention decision-making. Presented at the Institute of Medicine Workshop on the Application of Systems Thinking to the Development and Use of Evidence in Obesity Prevention Decision-Making, March 16, Irvine, CA. http://www.iom.edu/~/media/Files/Activity%20Files/PublicHealth/ObesFramework/IOMIrvine16Mar09v52MilsteinHomer.ashx

(accessed April 20, 2010).

Milstein, B., A. Jones, J. B. Homer, D. Murphy, J. Essien, and D. Seville. 2007. Charting plausible futures for diabetes prevalence in the United States: A role for system dynamics simulation modeling. Preventing Chronic Disease 4(3):1-8.

Mullen, J. 2009. Proposed Amendments to 105 CMR 200.000: Physical Examination of School Children. Letter to Massachusetts Public Health Council from Director, Bureau of Community Health Access and Promotion, Massachusetts Department of Public Health.

NCI (National Cancer Institute). 2007. Greater than the sum: Systems thinking in tobacco control. Tobaco control monograph no. 18. NCI Tobacco Control Monograph Series. NIH Pub. No. 06-6085. Bethesda, MD: U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute.

Smith, G., E. F. Wolstenholme, D. McKelvie, and D. Monk. 2004. Using system dynamics in modeling mental health issues in the UK. Paper presented at 22nd International Conference of the System Dynamics Society, Oxford, England.

Sterman, J. D. 1989. Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiment. Management Science 35:321-339.

Sterman, J. D. 2006. Learning from evidence in a complex world. American Journal of Public Health 96(3):505-514.

Sterman, J. D., and L. Booth Sweeney. 2007. Understanding public complacency about climate change: Adults’ mental models of climate change violate conservation of matter. Climatic Change C80(3-4):213-238.

U.S. House Committee on Government Reform. 2005. The perplexing shift from shortage to surplus: Managing this season’s flu shot supply and preparing for the future. 1st Session, 109th Congress, February 10, 2005.

Vandenbroeck, I. P., J. Goossens, and M. Clemens. 2007. Obesity system atlas. Foresight tackling obesities: Future choices.

This page intentionally left blank.

To battle the obesity epidemic in America, health care professionals and policymakers need relevant, useful data on the effectiveness of obesity prevention policies and programs. Bridging the Evidence Gap in Obesity Prevention identifies a new approach to decision making and research on obesity prevention to use a systems perspective to gain a broader understanding of the context of obesity and the many factors that influence it.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

Logo for JCU Open eBooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

8 Soft systems methodology

Learning Outcomes

  • Contextualise systems as a ‘Wholistic’ project management method approach.
  • Compose the requirements for a Systems Lens application.
  • Formulate Soft Systems Methodology frameworks.

This module will explore a systems approach to integrating all the different components within the project environment, to create a comprehensive approach to solving the problem.

Broadly speaking, a systems approach is used to create an understanding of the interrelationships between different components within the environment, the project, and the stakeholders. Through a generalisation of the different components, the project team is better able to understand the interdependent nature of the factors (Cleland 1997; Meredith and Mantel 2011; Kerzner 2017). Additionally, the systems approach allows the project team to understand the situation in its entirety, including resources, materials, market conditions, organisational needs, stakeholders and so forth. By understanding these factors, the project is better able to meet the project objectives and keep the end-state in mind throughout, to ensure that the approach is the most efficient and effective process possible.

This is a disciplined way to view the environment and identify potential solutions to problems while being open to opportunities. These opportunities can be realised through understanding that everything is related to everything else in the environment or organisation.

A system is a composition of numerous related and dependent components which, through interactions with one another, create a whole. Therefore, a system is a compilation of distinct factors or components which form a complex whole. Although this definition is general, a key element of a system is how the collection of factors or components come together to produce an outcome (INCOSE 2015). This outcome is not attainable by the individual elements – an outcome can only be created  through the interactions between and across the components and factors.

By applying a systems approach to project management, the view of the project changes from a set of tasks and activities to a combination of sub-systems which work together to make a broader system (Cleland 1997; Meredith and Mantel 2011; Kerzner 2017). The broader system’s effectiveness and performance is impacted by the corresponding performance of the sub-systems of which it is comprised. Therefore, by viewing the project management process as a system which operates as an entity comprised of sub-systems, project managers can identify areas within the project which could lead to success or failure. However, the sub-systems which comprise the project are not limited to internal factors within the organisation – external components or factors play a significant role within the systems approach.

Through a systems approach, a project manager, project team and the broader project organisation are empowered to consider the impacts of the environment when implementing changes or projects. The context surrounding the project should be established at the outset as this will provide a viewpoint of the system. This viewpoint will support decision-making throughout the project, encourage realignment of resources as needed and trigger changes in response to the environment.

