Layer 6 Presentation Layer

De/Encryption, Encoding, String representation

The presentation layer (data presentation layer, data provision level) sets the system-dependent representation of the data (for example, ASCII, EBCDIC) into an independent form, enabling the syntactically correct data exchange between different systems. Also, functions such as data compression and encryption are guaranteed that data to be sent by the application layer of a system that can be read by the application layer of another system to the layer 6. The presentation layer. If necessary, the presentation layer acts as a translator between different data formats, by making an understandable for both systems data format, the ASN.1 (Abstract Syntax Notation One) used.

OSI Layer 6 - Presentation Layer

The presentation layer is responsible for the delivery and formatting of information to the application layer for further processing or display. It relieves the application layer of concern regarding syntactical differences in data representation within the end-user systems. An example of a presentation service would be the conversion of an EBCDIC-coded text computer file to an ASCII-coded file. The presentation layer is the lowest layer at which application programmers consider data structure and presentation, instead of simply sending data in the form of datagrams or packets between hosts. This layer deals with issues of string representation - whether they use the Pascal method (an integer length field followed by the specified amount of bytes) or the C/C++ method (null-terminated strings, e.g. "thisisastring\0"). The idea is that the application layer should be able to point at the data to be moved, and the presentation layer will deal with the rest. Serialization of complex data structures into flat byte-strings (using mechanisms such as TLV or XML) can be thought of as the key functionality of the presentation layer. Encryption is typically done at this level too, although it can be done on the application, session, transport, or network layers, each having its own advantages and disadvantages. Decryption is also handled at the presentation layer. For example, when logging on to bank account sites the presentation layer will decrypt the data as it is received.[1] Another example is representing structure, which is normally standardized at this level, often by using XML. As well as simple pieces of data, like strings, more complicated things are standardized in this layer. Two common examples are 'objects' in object-oriented programming, and the exact way that streaming video is transmitted. In many widely used applications and protocols, no distinction is made between the presentation and application layers. For example, HyperText Transfer Protocol (HTTP), generally regarded as an application-layer protocol, has presentation-layer aspects such as the ability to identify character encoding for proper conversion, which is then done in the application layer. Within the service layering semantics of the OSI network architecture, the presentation layer responds to service requests from the application layer and issues service requests to the session layer. In the OSI model: the presentation layer ensures the information that the application layer of one system sends out is readable by the application layer of another system. For example, a PC program communicates with another computer, one using extended binary coded decimal interchange code (EBCDIC) and the other using ASCII to represent the same characters. If necessary, the presentation layer might be able to translate between multiple data formats by using a common format. Wikipedia
  • Data conversion
  • Character code translation
  • Compression
  • Encryption and Decryption

The Presentation OSI Layer is usually composed of 2 sublayers that are:

CASE common application service element

ACSEAssociation Control Service Element
ROSERemote Operation Service Element
CCRCommitment Concurrency and Recovery
RTSEReliable Transfer Service Element

SASE specific application service element

FTAMFile Transfer, Access and Manager
VTVirtual Terminal
MOTISMessage Oriented Text Interchange Standard
CMIPCommon Management Information Protocol
JTMJob Transfer and Manipulation
MMSManufacturing Messaging Service
RDARemote Database Access
DTPDistributed Transaction Processing

Layer 7   Application Layer

Layer 6   presentation layer, layer 5   session layer, layer 4   transport layer, layer 3   network layer, layer 2   data link layer, layer 1   physical layer.

Presentation Layer in OSI Model: Functions, Protocols, Examples, Services

What is presentation layer,   functions of presentation layer, protocols of presentation layer, example of presentation layer protocols.

Network Data Representation (NDR) : NDR is an data encoding standard, and it is implement in the Distributed Computing Environment (DCE).

Presentation Layer Services

Design issues with presentation layer, related posts.

Presentation layer and Session layer of the OSI model

There are two popular networking models: the OSI layers model and the TCP/IP layers model. The presentation layer and session layer exist only in the OSI layers models. The TCP/IP layers model merges them into the application layer.

The Presentation Layer

The presentation layer is the sixth layer of the OSI Reference model. It defines how data and information is transmitted and presented to the user. It translates data and format code in such a way that it is correctly used by the application layer.

It identifies the syntaxes that different applications use and formats data using those syntaxes. For example, a web browser receives a web page from a web server in the HTML language. HTML language includes many tags and markup that have no meaning for the end user but they have special meaning for the web browser. the web browser uses the presentation layer's logic to read those syntaxes and format data in such a way the web server wants it to be present to the user.

presentation layer

On the sender device, it encapsulates and compresses data before sending it to the network to increase the speed and security of the network. On the receiver device, it de-encapsulates and decompresses data before presenting it to the user.

Examples of the presentation layer

Example standards for representing graphical information: JPEG, GIF, JPEG, and TIFF.

Example standards for representing audio information: WAV, MIDI, MP3.

Example standards for representing video information: WMV, MOV, MP4, MPEG.

Example standards for representing text information: doc, xls, txt, pdf.

Functions of the presentation layer

  • It formats and presents data and information.
  • It encrypts and compresses data before giving it to the session layer.
  • It de-encrypts and decompresses the encrypted and compressed data it receives from the session layer.

Session layer

The session layer is the fifth layer of the OSI layers model. It is responsible for initiating, establishing, managing, and terminating sessions between the local application and the remote applications.

It defines standards for three modes of communication: full duplex, half-duplex, and simplex.

duplex modes

In the full duplex mode, both devices can send and receive data simultaneously. The internet connection is an example of the full duplex mode.

In the half duplex mode, only one device can send data at a time. A telephone conversation is an example of the half-duplex mode.

In the simplex mode, only one device can send data. A radio broadcast is an example of the simplex mode.

Functions of the session layer

  • It is responsible for terminating sessions, creating checkpoints, and recovering data when sessions are interrupted.
  • It opens and maintains logical communication channels between network applications running on the local host and network applications running on the remote host.
  • If a network application uses an authentication mechanism before it opens a logical communication channel (session) with the remote host, it handles the authentication process.

Examples of the session layer

Structure Query Language (SQL), Remote Procedure Call (RPC), and Network File System (NFS) are examples of the session layer.

By ComputerNetworkingNotes Updated on 2024-09-24

ComputerNetworkingNotes CCNA Study Guide Presentation layer and Session layer of the OSI model

  • EtherChannel Load Distribution Explained
  • Link Aggregation Control Protocol (LACP) Explained
  • Port Aggregation Protocol (PAgP) Explained
  • EtherChannel Manual Configuration
  • EtherChannel Basic Concepts Explained
  • STP, RSTP, PVST, RPVST, and MSTP
  • Similarities and Differences between STP and RSTP
  • RSTP / RPVST Explained with Examples
  • PVST/RPVST and EtherChannel Explained
  • STP/RSTP Timers Explained

We do not accept any kind of Guest Post. Except Guest post submission, for any other query (such as adverting opportunity, product advertisement, feedback, suggestion, error reporting and technical issue) or simply just say to hello mail us [email protected]

  • A+ Cert Exam
  • Network + Cert Exam
  • Server+ Cert Exam
  • Security+ Cert Exam
  • CCNA Cert Exam
  • CCNP Cert Exam
  • ITIL Foundation Cert Exam
  • PMP Cert Exam
  • JNCIA-Junos Cert Exam
  • OCPJP Cert Exam
  • OCA Cert Exam
  • CIW Associate Cert Exam
  • SMT Component & Assembly
  • Reliability Enhancement
  • SMD Components
  • Nano Technology Introduction
  • Fundamentals of SatCom
  • Link Budgeting Explained
  • Satellite link budget calculator
  • Satellite look-angle calculator
  • Satellite Phones
  • RF, Microwave, and Optical Comm. - A review
  • Satellites and Services
  • Motherboard Connectors On a PC
  • Motherboard-I
  • Motherboard-II
  • Flash Memory Tutorial
  • Printers and Scanners
  • Cellular Phones
  • OSI Model: A tutorial
  • Introduction to TCP/IP

Computer Networking

  • Routers-IOS & JUNOS
  • Wimax,LTE, and 3G/3.5G - Intro
  • WiMAX: Wireless Broadband
  • Broadband Internet Technologies
  • RFID: A Beginner's Guide
  • Spread Spectrum Comms.
  • A tutorial on IPv6
  • Cloud Computing
  • Introduction to MPLS
  • Initial Software Config on SRX100
  • comptia aplus core 1 study notes
  • comptia aplus core 2 study notes
  • comptia Networkplus study notes
  • comptia Securityplus study notes
  • comptia Serverplus study notes
  • comptia IT Fundamentals study notes
  • Cisco CCNA study notes
  • Cisco CCNP ENCOR study notes
  • Cisco CCNP ENARSI study notes
  • Cisco CCST Networking study notes
  • Cisco CCST Cybersecurity study notes
  • Juniper JNCIA study notes
  • Co-axial Cable Measurements
  • Spectrum Analyzers Intro
  • Noise Figure Measurement
  • Time/Frequency Standards
  • Coax Cables - Intro
  • Android App Development
  • Essentials of Webpage Development
  • Introduction to HTML5
  • Introduction to Java
  • Introduction to MySQL
  • ActiveX EXE:Beginner's Guide
  • Working w/ MyODBC & MySQL
  • Drag-n-Drop Using Visual Basic
  • Drag-n-Drop Using VB.net
  • Network Simulator-2 (NS2)
  • Computers & Networking
  • The OSI (Open Systems Interconnection) model

The OSI (Open Systems Interconnection) Model

1. the osi (open systems interconnection) model.

Definition: The OSI model defines internetworking in terms of a vertical stack of seven layers. The upper layers of the OSI model represent software that implements network services like encryption and connection management. The lower layers of the OSI model implement more primitive, hardware-oriented functions like routing, addressing, and flow control.

The OSI model was introduced in 1984. Although it was designed to be an abstract model, the OSI model remains a practical framework for today's key network technologies like Ethernet and protocols like IP.

The OSI model should be used as a guide for how data is transmitted over the network. It is an abstract representation of the data pathway and should be treated as such.

The OSI model was specifically made for connecting open systems. These systems are designed to be open for communication with almost any other system. The model was made to break down each functional layer so that overall design complexity could be lessened. The model was constructed with seven layers for the flow of information. These are:

  • Application Layer
  • Presentation layer
  • Session layer
  • Transport layer
  • Network layer
  • Data link layer
  • Physical layer

1.1 Application layer

Provides a means for the user to access information on the network through an application. This layer is the main interface for the user to interact with the application and therefore the network.

The application layer is the OSI layer closest to the end user, which means that both the OSI application layer and the user interact directly with the software application. This layer interacts with software applications that implement a communicating component. Such application programs fall outside the scope of the OSI model. Application layer functions typically include identifying communication partners, determining resource availability, and synchronizing communication. When identifying communication partners, the application layer determines the identity and availability of communication partners for an application with data to transmit. When determining resource availability, the application layer must decide whether sufficient network resources for the requested communication exist. In synchronizing communication, all communication between applications requires cooperation that is managed by the application layer.

Some examples of application layer implementations include Telnet, File Transfer Protocol (FTP), and Simple Mail Transfer Protocol (SMTP).

1.2 Presentation layer

Manages the presentation of the information in an ordered and meaningful manner. This layer's primary function is the syntax and semantics of the data transmission. It converts local host computer data representations into a standard network format for transmission on the network. On the receiving side, it changes the network format into the appropriate host computer's format so that data can be utilized independent of the host computer. ASCII and EBCDIC conversions, cryptography, and the like are handled here.

The presentation layer provides a variety of coding and conversion functions that are applied to application layer data. These functions ensure that information sent from the application layer of one system would be readable by the application layer of another system. Some examples of presentation layer coding and conversion schemes include common data representation formats, conversion of character representation formats, common data compression schemes, and common data encryption schemes.

Common data representation formats, or the use of standard image, sound, and video formats, enable the interchange of application data between different types of computer systems. Using different text and data representations, such as EBCDIC and ASCII, uses conversion schemes to exchange information with systems. Standard data compression schemes enable data that is compressed. or encrypted at the source device to be properly decompressed, or deciphered at the destination.

Presentation layer implementations are not typically associated with a particular protocol stack. Some well-known standards for video include QuickTime and Motion Picture Experts Group (MPEG). QuickTime is an Apple Computer specification for video and audio, and MPEG is a standard for video compression and coding.

Among the well-known graphic image formats are Graphics Interchange Format (GIF), Joint Photographic Experts Group (JPEG), and Tagged Image File Format (TIFF). GIF is a standard for compressing and coding graphic images. JPEG is another compression and coding standard for graphic images, and TIFF is a standard coding format for graphic images.

1.3 Session layer

Coordinates dialogue/session/connection between devices over the network. This layer manages communications between connected sessions. Examples of this layer are token management (the session layer manages who has the token) and network time synchronization.

The session layer establishes, manages, and terminates communication sessions. Communication sessions consist of service requests and service responses that occur between applications located in different network devices. These requests and responses are coordinated by protocols implemented at the session layer. Some examples of session-layer implementations include Zone Information Protocol (ZIP), the AppleTalk protocol that coordinates the name binding process; and Session Control Protocol (SCP), the Decent Phase IV session layer protocol.

1.4 Transport layer

Responsible for reliable transmission of data and service specification between hosts. The major responsibility of this layer is data integrity--that data transmitted between hosts is reliable and timely. Upper layer data grams are broken down into network-sized data grams if needed and then implemented using appropriate transmission control. The transport layer creates one or more than one network connection, depending on conditions. This layer also handles what type of connection will be created. Two major transport protocols are the TCP (Transmission Control Protocol) and the UDP (User Data gram Protocol).

Important features of Transport layer:

  • Transport layer ensures reliable service.
  • Breaks the message (from sessions layer) into smaller packets, assigns sequence number and sends them.
  • Reliable transport connections are built on top of X.25 or IP.
  • In case IP, lost packets arriving out of order must be reordered.

