Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

water-logo

Journal Menu

  • Aims & Scope
  • Editorial Board
  • Reviewer Board
  • Topical Advisory Panel
  • Instructions for Authors
  • Special Issues
  • Sections & Collections
  • Article Processing Charge
  • Indexing & Archiving
  • Editor’s Choice Articles
  • Most Cited & Viewed
  • Journal Statistics
  • Journal History
  • Journal Awards
  • Society Collaborations
  • Conferences
  • Editorial Office

Journal Browser

  • arrow_forward_ios Forthcoming issue arrow_forward_ios Current issue
  • Vol. 16 (2024)
  • Vol. 15 (2023)
  • Vol. 14 (2022)
  • Vol. 13 (2021)
  • Vol. 12 (2020)
  • Vol. 11 (2019)
  • Vol. 10 (2018)
  • Vol. 9 (2017)
  • Vol. 8 (2016)
  • Vol. 7 (2015)
  • Vol. 6 (2014)
  • Vol. 5 (2013)
  • Vol. 4 (2012)
  • Vol. 3 (2011)
  • Vol. 2 (2010)
  • Vol. 1 (2009)

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

Advanced Research on Sustainable Water Resources Management and Planning under Climate Change

  • Print Special Issue Flyer

Special Issue Editors

Special issue information, benefits of publishing in a special issue.

  • Published Papers

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section " Water and Climate Change ".

Deadline for manuscript submissions: closed (31 December 2021) | Viewed by 83743

Share This Special Issue

research topics in water resources management

Dear Colleagues,

Water resources are one of most critical factors for the sustainable development of human society and are also important for maintaining natural ecosystems. With the influence of climate change and human activities, water resources in many watersheds have changed greatly with a decrease in water availability, deterioration in water quality, and degradation in aquatic ecological systems, especially in important rivers in the world, such as the Yangtze River, the Yellow River, the Amazon River, etc. Therefore, it is a daunting challenge to maintain sustainability at the watershed scale through scientific and effective water resource management and planning. In recent years, many scholars have put forward many new theories, technologies, and methods in the research of watershed hydrological processes, as well as water resource management and planning, to deal with climate change and human disturbance.

This Special Issue on “ Advanced Research on Sustainable Water Resources M anagement and P lanning under Climate Change ” aims to explore new models, methods, and tools for water resource management and planning and their applications in various watersheds of the world. We hope this will facilitate the development of sustainable water resource management at the watershed level.

Topics of interest may include but are not limited to:

  • Water availability assessment;
  • Water security assessment;
  • Hydrologic modeling;
  • Water resource planning;
  • Climate changes on water resources;
  • Water resources management;
  • Surface water and groundwater;
  • Ecological water demanded or environmental flow.

Prof. Dr. Chunhui Li Dr. Zoe Li Dr. Yurui Fan Prof. Dr. Celso Augusto Guimarães Santos Prof. Dr. Junliang Jin Guest Editors

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website . Once you are registered, click here to go to the submission form . Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

  • water resource assessment
  • water resource planning
  • climate change
  • integrated management
  • drought and flood
  • hydrologic modeling
  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here .

Published Papers (20 papers)

research topics in water resources management

Graphical abstract

research topics in water resources management

Further Information

Mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

research topics in water resources management

Sustainable Water Resources Management

  • Covers a broad range of topics in water resources management.
  • Addresses geopolitical and socio-economic effects and constraints.
  • Includes topics such as natural and man-induced contamination of water resources.
  • Highlights surface and ground water interaction, managed aquifer recharge, and storage.
  • Aims to raise the quality and scope of research in both developed and developing countries.

Latest articles

Groundwater quality assessment for potable using wqi and gis technology in the south of iran.

  • Amir Bahrami
  • Mehdi Bahrami
  • Elaheh Haghani

research topics in water resources management

Modeling of surface water allocation under current and future climate change in Keleta Catchment, Awash River Basin, Ethiopia

  • Yalemsew Tefera Gemechu
  • Demelash Wondimagegnehu Goshime
  • Asamin Birara Asnake

research topics in water resources management

Assessment of pollution and trophic state of a water hyacinth infested tropical highland lake: Lake Tana in Ethiopia

  • Meareg D. Nerae
  • Mebrahtom G. Kebedew
  • Tammo S. Steenhuis

research topics in water resources management

Feasibility of riverbank filtration in Vietnam

  • Thi Ngoc Anh Hoang
  • Gustavo Covatti
  • Thomas Grischek

research topics in water resources management

Reviewing early chemical weathering in the Achala Batholith ( Sierras Pampeanas , Córdoba, Argentina)

  • P. J. Depetris

research topics in water resources management

Journal updates

Supporting the sustainable developmental goals.

New Content Item

Journal information

  • Astrophysics Data System (ADS)
  • EI Compendex
  • Emerging Sources Citation Index
  • Engineering Village – GEOBASE
  • Google Scholar
  • INIS Atomindex
  • Japanese Science and Technology Agency (JST)
  • Norwegian Register for Scientific Journals and Series
  • OCLC WorldCat Discovery Service
  • Semantic Scholar
  • TD Net Discovery Service
  • UGC-CARE List (India)

Rights and permissions

Editorial policies

© Springer Nature Switzerland AG

  • Find a journal
  • Publish with us
  • Track your research

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

Water resource management: IWRM strategies for improved water management. A systematic review of case studies of East, West and Southern Africa

Roles Conceptualization, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing

* E-mail: [email protected]

Affiliations Soil, Crop, and Climate Sciences, University of the Free State, Bloemfontein, South Africa, School of Engineering, University of KwaZulu-Natal, Pietermaritzburg, South Africa, Varmac Consulting Engineers, Scottsville, Pietermaritzburg, South Africa

ORCID logo

Roles Conceptualization, Formal analysis, Methodology, Writing – original draft, Writing – review & editing

Affiliation Department of Civil & Structural Engineering, Masinde Muliro University of Science and Technology, Kakamega, Kenya

Roles Conceptualization, Methodology, Supervision, Writing – review & editing

Affiliation Soil, Crop, and Climate Sciences, University of the Free State, Bloemfontein, South Africa

Roles Writing – review & editing

Affiliation Department of Agriculture and Engineering Services, Irrigation Engineering Section, Ministry of Agriculture and Natural Resources, Ilorin, Kwara State, Nigeria

  • Tinashe Lindel Dirwai, 
  • Edwin Kimutai Kanda, 
  • Aidan Senzanje, 
  • Toyin Isiaka Busari

PLOS

  • Published: May 25, 2021
  • https://doi.org/10.1371/journal.pone.0236903
  • Reader Comments

17 May 2024: Dirwai TL, Kanda EK, Senzanje A, Busari TI (2024) Correction: Water resource management: IWRM strategies for improved water management. A systematic review of case studies of East, West and Southern Africa. PLOS ONE 19(5): e0304228. https://doi.org/10.1371/journal.pone.0304228 View correction

Table 1

The analytical study systematically reviewed the evidence about the IWRM strategy model. The study analysed the IWRM strategy, policy advances and practical implications it had, since inception on effective water management in East, West and Southern Africa.

The study adopted the Preferred Reporting Items for Systematic Review and Meta-analysis Protocols (PRISMA-P) and the scoping literature review approach. The study searched selected databases for peer-reviewed articles, books, and grey literature. DistillerSR software was used for article screening. A constructionist thematic analysis was employed to extract recurring themes amongst the regions.

The systematic literature review detailed the adoption, policy revisions and emerging policy trends and issues (or considerations) on IWRM in East, West and Southern Africa. Thematic analysis derived four cross-cutting themes that contributed to IWRM strategy implementation and adoption. The identified four themes were donor effect, water scarcity, transboundary water resources, and policy approach. The output further posited questions on the prospects, including whether IWRM has been a success or failure within the African water resource management fraternity.

Citation: Dirwai TL, Kanda EK, Senzanje A, Busari TI (2021) Water resource management: IWRM strategies for improved water management. A systematic review of case studies of East, West and Southern Africa. PLoS ONE 16(5): e0236903. https://doi.org/10.1371/journal.pone.0236903

Editor: Sergio Villamayor-Tomas, Universitat Autonoma de Barcelona, SPAIN

Received: July 12, 2020; Accepted: May 2, 2021; Published: May 25, 2021

Copyright: © 2021 Dirwai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are within the paper.

Funding: This study was supported by the National Research Foundation (NRF) in the form of a grant awarded to TLD (131377) and VarMac Consulting Engineers in the form of a salary for TLD. The specific roles of the authors are articulated in the ‘author contributions’ section. The funders had no additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have read the journal’s policy and have the following potential competing interests: TLD is a paid employee of VarMac Consulting Engineers. This does not alter our adherence to PLOS ONE policies on sharing data and materials. There are no patents, products in development or marketed products associated with this research to declare.

1 Introduction

Integrated Water Resources Management (IWRM) is a concept that is meant to foster effective water resource management. GWP [ 1 ] defined it as “the process which promotes the coordinated development and management of water, land and related resources, to maximise the resultant economic and social welfare equitably without compromising the sustainability of vital systems”. A holistic approach, in the form of the Dublin statement on Water and Sustainable Development (DSWSD), emerged and it became the backbone of IWRM principles.

According to Solanes and Gonzalez-Villarreal [ 2 ] the Dublin priciples are: “ (1) Freshwater is a finite and vulnerable resource , essential to sustain life , development and the environment; (2) Water development and management should be based on a participatory approach , involving users , planners and policy-makers at all levels , (3) Women play a central part in the provision , management , and safeguarding of water , and (4) Water has an economic value in all its competing uses , and should be recognised as an economic good .” The seamless conflation of the DSWSD and the Agenda 21 at the United Nations Conference on Environment and Development (UNCED) in 1992 further strengthened the IWRM discourse and facilitated the policy approach of IWRM [ 3 , 4 ]. Since its inception the IWRM policy has been the holy grail of water resource management in Africa, Asia, and Europe to mention a few. For policy diffusion, countries were required to develop an IWRM policy blueprints for effective water use [ 5 ].

This review sought to unveil the innovative IWRM strategy approach by critically examining its genesis, implementation, adoption and the main drivers in in East, Southern and West Africa. Secondary to this, the study endeavoured to determine whether the IWRM implementation has been a success or failure. The choice of East, West and Southern Africa was influenced by the regional dynamics of Sub-Saharan Africa which have unique problems in water resources management and the hydropolitical diversity in this region. The isolated cases provide a holistic representation t the implementation dynamics of IWRM. In addition, sub-Sahara Africa was the laboratory for IWRM with Zimbabwe and South Africa being the early implementers [ 6 ]. Apart from the IWRM strategy being a social experiment in sub-Sahara, there exists a gap on an overarching review on the performance and aggregated outcomes of the IWRM adopters in the continent. The selection of the countries of interest was based on the authors geo-locations and their expert experiences with the IWRM strategy in their respective localities. The study sought to draw trends, similarities, and potential differences in the drivers involved in achieving the desired IWRM outcome.

