• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

empirical research quantitative

Home Market Research

Empirical Research: Definition, Methods, Types and Examples

What is Empirical Research

Content Index

Empirical research: Definition

Empirical research: origin, quantitative research methods, qualitative research methods, steps for conducting empirical research, empirical research methodology cycle, advantages of empirical research, disadvantages of empirical research, why is there a need for empirical research.

Empirical research is defined as any research where conclusions of the study is strictly drawn from concretely empirical evidence, and therefore “verifiable” evidence.

This empirical evidence can be gathered using quantitative market research and  qualitative market research  methods.

For example: A research is being conducted to find out if listening to happy music in the workplace while working may promote creativity? An experiment is conducted by using a music website survey on a set of audience who are exposed to happy music and another set who are not listening to music at all, and the subjects are then observed. The results derived from such a research will give empirical evidence if it does promote creativity or not.

LEARN ABOUT: Behavioral Research

You must have heard the quote” I will not believe it unless I see it”. This came from the ancient empiricists, a fundamental understanding that powered the emergence of medieval science during the renaissance period and laid the foundation of modern science, as we know it today. The word itself has its roots in greek. It is derived from the greek word empeirikos which means “experienced”.

In today’s world, the word empirical refers to collection of data using evidence that is collected through observation or experience or by using calibrated scientific instruments. All of the above origins have one thing in common which is dependence of observation and experiments to collect data and test them to come up with conclusions.

LEARN ABOUT: Causal Research

Types and methodologies of empirical research

Empirical research can be conducted and analysed using qualitative or quantitative methods.

  • Quantitative research : Quantitative research methods are used to gather information through numerical data. It is used to quantify opinions, behaviors or other defined variables . These are predetermined and are in a more structured format. Some of the commonly used methods are survey, longitudinal studies, polls, etc
  • Qualitative research:   Qualitative research methods are used to gather non numerical data.  It is used to find meanings, opinions, or the underlying reasons from its subjects. These methods are unstructured or semi structured. The sample size for such a research is usually small and it is a conversational type of method to provide more insight or in-depth information about the problem Some of the most popular forms of methods are focus groups, experiments, interviews, etc.

Data collected from these will need to be analysed. Empirical evidence can also be analysed either quantitatively and qualitatively. Using this, the researcher can answer empirical questions which have to be clearly defined and answerable with the findings he has got. The type of research design used will vary depending on the field in which it is going to be used. Many of them might choose to do a collective research involving quantitative and qualitative method to better answer questions which cannot be studied in a laboratory setting.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

Quantitative research methods aid in analyzing the empirical evidence gathered. By using these a researcher can find out if his hypothesis is supported or not.

  • Survey research: Survey research generally involves a large audience to collect a large amount of data. This is a quantitative method having a predetermined set of closed questions which are pretty easy to answer. Because of the simplicity of such a method, high responses are achieved. It is one of the most commonly used methods for all kinds of research in today’s world.

Previously, surveys were taken face to face only with maybe a recorder. However, with advancement in technology and for ease, new mediums such as emails , or social media have emerged.

For example: Depletion of energy resources is a growing concern and hence there is a need for awareness about renewable energy. According to recent studies, fossil fuels still account for around 80% of energy consumption in the United States. Even though there is a rise in the use of green energy every year, there are certain parameters because of which the general population is still not opting for green energy. In order to understand why, a survey can be conducted to gather opinions of the general population about green energy and the factors that influence their choice of switching to renewable energy. Such a survey can help institutions or governing bodies to promote appropriate awareness and incentive schemes to push the use of greener energy.

Learn more: Renewable Energy Survey Template Descriptive Research vs Correlational Research

  • Experimental research: In experimental research , an experiment is set up and a hypothesis is tested by creating a situation in which one of the variable is manipulated. This is also used to check cause and effect. It is tested to see what happens to the independent variable if the other one is removed or altered. The process for such a method is usually proposing a hypothesis, experimenting on it, analyzing the findings and reporting the findings to understand if it supports the theory or not.

For example: A particular product company is trying to find what is the reason for them to not be able to capture the market. So the organisation makes changes in each one of the processes like manufacturing, marketing, sales and operations. Through the experiment they understand that sales training directly impacts the market coverage for their product. If the person is trained well, then the product will have better coverage.

  • Correlational research: Correlational research is used to find relation between two set of variables . Regression analysis is generally used to predict outcomes of such a method. It can be positive, negative or neutral correlation.

LEARN ABOUT: Level of Analysis

For example: Higher educated individuals will get higher paying jobs. This means higher education enables the individual to high paying job and less education will lead to lower paying jobs.

  • Longitudinal study: Longitudinal study is used to understand the traits or behavior of a subject under observation after repeatedly testing the subject over a period of time. Data collected from such a method can be qualitative or quantitative in nature.

For example: A research to find out benefits of exercise. The target is asked to exercise everyday for a particular period of time and the results show higher endurance, stamina, and muscle growth. This supports the fact that exercise benefits an individual body.

  • Cross sectional: Cross sectional study is an observational type of method, in which a set of audience is observed at a given point in time. In this type, the set of people are chosen in a fashion which depicts similarity in all the variables except the one which is being researched. This type does not enable the researcher to establish a cause and effect relationship as it is not observed for a continuous time period. It is majorly used by healthcare sector or the retail industry.

For example: A medical study to find the prevalence of under-nutrition disorders in kids of a given population. This will involve looking at a wide range of parameters like age, ethnicity, location, incomes  and social backgrounds. If a significant number of kids coming from poor families show under-nutrition disorders, the researcher can further investigate into it. Usually a cross sectional study is followed by a longitudinal study to find out the exact reason.

  • Causal-Comparative research : This method is based on comparison. It is mainly used to find out cause-effect relationship between two variables or even multiple variables.

For example: A researcher measured the productivity of employees in a company which gave breaks to the employees during work and compared that to the employees of the company which did not give breaks at all.

LEARN ABOUT: Action Research

Some research questions need to be analysed qualitatively, as quantitative methods are not applicable there. In many cases, in-depth information is needed or a researcher may need to observe a target audience behavior, hence the results needed are in a descriptive analysis form. Qualitative research results will be descriptive rather than predictive. It enables the researcher to build or support theories for future potential quantitative research. In such a situation qualitative research methods are used to derive a conclusion to support the theory or hypothesis being studied.

LEARN ABOUT: Qualitative Interview

  • Case study: Case study method is used to find more information through carefully analyzing existing cases. It is very often used for business research or to gather empirical evidence for investigation purpose. It is a method to investigate a problem within its real life context through existing cases. The researcher has to carefully analyse making sure the parameter and variables in the existing case are the same as to the case that is being investigated. Using the findings from the case study, conclusions can be drawn regarding the topic that is being studied.

For example: A report mentioning the solution provided by a company to its client. The challenges they faced during initiation and deployment, the findings of the case and solutions they offered for the problems. Such case studies are used by most companies as it forms an empirical evidence for the company to promote in order to get more business.

  • Observational method:   Observational method is a process to observe and gather data from its target. Since it is a qualitative method it is time consuming and very personal. It can be said that observational research method is a part of ethnographic research which is also used to gather empirical evidence. This is usually a qualitative form of research, however in some cases it can be quantitative as well depending on what is being studied.

For example: setting up a research to observe a particular animal in the rain-forests of amazon. Such a research usually take a lot of time as observation has to be done for a set amount of time to study patterns or behavior of the subject. Another example used widely nowadays is to observe people shopping in a mall to figure out buying behavior of consumers.

  • One-on-one interview: Such a method is purely qualitative and one of the most widely used. The reason being it enables a researcher get precise meaningful data if the right questions are asked. It is a conversational method where in-depth data can be gathered depending on where the conversation leads.

For example: A one-on-one interview with the finance minister to gather data on financial policies of the country and its implications on the public.

  • Focus groups: Focus groups are used when a researcher wants to find answers to why, what and how questions. A small group is generally chosen for such a method and it is not necessary to interact with the group in person. A moderator is generally needed in case the group is being addressed in person. This is widely used by product companies to collect data about their brands and the product.

For example: A mobile phone manufacturer wanting to have a feedback on the dimensions of one of their models which is yet to be launched. Such studies help the company meet the demand of the customer and position their model appropriately in the market.

  • Text analysis: Text analysis method is a little new compared to the other types. Such a method is used to analyse social life by going through images or words used by the individual. In today’s world, with social media playing a major part of everyone’s life, such a method enables the research to follow the pattern that relates to his study.

For example: A lot of companies ask for feedback from the customer in detail mentioning how satisfied are they with their customer support team. Such data enables the researcher to take appropriate decisions to make their support team better.

Sometimes a combination of the methods is also needed for some questions that cannot be answered using only one type of method especially when a researcher needs to gain a complete understanding of complex subject matter.

We recently published a blog that talks about examples of qualitative data in education ; why don’t you check it out for more ideas?

Since empirical research is based on observation and capturing experiences, it is important to plan the steps to conduct the experiment and how to analyse it. This will enable the researcher to resolve problems or obstacles which can occur during the experiment.

Step #1: Define the purpose of the research

This is the step where the researcher has to answer questions like what exactly do I want to find out? What is the problem statement? Are there any issues in terms of the availability of knowledge, data, time or resources. Will this research be more beneficial than what it will cost.

Before going ahead, a researcher has to clearly define his purpose for the research and set up a plan to carry out further tasks.

Step #2 : Supporting theories and relevant literature

The researcher needs to find out if there are theories which can be linked to his research problem . He has to figure out if any theory can help him support his findings. All kind of relevant literature will help the researcher to find if there are others who have researched this before, or what are the problems faced during this research. The researcher will also have to set up assumptions and also find out if there is any history regarding his research problem

Step #3: Creation of Hypothesis and measurement

Before beginning the actual research he needs to provide himself a working hypothesis or guess what will be the probable result. Researcher has to set up variables, decide the environment for the research and find out how can he relate between the variables.

Researcher will also need to define the units of measurements, tolerable degree for errors, and find out if the measurement chosen will be acceptable by others.

Step #4: Methodology, research design and data collection

In this step, the researcher has to define a strategy for conducting his research. He has to set up experiments to collect data which will enable him to propose the hypothesis. The researcher will decide whether he will need experimental or non experimental method for conducting the research. The type of research design will vary depending on the field in which the research is being conducted. Last but not the least, the researcher will have to find out parameters that will affect the validity of the research design. Data collection will need to be done by choosing appropriate samples depending on the research question. To carry out the research, he can use one of the many sampling techniques. Once data collection is complete, researcher will have empirical data which needs to be analysed.

LEARN ABOUT: Best Data Collection Tools

Step #5: Data Analysis and result

Data analysis can be done in two ways, qualitatively and quantitatively. Researcher will need to find out what qualitative method or quantitative method will be needed or will he need a combination of both. Depending on the unit of analysis of his data, he will know if his hypothesis is supported or rejected. Analyzing this data is the most important part to support his hypothesis.

Step #6: Conclusion

A report will need to be made with the findings of the research. The researcher can give the theories and literature that support his research. He can make suggestions or recommendations for further research on his topic.

Empirical research methodology cycle

A.D. de Groot, a famous dutch psychologist and a chess expert conducted some of the most notable experiments using chess in the 1940’s. During his study, he came up with a cycle which is consistent and now widely used to conduct empirical research. It consists of 5 phases with each phase being as important as the next one. The empirical cycle captures the process of coming up with hypothesis about how certain subjects work or behave and then testing these hypothesis against empirical data in a systematic and rigorous approach. It can be said that it characterizes the deductive approach to science. Following is the empirical cycle.

  • Observation: At this phase an idea is sparked for proposing a hypothesis. During this phase empirical data is gathered using observation. For example: a particular species of flower bloom in a different color only during a specific season.
  • Induction: Inductive reasoning is then carried out to form a general conclusion from the data gathered through observation. For example: As stated above it is observed that the species of flower blooms in a different color during a specific season. A researcher may ask a question “does the temperature in the season cause the color change in the flower?” He can assume that is the case, however it is a mere conjecture and hence an experiment needs to be set up to support this hypothesis. So he tags a few set of flowers kept at a different temperature and observes if they still change the color?
  • Deduction: This phase helps the researcher to deduce a conclusion out of his experiment. This has to be based on logic and rationality to come up with specific unbiased results.For example: In the experiment, if the tagged flowers in a different temperature environment do not change the color then it can be concluded that temperature plays a role in changing the color of the bloom.
  • Testing: This phase involves the researcher to return to empirical methods to put his hypothesis to the test. The researcher now needs to make sense of his data and hence needs to use statistical analysis plans to determine the temperature and bloom color relationship. If the researcher finds out that most flowers bloom a different color when exposed to the certain temperature and the others do not when the temperature is different, he has found support to his hypothesis. Please note this not proof but just a support to his hypothesis.
  • Evaluation: This phase is generally forgotten by most but is an important one to keep gaining knowledge. During this phase the researcher puts forth the data he has collected, the support argument and his conclusion. The researcher also states the limitations for the experiment and his hypothesis and suggests tips for others to pick it up and continue a more in-depth research for others in the future. LEARN MORE: Population vs Sample

LEARN MORE: Population vs Sample

There is a reason why empirical research is one of the most widely used method. There are a few advantages associated with it. Following are a few of them.

  • It is used to authenticate traditional research through various experiments and observations.
  • This research methodology makes the research being conducted more competent and authentic.
  • It enables a researcher understand the dynamic changes that can happen and change his strategy accordingly.
  • The level of control in such a research is high so the researcher can control multiple variables.
  • It plays a vital role in increasing internal validity .

Even though empirical research makes the research more competent and authentic, it does have a few disadvantages. Following are a few of them.

  • Such a research needs patience as it can be very time consuming. The researcher has to collect data from multiple sources and the parameters involved are quite a few, which will lead to a time consuming research.
  • Most of the time, a researcher will need to conduct research at different locations or in different environments, this can lead to an expensive affair.
  • There are a few rules in which experiments can be performed and hence permissions are needed. Many a times, it is very difficult to get certain permissions to carry out different methods of this research.
  • Collection of data can be a problem sometimes, as it has to be collected from a variety of sources through different methods.

LEARN ABOUT:  Social Communication Questionnaire

Empirical research is important in today’s world because most people believe in something only that they can see, hear or experience. It is used to validate multiple hypothesis and increase human knowledge and continue doing it to keep advancing in various fields.

For example: Pharmaceutical companies use empirical research to try out a specific drug on controlled groups or random groups to study the effect and cause. This way, they prove certain theories they had proposed for the specific drug. Such research is very important as sometimes it can lead to finding a cure for a disease that has existed for many years. It is useful in science and many other fields like history, social sciences, business, etc.

LEARN ABOUT: 12 Best Tools for Researchers

With the advancement in today’s world, empirical research has become critical and a norm in many fields to support their hypothesis and gain more knowledge. The methods mentioned above are very useful for carrying out such research. However, a number of new methods will keep coming up as the nature of new investigative questions keeps getting unique or changing.

Create a single source of real data with a built-for-insights platform. Store past data, add nuggets of insights, and import research data from various sources into a CRM for insights. Build on ever-growing research with a real-time dashboard in a unified research management platform to turn insights into knowledge.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

empirical research quantitative

What Are My Employees Really Thinking? The Power of Open-ended Survey Analysis

May 24, 2024

When I think of “disconnected”, it is important that this is not just in relation to people analytics, Employee Experience or Customer Experience - it is also relevant to looking across them.

I Am Disconnected – Tuesday CX Thoughts

May 21, 2024

Customer success tools

20 Best Customer Success Tools of 2024

May 20, 2024

AI-Based Services in Market Research

AI-Based Services Buying Guide for Market Research (based on ESOMAR’s 20 Questions) 

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Banner

  • University of Memphis Libraries
  • Research Guides

Empirical Research: Defining, Identifying, & Finding

Defining empirical research, what is empirical research, quantitative or qualitative.

  • Introduction
  • Database Tools
  • Search Terms
  • Image Descriptions

Calfee & Chambliss (2005)  (UofM login required) describe empirical research as a "systematic approach for answering certain types of questions."  Those questions are answered "[t]hrough the collection of evidence under carefully defined and replicable conditions" (p. 43). 

The evidence collected during empirical research is often referred to as "data." 

Characteristics of Empirical Research

Emerald Publishing's guide to conducting empirical research identifies a number of common elements to empirical research: 

  • A  research question , which will determine research objectives.
  • A particular and planned  design  for the research, which will depend on the question and which will find ways of answering it with appropriate use of resources.
  • The gathering of  primary data , which is then analysed.
  • A particular  methodology  for collecting and analysing the data, such as an experiment or survey.
  • The limitation of the data to a particular group, area or time scale, known as a sample [emphasis added]: for example, a specific number of employees of a particular company type, or all users of a library over a given time scale. The sample should be somehow representative of a wider population.
  • The ability to  recreate  the study and test the results. This is known as  reliability .
  • The ability to  generalize  from the findings to a larger sample and to other situations.

If you see these elements in a research article, you can feel confident that you have found empirical research. Emerald's guide goes into more detail on each element. 

Empirical research methodologies can be described as quantitative, qualitative, or a mix of both (usually called mixed-methods).

Ruane (2016)  (UofM login required) gets at the basic differences in approach between quantitative and qualitative research:

  • Quantitative research  -- an approach to documenting reality that relies heavily on numbers both for the measurement of variables and for data analysis (p. 33).
  • Qualitative research  -- an approach to documenting reality that relies on words and images as the primary data source (p. 33).

Both quantitative and qualitative methods are empirical . If you can recognize that a research study is quantitative or qualitative study, then you have also recognized that it is empirical study. 

Below are information on the characteristics of quantitative and qualitative research. This video from Scribbr also offers a good overall introduction to the two approaches to research methodology: 

Characteristics of Quantitative Research 

Researchers test hypotheses, or theories, based in assumptions about causality, i.e. we expect variable X to cause variable Y. Variables have to be controlled as much as possible to ensure validity. The results explain the relationship between the variables. Measures are based in pre-defined instruments.

Examples: experimental or quasi-experimental design, pretest & post-test, survey or questionnaire with closed-ended questions. Studies that identify factors that influence an outcomes, the utility of an intervention, or understanding predictors of outcomes. 

Characteristics of Qualitative Research

Researchers explore “meaning individuals or groups ascribe to social or human problems (Creswell & Creswell, 2018, p3).” Questions and procedures emerge rather than being prescribed. Complexity, nuance, and individual meaning are valued. Research is both inductive and deductive. Data sources are multiple and varied, i.e. interviews, observations, documents, photographs, etc. The researcher is a key instrument and must be reflective of their background, culture, and experiences as influential of the research.

Examples: open question interviews and surveys, focus groups, case studies, grounded theory, ethnography, discourse analysis, narrative, phenomenology, participatory action research.

Calfee, R. C. & Chambliss, M. (2005). The design of empirical research. In J. Flood, D. Lapp, J. R. Squire, & J. Jensen (Eds.),  Methods of research on teaching the English language arts: The methodology chapters from the handbook of research on teaching the English language arts (pp. 43-78). Routledge.  http://ezproxy.memphis.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=125955&site=eds-live&scope=site .

Creswell, J. W., & Creswell, J. D. (2018).  Research design: Qualitative, quantitative, and mixed methods approaches  (5th ed.). Thousand Oaks: Sage.

How to... conduct empirical research . (n.d.). Emerald Publishing.  https://www.emeraldgrouppublishing.com/how-to/research-methods/conduct-empirical-research .

Scribbr. (2019). Quantitative vs. qualitative: The differences explained  [video]. YouTube.  https://www.youtube.com/watch?v=a-XtVF7Bofg .

Ruane, J. M. (2016).  Introducing social research methods : Essentials for getting the edge . Wiley-Blackwell.  http://ezproxy.memphis.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1107215&site=eds-live&scope=site .  

  • << Previous: Home
  • Next: Identifying Empirical Research >>
  • Last Updated: Apr 2, 2024 11:25 AM
  • URL: https://libguides.memphis.edu/empirical-research

Quantitative and Empirical Research vs. Other Types of Research: Quantitative Research

  • Quantitative Research
  • Other Types of Research
  • What are Scholarly Journals?

Colorful, decorative horizontal line.

     P rofessors often want you to use scholarly journal articles for your assignments.

     Sometimes, they will require you to use scholarly journal articles that contain quantitative research .

DEFINITIONS

QUANTITATIVE

     Quantitative research looks at factors that can actually be measured in some way, in other words, quantified . It produces numerical results that can be analyzed statistically.

     Quantitative research commonly involves experimentation, surveys, or questionnaires in the context of a large, randomly selected group.

     The term  empirical research  is often used as a synonym for quantitative research, but strictly speaking, empirical research is simply any form of research based upon direct observation. It might also be quantitative, but it might not.

PLEASE NOTE: Some professors use these two terms interchangeably.  When this occurs, they are usually referring to articles that fit the quantitative description above.

HINT: Don't use the words "quantitative" or "empirical" in your keyword searches.  They usually do not appear in article titles, abstracts, or subject words.  Instead, check the articles you find to see if some sort of numerical measuring and statistical analysis is present along with the characteristics listed on the right.

CHARACTERISTICS OF QUANTITATIVE RESEARCH

      W atch for these features when determining if an article has quantitative research. They may appear in the abstract, or you may need to skim the text of the article to find them.

  • Introduction : a statement of background or purpose (what was being studied and why). May review prior studies on the same topic.
  • Description of the design and/or method of the study (the experimental group or sample , control, variables, number of test subjects, test conditions, etc.)
  • Results , or report of the findings (in numeric form as tables, charts, or graphs, etc., often with statistical analysis)
  • Conclusions that can be drawn from the results (may be labeled  discussion or significance )
  • Footnotes and/or a bibliography
  • Author credentials (degrees earned, where they work, etc.)  

SAMPLE QUANTITATIVE RESEARCH ARTICLES

  • Relations Between Trait Impulsivity, Behavioral Impulsivity, Physiological Arousal, and Risky Sexual Behavior Among Young Men
  • Nocturnal Heart Rate Variability in Patients Treated with Cognitive–Behavioral Therapy for Insomnia.
  • Characterisation of Mainstream and Passive Vapors Emitted by Selected Electronic Cigarettes

Thin green line.