Important features of TCP/UDP:

  • TCP/IP Widely used for network/transport layer (UNIX).
  • TCP (Transport Control Protocol): This is a connection oriented protocol.
  • UDP (Universal Data gram Protocol): This is a connectionless transport layer protocol.
  • Application programs that do not need connection-oriented protocol generally use UDP.

1.5 Network layer

Responsible for the routing of data (packets) through the network; handles the addressing and delivery of data. This layer provides for congestion control, accounting information for the network, routing, addressing, and several other functions. IP (Internet Protocol) is a good example of a network layer protocol. Network layer does not deal with lost messages.

Important features of Network layer protocols:

  • Concerned with the transmission of packets.
  • Choose the best path to send a packet (routing).
  • The routing may be complex in a large network (e.g. Internet).
  • Routing packets through a network may be accomplished by using simple static routes or by using complex dynamic routing algorithms.

1.6 Data link layer

Provides for the reliable delivery of data across a physical network. This layer deals with issues such as flow regulation, error detection and control, and frames. This layer has the important task of creating and managing what frames are sent out on the network. The network data frame, or packet, is made up of checksum, source address, destination address, and the data itself. The largest packet size that can be sent defines the maximum transmission Unit (MTU).

Important features of Data link layer:

  • Handles errors in the physical layer.
  • Groups bits into frames and ensures their correct delivery.
  • Adds some bits at the beginning and end of each frame plus the checksum.
  • Receiver verifies the checksum.
  • If the checksum is not correct, it asks for retransmission. (Send a control message).
  • Consists of two sub layers:

Logical Link Control (LLC) defines how data is transferred over the cable and provides data link service to the higher layers.

Medium Access Control (MAC) defines who can use the network when multiple computers are trying to access it simultaneously (i.e. Token passing, Ethernet [CSMA/CD]).

The data link layer provides reliable transit of data across a physical network link. Different data link layer specifications define different network and protocol characteristics, including physical addressing, network topology, error notification, sequencing of frames, and flow control. Physical addressing (as opposed to network addressing) defines how devices are addressed at the data link layer. Network topology consists of the data link layer specifications that often define how devices are to be physically connected, such as in a bus or a ring topology. Error notification alerts upper-layer protocols that a transmission error has occurred, and the sequencing of data frames reorders frames that are transmitted out of sequence. Finally, flow control moderates the transmission of data so that the receiving device is not overwhelmed with more traffic than it can handle at one time.

The protocols used in Data link layer are SLIP, PPP, MTU, and CSLP.

1.7 Physical layer

Handles the bit-level electrical/light communication across the network channel. The physical layer defines the electrical, mechanical, procedural, and functional specifications for activating, maintaining, and deactivating the physical link between communicating network systems. Physical layer specifications define characteristics such as media, voltage levels, timing of voltage changes, physical data rates, maximum transmission distances, and physical connectors.

Basically, this layer ensures that a bit sent on one side of the Network is received correctly on the other side.

Data travels from the application layer of the sender, down through the levels, across the nodes of the network service, and up through the levels of the receiver

To keep track of the transmission, each layer "wraps" the preceding layer's data and header with its own header. A small chunk of data will be transmitted with multiple layer headers attached to it. On the receiving end, each layer strips off the header that corresponds to its respective level.

Physical layer is concerned with the following:

  • Physical interface characteristics like electrical, and mechanical specifications,
  • Number of bits of second to be transmitted,
  • Transmission type like duplex or half-duplex etc.

Frequently used Physical layer protocols:

Some of the important standards that deal with physical layer specifications are:

RS-232(for serial communication lines), X.21, EIA 232, and G730.

Physical layer and Data link layer implementations can be categorized as either LAN or WAN specifications.

simulationexams.com ad

  • Privacy Policy
  • Copyright © 2003-2024 TutorialsWeb.com

A Guide to the Presentation Layer | OSI Model Layer 6

Understanding the layers of the Open Systems Interconnect (OSI) model can help users conceptualize data communication over a network. Layer 6 in the OSI model - the presentation layer - translates, compresses, and encrypts data across networks. In this article, we’ll explain what the presentation layer is, how it works, and its functions and protocols.

What is the presentation layer?

The presentation layer is the sixth layer in the OSI model. Known as a translator, it converts data into an accurate, well-defined, standard format after it receives it from the application layer .

The converted format varies, however, based on the type of data received. Some formats include:

  • EBCDIC (Extended Binary-Coded Decimal Interchange Code) and ASCII (American Standard Code for Information Interchange) for text files
  • MIDI, JPG, and QuickTime for audio files
  • GIF, JPEG, and TIFF for image files
  • MPEG, MOV, and AVI for movie files

The data from the application layer is changed into its proper form and then transmitted to other layers. If not for the presentation layer, the data would be sent as datagrams or data packets between hosts. This layer ensures a successful file transfer.

In computer networking , the OSI model layer 6 is sometimes referred to as the syntax layer because it maintains the proper syntax of transferred data. This layer also deals with the semantics of information transmitted over the network.

The presentation layer is the sixth layer in the OSI model.

Functions of the presentation layer

As the sixth layer in the OSI model, the presentation layer is thus responsible for three general functions: translation, compression, and encryption and decryption.

Translation

Layer 6 translates data based on the host’s needs. Different hosts represent data differently, especially when dealing with heterogeneous networks.

The data received from the application layer usually includes numbers and characters. The presentation layer then translates the data into a transportable and storable format that the receiving application can understand.

On the sender's end, the layer prepares data in the most common binary format. This subsequently benefits the recipient by ensuring proper structure and format of the data.

Compression

Data compression reduces data size by encoding the actual number of bits that require transmission on the network. Therefore, it helps speed up file transfer, save storage capacity, reduce bandwidth, and decrease storage hardware costs.

Compression in the presentation layer aims to reduce the number of bits needed to represent data; the aforementioned encoding can thus be achieved by inserting a single repeat character or removing all unneeded characters.

The process helps accelerate the rate at which data transmits to other layers. If you’re sending many files, the layer ensures that the files reach its destination quickly and without quality loss.

Encryption and decryption

Both encryption and decryption occur at the sixth layer. Encryption converts data from a readable format, plaintext, into an unreadable format, ciphertext. However, only the user with the correct encryption key can access the data. The correct key then decrypts the data for proper display on the next layer.

Encryption occurs at the transmitter, and decryption occurs at the receiver. Both tasks are crucial to data security. Encryption and decryption protect data, protect against file tampering, and increase trust.

Other functions of the presentation layer

In addition to the primary functions above, the presentation layer also allows and manages high-level data structures like banking records. It solves string representation issues, deals with the semantics and syntax of messages, performs character translation functions, and serializes by translating data into an easily-stored format.

Presentation layer protocols

To perform the necessary functions, the presentation layer utilizes certain protocols, including:

  • AFP (Apple Filing Protocol). AFP, a communication protocol designed for Mac-based platforms, specifically offers services to MacOS. The protocol allows computer users to share files easily over a network.
  • SSL (Secure Socket Layer) . SSL is an Internet security protocol that safeguards sensitive data transferred between web browsers and servers. Its sole purpose is to encrypt Internet connections and link between web clients and servers. It ensures that data passing through the OSI model remains private.
  • NCP (NetWare Core Protocol) . NCP is a network protocol designed for accessing files, messaging, printing, creating directories, synchronizing clocks, and executing remote commands, as well as other network service functions.
  • XDR (External Data Representation). XDR is the standard for encoding and decoding data. It allows data to transfer between systems.
  • NDR (Network Data Representation). NDR provides several types of data representation and various constructed data types. Therefore, it plays a vital role in implementing the presentation layer.

Who needs to understand the presentation layer?

Understanding the OSI model is essential for IT industry professionals. The model acts as a reference guide in developing communication products and software applications.

Understanding the presentation layer benefits network administrators who must troubleshoot network issues and software vendors who program software. It helps vendors create interoperable products.

Furthermore, understanding the sixth layer benefits cybersecurity professionals, as the presentation layer takes care of data encryption. Some common threats at this level include encoding attacks, encryption attacks, and decryption downgrade attacks. Therefore, professionals use the presentation layer to secure data transmitted over a network.

Frequently asked questions

Which three main functions are performed by the presentation layer.

The layer’s three main functions are data translation, data compression, and data encryption and decryption. Therefore, in this way, data becomes secure and compatible.

What is the primary purpose of the presentation layer?

Though it has many purposes, its main purpose is to translate data into an acceptable format that computer systems can understand.        

What technologies are used in the presentation layer?

The technologies used in the presentation layer are JavaScript, HTML, CSS, and jQuery.

What are the other layers in the OSI model?

Though an important layer, the presentation layer isn't the only layer in the OSI model. The other layers in the OSI model include the phy s ical layer , the data link layer , the network layer , the transport layer , the session layer , and the application layer.

PrepBytes Blog

ONE-STOP RESOURCE FOR EVERYTHING RELATED TO CODING

Sign in to your account

Forgot your password?

Login via OTP

We will send you an one time password on your mobile number

An OTP has been sent to your mobile number please verify it below

Register with PrepBytes

Presentation layer in osi model.

' src=

Last Updated on March 7, 2024 by Abhishek Sharma

presentation layer in osi model example

The OSI (Open Systems Interconnection) model is a conceptual framework used to understand the functions of a telecommunication or computing system. It consists of seven layers, each responsible for specific tasks. The sixth layer, known as the Presentation Layer, plays a crucial role in ensuring that data exchanged between systems is readable and usable. Let’s explore the functions and importance of the Presentation Layer in the OSI model.

What is Presentation Layer in OSI Model?

The Presentation Layer, the sixth layer of the OSI (Open Systems Interconnection) model, is responsible for ensuring that data exchanged between systems is in a format that can be interpreted and used by the receiving system. It performs various functions, including data translation, encryption, compression, and formatting, to facilitate efficient and secure communication between networked devices.

Functions of the Presentation Layer

Below are some of the functions of the Presentation Layer in OSI Model:

  • Data Translation: The Presentation Layer translates data from the format used by the application layer into a format that can be transmitted over the network. This includes encoding, compression, and encryption.
  • Data Formatting: It ensures that data is formatted according to the specifications of the application layer. This includes converting between different character sets, such as ASCII and Unicode.
  • Data Compression: The Presentation Layer compresses data to reduce the amount of bandwidth required for transmission, improving network efficiency.
  • Data Encryption: It encrypts data to ensure that it remains secure during transmission, protecting it from unauthorized access.
  • Data Syntax: The Presentation Layer defines the syntax for data representation, ensuring that both the sender and receiver understand the structure of the data being exchanged.

Importance of the Presentation Layer

Importance of Presentation Layer are:

  • Data Integrity: By ensuring that data is formatted correctly and encrypted, the Presentation Layer helps maintain the integrity of data during transmission.
  • Interoperability: The Presentation Layer enables different systems to communicate with each other by ensuring that data is translated into a common format that both systems understand.
  • Efficiency: Data compression reduces the amount of data that needs to be transmitted, improving network efficiency and reducing bandwidth requirements.
  • Security: Encryption provided by the Presentation Layer ensures that data remains secure and protected from unauthorized access.

Conclusion The Presentation Layer is a crucial component of the OSI model, responsible for ensuring that data exchanged between systems is in a format that can be understood and used. By performing functions such as data translation, formatting, compression, and encryption, the Presentation Layer plays a vital role in maintaining data integrity, facilitating interoperability, and ensuring the security of data during transmission.

FAQs related to Presentation Layer in OSI Model

Here are some of the FAQs related to Presentation Layer in OSI Model:

Q1: What is the role of the Presentation Layer in the OSI model? The Presentation Layer ensures that data exchanged between systems is in a usable format, performing functions such as data translation, encryption, compression, and formatting.

Q2: How does the Presentation Layer ensure data security? The Presentation Layer encrypts data before transmission, making it unreadable to unauthorized parties, thus ensuring data security.

Q3: Why is data compression important in the Presentation Layer? Data compression reduces the size of data packets, leading to faster transmission speeds and optimized bandwidth usage, which is crucial in high-traffic networks.

Q4: How does the Presentation Layer facilitate interoperability between systems? By translating data into a common format that both sender and receiver understand, the Presentation Layer enables different systems to communicate with each other seamlessly.

Q5: Can the Presentation Layer be bypassed in data transmission? While it is possible to bypass the Presentation Layer in some cases, doing so can lead to compatibility issues between systems and is not recommended.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Linked List
  • Segment Tree
  • Backtracking
  • Dynamic Programming
  • Greedy Algorithm
  • Operating System
  • Company Placement
  • Interview Tips
  • General Interview Questions
  • Data Structure
  • Other Topics
  • Computational Geometry
  • Game Theory

Related Post

Integrated services digital network (isdn), vlan acl (vacl) in computer networks, inter-vlan routing using a layer 3 switch, access and trunk ports in computer networks, role-based access control (rbac) in computer networks, superscalar architecture in computer network.