IWRM strategy approach and implementation are ideally linked to individual country’s developmental policies [ 7 ]. Southern Africa (Zimbabwe and South Africa) is the biggest adopter of the water resource management strategy and produced differed uptake patterns [ 8 ]. In East Africa, Tanzania,Uganda and Kenya also adopted the IWRM strategy, whilst in West Africa, Burkina Faso latently adopted the IWRM strategy in 1992 [ 4 ] and in Ghana, customary and traditional water laws transformed into latent IWRM practices [ 9 ].

Various initiatives were put in place to aid the adoption of IWRM in sub-Sahara Africa. For example, Tanzania benefited from donor funds and World Bank programmes that sought to alleviate poverty and promote environmental flows. The World Bank radically upscaled and remodelled IWRM in Tanzania through the River Basin Management—Smallholder Irrigation Improvement Programme (RBM-SIIP) [ 10 ]. The government of Uganda’s efforts of liberalising the markets, opening democratic space and decentralising the country attracted donor funds that drove the IWRM strategy agenda. The long-standing engagement between Uganda and the Nordic Fresh Water initiative helped in the diffusion of IWRM strategy in the country. Finally, in West Africa, Burkina Faso and Ghana made significant strides in operationalising the IWRM strategy by adopting the West Africa Water Resources Policy (WAWRP). A massive sense of agency coupled with deliberate government efforts drove the adoption status of Burkina Faso.

Total policy diffusion can be achieved when the practice or idea has supporting enablers. Innovation is key in developing plocies that altersocietal orthodox policy paths that fuel hindrance and consequently in-effective water governance [ 11 ]. Acknowledging the political nature of water (water governance and transboundary catchments issues) is the motivation to legislate water-driven and people-driven innovative policy [ 12 ]. Water policy reform should acknowledge the differing interests’ groups of the water users and its multi-utility nature; thus, diffusion channels should be tailored accordingly, avoiding the ‘one size fits all’ fallacy. IWRM as an innovative strategy approach diffused from the global stage to Africa and each regional block adopted the approach at different times under different circumstances.

The rest of this paper is outlined as follows; section 2 presents the conceptual framework adopted and the subsequent methodology. Section 3 presents the results and discussion. The discussion is structured around innovation driver in each respective region. Thereafter, sub-section 3.4 presents the prospect of IWRM in the East, West and Southern Africa regions. Lastly, the paper presents the conclusion.

2 Methodology

2.1 conceptual framework and methodology.

The analytical framework applied in the study is based on the water innovation frames by the United Nations Department of Economic and Social Affairs (UNDESA) [ 13 ]. The UNDESA [ 13 ], classified water frames into three distinct categories namely water management strategies (e.g., IWRM), water infrastructure and water services. The former partly involves IWRM strategies and the latter encompasses economic water usage such as agriculture, energy production and industrial applications [ 12 ].

The literature review identified research gaps that informed the employed search strategy. The literature that qualified for inclusion was thoroughly analysed and discussed. The aggregated outcomes were used for excerpt extraction in the thematic analysis.

2.2 Literature handling

The study performed a systematic review as guided by the Arksey and O’Malley [ 14 ] approach. The approach details methods on how to scope, gather, screen and report literature. The study further employed a constructionist thematic analysis to extract common recurring themes amongst the regions.

2.2.1 Eligibility criteria.

Eligibility criteria followed an adapted SPICE (Setting, Perspective, Intervention, Comparison and Evaluation) structure ( Table 1 ). The SPICE structure informed the study’s search strategy ( Table 2 ) and the subsequent formulation of the inclusion-exclusion criteria ( Table 3 ). The evidence search was conducted from the following databases: Scopus, Web of Science, Google Scholar, UKZN-EFWE, CABI, JSTOR, African Journals Online (AJOL), Directory of Open Access Journals (DOAJ), J-Gate, SciELO and WorldCat for peer-reviewed articles, books, and grey literature. The study did not emphasize publication date as recommended by Moffa, Cronk [ 15 ]. Databases selection was based on their comprehensive and over-arching nature in terms of information archiving. It is worth mentioning that the search strategy was continuously revised by trial and error until the databases yielded the maximum number of articles for screening.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pone.0236903.t001

thumbnail

https://doi.org/10.1371/journal.pone.0236903.t002

thumbnail

https://doi.org/10.1371/journal.pone.0236903.t003

2.2.2 Search strategy.

The search strategy or query execution [ 16 ] utilised Boolean operators ( OR & AND ). The dynamic nature of the search strategy required the authors to change the search terms and strategy, for example, if digital databases did not yield the expected search items the study would manually search for information sources. The search queries included a string of search terms summarised in Table 2 .

2.2.3 Selection process.

DistillerSR © software was used for article screening. Online data capturing forms were created in the DistillerSR © software and two authors performed the article scoring process that eventully led to article screening. The screening was based on the article title, abstract and locality. The study employed a two-phase screening process [ 17 ], the first phase screened according to title and the second phase screened according to abstract and keywords. During the screening process, studies that the matched information in the left column of Table 3 we included in the literature review syntheses, whilst those that matched the exclusion list were discarded.

2.3 Thematic analysis

The review also adopted the thematic analysis approach by Braun and Clarke [ 18 ] to extract, code, and select candidate converging themes for the systematic review. The selected lieterature was subjected to qualitative analysis to capture recurring themes amongst the selected regions (East, West and Southern Africa). Data extracts from the respective regional analysis were formulated into theoretical themes. Thereafter, the extracted data was coded according to the extracted patterns from the information source to constitute a theme. It is worth mentioning that the authors used their discretion to extract and code for themes.

3 Results and discussion

Data charting comprised of the PRISMA flow-chart ( Fig 1 ). The study utilised 80 out of 183 records (n = 37, 46%) for East Africa, (n = 37, 46%) for Southern Africa, and (n = 6, 8%) for West Africa.

thumbnail

https://doi.org/10.1371/journal.pone.0236903.g001

3.1 Case studies

The introduction of IWRM in the East African region was initiated in 1998 by the water ministers in the Nile basin states due to the need for addressing the concerns raised by the riparian states. These water sector reforms revolved around the Dublin principles initiated by the UN in 1992 [ 20 ]. In 1999, Kenya developed the national water policy and the enabling legislation, the Water Act 2002 was enacted [ 21 ]. The Act was replaced by the Water Act 2016 which established the Water Resources Authority (WRA) as the body mandated to manage water resources in line with the IWRM principles and Water Resource Users Association (WRUA) as the lowest (local) level of water management [ 22 ].

Similarly, Uganda developed the national water policy in 1999 to manage, and develop the available water resources in an integrated and sustainable manner [ 23 ]. The National Water Policy further provides for the promotion of water supply for modernized agriculture [ 24 ]. Tanzania’s water policy of 2002 espouses IWRM principles, and its implementation is based on a raft of legal, economic, administrative, technical, regulatory and participatory instruments [ 25 ]. The National Irrigation Policy (NIP), 2010 and the National Irrigation Act, 2013 provides the legal basis for the involvement of different actors on a private-public partnership basis [ 26 ].

West Africa possesses an unregistered IWRM strategy that is espoused in the West Africa Water Resources Policy (WAWRP) of 2008. The WAWRP is founded on the following legal principles; (a) “promote, coordinate and ensure the implementation of a regional water resource policy in West Africa, in accordance with the mission and policies of Economic Community of West African States (ECOWAS)and (b) “harmonization and coordination of national policies and the promotion of programmes, projects and activities, especially in the field of agriculture and natural resources”. The founding legal basis resonates with the Dublin principles.

The WAWRP design actors were ECOWAS, Union Economique et Monétaire Ouest Africaine (UEMOA), and Comité Permanent Inter-État de Llutte Contre la Sécheresse au Sahel (CILSS). CILSS is the technical arm of ECOWAS and UEMOA. The institutional collaboration was driven by the fact that West Africa needed a sound water policy for improved regional integration and maximised economic gains. ECOWAS established the Water Resources Coordination Centre (WRCC) to (a) oversee and monitor the region’s water resources and management activities and (b) to act as an executive organ of the Permanent Framework for Coordination and Monitoring (PFCM) of IRWM [ 27 ].

The inception and triggers of IWRM in West Africa can be traced back to the General Act of Berlin in 1885 which, among other things, dictated water resources use of the Congo and Niger rivers [ 28 ]. A multiplicity of agreements around shared watercourses in West Africa led to the realisation of the IWRM policy approach. For example, the Senegal River Basin (SRB) Development Mission facilitated collaboration between Senegal and Mauritania in managing the SRB. Another noteworthy agreement was Ruling C/REG.9/7/97, a regional plan to fight floating plants in the ECOWAS countries [ 28 ]. GWP (2003) categorised the West African countries according to the level of adoption into three distinct groups namely; (a) Group A comprised of countries with the capacity to develop and adopt the IWRM approach (Burkina Faso and Ghana), (b) Group B comprised of countries needing “light support” to unroll the IWRM plan (Benin, Mali, Nigeria, and Togo), and (3) Group C comprised of laggards which needed significant support to establish an IWRM plan (Cape Verde, Ivory Coast, Gambia, Guinea, Guinea Bissau, Liberia, Mauritania, Niger, Senegal and Sierra Leone).

Southern African Development Community (SADC) regional bloc has over 15 shared transboundary river basins (For detailed basin and catchment arrangement in SADC see [ 29 ]). SADC member states established the Protocol on Shared Water Systems (PSWS) which meant to encourage sustainable water resources utilisation and management. The PSWS was perceived to strengthen regional integration [ 30 ]. The regional bloc formulated the Regional Strategic Action Plans (RSAPs) that sought to promote an integrated water resources development plan. The action initiative mimicked IWRM principles and the shared water resources initiatives acted as a catalyst for the genesis of IWRM in Southern Africa [ 31 ]. SADC houses the Waternet and the GWP-SA research and innovation hubs upon which SADC’s IWRM adoption was anchored on. Besides the availability of trained water experts in the region who were willing to experiment with the IWRM policy approach, water scarcity fuelled by climate change prompted the region’s adoption of the IWRM policy approach at the local level.