  • Next: Other Types of Research >>
  • Last Updated: Apr 6, 2023 8:16 AM
  • URL: https://libguides.csusb.edu/quantitative
  • Connelly Library

Qualitative and Quantitative Research

What is "empirical research".

  • empirical research
  • Locating Articles in Cinahl and PsycInfo
  • Locating Articles in PubMed
  • Getting the Articles

Empirical research  is based on observed and measured phenomena and derives knowledge from actual experience rather than from theory or belief. 

How do you know if a study is empirical? Read the subheadings within the article, book, or report and look for a description of the research "methodology."  Ask yourself: Could I recreate this study and test these results?

Key characteristics to look for:

  • Specific research questions  to be answered
  • Definition of the  population, behavior, or   phenomena  being studied
  • Description of the  process  used to study this population or phenomena, including selection criteria, controls, and testing instruments (such as surveys)

Another hint: some scholarly journals use a specific layout, called the "IMRaD" format, to communicate empirical research findings. Such articles typically have 4 components:

  • Introduction : sometimes called "literature review" -- what is currently known about the topic -- usually includes a theoretical framework and/or discussion of previous studies
  • Methodology:  sometimes called "research design" --  how to recreate the study -- usually describes the population, research process, and analytical tools
  • Results : sometimes called "findings"  --  what was learned through the study -- usually appears as statistical data or as substantial quotations from research participants
  • Discussion : sometimes called "conclusion" or "implications" -- why the study is important -- usually describes how the research results influence professional practices or future studies
  • << Previous: Home
  • Next: Locating Articles in Cinahl and PsycInfo >>

La Salle University

© Copyright La Salle University. All rights reserved.

Purdue University

  • Ask a Librarian

Research: Overview & Approaches

  • Getting Started with Undergraduate Research
  • Planning & Getting Started
  • Building Your Knowledge Base
  • Locating Sources
  • Reading Scholarly Articles
  • Creating a Literature Review
  • Productivity & Organizing Research
  • Scholarly and Professional Relationships

Introduction to Empirical Research

Databases for finding empirical research, guided search, google scholar, examples of empirical research, sources and further reading.

  • Interpretive Research
  • Action-Based Research
  • Creative & Experimental Approaches

Your Librarian

Profile Photo

  • Introductory Video This video covers what empirical research is, what kinds of questions and methods empirical researchers use, and some tips for finding empirical research articles in your discipline.

Video Tutorial

  • Guided Search: Finding Empirical Research Articles This is a hands-on tutorial that will allow you to use your own search terms to find resources.

Google Scholar Search

  • Study on radiation transfer in human skin for cosmetics
  • Long-Term Mobile Phone Use and the Risk of Vestibular Schwannoma: A Danish Nationwide Cohort Study
  • Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and Vehicle-to-Grid Services
  • Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles
  • Endocrine disrupters and human health: could oestrogenic chemicals in body care cosmetics adversely affect breast cancer incidence in women?

empirical research quantitative

  • << Previous: Scholarly and Professional Relationships
  • Next: Interpretive Research >>
  • Last Updated: May 23, 2024 11:51 AM
  • URL: https://guides.lib.purdue.edu/research_approaches

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Published: 01 June 2023

Data, measurement and empirical methods in the science of science

  • Lu Liu 1 , 2 , 3 , 4 ,
  • Benjamin F. Jones   ORCID: orcid.org/0000-0001-9697-9388 1 , 2 , 3 , 5 , 6 ,
  • Brian Uzzi   ORCID: orcid.org/0000-0001-6855-2854 1 , 2 , 3 &
  • Dashun Wang   ORCID: orcid.org/0000-0002-7054-2206 1 , 2 , 3 , 7  

Nature Human Behaviour volume  7 ,  pages 1046–1058 ( 2023 ) Cite this article

17k Accesses

10 Citations

117 Altmetric

Metrics details

  • Scientific community

The advent of large-scale datasets that trace the workings of science has encouraged researchers from many different disciplinary backgrounds to turn scientific methods into science itself, cultivating a rapidly expanding ‘science of science’. This Review considers this growing, multidisciplinary literature through the lens of data, measurement and empirical methods. We discuss the purposes, strengths and limitations of major empirical approaches, seeking to increase understanding of the field’s diverse methodologies and expand researchers’ toolkits. Overall, new empirical developments provide enormous capacity to test traditional beliefs and conceptual frameworks about science, discover factors associated with scientific productivity, predict scientific outcomes and design policies that facilitate scientific progress.

Similar content being viewed by others

empirical research quantitative

Systematic review and meta-analysis of ex-post evaluations on the effectiveness of carbon pricing

empirical research quantitative

Principal component analysis

empirical research quantitative

The role of artificial intelligence in achieving the Sustainable Development Goals

Scientific advances are a key input to rising standards of living, health and the capacity of society to confront grand challenges, from climate change to the COVID-19 pandemic 1 , 2 , 3 . A deeper understanding of how science works and where innovation occurs can help us to more effectively design science policy and science institutions, better inform scientists’ own research choices, and create and capture enormous value for science and humanity. Building on these key premises, recent years have witnessed substantial development in the ‘science of science’ 4 , 5 , 6 , 7 , 8 , 9 , which uses large-scale datasets and diverse computational toolkits to unearth fundamental patterns behind scientific production and use.

The idea of turning scientific methods into science itself is long-standing. Since the mid-20th century, researchers from different disciplines have asked central questions about the nature of scientific progress and the practice, organization and impact of scientific research. Building on these rich historical roots, the field of the science of science draws upon many disciplines, ranging from information science to the social, physical and biological sciences to computer science, engineering and design. The science of science closely relates to several strands and communities of research, including metascience, scientometrics, the economics of science, research on research, science and technology studies, the sociology of science, metaknowledge and quantitative science studies 5 . There are noticeable differences between some of these communities, mostly around their historical origins and the initial disciplinary composition of researchers forming these communities. For example, metascience has its origins in the clinical sciences and psychology, and focuses on rigour, transparency, reproducibility and other open science-related practices and topics. The scientometrics community, born in library and information sciences, places a particular emphasis on developing robust and responsible measures and indicators for science. Science and technology studies engage the history of science and technology, the philosophy of science, and the interplay between science, technology and society. The science of science, which has its origins in physics, computer science and sociology, takes a data-driven approach and emphasizes questions on how science works. Each of these communities has made fundamental contributions to understanding science. While they differ in their origins, these differences pale in comparison to the overarching, common interest in understanding the practice of science and its societal impact.

Three major developments have encouraged rapid advances in the science of science. The first is in data 9 : modern databases include millions of research articles, grant proposals, patents and more. This windfall of data traces scientific activity in remarkable detail and at scale. The second development is in measurement: scholars have used data to develop many new measures of scientific activities and examine theories that have long been viewed as important but difficult to quantify. The third development is in empirical methods: thanks to parallel advances in data science, network science, artificial intelligence and econometrics, researchers can study relationships, make predictions and assess science policy in powerful new ways. Together, new data, measurements and methods have revealed fundamental new insights about the inner workings of science and scientific progress itself.

With multiple approaches, however, comes a key challenge. As researchers adhere to norms respected within their disciplines, their methods vary, with results often published in venues with non-overlapping readership, fragmenting research along disciplinary boundaries. This fragmentation challenges researchers’ ability to appreciate and understand the value of work outside of their own discipline, much less to build directly on it for further investigations.

Recognizing these challenges and the rapidly developing nature of the field, this paper reviews the empirical approaches that are prevalent in this literature. We aim to provide readers with an up-to-date understanding of the available datasets, measurement constructs and empirical methodologies, as well as the value and limitations of each. Owing to space constraints, this Review does not cover the full technical details of each method, referring readers to related guides to learn more. Instead, we will emphasize why a researcher might favour one method over another, depending on the research question.

Beyond a positive understanding of science, a key goal of the science of science is to inform science policy. While this Review mainly focuses on empirical approaches, with its core audience being researchers in the field, the studies reviewed are also germane to key policy questions. For example, what is the appropriate scale of scientific investment, in what directions and through what institutions 10 , 11 ? Are public investments in science aligned with public interests 12 ? What conditions produce novel or high-impact science 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 ? How do the reward systems of science influence the rate and direction of progress 13 , 21 , 22 , 23 , 24 , and what governs scientific reproducibility 25 , 26 , 27 ? How do contributions evolve over a scientific career 28 , 29 , 30 , 31 , 32 , and how may diversity among scientists advance scientific progress 33 , 34 , 35 , among other questions relevant to science policy 36 , 37 .

Overall, this review aims to facilitate entry to science of science research, expand researcher toolkits and illustrate how diverse research approaches contribute to our collective understanding of science. Section 2 reviews datasets and data linkages. Section 3 reviews major measurement constructs in the science of science. Section 4 considers a range of empirical methods, focusing on one study to illustrate each method and briefly summarizing related examples and applications. Section 5 concludes with an outlook for the science of science.

Historically, data on scientific activities were difficult to collect and were available in limited quantities. Gathering data could involve manually tallying statistics from publications 38 , 39 , interviewing scientists 16 , 40 , or assembling historical anecdotes and biographies 13 , 41 . Analyses were typically limited to a specific domain or group of scientists. Today, massive datasets on scientific production and use are at researchers’ fingertips 42 , 43 , 44 . Armed with big data and advanced algorithms, researchers can now probe questions previously not amenable to quantification and with enormous increases in scope and scale, as detailed below.

Publication datasets cover papers from nearly all scientific disciplines, enabling analyses of both general and domain-specific patterns. Commonly used datasets include the Web of Science (WoS), PubMed, CrossRef, ORCID, OpenCitations, Dimensions and OpenAlex. Datasets incorporating papers’ text (CORE) 45 , 46 , 47 , data entities (DataCite) 48 , 49 and peer review reports (Publons) 33 , 50 , 51 have also become available. These datasets further enable novel measurement, for example, representations of a paper’s content 52 , 53 , novelty 15 , 54 and interdisciplinarity 55 .

Notably, databases today capture more diverse aspects of science beyond publications, offering a richer and more encompassing view of research contexts and of researchers themselves (Fig. 1 ). For example, some datasets trace research funding to the specific publications these investments support 56 , 57 , allowing high-scale studies of the impact of funding on productivity and the return on public investment. Datasets incorporating job placements 58 , 59 , curriculum vitae 21 , 59 and scientific prizes 23 offer rich quantitative evidence on the social structure of science. Combining publication profiles with mentorship genealogies 60 , 61 , dissertations 34 and course syllabi 62 , 63 provides insights on mentoring and cultivating talent.

figure 1

This figure presents commonly used data types in science of science research, information contained in each data type and examples of data sources. Datasets in the science of science research have not only grown in scale but have also expanded beyond publications to integrate upstream funding investments and downstream applications that extend beyond science itself.

Finally, today’s scope of data extends beyond science to broader aspects of society. Altmetrics 64 captures news media and social media mentions of scientific articles. Other databases incorporate marketplace uses of science, including through patents 10 , pharmaceutical clinical trials and drug approvals 65 , 66 . Policy documents 67 , 68 help us to understand the role of science in the halls of government 69 and policy making 12 , 68 .

While datasets of the modern scientific enterprise have grown exponentially, they are not without limitations. As is often the case for data-driven research, drawing conclusions from specific data sources requires scrutiny and care. Datasets are typically based on published work, which may favour easy-to-publish topics over important ones (the streetlight effect) 70 , 71 . The publication of negative results is also rare (the file drawer problem) 72 , 73 . Meanwhile, English language publications account for over 90% of articles in major data sources, with limited coverage of non-English journals 74 . Publication datasets may also reflect biases in data collection across research institutions or demographic groups. Despite the open science movement, many datasets require paid subscriptions, which can create inequality in data access. Creating more open datasets for the science of science, such as OpenAlex, may not only improve the robustness and replicability of empirical claims but also increase entry to the field.

As today’s datasets become larger in scale and continue to integrate new dimensions, they offer opportunities to unveil the inner workings and external impacts of science in new ways. They can enable researchers to reach beyond previous limitations while conducting original studies of new and long-standing questions about the sciences.

Measurement

Here we discuss prominent measurement approaches in the science of science, including their purposes and limitations.

Modern publication databases typically include data on which articles and authors cite other papers and scientists. These citation linkages have been used to engage core conceptual ideas in scientific research. Here we consider two common measures based on citation information: citation counts and knowledge flows.

First, citation counts are commonly used indicators of impact. The term ‘indicator’ implies that it only approximates the concept of interest. A citation count is defined as how many times a document is cited by subsequent documents and can proxy for the importance of research papers 75 , 76 as well as patented inventions 77 , 78 , 79 . Rather than treating each citation equally, measures may further weight the importance of each citation, for example by using the citation network structure to produce centrality 80 , PageRank 81 , 82 or Eigenfactor indicators 83 , 84 .

Citation-based indicators have also faced criticism 84 , 85 . Citation indicators necessarily oversimplify the construct of impact, often ignoring heterogeneity in the meaning and use of a particular reference, the variations in citation practices across fields and institutional contexts, and the potential for reputation and power structures in science to influence citation behaviour 86 , 87 . Researchers have started to understand more nuanced citation behaviours ranging from negative citations 86 to citation context 47 , 88 , 89 . Understanding what a citation actually measures matters in interpreting and applying many research findings in the science of science. Evaluations relying on citation-based indicators rather than expert judgements raise questions regarding misuse 90 , 91 , 92 . Given the importance of developing indicators that can reliably quantify and evaluate science, the scientometrics community has been working to provide guidance for responsible citation practices and assessment 85 .

Second, scientists use citations to trace knowledge flows. Each citation in a paper is a link to specific previous work from which we can proxy how new discoveries draw upon existing ideas 76 , 93 and how knowledge flows between fields of science 94 , 95 , research institutions 96 , regions and nations 97 , 98 , 99 , and individuals 81 . Combinations of citation linkages can also approximate novelty 15 , disruptiveness 17 , 100 and interdisciplinarity 55 , 95 , 101 , 102 . A rapidly expanding body of work further examines citations to scientific articles from other domains (for example, patents, clinical drug trials and policy documents) to understand the applied value of science 10 , 12 , 65 , 66 , 103 , 104 , 105 .

Individuals

Analysing individual careers allows researchers to answer questions such as: How do we quantify individual scientific productivity? What is a typical career lifecycle? How are resources and credits allocated across individuals and careers? A scholar’s career can be examined through the papers they publish 30 , 31 , 106 , 107 , 108 , with attention to career progression and mobility, publication counts and citation impact, as well as grant funding 24 , 109 , 110 and prizes 111 , 112 , 113 ,

Studies of individual impact focus on output, typically approximated by the number of papers a researcher publishes and citation indicators. A popular measure for individual impact is the h -index 114 , which takes both volume and per-paper impact into consideration. Specifically, a scientist is assigned the largest value h such that they have h papers that were each cited at least h times. Later studies build on the idea of the h -index and propose variants to address limitations 115 , these variants ranging from emphasizing highly cited papers in a career 116 , to field differences 117 and normalizations 118 , to the relative contribution of an individual in collaborative works 119 .

To study dynamics in output over the lifecycle, individuals can be studied according to age, career age or the sequence of publications. A long-standing literature has investigated the relationship between age and the likelihood of outstanding achievement 28 , 106 , 111 , 120 , 121 . Recent studies further decouple the relationship between age, publication volume and per-paper citation, and measure the likelihood of producing highly cited papers in the sequence of works one produces 30 , 31 .

As simple as it sounds, representing careers using publication records is difficult. Collecting the full publication list of a researcher is the foundation to study individuals yet remains a key challenge, requiring name disambiguation techniques to match specific works to specific researchers. Although algorithms are increasingly capable at identifying millions of career profiles 122 , they vary in accuracy and robustness. ORCID can help to alleviate the problem by offering researchers the opportunity to create, maintain and update individual profiles themselves, and it goes beyond publications to collect broader outputs and activities 123 . A second challenge is survivorship bias. Empirical studies tend to focus on careers that are long enough to afford statistical analyses, which limits the applicability of the findings to scientific careers as a whole. A third challenge is the breadth of scientists’ activities, where focusing on publications ignores other important contributions such as mentorship and teaching, service (for example, refereeing papers, reviewing grant proposals and editing journals) or leadership within their organizations. Although researchers have begun exploring these dimensions by linking individual publication profiles with genealogical databases 61 , 124 , dissertations 34 , grants 109 , curriculum vitae 21 and acknowledgements 125 , scientific careers beyond publication records remain under-studied 126 , 127 . Lastly, citation-based indicators only serve as an approximation of individual performance with similar limitations as discussed above. The scientific community has called for more appropriate practices 85 , 128 , ranging from incorporating expert assessment of research contributions to broadening the measures of impact beyond publications.

Over many decades, science has exhibited a substantial and steady shift away from solo authorship towards coauthorship, especially among highly cited works 18 , 129 , 130 . In light of this shift, a research field, the science of team science 131 , 132 , has emerged to study the mechanisms that facilitate or hinder the effectiveness of teams. Team size can be proxied by the number of coauthors on a paper, which has been shown to predict distinctive types of advance: whereas larger teams tend to develop ideas, smaller teams tend to disrupt current ways of thinking 17 . Team characteristics can be inferred from coauthors’ backgrounds 133 , 134 , 135 , allowing quantification of a team’s diversity in terms of field, age, gender or ethnicity. Collaboration networks based on coauthorship 130 , 136 , 137 , 138 , 139 offer nuanced network-based indicators to understand individual and institutional collaborations.

However, there are limitations to using coauthorship alone to study teams 132 . First, coauthorship can obscure individual roles 140 , 141 , 142 , which has prompted institutional responses to help to allocate credit, including authorship order and individual contribution statements 56 , 143 . Second, coauthorship does not reflect the complex dynamics and interactions between team members that are often instrumental for team success 53 , 144 . Third, collaborative contributions can extend beyond coauthorship in publications to include members of a research laboratory 145 or co-principal investigators (co-PIs) on a grant 146 . Initiatives such as CRediT may help to address some of these issues by recording detailed roles for each contributor 147 .

Institutions

Research institutions, such as departments, universities, national laboratories and firms, encompass wider groups of researchers and their corresponding outputs. Institutional membership can be inferred from affiliations listed on publications or patents 148 , 149 , and the output of an institution can be aggregated over all its affiliated researchers 150 . Institutional research information systems (CRIS) contain more comprehensive research outputs and activities from employees.

Some research questions consider the institution as a whole, investigating the returns to research and development investment 104 , inequality of resource allocation 22 and the flow of scientists 21 , 148 , 149 . Other questions focus on institutional structures as sources of research productivity by looking into the role of peer effects 125 , 151 , 152 , 153 , how institutional policies impact research outcomes 154 , 155 and whether interdisciplinary efforts foster innovation 55 . Institution-oriented measurement faces similar limitations as with analyses of individuals and teams, including name disambiguation for a given institution and the limited capacity of formal publication records to characterize the full range of relevant institutional outcomes. It is also unclear how to allocate credit among multiple institutions associated with a paper. Moreover, relevant institutional employees extend beyond publishing researchers: interns, technicians and administrators all contribute to research endeavours 130 .

In sum, measurements allow researchers to quantify scientific production and use across numerous dimensions, but they also raise questions of construct validity: Does the proposed metric really reflect what we want to measure? Testing the construct’s validity is important, as is understanding a construct’s limits. Where possible, using alternative measurement approaches, or qualitative methods such as interviews and surveys, can improve measurement accuracy and the robustness of findings.

Empirical methods

In this section, we review two broad categories of empirical approaches (Table 1 ), each with distinctive goals: (1) to discover, estimate and predict empirical regularities; and (2) to identify causal mechanisms. For each method, we give a concrete example to help to explain how the method works, summarize related work for interested readers, and discuss contributions and limitations.

Descriptive and predictive approaches

Empirical regularities and generalizable facts.

The discovery of empirical regularities in science has had a key role in driving conceptual developments and the directions of future research. By observing empirical patterns at scale, researchers unveil central facts that shape science and present core features that theories of scientific progress and practice must explain. For example, consider citation distributions. de Solla Price first proposed that citation distributions are fat-tailed 39 , indicating that a few papers have extremely high citations while most papers have relatively few or even no citations at all. de Solla Price proposed that citation distribution was a power law, while researchers have since refined this view to show that the distribution appears log-normal, a nearly universal regularity across time and fields 156 , 157 . The fat-tailed nature of citation distributions and its universality across the sciences has in turn sparked substantial theoretical work that seeks to explain this key empirical regularity 20 , 156 , 158 , 159 .

Empirical regularities are often surprising and can contest previous beliefs of how science works. For example, it has been shown that the age distribution of great achievements peaks in middle age across a wide range of fields 107 , 121 , 160 , rejecting the common belief that young scientists typically drive breakthroughs in science. A closer look at the individual careers also indicates that productivity patterns vary widely across individuals 29 . Further, a scholar’s highest-impact papers come at a remarkably constant rate across the sequence of their work 30 , 31 .

The discovery of empirical regularities has had important roles in shaping beliefs about the nature of science 10 , 45 , 161 , 162 , sources of breakthrough ideas 15 , 163 , 164 , 165 , scientific careers 21 , 29 , 126 , 127 , the network structure of ideas and scientists 23 , 98 , 136 , 137 , 138 , 139 , 166 , gender inequality 57 , 108 , 126 , 135 , 143 , 167 , 168 , and many other areas of interest to scientists and science institutions 22 , 47 , 86 , 97 , 102 , 105 , 134 , 169 , 170 , 171 . At the same time, care must be taken to ensure that findings are not merely artefacts due to data selection or inherent bias. To differentiate meaningful patterns from spurious ones, it is important to stress test the findings through different selection criteria or across non-overlapping data sources.