COMPUTER NETWORK BASICS

  • Introduction To Computer Networks
  • Uses of Computer Networks
  • Line Configuration
  • Types of Network Topology
  • Transmission Modes
  • Transmission Mediums
  • Bounded/Guided Transmission Media
  • UnBounded/UnGuided Transmission Media
  • Types of Communication Networks
  • Connection Oriented and Connectionless Services
  • Network Layer
  • Quality of Service(QoS)
  • IGMP Protocol
  • Reference Models

Physical Layer

  • Digital Transmission
  • Multiplexing
  • Circuit-Switched
  • Message-Switched Networks
  • Packet Switching

Data link layer

  • Error Correction
  • Data Link Control
  • Flow and Error
  • Simplest Protocol
  • Stop-and-Wait Protocol
  • Go-Back-N Automatic Repeat
  • Sliding Window Protocol
  • HDLC Protocol
  • Point-to-Point Protocol
  • Multiple Access in DL
  • Channelization Protocols
  • Gigabit Ethernet
  • Random Access Protocol
  • Controlled Access Protocols
  • Carrier Sense Multiple Access

Transport layer

  • Transport Layer
  • Telnet vs SSH
  • UDP Protocol
  • TCP - Protocol

ISO/OSI REFERENCE MODEL

  • Introduction to Reference Models
  • OSI Model: Physical Layer
  • OSI Model: Datalink Layer
  • OSI Model: Network Layer
  • OSI Model: Transport Layer
  • OSI Model: Session Layer
  • OSI Model: Presentation Layer
  • OSI Model: Application Layer

TCP/IP REFERENCE MODELCOMPUTER NETWORKS

  • The TCP/IP Reference Model
  • Difference between OSI and TCP/IP Model
  • Key Terms - Computer Network

Session layer

  • Session Layer

Computer Networks

  • Components of Computer Networks
  • Features of Computer Network
  • Protocols and Standards
  • Connection Oriented and Connectionless
  • OSI Vs TCP/IP

Presentation layer

  • Presentation Layer

Application layer

  • HTTP Protocol
  • FTP Protocol
  • SMTP Protocol
  • POP Protocol
  • SNMP Protocol
  • Electronic Mail
  • MIME Protocol
  • World Wide Web
  • DNS Protocol

Presentation Layer - OSI Reference Model

The primary goal of this layer is to take care of the syntax and semantics of the information exchanged between two communicating systems. Presentation layer takes care that the data is sent in such a way that the receiver will understand the information(data) and will be able to use the data. Languages(syntax) can be different of the two communicating systems. Under this condition presentation layer plays a role translator.

In order to make it possible for computers with different data representations to communicate, the data structures to be exchanged can be defined in an abstract way. The presentation layer manages these abstract data structures and allows higher-level data structures(eg: banking records), to be defined and exchanged.

Functions of Presentation Layer

  • Translation: Before being transmitted, information in the form of characters and numbers should be changed to bit streams. The presentation layer is responsible for interoperability between encoding methods as different computers use different encoding methods. It translates data between the formats the network requires and the format the computer.
  • Encryption: It carries out encryption at the transmitter and decryption at the receiver.
  • Compression: It carries out data compression to reduce the bandwidth of the data to be transmitted. The primary role of Data compression is to reduce the number of bits to be 0transmitted. It is important in transmitting multimedia such as audio, video, text etc.

Presentation Layer in ISO-OSI Model

Design Issues with Presentation Layer

  • To manage and maintain the Syntax and Semantics of the information transmitted.
  • Encoding data in a standard agreed upon way. Eg: String, double, date, etc.
  • Perform Standard Encoding on wire.
  • ← Prev
  • Next →

  CN MCQ Tests

  gate interview tests.

Network Encyclopedia Logo

Presentation Layer

Last Edited

What is the Presentation Layer?

Presentation Layer is the Layer 6 of the seven-layer Open Systems Interconnection (OSI) reference model . The presentation layer structures data that is passed down from the application layer into a format suitable for network transmission. This layer is responsible for data encryption, data compression, character set conversion, interpretation of graphics commands, and so on. The network redirector also functions at this layer.

Presentation Layer

Presentation Layer functions

  • Translation:  Before being transmitted, information in the form of characters and numbers should be changed to bit streams. Layer 6 is responsible for interoperability between encoding methods as different computers use different encoding methods. It translates data between the formats the network requires and the format the computer.
  • Encryption:  Encryption at the transmitter and decryption at the receiver
  • Compression:  Data compression to reduce the bandwidth of the data to be transmitted. The primary role of  data compression  is to reduce the number of bits to be transmitted. Multimedia files, such as audio and video, are bigger than text files and compression is more important.

Role of Presentation Layer in the OSI Model

This layer is not always used in network communications because its functions are not always necessary. Translation is only needed if different types of machines need to talk with each other. Encryption is optional in communication. If the information is public there is no need to encrypt and decrypt info. Compression is also optional. If files are small there is no need for compression.

Explaining Layer 6 in video

Most real-world protocol suites, such as TCP/IP , do not use separate presentation layer protocols. This layer is mostly an abstraction in real-world networking.

An example of a program that loosely adheres to layer 6 of OSI is the tool that manages the Hypertext Transfer Protocol (HTTP) — although it’s technically considered an application-layer protocol per the TCP/IP model.

However, HTTP includes presentation layer services within it. HTTP works when the requesting device forwards user requests passed to the web browser onto a web server elsewhere in the network.

It receives a return message from the web server that includes a multipurpose internet mail extensions (MIME) header. The MIME header indicates the type of file – text, video, or audio – that has been received so that an appropriate player utility can be used to present the file to the user.

In short, the presentation layer

Makes sure that data which is being transferred or received should be accurate or clear to all the devices which are there, in a closed network.

  • ensures proper formatting and delivery to and from the application layer;
  • performs data encryption; and
  • manages serialization of data objects.
  • Network infrastructure

presentation layer

Andrew Froehlich

  • Andrew Froehlich, West Gate Networks

What is the presentation layer?

The presentation layer resides at Layer 6 of the Open Systems Interconnection ( OSI ) communications model and ensures that communications that pass through it are in the appropriate form for the recipient application. In other words, the presentation layer presents the data in a readable format from an application layer perspective.

For example, a presentation layer program could format a file transfer request in binary code to ensure a successful file transfer . Because binary is the most rudimentary of computing languages, it ensures that the receiving device can decipher and translate it into a format the application layer understands and expects.

How the presentation layer works

Once the application layer passes data meant for transport to another device in a certain format, the presentation layer then prepares this data in the most appropriate format the receiving application can understand.

Common data formats include the following:

  • American Standard Code for Information Interchange and Extended Binary Coded Decimal Interchange Code for text;
  • JPEG , GIF and TIFF for images; and
  • MPEG, MIDI and QuickTime for video.

Encryption and decryption of data communications are also performed at the presentation layer. Here, encryption methods and keys exchange between the two communicating devices. Only the sender and receiver can properly encode and decode data so it returns to a readable format.

The presentation layer can serialize -- or translate -- more complex application data objects into a storable and transportable format. This helps to rebuild the object once it arrives at the other side of the communications stream. The presentation layer also deserializes the data stream and places it back into an object format that the application can understand by the application.

Chart depicting the location of the presentation layer within the OSI model.

The tool that manages Hypertext Transfer Protocol ( HTTP ) is an example of a program that loosely adheres to the presentation layer of OSI.

Although it's technically considered an application-layer protocol per the TCP/IP model , HTTP includes presentation layer services within it. HTTP works when the requesting device forwards user requests passed to the web browser onto a web server elsewhere in the network.

HTTP receives a return message from the web server that includes a Multipurpose Internet Mail Extensions ( MIME ) header. The MIME header indicates the type of file -- text, video, or audio -- that has been received so that an appropriate player utility can present the file to the user.

Functions of the presentation layer

  • ensures proper formatting and delivery to and from the application layer;
  • performs data encryption; and
  • manages serialization of data objects.

Editor's note: This article was republished in January 2023 to improve the reader experience.

Continue Reading About presentation layer

  • What is the difference between TCP/IP model vs. OSI model?
  • Data and file formatting

Related Terms

Dig deeper on network infrastructure.

presentation layer in osi model example

What are the most important email security protocols?

PeterLoshin

file extension (file format)

RobertSheldon

network protocol

KinzaYasar

MIME (Multipurpose Internet Mail Extensions)

RahulAwati

Microsoft 365 Copilot, an AI assistant, offers several promising features. Find out how to configure Copilot with Teams workflows...

With its AI capabilities, Microsoft Copilot provides several enhancements to Microsoft Teams functionality, including meeting ...

Organizations have ramped up their use of communications platform as a service and APIs to expand communication channels between ...

Connectivity issues, misconfigured settings and human error can all cause mobile hotspot problems. IT must know how to avoid and ...

With mobile device management software, IT can better support corporate smartphones, laptops and other mobile endpoints. Learn ...

Auditing is a crucial part of mobile device security, but IT admins must ensure their approach is thorough and consistent. Learn ...

Hock Tan unscored the importance of customers at the Boston VMware User Group UserCon, but users remain uneasy about the recent ...

Extreme heat and inadequate cooling systems can lead to power failures in data centers. Calculate the duration of your UPS ...

Intel's turnaround efforts are progressing, but the chipmaker will need more than government funding and a deal that expands its ...

IT service providers pursue advisory, training and automation opportunities as customers adopt FinOps and apply its cost ...

Popular pricing models for managed service providers include monitoring only, per device, per user, all-you-can-eat or ...

Global IT consultancies take a multilayered approach to GenAI training by developing in-house programs, partnering with tech ...

The OSI Model’s 7 Layers, Explained

The seven layers in the Open Systems Interconnection (OSI) model each serve a specific function and work together to create an efficient network communication system.

Andrei Neacsu

The Open Systems Interconnection (OSI) model is a framework in network communication that simplifies complex network interactions into a structured format. 

What Is the OSI Model?

The Open Systems Interconnection model is a framework in network communication designed to simplify complex network interactions into a structured format. This architecture has seven layers, each of which serves a specific function. All seven layers work together to create a robust and efficient network communication system.

Each of its seven layers has a distinct role, ensuring efficient data transfer from one device to another . The OSI model is essential for understanding how data is transmitted in a network and is also a practical guide for network protocol design and problem solving.

learn more about cybersecurity An Introduction to Microsegmentation in Network Security

The OSI model, developed by the International Organization for Standardization , outlines the essential functions of networking and telecommunications systems for practical application. It plays a crucial role in telecommunications, where vendors use it to define the features and capabilities of their products and services.

This approach allows for a detailed explanation of different aspects of network communication, including transport protocols, addressing schemes and data packaging methods. As a result, the OSI model resolves the complexities of network communication and fosters a more integrated and coherent digital world .

The 7 Layers of the OSI Model

Each layer of the OSI model serves a specific function, yet they work in harmony to create a robust and efficient network communication system. Understanding these layers provides valuable insights into the complexities of network design and operation, showcasing the intricate nature of modern digital communication.  

Layer 7: Application Layer

Functionality: The Application Layer is the closest to the end user. It facilitates user interaction with networked systems, providing interfaces and protocols for web browsers, email clients and other applications.

Key protocols: Protocols like HTTP, FTP and SMTP operate at this layer, enabling services such as web browsing, file transfers and email communications.

Layer 6: Presentation Layer

Role: The Presentation Layer acts as a translator, converting data formats from the application layer into a network-compatible format and vice versa. It ensures that data sent from one system is readable by another.

Data formatting: This layer is responsible for data encryption and compression, playing a significant role in maintaining data privacy and efficient transmission.

Layer 5: Session Layer

Managing sessions: It establishes, manages and terminates sessions between applications. This layer ensures that sessions are maintained for the duration of the communication.

Coordination: The Session Layer coordinates communication between systems, managing dialogues and synchronizing data exchange.

Layer 4: Transport Layer

Data segmentation and control: The Transport Layer is crucial for segmenting data into smaller packets. It ensures end-to-end data integrity and delivery, managing flow control, error correction and sequencing.

Protocols: TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are key protocols in this layer, differing in their approach to data transmission.

Layer 3: Network Layer

Routing and addressing: This layer is responsible for logical addressing and routing data packets across different networks. It determines the best path for data to travel from source to destination.

Internet protocol: The Internet Protocol (IP), fundamental for internet data exchange, operates at this layer.

Layer 2: Data Link Layer

Framing and MAC addressing: The Data Link Layer frames data into packets. It handles physical addressing through MAC addresses, ensuring that data is directed to the correct hardware.

Error detection: This layer is also involved in error detection and handling, improving overall data transmission reliability.

Layer 1: Physical Layer

Physical transmission: The Physical Layer deals with the physical aspects of data transmission, including cable types, electrical signals and data rates.

Hardware components: It involves hardware components like cables, switches and network interface cards, forming the foundation of network communication.

How Data Flows in the OSI Model

Understanding this data flow process is crucial for professionals, as it aids in diagnosing and troubleshooting network issues, designing efficient network solutions and ensuring robust data security and management.

Encapsulation Process

When data is sent, it begins at the Application Layer and moves down through the layers. At each stage, it is encapsulated with the necessary headers, trailers, and other control information relevant to that layer. For instance, at the Transport Layer, data is segmented and encapsulated with port numbers, while at the Network Layer, IP addresses are added.

Each layer plays a role in preparing the data for transmission. The Presentation Layer may encrypt the data for security, while the Data Link Layer ensures it is formatted into frames suitable for physical transmission.

Data Transmission Across the Network

The Physical Layer transmits the raw bits over a physical medium, such as a cable or wireless network. This transmission is the actual movement of data across the network. In cases where data must move across different networks, the Network Layer’s routing functionalities become crucial. It ensures that data packets find the most efficient path to their destination.

Decapsulation Process

Upon reaching the destination, the data moves up the OSI model, with each layer removing its respective encapsulation. The Data Link Layer, for instance, removes framing, and the Transport Layer checks for transmission errors and reassembles the data segments. Once the data reaches the Application Layer, it is in its original format and ready to be used by the receiving application, whether it’s an email client, a web browser or any other networked software.

Seamless Data Flow

The OSI model ensures that each layer only communicates with its immediate upper and lower layers, creating a seamless flow. This layered approach means changes in one layer’s protocols or functionalities can occur without disrupting the entire network.

OSI Model Advantages

The OSI model is a cornerstone in network architecture for several reasons:

Simplification of network design

The OSI model’s layered approach breaks down complex network processes, making design and operation more manageable. Each layer focuses on a specific aspect of communication, allowing for independent development and easier troubleshooting.

Standardization and interoperability

It establishes universal standards for network communication, enabling different technologies to interact seamlessly. This interoperability is crucial for the efficient functioning of diverse network devices and applications.

Flexibility and Scalability

Adaptable to technological advancements, the OSI model allows individual layers to evolve without overhauling the entire system. This scalability makes it suitable for various network sizes and types.

Enhanced Security

Security measures are integrated at multiple layers, providing a robust defense against threats. Each layer can address specific security concerns, leading to comprehensive network protection.