3.2 Diffusion drivers of IWRM in East, West and Southern Africa

3.2.1 water scarcity..

The adoption of IWRM in East Africa was necessitated by water scarcity which is experienced by the countries in the region, which formed the need for adoption of prudent water resources management strategies as envisaged under the Dublin principles which was championed indirectly, according to Allouche [ 5 ], by the World Bank. Specifically, the need to give incentives and disincentives in water use sectors to encourage water conservation.

Kenya is a water-scarce country with per capita water availability of 586 m 3 in 2010 and projected to 393 m 3 in 2030 [ 32 ]. Uganda is endowed with water resources, however, it is projected that the country will be water-stressed by 2020 which could be compounded by climate variability and change, rapid urbanization, economic and population growth [ 33 ].

Using water scarcity was in essence coercing countries to adopt the IWRM principles with the irrigation sector, the contributor of the largest proportion of water withdrawals, becoming the major culprit [ 5 ]. The researchers opine that the effects of water scarcity in the region can be countered by adopting IWRM strategy, but adaptively to suit the local context and thus, persuasive rather than coercive, is the appropriate term. Indeed, as put forward by Van der Zaag [ 34 ], IWRM is not an option but it is a necessity and therefore, countries need to align their water policies and practices in line with it.

West African climatic conditions pose a threat on the utilisation of the limited water resource. Water resource utilisation is marred by erratic rainfalls and primarily a lack of water resources management know-how [ 27 ]. Countries in the Sahelian regions are characterised by semi-arid climatic conditions. Thus, dry climatic conditions account as an IWRM strategy driver to ensure maximised water use efficiency. Although the region acknowledges the need for adopting the IWRM strategy, they have varied adoption statuses (GWP, 2003).

Southern African countries also face serious water scarcity problems. Rainfall in South Africa is low and unevenly distributed with about 9% translating to useful runoff making the country one of the most water scarce countries in the world [ 35 ]. Generally, SADC countries experience water scarcity resulting in conflicts due to increasing pressure on the fresh water resources [ 36 ]. Thus, the researched opine that water scarcity pushed the region to adopt the IWRM strategy inorder to mitigate the looming effects of climate change on surface water availainility.

3.2.2 Trans-boundary water resources.

Water resources flow downstream indiscriminately across villages, locations, regions and nations/states and therefore necessitates co-operation. The upstream and downstream relationships among communities, people and countries created by the water is asymmetrical in that the actions upstream tend to affect the downstream riparian and not the other way round [ 34 ]. In East Africa, the Nile Basin Initiative (NBI) and the Lake Victoria Basin Commission (LVBC) plays a critical component in promoting the IWRM at regional level [ 20 ].

The Nile River system is the single largest factor driving the IWRM in the region. Lake Victoria, the source of the Nile River is shared by the three East African states of Kenya, Uganda and Tanzania. Irrigation schemes in Sudan and Egypt rely exclusively on the waters of River Nile and are therefore apprehensive of the actions of upstream states notably Ethiopia, Kenya, Uganda, Tanzania, Rwanda and Burundi. The source of contention is the asymmetrical water needs and allocation which was enshrined in the Sudan–Egypt treaty of 1959 [ 37 ]. All the riparian countries in the Nile basin have agricultural-based economies and thus irrigation is the cornerstone of food security [ 38 ]. Therefore, there was the need for the establishment of basin-wide co-operation which led to the formation of NBI in 1999 with a vision to achieve sustainable socio-economic development through the equitable utilisation of the Nile water resources [ 39 ].

The Mara River is another trans-boundary river which is shared between Tanzania and Kenya and the basin forms the habitat for the Maasai Mara National Reserve and Serengeti National Park in Kenya and Tanzania, respectively, which is prominent for the annual wildlife migration. Kenya has 65% of the upper part of the basin, any development on the upstream, such as hydropower or water diversion, will reduce the water quantities and therefore affect the Serengeti ecosystem and the livelihoods of people in Tanzania [ 40 ]. The LVBC, under the East African Community, developed the Mara River Basin-wide—Water Allocation Plan (MRB-WAP) to help in water demand management and protection of the Mara ecosystem [ 41 ]. The mandate of the LVBC is to implement IWRM in Lake Victoria Basin riparian countries [ 20 ].

Other shared water basins include the Malakisi-Malaba-Sio River basin shared between Uganda and Kenya and the Kagera River basin traversing Burundi, Rwanda, Tanzania and Uganda. The two river basins form part of the Upper Nile system and are governed through the LVBC and the NBI.

The universal transboundary nature of water creates dynamics that warrant cooperation for improved water use. West Africa has 25 transboundary watercourses and only 6 are under agreed management and regulation. The situation is compounded by the fact that 20 watercourses lack strategic river-basin management instruments [ 28 ]. Unregistered rules and the asymmetrical variations associated with watercourses warranted the introduction of the IWRM principle to set equitable water sharing protocols and promote environmental flows (e-flows). The various acts signed represent an evolutionary treaty development that combines th efforts of riparian states to better manage the shared water resources (for detailed basin configuration in West Africa see [ 42 ]). Hence, adoption of the IWRM strategy driven WAWRP of 2008 ensured the coordinanted and harmonised regional water usage mechanisms.

The SADC region has 13 major transboundary river basins which calls for development of agreements on how to handle the shared water resources with the contraints of varying levels of economic development and priorities among the member states. The multi-lateral and bi-lateral agreeements on shared water resources in the SADC is hampered by the hydropolitics where economic power dynamics favour South Africa as in the case of the Orange-Senqu basin [ 43 ].

3.2.3 Donor influence.

The World Bank has been pushing for IWRM principles in the East Africa through the NBI and by pressurising Egypt to agree to co-operate with the upstream riparian countries in the Nile basin [ 38 ]. In the early 1990s, the World Bank had aligned its funding policies to include sustainable water resources management [ 44 ].

In Tanzania, Norway, through NORAD, played a key role in implementing IWRM by promoting water projects including hydropower schemes [ 45 ]. Indeed the transformation of the agricultural sector in Tanzania through Kilimo Kwanza policy of 2009 which emphasised on the commercialization of agriculture including irrigation was driven by foreign donors such as the USAID and UK’s DFID [ 26 ].

In Uganda, however, the reforms in the water sector were initiated devoid of external influence [ 46 ]. However, this assertion is countered by Allouche [ 5 ] who pointed that Uganda had become a ‘darling’ of the donor countries in the early 1990s and that DANIDA helped to develop the Master Water Plan and the country was keen to show a willingness to develop policy instruments favourable to the donor. East African countries are developing economies and therefore most of their development plans are supported by external agencies, which to some extent come with subtle ‘conditions’ such as free-market economies. In fact imposition of tariffs and other economic instruments used to implement IWRM in water supply and irrigation is a market-based approach which was favoured by the World Bank and other development agencies.

Donor aid cannot be downplayed in pushing for IWRM diffusion in low-income aid-dependent countries of West Africa. GoBF [ 47 ] reported that from the period 1996–2001, more than 80% of water-related projects were donor funded. Cherlet and Venot [ 48 ] also found that almost 90% of the water investments in Mali were funded outside the government apparatus. It can, therefore, be argued that donor-aid plays a pivotal and central role in diffusing policy and innovation in aid-depended countries because of the incentive nature it provides for the low-income countries in the sub-Sahara region.

Southern Africa’s experience with western donors including the World Bank in terms of IWRM adoption favoured the urban areas and neglected rural areas (see [ 8 ]). The National Water Act drafting process in South africa was a multi-stakeholder and intersectoral activity that brought in international consultancies. Notable IWRM drivers were Department of International Development—UK (DFID), Danish Danida, and Deustsche Gesellschaft fur Zusammernarbeit (GIZ). The DFID was instrumental in water reform allocation law whilst the GIZ and Danida were active in experimental work in the catchments [ 3 ]. On the contrary, in Zimbabwe, a lack of access to international funding and fleeting donor aid exacerbated the policy uptake as such the anticipated implementation, operationalisation and continuous feedback mechanism for policy revision and administering process was never realised.

3.2.4 Government intervention and pro-active citizenry.

This was predomint in West Africa. For example the Burkinabe government exhibited political goodwill such that in 1995 the government brought together two separate ministries into one ministry of Environment and Water thus enabling coherent policy formulation and giving the ministry one voice to speak on water matters. The dynamic innovation arena (where policy players interact) allows continuous policy revision and redesign thus water policy reform diffusion, and policy frameworks are in a perpetual state of shifting. For example, in the 1990s the Burkinabe government was engaged in several water-related projects and was continuously experimenting with local governance and privatization (from donors) [ 1 ]. This policy shift according to Gupta [ 49 ] qualifies as an innovation driver.

Burkina Faso and Mali’s adoption story is accentuated by heightened agency, the individual enthusiasm on influencing the outcome facilitated policy diffusion and can be argued to be a potential innovation diffusion driver for the IWRM policy approach in the region. The individual policy diffusion fuelled by an enthusiastic citizenry was a sure method that effectively diffused awareness around the IWRM innovation and acted as a driver of the IWRM practices in the region. Individual strategies were honed in smallholder farming institutions to diffuse the IWRM practice and drawing from the Sabatier and Jenkins-Smith [ 50 ] advocacy coalition theory, having individuals with common agendas promoted the transfer and diffusion of water reforms in parts of West Africa.

3.2.5 Legal, political and institutional incoherence.

This was a major factor which dictated the pace of IWRM implementation in Southern Africa. For example, the Fast Track Land Reform (FTLR) programme in Zimbabwe disaggregated the large-scale commercial farms and created smallholder farming [ 51 ], consequently influencing and dictating IWRM policy path. The FTLR programme had a negative impact on the spread and uptake of IWRM. A series of poor economic performance and poor policy design compounded the limited diffusion and the adoption of IWRM practices at local levels in Zimbabwe. The FTLR programme compounded the innovation diffusion process as the Zimbabwe National Water Authority (ZINWA) lost account of who harvested how much at the newly created smallholder farms. Thus, water access imbalance ensured, and ecological sustainability was compromised.

Policy incoherence was a major factor in poor IWRM diffusion and adoption, for example, the government did not synchronise the land and water reforms thus it meant at any given point in time there was a budget for one reform agenda [ 8 ] and the land reform agenda would take precedence because of political rent-seeking. IWRM in its nature couples growth to the coordinated consumption of finite resources, hence the circular approach cannot be easily realised because finte resources are at the core of the strategy’s existence.