Regression analysis

When investigating correlations among variables, a classic method is regression, which estimates how one set of variables explains variation in an outcome of interest. Regression can be used to test explicit hypotheses or predict outcomes. For example, researchers have investigated whether a paper’s novelty predicts its citation impact 172 . Adding additional control variables to the regression, one can further examine the robustness of the focal relationship.

Although regression analysis is useful for hypothesis testing, it bears substantial limitations. If the question one wishes to ask concerns a ‘causal’ rather than a correlational relationship, regression is poorly suited to the task as it is impossible to control for all the confounding factors. Failing to account for such ‘omitted variables’ can bias the regression coefficient estimates and lead to spurious interpretations. Further, regression models often have low goodness of fit (small R 2 ), indicating that the variables considered explain little of the outcome variation. As regressions typically focus on a specific relationship in simple functional forms, regressions tend to emphasize interpretability rather than overall predictability. The advent of predictive approaches powered by large-scale datasets and novel computational techniques offers new opportunities for modelling complex relationships with stronger predictive power.

Mechanistic models

Mechanistic modelling is an important approach to explaining empirical regularities, drawing from methods primarily used in physics. Such models predict macro-level regularities of a system by modelling micro-level interactions among basic elements with interpretable and modifiable formulars. While theoretical by nature, mechanistic models in the science of science are often empirically grounded, and this approach has developed together with the advent of large-scale, high-resolution data.

Simplicity is the core value of a mechanistic model. Consider for example, why citations follow a fat-tailed distribution. de Solla Price modelled the citing behaviour as a cumulative advantage process on a growing citation network 159 and found that if the probability a paper is cited grows linearly with its existing citations, the resulting distribution would follow a power law, broadly aligned with empirical observations. The model is intentionally simplified, ignoring myriad factors. Yet the simple cumulative advantage process is by itself sufficient in explaining a power law distribution of citations. In this way, mechanistic models can help to reveal key mechanisms that can explain observed patterns.

Moreover, mechanistic models can be refined as empirical evidence evolves. For example, later investigations showed that citation distributions are better characterized as log-normal 156 , 173 , prompting researchers to introduce a fitness parameter to encapsulate the inherent differences in papers’ ability to attract citations 174 , 175 . Further, older papers are less likely to be cited than expected 176 , 177 , 178 , motivating more recent models 20 to introduce an additional aging effect 179 . By combining the cumulative advantage, fitness and aging effects, one can already achieve substantial predictive power not just for the overall properties of the system but also the citation dynamics of individual papers 20 .

In addition to citations, mechanistic models have been developed to understand the formation of collaborations 136 , 180 , 181 , 182 , 183 , knowledge discovery and diffusion 184 , 185 , topic selection 186 , 187 , career dynamics 30 , 31 , 188 , 189 , the growth of scientific fields 190 and the dynamics of failure in science and other domains 178 .

At the same time, some observers have argued that mechanistic models are too simplistic to capture the essence of complex real-world problems 191 . While it has been a cornerstone for the natural sciences, representing social phenomena in a limited set of mathematical equations may miss complexities and heterogeneities that make social phenomena interesting in the first place. Such concerns are not unique to the science of science, as they represent a broader theme in computational social sciences 192 , 193 , ranging from social networks 194 , 195 to human mobility 196 , 197 to epidemics 198 , 199 . Other observers have questioned the practical utility of mechanistic models and whether they can be used to guide decisions and devise actionable policies. Nevertheless, despite these limitations, several complex phenomena in the science of science are well captured by simple mechanistic models, showing a high degree of regularity beneath complex interacting systems and providing powerful insights about the nature of science. Mixing such modelling with other methods could be particularly fruitful in future investigations.

Machine learning

The science of science seeks in part to forecast promising directions for scientific research 7 , 44 . In recent years, machine learning methods have substantially advanced predictive capabilities 200 , 201 and are playing increasingly important parts in the science of science. In contrast to the previous methods, machine learning does not emphasize hypotheses or theories. Rather, it leverages complex relationships in data and optimizes goodness of fit to make predictions and categorizations.

Traditional machine learning models include supervised, semi-supervised and unsupervised learning. The model choice depends on data availability and the research question, ranging from supervised models for citation prediction 202 , 203 to unsupervised models for community detection 204 . Take for example mappings of scientific knowledge 94 , 205 , 206 . The unsupervised method applies network clustering algorithms to map the structures of science. Related visualization tools make sense of clusters from the underlying network, allowing observers to see the organization, interactions and evolution of scientific knowledge. More recently, supervised learning, and deep neural networks in particular, have witnessed especially rapid developments 207 . Neural networks can generate high-dimensional representations of unstructured data such as images and texts, which encode complex properties difficult for human experts to perceive.

Take text analysis as an example. A recent study 52 utilizes 3.3 million paper abstracts in materials science to predict the thermoelectric properties of materials. The intuition is that the words currently used to describe a material may predict its hitherto undiscovered properties (Fig. 2 ). Compared with a random material, the materials predicted by the model are eight times more likely to be reported as thermoelectric in the next 5 years, suggesting that machine learning has the potential to substantially speed up knowledge discovery, especially as data continue to grow in scale and scope. Indeed, predicting the direction of new discoveries represents one of the most promising avenues for machine learning models, with neural networks being applied widely to biology 208 , physics 209 , 210 , mathematics 211 , chemistry 212 , medicine 213 and clinical applications 214 . Neural networks also offer a quantitative framework to probe the characteristics of creative products ranging from scientific papers 53 , journals 215 , organizations 148 , to paintings and movies 32 . Neural networks can also help to predict the reproducibility of papers from a variety of disciplines at scale 53 , 216 .

figure 2

This figure illustrates the word2vec skip-gram methods 52 , where the goal is to predict useful properties of materials using previous scientific literature. a , The architecture and training process of the word2vec skip-gram model, where the 3-layer, fully connected neural network learns the 200-dimensional representation (hidden layer) from the sparse vector for each word and its context in the literature (input layer). b , The top two principal components of the word embedding. Materials with similar features are close in the 2D space, allowing prediction of a material’s properties. Different targeted words are shown in different colours. Reproduced with permission from ref. 52 , Springer Nature Ltd.

While machine learning can offer high predictive accuracy, successful applications to the science of science face challenges, particularly regarding interpretability. Researchers may value transparent and interpretable findings for how a given feature influences an outcome, rather than a black-box model. The lack of interpretability also raises concerns about bias and fairness. In predicting reproducible patterns from data, machine learning models inevitably include and reproduce biases embedded in these data, often in non-transparent ways. The fairness of machine learning 217 is heavily debated in applications ranging from the criminal justice system to hiring processes. Effective and responsible use of machine learning in the science of science therefore requires thoughtful partnership between humans and machines 53 to build a reliable system accessible to scrutiny and modification.

Causal approaches

The preceding methods can reveal core facts about the workings of science and develop predictive capacity. Yet, they fail to capture causal relationships, which are particularly useful in assessing policy interventions. For example, how can we test whether a science policy boosts or hinders the performance of individuals, teams or institutions? The overarching idea of causal approaches is to construct some counterfactual world where two groups are identical to each other except that one group experiences a treatment that the other group does not.

Towards causation

Before engaging in causal approaches, it is useful to first consider the interpretative challenges of observational data. As observational data emerge from mechanisms that are not fully known or measured, an observed correlation may be driven by underlying forces that were not accounted for in the analysis. This challenge makes causal inference fundamentally difficult in observational data. An awareness of this issue is the first step in confronting it. It further motivates intermediate empirical approaches, including the use of matching strategies and fixed effects, that can help to confront (although not fully eliminate) the inference challenge. We first consider these approaches before turning to more fully causal methods.

Matching. Matching utilizes rich information to construct a control group that is similar to the treatment group on as many observable characteristics as possible before the treatment group is exposed to the treatment. Inferences can then be made by comparing the treatment and the matched control groups. Exact matching applies to categorical values, such as country, gender, discipline or affiliation 35 , 218 . Coarsened exact matching considers percentile bins of continuous variables and matches observations in the same bin 133 . Propensity score matching estimates the probability of receiving the ‘treatment’ on the basis of the controlled variables and uses the estimates to match treatment and control groups, which reduces the matching task from comparing the values of multiple covariates to comparing a single value 24 , 219 . Dynamic matching is useful for longitudinally matching variables that change over time 220 , 221 .

Fixed effects. Fixed effects are a powerful and now standard tool in controlling for confounders. A key requirement for using fixed effects is that there are multiple observations on the same subject or entity (person, field, institution and so on) 222 , 223 , 224 . The fixed effect works as a dummy variable that accounts for the role of any fixed characteristic of that entity. Consider the finding where gender-diverse teams produce higher-impact papers than same-gender teams do 225 . A confounder may be that individuals who tend to write high-impact papers may also be more likely to work in gender-diverse teams. By including individual fixed effects, one accounts for any fixed characteristics of individuals (such as IQ, cultural background or previous education) that might drive the relationship of interest.

In sum, matching and fixed effects methods reduce potential sources of bias in interpreting relationships between variables. Yet, confounders may persist in these studies. For instance, fixed effects do not control for unobserved factors that change with time within the given entity (for example, access to funding or new skills). Identifying casual effects convincingly will then typically require distinct research methods that we turn to next.

Quasi-experiments

Researchers in economics and other fields have developed a range of quasi-experimental methods to construct treatment and control groups. The key idea here is exploiting randomness from external events that differentially expose subjects to a particular treatment. Here we review three quasi-experimental methods: difference-in-differences, instrumental variables and regression discontinuity (Fig. 3 ).

figure 3

a – c , This figure presents illustrations of ( a ) differences-in-differences, ( b ) instrumental variables and ( c ) regression discontinuity methods. The solid line in b represents causal links and the dashed line represents the relationships that are not allowed, if the IV method is to produce causal inference.

Difference-in-differences. Difference-in-difference regression (DiD) investigates the effect of an unexpected event, comparing the affected group (the treated group) with an unaffected group (the control group). The control group is intended to provide the counterfactual path—what would have happened were it not for the unexpected event. Ideally, the treated and control groups are on virtually identical paths before the treatment event, but DiD can also work if the groups are on parallel paths (Fig. 3a ). For example, one study 226 examines how the premature death of superstar scientists affects the productivity of their previous collaborators. The control group are collaborators of superstars who did not die in the time frame. The two groups do not show significant differences in publications before a death event, yet upon the death of a star scientist, the treated collaborators on average experience a 5–8% decline in their quality-adjusted publication rates compared with the control group. DiD has wide applicability in the science of science, having been used to analyse the causal effects of grant design 24 , access costs to previous research 155 , 227 , university technology transfer policies 154 , intellectual property 228 , citation practices 229 , evolution of fields 221 and the impacts of paper retractions 230 , 231 , 232 . The DiD literature has grown especially rapidly in the field of economics, with substantial recent refinements 233 , 234 .

Instrumental variables. Another quasi-experimental approach utilizes ‘instrumental variables’ (IV). The goal is to determine the causal influence of some feature X on some outcome Y by using a third, instrumental variable. This instrumental variable is a quasi-random event that induces variation in X and, except for its impact through X , has no other effect on the outcome Y (Fig. 3b ). For example, consider a study of astronomy that seeks to understand how telescope time affects career advancement 235 . Here, one cannot simply look at the correlation between telescope time and career outcomes because many confounds (such as talent or grit) may influence both telescope time and career opportunities. Now consider the weather as an instrumental variable. Cloudy weather will, at random, reduce an astronomer’s observational time. Yet, the weather on particular nights is unlikely to correlate with a scientist’s innate qualities. The weather can then provide an instrumental variable to reveal a causal relationship between telescope time and career outcomes. Instrumental variables have been used to study local peer effects in research 151 , the impact of gender composition in scientific committees 236 , patents on future innovation 237 and taxes on inventor mobility 238 .

Regression discontinuity. In regression discontinuity, policies with an arbitrary threshold for receiving some benefit can be used to construct treatment and control groups (Fig. 3c ). Take the funding paylines for grant proposals as an example. Proposals with scores increasingly close to the payline are increasingly similar in their both observable and unobservable characteristics, yet only those projects with scores above the payline receive the funding. For example, a study 110 examines the effect of winning an early-career grant on the probability of winning a later, mid-career grant. The probability has a discontinuous jump across the initial grant’s payline, providing the treatment and control groups needed to estimate the causal effect of receiving a grant. This example utilizes the ‘sharp’ regression discontinuity that assumes treatment status to be fully determined by the cut-off. If we assume treatment status is only partly determined by the cut-off, we can use ‘fuzzy’ regression discontinuity designs. Here the probability of receiving a grant is used to estimate the future outcome 11 , 110 , 239 , 240 , 241 .

Although quasi-experiments are powerful tools, they face their own limitations. First, these approaches identify causal effects within a specific context and often engage small numbers of observations. How representative the samples are for broader populations or contexts is typically left as an open question. Second, the validity of the causal design is typically not ironclad. Researchers usually conduct different robustness checks to verify whether observable confounders have significant differences between the treated and control groups, before treatment. However, unobservable features may still differ between treatment and control groups. The quality of instrumental variables and the specific claim that they have no effect on the outcome except through the variable of interest, is also difficult to assess. Ultimately, researchers must rely partly on judgement to tell whether appropriate conditions are met for causal inference.

This section emphasized popular econometric approaches to causal inference. Other empirical approaches, such as graphical causal modelling 242 , 243 , also represent an important stream of work on assessing causal relationships. Such approaches usually represent causation as a directed acyclic graph, with nodes as variables and arrows between them as suspected causal relationships. In the science of science, the directed acyclic graph approach has been applied to quantify the causal effect of journal impact factor 244 and gender or racial bias 245 on citations. Graphical causal modelling has also triggered discussions on strengths and weaknesses compared to the econometrics methods 246 , 247 .

Experiments

In contrast to quasi-experimental approaches, laboratory and field experiments conduct direct randomization in assigning treatment and control groups. These methods engage explicitly in the data generation process, manipulating interventions to observe counterfactuals. These experiments are crafted to study mechanisms of specific interest and, by designing the experiment and formally randomizing, can produce especially rigorous causal inference.

Laboratory experiments. Laboratory experiments build counterfactual worlds in well-controlled laboratory environments. Researchers randomly assign participants to the treatment or control group and then manipulate the laboratory conditions to observe different outcomes in the two groups. For example, consider laboratory experiments on team performance and gender composition 144 , 248 . The researchers randomly assign participants into groups to perform tasks such as solving puzzles or brainstorming. Teams with a higher proportion of women are found to perform better on average, offering evidence that gender diversity is causally linked to team performance. Laboratory experiments can allow researchers to test forces that are otherwise hard to observe, such as how competition influences creativity 249 . Laboratory experiments have also been used to evaluate how journal impact factors shape scientists’ perceptions of rewards 250 and gender bias in hiring 251 .

Laboratory experiments allow for precise control of settings and procedures to isolate causal effects of interest. However, participants may behave differently in synthetic environments than in real-world settings, raising questions about the generalizability and replicability of the results 252 , 253 , 254 . To assess causal effects in real-world settings, researcher use randomized controlled trials.

Randomized controlled trials. A randomized controlled trial (RCT), or field experiment, is a staple for causal inference across a wide range of disciplines. RCTs randomly assign participants into the treatment and control conditions 255 and can be used not only to assess mechanisms but also to test real-world interventions such as policy change. The science of science has witnessed growing use of RCTs. For instance, a field experiment 146 investigated whether lower search costs for collaborators increased collaboration in grant applications. The authors randomly allocated principal investigators to face-to-face sessions in a medical school, and then measured participants’ chance of writing a grant proposal together. RCTs have also offered rich causal insights on peer review 256 , 257 , 258 , 259 , 260 and gender bias in science 261 , 262 , 263 .

While powerful, RCTs are difficult to conduct in the science of science, mainly for two reasons. The first concerns potential risks in a policy intervention. For instance, while randomizing funding across individuals could generate crucial causal insights for funders, it may also inadvertently harm participants’ careers 264 . Second, key questions in the science of science often require a long-time horizon to trace outcomes, which makes RCTs costly. It also raises the difficulty of replicating findings. A relative advantage of the quasi-experimental methods discussed earlier is that one can identify causal effects over potentially long periods of time in the historical record. On the other hand, quasi-experiments must be found as opposed to designed, and they often are not available for many questions of interest. While the best approaches are context dependent, a growing community of researchers is building platforms to facilitate RCTs for the science of science, aiming to lower their costs and increase their scale. Performing RCTs in partnership with science institutions can also contribute to timely, policy-relevant research that may substantially improve science decision-making and investments.

Research in the science of science has been empowered by the growth of high-scale data, new measurement approaches and an expanding range of empirical methods. These tools provide enormous capacity to test conceptual frameworks about science, discover factors impacting scientific productivity, predict key scientific outcomes and design policies that better facilitate future scientific progress. A careful appreciation of empirical techniques can help researchers to choose effective tools for questions of interest and propel the field. A better and broader understanding of these methodologies may also build bridges across diverse research communities, facilitating communication and collaboration, and better leveraging the value of diverse perspectives. The science of science is about turning scientific methods on the nature of science itself. The fruits of this work, with time, can guide researchers and research institutions to greater progress in discovery and understanding across the landscape of scientific inquiry.

Bush, V . S cience–the Endless Frontier: A Report to the President on a Program for Postwar Scientific Research (National Science Foundation, 1990).

Mokyr, J. The Gifts of Athena (Princeton Univ. Press, 2011).

Jones, B. F. in Rebuilding the Post-Pandemic Economy (eds Kearney, M. S. & Ganz, A.) 272–310 (Aspen Institute Press, 2021).

Wang, D. & Barabási, A.-L. The Science of Science (Cambridge Univ. Press, 2021).

Fortunato, S. et al. Science of science. Science 359 , eaao0185 (2018).

Article   PubMed   PubMed Central   Google Scholar  

Azoulay, P. et al. Toward a more scientific science. Science 361 , 1194–1197 (2018).

Article   PubMed   Google Scholar  

Clauset, A., Larremore, D. B. & Sinatra, R. Data-driven predictions in the science of science. Science 355 , 477–480 (2017).

Article   CAS   PubMed   Google Scholar  

Zeng, A. et al. The science of science: from the perspective of complex systems. Phys. Rep. 714 , 1–73 (2017).

Article   Google Scholar  

Lin, Z., Yin. Y., Liu, L. & Wang, D. SciSciNet: a large-scale open data lake for the science of science research. Sci. Data, https://doi.org/10.1038/s41597-023-02198-9 (2023).

Ahmadpoor, M. & Jones, B. F. The dual frontier: patented inventions and prior scientific advance. Science 357 , 583–587 (2017).

Azoulay, P., Graff Zivin, J. S., Li, D. & Sampat, B. N. Public R&D investments and private-sector patenting: evidence from NIH funding rules. Rev. Econ. Stud. 86 , 117–152 (2019).

Yin, Y., Dong, Y., Wang, K., Wang, D. & Jones, B. F. Public use and public funding of science. Nat. Hum. Behav. 6 , 1344–1350 (2022).

Merton, R. K. The Sociology of Science: Theoretical and Empirical Investigations (Univ. Chicago Press, 1973).

Kuhn, T. The Structure of Scientific Revolutions (Princeton Univ. Press, 2021).

Uzzi, B., Mukherjee, S., Stringer, M. & Jones, B. Atypical combinations and scientific impact. Science 342 , 468–472 (2013).

Zuckerman, H. Scientific Elite: Nobel Laureates in the United States (Transaction Publishers, 1977).

Wu, L., Wang, D. & Evans, J. A. Large teams develop and small teams disrupt science and technology. Nature 566 , 378–382 (2019).

Wuchty, S., Jones, B. F. & Uzzi, B. The increasing dominance of teams in production of knowledge. Science 316 , 1036–1039 (2007).

Foster, J. G., Rzhetsky, A. & Evans, J. A. Tradition and innovation in scientists’ research strategies. Am. Sociol. Rev. 80 , 875–908 (2015).

Wang, D., Song, C. & Barabási, A.-L. Quantifying long-term scientific impact. Science 342 , 127–132 (2013).

Clauset, A., Arbesman, S. & Larremore, D. B. Systematic inequality and hierarchy in faculty hiring networks. Sci. Adv. 1 , e1400005 (2015).

Ma, A., Mondragón, R. J. & Latora, V. Anatomy of funded research in science. Proc. Natl Acad. Sci. USA 112 , 14760–14765 (2015).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Ma, Y. & Uzzi, B. Scientific prize network predicts who pushes the boundaries of science. Proc. Natl Acad. Sci. USA 115 , 12608–12615 (2018).

Azoulay, P., Graff Zivin, J. S. & Manso, G. Incentives and creativity: evidence from the academic life sciences. RAND J. Econ. 42 , 527–554 (2011).

Schor, S. & Karten, I. Statistical evaluation of medical journal manuscripts. JAMA 195 , 1123–1128 (1966).

Platt, J. R. Strong inference: certain systematic methods of scientific thinking may produce much more rapid progress than others. Science 146 , 347–353 (1964).

Ioannidis, J. P. Why most published research findings are false. PLoS Med. 2 , e124 (2005).

Simonton, D. K. Career landmarks in science: individual differences and interdisciplinary contrasts. Dev. Psychol. 27 , 119 (1991).

Way, S. F., Morgan, A. C., Clauset, A. & Larremore, D. B. The misleading narrative of the canonical faculty productivity trajectory. Proc. Natl Acad. Sci. USA 114 , E9216–E9223 (2017).

Sinatra, R., Wang, D., Deville, P., Song, C. & Barabási, A.-L. Quantifying the evolution of individual scientific impact. Science 354 , aaf5239 (2016).

Liu, L. et al. Hot streaks in artistic, cultural, and scientific careers. Nature 559 , 396–399 (2018).

Liu, L., Dehmamy, N., Chown, J., Giles, C. L. & Wang, D. Understanding the onset of hot streaks across artistic, cultural, and scientific careers. Nat. Commun. 12 , 5392 (2021).

Squazzoni, F. et al. Peer review and gender bias: a study on 145 scholarly journals. Sci. Adv. 7 , eabd0299 (2021).