Real-World Applications of the OSI Model

The OSI model’s influence extends well beyond theoretical concepts, playing a crucial role in various practical aspects of networking:

Network Design and Protocol Development

Network professionals use the OSI model as a blueprint for structuring and developing robust networks. It guides the creation of new protocols, ensuring seamless integration and functionality across different network layers.

Efficient Troubleshooting and Management

In troubleshooting, the OSI model provides a systematic approach for identifying issues, from physical connectivity to application-level errors. It also aids in network maintenance and performance optimization, addressing each layer to enhance overall efficiency.

Cybersecurity Strategy

The model is foundational in crafting layered security strategies . By implementing security measures at different layers, it offers comprehensive protection against various cyber threats. Understanding the OSI layers is key in detecting and mitigating attacks targeting specific network segments.

Educational and Training Tool

It serves as an essential framework in networking education, helping students and professionals alike understand complex network operations. The OSI model is a cornerstone in training programs , emphasizing the intricacies of network architecture and security.

safety first When and How to Run a Phishing Simulation

OSI Model vs. TCP/IP Model

While the OSI model offers a detailed conceptual framework, the TCP/IP model is recognized for its practical application in today’s internet-driven world.

Structural Differences

OSI model : Introduced as a comprehensive, protocol-independent framework, the OSI model details seven distinct layers, offering a more granular approach to network communication.

TCP/IP model : Developed earlier by the U.S. Department of Defense, the TCP/IP model consists of four layers (Application, Transport, Internet and Network Access), combining certain OSI layers.

Theoretical vs. Practical Approach

OSI model : Developed as a theoretical and universal networking model, it’s used more for educational purposes to explain how networks operate.

TCP/IP model : This model is designed around specific standard protocols, focusing on solving practical communication issues. It leaves sequencing and acknowledgment functions to the transport layer, differing from the OSI approach.

Adoption and Use

OSI model: While not widely implemented in its entirety, the OSI model’s clear layer separation is influential in protocol design and network education; simpler applications in the OSI framework may not utilize all seven layers, with only the first three layers (Physical, Data Link, and Network) being mandatory for basic data communication.

TCP/IP model : The dominant model used in most network architectures today, especially in internet-related communications. In TCP/IP, most applications engage all layers for communication.

Frequently Asked Questions

Why is the osi model important.

The OSI model is crucial for standardizing network communication and ensuring interoperability between various devices and systems. It simplifies network design and troubleshooting and serves as a fundamental educational tool in networking.

What are the 7 layers of the OSI model?

Layer 1: Physical Layer — Transmits raw data.

Layer 2: Data Link Layer — Manages direct links and framing.

Layer 3: Network Layer — Handles addressing and routing.

Layer 4: Transport Layer — Ensures reliable data transfer.

Layer 5: Session Layer — Manages connections.

Layer 6: Presentation Layer — Translates data formats.

Layer 7: Application Layer — Interfaces with applications.

Recent Cybersecurity Articles

31 Top Cloud Security Companies to Know

home

Computer Network

  • Introduction
  • Architecture
  • Computer Network Types
  • Transmission Modes
  • TCP/IP Model

Physical Layer

  • Digital Transmission
  • Transmission Media
  • Guided Media
  • UnGuided Media
  • Multiplexing
  • Switching Modes
  • Switching Techniques
  • Data Link layer
  • Error Detection
  • Error Correction
  • Data Link Controls
  • Network Layer
  • Network Addressing
  • Network Layer Protocols
  • Routing Algorithm
  • Distance Vector
  • Link State Routing
  • Transport Layer
  • Transport Layer Protocols
  • Application Layer
  • Client & Server Model

Application Protocols

Network security.

  • Digital Signature
  • What is Router
  • OSI vs TCP/IP
  • IPv4 vs IPv6
  • ARP Packet Format
  • Working of ARP
  • FTP Commands
  • I2P Protocol
  • Sliding Window Protocol
  • SPI Protocol
  • ARP Commands
  • ARP Request
  • ARP - Address Resolution Protocol
  • ARP and its types
  • TCP Retransmission
  • CAN Protocol
  • HTTP Status Codes
  • HTTP vs HTTPS
  • RIP Protocol
  • UDP Protocol
  • ICMP Protocol
  • MQTT Protocol
  • OSPF Protocol
  • Stop & Wait Protocol
  • IMAP Protocol
  • POP Protocol
  • Go-Back-N ARQ
  • Connection-Oriented vs Connectionless Service
  • CDMA vs GSM
  • What is MAC Address
  • Modem vs Router
  • Switch vs Router
  • USB 2.0 vs USB 3.0
  • CSMA CA vs CSMA CD
  • Multiple Access Protocols
  • IMAP vs. POP3
  • SSH Meaning
  • Status Code 400
  • MIME Protocol
  • What is a proxy server and how does it work
  • How to set up and use a proxy server
  • What is network security
  • WWW is based on which model
  • Proxy Server List
  • Fundamentals of Computer Networking
  • IP Address Format and Table
  • Bus topology vs Ring topology
  • Bus topology vs Star topology
  • Circuit Switching vs Packet switching
  • star vs ring topology
  • Router vs Bridge
  • TCP Connection Termination
  • Image Steganography
  • Network Neutrality
  • Onion Routing
  • ASA features
  • Relabel-to-front Algorithm
  • Types of Server Virtualization in Computer Network
  • Access Lists (ACL)
  • Digital Subscriber Line (DSL)
  • Operating system based Virtualization
  • Context based Access Control (CBAC)
  • Cristian's Algorithm
  • Service Set Identifier (SSID) in Computer Network
  • Voice over Internet Protocol (VoIP)
  • Challenge Response Authentication Mechanism (CRAM)
  • Extended Access List
  • Li-fi vs. Wi-fi
  • Reflexive Access List
  • Synchronous Optical Network (SONET)
  • Wifi protected access (WPA)
  • Wifi Protected Setup (WPS)
  • Standard Access List
  • Time Access List
  • What is 3D Internet
  • 4G Mobile Communication Technology
  • Types of Wireless Transmission Media
  • Best Computer Networking Courses
  • Data Representation
  • Network Criteria
  • Classful vs Classless addressing
  • Difference between BOOTP and RARP in Computer Networking
  • What is AGP (Accelerated Graphics Port)
  • Advantages and Disadvantages of Satellite Communication
  • External IP Address
  • Asynchronous Transfer Mode (ATM) in Computer Network
  • Types of Authentication Protocols
  • What is a CISCO Packet Tracer
  • How does BOOTP work
  • Subnetting in Computer Networks
  • Mesh Topology Advantages and Disadvantages
  • Ring Topology Advantages and Disadvantages
  • Star Topology Advantages and Disadvantages
  • Tree Topology Advantages and Disadvantages
  • Zigbee Technology-The smart home protocol
  • Network Layer in OSI Model
  • Physical Layer in OSI Model
  • Data Link Layer in OSI Model
  • Internet explorer shortcut keys
  • Network Layer Security | SSL Protocols
  • Presentation Layer in OSI Model
  • Session Layer in OSI Model
  • SUBNET MASK
  • Transport Layer Security | Secure Socket Layer (SSL) and SSL Architecture
  • Functions, Advantages and Disadvantages of Network Layer
  • Functions, Advantages and Disadvantages of the Physical Layer
  • Types of Internet Connection
  • Noisy and Noiseless Channel
  • Advantages and Disadvantages of Bus Topology
  • Advantages and Disadvantages of Ring Topology
  • Advantages and Disadvantages of Star Topology
  • Protocols in Noiseless and Noisy Channel
  • Advantages and Disadvantages of Mesh Topology
  • Cloud Networking - Managing and Optimizing Cloud-Based Networks
  • Collision Domain and Broadcast Domain
  • Count to Infinity Problem in Distance Vector Routing
  • Difference Between Go-Back-N and Selective Repeat Protocol
  • Difference between Stop and Wait, GoBackN, and Selective Repeat
  • Network Function Virtualization (NFV): transforming Network Architecture with Virtualized Functions
  • Network-Layer Security | IPSec Modes
  • Network-Layer Security | IPSec Protocols and Services
  • Ping vs Traceroute
  • Software Defined Networking (SDN): Benefits and Challenges of Network Virtualization
  • Software Defined Networking (SDN) vs. Network Function Virtualization (NFV)
  • Virtual Circuits vs Datagram Networks
  • BlueSmack Attack in Wireless Networks
  • Bluesnarfing Attack in Wireless Networks
  • Direct Sequence Spread Spectrum
  • Warchalking in Wireless Networks
  • WEP (Wired Equivalent Privacy)
  • Wireless security encryption
  • Wireless Security in an Enterprise
  • Quantum Networking
  • Network Automation
  • Difference between MSS and MTU
  • What is MTU
  • Mesh Networks: A decentralized and Self-Organizing Approach to Networking
  • What is Autonomous System
  • What is MSS
  • Cyber security and Software security
  • Information security and Network security
  • Security Engineer and Security Architect
  • Protection Methods for Network Security
  • Trusted Systems in Network Security
  • What are Authentication Tokens in Network security
  • Cookies in Network Security
  • Intruders in Network Security
  • Network Security Toolkit (NST) in virtual box
  • Pivoting-Moving Inside a Network
  • Security Environment in Computer Networks
  • Voice Biometric technique in Network Security
  • Advantages and Disadvantages of Conventional Testing
  • Difference between Kerberos and LDAP
  • Cyber security and Information Security
  • GraphQL Attacks and Security
  • Application Layer in OSI Model
  • Applications of Remote Sensing
  • Seven Layers of IT Security
  • What is Ad Hoc TCP
  • What is Server Name Indication(SNI)
  • Difference Between Infrastructure and Infrastructure Less Network
  • Collision Avoidance in Wireless Networks
  • Difference Engine and Analytical Engine
  • Hotspot 2.0
  • Intrusion Prevention System (IPS)
  • Modes of Connection Bluetooth
  • Noisy Channel protocols
  • Parzen Windows density Estimation Technique
  • Principle of Information System Security
  • What are Bots, Botnets, and Zombies
  • Windows Memory Management
  • Wireless dos attack on Wifi
  • Design Principles of Security in Distributed Systems
  • MAC Filtering
  • Principles of Network Applications
  • Time-to-Live (TTL)
  • What is 1000 BASE-T
  • What is the difference between 802.11ac and 802.11ax
  • Differentiate between Circuit Switching, Message Switching, and Packet Switching
  • What is Web 3.0
  • Collision Detection in CSMA/CD
  • Ipv4 Header in Computer Networks
  • Layered Architecture in Computer Networks
  • Define URL in Computer Networks
  • MAN in Computer Networks
  • Routing Protocols in Computer Networks
  • Flooding in Computer Network
  • CRC in Computer Network
  • Application of Computer Network
  • Computer Network Architect
  • Design Issues for the Layers of Computer Networks
  • What is AMD (Advanced Micro Devices)
  • Protocol in Computer Network
  • Computer Network Projects
  • Different Types of Routers
  • Wireless Distribution System (WDS)
  • Network Time Protocol
  • Address Resolution Protocol (ARP) and its types in Computer Network
  • Automatic Repeat ReQuest (ARQ) in Computer Networks
  • Bluetooth in Computer Networks
  • Circuit Switching in Computer Network
  • Computer Hardware and Networking Course
  • Ring Topology in a Computer Network
  • Token Ring in Computer Networks
  • Medium Access Control in Computer Network
  • Need for Computer Network
  • Repeater in Computer Network
  • Computer Networking: a Top Down Approach
  • What is Multiplexing in Computer Network
  • Body Area Network (BAN)
  • INS AND OUT OF DATA STREAMING
  • Streaming stored video
  • Cellular Network
  • How can devices on a Network be identified
  • How Does the Internet Work
  • Authentication Server
  • What is Cloud Backup and How does it Work
  • Communication Protocols In System Design
  • Extensible Authentication Protocol (EAP)
  • Role-Based Access Control (RBAC)
  • Network Enumeration Tools
  • Network Protocol Testing
  • Windows Networking Commands
  • Advantages and Disadvantages of WLAN
  • Anonymous File Transfer Protocol (AFTP)
  • Automatic Private IP Addressing
  • What is Deep Web
  • USB-C (USB Type C)
  • User Authentication
  • What is a vCard
  • ipv4 Headers
  • Difference between Token ring and Ethernet Token Ring
  • Server Message Block protocol (SMB protocol)
  • Session Border Controllers (SBC)
  • Short Message Service Center (SMSC)
  • What is a Mail Server
  • What are Communication Networks
  • Initialization Vector
  • What is Fiber Optics
  • Open Networking
  • Access Ports Vs Trunk Ports
  • Edge Routers
  • IPTV (Internet Protocol Television)
  • Wireless Internet Service Provider (WISP)
  • Wireless Backhaul
  • Define Protocol in Computer Network
  • Virtual Network Adapter
  • Virtual Routing and Forwarding
  • Virtual Switches(vSwitches)
  • VLAN (Virtual LAN)
  • Wireless Mesh Network (WMN)
  • What is Gateway in Computer Network
  • Radio Access Network (RAN)
  • What is File Sharing
  • Passive Optical Network (PON)
  • Private IP address
  • Public Key Certificate
  • What is Bridge in Computer Network
  • Ping Sweep (ICMP Sweep)
  • Print Server
  • WIFI Pineapple
  • Walled Garden
  • Wireless ISP (wireless Internet service provider or WISP)
  • Bridge vs Repeater
  • Hardware Security Module (HSM)
  • Public Switched Telephone Network
  • Analog Telephone Adapter (ATA)
  • Host Bus Adapter (HBA)
  • ISCSI initiator
  • Simplest Protocol
  • Telecommunication Networks
  • What is WPS in Wi-Fi
  • What are the Most Important Email Security Protocols
  • What is Data Governance and Why does it Matter
  • Carrier Network
  • Most Secure Network Protocol
  • Network SMB
  • BGP vs. EIGRP: What's the Difference
  • Wireless Security: WEP, WPA, WPA2 and WPA3 differences
  • Cloud Radio Access Network (C-RAN)
  • Bits Per Second (bps or bit/sec)
  • Blade Server
  • command-and-control server (C&C server)
  • Computer Network MCQ
  • Computer Network MCQ Part2

Interview Questions

  • Networking Questions

The presentation layer is the 6 layer from the bottom in the OSI model. This layer presents the incoming data from the application layer of the sender machine to the receiver machine. It converts one format of data to another format of data if both sender and receiver understand different formats; hence this layer is also called the translation layer. It deals with the semantics and syntax of the data, so this layer is also called the syntax layer. It uses operations such as data compression, data encryption & decryption, data conversion, etc.