South Africa’s transition from Integrated Catchment Management (ICM) strategies to the IWRM strategy, hindered the operationalisation and diffusion of the IWRM strategy [ 52 ]. Despite acknowledging the “integration”, researchers argued that the word lacked a clear-cut definition thus failing to establish a common ground for water’s multi-purpose use [ 53 ]. For maximised adoption of a practice, incremental innovation is required, which was Danida’s agenda in the quest to drive IWRM in South Africa. According to Wehn and Montalvo [ 54 ] incremental innovation “is characterised by marginal changes and occurs in mature circumstances”,

Land reform in South Africa is characterised by (a) redistribution which seeks to transfer land from the white minority on a willing buyer willing seller basis, (b) restitution which rights the discriminatory 1913 land laws that saw natives evicted from their ancestral land, and (c) land tenure that provides tenure to the occupants of the homelands. This new pattern created a new breed of smallholder farmers that are, more often than not, excluded from diffusion and water governance channels [ 55 ]. In addition, researchers argue that a farm once owned by one white farmer is owned by multiple landowners with different cultural backgrounds and, more often than not, IWRM strategy is met with resistance [ 56 ]. Another challenge posed by multi-cultural water users is the interpretation and translation of innovations.

To foster water as an economic good aspect of IWRM the licensing system was enacted in South Africa. The phenomenon was described by van Koppen (2012) as paper water precedes water, thus the disadvantaged black smallholder farmers could not afford paper water which consequently limits access to water. The licensing system can be interpreted as stifling the smallholder sector and hence negative attitudes develop and hinder effective policy diffusion. Another issue that negatively impacted adoption was that issuing a license was subject to farmers possessing storage facilities. The smallholder farmers lack resources hence the requirement for obtaining a license excluded the small players in favour of the large-scale commercial farmers. This consequently maintains the historically skewed status-quo, where “big players” keep winning. Van Koppen [ 57 ] and Denby, Movik [ 58 ] argue the shift from local water rights system to state-based water system have created bottlenecks making it hard for smallholder farmers to obtain “paper water” and subsequently “wet water”. The state-based system is characterised by bureaucracies and local norms are in perpetual change, hence denying the IWRM innovation policy approach stability efficiency.

A lack of political will and pragmatism amplified the poor adoption and operationalisation of IWRM, a poorly performing economy and fleeing donor agencies resulted in less funding for water-related project. Political shenanigans created an imbalance that resulted in two forms of water i.e., water as an economic good vs. water as a social good [ 59 ]. Manzungu [ 60 ] argued post-colonial Zimbabwe continuously failed to develop a peoples-oriented water reform policy. In a bid to correct historical wrongs by availing subsidised water to the vulnerable and support the new social order, the initiative goes against the neo-liberalism approach that defines the “water as an economic good” [ 61 ] which is a founding principle of IWRM.

Water redistribution in South Africa has been fraught with political and technical issues, for example, the Water Allocation Reform of 2003 failed to reconcile the apartheid disparity hence the equity component of IWRM was compromised. IWRM suffered another setback caused by the governing party when they introduced radical innovations that sought to shift from the socialist to neoliberal water resource use approach. The radical innovation through the government benefited the large-scale commercial farmers at the expense of the black smallholder farming community [ 53 ].

3.3 Systematic comparison of findings on East, West and Southern Africa

Data extracts from the respective regional analysis were formulated into theoretical candidate themes. The thematic analysis extracted recurring themes common to all the three regions. An independent reviwer performed the subjective thematic analysis and the authors performed the review on the blind thematic analysis outcome. The analysis performed a data extraction exercise and formulated codes ( Fig 2 ). Themes were then generated from the coded data extracts to create a thematic map. It is worth mentioning that the data extracts were phrases/statement from with in the literature review.

thumbnail

https://doi.org/10.1371/journal.pone.0236903.g002

3.3.1 Donor aid and policy approach.

Donor activity invariably influenced the policy path that individual countries took. The three regions had significant support from donors to drive the IWRM strategy. Zimbabwe experienced a different fate. The political climate caused an exodus of donor support from the nation, which consequently caused a laggard. The absence of donor support was at the backdrop of the two formulated water acts namely National Water Act [ 62 ] and the Zimbabwe National Water Authority Act of 1998 [ 63 ], which were meant to promote equitable water provision amongst the population. This highlights the latent adoption of IWRM strategy. The 2008/2009 cholera outbreak raised alarm and facilitated the return of donor activity in Zimbabwe’s water sector. The availability of donor support motivated the redrafting of a water clause in the 2013 constitution that espoused the IWRM strategy to water management [ 64 ].

Whilst Mehta, Alba [ 64 ] argue that South Africa enjoyed minimal donor support it cannot be downplayed how much donor influence impacted the IWRM strategy adoption. For instance, the Water Allocation Reform (WAR) was drafted with the aid of the UK Department of International Development. The WAR fundamentals are informed by IWRM principles. The economic structural programmes spearheaded by The World Bank and the IMF were active in facilitating the diffusion of the IWRM strategy in Kenya and Uganda. Uganda made strides because of a long-standing relationship with donor nations. The Uganda—donor relationship dates back to early 1990 where Uganda was elected to be the NBI secretariat, this in itself evidence of commitment to water policy reform [ 4 , 65 ]. Donor aid acts as an incentive and augments the low African goverments’ budgets, as such proper accountability and usage of the funds ensures that more funds come in for projected water related projects.

3.3.2 Transboundary water resources.

The Nile River system is the single largest factor driving the IWRM in the region since it is shared across several upstream and downetream nations. Irrigation schemes in Sudan and Egypt rely exclusively on the waters of River Nile and are therefore apprehensive of the actions of upstream states notably Ethiopia, Kenya, Uganda, Tanzania, Rwanda and Burundi. The source of contention is the asymmetrical water needs and allocation which was enshrined in the Sudan–Egypt treaty of 1959 [ 37 ]. Over time, the upstream countried demanded equitable share of the Nile waters and this led to the establishment of NBI. In Eastern Africa, the Nile Basin Initiative (NBI) and the Lake Victoria Basin Commission (LVBC) plays a critical component in promoting the IWRM at regional level [ 20 ]. The LVBC is deeply intertwined with the East African Community (EAC) and thus has more political clout to implement policies regarding utilization of the Lake Victoria waters [ 66 ]. This, therefore, implies that for NBI to succeed, it must have a mandate and political goodwill from the member countries.

The conflicts around the utilization of the Nile water resources persists due to the treaty of 1959 which led to the signing of Cooperative Framework Agreement (CFA) by a number of the Nile basin countries, with the notable exceptions of Egypt, Sudan and South Sudan [ 67 ]. The CFA was signed between 2010 and 2011 and establishes the principle that each Nile Basin state has the right to use, within its territory, the waters of the Nile River Basin, and lays down some factors for determining equitable and reasonable utilization such as the contribution of each state to the Nile waters and the proportion of the drainage area [ 68 ]. The construction of the Grand Ethiopian Renaissance Dam has been a source of concern and conflict among the three riparian countries of Ethiopia, Sudan and Egypt [ 67 ]. The asymmetrical power relations (Egypt is the biggest economy) in the Nile Basin is a big hindrance to the co-operation among the riparian countries [ 69 ] and thus a threat to IWRM implementation in the shared watercourse. While Ethiopia is using its geographical power to negotiate for an equitable share in the Nile water resources, Egypt is utilizing both materials, bargaining and idealistic power to dominate the hydro politics in the region and thus the former can only succeed if it reinforces its geographical power with material power [ 70 ].

Therefore, IWRM implementation at the multi-national stage is complex but necessary to forestall regional conflicts and war. The necessity of co-operation rather than conflict in the Nile Basin is paramount due to the water availability constraints which is experienced by most countries in the region. The transboundary IWRM revolves around water-food- energy consensus where the needs of the riparian countries are sometimes contrasting, for example, Egypt and Sudan require the Nile waters for irrigation to feed their increasing population while Ethiopia requires the Nile waters for power generation to stimulate her economy. The upstream riparian States could use their bargaining power to foster co-operation and possibly force the hegemonic downstream riparian States into the equitable and sustainable use of Nile waters [ 71 ].

The SADC region has 13 major transboundary river basins (excluding the Nile and Congo) of Orange, Limpopo, Incomati, Okavango, Cunene, Cuvelai, Maputo, Buzi, Pungue, Save-Runde, Umbeluzi, Rovuma and Zambezi [ 72 ]. The Revised Protocol on Shared Watercourses was instrumental for managing transboundary water resources in the SADC. The overall aim of the Protocol was to foster co-operation for judicious, sustainable and coordinated management, the protection and utilization of shared water resources [ 73 ].

Ashton and Turton [ 74 ] argue that the transboundary water issues in Southern Africa revolved around the key roles played by pivotal States and impacted States and their corresponding pivotal basins and impacted basins. In this case, pivotal States are riparian states with a high level of economic development (Botswana, Namibia, South Africa, and Zimbabwe) and a high degree of reliance on shared river basins for strategic sources of water supply while impacted States are riparian states (Angola, Lesotho, Malawi, Mozambique, Swaziland, Tanzania, and Zambia) that have a critical need for access to water from an international river basin that they share with a pivotal state, but appear to be unable to negotiate what they consider to be an equitable allocation of water and therefore, their future development dreams are impeded by the asymmetrical power dynamics with the pivotal states. Pivotal Basins (Orange, Incomati, and Limpopo) are international river basins that face closure but are also strategically important to anyone (or all) of the pivotal states by virtue of the range and magnitude of economic activity that they support. Impacted basins (Cunene, Maputo, Okavango, Cuvelai, Pungué, Save-Runde, and Zambezi) are those international river basins that are not yet approaching a point of closure, and which are strategically important for at least one of the riparian states with at least one pivotal State.

The transboundary co-operation under IWRM in Southern Africa is driven mainly by water scarcity which is predominant in most of the SADC countries which may imply the use of inter-basin transfers schemes [ 74 ]. Further, most of the water used for agriculture, industry and domestic are found within the international river basins [ 75 ] which calls for collaborative water management strategies. The tricky feature hindering the IWRM is the fact that States are reluctant to transfer power to River Basin Commissions [ 76 ]. Indeed most of the River Basin Organizations (RBO) in Southern region such as the Zambezi Commission, the Okavango River Basin Commission, and the Orange-Sengu River Basin Commission have loose links with SADC and therefore lack the political clout to implement the policies governing the shared water resources [ 66 ]. Power asymmetry, like in Eastern Africa, is also a bottleneck in achieving equitable sharing of water resources as illustrated by the water transfer scheme involving Lesotho and South Africa [ 77 ]. The hydro-hegemonic South Africa is exercising control over any negotiations and agreements in the Orange-Senqu basin [ 43 ]. Limited data sharing among the riparian States is another challenge which affects water management in transboundary river basins e.g. in the Orange-Senqu basin [ 78 ].