Considerations

Before a project manager considers applying a systems approach (Cleland 1997; Meredith and Mantel 2011; Kerzner 2017), there are several components which need to be considered:

  • How all tasks, activities, processes, and deliverables within the project depend on one another needs to be documented. However, consideration is needed to understand the properties of the individual components outside of their dependencies.
  • Project goals need to be clear; each component of the project should be working towards those goals.
  • Resources supporting the project should be consistent throughout. Where additional resources are required, the impacts on the outcome need to be considered. This includes impact on quality, scope, budget, and schedule.
  • Uncertainty is expected within a project. Consideration is required to provide support in managing and responding to uncertainty as it arises (for example, risk and issues management processes).
  • Resources should be allocated roles and responsibilities based on their skills and experience. These resources can work together as part of a sub-project team, to support the development of different deliverables. For each deliverable, a different approach may be required to manage the needs and complexities.
  • Visualisation can be used to support documenting the complexities.

Through a systems approach, project managers are supported to ensure they are aiming for the project’s goals and objectives.

Let’s watch the following video by Systems Innovations which explains the primary differences between analytical methods of reasoning and systems thinking

Video [5 mins,  41 sec]   Note: Closed captions are available by selecting the CC button in the video below.

How to apply a systems approach

In addition to using traditional project management methodologies, the systems approach can be used to effectively manage a project. Based on systems theory, there are 4 primary tools and principles which can be applied from the Systems Thinking Iceberg, recreated in Figure 28.

Figure 28. Systems Thinking Iceberg, by Carmen Reaiche and Samantha Papavasiliou, licensed under CC BY (Attribution) 4.0

explain system approach to problem solving

Based on Figure 28, below are 4 principles and tools which can be applied to projects to support the systems approach to project management (Cleland 1997; Meredith and Mantel 2011; Kerzner 2017).

  •  a detailed problem statement
  •  triggers, causes and side-effects
  •  the reactions of the different stakeholders
  •  links between problems and solutions previously attempted.
  •  when it occurs (frequency)
  •  who has been impacted
  •  steps taken to rectify
  •  interactions between the event and other factors or events
  •  identifying potential causes
  •  testing potential solutions.
  •  environmental elements within the system
  •  causes of the behavioural patterns
  •  stakeholders within the system
  •  underlying interactions between stakeholders, environment, and causes.
  •  what supports the underlying structure
  •  the values, expectations, and beliefs within the system and broader environment
  •  how the problem is understood
  •  the proposed solutions and how will they be implemented and analysed.

Systems approaches can be applied through a cyclical method which considers the relationships between each component of a project phase. See Figure 29 for examples.

Figure 29.  Examples of the cyclical approach that can be used to support systems approaches to project management, by Carmen Reaiche and Samantha Papavasiliou, licensed under CC BY (Attribution) 4.0

explain system approach to problem solving

By applying the systems approach, organisations can understand the interactions between different areas, documents, and tasks and activities. By using a systems approach:

  • Project managers are able to realise the need for a holistic approach to prepare, plan, and implement a project.
  • The multidimensional components which have an impact on the outcomes of a project (for example, technological, financial, resources, cultural, etc.) can be documented.
  • Project managers can understand how different dimensions or structural components will influence the stakeholders and their expectations, and how the market and environment can change swiftly and significantly. This is commonly in response to economic factors, ecological issues, stakeholder values, news cycles and so forth.
  • The end-to-end interactions between tasks, activities, resources, stakeholders and so on, are considered and work together to reach the common goals and objectives of the broader system (or the project).

Therefore, when the systems approach is applied to a project, project managers are better able to respond to the conditions outside of their control, and create efficiencies within their projects boundaries to maximise outcomes.

Soft Systems Method

Soft Systems Methodology (SSM) is an approach which is used to create structure in complex problems and develop changes which are both feasible for and wanted by all the stakeholders. These stakeholders include internal stakeholders (employees, developers) and external stakeholders (users, clients, competitors). As a result, everyone provides different insights into and solutions to solve a problem (Checkland and Scholes 1990; Checkland 2000; Checkland and Poulter 2006).

To support the understanding of SSM, a soft system can be defined as a human activity system (HAS). This HAS is purposeful and organised in that groups of people work collectively to achieve a purpose or outcome.

SSM was designed to allow each heterogeneous group of stakeholders the opportunity to provide their insights into the problem. Each group or stakeholder can document the problem in their own way and provide their insights into feasible or desirable outcomes or solutions (Checkland 2000).

Through collaboration, a solution can be created that is agreed upon by all stakeholders. It supports quicker decision-making through consensus. The approach is used to show the links between the real world and the considerations and components documented within the systems world.

The 7 steps to SSM

There are 7 steps to SSM (see Figure 30). These steps are not necessarily carried out in linear order and some steps may not need to be completed. These steps should be used to support collaboration, decision-making and problem-solving.

Figure 30. SSM 7 steps, by Carmen Reaiche and Samantha Papavasiliou, licensed under CC BY (Attribution) 4.0

explain system approach to problem solving

Step 1. Identify the problem situation  

This step involves gathering relevant information to understand the problem situation. There are several tools which can be used to support information gathering (Checkland and Scholes 1990; Checkland 2000; Checkland and Poulter 2006), including:

  •  interviews
  •  brainstorming sessions
  •  historical and current data
  •  news articles
  •  document analysis
  •  organisational structure
  •  control policies
  •  observation sessions.