Data is sent from sender to receiver, but what if the sender device and receiver device understand different formats of code? For example, suppose one device understands ASCII code and another device understands EBCDIC code. In that case, the data must be translated into a code that the recipient understands to determine what data has been sent. The presentation layer is responsible for translating ASCII codes to EBCDIC or vice versa. With the help of the presentation layer, the receiver understands the data effectively and uses it efficiently. Whatever data is being transmitted between the sender and the receiver, that data must be secure because an intruder can hack the data passing between the sender and the receiver. Hackers can modify the data and send the modified data to the receiver to create false communication. The presentation layer is responsible for encrypting and decrypting data to avoid data leakage and data modification.
The plaintext data at the source is encrypted into ciphertext (unreadable format), then it is sent to the receiver, where the ciphertext is decrypted into plaintext. Now, if the hacker tries to hack the data, the hacker receives an encrypted, unreadable form, and if the hacker tries to send modified data, the receiver can detect the modification during decryption; thereby, the data remains safe. If the file size is large, it becomes difficult to transmit the large file over the network. File size can be decreased by compressing the file for easy transmission of data. Compression is the method of diminishing the size of a file to transmit data easily in less time. When the compressed data reaches the receiver, the data is reconstructed back to the original size, and this process is called decompression.

The presentation layer in the OSI model is classified into two sublayers:

This sublayer offers services to layer-7, i.e., the application layer, and requests services from layer-5, i.e., the session layer. It supports various application services, such as Reliable Transfer Service Element (RTSE), Remote Operation Service Element (ROSE), Association Control Service Element (ACSE), and Commitment Concurrency and Recovery (CCR). This sublayer offers application-specific protocols, such as Message Oriented Text Interchange Standard (MOTIS), Remote Database Access (RDA), File Transfer Access and Manager (FTAM), Common Management Information Protocol (CMIP), Virtual Terminal (VT), Distributed Transaction Processing (DTP), Job Transfer and Manipulation (JTM), and others. It is a presentation layer protocol in the OSI model, which was formed by Citrix Systems. It is used for transferring data from server to client. It is a very thin protocol as it does not require much overhead in order to transmit data from the server over to the client. It is well-optimized for the WAN. It is the protocol that is used to implement the presentation layer of the OSI model. It provides different kinds of data representation, such as images, video, audio, numbers, etc. It is used for Microsoft Remote Procedure Call (Microsoft RPC) and Distributed Computing Environment (DCE) / Remote Procedure Calls (RPC). It is a communication protocol that was specifically designed for macOS by Apple, Inc. It provides file services for Classic Mac OS and macOS. This protocol is used to share files over the network. It is a protocol that is associated with the client-server operating system. The user can access the directory, print, message, file, clock synchronization, etc., with the help of this protocol. It supports many platforms, such as Linux, Classic Mac OS, Windows NT, Mac OS X, and Microsoft Windows. It is a telecommunications equipment that splits a stream of data into separate packets and formats packet headers for asynchronous communication on X.25 networks. It receives packets from the network and converts them into a stream of data. The PAD provides many asynchronous terminal connectivities to a host computer. It is a computer network protocol that is used to transfer data between two systems. It was first published in 1987. XDR is used by various systems such as NDMP, Network File System, NetCDF, ZFS, Open Network Computer Remote Procedure Call, and others. It is a protocol that offers ISO presentation services over TCP/IP based networks. This protocol explains an approach to provide stream-line support for OSI over TCP/IP based networks.



Latest Courses

Python

We provides tutorials and interview questions of all technology like java tutorial, android, java frameworks

Contact info

G-13, 2nd Floor, Sec-3, Noida, UP, 201301, India

[email protected] .

Facebook

Latest Post

PRIVACY POLICY

Online Compiler

  • Artificial Intelligence
  • Generative AI
  • Cloud Computing
  • CPUs and Processors
  • Data Center
  • Edge Computing
  • Enterprise Storage
  • Virtualization
  • Enterprise Buyer’s Guides
  • Internet of Things
  • Network Management Software
  • Network Security
  • United States
  • Newsletters
  • Foundry Careers
  • Terms of Service
  • Privacy Policy
  • Cookie Policy
  • Copyright Notice
  • Member Preferences
  • About AdChoices
  • E-commerce Links
  • Your California Privacy Rights

Our Network

  • Computerworld

keith_shaw

What is the OSI model? How to explain and remember its 7 layers

A tutorial on the open systems interconnection (osi) networking reference model plus tips on how to memorize the seven layers..

AI image 7 layers of OSI model telecommunications network

The Open Systems Interconnect (OSI) model is a conceptual framework that describes networking or telecommunications systems as seven layers, each with its own function.

The layers help network pros visualize what is going on within their networks and can help network managers narrow down problems (is it a physical issue or something with the application?), as well as computer programmers (when developing an application, which other layers does it need to work with?). Tech vendors selling new products will often refer to the OSI model to help customers understand which layer their products work with or whether it works “across the stack”.

The 7 layers of the OSI model

The layers (from bottom to top) are: Physical, Data Link, Network, Transport, Session, Presentation, and Application.

OSI model table

It wasn’t always this way. Conceived in the 1970s when computer networking was taking off, two separate models were merged in 1983 and published in 1984 to create the OSI model that most people are familiar with today. Most descriptions of the OSI model go from top to bottom, with the numbers going from Layer 7 down to Layer 1.

The layers, and what they represent, are as follows:

Layer 7: Application

The Application Layer in the OSI model is the layer that is the “closest to the end user”. It receives information directly from users and displays incoming data to the user. Oddly enough, applications themselves do not reside at the application layer. Instead the layer facilitates communication through lower layers in order to establish connections with applications at the other end. Web browsers (Google Chrome, Firefox, Safari, etc.) TelNet, and FTP, are examples of communications that rely on Layer 7.

Layer 6: Presentation

The Presentation Layer represents the area that is independent of data representation at the application layer. In general, it represents the preparation or translation of application format to network format, or from network formatting to application format. In other words, the layer “presents” data for the application or the network. A good example of this is encryption and decryption of data for secure transmission; this happens at Layer 6.

Layer 5: Session

When two computers or other networked devices need to speak with one another, a session needs to be created, and this is done at the Session Layer . Functions at this layer involve setup, coordination (how long should a system wait for a response, for example) and termination between the applications at each end of the session.

Layer 4: Transport

The Transport Layer deals with the coordination of the data transfer between end systems and hosts. How much data to send, at what rate, where it goes, etc. The best known example of the Transport Layer is the Transmission Control Protocol (TCP), which is built on top of the Internet Protocol (IP), commonly known as TCP/IP. TCP and UDP port numbers work at Layer 4, while IP addresses work at Layer 3, the Network Layer.

Layer 3: Network

Here at the Network Layer is where you’ll find most of the router functionality that most networking professionals care about and love. In its most basic sense, this layer is responsible for packet forwarding, including routing through different routers . You might know that your Boston computer wants to connect to a server in California, but there are millions of different paths to take. Routers at this layer help do this efficiently.

Layer 2: Data Link

The Data Link Layer provides node-to-node data transfer (between two directly connected nodes), and also handles error correction from the physical layer. Two sublayers exist here as well–the Media Access Control (MAC) layer and the Logical Link Control (LLC) layer. In the networking world, most switches operate at Layer 2. But it’s not that simple. Some switches also operate at Layer 3 in order to support virtual LANs that may span more than one switch subnet, which requires routing capabilities.

Layer 1: Physical

At the bottom of our OSI model we have the Physical Layer, which represents the electrical and physical representation of the system. This can include everything from the cable type, radio frequency link (as in a Wi-Fi network), as well as the layout of pins, voltages, and other physical requirements. When a networking problem occurs, many networking pros go right to the physical layer to check that all of the cables are properly connected and that the power plug hasn’t been pulled from the router, switch or computer, for example.

Why you need to know the 7 OSI layers

Most people in IT will likely need to know about the different layers when they’re going for their certifications, much like a civics student needs to learn about the three branches of the US government. After that, you hear about the OSI model when vendors are making pitches about which layers their products work with.

In a Quora post  asking about the purpose of the OSI model, Vikram Kumar answered this way: “The purpose of the OSI reference model is to guide vendors and developers so the digital communication products and software programs they create will interoperate, and to facilitate clear comparisons among communications tools.”

While some people may argue that the OSI model is obsolete (due to its conceptual nature) and less important than the four layers of the TCP/IP model, Kumar says that “it is difficult to read about networking technology today without seeing references to the OSI model and its layers, because the model’s structure helps to frame discussions of protocols and contrast various technologies.”

If you can understand the OSI model and its layers, you can also then understand which protocols and devices can interoperate with each other when new technologies are developed and explained.

The OSI model remains relevant

In a post on GeeksforGeeks, contributor Vabhav Bilotia argues several reasons why the OSI model remains relevant, especially when it comes to security and determining where technical risks and vulnerabilities may exist.

For example, by understanding the different layers, enterprise security teams can identify and classify physical access, where the data is sitting, and provide an inventory of the applications that employees use to access data and resources.

“Knowing where the majority of your company’s data is held, whether on-premises or in cloud services, will help define your information security policy,” writes Bilotia. “You can invest in the correct solutions that provide you data visibility within the proper OSI layers once you have this knowledge.”

In addition, the OSI model can be used to understand cloud infrastructure migrations, particularly when it comes to securing data within the cloud.

And because the model has been around for so long and understood by so many, the uniform vocabulary and terms helps networking professionals understand quickly about the components of the networking system “While this paradigm is not directly implemented in today’s TCP/IP networks, it is a useful conceptual model for relating multiple technologies to one another and implementing the appropriate technology in the appropriate way,” Bilotia writes. We couldn’t agree more.

How to remember the OSI Model 7 layers: 8 mnemonic tricks

If you need to memorize the layers for a college or certification test, here are a few sentences to help remember them in order. The first letter of each word is the same as the first letter an OSI layer.

From Application to Physical (Layer 7 to Layer 1): 

  • All People Seem To Need Data Processing
  • All Pros Search Top Notch Donut Places
  • A Penguin Said That Nobody Drinks Pepsi
  • A Priest Saw Two Nuns Doing Pushups

From Physical to Application (Layer 1 to Layer 7):

  • Please Do Not Throw Sausage Pizza Away
  • Pew! Dead Ninja Turtles Smell Particularly Awful
  • People Don’t Need To See Paula Abdul
  • Pete Doesn’t Need To Sell Pickles Anymore

Related content

Network jobs watch: hiring, skills and certification trends, 10-year forecast shows growth in network architect jobs while sysadmin roles shrink, infoblox tackles integrated ddi across multi-cloud environments, 2024 global network outage report and internet health check, newsletter promo module test.

keith_shaw

The first gadget Keith Shaw ever wanted was the Merlin, a red plastic toy that beeped and played Tic-Tac-Toe and various other games. A child of the '70s and teenager of the '80s, Shaw has been a fan of computers, technology and video games right from the start. He won an award in 8th grade for programming a game on the school's only computer, and saved his allowance to buy an Atari 2600.

Shaw has a bachelor's degree in newspaper journalism from Syracuse University and has worked at a variety of newspapers in New York, Florida and Massachusetts, as well as Computerworld and Network World. He won an award from the American Society of Business Publication Editors for a 2003 article on anti-spam testing, and a Gold Award in their 2010 Digital Awards Competition for the "ABCs of IT" video series.

Shaw is also the co-creator of taquitos.net , the crunchiest site on the InterWeb, which has taste-tested and reviewed more than 4,000 varieties of snack foods.

More from this author

What is a network router how ai networking driving its evolution, bgp: what is border gateway protocol, and how does it work, what is a virtual machine, and why are they so useful, what is a network switch and how does it work, what is zero trust network access, what is sd-wan, and what does it mean for networking, security, cloud, what is beamforming and how does it make wireless better, colleges expand vpn capacity, conferencing to answer covid-19, show me more, security, aiops top mainframe customer challenges, bmc says.

Image

Observe unveils AI-powered agents to speed troubleshooting

Image

Blackstone to invest $13.3B in AI data center in the UK

Image

Has the hype around ‘Internet of Things’ paid off? | Ep. 145

Image

Episode 1: Understanding Cisco’s Converged SDN Transport

Image

Episode 2: Pluggable Optics and the Internet for the Future

Image

How to use the diff3 command

Image

How to use the colordiff command

Image

How to use the CMP command

Image

Sponsored Links

  • Visibility, monitoring, analytics. See Cisco SD-WAN in a live demo.
  • OpenText Financial Services Summit 2024 in New York City!