Hofstra, B. et al. The diversity–innovation paradox in science. Proc. Natl Acad. Sci. USA 117 , 9284–9291 (2020).

Huang, J., Gates, A. J., Sinatra, R. & Barabási, A.-L. Historical comparison of gender inequality in scientific careers across countries and disciplines. Proc. Natl Acad. Sci. USA 117 , 4609–4616 (2020).

Gläser, J. & Laudel, G. Governing science: how science policy shapes research content. Eur. J. Sociol. 57 , 117–168 (2016).

Stephan, P. E. How Economics Shapes Science (Harvard Univ. Press, 2012).

Garfield, E. & Sher, I. H. New factors in the evaluation of scientific literature through citation indexing. Am. Doc. 14 , 195–201 (1963).

Article   CAS   Google Scholar  

de Solla Price, D. J. Networks of scientific papers. Science 149 , 510–515 (1965).

Etzkowitz, H., Kemelgor, C. & Uzzi, B. Athena Unbound: The Advancement of Women in Science and Technology (Cambridge Univ. Press, 2000).

Simonton, D. K. Scientific Genius: A Psychology of Science (Cambridge Univ. Press, 1988).

Khabsa, M. & Giles, C. L. The number of scholarly documents on the public web. PLoS ONE 9 , e93949 (2014).

Xia, F., Wang, W., Bekele, T. M. & Liu, H. Big scholarly data: a survey. IEEE Trans. Big Data 3 , 18–35 (2017).

Evans, J. A. & Foster, J. G. Metaknowledge. Science 331 , 721–725 (2011).

Milojević, S. Quantifying the cognitive extent of science. J. Informetr. 9 , 962–973 (2015).

Rzhetsky, A., Foster, J. G., Foster, I. T. & Evans, J. A. Choosing experiments to accelerate collective discovery. Proc. Natl Acad. Sci. USA 112 , 14569–14574 (2015).

Poncela-Casasnovas, J., Gerlach, M., Aguirre, N. & Amaral, L. A. Large-scale analysis of micro-level citation patterns reveals nuanced selection criteria. Nat. Hum. Behav. 3 , 568–575 (2019).

Hardwicke, T. E. et al. Data availability, reusability, and analytic reproducibility: evaluating the impact of a mandatory open data policy at the journal Cognition. R. Soc. Open Sci. 5 , 180448 (2018).

Nagaraj, A., Shears, E. & de Vaan, M. Improving data access democratizes and diversifies science. Proc. Natl Acad. Sci. USA 117 , 23490–23498 (2020).

Bravo, G., Grimaldo, F., López-Iñesta, E., Mehmani, B. & Squazzoni, F. The effect of publishing peer review reports on referee behavior in five scholarly journals. Nat. Commun. 10 , 322 (2019).

Tran, D. et al. An open review of open review: a critical analysis of the machine learning conference review process. Preprint at https://doi.org/10.48550/arXiv.2010.05137 (2020).

Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571 , 95–98 (2019).

Yang, Y., Wu, Y. & Uzzi, B. Estimating the deep replicability of scientific findings using human and artificial intelligence. Proc. Natl Acad. Sci. USA 117 , 10762–10768 (2020).

Mukherjee, S., Uzzi, B., Jones, B. & Stringer, M. A new method for identifying recombinations of existing knowledge associated with high‐impact innovation. J. Prod. Innov. Manage. 33 , 224–236 (2016).

Leahey, E., Beckman, C. M. & Stanko, T. L. Prominent but less productive: the impact of interdisciplinarity on scientists’ research. Adm. Sci. Q. 62 , 105–139 (2017).

Sauermann, H. & Haeussler, C. Authorship and contribution disclosures. Sci. Adv. 3 , e1700404 (2017).

Oliveira, D. F. M., Ma, Y., Woodruff, T. K. & Uzzi, B. Comparison of National Institutes of Health grant amounts to first-time male and female principal investigators. JAMA 321 , 898–900 (2019).

Yang, Y., Chawla, N. V. & Uzzi, B. A network’s gender composition and communication pattern predict women’s leadership success. Proc. Natl Acad. Sci. USA 116 , 2033–2038 (2019).

Way, S. F., Larremore, D. B. & Clauset, A. Gender, productivity, and prestige in computer science faculty hiring networks. In Proc. 25th International Conference on World Wide Web 1169–1179. (ACM 2016)

Malmgren, R. D., Ottino, J. M. & Amaral, L. A. N. The role of mentorship in protege performance. Nature 465 , 622–626 (2010).

Ma, Y., Mukherjee, S. & Uzzi, B. Mentorship and protégé success in STEM fields. Proc. Natl Acad. Sci. USA 117 , 14077–14083 (2020).

Börner, K. et al. Skill discrepancies between research, education, and jobs reveal the critical need to supply soft skills for the data economy. Proc. Natl Acad. Sci. USA 115 , 12630–12637 (2018).

Biasi, B. & Ma, S. The Education-Innovation Gap (National Bureau of Economic Research Working papers, 2020).

Bornmann, L. Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics. J. Informetr. 8 , 895–903 (2014).

Cleary, E. G., Beierlein, J. M., Khanuja, N. S., McNamee, L. M. & Ledley, F. D. Contribution of NIH funding to new drug approvals 2010–2016. Proc. Natl Acad. Sci. USA 115 , 2329–2334 (2018).

Spector, J. M., Harrison, R. S. & Fishman, M. C. Fundamental science behind today’s important medicines. Sci. Transl. Med. 10 , eaaq1787 (2018).

Haunschild, R. & Bornmann, L. How many scientific papers are mentioned in policy-related documents? An empirical investigation using Web of Science and Altmetric data. Scientometrics 110 , 1209–1216 (2017).

Yin, Y., Gao, J., Jones, B. F. & Wang, D. Coevolution of policy and science during the pandemic. Science 371 , 128–130 (2021).

Sugimoto, C. R., Work, S., Larivière, V. & Haustein, S. Scholarly use of social media and altmetrics: a review of the literature. J. Assoc. Inf. Sci. Technol. 68 , 2037–2062 (2017).

Dunham, I. Human genes: time to follow the roads less traveled? PLoS Biol. 16 , e3000034 (2018).

Kustatscher, G. et al. Understudied proteins: opportunities and challenges for functional proteomics. Nat. Methods 19 , 774–779 (2022).

Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 86 , 638 (1979).

Franco, A., Malhotra, N. & Simonovits, G. Publication bias in the social sciences: unlocking the file drawer. Science 345 , 1502–1505 (2014).

Vera-Baceta, M.-A., Thelwall, M. & Kousha, K. Web of Science and Scopus language coverage. Scientometrics 121 , 1803–1813 (2019).

Waltman, L. A review of the literature on citation impact indicators. J. Informetr. 10 , 365–391 (2016).

Garfield, E. & Merton, R. K. Citation Indexing: Its Theory and Application in Science, Technology, and Humanities (Wiley, 1979).

Kelly, B., Papanikolaou, D., Seru, A. & Taddy, M. Measuring Technological Innovation Over the Long Run Report No. 0898-2937 (National Bureau of Economic Research, 2018).

Kogan, L., Papanikolaou, D., Seru, A. & Stoffman, N. Technological innovation, resource allocation, and growth. Q. J. Econ. 132 , 665–712 (2017).

Hall, B. H., Jaffe, A. & Trajtenberg, M. Market value and patent citations. RAND J. Econ. 36 , 16–38 (2005).

Google Scholar  

Yan, E. & Ding, Y. Applying centrality measures to impact analysis: a coauthorship network analysis. J. Am. Soc. Inf. Sci. Technol. 60 , 2107–2118 (2009).

Radicchi, F., Fortunato, S., Markines, B. & Vespignani, A. Diffusion of scientific credits and the ranking of scientists. Phys. Rev. E 80 , 056103 (2009).

Bollen, J., Rodriquez, M. A. & Van de Sompel, H. Journal status. Scientometrics 69 , 669–687 (2006).

Bergstrom, C. T., West, J. D. & Wiseman, M. A. The eigenfactor™ metrics. J. Neurosci. 28 , 11433–11434 (2008).

Cronin, B. & Sugimoto, C. R. Beyond Bibliometrics: Harnessing Multidimensional Indicators of Scholarly Impact (MIT Press, 2014).

Hicks, D., Wouters, P., Waltman, L., De Rijcke, S. & Rafols, I. Bibliometrics: the Leiden Manifesto for research metrics. Nature 520 , 429–431 (2015).

Catalini, C., Lacetera, N. & Oettl, A. The incidence and role of negative citations in science. Proc. Natl Acad. Sci. USA 112 , 13823–13826 (2015).

Alcacer, J. & Gittelman, M. Patent citations as a measure of knowledge flows: the influence of examiner citations. Rev. Econ. Stat. 88 , 774–779 (2006).

Ding, Y. et al. Content‐based citation analysis: the next generation of citation analysis. J. Assoc. Inf. Sci. Technol. 65 , 1820–1833 (2014).

Teufel, S., Siddharthan, A. & Tidhar, D. Automatic classification of citation function. In Proc. 2006 Conference on Empirical Methods in Natural Language Processing, 103–110 (Association for Computational Linguistics 2006)

Seeber, M., Cattaneo, M., Meoli, M. & Malighetti, P. Self-citations as strategic response to the use of metrics for career decisions. Res. Policy 48 , 478–491 (2019).

Pendlebury, D. A. The use and misuse of journal metrics and other citation indicators. Arch. Immunol. Ther. Exp. 57 , 1–11 (2009).

Biagioli, M. Watch out for cheats in citation game. Nature 535 , 201 (2016).

Jo, W. S., Liu, L. & Wang, D. See further upon the giants: quantifying intellectual lineage in science. Quant. Sci. Stud. 3 , 319–330 (2022).

Boyack, K. W., Klavans, R. & Börner, K. Mapping the backbone of science. Scientometrics 64 , 351–374 (2005).

Gates, A. J., Ke, Q., Varol, O. & Barabási, A.-L. Nature’s reach: narrow work has broad impact. Nature 575 , 32–34 (2019).

Börner, K., Penumarthy, S., Meiss, M. & Ke, W. Mapping the diffusion of scholarly knowledge among major US research institutions. Scientometrics 68 , 415–426 (2006).

King, D. A. The scientific impact of nations. Nature 430 , 311–316 (2004).

Pan, R. K., Kaski, K. & Fortunato, S. World citation and collaboration networks: uncovering the role of geography in science. Sci. Rep. 2 , 902 (2012).

Jaffe, A. B., Trajtenberg, M. & Henderson, R. Geographic localization of knowledge spillovers as evidenced by patent citations. Q. J. Econ. 108 , 577–598 (1993).

Funk, R. J. & Owen-Smith, J. A dynamic network measure of technological change. Manage. Sci. 63 , 791–817 (2017).

Yegros-Yegros, A., Rafols, I. & D’este, P. Does interdisciplinary research lead to higher citation impact? The different effect of proximal and distal interdisciplinarity. PLoS ONE 10 , e0135095 (2015).

Larivière, V., Haustein, S. & Börner, K. Long-distance interdisciplinarity leads to higher scientific impact. PLoS ONE 10 , e0122565 (2015).

Fleming, L., Greene, H., Li, G., Marx, M. & Yao, D. Government-funded research increasingly fuels innovation. Science 364 , 1139–1141 (2019).

Bowen, A. & Casadevall, A. Increasing disparities between resource inputs and outcomes, as measured by certain health deliverables, in biomedical research. Proc. Natl Acad. Sci. USA 112 , 11335–11340 (2015).

Li, D., Azoulay, P. & Sampat, B. N. The applied value of public investments in biomedical research. Science 356 , 78–81 (2017).

Lehman, H. C. Age and Achievement (Princeton Univ. Press, 2017).

Simonton, D. K. Creative productivity: a predictive and explanatory model of career trajectories and landmarks. Psychol. Rev. 104 , 66 (1997).

Duch, J. et al. The possible role of resource requirements and academic career-choice risk on gender differences in publication rate and impact. PLoS ONE 7 , e51332 (2012).

Wang, Y., Jones, B. F. & Wang, D. Early-career setback and future career impact. Nat. Commun. 10 , 4331 (2019).

Bol, T., de Vaan, M. & van de Rijt, A. The Matthew effect in science funding. Proc. Natl Acad. Sci. USA 115 , 4887–4890 (2018).

Jones, B. F. Age and great invention. Rev. Econ. Stat. 92 , 1–14 (2010).

Newman, M. Networks (Oxford Univ. Press, 2018).

Mazloumian, A., Eom, Y.-H., Helbing, D., Lozano, S. & Fortunato, S. How citation boosts promote scientific paradigm shifts and nobel prizes. PLoS ONE 6 , e18975 (2011).

Hirsch, J. E. An index to quantify an individual’s scientific research output. Proc. Natl Acad. Sci. USA 102 , 16569–16572 (2005).

Alonso, S., Cabrerizo, F. J., Herrera-Viedma, E. & Herrera, F. h-index: a review focused in its variants, computation and standardization for different scientific fields. J. Informetr. 3 , 273–289 (2009).

Egghe, L. An improvement of the h-index: the g-index. ISSI Newsl. 2 , 8–9 (2006).

Kaur, J., Radicchi, F. & Menczer, F. Universality of scholarly impact metrics. J. Informetr. 7 , 924–932 (2013).

Majeti, D. et al. Scholar plot: design and evaluation of an information interface for faculty research performance. Front. Res. Metr. Anal. 4 , 6 (2020).

Sidiropoulos, A., Katsaros, D. & Manolopoulos, Y. Generalized Hirsch h-index for disclosing latent facts in citation networks. Scientometrics 72 , 253–280 (2007).

Jones, B. F. & Weinberg, B. A. Age dynamics in scientific creativity. Proc. Natl Acad. Sci. USA 108 , 18910–18914 (2011).

Dennis, W. Age and productivity among scientists. Science 123 , 724–725 (1956).

Sanyal, D. K., Bhowmick, P. K. & Das, P. P. A review of author name disambiguation techniques for the PubMed bibliographic database. J. Inf. Sci. 47 , 227–254 (2021).

Haak, L. L., Fenner, M., Paglione, L., Pentz, E. & Ratner, H. ORCID: a system to uniquely identify researchers. Learn. Publ. 25 , 259–264 (2012).

Malmgren, R. D., Ottino, J. M. & Amaral, L. A. N. The role of mentorship in protégé performance. Nature 465 , 662–667 (2010).

Oettl, A. Reconceptualizing stars: scientist helpfulness and peer performance. Manage. Sci. 58 , 1122–1140 (2012).

Morgan, A. C. et al. The unequal impact of parenthood in academia. Sci. Adv. 7 , eabd1996 (2021).

Morgan, A. C. et al. Socioeconomic roots of academic faculty. Nat. Hum. Behav. 6 , 1625–1633 (2022).

San Francisco Declaration on Research Assessment (DORA) (American Society for Cell Biology, 2012).

Falk‐Krzesinski, H. J. et al. Advancing the science of team science. Clin. Transl. Sci. 3 , 263–266 (2010).

Cooke, N. J. et al. Enhancing the Effectiveness of Team Science (National Academies Press, 2015).

Börner, K. et al. A multi-level systems perspective for the science of team science. Sci. Transl. Med. 2 , 49cm24 (2010).

Leahey, E. From sole investigator to team scientist: trends in the practice and study of research collaboration. Annu. Rev. Sociol. 42 , 81–100 (2016).

AlShebli, B. K., Rahwan, T. & Woon, W. L. The preeminence of ethnic diversity in scientific collaboration. Nat. Commun. 9 , 5163 (2018).

Hsiehchen, D., Espinoza, M. & Hsieh, A. Multinational teams and diseconomies of scale in collaborative research. Sci. Adv. 1 , e1500211 (2015).

Koning, R., Samila, S. & Ferguson, J.-P. Who do we invent for? Patents by women focus more on women’s health, but few women get to invent. Science 372 , 1345–1348 (2021).

Barabâsi, A.-L. et al. Evolution of the social network of scientific collaborations. Physica A 311 , 590–614 (2002).

Newman, M. E. Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E 64 , 016131 (2001).

Newman, M. E. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64 , 016132 (2001).

Palla, G., Barabási, A.-L. & Vicsek, T. Quantifying social group evolution. Nature 446 , 664–667 (2007).

Ross, M. B. et al. Women are credited less in science than men. Nature 608 , 135–145 (2022).

Shen, H.-W. & Barabási, A.-L. Collective credit allocation in science. Proc. Natl Acad. Sci. USA 111 , 12325–12330 (2014).

Merton, R. K. Matthew effect in science. Science 159 , 56–63 (1968).

Ni, C., Smith, E., Yuan, H., Larivière, V. & Sugimoto, C. R. The gendered nature of authorship. Sci. Adv. 7 , eabe4639 (2021).

Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N. & Malone, T. W. Evidence for a collective intelligence factor in the performance of human groups. Science 330 , 686–688 (2010).

Feldon, D. F. et al. Postdocs’ lab engagement predicts trajectories of PhD students’ skill development. Proc. Natl Acad. Sci. USA 116 , 20910–20916 (2019).

Boudreau, K. J. et al. A field experiment on search costs and the formation of scientific collaborations. Rev. Econ. Stat. 99 , 565–576 (2017).

Holcombe, A. O. Contributorship, not authorship: use CRediT to indicate who did what. Publications 7 , 48 (2019).

Murray, D. et al. Unsupervised embedding of trajectories captures the latent structure of mobility. Preprint at https://doi.org/10.48550/arXiv.2012.02785 (2020).

Deville, P. et al. Career on the move: geography, stratification, and scientific impact. Sci. Rep. 4 , 4770 (2014).

Edmunds, L. D. et al. Why do women choose or reject careers in academic medicine? A narrative review of empirical evidence. Lancet 388 , 2948–2958 (2016).

Waldinger, F. Peer effects in science: evidence from the dismissal of scientists in Nazi Germany. Rev. Econ. Stud. 79 , 838–861 (2012).

Agrawal, A., McHale, J. & Oettl, A. How stars matter: recruiting and peer effects in evolutionary biology. Res. Policy 46 , 853–867 (2017).

Fiore, S. M. Interdisciplinarity as teamwork: how the science of teams can inform team science. Small Group Res. 39 , 251–277 (2008).

Hvide, H. K. & Jones, B. F. University innovation and the professor’s privilege. Am. Econ. Rev. 108 , 1860–1898 (2018).

Murray, F., Aghion, P., Dewatripont, M., Kolev, J. & Stern, S. Of mice and academics: examining the effect of openness on innovation. Am. Econ. J. Econ. Policy 8 , 212–252 (2016).

Radicchi, F., Fortunato, S. & Castellano, C. Universality of citation distributions: toward an objective measure of scientific impact. Proc. Natl Acad. Sci. USA 105 , 17268–17272 (2008).

Waltman, L., van Eck, N. J. & van Raan, A. F. Universality of citation distributions revisited. J. Am. Soc. Inf. Sci. Technol. 63 , 72–77 (2012).

Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286 , 509–512 (1999).

de Solla Price, D. A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inf. Sci. 27 , 292–306 (1976).

Cole, S. Age and scientific performance. Am. J. Sociol. 84 , 958–977 (1979).

Ke, Q., Ferrara, E., Radicchi, F. & Flammini, A. Defining and identifying sleeping beauties in science. Proc. Natl Acad. Sci. USA 112 , 7426–7431 (2015).

Bornmann, L., de Moya Anegón, F. & Leydesdorff, L. Do scientific advancements lean on the shoulders of giants? A bibliometric investigation of the Ortega hypothesis. PLoS ONE 5 , e13327 (2010).

Mukherjee, S., Romero, D. M., Jones, B. & Uzzi, B. The nearly universal link between the age of past knowledge and tomorrow’s breakthroughs in science and technology: the hotspot. Sci. Adv. 3 , e1601315 (2017).

Packalen, M. & Bhattacharya, J. NIH funding and the pursuit of edge science. Proc. Natl Acad. Sci. USA 117 , 12011–12016 (2020).

Zeng, A., Fan, Y., Di, Z., Wang, Y. & Havlin, S. Fresh teams are associated with original and multidisciplinary research. Nat. Hum. Behav. 5 , 1314–1322 (2021).

Newman, M. E. The structure of scientific collaboration networks. Proc. Natl Acad. Sci. USA 98 , 404–409 (2001).

Larivière, V., Ni, C., Gingras, Y., Cronin, B. & Sugimoto, C. R. Bibliometrics: global gender disparities in science. Nature 504 , 211–213 (2013).

West, J. D., Jacquet, J., King, M. M., Correll, S. J. & Bergstrom, C. T. The role of gender in scholarly authorship. PLoS ONE 8 , e66212 (2013).

Gao, J., Yin, Y., Myers, K. R., Lakhani, K. R. & Wang, D. Potentially long-lasting effects of the pandemic on scientists. Nat. Commun. 12 , 6188 (2021).

Jones, B. F., Wuchty, S. & Uzzi, B. Multi-university research teams: shifting impact, geography, and stratification in science. Science 322 , 1259–1262 (2008).

Chu, J. S. & Evans, J. A. Slowed canonical progress in large fields of science. Proc. Natl Acad. Sci. USA 118 , e2021636118 (2021).

Wang, J., Veugelers, R. & Stephan, P. Bias against novelty in science: a cautionary tale for users of bibliometric indicators. Res. Policy 46 , 1416–1436 (2017).

Stringer, M. J., Sales-Pardo, M. & Amaral, L. A. Statistical validation of a global model for the distribution of the ultimate number of citations accrued by papers published in a scientific journal. J. Assoc. Inf. Sci. Technol. 61 , 1377–1385 (2010).

Bianconi, G. & Barabási, A.-L. Bose-Einstein condensation in complex networks. Phys. Rev. Lett. 86 , 5632 (2001).

Bianconi, G. & Barabási, A.-L. Competition and multiscaling in evolving networks. Europhys. Lett. 54 , 436 (2001).

Yin, Y. & Wang, D. The time dimension of science: connecting the past to the future. J. Informetr. 11 , 608–621 (2017).