Through the information gathered, analysis should support understanding the possible components and factors which could influence or impact the problem situation.

Let’s go through the rest of the steps using a sample organisation: Lugano. Lugano is a financial firm that offers digital services to clients. This organisation is experiencing decreased overall use of digital services and significant increases in the need for support provided by frontline employees by telephone. It is unclear what is causing this increased need for support. Information is gathered via employee and user feedback, data and document analysis. Lugano will  be used as an example in the following step.

Step 2. Describe the problem situation

From Step 1, the analyst has sufficient information to understand the problem space and document the situation through pictures or diagrams. The tool recommended in SSM is the rich picture diagram (Checkland and Scholes 1990; Checkland 2000; Checkland and Poulter 2006). This diagram outlines the problem situation using a graphical representation of the different relationships, communication mechanisms, processes, structure, people, concerns, conflict, and climate. A rich picture can incorporate images, text, symbols, and icons.

Figure 31 provides an example of part of a rich picture. This example highlights Lugano’s relationships between the digital services provided to users, and the support mechanisms in place to provide guidance when needed. The problem situation Lugano is the increased requirement for support and the decreased use of digital services. The problems highlighted in Lugano’s example include the need for skills development and training for users, accuracy and relevance of information and records provided, and access to services.

Figure 31.  Example rich picture from a digital service offering perspective, by Carmen Reaiche and Samantha Papavasiliou, licensed under CC BY (Attribution) 4.0

explain system approach to problem solving

Step 3. Develop key definitions

Once the rich picture has been created, the next step is to determine the best way for the system to function. This process starts with creating root definitions which provide an ideal view of the key systems and structures (Checkland and Scholes 1990; Checkland 2000; Checkland and Poulter 2006). This commonly follows the CATWOE elements (Checkland and Scholes 1990; Checkland 2000; Checkland and Poulter 2006). Using the sample organisation:

Customers: Who are Lugano’s clients, and the users, stakeholders, and key players within a system?

Actors: Who are the employees within the organisation who support the transformation process?

Transformation: Which process will be transformed by Lugano, specifically considering what the output is and how the problem will be solved?

Worldview/Weltanschauung: What is the bigger picture or the environmental view of the situation, specifically the stakeholders within the environment who can influence the transformation?

Owners: Who within Lugano can make the changes or has the power to approve the start and end of the project or transformation?

Environmental constraints: What are the elements within the environment which influence Lugano and have the capacity to impact the system negatively, and how should they be managed?

CATWOE supports the creation of the root definition, which is defined as the representation of the problem situation to be addressed. Therefore, a root definition is defined as a statement which concisely and clearly describes the system of interest (or under review). It commonly starts with a single sentence that begins with ‘A system to’ followed by ‘all key elements of the system’.

Table 7. A CATWOE example using Lugano

Table 8. A root definition example using Lugano

Tables 7 and 8 provide an example of CATWOE and creating the root definition for the digital service example. This example shows the key players and the aim of the transformation within the root definition. Through this approach, the problem became clearer, and the system of interest became the digital service and surrounding environment.

When applying SSM its important to understand the transformation component correctly, especially in relation to inputs and outputs (Checkland and Scholes 1990; Checkland 2000; Checkland and Poulter 2006). This is outlined in Figure 32, which shows that Input (I) should support the transformation and lead to the Output (O). A common mistake is incorrectly identifying the system input (the entity change) with the resources required to implement the change.

Figure 32. Inputs create transformation which leads to outputs, by Carmen Reaiche and Samantha Papavasiliou, licensed under CC BY (Attribution) 4.0

explain system approach to problem solving

Forbes and Checkland (1987) provided some definitions and rules to support the documentation of the transformation:

  •  (T) transforms the Input (I) into Outputs (O).
  •  The input must be present in the output; however, it will be in a different or changed state.
  •  An abstract (intangible) input will create an abstract (intangible) outcome.
  •  A tangible (concrete) input will create a tangible (concrete) output.

Step 4: Create conceptual models

This step requires creating a conceptual model which is used to analyse the activities which need to occur to undertake the transformation. The activities outlined should only be based on actions taken by actors (internal to the organisation). These activities need to link back to the root definition and be limited to a project group to control (Wilson 2001). All activities need to achieve the objectives of the transformation, and activities must include monitoring the transformation and providing feedback. It should consider what is meant by success, how it is measured and who will measure it.

The key activities required for the digital services example include:

  • Determine what factors influence digital service use.
  • Assess actions required to improve these.
  • Take action.
  • Measure behavioural change.
  • Measure impact of change on the environment.
  • Report results.
  • Monitor and manage the system performance, recommend improvements.