West Africa has 25 transboundary watercourses and only 6 are under agreed management and regulation. The situation is compounded by the fact that 20 watercourses lack strategic river-basin management instruments [ 28 ]. Unregistered rules and the asymmetrical variations associated with watercourses warrant the introduction of the IWRM principle to set equitable water sharing protocols and promote environmental flows (e-flows). The various acts signed represent an evolutionary treaty development that combines the efforts of riparian states to better manage the shared water resources. It is important to note that evolutionary treaties are incremental innovation. Water Resources Coordination Centre (WRCC) was established in 2004 to implement an integrated water resource management in West Africa and to ensure regional coordination of water resource related policies and activities [ 79 ].

The Niger River basin covers 9 Countries of Benin, Burkina, Cameroon, Chad, Côte d’Ivoire, Guinea, Mali, Niger and Nigeria. The Niger River Basin Authority (NBA) was established to promote co-operation among the member countries and to ensure basin-wide integrated development in all fields through the development of its resources, notably in the fields of energy, water resources, agriculture, livestock, forestry exploitation, transport and communication and industry [ 80 ]. The Shared Vision and Sustainable Development Action Programme (SDAP) was developed to enhance co-operation and sharing benefits from the resources of River Niger [ 81 ]. The Niger Basin Water Charter together with the SDAP are key instruments which set out a general approach to basin development, an approach negotiated and accepted not only by all member states but also by other actors who utilize the basin resources [ 82 ].

The main agreement governing the transboundary water resource in River Senegal Basin is the Senegal River Development Organization, OMVS (Organisation pour la mise en valeur du fleuve Sénégal) with its core principle being the equitably shared benefits of the resources of the basin [ 82 ]. The IWRM in the Senegal River Basin is hampered by weak institutional structures and lack of protocol on how shared waters among the States as well as conflicting national and regional interests [ 83 , 84 ]. The Senegal River Basin, being situated in the Sudan-Sahelian region, is faced by the threat of climate change which affects water availability [ 84 ] The Senegal River Basin States have high risks of political instability.

3.4 Prospects of IWRM Africa

The countries in the three regions are at different stages of implementation ( Table 4 ). In East Africa, Uganda and Kenya are at medium-high level while Tanzania is medium-low. Majority of the countries in the Southern Africa region are at medium low. Comoros Islands is the only country at low level of implementation in the region. West African countries are evenly spread between low, medium-low and medium-high levels of implementation. Generally, East Africa is ranked as medium-high level with average score of 54% while Southern Africa and West Africa are ranked as medium low-level at 46% and 42% respectively. However if you include, medium low countries of Rwanda, Burundi, Ethiopia and South Sudan and the low-level Somalia, then East Africa’s score drops to 39% (medium-low).

thumbnail

https://doi.org/10.1371/journal.pone.0236903.t004

The implementation of IWRM in the continent, and more so the inter dependent and multi purpose water use sectors, will continue to evolve amid implementation challenges. The dynamics of water policies, increased competition for finite water resources from rapid urbanization, industrialization and population growth will continue to shape IWRM practices in the region. Trans-boundary water resources management will possibly take centre stage as East African countries move towards full integration and political federation as envisaged in the four pillars of the EAC treaty. Decision support tools such as the Water—Energy—Food (WEF) nexus appraoch will be very relevant in the trans-boundary water resources such as the Nile system, Mara and Kagera river basins. The approach can potentially ameliorate the after effects of the devolved governance system in Kenya that consequently created a multiplicity of transboundary sectors.

Adoption of the IWRM policy in West Africa is fraught with many challenges. For example, despite having significant water resources, the lack of a collective effort by the governments to train water experts at national level presents a challenge for adoption. Unavailability of trained water experts (who in any case are diffusion media) results in a lack of diffusion channels that facilitate policy interpretation, translation and its subsequent implementation. Helio and Van Ingen [ 27 ] pointed out how political instability possesses a threat to current and future implantation initiatives. The future collaboration projects and objective outlined by ECOWAS, CILSS, and UEMO highlight a major effort to bring the region to speed with the IWRM policy approach. The WAWRP objectives can potentially set up the region on an effective IWRM trajectory which can be mimicked and upscaled in other regions. Positives drawn from the region are the deliberate institutional collaborations. Burkina Faso and Mali have the potential to operationalise and facilitate policy diffusion to other neighbouring states. Donor driven reform is essential and national ownership is critical in ensuring the water reform policies and innovation diffusion processes are implemented at the national level.

The IWRM policy approach and practice in South Africa was government-driven whereas in Zimbabwe external donors were the main vehicles for diffusion. For both countries, the water and land reform agenda has a multiplicity of overlapping functionaries; however, they are managed by separate government departments. The silo system at national level prevents effective innovation diffusion and distorts policy interpretation and the subsequent dissemination at the local level.i.

Water affairs are politicised and often, the water reform policy fails to balance the Dublin’s principles which form the backbone of the IWRM innovation policy approach. Failure by national governments to address unequal water access created by former segregationist policies is perpetuated by the lack of balance between creating a new social order and recognising the “water as an economic good” principle.

4 Conclusion

Africa as a laboratory of IWRM produced varied aggregated outcomes. The outcomes were directly linked to various national socio-economic development agendas; thus, the IWRM policy took a multiplicity of paths. In East Africa, Kenya is still recovering from the devolved system of government to the County system which created new transboundary sectors with the country. Water scarcity, trans-boundary water resource and donor aid played a critical role in driving the IWRM policy approach in the three regions. Southern Africa’s IWRM experience has been fraught with policy clashes between the water and land reforms. Similar to Africa, the transboundary issue in Europe and Asia and the subsequent management is a major buy-in for formulating water resources strategies that are people centric and ecologically friendly. Global water scarcity created fertile grounds for IWRM adoption in Asia, specifically India. Thus, we postulate that some of the drivers that influenced the uptake and diffusion in Africa are not only unique to the continent.

For the future, IWRM policy approach can be implemented in Africa and the continent has the potential to implement and adopt the practice. Endowed with a significant number of water bodies, Africa must adopt a blend of IWRM strategy and the water energy food nexus (WEF) for maximising regional cooperation and subsequent economic gains. WEF nexus will help combat a singular or silo approach to natural resources management. WEF nexus and IWRM is a fertile area for future research as it brings a deeper understanding of the trade-offs and synergies exsisting in the water sector across and within regions. In addition, the WEF nexus approach can potentially facilitate a shift to a circular approach that decouples over dependence on one finte resource for development.

Supporting information

S1 checklist..

https://doi.org/10.1371/journal.pone.0236903.s001

S1 Table. Data extracts with the applied codes.