Pan, R. K., Petersen, A. M., Pammolli, F. & Fortunato, S. The memory of science: Inflation, myopia, and the knowledge network. J. Informetr. 12 , 656–678 (2018).

Yin, Y., Wang, Y., Evans, J. A. & Wang, D. Quantifying the dynamics of failure across science, startups and security. Nature 575 , 190–194 (2019).

Candia, C. & Uzzi, B. Quantifying the selective forgetting and integration of ideas in science and technology. Am. Psychol. 76 , 1067 (2021).

Milojević, S. Principles of scientific research team formation and evolution. Proc. Natl Acad. Sci. USA 111 , 3984–3989 (2014).

Guimera, R., Uzzi, B., Spiro, J. & Amaral, L. A. N. Team assembly mechanisms determine collaboration network structure and team performance. Science 308 , 697–702 (2005).

Newman, M. E. Coauthorship networks and patterns of scientific collaboration. Proc. Natl Acad. Sci. USA 101 , 5200–5205 (2004).

Newman, M. E. Clustering and preferential attachment in growing networks. Phys. Rev. E 64 , 025102 (2001).

Iacopini, I., Milojević, S. & Latora, V. Network dynamics of innovation processes. Phys. Rev. Lett. 120 , 048301 (2018).

Kuhn, T., Perc, M. & Helbing, D. Inheritance patterns in citation networks reveal scientific memes. Phys. Rev. 4 , 041036 (2014).

Jia, T., Wang, D. & Szymanski, B. K. Quantifying patterns of research-interest evolution. Nat. Hum. Behav. 1 , 0078 (2017).

Zeng, A. et al. Increasing trend of scientists to switch between topics. Nat. Commun. https://doi.org/10.1038/s41467-019-11401-8 (2019).

Siudem, G., Żogała-Siudem, B., Cena, A. & Gagolewski, M. Three dimensions of scientific impact. Proc. Natl Acad. Sci. USA 117 , 13896–13900 (2020).

Petersen, A. M. et al. Reputation and impact in academic careers. Proc. Natl Acad. Sci. USA 111 , 15316–15321 (2014).

Jin, C., Song, C., Bjelland, J., Canright, G. & Wang, D. Emergence of scaling in complex substitutive systems. Nat. Hum. Behav. 3 , 837–846 (2019).

Hofman, J. M. et al. Integrating explanation and prediction in computational social science. Nature 595 , 181–188 (2021).

Lazer, D. et al. Computational social science. Science 323 , 721–723 (2009).

Lazer, D. M. et al. Computational social science: obstacles and opportunities. Science 369 , 1060–1062 (2020).

Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74 , 47 (2002).

Newman, M. E. The structure and function of complex networks. SIAM Rev. 45 , 167–256 (2003).

Song, C., Qu, Z., Blumm, N. & Barabási, A.-L. Limits of predictability in human mobility. Science 327 , 1018–1021 (2010).

Alessandretti, L., Aslak, U. & Lehmann, S. The scales of human mobility. Nature 587 , 402–407 (2020).

Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86 , 3200 (2001).

Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87 , 925 (2015).

Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

Bishop, C. M. Pattern Recognition and Machine Learning (Springer, 2006).

Dong, Y., Johnson, R. A. & Chawla, N. V. Will this paper increase your h-index? Scientific impact prediction. In Proc. 8th ACM International Conference on Web Search and Data Mining, 149–158 (ACM 2015)

Xiao, S. et al. On modeling and predicting individual paper citation count over time. In IJCAI, 2676–2682 (IJCAI, 2016)

Fortunato, S. Community detection in graphs. Phys. Rep. 486 , 75–174 (2010).

Chen, C. Science mapping: a systematic review of the literature. J. Data Inf. Sci. 2 , 1–40 (2017).

CAS   Google Scholar  

Van Eck, N. J. & Waltman, L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 111 , 1053–1070 (2017).

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521 , 436–444 (2015).

Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577 , 706–710 (2020).

Krenn, M. & Zeilinger, A. Predicting research trends with semantic and neural networks with an application in quantum physics. Proc. Natl Acad. Sci. USA 117 , 1910–1916 (2020).

Iten, R., Metger, T., Wilming, H., Del Rio, L. & Renner, R. Discovering physical concepts with neural networks. Phys. Rev. Lett. 124 , 010508 (2020).

Guimerà, R. et al. A Bayesian machine scientist to aid in the solution of challenging scientific problems. Sci. Adv. 6 , eaav6971 (2020).

Segler, M. H., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555 , 604–610 (2018).

Ryu, J. Y., Kim, H. U. & Lee, S. Y. Deep learning improves prediction of drug–drug and drug–food interactions. Proc. Natl Acad. Sci. USA 115 , E4304–E4311 (2018).

Kermany, D. S. et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172 , 1122–1131.e9 (2018).

Peng, H., Ke, Q., Budak, C., Romero, D. M. & Ahn, Y.-Y. Neural embeddings of scholarly periodicals reveal complex disciplinary organizations. Sci. Adv. 7 , eabb9004 (2021).

Youyou, W., Yang, Y. & Uzzi, B. A discipline-wide investigation of the replicability of psychology papers over the past two decades. Proc. Natl Acad. Sci. USA 120 , e2208863120 (2023).

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K. & Galstyan, A. A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR) 54 , 1–35 (2021).

Way, S. F., Morgan, A. C., Larremore, D. B. & Clauset, A. Productivity, prominence, and the effects of academic environment. Proc. Natl Acad. Sci. USA 116 , 10729–10733 (2019).

Li, W., Aste, T., Caccioli, F. & Livan, G. Early coauthorship with top scientists predicts success in academic careers. Nat. Commun. 10 , 5170 (2019).

Hendry, D. F., Pagan, A. R. & Sargan, J. D. Dynamic specification. Handb. Econ. 2 , 1023–1100 (1984).

Jin, C., Ma, Y. & Uzzi, B. Scientific prizes and the extraordinary growth of scientific topics. Nat. Commun. 12 , 5619 (2021).

Azoulay, P., Ganguli, I. & Zivin, J. G. The mobility of elite life scientists: professional and personal determinants. Res. Policy 46 , 573–590 (2017).

Slavova, K., Fosfuri, A. & De Castro, J. O. Learning by hiring: the effects of scientists’ inbound mobility on research performance in academia. Organ. Sci. 27 , 72–89 (2016).

Sarsons, H. Recognition for group work: gender differences in academia. Am. Econ. Rev. 107 , 141–145 (2017).

Campbell, L. G., Mehtani, S., Dozier, M. E. & Rinehart, J. Gender-heterogeneous working groups produce higher quality science. PLoS ONE 8 , e79147 (2013).

Azoulay, P., Graff Zivin, J. S. & Wang, J. Superstar extinction. Q. J. Econ. 125 , 549–589 (2010).

Furman, J. L. & Stern, S. Climbing atop the shoulders of giants: the impact of institutions on cumulative research. Am. Econ. Rev. 101 , 1933–1963 (2011).

Williams, H. L. Intellectual property rights and innovation: evidence from the human genome. J. Polit. Econ. 121 , 1–27 (2013).

Rubin, A. & Rubin, E. Systematic Bias in the Progress of Research. J. Polit. Econ. 129 , 2666–2719 (2021).

Lu, S. F., Jin, G. Z., Uzzi, B. & Jones, B. The retraction penalty: evidence from the Web of Science. Sci. Rep. 3 , 3146 (2013).

Jin, G. Z., Jones, B., Lu, S. F. & Uzzi, B. The reverse Matthew effect: consequences of retraction in scientific teams. Rev. Econ. Stat. 101 , 492–506 (2019).

Azoulay, P., Bonatti, A. & Krieger, J. L. The career effects of scandal: evidence from scientific retractions. Res. Policy 46 , 1552–1569 (2017).

Goodman-Bacon, A. Difference-in-differences with variation in treatment timing. J. Econ. 225 , 254–277 (2021).

Callaway, B. & Sant’Anna, P. H. Difference-in-differences with multiple time periods. J. Econ. 225 , 200–230 (2021).

Hill, R. Searching for Superstars: Research Risk and Talent Discovery in Astronomy Working Paper (Massachusetts Institute of Technology, 2019).

Bagues, M., Sylos-Labini, M. & Zinovyeva, N. Does the gender composition of scientific committees matter? Am. Econ. Rev. 107 , 1207–1238 (2017).

Sampat, B. & Williams, H. L. How do patents affect follow-on innovation? Evidence from the human genome. Am. Econ. Rev. 109 , 203–236 (2019).

Moretti, E. & Wilson, D. J. The effect of state taxes on the geographical location of top earners: evidence from star scientists. Am. Econ. Rev. 107 , 1858–1903 (2017).

Jacob, B. A. & Lefgren, L. The impact of research grant funding on scientific productivity. J. Public Econ. 95 , 1168–1177 (2011).

Li, D. Expertise versus bias in evaluation: evidence from the NIH. Am. Econ. J. Appl. Econ. 9 , 60–92 (2017).

Pearl, J. Causal diagrams for empirical research. Biometrika 82 , 669–688 (1995).

Pearl, J. & Mackenzie, D. The Book of Why: The New Science of Cause and Effect (Basic Books, 2018).

Traag, V. A. Inferring the causal effect of journals on citations. Quant. Sci. Stud. 2 , 496–504 (2021).

Traag, V. & Waltman, L. Causal foundations of bias, disparity and fairness. Preprint at https://doi.org/10.48550/arXiv.2207.13665 (2022).

Imbens, G. W. Potential outcome and directed acyclic graph approaches to causality: relevance for empirical practice in economics. J. Econ. Lit. 58 , 1129–1179 (2020).

Heckman, J. J. & Pinto, R. Causality and Econometrics (National Bureau of Economic Research, 2022).

Aggarwal, I., Woolley, A. W., Chabris, C. F. & Malone, T. W. The impact of cognitive style diversity on implicit learning in teams. Front. Psychol. 10 , 112 (2019).

Balietti, S., Goldstone, R. L. & Helbing, D. Peer review and competition in the Art Exhibition Game. Proc. Natl Acad. Sci. USA 113 , 8414–8419 (2016).

Paulus, F. M., Rademacher, L., Schäfer, T. A. J., Müller-Pinzler, L. & Krach, S. Journal impact factor shapes scientists’ reward signal in the prospect of publication. PLoS ONE 10 , e0142537 (2015).

Williams, W. M. & Ceci, S. J. National hiring experiments reveal 2:1 faculty preference for women on STEM tenure track. Proc. Natl Acad. Sci. USA 112 , 5360–5365 (2015).

Collaboration, O. S. Estimating the reproducibility of psychological science. Science 349 , aac4716 (2015).

Camerer, C. F. et al. Evaluating replicability of laboratory experiments in economics. Science 351 , 1433–1436 (2016).

Camerer, C. F. et al. Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nat. Hum. Behav. 2 , 637–644 (2018).

Duflo, E. & Banerjee, A. Handbook of Field Experiments (Elsevier, 2017).

Tomkins, A., Zhang, M. & Heavlin, W. D. Reviewer bias in single versus double-blind peer review. Proc. Natl Acad. Sci. USA 114 , 12708–12713 (2017).

Blank, R. M. The effects of double-blind versus single-blind reviewing: experimental evidence from the American Economic Review. Am. Econ. Rev. 81 , 1041–1067 (1991).

Boudreau, K. J., Guinan, E. C., Lakhani, K. R. & Riedl, C. Looking across and looking beyond the knowledge frontier: intellectual distance, novelty, and resource allocation in science. Manage. Sci. 62 , 2765–2783 (2016).

Lane, J. et al. When Do Experts Listen to Other Experts? The Role of Negative Information in Expert Evaluations for Novel Projects Working Paper #21-007 (Harvard Business School, 2020).

Teplitskiy, M. et al. Do Experts Listen to Other Experts? Field Experimental Evidence from Scientific Peer Review (Harvard Business School, 2019).

Moss-Racusin, C. A., Dovidio, J. F., Brescoll, V. L., Graham, M. J. & Handelsman, J. Science faculty’s subtle gender biases favor male students. Proc. Natl Acad. Sci. USA 109 , 16474–16479 (2012).

Forscher, P. S., Cox, W. T., Brauer, M. & Devine, P. G. Little race or gender bias in an experiment of initial review of NIH R01 grant proposals. Nat. Hum. Behav. 3 , 257–264 (2019).

Dennehy, T. C. & Dasgupta, N. Female peer mentors early in college increase women’s positive academic experiences and retention in engineering. Proc. Natl Acad. Sci. USA 114 , 5964–5969 (2017).

Azoulay, P. Turn the scientific method on ourselves. Nature 484 , 31–32 (2012).

Download references

Acknowledgements

The authors thank all members of the Center for Science of Science and Innovation (CSSI) for invaluable comments. This work was supported by the Air Force Office of Scientific Research under award number FA9550-19-1-0354, National Science Foundation grant SBE 1829344, and the Alfred P. Sloan Foundation G-2019-12485.

Author information

Authors and affiliations.

Center for Science of Science and Innovation, Northwestern University, Evanston, IL, USA

Lu Liu, Benjamin F. Jones, Brian Uzzi & Dashun Wang

Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, USA

Kellogg School of Management, Northwestern University, Evanston, IL, USA

College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, USA

National Bureau of Economic Research, Cambridge, MA, USA

Benjamin F. Jones

Brookings Institution, Washington, DC, USA

McCormick School of Engineering, Northwestern University, Evanston, IL, USA

  • Dashun Wang

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Dashun Wang .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Human Behaviour thanks Ludo Waltman, Erin Leahey and Sarah Bratt for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article.

Liu, L., Jones, B.F., Uzzi, B. et al. Data, measurement and empirical methods in the science of science. Nat Hum Behav 7 , 1046–1058 (2023). https://doi.org/10.1038/s41562-023-01562-4

Download citation

Received : 30 June 2022

Accepted : 17 February 2023

Published : 01 June 2023

Issue Date : July 2023

DOI : https://doi.org/10.1038/s41562-023-01562-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Rescaling the disruption index reveals the universality of disruption distributions in science.

  • Alex J. Yang
  • Hongcun Gong
  • Sanhong Deng

Scientometrics (2024)

SciSciNet: A large-scale open data lake for the science of science research

Scientific Data (2023)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

empirical research quantitative

Canvas | University | Ask a Librarian

  • Library Homepage
  • Arrendale Library

Empirical Research: Quantitative & Qualitative

  • Quantitative vs. Qualitative
  • Empirical Research

What's the Difference Between Qualitative and Quantitative?

Distinguishing quantitative & qualitative methods, word clues to identify methods.

  • Reference Works for Social Sciences Research
  • Contact Us!

 Call us at 706-776-0111

  Chat with a Librarian

  Send Us Email

  Library Hours

What’s the Difference Between Qualitative and Quantitative Methods?

From: Suter, W. N. (2012). Qualitative Data, Analysis, and Design. In  Introduction to educational research: A critical thinking approach . SAGE Publications, Inc., www.galileo.usg.edu/redirect?inst=pie1&url=https://dx.doi.org/10.4135/9781483384443

The words in this table can be used to evaluate whether an article tends more toward the quantitative or qualitative domain. Well-written article abstracts will contain words like these to succinctly characterize the article's content.

Adapted from: McMillan, J. H. (2012).  Educational research: Fundamentals for the consumer  (6th ed.). Boston, MA: Pearson.

Search SAGE Research Methods for resources about qualitative methods

Search SAGE Research Methods for resources about quantitative methods

  • << Previous: Empirical Research
  • Next: Reference Works for Social Sciences Research >>
  • Last Updated: Mar 22, 2024 10:47 AM
  • URL: https://library.piedmont.edu/empirical-research
  • Ebooks & Online Video
  • New Materials
  • Renew Checkouts
  • Faculty Resources
  • Library Friends
  • Library Services
  • Our Mission
  • Library History
  • Ask a Librarian!
  • Making Citations
  • Working Online

Friend us on Facebook!

Arrendale Library Piedmont University 706-776-0111

What is Empirical Research? Definition, Methods, Examples

Appinio Research · 09.02.2024 · 36min read

What is Empirical Research Definition Methods Examples

Ever wondered how we gather the facts, unveil hidden truths, and make informed decisions in a world filled with questions? Empirical research holds the key.

In this guide, we'll delve deep into the art and science of empirical research, unraveling its methods, mysteries, and manifold applications. From defining the core principles to mastering data analysis and reporting findings, we're here to equip you with the knowledge and tools to navigate the empirical landscape.

What is Empirical Research?

Empirical research is the cornerstone of scientific inquiry, providing a systematic and structured approach to investigating the world around us. It is the process of gathering and analyzing empirical or observable data to test hypotheses, answer research questions, or gain insights into various phenomena. This form of research relies on evidence derived from direct observation or experimentation, allowing researchers to draw conclusions based on real-world data rather than purely theoretical or speculative reasoning.

Characteristics of Empirical Research

Empirical research is characterized by several key features:

  • Observation and Measurement : It involves the systematic observation or measurement of variables, events, or behaviors.
  • Data Collection : Researchers collect data through various methods, such as surveys, experiments, observations, or interviews.
  • Testable Hypotheses : Empirical research often starts with testable hypotheses that are evaluated using collected data.
  • Quantitative or Qualitative Data : Data can be quantitative (numerical) or qualitative (non-numerical), depending on the research design.
  • Statistical Analysis : Quantitative data often undergo statistical analysis to determine patterns , relationships, or significance.
  • Objectivity and Replicability : Empirical research strives for objectivity, minimizing researcher bias . It should be replicable, allowing other researchers to conduct the same study to verify results.
  • Conclusions and Generalizations : Empirical research generates findings based on data and aims to make generalizations about larger populations or phenomena.

Importance of Empirical Research

Empirical research plays a pivotal role in advancing knowledge across various disciplines. Its importance extends to academia, industry, and society as a whole. Here are several reasons why empirical research is essential:

  • Evidence-Based Knowledge : Empirical research provides a solid foundation of evidence-based knowledge. It enables us to test hypotheses, confirm or refute theories, and build a robust understanding of the world.
  • Scientific Progress : In the scientific community, empirical research fuels progress by expanding the boundaries of existing knowledge. It contributes to the development of theories and the formulation of new research questions.
  • Problem Solving : Empirical research is instrumental in addressing real-world problems and challenges. It offers insights and data-driven solutions to complex issues in fields like healthcare, economics, and environmental science.
  • Informed Decision-Making : In policymaking, business, and healthcare, empirical research informs decision-makers by providing data-driven insights. It guides strategies, investments, and policies for optimal outcomes.
  • Quality Assurance : Empirical research is essential for quality assurance and validation in various industries, including pharmaceuticals, manufacturing, and technology. It ensures that products and processes meet established standards.
  • Continuous Improvement : Businesses and organizations use empirical research to evaluate performance, customer satisfaction, and product effectiveness. This data-driven approach fosters continuous improvement and innovation.
  • Human Advancement : Empirical research in fields like medicine and psychology contributes to the betterment of human health and well-being. It leads to medical breakthroughs, improved therapies, and enhanced psychological interventions.
  • Critical Thinking and Problem Solving : Engaging in empirical research fosters critical thinking skills, problem-solving abilities, and a deep appreciation for evidence-based decision-making.

Empirical research empowers us to explore, understand, and improve the world around us. It forms the bedrock of scientific inquiry and drives progress in countless domains, shaping our understanding of both the natural and social sciences.

How to Conduct Empirical Research?

So, you've decided to dive into the world of empirical research. Let's begin by exploring the crucial steps involved in getting started with your research project.

1. Select a Research Topic

Selecting the right research topic is the cornerstone of a successful empirical study. It's essential to choose a topic that not only piques your interest but also aligns with your research goals and objectives. Here's how to go about it:

  • Identify Your Interests : Start by reflecting on your passions and interests. What topics fascinate you the most? Your enthusiasm will be your driving force throughout the research process.
  • Brainstorm Ideas : Engage in brainstorming sessions to generate potential research topics. Consider the questions you've always wanted to answer or the issues that intrigue you.
  • Relevance and Significance : Assess the relevance and significance of your chosen topic. Does it contribute to existing knowledge? Is it a pressing issue in your field of study or the broader community?
  • Feasibility : Evaluate the feasibility of your research topic. Do you have access to the necessary resources, data, and participants (if applicable)?

2. Formulate Research Questions

Once you've narrowed down your research topic, the next step is to formulate clear and precise research questions . These questions will guide your entire research process and shape your study's direction. To create effective research questions:

  • Specificity : Ensure that your research questions are specific and focused. Vague or overly broad questions can lead to inconclusive results.
  • Relevance : Your research questions should directly relate to your chosen topic. They should address gaps in knowledge or contribute to solving a particular problem.
  • Testability : Ensure that your questions are testable through empirical methods. You should be able to gather data and analyze it to answer these questions.
  • Avoid Bias : Craft your questions in a way that avoids leading or biased language. Maintain neutrality to uphold the integrity of your research.

3. Review Existing Literature

Before you embark on your empirical research journey, it's essential to immerse yourself in the existing body of literature related to your chosen topic. This step, often referred to as a literature review, serves several purposes:

  • Contextualization : Understand the historical context and current state of research in your field. What have previous studies found, and what questions remain unanswered?
  • Identifying Gaps : Identify gaps or areas where existing research falls short. These gaps will help you formulate meaningful research questions and hypotheses.
  • Theory Development : If your study is theoretical, consider how existing theories apply to your topic. If it's empirical, understand how previous studies have approached data collection and analysis.
  • Methodological Insights : Learn from the methodologies employed in previous research. What methods were successful, and what challenges did researchers face?

4. Define Variables

Variables are fundamental components of empirical research. They are the factors or characteristics that can change or be manipulated during your study. Properly defining and categorizing variables is crucial for the clarity and validity of your research. Here's what you need to know:

  • Independent Variables : These are the variables that you, as the researcher, manipulate or control. They are the "cause" in cause-and-effect relationships.
  • Dependent Variables : Dependent variables are the outcomes or responses that you measure or observe. They are the "effect" influenced by changes in independent variables.
  • Operational Definitions : To ensure consistency and clarity, provide operational definitions for your variables. Specify how you will measure or manipulate each variable.
  • Control Variables : In some studies, controlling for other variables that may influence your dependent variable is essential. These are known as control variables.