IncludeHelp_logo

  • Data Structure
  • Coding Problems
  • C Interview Programs
  • C++ Aptitude
  • Java Aptitude
  • C# Aptitude
  • PHP Aptitude
  • Linux Aptitude
  • DBMS Aptitude
  • Networking Aptitude
  • AI Aptitude
  • MIS Executive
  • Web Technologie MCQs
  • CS Subjects MCQs
  • Databases MCQs
  • Programming MCQs
  • Testing Software MCQs
  • Digital Mktg Subjects MCQs
  • Cloud Computing S/W MCQs
  • Engineering Subjects MCQs
  • Commerce MCQs
  • More MCQs...
  • Machine Learning/AI
  • Operating System
  • Computer Network
  • Software Engineering
  • Discrete Mathematics
  • Digital Electronics
  • Data Mining
  • Embedded Systems
  • Cryptography
  • CS Fundamental
  • More Tutorials...
  • Tech Articles
  • Code Examples
  • Programmer's Calculator
  • XML Sitemap Generator
  • Tools & Generators

IncludeHelp

Computer Network Tutorial

  • Computer Network - Home
  • Computer Network - Overview
  • Computer Network - Applications
  • Computer Network - TCP/IP
  • Computer Network - OSI Model
  • Computer Network - Transport, Network, & Application Layers
  • Computer Network - Network Protocols & Network Software
  • Computer Network - TopologiesTypes
  • Computer Network - Hub
  • Computer Network - Routing
  • Computer Network - Routers
  • Computer Network - Dynamic Routing Protocols
  • Computer Network - Router
  • Computer Network - Populating a Routing Table
  • Computer Network - Switches
  • Computer Network - Layer 2 Switching
  • Computer Network - Configure Cisco Switch
  • Computer Network - ICMP
  • Computer Network - ICMP Messages
  • Computer Network - Addressing
  • Computer Network - Classless Addressing
  • Computer Network - IPV4 Addressing
  • Computer Network - IPV6 Addressing
  • Computer Network - Logical Addressing, Notations
  • Computer Network - Classful & Classless Addressing
  • Computer Network - Subnetting & Supernetting
  • Computer Network - Network Address Translation
  • Computer Network - FLSM & VLSM
  • Computer Network - Line Configuration
  • Transmission Computer Network - Modes
  • Computer Network - Data Link Layer
  • Computer Network - Physical Layer
  • Computer Network - Network Layer
  • Computer Network - Session Layer
  • Computer Network - Transport Layer
  • Computer Network - Application Layer
  • Computer Network - Presentation Layer
  • Computer Network - Coaxial Cable
  • Computer Network - Optical Fiber
  • Computer Network - Unguided Transmission Media
  • Computer Network - Virtual LAN (VLAN)
  • Computer Network - VSAN
  • Computer Network - Multiple Access Protocol
  • Computer Network - Random Access methods
  • Computer Network - Aloha Network
  • Computer Network - CSMA
  • Computer Network - FDMA & TDMA
  • Computer Network - CDMA
  • Computer Network - Ethernet Technology
  • Computer Network - Types of Network Topology
  • Computer Network - Data Transmission
  • Computer Network - Switching Techniques
  • Computer Network - Transmission Impairment
  • Computer Network - Synchronous & Asynchronous Transmission
  • Computer Network - Intent-Based Networking
  • Computer Network - Software-Defined Networking
  • Computer Network - Wireless Personal Area Network
  • Computer Network - Wireless Wide Area Network
  • Computer Network - P2P File Sharing
  • Computer Network - Packet Switching
  • Computer Network - PGP - Authentication & Confidentiality
  • Computer Network - PGP - Encryption & Compression
  • Computer Network - Phishing Attacks
  • Computer Network - ICMP Ping
  • Computer Network - Pipelining in Packet Switching
  • Computer Network - Plaintext Vs. Cleartext Encryption
  • Computer Network - Platform as a Service (PaaS)
  • Computer Network - GPRS Architecture
  • Computer Network - Identify & Prevent Phishing & Pharming
  • Computer Network - Change MAC Address
  • Computer Network - Network Administrator Vs. Network Engineer

Difference B/W Articles

  • Computer Network - Phishing & Pharming
  • Computer Network - Ping Vs. Traceroute
  • Computer Network - Network Vs. System Administrator
  • Computer Network - Network & Application Layer Protocols
  • Computer Network - Network Security Vs. Network Administration
  • Computer Network - Network Vs. Internet
  • Computer Network - PDH Vs. SDH
  • Computer Network - PCI Vs. PCI express
  • Computer Network - PCI-E Vs. PCI-X
  • Computer Network - OT Vs. IT Networks

Computer Network Practice

  • Computer Network - MCQs
  • Computer Network - Aptitude Questions

Home » Computer Network

Presentation Layer: What It Is, Design Issues, Functionalities

Description and Functions of Presentation Layer in the OSI model: In this tutorial, we are going to learn what the Presentation layer is and the Functions of the Presentation Layer in the OSI model in Computer Networking. We will also discuss the Design issues with the Presentation Layer and the working of the Presentation Layer with the help of its diagram. By Monika Jha Last updated : May 05, 2023

What is Presentation Layer?

The Presentation Layer is concerned with the syntax and semantics of the information exchanged between two communicating devices.

  • The presentation layer takes care that the data is sent in that way the receiver of the data will understand the information (data) and will be able to use the data.
  • Languages that are syntax can be different from the two communicating machines. In this condition, the presentation layer plays the role of translator between them.
  • It is possible for two machines to communicate with different data representations, data structures to be exchanged can be defined in an abstract way.
  • These abstract data structures will be managed by the presentation layer and this layer allows higher-level data structures (For example banking records), to be defined and exchanged.

This figure shows the relationship of the presentation layer to the session layer and application layer.

presentation layer

Design Issues with Presentation Layer

The following are the design issues with presentation layer:

  • To manage and maintain the Syntax and Semantics of the information transmitted.
  • Encoding data in a standard agreed-upon way just like a string, double, date, etc.
  • It Performs Standard Encoding scheme on the wire.

Functionalities of the Presentation Layer

Specific functionalities of the presentation layer are as follows:

1. Translation

  • The processes or running programs in two machines are usually exchanging the information in the form of numbers, character strings and so on before being transmitted. The information should be changed to bitstreams because different computers use different encoding schemes.
  • The Presentation layer is responsible for compatibility between these encoding methods.
  • The Presentation layer at the sender's side changes the information from its sender dependent format.
  • The Presentation layer at the receiving machine changes the common format into its receivers dependent format.

Example: Convert ASCII code to EBCDIC code.

2. Encryption

  • The system must be able to assure privacy regarding the message or information as it also carries sensitive information.
  • Encryption means that the sender transforms the original information or message to another form, this data after encryption is known as the ciphertext and this ciphertext sends the resulting message out over the network.
  • Decryption concerned with the transform of the message back to its original form. This decrypted data is known as plain text.

3. Compression

  • Data Compression means reduces the number of bits to be transmitted by this reduce the bandwidth of the data.
  • Data Compression becomes particularly important in the transmission of multimedia such as audio, video, text, etc.

Related Tutorials

  • IPV4 Addressing | Classful and Classless Addressing
  • Subnetting and Supernetting in Computer Network
  • Network Address Translation (NAT) in Computer Network
  • Fixed Length and Variable Length Subnet Mask (FLSM & VLSM)
  • Line Configuration in Computer Network
  • Transmission Modes in Computer Network
  • Data Link Layer: What It Is, Sublayers, Design Issues, Functions
  • Physical Layer: What It Is, Design Issues, Functions
  • Network Layer: What It Is, Design Issues, Responsibilities
  • Session Layer: What It Is, Design Issues, Functionalities
  • Transport Layer: What It Is, Design Issues, Functions, and Example
  • Optical Fiber (Fiber Optics) in Computer Network
  • Unguided Transmission Media in Computer Network
  • Virtual LAN (VLAN) in Computer Network
  • Virtual Storage Area Networking (VSAN)

Comments and Discussions!

Load comments ↻

  • Marketing MCQs
  • Blockchain MCQs
  • Artificial Intelligence MCQs
  • Data Analytics & Visualization MCQs
  • Python MCQs
  • C++ Programs
  • Python Programs
  • Java Programs
  • D.S. Programs
  • Golang Programs
  • C# Programs
  • JavaScript Examples
  • jQuery Examples
  • CSS Examples
  • C++ Tutorial
  • Python Tutorial
  • ML/AI Tutorial
  • MIS Tutorial
  • Software Engineering Tutorial
  • Scala Tutorial
  • Privacy policy
  • Certificates
  • Content Writers of the Month

Copyright © 2024 www.includehelp.com. All rights reserved.

  • Engineering Mathematics
  • Discrete Mathematics
  • Operating System
  • Computer Networks
  • Digital Logic and Design
  • C Programming
  • Data Structures
  • Theory of Computation
  • Compiler Design
  • Computer Org and Architecture

What is OSI Model? – Layers of OSI Model

OSI stands for Open Systems Interconnection , where open stands to say non-proprietary. It is a 7-layer architecture with each layer having specific functionality to perform. All these 7 layers work collaboratively to transmit the data from one person to another across the globe. The OSI reference model was developed by ISO – ‘International Organization for Standardization ‘, in the year 1984.

The OSI model provides a theoretical foundation for understanding network communication . However, it is usually not directly implemented in its entirety in real-world networking hardware or software . Instead, specific protocols and technologies are often designed based on the principles outlined in the OSI model to facilitate efficient data transmission and networking operations

What is OSI Model?

  • What are the 7 layers of the OSI Model?

Physical Layer – Layer 1

Data link layer (dll) – layer 2, network layer – layer 3, transport layer – layer 4, session layer – layer 5, presentation layer – layer 6, application layer – layer 7.

  • What is the Flow of Data in OSI Model?

Advantages of OSI Model

  • OSI Model in a Nutshell

OSI vs TCP/IP Model

The OSI model, created in 1984 by ISO , is a reference framework that explains the process of transmitting data between computers. It is divided into seven layers that work together to carry out specialised network functions , allowing for a more systematic approach to networking.

OSI-Model

For those preparing for competitive exams like GATE, a strong understanding of networking concepts, including the OSI model, is crucial. To deepen your knowledge in this area and other key computer science topics, consider enrolling in the GATE CS Self-Paced course . This course offers comprehensive coverage of the syllabus, helping you build a solid foundation for your exam preparation.

Data Flow In OSI Model

When we transfer information from one device to another, it travels through 7 layers of OSI model. First data travels down through 7 layers from the sender’s end and then climbs back 7 layers on the receiver’s end.

Data flows through the OSI model in a step-by-step process:

  • Application Layer: Applications create the data.
  • Presentation Layer: Data is formatted and encrypted.
  • Session Layer: Connections are established and managed.
  • Transport Layer: Data is broken into segments for reliable delivery.
  • Network Layer : Segments are packaged into packets and routed.
  • Data Link Layer: Packets are framed and sent to the next device.
  • Physical Layer: Frames are converted into bits and transmitted physically.

Each layer adds specific information to ensure the data reaches its destination correctly, and these steps are reversed upon arrival.

Data Flow in OSI model

Let’s look at it with an Example:

Luffy sends an e-mail to his friend Zoro.

Step 1: Luffy interacts with e-mail application like Gmail , outlook , etc. Writes his email to send. (This happens in Layer 7: Application layer )

Step 2: Mail application prepares for data transmission like encrypting data and formatting it for transmission. (This happens in Layer 6: Presentation Layer )

Step 3: There is a connection established between the sender and receiver on the internet. (This happens in Layer 5: Session Layer )

Step 4: Email data is broken into smaller segments. It adds sequence number and error-checking information to maintain the reliability of the information. (This happens in Layer 4: Transport Layer )

Step 5: Addressing of packets is done in order to find the best route for transfer. (This happens in Layer 3: Network Layer )

Step 6: Data packets are encapsulated into frames, then MAC address is added for local devices and then it checks for error using error detection. (This happens in Layer 2: Data Link Layer )

Step 7: Lastly Frames are transmitted in the form of electrical/ optical signals over a physical network medium like ethernet cable or WiFi.

After the email reaches the receiver i.e. Zoro, the process will reverse and decrypt the e-mail content. At last, the email will be shown on Zoro’s email client.

What Are The 7 Layers of The OSI Model?

The OSI model consists of seven abstraction layers arranged in a top-down order:

  • Physical Layer
  • Data Link Layer
  • Network Layer
  • Transport Layer
  • Session Layer
  • Presentation Layer
  • Application Layer

The lowest layer of the OSI reference model is the physical layer. It is responsible for the actual physical connection between the devices. The physical layer contains information in the form of bits. It is responsible for transmitting individual bits from one node to the next. When receiving data, this layer will get the signal received and convert it into 0s and 1s and send them to the Data Link layer, which will put the frame back together.

Data Bits in the Physical Layer

Functions of the Physical Layer

  • Bit Synchronization: The physical layer provides the synchronization of the bits by providing a clock. This clock controls both sender and receiver thus providing synchronization at the bit level.
  • Bit Rate Control: The Physical layer also defines the transmission rate i.e. the number of bits sent per second.
  • Physical Topologies: Physical layer specifies how the different, devices/nodes are arranged in a network i.e. bus, star, or mesh topology.
  • Transmission Mode: Physical layer also defines how the data flows between the two connected devices. The various transmission modes possible are Simplex, half-duplex and full-duplex.
Note: Hub, Repeater, Modem, and Cables are Physical Layer devices. Network Layer, Data Link Layer, and Physical Layer are also known as Lower Layers or Hardware Layers .

The data link layer is responsible for the node-to-node delivery of the message. The main function of this layer is to make sure data transfer is error-free from one node to another, over the physical layer. When a packet arrives in a network, it is the responsibility of the DLL to transmit it to the Host using its MAC address . The Data Link Layer is divided into two sublayers:

  • Logical Link Control (LLC)
  • Media Access Control (MAC)

The packet received from the Network layer is further divided into frames depending on the frame size of the NIC(Network Interface Card). DLL also encapsulates Sender and Receiver’s MAC address in the header.

The Receiver’s MAC address is obtained by placing an ARP(Address Resolution Protocol) request onto the wire asking “Who has that IP address?” and the destination host will reply with its MAC address.

Functions of the Data Link Layer

  • Framing: Framing is a function of the data link layer. It provides a way for a sender to transmit a set of bits that are meaningful to the receiver. This can be accomplished by attaching special bit patterns to the beginning and end of the frame.
  • Physical Addressing: After creating frames, the Data link layer adds physical addresses ( MAC addresses ) of the sender and/or receiver in the header of each frame.
  • Error Control: The data link layer provides the mechanism of error control in which it detects and retransmits damaged or lost frames.
  • Flow Control: The data rate must be constant on both sides else the data may get corrupted thus, flow control coordinates the amount of data that can be sent before receiving an acknowledgment.
  • Access Control: When a single communication channel is shared by multiple devices, the MAC sub-layer of the data link layer helps to determine which device has control over the channel at a given time.