Figure 33. Example draft of the digital services conceptual map, by Carmen Reaiche and Samantha Papavasiliou, licensed under CC BY (Attribution) 4.0

explain system approach to problem solving

As outlined in Figure 33, there are clear operational activities which need to be taken to activate the transformation. Each activity should be monitored to ensure it is easy to follow and that there is a clear process in place. The conceptual model outlined in Figure 33 is in draft state – it shows a starting point for developing a complete model.

Within a conceptual model, Forbes and Checkland (1987) recommended:

  •  having 7+/-2 activities of the same size
  •  describing each activity using a verb
  •  using arrows to show logical dependencies
  •  numbering activities to reaffirm the dependencies.

Conceptual models are made to document HAS, which are softer models (Tavella and Hjortso 2012). This is because it is difficult for human behaviour to repeat and reproduce the same actions repeatedly with the same results. Therefore, there is an innate variability in the human activities and performances outlined within the conceptual models. These still require monitoring and controlling to support the transformation and ensure that changes are made as required. The overarching structure of a HAS is outlined in Figure 34, and this approach can be used to support improvements to the conceptual model. This calls out the operational system within the organisation’s control (operational subsystem) and the elements which occur outside of the direct control of the organisation, this being the response to the implemented change. These are tracked and monitored and as changes are required, they are implemented.

Figure 34. HAS overarching structure, by Carmen Reaiche and Samantha Papavasiliou, licensed under CC BY (Attribution) 4.0

explain system approach to problem solving

This monitoring and controlling process should follow the 3Es: effective, efficient, efficacy (Wilson 2001; Checkland 2000). When planning, the transformation needs to consider:

  •   Effective : Is the system acting in the way it should be? Does the system contribute to the broader organisational goals?
  •   Efficient : Does the system use the least number of resources? Does it use the resources appropriately?
  •   Efficacy : Does the system provide the expected results?

Using the 3Es, a project manager is better equipped to determine what level of monitoring and controlling is required and how it could be completed.

Another critical component of a conceptual model is the use of feedback loops (Checkland 2000; Wilson 2001). Within conceptual models, there are commonly two forms:

  •  Internal feedback loop. This loop highlights how the actors (or the individual completing the work) need to alter how they work to meet the transformation.
  •  External feedback loop. This loop looks at the links between the inputs and the outputs, specifically interested in how the system is performing.

Therefore, an effective project manager needs to clearly define their success measures for the transformation and ensure that they are built into the system.

Step 5. Compare conceptual models to reality

Conceptual models are developed through applying theory; however, they are not necessarily representative of reality. Therefore, Step 5 requires an understanding of how much these models reflect the real world (Checkland 2000; Wilson 2001). This requires an analysis of the gaps, to determine whether the provided solution will meet the needs. This analysis is required to understand:

  •  conceptual model activities
  •  the real world
  •  what can be completed.

Table 9 is an example of the analysis for the digital services transformation, using 3 columns based on the above analysis questions.

Table 9. Example conceptual model vs. real world comparison (digital services example)

Step 6. Assess feasibility and define changes

Based on the results of Step 5, a feasibility assessment is required of the suggested changes (Checkland 2000; Wilson 2001). The changes are normally classified as a change in:

  •  procedures and processes
  •  attitudes or behaviours.

This requires an analysis of 3 primary elements: feasibility, priorities and risk analysis.

Feasibility

Feasibility requires understanding how the different activities will be undertaken. A feasibility analysis will need to consider whether something is achievable (Checkland and Scholes 1990; Checkland 2000; Checkland and Poulter 2006), based on:

  •  Cultural feasibility: Will the employees or actors involved be able to complete the work?
  • Technical feasibility: What is the required support or modern technology required to implement the change?
  •  Dependencies: Are there links between the organisational and technological systems? What order do updates need to go in?
  •  Win-Win: Do the recommended changes make it easier for the organisation, employees, and clients?

This is a vital component; the changes need to be prioritised based on what impact they will have on the desired transformation, what risks they pose and how difficult they will be to implement. This can follow Kaplan and Norton’s (1993) balanced scorecard approach – an example of factors is outlined in Figure 35.

Figure 35. Example of the balanced scorecard for the digital services example, by Carmen Reaiche and Samantha Papavasiliou, licensed under CC BY (Attribution) 4.0

explain system approach to problem solving

According to Kaplan and Norton (1993) there are 4 primary elements within the balanced scorecard and successful organisations, projects, and transformation find a balance between each of these components.  Each component provides a different view of the organisation to operate efficiently and effectively. These components are:

  • Financial perspective: outlines the different cost measures involved in the organisation, project and or change.
  • Client perspective: outlines how client satisfaction, retention and market share will be measured and improved.
  • Internal processes perspective: outlines what the change will cost and how it will impact the quality of the internal business processes.
  • Innovative perspective: outlines measures of employee satisfaction, knowledge management, improvement rates and number or percentage of employees included in the improvement.