Understanding these foundational aspects of empirical research will set a solid foundation for the rest of your journey. Now that you've grasped the essentials of getting started, let's delve deeper into the intricacies of research design.

Empirical Research Design

Now that you've selected your research topic, formulated research questions, and defined your variables, it's time to delve into the heart of your empirical research journey – research design . This pivotal step determines how you will collect data and what methods you'll employ to answer your research questions. Let's explore the various facets of research design in detail.

Types of Empirical Research

Empirical research can take on several forms, each with its own unique approach and methodologies. Understanding the different types of empirical research will help you choose the most suitable design for your study. Here are some common types:

  • Experimental Research : In this type, researchers manipulate one or more independent variables to observe their impact on dependent variables. It's highly controlled and often conducted in a laboratory setting.
  • Observational Research : Observational research involves the systematic observation of subjects or phenomena without intervention. Researchers are passive observers, documenting behaviors, events, or patterns.
  • Survey Research : Surveys are used to collect data through structured questionnaires or interviews. This method is efficient for gathering information from a large number of participants.
  • Case Study Research : Case studies focus on in-depth exploration of one or a few cases. Researchers gather detailed information through various sources such as interviews, documents, and observations.
  • Qualitative Research : Qualitative research aims to understand behaviors, experiences, and opinions in depth. It often involves open-ended questions, interviews, and thematic analysis.
  • Quantitative Research : Quantitative research collects numerical data and relies on statistical analysis to draw conclusions. It involves structured questionnaires, experiments, and surveys.

Your choice of research type should align with your research questions and objectives. Experimental research, for example, is ideal for testing cause-and-effect relationships, while qualitative research is more suitable for exploring complex phenomena.

Experimental Design

Experimental research is a systematic approach to studying causal relationships. It's characterized by the manipulation of one or more independent variables while controlling for other factors. Here are some key aspects of experimental design:

  • Control and Experimental Groups : Participants are randomly assigned to either a control group or an experimental group. The independent variable is manipulated for the experimental group but not for the control group.
  • Randomization : Randomization is crucial to eliminate bias in group assignment. It ensures that each participant has an equal chance of being in either group.
  • Hypothesis Testing : Experimental research often involves hypothesis testing. Researchers formulate hypotheses about the expected effects of the independent variable and use statistical analysis to test these hypotheses.

Observational Design

Observational research entails careful and systematic observation of subjects or phenomena. It's advantageous when you want to understand natural behaviors or events. Key aspects of observational design include:

  • Participant Observation : Researchers immerse themselves in the environment they are studying. They become part of the group being observed, allowing for a deep understanding of behaviors.
  • Non-Participant Observation : In non-participant observation, researchers remain separate from the subjects. They observe and document behaviors without direct involvement.
  • Data Collection Methods : Observational research can involve various data collection methods, such as field notes, video recordings, photographs, or coding of observed behaviors.

Survey Design

Surveys are a popular choice for collecting data from a large number of participants. Effective survey design is essential to ensure the validity and reliability of your data. Consider the following:

  • Questionnaire Design : Create clear and concise questions that are easy for participants to understand. Avoid leading or biased questions.
  • Sampling Methods : Decide on the appropriate sampling method for your study, whether it's random, stratified, or convenience sampling.
  • Data Collection Tools : Choose the right tools for data collection, whether it's paper surveys, online questionnaires, or face-to-face interviews.

Case Study Design

Case studies are an in-depth exploration of one or a few cases to gain a deep understanding of a particular phenomenon. Key aspects of case study design include:

  • Single Case vs. Multiple Case Studies : Decide whether you'll focus on a single case or multiple cases. Single case studies are intensive and allow for detailed examination, while multiple case studies provide comparative insights.
  • Data Collection Methods : Gather data through interviews, observations, document analysis, or a combination of these methods.

Qualitative vs. Quantitative Research

In empirical research, you'll often encounter the distinction between qualitative and quantitative research . Here's a closer look at these two approaches:

  • Qualitative Research : Qualitative research seeks an in-depth understanding of human behavior, experiences, and perspectives. It involves open-ended questions, interviews, and the analysis of textual or narrative data. Qualitative research is exploratory and often used when the research question is complex and requires a nuanced understanding.
  • Quantitative Research : Quantitative research collects numerical data and employs statistical analysis to draw conclusions. It involves structured questionnaires, experiments, and surveys. Quantitative research is ideal for testing hypotheses and establishing cause-and-effect relationships.

Understanding the various research design options is crucial in determining the most appropriate approach for your study. Your choice should align with your research questions, objectives, and the nature of the phenomenon you're investigating.

Data Collection for Empirical Research

Now that you've established your research design, it's time to roll up your sleeves and collect the data that will fuel your empirical research. Effective data collection is essential for obtaining accurate and reliable results.

Sampling Methods

Sampling methods are critical in empirical research, as they determine the subset of individuals or elements from your target population that you will study. Here are some standard sampling methods:

  • Random Sampling : Random sampling ensures that every member of the population has an equal chance of being selected. It minimizes bias and is often used in quantitative research.
  • Stratified Sampling : Stratified sampling involves dividing the population into subgroups or strata based on specific characteristics (e.g., age, gender, location). Samples are then randomly selected from each stratum, ensuring representation of all subgroups.
  • Convenience Sampling : Convenience sampling involves selecting participants who are readily available or easily accessible. While it's convenient, it may introduce bias and limit the generalizability of results.
  • Snowball Sampling : Snowball sampling is instrumental when studying hard-to-reach or hidden populations. One participant leads you to another, creating a "snowball" effect. This method is common in qualitative research.
  • Purposive Sampling : In purposive sampling, researchers deliberately select participants who meet specific criteria relevant to their research questions. It's often used in qualitative studies to gather in-depth information.

The choice of sampling method depends on the nature of your research, available resources, and the degree of precision required. It's crucial to carefully consider your sampling strategy to ensure that your sample accurately represents your target population.

Data Collection Instruments

Data collection instruments are the tools you use to gather information from your participants or sources. These instruments should be designed to capture the data you need accurately. Here are some popular data collection instruments:

  • Questionnaires : Questionnaires consist of structured questions with predefined response options. When designing questionnaires, consider the clarity of questions, the order of questions, and the response format (e.g., Likert scale , multiple-choice).
  • Interviews : Interviews involve direct communication between the researcher and participants. They can be structured (with predetermined questions) or unstructured (open-ended). Effective interviews require active listening and probing for deeper insights.
  • Observations : Observations entail systematically and objectively recording behaviors, events, or phenomena. Researchers must establish clear criteria for what to observe, how to record observations, and when to observe.
  • Surveys : Surveys are a common data collection instrument for quantitative research. They can be administered through various means, including online surveys, paper surveys, and telephone surveys.
  • Documents and Archives : In some cases, data may be collected from existing documents, records, or archives. Ensure that the sources are reliable, relevant, and properly documented.

To streamline your process and gather insights with precision and efficiency, consider leveraging innovative tools like Appinio . With Appinio's intuitive platform, you can harness the power of real-time consumer data to inform your research decisions effectively. Whether you're conducting surveys, interviews, or observations, Appinio empowers you to define your target audience, collect data from diverse demographics, and analyze results seamlessly.

By incorporating Appinio into your data collection toolkit, you can unlock a world of possibilities and elevate the impact of your empirical research. Ready to revolutionize your approach to data collection?

Book a Demo

Data Collection Procedures

Data collection procedures outline the step-by-step process for gathering data. These procedures should be meticulously planned and executed to maintain the integrity of your research.

  • Training : If you have a research team, ensure that they are trained in data collection methods and protocols. Consistency in data collection is crucial.
  • Pilot Testing : Before launching your data collection, conduct a pilot test with a small group to identify any potential problems with your instruments or procedures. Make necessary adjustments based on feedback.
  • Data Recording : Establish a systematic method for recording data. This may include timestamps, codes, or identifiers for each data point.
  • Data Security : Safeguard the confidentiality and security of collected data. Ensure that only authorized individuals have access to the data.
  • Data Storage : Properly organize and store your data in a secure location, whether in physical or digital form. Back up data to prevent loss.

Ethical Considerations

Ethical considerations are paramount in empirical research, as they ensure the well-being and rights of participants are protected.

  • Informed Consent : Obtain informed consent from participants, providing clear information about the research purpose, procedures, risks, and their right to withdraw at any time.
  • Privacy and Confidentiality : Protect the privacy and confidentiality of participants. Ensure that data is anonymized and sensitive information is kept confidential.
  • Beneficence : Ensure that your research benefits participants and society while minimizing harm. Consider the potential risks and benefits of your study.
  • Honesty and Integrity : Conduct research with honesty and integrity. Report findings accurately and transparently, even if they are not what you expected.
  • Respect for Participants : Treat participants with respect, dignity, and sensitivity to cultural differences. Avoid any form of coercion or manipulation.
  • Institutional Review Board (IRB) : If required, seek approval from an IRB or ethics committee before conducting your research, particularly when working with human participants.

Adhering to ethical guidelines is not only essential for the ethical conduct of research but also crucial for the credibility and validity of your study. Ethical research practices build trust between researchers and participants and contribute to the advancement of knowledge with integrity.

With a solid understanding of data collection, including sampling methods, instruments, procedures, and ethical considerations, you are now well-equipped to gather the data needed to answer your research questions.

Empirical Research Data Analysis

Now comes the exciting phase of data analysis, where the raw data you've diligently collected starts to yield insights and answers to your research questions. We will explore the various aspects of data analysis, from preparing your data to drawing meaningful conclusions through statistics and visualization.

Data Preparation

Data preparation is the crucial first step in data analysis. It involves cleaning, organizing, and transforming your raw data into a format that is ready for analysis. Effective data preparation ensures the accuracy and reliability of your results.

  • Data Cleaning : Identify and rectify errors, missing values, and inconsistencies in your dataset. This may involve correcting typos, removing outliers, and imputing missing data.
  • Data Coding : Assign numerical values or codes to categorical variables to make them suitable for statistical analysis. For example, converting "Yes" and "No" to 1 and 0.
  • Data Transformation : Transform variables as needed to meet the assumptions of the statistical tests you plan to use. Common transformations include logarithmic or square root transformations.
  • Data Integration : If your data comes from multiple sources, integrate it into a unified dataset, ensuring that variables match and align.
  • Data Documentation : Maintain clear documentation of all data preparation steps, as well as the rationale behind each decision. This transparency is essential for replicability.

Effective data preparation lays the foundation for accurate and meaningful analysis. It allows you to trust the results that will follow in the subsequent stages.

Descriptive Statistics

Descriptive statistics help you summarize and make sense of your data by providing a clear overview of its key characteristics. These statistics are essential for understanding the central tendencies, variability, and distribution of your variables. Descriptive statistics include:

  • Measures of Central Tendency : These include the mean (average), median (middle value), and mode (most frequent value). They help you understand the typical or central value of your data.
  • Measures of Dispersion : Measures like the range, variance, and standard deviation provide insights into the spread or variability of your data points.
  • Frequency Distributions : Creating frequency distributions or histograms allows you to visualize the distribution of your data across different values or categories.

Descriptive statistics provide the initial insights needed to understand your data's basic characteristics, which can inform further analysis.

Inferential Statistics

Inferential statistics take your analysis to the next level by allowing you to make inferences or predictions about a larger population based on your sample data. These methods help you test hypotheses and draw meaningful conclusions. Key concepts in inferential statistics include:

  • Hypothesis Testing : Hypothesis tests (e.g., t-tests, chi-squared tests) help you determine whether observed differences or associations in your data are statistically significant or occurred by chance.
  • Confidence Intervals : Confidence intervals provide a range within which population parameters (e.g., population mean) are likely to fall based on your sample data.
  • Regression Analysis : Regression models (linear, logistic, etc.) help you explore relationships between variables and make predictions.
  • Analysis of Variance (ANOVA) : ANOVA tests are used to compare means between multiple groups, allowing you to assess whether differences are statistically significant.

Inferential statistics are powerful tools for drawing conclusions from your data and assessing the generalizability of your findings to the broader population.

Qualitative Data Analysis

Qualitative data analysis is employed when working with non-numerical data, such as text, interviews, or open-ended survey responses. It focuses on understanding the underlying themes, patterns, and meanings within qualitative data. Qualitative analysis techniques include:

  • Thematic Analysis : Identifying and analyzing recurring themes or patterns within textual data.
  • Content Analysis : Categorizing and coding qualitative data to extract meaningful insights.
  • Grounded Theory : Developing theories or frameworks based on emergent themes from the data.
  • Narrative Analysis : Examining the structure and content of narratives to uncover meaning.

Qualitative data analysis provides a rich and nuanced understanding of complex phenomena and human experiences.

Data Visualization

Data visualization is the art of representing data graphically to make complex information more understandable and accessible. Effective data visualization can reveal patterns, trends, and outliers in your data. Common types of data visualization include:

  • Bar Charts and Histograms : Used to display the distribution of categorical data or discrete data .
  • Line Charts : Ideal for showing trends and changes in data over time.
  • Scatter Plots : Visualize relationships and correlations between two variables.
  • Pie Charts : Display the composition of a whole in terms of its parts.
  • Heatmaps : Depict patterns and relationships in multidimensional data through color-coding.
  • Box Plots : Provide a summary of the data distribution, including outliers.
  • Interactive Dashboards : Create dynamic visualizations that allow users to explore data interactively.

Data visualization not only enhances your understanding of the data but also serves as a powerful communication tool to convey your findings to others.

As you embark on the data analysis phase of your empirical research, remember that the specific methods and techniques you choose will depend on your research questions, data type, and objectives. Effective data analysis transforms raw data into valuable insights, bringing you closer to the answers you seek.

How to Report Empirical Research Results?

At this stage, you get to share your empirical research findings with the world. Effective reporting and presentation of your results are crucial for communicating your research's impact and insights.

1. Write the Research Paper

Writing a research paper is the culmination of your empirical research journey. It's where you synthesize your findings, provide context, and contribute to the body of knowledge in your field.

  • Title and Abstract : Craft a clear and concise title that reflects your research's essence. The abstract should provide a brief summary of your research objectives, methods, findings, and implications.
  • Introduction : In the introduction, introduce your research topic, state your research questions or hypotheses, and explain the significance of your study. Provide context by discussing relevant literature.
  • Methods : Describe your research design, data collection methods, and sampling procedures. Be precise and transparent, allowing readers to understand how you conducted your study.
  • Results : Present your findings in a clear and organized manner. Use tables, graphs, and statistical analyses to support your results. Avoid interpreting your findings in this section; focus on the presentation of raw data.
  • Discussion : Interpret your findings and discuss their implications. Relate your results to your research questions and the existing literature. Address any limitations of your study and suggest avenues for future research.
  • Conclusion : Summarize the key points of your research and its significance. Restate your main findings and their implications.
  • References : Cite all sources used in your research following a specific citation style (e.g., APA, MLA, Chicago). Ensure accuracy and consistency in your citations.
  • Appendices : Include any supplementary material, such as questionnaires, data coding sheets, or additional analyses, in the appendices.

Writing a research paper is a skill that improves with practice. Ensure clarity, coherence, and conciseness in your writing to make your research accessible to a broader audience.

2. Create Visuals and Tables

Visuals and tables are powerful tools for presenting complex data in an accessible and understandable manner.

  • Clarity : Ensure that your visuals and tables are clear and easy to interpret. Use descriptive titles and labels.
  • Consistency : Maintain consistency in formatting, such as font size and style, across all visuals and tables.
  • Appropriateness : Choose the most suitable visual representation for your data. Bar charts, line graphs, and scatter plots work well for different types of data.
  • Simplicity : Avoid clutter and unnecessary details. Focus on conveying the main points.
  • Accessibility : Make sure your visuals and tables are accessible to a broad audience, including those with visual impairments.
  • Captions : Include informative captions that explain the significance of each visual or table.

Compelling visuals and tables enhance the reader's understanding of your research and can be the key to conveying complex information efficiently.

3. Interpret Findings

Interpreting your findings is where you bridge the gap between data and meaning. It's your opportunity to provide context, discuss implications, and offer insights. When interpreting your findings:

  • Relate to Research Questions : Discuss how your findings directly address your research questions or hypotheses.
  • Compare with Literature : Analyze how your results align with or deviate from previous research in your field. What insights can you draw from these comparisons?
  • Discuss Limitations : Be transparent about the limitations of your study. Address any constraints, biases, or potential sources of error.
  • Practical Implications : Explore the real-world implications of your findings. How can they be applied or inform decision-making?
  • Future Research Directions : Suggest areas for future research based on the gaps or unanswered questions that emerged from your study.

Interpreting findings goes beyond simply presenting data; it's about weaving a narrative that helps readers grasp the significance of your research in the broader context.

With your research paper written, structured, and enriched with visuals, and your findings expertly interpreted, you are now prepared to communicate your research effectively. Sharing your insights and contributing to the body of knowledge in your field is a significant accomplishment in empirical research.

Examples of Empirical Research

To solidify your understanding of empirical research, let's delve into some real-world examples across different fields. These examples will illustrate how empirical research is applied to gather data, analyze findings, and draw conclusions.

Social Sciences

In the realm of social sciences, consider a sociological study exploring the impact of socioeconomic status on educational attainment. Researchers gather data from a diverse group of individuals, including their family backgrounds, income levels, and academic achievements.

Through statistical analysis, they can identify correlations and trends, revealing whether individuals from lower socioeconomic backgrounds are less likely to attain higher levels of education. This empirical research helps shed light on societal inequalities and informs policymakers on potential interventions to address disparities in educational access.

Environmental Science

Environmental scientists often employ empirical research to assess the effects of environmental changes. For instance, researchers studying the impact of climate change on wildlife might collect data on animal populations, weather patterns, and habitat conditions over an extended period.

By analyzing this empirical data, they can identify correlations between climate fluctuations and changes in wildlife behavior, migration patterns, or population sizes. This empirical research is crucial for understanding the ecological consequences of climate change and informing conservation efforts.

Business and Economics

In the business world, empirical research is essential for making data-driven decisions. Consider a market research study conducted by a business seeking to launch a new product. They collect data through surveys , focus groups , and consumer behavior analysis.

By examining this empirical data, the company can gauge consumer preferences, demand, and potential market size. Empirical research in business helps guide product development, pricing strategies, and marketing campaigns, increasing the likelihood of a successful product launch.

Psychological studies frequently rely on empirical research to understand human behavior and cognition. For instance, a psychologist interested in examining the impact of stress on memory might design an experiment. Participants are exposed to stress-inducing situations, and their memory performance is assessed through various tasks.

By analyzing the data collected, the psychologist can determine whether stress has a significant effect on memory recall. This empirical research contributes to our understanding of the complex interplay between psychological factors and cognitive processes.

These examples highlight the versatility and applicability of empirical research across diverse fields. Whether in medicine, social sciences, environmental science, business, or psychology, empirical research serves as a fundamental tool for gaining insights, testing hypotheses, and driving advancements in knowledge and practice.

Conclusion for Empirical Research

Empirical research is a powerful tool for gaining insights, testing hypotheses, and making informed decisions. By following the steps outlined in this guide, you've learned how to select research topics, collect data, analyze findings, and effectively communicate your research to the world. Remember, empirical research is a journey of discovery, and each step you take brings you closer to a deeper understanding of the world around you. Whether you're a scientist, a student, or someone curious about the process, the principles of empirical research empower you to explore, learn, and contribute to the ever-expanding realm of knowledge.

How to Collect Data for Empirical Research?

Introducing Appinio , the real-time market research platform revolutionizing how companies gather consumer insights for their empirical research endeavors. With Appinio, you can conduct your own market research in minutes, gaining valuable data to fuel your data-driven decisions.

Appinio is more than just a market research platform; it's a catalyst for transforming the way you approach empirical research, making it exciting, intuitive, and seamlessly integrated into your decision-making process.

Here's why Appinio is the go-to solution for empirical research:

  • From Questions to Insights in Minutes : With Appinio's streamlined process, you can go from formulating your research questions to obtaining actionable insights in a matter of minutes, saving you time and effort.
  • Intuitive Platform for Everyone : No need for a PhD in research; Appinio's platform is designed to be intuitive and user-friendly, ensuring that anyone can navigate and utilize it effectively.
  • Rapid Response Times : With an average field time of under 23 minutes for 1,000 respondents, Appinio delivers rapid results, allowing you to gather data swiftly and efficiently.
  • Global Reach with Targeted Precision : With access to over 90 countries and the ability to define target groups based on 1200+ characteristics, Appinio empowers you to reach your desired audience with precision and ease.

Register now EN

Get free access to the platform!

Join the loop 💌

Be the first to hear about new updates, product news, and data insights. We'll send it all straight to your inbox.

Get the latest market research news straight to your inbox! 💌

Wait, there's more

Time Series Analysis Definition Types Techniques Examples

16.05.2024 | 30min read

Time Series Analysis: Definition, Types, Techniques, Examples

Experimental Research Definition Types Design Examples

14.05.2024 | 31min read

Experimental Research: Definition, Types, Design, Examples

Interval Scale Definition Characteristics Examples

07.05.2024 | 29min read

Interval Scale: Definition, Characteristics, Examples

empirical research quantitative

Get science-backed answers as you write with Paperpal's Research feature

Empirical Research: A Comprehensive Guide for Academics 

empirical research

Empirical research relies on gathering and studying real, observable data. The term ’empirical’ comes from the Greek word ’empeirikos,’ meaning ‘experienced’ or ‘based on experience.’ So, what is empirical research? Instead of using theories or opinions, empirical research depends on real data obtained through direct observation or experimentation. 

Why Empirical Research?