https://doi.org/10.1371/journal.pone.0236903.s002

  • 1. GWP, Capitalizing the development process of the Action Plan for IWRM and its implementation in Burkina Faso . 2009, Global Water Patnership: Ouagadougou, Burkina Faso.
  • 2. Solanes M. and Gonzalez-Villarreal F., The Dublin principles for water as reflected in a comparative assessment of institutional and legal arrangements for integrated water resources management, ed. G.W.P.T.A.C. (TAC). 1999, Stockholm, Sweden.: Global Water Partnership.
  • 3. Mehta L., et al., Flows and Practices : The Politics of Integrated Water Resources Management in Eastern and Southern Africa , Metha L., Derman B., and Manzungu E., Editors. 2017, Weaver Press: Harare, Zimbabwe.
  • View Article
  • Google Scholar
  • 13. UNDESA, International Standard Industrial Classification of All Economic Activities Revision 4 . 2008, United Nations Department of Economic and Social Affairs: New York, USA.
  • PubMed/NCBI
  • 20. GWP, Integrated water resources management in Eastern Africa : Coping with ’complex’ hydrology 2015, Global Water Partnership: Stockholm, Sweden.
  • 21. GOK, The Water Act , 2002 . 2002, Government Printer Nairobi, Kenya.
  • 22. GOK, The Water Act , 2016 . 2016, Government Printer: Nairobi, Kenya.
  • 23. MWLE, A National Water Policy 1999 , Ministry of Water, Lands and Environment Kampala, Uganda.
  • 25. MWLD, National Water Policy . 2002, Ministry of Water and Livestock Development: Dodoma, The United Republic of Tanzania.
  • 27. Helio J. and Van Ingen N., in West Africa Water Resources Policy (WAWRP) . 2008, Partnership for Environmental Governance in West Africa—PAGE.: Ouagadougou. Burkina Faso.
  • 29. Senzanje A., Agricultural Water Management Interventions (Awmi) for Sustainable Agricultural Intensification (SAI) in the Chinyanja Triangle Area of Malawi , Mozambique and Zambia . 2016, IWMI: Pretoria, South Africa.
  • 30. Granit J., Swedish experiences from transboundary water resources management in southern Africa . Stockholm: SIDA (Publications on Water Resources 17), 2000.
  • 32. Kibiiy J. and Kosgei J., Long-Term Water Planning : A Review of Kenya National Water Master Plan 2030 , in Water Resources Management . 2018, Springer: Berlin, Germany. p. 193–208.
  • 41. LVBC, Mara river basin-wide water allocation plan . 2013, Lake Victoria Basin Commission: Kisumu, Kenya.
  • 43. Mirumachi N., Transboundary Water Politics in the Developing World . 2015, New York Routledge.
  • 46. Kesti E., Domestic water supply policy evaluation : A comparative case study of Uganda and Madagascar between 1992 and 2016 . 2019, Lund University Lund, Sweden.
  • 47. GoBF, Le PAGIRE dans le contexte du secteur de l’eau du Burkina . Document debase : Table ronde des bailleurs de fonds du plan d’action pour la gestion intégrée des ressources en eau ., Faso G.d.B., Editor. 2003, GoBF Ouagadougou, Burkina Faso.
  • 49. Gupta J., Driving forces in global freshwater governance. In: Water Policy Entrepreneurs : A Research Companion to Water Transitions Around the Globe ., Huitema D. and Meijerink S., Editors. 2009, Edward Elgar: Cheltenham, UK. p. 37–57.
  • 50. Sabatier P.A. and Jenkins-Smith H.C., Policy change and learning : An advocacy coalition approach . 1993, Colorado, USA.: Westview Pr.
  • 51. Moyo S. and Chambati W., Land and Agrarian Reform in Zimbabwe . 2013, Dakar, Senegal.: African Books Collective.
  • 55. Denby K., et al., The’trickle down’of IWRM : A case study of local-level realities in the Inkomati Water Management Area , South Africa . 2016.
  • 56. Denby K., et al., The’trickle down’of IWRM : A case study of local-level realities in the Inkomati Water Management Area , South Africa . 2016, Harae, Zimbabwe.: Weaver Press.
  • 58. Denby K., et al., The ‘trickle down’of integrated water resources management : A case study of local-level realities in the Inkomati water management area , South Africa . 2017, Harare, Zimbabwe.: Weaver Press.
  • 59. Hellum A. and Derman B., Negotiating water rights in the context of a new political and legal landscape in Zimbabwe , in Mobile People , Mobile Law . 2017, Routledge: London, UK. p. 189–210.
  • 62. GoZ, Zimbabwe Water Act . 1998, GoZ: Harare, Zimbabwe.
  • 63. GoZ, Zimbabwe National Water Authority (Chapter 20 : 25) . 1998, Zimbabwe National Water Authority (ZINWA): Harare, Zimbabwe.
  • 65. Jønch-Clausen T.J.W., what and how, Integrated Water Resources Management (IWRM) and Water Efficiency Plans by 2005 : Why , What , and How . 2004: p. 5–4.
  • 69. Allan J.A. and Mirumachi N., Why Negotiate? Asymmetric Endowments, Asymmetric Power and the Invisible Nexus of Water, Trade and Power that Brings Apparent Water Security, in Transboundary water management Earle A., Jägerskog A., and Öjendal J., Editors. 2010, Stockholm International Water Institute: London. p. 13–26.
  • 70. Cascão A.E. and Zeitoun M., Power, Hegemony and Critical Hydropolitics, in Transboundary Water Management Earle A., Jägerskog A., and Öjendal J., Editors. 2010, Stockholm International Water Institute: London p. 27–42.
  • 71. Cascão A. and Zeitoon M., Changing nature of bargaining power in the hydropolitical relations in the Nile River Basin, in Transboundary water management , Earle A., Jägerskog A., and Öjendal J., Editors. 2010, Stockholm International Water Institute: London. p. 189–194.
  • 73. Heyns P. Strategic and Technical Considerations in the Assessment of Transboundary Water Management with Reference to Southern Africa. in Water , Development and Cooperation- Comparative Perspective : Euphrates-Tigris and Southern Africa . 2005. Bonn Bonn International Center for Conversion.
  • 74. Ashton P. and Turton A., Water and Security in Sub-Saharan Africa: Emerging Concepts and their Implications for Effective Water Resource Management in the Southern African Region, in Facing Global Environmental Change , Brauch H.G., et al., Editors. 2009, Springer: Berlin, Heidelberg. p. 661–674.
  • 75. Ashton P. and Turton A. Transboundary Water Resource Management in Southern Africa: Opportunities, Challenges and Lessons Learned. in Water , Development and Cooperation-Comparative Perspective : Euphrates-Tigris and Southern Africa . 2005. Bonn International Center for Conversion.
  • 76. Swatuk L.A. Political Challenges to Sustainably Managing Intra-Basin Water Resources in Southern Africa: Drawing Lessons from Cases. in Water , Development and Cooperation- Comparative Perspective : Euphrates-Tigris and Southern Africa . 2005. Bonn: Bonn International Center for Conversion.
  • 77. Daoudy M., Getting Beyond the Environment–Conflict Trap: Benefit Sharing in International River Basins, in Transboundary water management , Earle A., Jägerskog A., and Öjendal J., Editors. 2010, Stockholm International Water Institute: London p. 43–58.
  • 79. Bhattacharyya S., Bugatti N., and Bauer H., A bottom-up approach to the nexus of energy , food and water security in the Economic Community of West African States (ECOWAS) region . 2015, London: Economic and Social Research Council.
  • 80. Olomoda I.A. Integrated Water Resources Management: The Niger Basin Authority’s Experience. in From Conflict to Co-operation in International Water Resources Management : Challenges and Opportunities . 2002. Delft, The Netherlands.
  • 81. Andersen I., et al., The Niger River Basin : A Vision for Sustainable Management , ed. Golitzen K.G. 2005, Washington, DC: World Bank.
  • 85. UNEP, Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6 . 5 . 1 : degree of IWRM implementation . 2018, United Nations Environment Programme: Nairobi.
  • Search Menu

Sign in through your institution

  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Numismatics
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Papyrology
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Social History
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Acquisition
  • Language Evolution
  • Language Reference
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Religion
  • Music and Media
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Meta-Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Science
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Legal System - Costs and Funding
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Restitution
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Strategy
  • Business Ethics
  • Business History
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Social Issues in Business and Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Systems
  • Economic History
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Management of Land and Natural Resources (Social Science)
  • Natural Disasters (Environment)
  • Pollution and Threats to the Environment (Social Science)
  • Social Impact of Environmental Issues (Social Science)
  • Sustainability
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • Ethnic Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Theory
  • Politics and Law
  • Politics of Development
  • Public Administration
  • Public Policy
  • Qualitative Political Methodology
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Disability Studies
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Water Politics and Policy

  • < Previous chapter
  • Next chapter >

25 Integrated Water Resources Management Core Research Questions for Governance

Mark Lubell is Professor in the Department of Environmental Science and Policy and Director of the Center for Environmental Policy and Behavior at the University of California, Davis.

Carolina Balazs is a Postdoctoral Scholar in the Department of Environmental Science and Policy at the University of California, Davis.

  • Published: 07 July 2016
  • Cite Icon Cite
  • Permissions Icon Permissions

Integrated water resources management (IWRM) has become a globally recognized approach to water governance. However, the definition of IWRM remains abstract, and implementation challenges remain. This chapter analyzes IWRM from the perspective of adaptive governance, which conceptualizes IWRM as an institutional arrangement that seeks to solve collective-action problems associated with water resources and adapt over time in response to social and environmental change. Adaptive governance synthesizes several strands of literature to identify the core social processes of water governance: cooperation, learning, and resource distribution. This chapter reviews the existing research on these ideas and presents frontier research questions that require continued investigation to understand how IWRM contributes to the sustainability and resilience of water governance. It argues that an adaptive governance lens allows movement beyond the contentious normative debate surrounding the appropriate definition of IWRM to analyze the core social and political processes driving its decision-making processes.

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code
  • Add your ORCID iD

Institutional access

Sign in with a library card.

  • Sign in with username/password
  • Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

Month: Total Views:
October 2022 13
November 2022 7
December 2022 2
January 2023 11
February 2023 3
April 2023 3
May 2023 2
June 2023 3
August 2023 14
October 2023 2
November 2023 3
December 2023 1
January 2024 2
February 2024 14
March 2024 10
April 2024 6
May 2024 12
June 2024 7
July 2024 7
August 2024 2
September 2024 2
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

The World Bank

WATER RESOURCES MANAGEMENT

Water scarcity affects more than 40% of the global population. Water-related disasters account for 70% of all deaths related to natural disasters. The World Bank helps countries ensure sustainability of water use, build climate resilience and strengthen integrated management.

  • Context & Challenges
  • Results & Initiatives

Today, most countries are placing unprecedented pressure on water resources. The global population is growing fast, and estimates show that with current practices, the world will face a 40% shortfall between forecast demand and available supply of water by 2030. Furthermore, chronic water scarcity, hydrological uncertainty, and extreme weather events (floods and droughts) are perceived as some of the biggest threats to global prosperity and stability. Acknowledgment of the role that water scarcity and drought are playing in aggravating fragility and conflict is increasing.

Water Resource Management

View the Full Infographic>>

Feeding 10 billion people by 2050 will require a 50% increase in agricultural production , (which consumes 70% of the resource today), and a 15% increase in water withdrawals. Besides this increasing demand, the resource is already scarce in many parts of the world. Estimates indicate that over 40% of the world population live in water scarce areas, and approximately ¼ of world’s GDP is exposed to this challenge. By 2040, an estimated one in four children will live in areas with extreme water shortages . Water security is a major – and often growing –challenge for many countries today.

Climate change will worsen the situation by altering hydrological cycles, making water more unpredictable and increasing the frequency and intensity of floods and droughts. The roughly 1 billion people living in monsoonal basins and the 500 million people living in deltas are especially vulnerable.  Flood damages are estimated around $120 billion per year (only from property damage), and droughts pose, among others, constraints to the rural poor, highly dependent on rainfall variability for subsistence. 

The fragmentation of this resource also constrains water security. There are 276 transboundary basins, shared by 148 countries, which account for 60% of the global freshwater flow. Similarly, 300 aquifers systems are transboundary in nature, with 2.5 billion people worldwide are dependent on groundwater. The challenges of fragmentation are often replicated at the national scale, meaning cooperation is needed to achieve optimal water resources management and development solutions for all riparians. To deal with these complex and interlinked water challenges, countries will need to improve the way they manage their water resources and associated services.

To strengthen water security against this backdrop of increasing demand, water scarcity, growing uncertainty, greater extremes, and fragmentation challenges, clients will need to invest in institutional strengthening, information management, and (natural and man-made) infrastructure development. Institutional tools such as legal and regulatory frameworks, water pricing, and incentives are needed to better allocate, regulate, and conserve water resources. Information systems are needed for resource monitoring, decision making under uncertainty, systems analyses, and hydro-meteorological forecast and warning. Investments in innovative technologies for enhancing productivity, conserving and protecting resources, recycling storm water and wastewater, and developing non-conventional water sources should be explored in addition to seeking opportunities for enhanced water storage, including aquifer recharge and recovery. Ensuring the rapid dissemination and appropriate adaptation or application of these advances will be a key to strengthening global water security.

Last Updated: Oct 05, 2022

The World Bank is committed to assisting countries meet their economic growth and poverty reduction targets based on the Sustainable Development Goals ( SDGs ).  Particularly, water resource management is tackled in SDG 6.5, but other SDGs and targets require water resource management for their achievement.  Accordingly, the Bank has a major interest in helping countries achieve water security through sound and robust water resource management.

Water security is the goal of water resources management . For a rapidly growing and urbanizing global population, against a backdrop of increasing climatic and non-climatic uncertainties, it is not possible to "predict and plan" a single path to water security. To strengthen water security we need to build capacity, adaptability, and resilience for the future planning and management of water resources.