These 4 components or perspectives are interlinked – they do not function in isolation. Using the scorecard approach, the factors within the perspectives need to consider:

  •  objectives: organisational objectives and strategies
  •  measures: following the objectives, how you will measure progress
  •  targets: what is the objective aiming to achieve
  •  initiatives: actions taken to meet the objectives.

Risk analysis

The third tool to support feasibility assessment is the completion of a risk assessment. Risk analysis is the process which determines the likelihood and impact of a risk occurring. The assessment considers how the risk will impact the project schedule, quality, budget, and scope. The analysis technique recommended in SSM is the risk analysis matrix.

The risk analysis matrix assesses the likelihood of a risk occurring and the overall severity if it were to occur. These are classified by importance and impact. Likelihood and consequence (impact) are measured as low, medium, high, or very high (Vose 2008), as shown in Figure 36.

Figure 36. Example of a risk analysis matrix, by Carmen Reaiche and Samantha Papavasiliou, licensed under CC BY (Attribution) 4.0

explain system approach to problem solving

Each risk should be identified, analysed, and considered as part of the feasibility assessment.

To complete the assessment, the project manager should understand the potential feasibility of the changes, the priority of each change and the level of risk associated. This should be used as a guide to help determine which changes should be implemented.

Step 7. Take action to implement proposed changes

The final step is to implement the proposed and agreed upon changes (as outlined in Step 6). The implementation should follow the required steps outlined within the conceptual model (and reality analysis). Once implemented, there is a potential for the system changes to provide new opportunities and problems that require responses. As a result, the process would need to start again.

Advantages of SSM

There are several advantages to applying SSM, including:

  • provides a structure for complex problems or situations
  • easy to follow steps
  • rigorous testing required
  • encourages multiple iterations.

Disadvantages of SSM

There are several potential disadvantages to applying SSM, including:

  • requires organisational change, which can be difficult to convince stakeholders of
  • solutions can be narrowed down too early
  • rich pictures are challenging to create, due to their lack of structure
  • actions are expected quickly; however, the process can be time consuming.

In sum, SSM provides an analysis tool and technique which outlines the different requirements for the system transformation. This module outlines the 7 primary steps required to implement the methodology. SSM is a systems approach which can be used to undertake problem-solving and analysis of complex situations. Therefore, a cycle of research, learning and reflection is recommended based on the perceptions of all the stakeholders to better provide solutions for the problem space.

Test your knowledge

Key Takeaways

  • A system is composed of numerous related and dependent components which, through interactions with one another, create a whole. Therefore, a system is a compilation of distinct factors or components which form a complex whole.
  • By viewing the project management process as a system which operates as an entity comprised of sub-systems, project managers can identify areas within the project which could lead to success or failure.
  • Systems approaches can be applied through a cyclical approach which considers the relationships between each component of a project phase.
  • SSM is used to create structure in complex problem and then develop changes which are both feasible for and wanted by all the stakeholders.

Checkland P and Poulter J (2006) Learning for action: a short definitive account of soft systems methodology and its use, for practitioners, teachers, and students , John Wiley and Sons Ltd, United States.

Checkland P (2000) ‘Soft systems methodology: a thirty year retrospective’, Systems Research and Behavioral Science , 17(S1):S11–S58.

Checkland P and Scholes J (1990), Soft systems methodology in action , vol. 7, Wiley, Chichester.

Cleland DI (1997) ‘Defining a project management system’, Project Management Quarterly , 8(4):37–40.

Forbes P and Checkland PB (1987) ‘Monitoring and control in systems models’, Internal Discussion Paper 3/87, Department of Systems, University of Lancaster.

INCOSE (2015) INCOSE systems engineering handbook: a guide for system life cycle processes and activities , 4th edn, Wiley, United States.

Kaplan RS and Norton DP (1993) ‘Putting the balance scorecard to work’, Harvard Business Review Magazine , Sep/Oct, accessed 3 August 2022. https://hbr.org/1993/09/putting-the-balanced-scorecard-to-work

Kerzner H (2017) Project management: a systems approach to planning, scheduling, and controlling , 12th edn, Wiley, United States.

Meredith JR and Mantel Jr SJ (2011) Project management: a managerial approach , John Wiley & Sons.

Tavella E and Hjortsø C (2012). ‘Enhancing the design and management of a local organic food supply chain with soft systems methodology,’ International Food and Agribusiness Management Review ,  15(2): 47–68.

Vose D (2008) Risk analysis: a quantitative guide , 3rd edn, Wiley, United States.

Wilson B (2001) Soft systems methodology conceptual model building and its contribution , Wiley, United States.

Management Methods for Complex Projects Copyright © 2022 by Carmen Reaiche and Samantha Papavasiliou is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

explain system approach to problem solving

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

explain system approach to problem solving

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

' src=

Your list of techniques for problem solving can be helpfully extended by adding TRIZ to the list of techniques. TRIZ has 40 problem solving techniques derived from methods inventros and patent holders used to get new patents. About 10-12 are general approaches. many organization sponsor classes in TRIZ that are used to solve business problems or general organiztational problems. You can take a look at TRIZ and dwonload a free internet booklet to see if you feel it shound be included per your selection process.