Empirical research plays a key role in checking or improving current theories, providing a systematic way to grow knowledge across different areas. By focusing on objectivity, it makes research findings more trustworthy, which is critical in research fields like medicine, psychology, economics, and public policy. In the end, the strengths of empirical research lie in deepening our awareness of the world and improving our capacity to tackle problems wisely. 1,2  

Qualitative and Quantitative Methods

There are two main types of empirical research methods – qualitative and quantitative. 3,4 Qualitative research delves into intricate phenomena using non-numerical data, such as interviews or observations, to offer in-depth insights into human experiences. In contrast, quantitative research analyzes numerical data to spot patterns and relationships, aiming for objectivity and the ability to apply findings to a wider context. 

Steps for Conducting Empirical Research

When it comes to conducting research, there are some simple steps that researchers can follow. 5,6  

  • Create Research Hypothesis:  Clearly state the specific question you want to answer or the hypothesis you want to explore in your study. 
  • Examine Existing Research:  Read and study existing research on your topic. Understand what’s already known, identify existing gaps in knowledge, and create a framework for your own study based on what you learn. 
  • Plan Your Study:  Decide how you’ll conduct your research—whether through qualitative methods, quantitative methods, or a mix of both. Choose suitable techniques like surveys, experiments, interviews, or observations based on your research question. 
  • Develop Research Instruments:  Create reliable research collection tools, such as surveys or questionnaires, to help you collate data. Ensure these tools are well-designed and effective. 
  • Collect Data:  Systematically gather the information you need for your research according to your study design and protocols using the chosen research methods. 
  • Data Analysis:  Analyze the collected data using suitable statistical or qualitative methods that align with your research question and objectives. 
  • Interpret Results:  Understand and explain the significance of your analysis results in the context of your research question or hypothesis. 
  • Draw Conclusions:  Summarize your findings and draw conclusions based on the evidence. Acknowledge any study limitations and propose areas for future research. 

Advantages of Empirical Research

Empirical research is valuable because it stays objective by relying on observable data, lessening the impact of personal biases. This objectivity boosts the trustworthiness of research findings. Also, using precise quantitative methods helps in accurate measurement and statistical analysis. This precision ensures researchers can draw reliable conclusions from numerical data, strengthening our understanding of the studied phenomena. 4  

Disadvantages of Empirical Research

While empirical research has notable strengths, researchers must also be aware of its limitations when deciding on the right research method for their study.4 One significant drawback of empirical research is the risk of oversimplifying complex phenomena, especially when relying solely on quantitative methods. These methods may struggle to capture the richness and nuances present in certain social, cultural, or psychological contexts. Another challenge is the potential for confounding variables or biases during data collection, impacting result accuracy.  

Tips for Empirical Writing

In empirical research, the writing is usually done in research papers, articles, or reports. The empirical writing follows a set structure, and each section has a specific role. Here are some tips for your empirical writing. 7   

  • Define Your Objectives:  When you write about your research, start by making your goals clear. Explain what you want to find out or prove in a simple and direct way. This helps guide your research and lets others know what you have set out to achieve. 
  • Be Specific in Your Literature Review:  In the part where you talk about what others have studied before you, focus on research that directly relates to your research question. Keep it short and pick studies that help explain why your research is important. This part sets the stage for your work. 
  • Explain Your Methods Clearly : When you talk about how you did your research (Methods), explain it in detail. Be clear about your research plan, who took part, and what you did; this helps others understand and trust your study. Also, be honest about any rules you follow to make sure your study is ethical and reproducible. 
  • Share Your Results Clearly : After doing your empirical research, share what you found in a simple way. Use tables or graphs to make it easier for your audience to understand your research. Also, talk about any numbers you found and clearly state if they are important or not. Ensure that others can see why your research findings matter. 
  • Talk About What Your Findings Mean:  In the part where you discuss your research results, explain what they mean. Discuss why your findings are important and if they connect to what others have found before. Be honest about any problems with your study and suggest ideas for more research in the future. 
  • Wrap It Up Clearly:  Finally, end your empirical research paper by summarizing what you found and why it’s important. Remind everyone why your study matters. Keep your writing clear and fix any mistakes before you share it. Ask someone you trust to read it and give you feedback before you finish. 

References:  

  • Empirical Research in the Social Sciences and Education, Penn State University Libraries. Available online at  https://guides.libraries.psu.edu/emp  
  • How to conduct empirical research, Emerald Publishing. Available online at  https://www.emeraldgrouppublishing.com/how-to/research-methods/conduct-empirical-research  
  • Empirical Research: Quantitative & Qualitative, Arrendale Library, Piedmont University. Available online at  https://library.piedmont.edu/empirical-research  
  • Bouchrika, I.  What Is Empirical Research? Definition, Types & Samples  in 2024. Research.com, January 2024. Available online at  https://research.com/research/what-is-empirical-research  
  • Quantitative and Empirical Research vs. Other Types of Research. California State University, April 2023. Available online at  https://libguides.csusb.edu/quantitative  
  • Empirical Research, Definitions, Methods, Types and Examples, Studocu.com website. Available online at  https://www.studocu.com/row/document/uganda-christian-university/it-research-methods/emperical-research-definitions-methods-types-and-examples/55333816  
  • Writing an Empirical Paper in APA Style. Psychology Writing Center, University of Washington. Available online at  https://psych.uw.edu/storage/writing_center/APApaper.pdf  

Paperpal is an AI writing assistant that help academics write better, faster with real-time suggestions for in-depth language and grammar correction. Trained on millions of research manuscripts enhanced by professional academic editors, Paperpal delivers human precision at machine speed.  

Try it for free or upgrade to  Paperpal Prime , which unlocks unlimited access to premium features like academic translation, paraphrasing, contextual synonyms, consistency checks and more. It’s like always having a professional academic editor by your side! Go beyond limitations and experience the future of academic writing.  Get Paperpal Prime now at just US$19 a month!  

Related Reads:

  • How to Write a Scientific Paper in 10 Steps 
  • What is a Literature Review? How to Write It (with Examples)
  • What is an Argumentative Essay? How to Write It (With Examples)
  • Ethical Research Practices For Research with Human Subjects

Ethics in Science: Importance, Principles & Guidelines 

Presenting research data effectively through tables and figures, you may also like, how to ace grant writing for research funding..., how to write a high-quality conference paper, how paperpal’s research feature helps you develop and..., how paperpal is enhancing academic productivity and accelerating..., how to write a successful book chapter for..., academic editing: how to self-edit academic text with..., 4 ways paperpal encourages responsible writing with ai, what are scholarly sources and where can you..., how to write a hypothesis types and examples , measuring academic success: definition & strategies for excellence.

TUS Logo

Research Methods

  • Helpful Links

Overview of Quantitative Research

  • Qualitative research
  • Qualitative vs Quantitative
  • Case Study Research
  • Ethics in social sciences research
  • Interviewing
  • Keywords for Searching Library catalogue
  • Business Research Methods
  • Empirical research

Quantitative research is generally empirical in nature; it relies upon observation and in some cases, experimentation. Quantitative research is usually highly structured, with results which have numerical values. These results can be compared with other number-based results. Sometimes, generalisations of wider populations in the form of hypotheses can be estimated with the collected data. Data is often analysed with statistical methods to avoid bias. 

Search the Library Catalogue for books on research methods. Use keywords such as:

  • research methods
  • methodology
  • statistical methods
  • quantitative research
  • quantitative methods
  • qualitative research
  • qualitative methods
  • Business research methods
  • Link to Academic writing guide
  • << Previous: Helpful Links
  • Next: Qualitative research >>
  • Last Updated: Mar 1, 2024 2:14 PM
  • URL: https://ait.libguides.com/researchmethods

Banner Image

Quantitative and Qualitative Research

  • I NEED TO . . .

What is Quantitative Research?

  • What is Qualitative Research?
  • Quantitative vs Qualitative
  • Step 1: Accessing CINAHL
  • Step 2: Create a Keyword Search
  • Step 3: Create a Subject Heading Search
  • Step 4: Repeat Steps 1-3 for Second Concept
  • Step 5: Repeat Steps 1-3 for Quantitative Terms
  • Step 6: Combining All Searches
  • Step 7: Adding Limiters
  • Step 8: Save Your Search!
  • What Kind of Article is This?
  • More Research Help This link opens in a new window

Quantitative methodology is the dominant research framework in the social sciences. It refers to a set of strategies, techniques and assumptions used to study psychological, social and economic processes through the exploration of numeric patterns . Quantitative research gathers a range of numeric data. Some of the numeric data is intrinsically quantitative (e.g. personal income), while in other cases the numeric structure is  imposed (e.g. ‘On a scale from 1 to 10, how depressed did you feel last week?’). The collection of quantitative information allows researchers to conduct simple to extremely sophisticated statistical analyses that aggregate the data (e.g. averages, percentages), show relationships among the data (e.g. ‘Students with lower grade point averages tend to score lower on a depression scale’) or compare across aggregated data (e.g. the USA has a higher gross domestic product than Spain). Quantitative research includes methodologies such as questionnaires, structured observations or experiments and stands in contrast to qualitative research. Qualitative research involves the collection and analysis of narratives and/or open-ended observations through methodologies such as interviews, focus groups or ethnographies.

Coghlan, D., Brydon-Miller, M. (2014).  The SAGE encyclopedia of action research  (Vols. 1-2). London, : SAGE Publications Ltd doi: 10.4135/9781446294406

What is the purpose of quantitative research?

The purpose of quantitative research is to generate knowledge and create understanding about the social world. Quantitative research is used by social scientists, including communication researchers, to observe phenomena or occurrences affecting individuals. Social scientists are concerned with the study of people. Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population.

Allen, M. (2017).  The SAGE encyclopedia of communication research methods  (Vols. 1-4). Thousand Oaks, CA: SAGE Publications, Inc doi: 10.4135/9781483381411

How do I know if the study is a quantitative design?  What type of quantitative study is it?

Quantitative Research Designs: Descriptive non-experimental, Quasi-experimental or Experimental?

Studies do not always explicitly state what kind of research design is being used.  You will need to know how to decipher which design type is used.  The following video will help you determine the quantitative design type.

  • << Previous: I NEED TO . . .
  • Next: What is Qualitative Research? >>
  • Last Updated: May 13, 2024 12:01 PM
  • URL: https://libguides.uta.edu/quantitative_and_qualitative_research

University of Texas Arlington Libraries 702 Planetarium Place · Arlington, TX 76019 · 817-272-3000

  • Internet Privacy
  • Accessibility
  • Problems with a guide? Contact Us.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Psychol

Quantitative and Qualitative Approaches to Generalization and Replication–A Representationalist View

In this paper, we provide a re-interpretation of qualitative and quantitative modeling from a representationalist perspective. In this view, both approaches attempt to construct abstract representations of empirical relational structures. Whereas quantitative research uses variable-based models that abstract from individual cases, qualitative research favors case-based models that abstract from individual characteristics. Variable-based models are usually stated in the form of quantified sentences (scientific laws). This syntactic structure implies that sentences about individual cases are derived using deductive reasoning. In contrast, case-based models are usually stated using context-dependent existential sentences (qualitative statements). This syntactic structure implies that sentences about other cases are justifiable by inductive reasoning. We apply this representationalist perspective to the problems of generalization and replication. Using the analytical framework of modal logic, we argue that the modes of reasoning are often not only applied to the context that has been studied empirically, but also on a between-contexts level. Consequently, quantitative researchers mostly adhere to a top-down strategy of generalization, whereas qualitative researchers usually follow a bottom-up strategy of generalization. Depending on which strategy is employed, the role of replication attempts is very different. In deductive reasoning, replication attempts serve as empirical tests of the underlying theory. Therefore, failed replications imply a faulty theory. From an inductive perspective, however, replication attempts serve to explore the scope of the theory. Consequently, failed replications do not question the theory per se , but help to shape its boundary conditions. We conclude that quantitative research may benefit from a bottom-up generalization strategy as it is employed in most qualitative research programs. Inductive reasoning forces us to think about the boundary conditions of our theories and provides a framework for generalization beyond statistical testing. In this perspective, failed replications are just as informative as successful replications, because they help to explore the scope of our theories.

Introduction

Qualitative and quantitative research strategies have long been treated as opposing paradigms. In recent years, there have been attempts to integrate both strategies. These “mixed methods” approaches treat qualitative and quantitative methodologies as complementary, rather than opposing, strategies (Creswell, 2015 ). However, whilst acknowledging that both strategies have their benefits, this “integration” remains purely pragmatic. Hence, mixed methods methodology does not provide a conceptual unification of the two approaches.

Lacking a common methodological background, qualitative and quantitative research methodologies have developed rather distinct standards with regard to the aims and scope of empirical science (Freeman et al., 2007 ). These different standards affect the way researchers handle contradictory empirical findings. For example, many empirical findings in psychology have failed to replicate in recent years (Klein et al., 2014 ; Open Science, Collaboration, 2015 ). This “replication crisis” has been discussed on statistical, theoretical and social grounds and continues to have a wide impact on quantitative research practices like, for example, open science initiatives, pre-registered studies and a re-evaluation of statistical significance testing (Everett and Earp, 2015 ; Maxwell et al., 2015 ; Shrout and Rodgers, 2018 ; Trafimow, 2018 ; Wiggins and Chrisopherson, 2019 ).

However, qualitative research seems to be hardly affected by this discussion. In this paper, we argue that the latter is a direct consequence of how the concept of generalizability is conceived in the two approaches. Whereas most of quantitative psychology is committed to a top-down strategy of generalization based on the idea of random sampling from an abstract population, qualitative studies usually rely on a bottom-up strategy of generalization that is grounded in the successive exploration of the field by means of theoretically sampled cases.

Here, we show that a common methodological framework for qualitative and quantitative research methodologies is possible. We accomplish this by introducing a formal description of quantitative and qualitative models from a representationalist perspective: both approaches can be reconstructed as special kinds of representations for empirical relational structures. We then use this framework to analyze the generalization strategies used in the two approaches. These turn out to be logically independent of the type of model. This has wide implications for psychological research. First, a top-down generalization strategy is compatible with a qualitative modeling approach. This implies that mainstream psychology may benefit from qualitative methods when a numerical representation turns out to be difficult or impossible, without the need to commit to a “qualitative” philosophy of science. Second, quantitative research may exploit the bottom-up generalization strategy that is inherent to many qualitative approaches. This offers a new perspective on unsuccessful replications by treating them not as scientific failures, but as a valuable source of information about the scope of a theory.

The Quantitative Strategy–Numbers and Functions

Quantitative science is about finding valid mathematical representations for empirical phenomena. In most cases, these mathematical representations have the form of functional relations between a set of variables. One major challenge of quantitative modeling consists in constructing valid measures for these variables. Formally, to measure a variable means to construct a numerical representation of the underlying empirical relational structure (Krantz et al., 1971 ). For example, take the behaviors of a group of students in a classroom: “to listen,” “to take notes,” and “to ask critical questions.” One may now ask whether is possible to assign numbers to the students, such that the relations between the assigned numbers are of the same kind as the relations between the values of an underlying variable, like e.g., “engagement.” The observed behaviors in the classroom constitute an empirical relational structure, in the sense that for every student-behavior tuple, one can observe whether it is true or not. These observations can be represented in a person × behavior matrix 1 (compare Figure 1 ). Given this relational structure satisfies certain conditions (i.e., the axioms of a measurement model), one can assign numbers to the students and the behaviors, such that the relations between the numbers resemble the corresponding numerical relations. For example, if there is a unique ordering in the empirical observations with regard to which person shows which behavior, the assigned numbers have to constitute a corresponding unique ordering, as well. Such an ordering coincides with the person × behavior matrix forming a triangle shaped relation and is formally represented by a Guttman scale (Guttman, 1944 ). There are various measurement models available for different empirical structures (Suppes et al., 1971 ). In the case of probabilistic relations, Item-Response models may be considered as a special kind of measurement model (Borsboom, 2005 ).

An external file that holds a picture, illustration, etc.
Object name is fpsyg-12-605191-g0001.jpg

Constructing a numerical representation from an empirical relational structure; Due to the unique ordering of persons with regard to behaviors (indicated by the triangular shape of the relation), it is possible to construct a Guttman scale by assigning a number to each of the individuals, representing the number of relevant behaviors shown by the individual. The resulting variable (“engagement”) can then be described by means of statistical analyses, like, e.g., plotting the frequency distribution.

Although essential, measurement is only the first step of quantitative modeling. Consider a slightly richer empirical structure, where we observe three additional behaviors: “to doodle,” “to chat,” and “to play.” Like above, one may ask, whether there is a unique ordering of the students with regard to these behaviors that can be represented by an underlying variable (i.e., whether the matrix forms a Guttman scale). If this is the case, we may assign corresponding numbers to the students and call this variable “distraction.” In our example, such a representation is possible. We can thus assign two numbers to each student, one representing his or her “engagement” and one representing his or her “distraction” (compare Figure 2 ). These measurements can now be used to construct a quantitative model by relating the two variables by a mathematical function. In the simplest case, this may be a linear function. This functional relation constitutes a quantitative model of the empirical relational structure under study (like, e.g., linear regression). Given the model equation and the rules for assigning the numbers (i.e., the instrumentations of the two variables), the set of admissible empirical structures is limited from all possible structures to a rather small subset. This constitutes the empirical content of the model 2 (Popper, 1935 ).

An external file that holds a picture, illustration, etc.
Object name is fpsyg-12-605191-g0002.jpg

Constructing a numerical model from an empirical relational structure; Since there are two distinct classes of behaviors that each form a Guttman scale, it is possible to assign two numbers to each individual, correspondingly. The resulting variables (“engagement” and “distraction”) can then be related by a mathematical function, which is indicated by the scatterplot and red line on the right hand side.

The Qualitative Strategy–Categories and Typologies

The predominant type of analysis in qualitative research consists in category formation. By constructing descriptive systems for empirical phenomena, it is possible to analyze the underlying empirical structure at a higher level of abstraction. The resulting categories (or types) constitute a conceptual frame for the interpretation of the observations. Qualitative researchers differ considerably in the way they collect and analyze data (Miles et al., 2014 ). However, despite the diverse research strategies followed by different qualitative methodologies, from a formal perspective, most approaches build on some kind of categorization of cases that share some common features. The process of category formation is essential in many qualitative methodologies, like, for example, qualitative content analysis, thematic analysis, grounded theory (see Flick, 2014 for an overview). Sometimes these features are directly observable (like in our classroom example), sometimes they are themselves the result of an interpretative process (e.g., Scheunpflug et al., 2016 ).

In contrast to quantitative methodologies, there have been little attempts to formalize qualitative research strategies (compare, however, Rihoux and Ragin, 2009 ). However, there are several statistical approaches to non-numerical data that deal with constructing abstract categories and establishing relations between these categories (Agresti, 2013 ). Some of these methods are very similar to qualitative category formation on a conceptual level. For example, cluster analysis groups cases into homogenous categories (clusters) based on their similarity on a distance metric.

Although category formation can be formalized in a mathematically rigorous way (Ganter and Wille, 1999 ), qualitative research hardly acknowledges these approaches. 3 However, in order to find a common ground with quantitative science, it is certainly helpful to provide a formal interpretation of category systems.

Let us reconsider the above example of students in a classroom. The quantitative strategy was to assign numbers to the students with regard to variables and to relate these variables via a mathematical function. We can analyze the same empirical structure by grouping the behaviors to form abstract categories. If the aim is to construct an empirically valid category system, this grouping is subject to constraints, analogous to those used to specify a measurement model. The first and most important constraint is that the behaviors must form equivalence classes, i.e., within categories, behaviors need to be equivalent, and across categories, they need to be distinct (formally, the relational structure must obey the axioms of an equivalence relation). When objects are grouped into equivalence classes, it is essential to specify the criterion for empirical equivalence. In qualitative methodology, this is sometimes referred to as the tertium comparationis (Flick, 2014 ). One possible criterion is to group behaviors such that they constitute a set of specific common attributes of a group of people. In our example, we might group the behaviors “to listen,” “to take notes,” and “to doodle,” because these behaviors are common to the cases B, C, and D, and they are also specific for these cases, because no other person shows this particular combination of behaviors. The set of common behaviors then forms an abstract concept (e.g., “moderate distraction”), while the set of persons that show this configuration form a type (e.g., “the silent dreamer”). Formally, this means to identify the maximal rectangles in the underlying empirical relational structure (see Figure 3 ). This procedure is very similar to the way we constructed a Guttman scale, the only difference being that we now use different aspects of the empirical relational structure. 4 In fact, the set of maximal rectangles can be determined by an automated algorithm (Ganter, 2010 ), just like the dimensionality of an empirical structure can be explored by psychometric scaling methods. Consequently, we can identify the empirical content of a category system or a typology as the set of empirical structures that conforms to it. 5 Whereas the quantitative strategy was to search for scalable sub-matrices and then relate the constructed variables by a mathematical function, the qualitative strategy is to construct an empirical typology by grouping cases based on their specific similarities. These types can then be related to one another by a conceptual model that describes their semantic and empirical overlap (see Figure 3 , right hand side).

An external file that holds a picture, illustration, etc.
Object name is fpsyg-12-605191-g0003.jpg

Constructing a conceptual model from an empirical relational structure; Individual behaviors are grouped to form abstract types based on them being shared among a specific subset of the cases. Each type constitutes a set of specific commonalities of a class of individuals (this is indicated by the rectangles on the left hand side). The resulting types (“active learner,” “silent dreamer,” “distracted listener,” and “troublemaker”) can then be related to one another to explicate their semantic and empirical overlap, as indicated by the Venn-diagram on the right hand side.

Variable-Based Models and Case-Based Models

In the previous section, we have argued that qualitative category formation and quantitative measurement can both be characterized as methods to construct abstract representations of empirical relational structures. Instead of focusing on different philosophical approaches to empirical science, we tried to stress the formal similarities between both approaches. However, it is worth also exploring the dissimilarities from a formal perspective.

Following the above analysis, the quantitative approach can be characterized by the use of variable-based models, whereas the qualitative approach is characterized by case-based models (Ragin, 1987 ). Formally, we can identify the rows of an empirical person × behavior matrix with a person-space, and the columns with a corresponding behavior-space. A variable-based model abstracts from the single individuals in a person-space to describe the structure of behaviors on a population level. A case-based model, on the contrary, abstracts from the single behaviors in a behavior-space to describe individual case configurations on the level of abstract categories (see Table 1 ).