Water Resources Management (WRM) is the process of planning, developing, and managing water resources, in terms of both water quantity and quality, across all water uses. It includes the institutions, infrastructure, incentives, and information systems that support and guide water management. Water resources management seeks to harness the benefits of water by ensuring there is sufficient water of adequate quality for drinking water and sanitation services, food production, energy generation, inland water transport, and water-based recreational, as well as sustaining healthy water-dependent ecosystems and protecting the aesthetic and spiritual values of lakes, rivers, and estuaries. Water resource management also entails managing water-related risks, including floods, drought, and contamination. The complexity of relationships between water and households, economies, and ecosystems, requires integrated management that accounts for the synergies and tradeoffs of water's great number uses and values.

Water security is achieved when water's productive potential is leveraged and its destructive potential is managed . Water security differs from concepts of food security or energy security because the challenge is not only one of securing adequate resource provision – but also of mitigating the hazards that water presents where it is not well managed. Water security reflects the actions that can or have been taken to ensure sustainable water resource use, to deliver reliable water services, and to manage and mitigate water-related risks. Water security suggests a dynamic construct that goes beyond single-issue goals such as water scarcity, pollution, or access to water and sanitation, to think more broadly about societies' expectations, choices, and achievements with respect to water management. It is a dynamic policy goal, which changes as societies' values and economic well-being evolve, and as exposure to and societies' tolerance of water-related risks change. It must contend with issues of equity.

The Water Security and Integrated Water Resources Management Global Solutions Group (GSG) supports the Bank's analytical, advisory, and operational engagements to help clients achieve their goals of water security.  Achieving water security in the context of growing water scarcity, greater unpredictability, degrading water quality and aquatic ecosystems, and more frequent droughts and floods, will require a more integrated and longer-term approach to water management. Key areas of focus will be ensuring sustainability of water resources, building climate resilience, and strengthening integrated management to achieve the Global Practice's (GP) goals and the SDGs. The GSG will work with a multiple GPs and Cross Cutting Solutions Areas (CCSAs) directly through water resources management or multi-sectoral projects and indirectly through agriculture, energy, environment, climate, or urban projects. 

Robust water resource management solutions to complex water issues incorporate cutting-edge knowledge and innovation, which are integrated into water projects to strengthen their impact. New knowledge that draws on the World Bank Group’s global experiences, as well as partner expertise, are filling global knowledge gaps and transforming the design of water investment projects to deliver results. Multi-year, programmatic engagements in strategic areas are designed to make dramatic economic improvements in the long term and improve the livelihoods of millions of the world’s poorest people.

The Water Security Diagnostic Initiative is an analytical framework that can be used to examine the status and trends related to water resources, water services, and water-related risks, including climate change, transboundary waters, and virtual water trade. The framework helps countries determine if and to what extent water-related factors impact people, the economy, and the environment, and determine if and to what extent water-related factors provide opportunities for development and well-being.

The World Bank is proactively working to address new global challenges, by adapting its operations to reach those that most need it today. Working across sectors is ensuring that water considerations are addressed in energy, the environment, agriculture, urban and rural development, and within new global challenges. The Bank also supports transformational engagements and initiatives, which seek to optimize spatial, green, and co-benefits among water and other infrastructure sectors. A large proportion of World Bank-funded water resources management projects include institutional and policy components.

Recent initiatives include:

  • Through the Federal Integrated Water Sector Project (INTERÁGUAS) , Brazil's federal government sought to integrate the water sector by improving coordination among and strengthening the capacity of the sector’s key federal institutions. In an ambitious innovation, the World Bank supported the government by helping to bring together the most important federal water sector agencies while supporting ongoing water reforms and institutional strengthening.
  • The integration of nature-based solutions in the Bank’s water infrastructure projects has helped place a spotlight on the world’s growing infrastructure crisis, driven by climate change and growing populations. Embedding nature-based solutions into project designs can help deliver infrastructure services with greater impact and lower cost, all the while reducing risks from disaster, boosting water security and enhancing climate resilience.
  • The publication of a National Framework for Integrated Urban Water Management in Indonesia , focuses on the potential for IUWM to address the severe and interrelated water security challenges faced by Indonesian cities.
  • The Second Public Employment for Sustainable Agriculture and Water Management Project (PAMP II) supported the Government of Tajikistan in improving water resource management at local, basin and national levels, and in increasing crop yields through improved irrigation management. Key to improved irrigation was rehabilitation of irrigation and drainage infrastructure and support to Water Users Associations, which are community-based organizations linking farmers with irrigation service provider.
  • The Water Management and Development Project in Uganda improved the integration of water resources planning, management and development, as well as access to water and sanitation services in priority urban areas. More than 1.01 million people received access to improved water sources, and 25,000 piped household water connections were rehabilitated from 2012-2018.

With 263 international rivers in the world, support for cooperative transboundary water management can make an important contribution towards improving the efficient and equitable management of water resources. The Bank supports transboundary waters through Multi-Donor Trust Funds (MDTF), knowledge pieces, and its lending portfolio:

  • Central Asia Water & Energy Program ( CAWEP ) is a MDTF administered by the World Bank and financed by the European Commission, the Swiss State Secretariat for Economic Affairs, UK AID, and DFID. The MDTF is building energy and water security by leveraging the benefits of enhanced cooperation in Central Asia, including all five Central Asian countries plus Afghanistan.
  • The Cooperation for International Waters in Africa (CIWA) is a MDTF administered by the World Bank and financed by Denmark, European Commission, the Netherlands, Norway, Sweden, and the United Kingdom. The trust fund finances upstream work in African International Rivers, 75% of which go to four priority basins – Nile, Niger, Volta, and Zambezi.
  •  The South Asia Water Initiative (SAWI) is a MDTF administered by the World Bank and financed by the governments of the United Kingdom, Australia, and Norway in South Asia. The trust fund provides recipient executed grants to initiatives in the major Himalayan River systems – the Indus, the Ganges, and the Brahmaputra.
  • In the Mekong River Basin, the Bank is supporting riparian states such as Cambodia , the Lao People’s Democratic Republic , and Vietnam in strengthening their integrated water resource management and disaster risk management capacities, cooperating closely with the basin-wide Mekong River Commission.
  • The Bank is also investing in knowledge pieces such as ROTI ( Retooling Operations with Transboundary Impacts ) to identify tools that promote riparian country coordination aimed at mitigating transboundary harm and leveraging benefits of investments in transboundary basins.

The Bank follows an integrated flood management agenda, which includes well-functioning early warning systems, infrastructure, and institutional arrangements for coordinated action to address increased variability and changes to runoff and flooding patterns.  In addition, a new perspective, referred to as an "EPIC Response," is offered to better manage hydro-climatic risks: This perspective looks at floods and droughts not as independent events but rather as different ends of the same hydro-climatic spectrum that are inextricably linked. The EPIC response provides a comprehensive framework to help national governments lead a whole-of-society effort to manage these risks.

Water scarcity is also addressed in:  

  • The Water Scarce Cities Initiative , initially focusing on the Middle East and North Africa ( MENA ) region, seeking to bolster the adoption of integrated approaches to managing water resources and service delivery in water scarce cities as the basis for water security and climate resilience.
  • Small Island States . The challenges and innovations of water management in small island states can be particularly vivid. These countries warrant particular attention not only because they are often neglected, but also because they provide an opportunity to focus on intensive reuse and non-conventional water resources development, which will be increasingly important knowledge for implementation in megacities and extremely water scarce settings. A scoping study is proposed on the state-of-the-art and the Bank’s portfolio.

Sustainable groundwater management is also a priority of the World Bank, and central to water security in many countries.

  • Recognizing that groundwater is being depleted faster than it is replenished in many areas, the World Bank has collaborated with key global partners through years of consultations to develop a framework for groundwater governance. The 2030 Vision and Global Framework for Action represents a bold call for collectively responsible action among governments and the global community to ensure sustainable use of groundwater.

Image

With or Without Water

Stay connected, additional resources.

This site uses cookies to optimize functionality and give you the best possible experience. If you continue to navigate this website beyond this page, cookies will be placed on your browser. To learn more about cookies, click here .

Universitat Politècnica de Catalunya

Research Topics

The 2nd International Congress on Water and Sustainability is divided into four main lines of research in which you can find different topics to include your research, project and / or experience.

Abstracts submission finishes on February 27, 2021 . Confirmation of accepted abstracts will be before March 1, 2021 . Those who want to apply for special issues in journals must send the complete manuscript before March 10, 2021 . The congress is multilingual, therefore abstracts in Catalan, Spanish or English are accepted for review. Once selected, the author will be responsible for putting it in the format and language of the journal, for formal review in it. Final acceptance is not guaranteed until the journal make the final review.

The research lines are:

Water Treatment:

  • Purification
  • Waste management and treatment
  • Waste water
  • Environmental management
  • Integral management of water resources

This line includes the use of natural products, membranes processes and innovative technologies for the treatment of water. Also includes the analysis of water quality in rivers, aquifers and seas as well as the life cycle assessment of systems and processes and other types of environmental studies. Finally, the integral management of water resources includes topics such as the management of hydrographic basins, data collection, data transmission or processing, etc.

Cooperation:

  • Water and cooperation
  • Water management
  • Technology and cooperation for development
  • Case studies and innovative and sustainable cooperation projects

The cooperation line allows the analysis and presentation of case studies of water treatment, both potable and wastewater, in countries with difficulties. In addition, the analysis of the agents that participate in cooperation in water and studies focused on human rights.

Sustainability and LCA:

  • Technology for sustainability
  • Innovation and ecodesign
  • Life Cycle Assessment and Water Footprint

This line aims to incorporate all environmental aspects related to water, from strictly scientific-practical points of view. Finally, there is a technological aspect with three different approaches, the economic and social development of the beneficiaries, sustainability and explanation of how innovation and eco-design can participate in it. 

Water Management Models:

  • Legal aspects
  • Transition models
  • Partnership experiences
  • Participation and transparency

This last line of research includes all those aspects that refer to water management models, taking into account all relevant aspects in transition processes and the strengths and weaknesses of each model, such as decision-making systems, the transmission of information, participation and transparency, etc.

  • Visit the University of Nebraska–Lincoln
  • Apply to the University of Nebraska–Lincoln
  • Give to the University of Nebraska–Lincoln

Search Form

Water resources engineering research.

A river with a canoe in the distance.