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

explain system approach to problem solving

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

explain system approach to problem solving

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

Scientists use generative AI to answer complex questions in physics

Press contact :, media download.

A cute robot is at the chalkboard. The chalkboard is filled with complex charts, waves and shapes.

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license . You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

A cute robot is at the chalkboard. The chalkboard is filled with complex charts, waves and shapes.

Previous image Next image

When water freezes, it transitions from a liquid phase to a solid phase, resulting in a drastic change in properties like density and volume. Phase transitions in water are so common most of us probably don’t even think about them, but phase transitions in novel materials or complex physical systems are an important area of study.

To fully understand these systems, scientists must be able to recognize phases and detect the transitions between. But how to quantify phase changes in an unknown system is often unclear, especially when data are scarce.

Researchers from MIT and the University of Basel in Switzerland applied generative artificial intelligence models to this problem, developing a new machine-learning framework that can automatically map out phase diagrams for novel physical systems.

Their physics-informed machine-learning approach is more efficient than laborious, manual techniques which rely on theoretical expertise. Importantly, because their approach leverages generative models, it does not require huge, labeled training datasets used in other machine-learning techniques.

Such a framework could help scientists investigate the thermodynamic properties of novel materials or detect entanglement in quantum systems, for instance. Ultimately, this technique could make it possible for scientists to discover unknown phases of matter autonomously.

“If you have a new system with fully unknown properties, how would you choose which observable quantity to study? The hope, at least with data-driven tools, is that you could scan large new systems in an automated way, and it will point you to important changes in the system. This might be a tool in the pipeline of automated scientific discovery of new, exotic properties of phases,” says Frank Schäfer, a postdoc in the Julia Lab in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and co-author of a paper on this approach.

Joining Schäfer on the paper are first author Julian Arnold, a graduate student at the University of Basel; Alan Edelman, applied mathematics professor in the Department of Mathematics and leader of the Julia Lab; and senior author Christoph Bruder, professor in the Department of Physics at the University of Basel. The research is published today in Physical Review Letters.

Detecting phase transitions using AI

While water transitioning to ice might be among the most obvious examples of a phase change, more exotic phase changes, like when a material transitions from being a normal conductor to a superconductor, are of keen interest to scientists.

These transitions can be detected by identifying an “order parameter,” a quantity that is important and expected to change. For instance, water freezes and transitions to a solid phase (ice) when its temperature drops below 0 degrees Celsius. In this case, an appropriate order parameter could be defined in terms of the proportion of water molecules that are part of the crystalline lattice versus those that remain in a disordered state.

In the past, researchers have relied on physics expertise to build phase diagrams manually, drawing on theoretical understanding to know which order parameters are important. Not only is this tedious for complex systems, and perhaps impossible for unknown systems with new behaviors, but it also introduces human bias into the solution.

More recently, researchers have begun using machine learning to build discriminative classifiers that can solve this task by learning to classify a measurement statistic as coming from a particular phase of the physical system, the same way such models classify an image as a cat or dog.

The MIT researchers demonstrated how generative models can be used to solve this classification task much more efficiently, and in a physics-informed manner.

The Julia Programming Language , a popular language for scientific computing that is also used in MIT’s introductory linear algebra classes, offers many tools that make it invaluable for constructing such generative models, Schäfer adds.

Generative models, like those that underlie ChatGPT and Dall-E, typically work by estimating the probability distribution of some data, which they use to generate new data points that fit the distribution (such as new cat images that are similar to existing cat images).

However, when simulations of a physical system using tried-and-true scientific techniques are available, researchers get a model of its probability distribution for free. This distribution describes the measurement statistics of the physical system.

A more knowledgeable model

The MIT team’s insight is that this probability distribution also defines a generative model upon which a classifier can be constructed. They plug the generative model into standard statistical formulas to directly construct a classifier instead of learning it from samples, as was done with discriminative approaches.

“This is a really nice way of incorporating something you know about your physical system deep inside your machine-learning scheme. It goes far beyond just performing feature engineering on your data samples or simple inductive biases,” Schäfer says.

This generative classifier can determine what phase the system is in given some parameter, like temperature or pressure. And because the researchers directly approximate the probability distributions underlying measurements from the physical system, the classifier has system knowledge.

This enables their method to perform better than other machine-learning techniques. And because it can work automatically without the need for extensive training, their approach significantly enhances the computational efficiency of identifying phase transitions.

At the end of the day, similar to how one might ask ChatGPT to solve a math problem, the researchers can ask the generative classifier questions like “does this sample belong to phase I or phase II?” or “was this sample generated at high temperature or low temperature?”