Function of DLL

Note: Packet in the Data Link layer is referred to as Frame. Data Link layer is handled by the NIC (Network Interface Card) and device drivers of host machines. Switch & Bridge are Data Link Layer devices.

The network layer works for the transmission of data from one host to the other located in different networks. It also takes care of packet routing i.e. selection of the shortest path to transmit the packet, from the number of routes available. The sender & receiver’s IP address es are placed in the header by the network layer.

Functions of the Network Layer

  • Routing: The network layer protocols determine which route is suitable from source to destination. This function of the network layer is known as routing.
  • Logical Addressing: To identify each device inter-network uniquely, the network layer defines an addressing scheme. The sender & receiver’s IP addresses are placed in the header by the network layer. Such an address distinguishes each device uniquely and universally.
Note: Segment in the Network layer is referred to as Packet . Network layer is implemented by networking devices such as routers and switches.

The transport layer provides services to the application layer and takes services from the network layer. The data in the transport layer is referred to as Segments . It is responsible for the end-to-end delivery of the complete message. The transport layer also provides the acknowledgment of the successful data transmission and re-transmits the data if an error is found.

At the sender’s side: The transport layer receives the formatted data from the upper layers, performs Segmentation , and also implements Flow and error control to ensure proper data transmission. It also adds Source and Destination port number s in its header and forwards the segmented data to the Network Layer.

Note: The sender needs to know the port number associated with the receiver’s application. Generally, this destination port number is configured, either by default or manually. For example, when a web application requests a web server, it typically uses port number 80, because this is the default port assigned to web applications. Many applications have default ports assigned.

At the receiver’s side: Transport Layer reads the port number from its header and forwards the Data which it has received to the respective application. It also performs sequencing and reassembling of the segmented data.

Functions of the Transport Layer

  • Segmentation and Reassembly: This layer accepts the message from the (session) layer, and breaks the message into smaller units. Each of the segments produced has a header associated with it. The transport layer at the destination station reassembles the message.
  • Service Point Addressing: To deliver the message to the correct process, the transport layer header includes a type of address called service point address or port address. Thus by specifying this address, the transport layer makes sure that the message is delivered to the correct process.

Services Provided by Transport Layer

  • Connection-Oriented Service
  • Connectionless Service

1. Connection-Oriented Service: It is a three-phase process that includes:

  • Connection Establishment
  • Data Transfer
  • Termination/disconnection

In this type of transmission, the receiving device sends an acknowledgment, back to the source after a packet or group of packets is received. This type of transmission is reliable and secure.

2. Connectionless service: It is a one-phase process and includes Data Transfer. In this type of transmission, the receiver does not acknowledge receipt of a packet. This approach allows for much faster communication between devices. Connection-oriented service is more reliable than connectionless Service.

Note: Data in the Transport Layer is called Segments . Transport layer is operated by the Operating System. It is a part of the OS and communicates with the Application Layer by making system calls. The transport layer is called as Heart of the OSI model. Device or Protocol Use : TCP, UDP  NetBIOS, PPTP

This layer is responsible for the establishment of connection, maintenance of sessions, and authentication, and also ensures security.

Functions of the Session Layer

  • Session Establishment, Maintenance, and Termination: The layer allows the two processes to establish, use, and terminate a connection.
  • Synchronization: This layer allows a process to add checkpoints that are considered synchronization points in the data. These synchronization points help to identify the error so that the data is re-synchronized properly, and ends of the messages are not cut prematurely and data loss is avoided.
  • Dialog Controller: The session layer allows two systems to start communication with each other in half-duplex or full-duplex.
Note: All the below 3 layers(including Session Layer) are integrated as a single layer in the TCP/IP model as the “Application Layer”. Implementation of these 3 layers is done by the network application itself. These are also known as Upper Layers or Software Layers. Device or Protocol Use : NetBIOS, PPTP.

Let us consider a scenario where a user wants to send a message through some Messenger application running in their browser. The “ Messenger ” here acts as the application layer which provides the user with an interface to create the data. This message or so-called Data is compressed, optionally encrypted (if the data is sensitive), and converted into bits (0’s and 1’s) so that it can be transmitted.

Communication in Session Layer

Communication in Session Layer

The presentation layer is also called the Translation layer . The data from the application layer is extracted here and manipulated as per the required format to transmit over the network.

Functions of the Presentation Layer

  • Translation: For example, ASCII to EBCDIC .
  • Encryption/ Decryption: Data encryption translates the data into another form or code. The encrypted data is known as the ciphertext and the decrypted data is known as plain text. A key value is used for encrypting as well as decrypting data.
  • Compression: Reduces the number of bits that need to be transmitted on the network.

Note: Device or Protocol Use: JPEG, MPEG, GIF.

At the very top of the OSI Reference Model stack of layers, we find the Application layer which is implemented by the network applications. These applications produce the data to be transferred over the network. This layer also serves as a window for the application services to access the network and for displaying the received information to the user.

Example : Application – Browsers, Skype Messenger, etc.

Note: The application Layer is also called Desktop Layer. Device or Protocol Use : SMTP .

Functions of the Application Layer

The main functions of the application layer are given below.

  • Network Virtual Terminal(NVT): It allows a user to log on to a remote host.
  • File Transfer Access and Management(FTAM): This application allows a user to access files in a remote host, retrieve files in a remote host, and manage or control files from a remote computer.
  • Mail Services: Provide email service.
  • Directory Services: This application provides distributed database sources and access for global information about various objects and services.
Note: The OSI model acts as a reference model and is not implemented on the Internet because of its late invention. The current model being used is the TCP/IP model.

OSI Model – Layer Architecture

7 Helps in identifying the client and synchronizing communication. Message
6 Data from the application layer is extracted and manipulated in the required format for transmission. Message , ,
5 Establishes Connection, Maintenance, Ensures Authentication and Ensures security. Message (or encrypted message)
4 Take Service from Network Layer and provide it to the Application Layer. Segment
3 Transmission of data from one host to another, located in different networks. Packet
2 Node to Node Delivery of Message. Frame ,
1 Establishing Physical Connections between Devices. Bits , , , Cables

TCP/IP protocol ( Transfer Control Protocol/Internet Protocol ) was created by U.S. Department of Defense’s Advanced Research Projects Agency (ARPA) in 1970s.

Some key differences between the OSI model and the TCP/IP Model are:

  • TCP/IP model consists of 4 layers but OSI model has 7 layers. Layers 5,6,7 of the OSI model are combined into the Application Layer of TCP/IP model and OSI layers 1 and 2 are combined into Network Access Layers of TCP/IP protocol.
  • The TCP/IP model is older than the OSI model, hence it is a foundational protocol that defines how should data be transferred online.
  • Compared to the OSI model, the TCP/IP model has less strict layer boundaries.
  • All layers of the TCP/IP model are needed for data transmission but in the OSI model, some applications can skip certain layers. Only layers 1,2 and 3 of the OSI model are necessary for data transmission.

OSI-vs-TCP/IP

OSI vs TCP/IP

Why Does The OSI Model Matter?

Even though the modern Internet doesn’t strictly use the OSI Model (it uses a simpler Internet protocol suite), the OSI Model is still very helpful for solving network problems. Whether it’s one person having trouble getting their laptop online, or a website being down for thousands of users, the OSI Model helps to identify the problem. If you can narrow down the issue to one specific layer of the model, you can avoid a lot of unnecessary work.

Imperva Application Security

Imperva security solutions protect your applications at different levels of the OSI model. They use DDoS mitigation to secure the network layer and provide web application firewall (WAF), bot management, and API security to protect the application layer.

To secure applications and networks across the OSI stack, Imperva offers multi-layered protection to ensure websites and applications are always available, accessible, and safe. The Imperva application security solution includes:

  • DDoS Mitigation: Protects the network layer from Distributed Denial of Service attacks.
  • Web Application Firewall (WAF) : Shields the application layer from threats.
  • Bot Management: Prevents malicious bots from affecting the application.
  • API Security: Secures APIs from various vulnerabilities and attacks.

The OSI Model defines the communication of a computing system into 7 different layers. Its advantages include:

  • It divides network communication into 7 layers which makes it easier to understand and troubleshoot.
  • It standardizes network communications, as each layer has fixed functions and protocols.
  • Diagnosing network problems is easier with the OSI model .
  • It is easier to improve with advancements as each layer can get updates separately.

Disadvantages of OSI Model

  • Complexity: The OSI Model has seven layers, which can be complicated and hard to understand for beginners.
  • Not Practical: In real-life networking, most systems use a simpler model called the Internet protocol suite (TCP/IP), so the OSI Model isn’t always directly applicable.
  • Slow Adoption: When it was introduced, the OSI Model was not quickly adopted by the industry, which preferred the simpler and already-established TCP/IP model.
  • Overhead: Each layer in the OSI Model adds its own set of rules and operations, which can make the process more time-consuming and less efficient.
  • Theoretical: The OSI Model is more of a theoretical framework, meaning it’s great for understanding concepts but not always practical for implementation.

In conclusion, the OSI (Open Systems Interconnection) model is a conceptual framework that standardizes the functions of a telecommunication or computing system into seven distinct layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application. Each layer has specific responsibilities and interacts with the layers directly above and below it, ensuring seamless communication and data exchange across diverse network environments. Understanding the OSI model helps in troubleshooting network issues, designing robust network architectures, and facilitating interoperability between different networking products and technologies.

Frequently Asked Questions on OSI Model – FAQs

Is osi layer still used.

Yes, the OSI model is still used by networking professionals to understand data abstraction paths and processes better.

What is the highest layer of the OSI model?

Layer 7 or Application layer is highest layer of OSI model.

What is layer 8?

Layer 8 doesn’t actually exist in the OSI model but is often jokingly used to refer to the end user. For example: a layer 8 error would be a user error.

Similar Reads

Please login to comment....

  • Best Smartwatches in 2024: Top Picks for Every Need
  • Top Budgeting Apps in 2024
  • 10 Best Parental Control App in 2024
  • Top Language Learning Apps in 2024
  • GeeksforGeeks Practice - Leading Online Coding Platform

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

  • Get One: Storm Tracker Apps
  • Big Deal Days: Surface Pro 9 $1097

The Layers of the OSI Model Illustrated

Each layer explained

  • Massachusetts Institute of Technology
  • University of Illinois

presentation layer in osi model example

  • The Wireless Connection
  • Routers & Firewalls
  • Network Hubs
  • Installing & Upgrading
  • Wi-Fi & Wireless

The Open Systems Interconnection (OSI) model defines a networking framework to implement protocols in layers, with control passed from one layer to the next. It is primarily used today as a teaching tool. It conceptually divides computer network architecture into 7 layers in a logical progression.

The lower layers deal with electrical signals, chunks of binary data , and routing of these data across networks. Higher levels cover network requests and responses, representation of data, and network protocols, as seen from a user's point of view. 

The OSI model was originally conceived as a standard architecture for building network systems, and many popular network technologies today reflect the layered design of OSI.

Physical Layer

At Layer 1, the Physical layer of the OSI model is responsible for the ultimate transmission of digital data bits from the Physical layer of the sending (source) device over network communications media to the Physical layer of the receiving (destination) device.

Examples of layer 1 technologies include  Ethernet cables  and  hubs . Also, hubs and other repeaters  are standard network devices that function at the Physical layer, as are cable connectors.

At the Physical layer, data is transmitted using the type of signaling supported by the physical medium: electric voltages, radio frequencies, or pulses of infrared or ordinary light.

Data Link Layer

When obtaining data from the Physical layer, the Data Link layer checks for physical transmission errors and packages bits into data frames. The Data Link layer also manages physical addressing schemes such as MAC addresses for Ethernet networks, controlling access of network devices to the physical medium.

Because the Data Link layer is the most complex layer in the OSI model, it is often divided into two parts: the Media Access Control sub-layer and the Logical Link Control sub-layer.

Network Layer

The Network layer adds the concept of routing above the Data Link layer. When data arrives at the Network layer, the source and destination addresses contained inside each frame are examined to determine if the data has reached its final destination. If the data has reached the final destination, layer 3 formats the data into packets delivered to the Transport layer. Otherwise, the Network layer updates the destination address and pushes the frame down to the lower layers.

To support routing, the Network layer maintains logical addresses such as IP addresses  for devices on the network. The Network layer also manages the mapping between these logical addresses and physical addresses. In IPv4 networking, this mapping is accomplished through the Address Resolution Protocol (ARP); IPv6 uses Neighbor Discovery Protocol (NDP).

Transport Layer

The Transport Layer delivers data across network connections. TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are the most common examples of Transport Layer 4 network protocols.  Different transport protocols may support a range of optional capabilities, including error recovery, flow control, and support for re-transmission.

Session Layer

The Session Layer manages the sequence and flow of events that initiate and tear down network connections. At layer 5, it is built to support multiple types of connections that can be created dynamically and run over individual networks.

Presentation Layer

The Presentation layer has the simplest function of any piece of the OSI model. At layer 6, it handles syntax processing of message data such as format conversions and encryption/decryption needed to support the Application layer above it.

Application Layer

The Application layer supplies network services to end-user applications. Network services are protocols that work with the user's data. For example, in a web browser application, the Application layer protocol HTTP packages the data needed to send and receive web page content. This layer 7 provides data to (and obtains data from) the Presentation layer.

Get the Latest Tech News Delivered Every Day

  • OSI Model Reference Guide
  • MAC Addresses With Formatting Examples
  • Here's Why Your Network Might Need a Layer 3 Switch
  • Learn the Meaning of a Network Gateway
  • Use a Bridge to Expand Your Local Network
  • NetBIOS: What It Is and How It Works
  • What Is a Virtual LAN (VLAN)?
  • What Is a Switch?
  • What Is a Router and How Does It Work?
  • List of TCP Ports and UDP Ports (Well-Known)
  • How Do I Connect My Wireless Printer After Changing the Router?
  • How to Set Up a VPN on Mac
  • Introduction to Client Server Networks
  • Guide to a Network Lag Switch
  • What Is the 127.0.0.1 IP Address?
  • The Most Popular TCP and UDP Port Numbers

OSI Presentation and Application Layers

Cite this chapter.

presentation layer in osi model example

  • Paul D. Bartoli 3  

Part of the book series: Applications of Communications Theory ((ACTH))

259 Accesses

This chapter discusses the Application and Presentation Layers of the Reference Model of Open Systems Interconnection (OSI) [1]. The Application and Presentation Layers perform functions necessary to exchange information between application processes; the Application Layer is concerned with the semantic aspects of the information exchange, while the Presentation Layer is concerned with the syntactic aspects. The ability to manage the semantic and syntactic elements of the information to be exchanged is key to ensuring that the information can be interpreted by the communicants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Unable to display preview.  Download preview PDF.