  • Computational Modeling of Groundwater Flow
  • Nanoparticle Transport in Porous Media
  • Impacts of Climate Change on Water Resources
  • Efficient Use of Water Resources for Food Security
  • Analytical Solutions to Hydraulic Problems
  • Numerical Modeling of Bridge Scour
  • Hydraulic Instrumentation
  • Streambank Erosion
  • Complex Physical Models
  • Evapotranspiration
  • Remote Sensing of Vegetation, Land Use, and Water Consumption
  • Spatial Characteristics of Water Resources using Geographic Information Systems
  • Hydraulic Engineering Education
  • Multi-criteria Decision Making
  • Stormwater Quality Modeling

Water Resources Engineering

David Admiraal

David Admiraal

Junke Guo

George Hunt

Ayse Kilic

Peter McCornick

Sorab Panday

Sorab Panday

Chittaranjan Ray

Chittaranjan Ray

Tirthankar Roy

Tirthankar Roy

  • Frontiers in Environmental Science
  • Environmental Economics and Management
  • Research Topics

Environmental Resilience and Sustainable Agri-food System Management

Total Downloads

Total Views and Downloads

About this Research Topic

The world is grappling with severe environmental degradation, making environmental resilience a critical priority. Climate change intensifies this challenge, with rising temperatures, shifting weather patterns, and extreme weather events threatening ecosystems and food security. In the agricultural sector, environmental pollution has worsened recently, contributing to soil degradation, water contamination, and biodiversity loss. Restoring the environment and enhancing agricultural resilience is crucial for sustainable agriculture. Addressing these challenges requires integrating environmental resilience with sustainable practices to create agri-food systems that are economically viable and resilient to climate change. This Research Topic aims to develop economically viable strategies that enhance the resilience of agri-food systems to environmental changes while promoting sustainable resource use and ecological balance. By focusing on effective methods to improve environmental resilience, we seek to create agri-food systems that are both profitable and capable of withstanding the challenges posed by climate change. Ultimately, enhancing environmental resilience is crucial for increasing agricultural sustainability and ensuring a stable food supply in the face of a changing climate. High-quality Original Research and Review articles in this field are all welcome for submission to this Research Topic. Research interests include but are not limited to the following areas: • Enhancing environmental resilience in Agri-food Systems • Policy and innovative mechanisms for resilient and sustainable Agriculture • Ecological restoration and biodiversity conservation in Agri-ecosystems • Policy optimization and innovative mechanism towards a resilient Agri-food System • Climate change mitigation and adaptation in agricultural practices • Sustainable agricultural practices management • Resource management in agricultural practices • Climate risk in Agri-Food production and circulation

Keywords : environmental resilience, climate change, agri-food system, sustainable supply chain, resource management

Important Note : All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Topic coordinators, submission deadlines.

Manuscript Summary
Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

total views

  • Demographics

No records found

total views article views downloads topic views

Top countries

Top referring sites, about frontiers research topics.

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

IMAGES

  1. (PDF) Integrated Water Resources Management in a Changing World

    research topics in water resources management

  2. (PDF) Advances in Water Resources Management for Sustainable Use

    research topics in water resources management

  3. (PDF) Critical review of Integrated Water Resources Management: Moving

    research topics in water resources management

  4. Integrated Water Resource Planning

    research topics in water resources management

  5. (PDF) Research paper: Water Resources Management Small reservoir water

    research topics in water resources management

  6. Schematic representation of Integrated Water Resources Management

    research topics in water resources management

VIDEO

  1. Assignment 1

  2. 2nd International Conference on Water Resources Management and Sustainability

  3. Recent Advances in Water Resources Engineering and Management @apengineershub1092

  4. Assignment 2

  5. water resources management quation paper 2020

  6. NPTEL Rural Water Resources Management| WEEK 2 Assignment Solutions with problem solved|Swayam 2024

COMMENTS

  1. Water management: Current and future challenges and research directions

    Since 1965, the journal Water Resources Research has played an important role in reporting and disseminating current research related to managing the quantity and quality and cost of this resource. This paper identifies the issues facing water managers today and future research needed to better inform those who strive to create a more ...

  2. Frontiers in Water

    Contributions of Social Sciences to the Discourse on Water Management and Conservation: Bridging Theory and Practice. Masoud Bijani. Naser Valizadeh. Negin Fallah Haghighi. Moslem Savari. Amir Naeimi. 12,648 views. 6 articles. Explores advances in scientific, technical, institutional and social dimensions of sustainable water resources management.

  3. Frontiers in Water

    Water Desalination Technologies for Sustainable Water Resource Management. Re-Envisioning Land and Water Resources Management to Achieve a Secure and Equitable Water Future. Learn more about Research Topics. Explores advances in scientific, technical, institutional and social dimensions of sustainable water resources management.

  4. Home

    Overview. Water Resources Management is an international, multidisciplinary forum for the publication of original contributions and the exchange of knowledge and experience on the management of water resources. In particular, the journal publishes contributions on water resources assessment, development, conservation and control, emphasizing ...

  5. Frontiers in Water

    John M. Gathenya. Catherine Muthuri. Frontiers in Water. doi 10.3389/frwa.2024.1283574. 725 views. Explores advances in scientific, technical, institutional and social dimensions of sustainable water resources management.

  6. Integrated Water Resources Management: Concept, Research and ...

    Interrelated water resources policy making and management by government agencies responsible for the strategical and management tasks, executed on the basis of the systems concept under consideration of the internal functional relationships between quality and quantity aspects of both surface- and groundwater, as well as the external interactions between the water resources management and ...

  7. Advanced Research on Sustainable Water Resources Management and ...

    This Special Issue on "Advanced Research on Sustainable Water Resources Management and Planning under Climate Change" aims to explore new models, methods, and tools for water resource management and planning and their applications in various watersheds of the world. We hope this will facilitate the development of sustainable water resource ...

  8. Home

    Sustainable Water Resources Management publishes articles that deal with the interface of water resources science and the needs of human populations, highlighting work that addresses practical methods and basic research on water resources management. Covers a broad range of topics in water resources management. Addresses geopolitical and socio ...

  9. Water resource management: IWRM strategies for improved water ...

    1 Introduction. Integrated Water Resources Management (IWRM) is a concept that is meant to foster effective water resource management. GWP [] defined it as "the process which promotes the coordinated development and management of water, land and related resources, to maximise the resultant economic and social welfare equitably without compromising the sustainability of vital systems".

  10. The top 100 global water questions: Results of a scoping exercise

    Questions 24-38 of the top 100 questions in this scoping exercise fall into this thematic area and broadly encompass issues of water safety and quality, a significant emphasis on the management of fecal sludge and wastewater, and how climate change will impact these dynamics in the future. Water safety, quality, and delivery. 24.

  11. Integrated Water Resources Management Core Research Questions for

    The Global Water Partnership (GWP) Technical Advisory Committee (2000) defines IWRM as "a process which promotes the coordinated development and management of water, land and related resources in order to maximize economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems." This definition ...

  12. Water Resources Management

    The topic of research is climate change and adaptation in the direction of water resources management. In this topic, I need the guidance of friends to do the research as well as possible. I will ...

  13. Water Resources Management

    Water Resources Management. Fresh water is an essential and often scarce resource, and ensuring its optimum use and availability for sanitation, drinking, manufacturing, leisure, and agriculture requires significant planning. RAND research on water resources management has focused on flooding in Vietnam, scarcity along the Colorado River Basin ...

  14. Frontiers in Water

    514 views. A journal dedicated to exploring challenges facing freshwater systems, including demand and supply of water resources, extreme weather events and climate change.

  15. Water Resources Management

    Feminist research has shed light on women's understanding of water resources (e.g., Feldhaus, 1995; O'Reilly et al., 2009), and gender was one of four top priorities identified by the UN Commission for Environment and Development in 1992 for improving water management. Movements have organized around environmental problems in aquatic and ...

  16. Water Resources Research Priorities for the Future

    these in turn provide little useful guidance for management because critical parts of the system have been ignored. For example, the traditional subdivision of water resource issues into those of quality and quantity is now seen as inadequate to structure future research, given that water quality and quantity are intimately, causally, and mechanistically connected.

  17. WATER RESOURCES MANAGEMENT

    The Water Management and Development Project in Uganda improved the integration of water resources planning, management and development, as well as access to water and sanitation services in priority urban areas. More than 1.01 million people received access to improved water sources, and 25,000 piped household water connections were ...

  18. PDF Research Topics 2017

    Water Resource Management: Research Topics. Here is the beginning of a topic list. Some are quite specific and if someone chooses a topic it is not available for others. Others can be modified. I may add a few more. As well, you can submit a topic proposal. Follow instructions under Research Topic Guidelines on the course site.

  19. Research Topics

    The 2nd International Congress on Water and Sustainability is divided into four main lines of research in which you can find different topics to include your research, project and / or experience.. Abstracts submission finishes on February 27, 2021.Confirmation of accepted abstracts will be before March 1, 2021.Those who want to apply for special issues in journals must send the complete ...

  20. New Tools and Techniques for Advanced Water Resource Management

    Efficient management of water resources using advanced tools and techniques helps reduce water and sewer costs, irrigation requirements, control energy wastages, and ensure clean and safe water for all. This Research Topic aims to present recent developments in water resource research that model and investigate the impact of human activities on ...

  21. Water Resources Engineering Research

    Fresh water is arguably the most important resource in the world. Climate change and population growth are rapidly changing the availability and distribution of fresh water resources. Water resources engineers manage, plan, and design water resources systems and structures, thus playing a pivotal role in dealing with the increasing complexities ...

  22. Water Accounting Plus: limitations and opportunities for supporting

    Introduction. Water scarcity is a deeply rooted issue affecting many Middle East and North Africa (MENA) countries. The region is characterized naturally by arid and semi-arid climate, and water scarcity is exacerbated by human activities, including population growth, growing demands, and poor land and water management practices (Ahmed, Citation 2020; Rajsekhar & Gorelick, Citation 2017).

  23. Sustainable Development on Water Resources Management, Policy and

    The water resources management plays an important role in maintaining human health, agricultural production and ecological balance. ... • capacity building in water resources management; This Research Topic is expected to comprise some papers from WREM2022 (The 5th International Symposium on Water Resource and Environmental Management ...

  24. Incorporating Equity and Social Dimension Into Community Climate

    To achieve this objective, the research team synthesized findings from a range of inputs: recent peer-reviewed research, report, and case studies (described in this literature review); real-world experience among utilities (gathered through consultations and a national survey); and workshop discussions with water resources practitioners and ...

  25. Sustainable Water Resources Management: Rights, Conflicts, and

    Water is a finite yet indispensable resource that sustains life, ecosystems, and socio-economic growth. The complexities surrounding the ownership, allocation, and management of water resources lie at the heart of this research topic, with a primary focus on achieving sustainable water resource management. This complexity arises from the increasing demands, uneven distribution, climate change ...

  26. Environmental Resilience and Sustainable Agri-food System Management

    Keywords: environmental resilience, climate change, agri-food system, sustainable supply chain, resource management . Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements.. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or ...