Scientists could also use this approach to solve different binary classification tasks in physical systems, possibly to detect entanglement in quantum systems (Is the state entangled or not?) or determine whether theory A or B is best suited to solve a particular problem. They could also use this approach to better understand and improve large language models like ChatGPT by identifying how certain parameters should be tuned so the chatbot gives the best outputs.

In the future, the researchers also want to study theoretical guarantees regarding how many measurements they would need to effectively detect phase transitions and estimate the amount of computation that would require.

This work was funded, in part, by the Swiss National Science Foundation, the MIT-Switzerland Lockheed Martin Seed Fund, and MIT International Science and Technology Initiatives.

Share this news article on:

Press mentions.

Researchers at MIT and elsewhere have developed a new machine-learning model capable of “predicting a physical system’s phase or state,” report Kyle Wiggers and Devin Coldewey for TechCrunch . 

Previous item Next item

Related Links

  • Frank Schäfer
  • Alan Edelman
  • Computer Science and Artificial Intelligence Laboratory
  • Department of Mathematics
  • Department of Electrical Engineering and Computer Science

Related Topics

  • Mathematics
  • Computer science and technology
  • Artificial intelligence
  • Computer modeling
  • Computer Science and Artificial Intelligence Laboratory (CSAIL)
  • Electrical Engineering & Computer Science (eecs)

Related Articles

Thousands of tiny lights hang from the ceiling of an at least 15-story hotel-style atrium. They are seen from the ground looking up.

Technique could efficiently solve partial differential equations for numerous applications

3 renderings of molecules are placed on the peaks of stylized bell curves. The 3 molecules look similar, but the left structure has a section made of glowing white pieces, alluding to a reaction.

Computational model captures the elusive transition states of chemical reactions

Large red text says “AI” in front of a dynamic, colorful, swirling background. 2 floating hands made of dots attempt to grab the text, and strange glowing blobs dance around the image.

Explained: Generative AI

Conceptual image of an open box that has sparks flying out on a black background. The lid of the box resembles that of a laptop computer screen.

From physics to generative AI: An AI model for advanced pattern generation

More mit news.

A little girl lies on a couch under a blanket while a woman holds a thermometer to the girl's mouth.

Understanding why autism symptoms sometimes improve amid fever

Read full story →

Three rows of five portrait photos

School of Engineering welcomes new faculty

Pawan Sinha looks at a wall of about 50 square photos. The photos are pictures of children with vision loss who have been helped by Project Prakash.

Study explains why the brain can robustly recognize images, even without color

Illustration shows a red, stylized computer chip and circuit board with flames and lava around it.

Turning up the heat on next-generation semiconductors

Sarah Milholland stands in front of an MIT building on a sunny day spring day. Leaves on the trees behind her are just beginning to emerge.

Sarah Millholland receives 2024 Vera Rubin Early Career Award

Grayscale photo of Nolen Scruggs seated on a field of grass

A community collaboration for progress

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

IMAGES

  1. The problem-solving process chart

    explain system approach to problem solving

  2. what is problem solving steps process & techniques asq

    explain system approach to problem solving

  3. 5 step problem solving method

    explain system approach to problem solving

  4. The four stages of problem solving, adapted from the “integrated model

    explain system approach to problem solving

  5. 6 steps of the problem solving process

    explain system approach to problem solving

  6. 7 Step Problem Solving Process

    explain system approach to problem solving

VIDEO

  1. Clarifying the '5 Whys' Problem-Solving Method #shorts #problemsolving

  2. The Essentials of Problem Solving #shorts #problemsolving

  3. 4.1 Solving simple systems

  4. Problem solving method of teaching Steps in problem Solving Method समस्या समाधान विधि के चरण #ctet

  5. What is system approach in international relations?

  6. CBSE Class 10 Biology

COMMENTS

  1. Taking a systems thinking approach to problem solving

    A systems thinking approach to problem solving recognizes the problem as part of a wider system and addresses the whole system in any solution rather than just the problem area. A popular way of applying a systems thinking lens is to examine the issue from multiple perspectives, zooming out from single and visible elements to the bigger and ...

  2. Systems Approach to Problem Solving

    Simplifying a System or Applying Systems Approach For Problem Solving. The easiest way to simplify a system for better understanding is to follow a two-stage approach. Partitioning the System into Black Boxes. This is the first stage of the simplification process, in this stage the system is partitioned into black boxes.

  3. Systems Approach to Problem Solving

    Recognize and define a problem or opportunity using systems thinking. Develop and evaluate alternative system solutions. Select the system solution that best meets your requirements. Design the selected system solution. Implement and evaluate the success of the designed system. 1. Defining Problems and Opportunities.

  4. Understanding Systems Thinking: A Path to Insightful Problem-Solving

    The Benefits of Systems Thinking. Systems thinking offers several compelling reasons to adopt its principles in problem-solving endeavours. By broadening our thinking and enabling us to articulate problems in novel ways, it expands the range of choices available for resolving complex issues. Furthermore, systems thinking emphasises the ...