Similar content being viewed by others

presentation layer in osi model example

Information-Centric Networks (ICN)

presentation layer in osi model example

Communication Issues in the Internet of Things (IoT)

presentation layer in osi model example

The Internet in IoT—OSI, TCP/IP, IPv4, IPv6 and Internet Routing

ISO 7498, “Information processing systems—Open Systems Interconnection—Basic Reference Model,” 1984. CCITT Recommendation X.200, “Reference model of open systems interconnection for CCITT applications,” 1984 (updated expected in 1988).

Google Scholar  

ISO DIS 9545, “Information processing systems—Open Systems Interconnection—Application Layer structure,” September 1988.

ISO TR 9007, “Concepts and terminology for the conceptual schema and the information base,” 1985.

ISO 8649, “Information processing systems—Open systems interconnection—Service definition for the association control service element,” 1988. ISO 8650, “Information processing systems—Open systems interconnection—Protocol specification for the association control service element,” 1988. CCITT Recommendation X.217, “Association control service definition for open systems interconnection for CCITT applications,” 1988. CCITT Recommendation X.227, “Association control protocol specification for open systems interconnection for CCITT applications,” final text December, 1987.

ISO 8571, “Information processing systems—Open systems interconnection—File transfer, access, and management,” Parts 1–4, 1988.

ISO/DIS 9804, “Information processing systems”Open systems interconnection—Service definition for commitment, concurrency, and recovery,” 1988 (text in SC 21 N 2573, March, 1988). ISO DIS 9805, “Information processing systems—Open systems interconnection—Protocol specification for commitment, concurrency, and recovery,” 1988 (text in SC 21 N 2574, March, 1988). CCITT Recommendation X.237, “Commitment, concurrency, and recovery service definition,” Draft Text, 1988. CCITT Recommendation X.247, “Commitment, concurrency, and recovery protocol specification, Draft Text, 1988.

ISO DIS 9040, “Information processing systems—Open systems interconnection—Virtual terminal service—Basic class,” 1988 (text in SC 21 N 2615, March, 1988). ISO DIS 9041, “Information processing systems—Open systems interconnection—Virtual terminal protocol—Basic class,” 1988 (text in SC 21 N 2616, March, 1988).

ISO DIS 9066–1, “Reliable transfer service”, 1988 (text in SC 18 N 1408, March, 1988). ISO DIS 9066–2, “Reliable transfer protocol specification,” 1988 (text in SC 18 N 1409). CCITT Recommendation X.218, “Reliable transfer: Model and service definition,” 1988. CCITT Recommendation X.228, “Reliable transfer: Protocol specification,” 1988.

ISO DIS 9072–1, “Remote operations service,” 1988 (text in SC 18 N 1410, March, 1988). ISO DIS 9072–2, “Remote operations protocol specification,” 1988 (text in SC 18 N 1411, March, 1988). CCITT Recommendation X.219, “Remote operations: Model, notation, and service definition,” 1988. CCITT Recommendation X.229, “Remote operations: Protocol specification,” 1988.

ISO DIS 9594, “Information processing—Open systems interconnection—The directory,” parts 1–8, 1988 (text in SC 21 N 2751 through N 2758, April, 1988). CCITT X.500, “Series recommendations on directory,” November, 1987.

ISO DIS 10021, “Information processing—Text communication—Message oriented text interchange system,” 1988 (text in SC 18 N 1487 through N 1493, May, 1988). CCITT X.400, “Series recommendations for message handling systems,” 1988.

ISO 8613/1–8, “Office document architecture and interchange format,” 1988, awaiting publication. CCITT T.400, “Series recommendations for document architecture, transfer, and manipulation,” 1988.

ISO 8824, “Information processing systems—Open systems interconnection—Specification of abstract syntax notation one (ASN.1),” 1987; and ISO 8824/PDAD 1, “Information processing systems—Open systems interconnection—Specification for ASN.1: Proposed draft Addendum 1 on ASN.1 extensions,” 1988 (final text in SC 21 N 2341 Revised, April, 1988). CCITT Recommendation X.208, “Specification of abstract syntax notation one (ASN.1),” 1988.

ISO 8822, “Information processing systems—Open systems interconnection—Connection oriented presentation service definition,” 1988. CCITT Recommendation X.216, “Presentation service definition for open systems interconnection for CCITT applications,” 1988.

ISO 8825, “Information processing—Open systems interconnection—Specification of basic encoding rules for abstract syntax notation one (ASN.1),” 1987; and ISO 8825/ PDAD 1, “Information processing systems—Open systems interconnection—Specification of basic encoding rules for ASN.1: Proposed draft addendum 1 on ASN.1 extensions,” 1988 (text in SC 21 N 2342 Revised, April, 1988). CCITT Recommendation X.209, “Specification of basic encoding rules for abstract syntax notation one (ASN.1),” 1988.

ISO 8823, “Information processing systems—Open systems interconnection—Connection oriented presentation protocol specification,” 1988. CCITT Recommendation X.226, “Presentation protocol specification for open systems interconnection for CCITT applications,” 1988.

ISO 8326, “Information processing systems—Open systems interconnection—Basic connection oriented session service definition,” 1987; and ISO 8326/AD 2, “Information processing systems—Open systems interconnection—Basic connection oriented session service definition—Addendum 2: Incorporation of unlimited user data,” 1988. ISO 8327, “Information processing systems—Open systems interconnection—Basic connection oriented session protocol specification,” 1987; and ISO 8327/AD 2, “Information processing systems—Open systems interconnection—Basic connection oriented session protocol specification—Addendum 2: Unlimited session user data protocol specification,” 1988.

CCITT Recommendation X.215, “Session service definition for open systems interconnection for CCITT applications,” 1988. CCITT Recommendation X.225, “Session protocol specification for open systems interconnection for CCITT applications,” 1988.

Download references

Author information

Authors and affiliations.

AT&T Bell Laboratories, 07733, Holmdel, New Jersey, USA

Paul D. Bartoli

You can also search for this author in PubMed   Google Scholar

Editor information

Editors and affiliations.

Unisys West Coast Research Center, Santa Monica, 90406, California, USA

Carl A. Sunshine

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Bartoli, P.D. (1989). OSI Presentation and Application Layers. In: Sunshine, C.A. (eds) Computer Network Architectures and Protocols. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0809-6_13

Download citation

DOI : https://doi.org/10.1007/978-1-4613-0809-6_13

Publisher Name : Springer, Boston, MA

Print ISBN : 978-1-4612-8093-4

Online ISBN : 978-1-4613-0809-6

eBook Packages : Springer Book Archive

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. What is OSI Model Explained! [With Examples & Layers]

    presentation layer in osi model example

  2. Presentation Layer in OSI Model

    presentation layer in osi model example

  3. Presentation Layer

    presentation layer in osi model example

  4. The OSI Model Layers from Physical to Application

    presentation layer in osi model example

  5. Presentation Layer of OSI Model (Layer-6)

    presentation layer in osi model example

  6. Presentation Layer in OSI Model

    presentation layer in osi model example

VIDEO

  1. OSI model

  2. The Open Systems Interconnection (OSI) model

  3. Presentation Layer

  4. OSI Model

  5. Lec- 7 Application Layer

  6. Design issues of presentation layer

COMMENTS

  1. Presentation Layer in OSI model

    Prerequisite : OSI Model. Introduction : Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model. This layer is also known as Translation layer, as this layer serves as a data translator for the network. The data which this layer receives from the Application Layer is extracted and manipulated here as per the required ...

  2. Presentation Layer

    OSI Layer 6 - Presentation Layer. The presentation layer is responsible for the delivery and formatting of information to the application layer for further processing or display. It relieves the application layer of concern regarding syntactical differences in data representation within the end-user systems. An example of a presentation service ...

  3. Presentation Layer in OSI Model: Functions ...

    What is Presentation Layer. Definition: Presentation layer is 6th layer in the OSI model, and its main objective is to present all messages to upper layer as a standardized format.It is also known as the "Translation layer". This layer takes care of syntax and semantics of messages exchanged in between two communication systems.

  4. OSI Seven Layers Model Explained with Examples

    The Top layer of the OSI model is the application layer. It provides the protocols and services that are required by the network-aware applications to connect to the network. FTP, TFTP, POP3, SMTP, and HTTP are examples of standards and protocols used in this layer.

  5. Presentation layer

    In the seven-layer OSI model of computer networking, the presentation layer is layer 6 and serves as the data translator for the network. [2] [3] [4] ... In many widely used applications and protocols no distinction is actually made between the presentation and application layers. For example, ...

  6. Presentation layer and Session layer of the OSI model

    The presentation layer is the sixth layer of the OSI Reference model. It defines how data and information is transmitted and presented to the user. It translates data and format code in such a way that it is correctly used by the application layer. It identifies the syntaxes that different applications use and formats data using those syntaxes.

  7. The 7 Layers Of The OSI Model Explained With Examples

    The model was made to break down each functional layer so that overall design complexity could be lessened. The model was constructed with seven layers for the flow of information. These are: Application Layer. Presentation layer. Session layer. Transport layer. Network layer. Data link layer.

  8. A Guide to the Presentation Layer

    If not for the presentation layer, the data would be sent as datagrams or data packets between hosts. This layer ensures a successful file transfer. In computer networking, the OSI model layer 6 is sometimes referred to as the syntax layer because it maintains the proper syntax of transferred data. This layer also deals with the semantics of ...

  9. Presentation Layer in OSI Model

    The Presentation Layer is a crucial component of the OSI model, responsible for ensuring that data exchanged between systems is in a format that can be understood and used. By performing functions such as data translation, formatting, compression, and encryption, the Presentation Layer plays a vital role in maintaining data integrity ...

  10. Presentation Layer of OSI Reference Model

    Presentation Layer - OSI Reference Model. The primary goal of this layer is to take care of the syntax and semantics of the information exchanged between two communicating systems. Presentation layer takes care that the data is sent in such a way that the receiver will understand the information (data) and will be able to use the data.

  11. Presentation Layer

    Layer 6 OSI Model. An example of a program that loosely adheres to layer 6 of OSI is the tool that manages the Hypertext Transfer Protocol (HTTP) — although it's technically considered an application-layer protocol per the TCP/IP model. However, HTTP includes presentation layer services within it.

  12. What is presentation layer?

    The presentation layer resides at Layer 6 of the Open Systems Interconnection (OSI) communications model and ensures that communications that pass through it are in the appropriate form for the recipient application. In other words, the presentation layer presents the data in a readable format from an application layer perspective.

  13. Presentation Layer of the OSI Model

    Physical layer: First and lowest layer of the OSI model. It is used for data transmission and defines the physical connection between the sending and receiving devices, providing security for the ...

  14. The OSI Model's 7 Layers Explained

    Structural Differences. OSI model: Introduced as a comprehensive, protocol-independent framework, the OSI model details seven distinct layers, offering a more granular approach to network communication. TCP/IP model: Developed earlier by the U.S. Department of Defense, the TCP/IP model consists of four layers (Application, Transport, Internet ...

  15. Presentation Layer in OSI Model

    The presentation layer is the 6 th layer from the bottom in the OSI model. This layer presents the incoming data from the application layer of the sender machine to the receiver machine. It converts one format of data to another format of data if both sender and receiver understand different formats; hence this layer is also called the ...

  16. What is the OSI model? How to explain and remember its 7 layers

    The 7 layers of the OSI model. The layers (from bottom to top) are: Physical, Data Link, Network, Transport, Session, Presentation, and Application. It wasn't always this way. Conceived in the ...

  17. Presentation Layer: What It Is, Design Issues, Functionalities

    Description and Functions of Presentation Layer in the OSI model: In this tutorial, we are going to learn what the Presentation layer is and the Functions of the Presentation Layer in the OSI model in Computer Networking. ... Example: Convert ASCII code to EBCDIC code. 2. Encryption. The system must be able to assure privacy regarding the ...

  18. What is OSI Model?

    Prerequisite : OSI Model Introduction : Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model. This layer is also known as Translation layer, as this layer serves as a data translator for the network. The data which this layer receives from the Application Layer is extracted and manipulated here as per the required form

  19. The OSI Model Layers from Physical to Application

    The Open Systems Interconnection (OSI) model defines a networking framework to implement protocols in layers, with control passed from one layer to the next. It is primarily used today as a teaching tool. It conceptually divides computer network architecture into 7 layers in a logical progression. The lower layers deal with electrical signals ...

  20. Presentation Layer

    In subject area: Computer Science. The Presentation Layer in the OSI model is defined as the layer that enables interaction between different application layer implementations by translating data formats and languages to facilitate communication. AI generated definition based on: Security for Microsoft Windows System Administrators, 2011.

  21. PDF 13 OSI Presentation and Application Layers

    13. ion LayersPaul D. BartoliI. IntroductionThis chapter discusses the Application and Presentation Layers of the Reference Model. of Open Systems Interconnection (OSI) [1]. The Applica tion and Presentation Layers perform functions necessary to exchange information between application processes; the Application Layer is con cerned with the ...

  22. Presentation Layer of the OSI Model: Definition and Function

    The presentation layer is the sixth layer of the Open Systems Interconnection (OSI), model. In computer networking, the OSI model is a concept that describes the transmission of data from one computer to another. Each layer in the model is a packet of protocols, or procedures that govern data transmission, which allow the layer to execute ...