  5. Systems Thinking: A Deep Dive Into The Framework To Successfully Solve

    Systems thinking is a way of looking at the world that emphasizes how things are connected. It's about seeing patterns and relationships, not just in individual parts but also across systems as a whole. This approach can be applied to any situation or problem you encounter—from personal life to business management to global politics.

  6. What is Problem Solving? Steps, Process & Techniques

    1. Define the problem. Diagnose the situation so that your focus is on the problem, not just its symptoms. Helpful problem-solving techniques include using flowcharts to identify the expected steps of a process and cause-and-effect diagrams to define and analyze root causes.. The sections below help explain key problem-solving steps.

  7. Systems Thinking: What, Why, When, Where, and How?

    Systems thinking is also a diagnostic tool. As in the medical field, effective treatment follows thorough diagnosis. In this sense, systems thinking is a disciplined approach for examining problems more completely and accurately before acting. It allows us to ask better questions before jumping to conclusions.

  8. Systems Thinking: How to Solve Problems So They Stay Solved

    Systems thinking is problem-solving approach that examines the relationships between functions in an organization. Systems thinking is powerful because it enables you to predict the consequences of a potential change. This problem-solving method can also help you eliminate silos, see different viewpoints, and remain focused on the big picture. ...

  9. PDF 4 The general systems approach to problem-solving

    This problem-solving framework is in fact the basis of all the techniques involved in an important systems discipline known as systems engineering. More recently, methodologies based on this particular problem-solving framework have come to be referred to as the hard systems approaches. The ideas of a relatively new systems approach,

  10. Systems Thinking: Definition and Pro Tips to Apply It at Work

    Here is an example of systems thinking: Imagine asking your team to use a new calendar software program to schedule meetings. You could use a systems thinking approach to imagine their responses and problem-solve before any issues arise. While scheduling meetings, your co-workers might use different color-coding systems within the calendar.

  11. What 'systems thinking' actually means

    Systems thinking unpacks the value chain within an organisation and externally. It complements design thinking: together they're a dynamic duo. For starters, this philosophy needs to enter our everyday thinking. Yes, it is crucial for innovation, but an easy first step is to use systems thinking casually throughout your life.

  12. A Practical Guide to Problem-Solving Techniques in Systems Engineering

    A thought experiment is a disciplined imagination process that engineers use to ponder a problem or system without conducting physical experiments. By using hypothetical scenarios, engineers can predict potential challenges and find solutions without the cost and time of real-world testing. For instance, consider the design of an urban traffic ...

  13. Developing and Implementing Information Systems

    Abstract. In this chapter, we will describe the system approach to problem solving, explain the steps of the systems development life cycle, point out the need for successful project management, change management and risk management, and compare different development approaches organisations can apply. Download to read the full chapter text.

  14. 4 Defining the Problem: The Importance of Taking a Systems Perspective

    Obesity is a multifaceted problem that warrants complex thinking and a broad systems perspective to frame the problem, understand potential causes, identify critical leverage points of influence, and take effective action.Linear approaches to complex public health problems such as the obesity crisis are clearly useful, but cannot address the multiple dimensions of the real world and the many ...

  15. How to master the seven-step problem-solving process

    When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that's very similar to the disaggregation, prioritization, and work-planning steps—we do precisely the same thing, and often we use ...

  16. Soft systems methodology

    In sum, SSM provides an analysis tool and technique which outlines the different requirements for the system transformation. This module outlines the 7 primary steps required to implement the methodology. SSM is a systems approach which can be used to undertake problem-solving and analysis of complex situations.

  17. How to Use Systems Thinking to Solve Tough Problems and Get ...

    As defined, systems thinking is an approach to problem solving that attempts to balance holistic thinking and reductionist thinking. In practice, it means taking a step back. It means zooming out to ask better questions to understand how different systems interact so that you can design more impactful solutions.

  18. The McKinsey guide to problem solving

    Become a better problem solver with insights and advice from leaders around the world on topics including developing a problem-solving mindset, solving problems in uncertain times, problem solving with AI, and much more. ... These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only ...

  19. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  20. 35 problem-solving techniques and methods for solving complex problems

    6. Discovery & Action Dialogue (DAD) One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions. With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so.

  21. Problem solving

    Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue ...

  22. 12 Approaches To Problem-Solving for Every Situation

    Here are the seven steps of the rational approach: Define the problem. Identify possible causes. Brainstorm options to solve the problem. Select an option. Create an implementation plan. Execute the plan and monitor the results. Evaluate the solution. Read more: Effective Problem Solving Steps in the Workplace.

  23. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In insight problem-solving, the cognitive processes that help you solve a problem happen outside your conscious awareness. 4. Working backward. Working backward is a problem-solving approach often ...

  24. Scientists use generative AI to answer complex questions in physics

    Scientists could also use this approach to solve different binary classification tasks in physical systems, possibly to detect entanglement in quantum systems (Is the state entangled or not?) or determine whether theory A or B is best suited to solve a particular problem. They could also use this approach to better understand and improve large ...