Variable-based models and case-based models.

From a representational perspective, there is no a priori reason to favor one type of model over the other. Both approaches provide different analytical tools to construct an abstract representation of an empirical relational structure. However, since the two modeling approaches make use of different information (person-space vs. behavior-space), this comes with some important implications for the researcher employing one of the two strategies. These are concerned with the role of deductive and inductive reasoning.

In variable-based models, empirical structures are represented by functional relations between variables. These are usually stated as scientific laws (Carnap, 1928 ). Formally, these laws correspond to logical expressions of the form

In plain text, this means that y is a function of x for all objects i in the relational structure under consideration. For example, in the above example, one may formulate the following law: for all students in the classroom it holds that “distraction” is a monotone decreasing function of “engagement.” Such a law can be used to derive predictions for single individuals by means of logical deduction: if the above law applies to all students in the classroom, it is possible to calculate the expected distraction from a student's engagement. An empirical observation can now be evaluated against this prediction. If the prediction turns out to be false, the law can be refuted based on the principle of falsification (Popper, 1935 ). If a scientific law repeatedly withstands such empirical tests, it may be considered to be valid with regard to the relational structure under consideration.

In case-based models, there are no laws about a population, because the model does not abstract from the cases but from the observed behaviors. A case-based model describes the underlying structure in terms of existential sentences. Formally, this corresponds to a logical expression of the form

In plain text, this means that there is at least one case i for which the condition XYZ holds. For example, the above category system implies that there is at least one active learner. This is a statement about a singular observation. It is impossible to deduce a statement about another person from an existential sentence like this. Therefore, the strategy of falsification cannot be applied to test the model's validity in a specific context. If one wishes to generalize to other cases, this is accomplished by inductive reasoning, instead. If we observed one person that fulfills the criteria of calling him or her an active learner, we can hypothesize that there may be other persons that are identical to the observed case in this respect. However, we do not arrive at this conclusion by logical deduction, but by induction.

Despite this important distinction, it would be wrong to conclude that variable-based models are intrinsically deductive and case-based models are intrinsically inductive. 6 Both types of reasoning apply to both types of models, but on different levels. Based on a person-space, in a variable-based model one can use deduction to derive statements about individual persons from abstract population laws. There is an analogous way of reasoning for case-based models: because they are based on a behavior space, it is possible to deduce statements about singular behaviors. For example, if we know that Peter is an active learner, we can deduce that he takes notes in the classroom. This kind of deductive reasoning can also be applied on a higher level of abstraction to deduce thematic categories from theoretical assumptions (Braun and Clarke, 2006 ). Similarly, there is an analog for inductive generalization from the perspective of variable-based modeling: since the laws are only quantified over the person-space, generalizations to other behaviors rely on inductive reasoning. For example, it is plausible to assume that highly engaged students tend to do their homework properly–however, in our example this behavior has never been observed. Hence, in variable-based models we usually generalize to other behaviors by means of induction. This kind of inductive reasoning is very common when empirical results are generalized from the laboratory to other behavioral domains.

Although inductive and deductive reasoning are used in qualitative and quantitative research, it is important to stress the different roles of induction and deduction when models are applied to cases. A variable-based approach implies to draw conclusions about cases by means of logical deduction; a case-based approach implies to draw conclusions about cases by means of inductive reasoning. In the following, we build on this distinction to differentiate between qualitative (bottom-up) and quantitative (top-down) strategies of generalization.

Generalization and the Problem of Replication

We will now extend the formal analysis of quantitative and qualitative approaches to the question of generalization and replicability of empirical findings. For this sake, we have to introduce some concepts of formal logic. Formal logic is concerned with the validity of arguments. It provides conditions to evaluate whether certain sentences (conclusions) can be derived from other sentences (premises). In this context, a theory is nothing but a set of sentences (also called axioms). Formal logic provides tools to derive new sentences that must be true, given the axioms are true (Smith, 2020 ). These derived sentences are called theorems or, in the context of empirical science, predictions or hypotheses . On the syntactic level, the rules of logic only state how to evaluate the truth of a sentence relative to its premises. Whether or not sentences are actually true, is formally specified by logical semantics.

On the semantic level, formal logic is intrinsically linked to set-theory. For example, a logical statement like “all dogs are mammals,” is true if and only if the set of dogs is a subset of the set of mammals. Similarly, the sentence “all chatting students doodle” is true if and only if the set of chatting students is a subset of the set of doodling students (compare Figure 3 ). Whereas, the first sentence is analytically true due to the way we define the words “dog” and “mammal,” the latter can be either true or false, depending on the relational structure we actually observe. We can thus interpret an empirical relational structure as the truth criterion of a scientific theory. From a logical point of view, this corresponds to the semantics of a theory. As shown above, variable-based and case-based models both give a formal representation of the same kinds of empirical structures. Accordingly, both types of models can be stated as formal theories. In the variable-based approach, this corresponds to a set of scientific laws that are quantified over the members of an abstract population (these are the axioms of the theory). In the case-based approach, this corresponds to a set of abstract existential statements about a specific class of individuals.

In contrast to mathematical axiom systems, empirical theories are usually not considered to be necessarily true. This means that even if we find no evidence against a theory, it is still possible that it is actually wrong. We may know that a theory is valid in some contexts, yet it may fail when applied to a new set of behaviors (e.g., if we use a different instrumentation to measure a variable) or a new population (e.g., if we draw a new sample).

From a logical perspective, the possibility that a theory may turn out to be false stems from the problem of contingency . A statement is contingent, if it is both, possibly true and possibly false. Formally, we introduce two modal operators: □ to designate logical necessity, and ◇ to designate logical possibility. Semantically, these operators are very similar to the existential quantifier, ∃, and the universal quantifier, ∀. Whereas ∃ and ∀ refer to the individual objects within one relational structure, the modal operators □ and ◇ range over so-called possible worlds : a statement is possibly true, if and only if it is true in at least one accessible possible world, and a statement is necessarily true if and only if it is true in every accessible possible world (Hughes and Cresswell, 1996 ). Logically, possible worlds are mathematical abstractions, each consisting of a relational structure. Taken together, the relational structures of all accessible possible worlds constitute the formal semantics of necessity, possibility and contingency. 7

In the context of an empirical theory, each possible world may be identified with an empirical relational structure like the above classroom example. Given the set of intended applications of a theory (the scope of the theory, one may say), we can now construct possible world semantics for an empirical theory: each intended application of the theory corresponds to a possible world. For example, a quantified sentence like “all chatting students doodle” may be true in one classroom and false in another one. In terms of possible worlds, this would correspond to a statement of contingency: “it is possible that all chatting students doodle in one classroom, and it is possible that they don't in another classroom.” Note that in the above expression, “all students” refers to the students in only one possible world, whereas “it is possible” refers to the fact that there is at least one possible world for each of the specified cases.

To apply these possible world semantics to quantitative research, let us reconsider how generalization to other cases works in variable-based models. Due to the syntactic structure of quantitative laws, we can deduce predictions for singular observations from an expression of the form ∀ i : y i = f ( x i ). Formally, the logical quantifier ∀ ranges only over the objects of the corresponding empirical relational structure (in our example this would refer to the students in the observed classroom). But what if we want to generalize beyond the empirical structure we actually observed? The standard procedure is to assume an infinitely large, abstract population from which a random sample is drawn. Given the truth of the theory, we can deduce predictions about what we may observe in the sample. Since usually we deal with probabilistic models, we can evaluate our theory by means of the conditional probability of the observations, given the theory holds. This concept of conditional probability is the foundation of statistical significance tests (Hogg et al., 2013 ), as well as Bayesian estimation (Watanabe, 2018 ). In terms of possible world semantics, the random sampling model implies that all possible worlds (i.e., all intended applications) can be conceived as empirical sub-structures from a greater population structure. For example, the empirical relational structure constituted by the observed behaviors in a classroom would be conceived as a sub-matrix of the population person × behavior matrix. It follows that, if a scientific law is true in the population, it will be true in all possible worlds, i.e., it will be necessarily true. Formally, this corresponds to an expression of the form

The statistical generalization model thus constitutes a top-down strategy for dealing with individual contexts that is analogous to the way variable-based models are applied to individual cases (compare Table 1 ). Consequently, if we apply a variable-based model to a new context and find out that it does not fit the data (i.e., there is a statistically significant deviation from the model predictions), we have reason to doubt the validity of the theory. This is what makes the problem of low replicability so important: we observe that the predictions are wrong in a new study; and because we apply a top-down strategy of generalization to contexts beyond the ones we observed, we see our whole theory at stake.

Qualitative research, on the contrary, follows a different strategy of generalization. Since case-based models are formulated by a set of context-specific existential sentences, there is no need for universal truth or necessity. In contrast to statistical generalization to other cases by means of random sampling from an abstract population, the usual strategy in case-based modeling is to employ a bottom-up strategy of generalization that is analogous to the way case-based models are applied to individual cases. Formally, this may be expressed by stating that the observed qualia exist in at least one possible world, i.e., the theory is possibly true:

This statement is analogous to the way we apply case-based models to individual cases (compare Table 1 ). Consequently, the set of intended applications of the theory does not follow from a sampling model, but from theoretical assumptions about which cases may be similar to the observed cases with respect to certain relevant characteristics. For example, if we observe that certain behaviors occur together in one classroom, following a bottom-up strategy of generalization, we will hypothesize why this might be the case. If we do not replicate this finding in another context, this does not question the model itself, since it was a context-specific theory all along. Instead, we will revise our hypothetical assumptions about why the new context is apparently less similar to the first one than we originally thought. Therefore, if an empirical finding does not replicate, we are more concerned about our understanding of the cases than about the validity of our theory.

Whereas statistical generalization provides us with a formal (and thus somehow more objective) apparatus to evaluate the universal validity of our theories, the bottom-up strategy forces us to think about the class of intended applications on theoretical grounds. This means that we have to ask: what are the boundary conditions of our theory? In the above classroom example, following a bottom-up strategy, we would build on our preliminary understanding of the cases in one context (e.g., a public school) to search for similar and contrasting cases in other contexts (e.g., a private school). We would then re-evaluate our theoretical description of the data and explore what makes cases similar or dissimilar with regard to our theory. This enables us to expand the class of intended applications alongside with the theory.

Of course, none of these strategies is superior per se . Nevertheless, they rely on different assumptions and may thus be more or less adequate in different contexts. The statistical strategy relies on the assumption of a universal population and invariant measurements. This means, we assume that (a) all samples are drawn from the same population and (b) all variables refer to the same behavioral classes. If these assumptions are true, statistical generalization is valid and therefore provides a valuable tool for the testing of empirical theories. The bottom-up strategy of generalization relies on the idea that contexts may be classified as being more or less similar based on characteristics that are not part of the model being evaluated. If such a similarity relation across contexts is feasible, the bottom-up strategy is valid, as well. Depending on the strategy of generalization, replication of empirical research serves two very different purposes. Following the (top-down) principle of generalization by deduction from scientific laws, replications are empirical tests of the theory itself, and failed replications question the theory on a fundamental level. Following the (bottom-up) principle of generalization by induction to similar contexts, replications are a means to explore the boundary conditions of a theory. Consequently, failed replications question the scope of the theory and help to shape the set of intended applications.

We have argued that quantitative and qualitative research are best understood by means of the structure of the employed models. Quantitative science mainly relies on variable-based models and usually employs a top-down strategy of generalization from an abstract population to individual cases. Qualitative science prefers case-based models and usually employs a bottom-up strategy of generalization. We further showed that failed replications have very different implications depending on the underlying strategy of generalization. Whereas in the top-down strategy, replications are used to test the universal validity of a model, in the bottom-up strategy, replications are used to explore the scope of a model. We will now address the implications of this analysis for psychological research with regard to the problem of replicability.

Modern day psychology almost exclusively follows a top-down strategy of generalization. Given the quantitative background of most psychological theories, this is hardly surprising. Following the general structure of variable-based models, the individual case is not the focus of the analysis. Instead, scientific laws are stated on the level of an abstract population. Therefore, when applying the theory to a new context, a statistical sampling model seems to be the natural consequence. However, this is not the only possible strategy. From a logical point of view, there is no reason to assume that a quantitative law like ∀ i : y i = f ( x i ) implies that the law is necessarily true, i.e.,: □(∀ i : y i = f ( x i )). Instead, one might just as well define the scope of the theory following an inductive strategy. 8 Formally, this would correspond to the assumption that the observed law is possibly true, i.e.,: ◇(∀ i : y i = f ( x i )). For example, we may discover a functional relation between “engagement” and “distraction” without referring to an abstract universal population of students. Instead, we may hypothesize under which conditions this functional relation may be valid and use these assumptions to inductively generalize to other cases.

If we take this seriously, this would require us to specify the intended applications of the theory: in which contexts do we expect the theory to hold? Or, equivalently, what are the boundary conditions of the theory? These boundary conditions may be specified either intensionally, i.e., by giving external criteria for contexts being similar enough to the ones already studied to expect a successful application of the theory. Or they may be specified extensionally, by enumerating the contexts where the theory has already been shown to be valid. These boundary conditions need not be restricted to the population we refer to, but include all kinds of contextual factors. Therefore, adopting a bottom-up strategy, we are forced to think about these factors and make them an integral part of our theories.

In fact, there is good reason to believe that bottom-up generalization may be more adequate in many psychological studies. Apart from the pitfalls associated with statistical generalization that have been extensively discussed in recent years (e.g., p-hacking, underpowered studies, publication bias), it is worth reflecting on whether the underlying assumptions are met in a particular context. For example, many samples used in experimental psychology are not randomly drawn from a large population, but are convenience samples. If we use statistical models with non-random samples, we have to assume that the observations vary as if drawn from a random sample. This may indeed be the case for randomized experiments, because all variation between the experimental conditions apart from the independent variable will be random due to the randomization procedure. In this case, a classical significance test may be regarded as an approximation to a randomization test (Edgington and Onghena, 2007 ). However, if we interpret a significance test as an approximate randomization test, we test not for generalization but for internal validity. Hence, even if we use statistical significance tests when assumptions about random sampling are violated, we still have to use a different strategy of generalization. This issue has been discussed in the context of small-N studies, where variable-based models are applied to very small samples, sometimes consisting of only one individual (Dugard et al., 2012 ). The bottom-up strategy of generalization that is employed by qualitative researchers, provides such an alternative.

Another important issue in this context is the question of measurement invariance. If we construct a variable-based model in one context, the variables refer to those behaviors that constitute the underlying empirical relational structure. For example, we may construct an abstract measure of “distraction” using the observed behaviors in a certain context. We will then use the term “distraction” as a theoretical term referring to the variable we have just constructed to represent the underlying empirical relational structure. Let us now imagine we apply this theory to a new context. Even if the individuals in our new context are part of the same population, we may still get into trouble if the observed behaviors differ from those used in the original study. How do we know whether these behaviors constitute the same variable? We have to ensure that in any new context, our measures are valid for the variables in our theory. Without a proper measurement model, this will be hard to achieve (Buntins et al., 2017 ). Again, we are faced with the necessity to think of the boundary conditions of our theories. In which contexts (i.e., for which sets of individuals and behaviors) do we expect our theory to work?

If we follow the rationale of inductive generalization, we can explore the boundary conditions of a theory with every new empirical study. We thus widen the scope of our theory by comparing successful applications in different contexts and unsuccessful applications in similar contexts. This may ultimately lead to a more general theory, maybe even one of universal scope. However, unless we have such a general theory, we might be better off, if we treat unsuccessful replications not as a sign of failure, but as a chance to learn.

Author Contributions

MB conceived the original idea and wrote the first draft of the paper. MS helped to further elaborate and scrutinize the arguments. All authors contributed to the final version of the manuscript.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We would like to thank Annette Scheunpflug for helpful comments on an earlier version of the manuscript.

1 A person × behavior matrix constitutes a very simple relational structure that is common in psychological research. This is why it is chosen here as a minimal example. However, more complex structures are possible, e.g., by relating individuals to behaviors over time, with individuals nested within groups etc. For a systematic overview, compare Coombs ( 1964 ).

2 This notion of empirical content applies only to deterministic models. The empirical content of a probabilistic model consists in the probability distribution over all possible empirical structures.

3 For example, neither the SAGE Handbook of qualitative data analysis edited by Flick ( 2014 ) nor the Oxford Handbook of Qualitative Research edited by Leavy ( 2014 ) mention formal approaches to category formation.

4 Note also that the described structure is empirically richer than a nominal scale. Therefore, a reduction of qualitative category formation to be a special (and somehow trivial) kind of measurement is not adequate.

5 It is possible to extend this notion of empirical content to the probabilistic case (this would correspond to applying a latent class analysis). But, since qualitative research usually does not rely on formal algorithms (neither deterministic nor probabilistic), there is currently little practical use of such a concept.

6 We do not elaborate on abductive reasoning here, since, given an empirical relational structure, the concept can be applied to both types of models in the same way (Schurz, 2008 ). One could argue that the underlying relational structure is not given a priori but has to be constructed by the researcher and will itself be influenced by theoretical expectations. Therefore, abductive reasoning may be necessary to establish an empirical relational structure in the first place.

7 We shall not elaborate on the metaphysical meaning of possible worlds here, since we are only concerned with empirical theories [but see Tooley ( 1999 ), for an overview].

8 Of course, this also means that it would be equally reasonable to employ a top-down strategy of generalization using a case-based model by postulating that □(∃ i : XYZ i ). The implications for case-based models are certainly worth exploring, but lie beyond the scope of this article.

  • Agresti A. (2013). Categorical Data Analysis, 3rd Edn. Wiley Series In Probability And Statistics . Hoboken, NJ: Wiley. [ Google Scholar ]
  • Borsboom D. (2005). Measuring the Mind: Conceptual Issues in Contemporary Psychometrics . Cambridge: Cambridge University Press; 10.1017/CBO9780511490026 [ CrossRef ] [ Google Scholar ]
  • Braun V., Clarke V. (2006). Using thematic analysis in psychology . Qual. Res. Psychol . 3 , 77–101. 10.1191/1478088706qp063oa [ CrossRef ] [ Google Scholar ]
  • Buntins M., Buntins K., Eggert F. (2017). Clarifying the concept of validity: from measurement to everyday language . Theory Psychol. 27 , 703–710. 10.1177/0959354317702256 [ CrossRef ] [ Google Scholar ]
  • Carnap R. (1928). The Logical Structure of the World . Berkeley, CA: University of California Press. [ Google Scholar ]
  • Coombs C. H. (1964). A Theory of Data . New York, NY: Wiley. [ Google Scholar ]
  • Creswell J. W. (2015). A Concise Introduction to Mixed Methods Research . Los Angeles, CA: Sage. [ Google Scholar ]
  • Dugard P., File P., Todman J. B. (2012). Single-Case and Small-N Experimental Designs: A Practical Guide to Randomization Tests 2nd Edn . New York, NY: Routledge; 10.4324/9780203180938 [ CrossRef ] [ Google Scholar ]
  • Edgington E., Onghena P. (2007). Randomization Tests, 4th Edn. Statistics. Hoboken, NJ: CRC Press; 10.1201/9781420011814 [ CrossRef ] [ Google Scholar ]
  • Everett J. A. C., Earp B. D. (2015). A tragedy of the (academic) commons: interpreting the replication crisis in psychology as a social dilemma for early-career researchers . Front. Psychol . 6 :1152. 10.3389/fpsyg.2015.01152 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Flick U. (Ed.). (2014). The Sage Handbook of Qualitative Data Analysis . London: Sage; 10.4135/9781446282243 [ CrossRef ] [ Google Scholar ]
  • Freeman M., Demarrais K., Preissle J., Roulston K., St. Pierre E. A. (2007). Standards of evidence in qualitative research: an incitement to discourse . Educ. Res. 36 , 25–32. 10.3102/0013189X06298009 [ CrossRef ] [ Google Scholar ]
  • Ganter B. (2010). Two basic algorithms in concept analysis , in Lecture Notes In Computer Science. Formal Concept Analysis, Vol. 5986 , eds Hutchison D., Kanade T., Kittler J., Kleinberg J. M., Mattern F., Mitchell J. C., et al. (Berlin, Heidelberg: Springer Berlin Heidelberg; ), 312–340. 10.1007/978-3-642-11928-6_22 [ CrossRef ] [ Google Scholar ]
  • Ganter B., Wille R. (1999). Formal Concept Analysis . Berlin, Heidelberg: Springer Berlin Heidelberg; 10.1007/978-3-642-59830-2 [ CrossRef ] [ Google Scholar ]
  • Guttman L. (1944). A basis for scaling qualitative data . Am. Sociol. Rev . 9 :139 10.2307/2086306 [ CrossRef ] [ Google Scholar ]
  • Hogg R. V., Mckean J. W., Craig A. T. (2013). Introduction to Mathematical Statistics, 7th Edn . Boston, MA: Pearson. [ Google Scholar ]
  • Hughes G. E., Cresswell M. J. (1996). A New Introduction To Modal Logic . London; New York, NY: Routledge; 10.4324/9780203290644 [ CrossRef ] [ Google Scholar ]
  • Klein R. A., Ratliff K. A., Vianello M., Adams R. B., Bahník Š., Bernstein M. J., et al. (2014). Investigating variation in replicability . Soc. Psychol. 45 , 142–152. 10.1027/1864-9335/a000178 [ CrossRef ] [ Google Scholar ]
  • Krantz D. H., Luce D., Suppes P., Tversky A. (1971). Foundations of Measurement Volume I: Additive And Polynomial Representations . New York, NY; London: Academic Press; 10.1016/B978-0-12-425401-5.50011-8 [ CrossRef ] [ Google Scholar ]
  • Leavy P. (2014). The Oxford Handbook of Qualitative Research . New York, NY: Oxford University Press; 10.1093/oxfordhb/9780199811755.001.0001 [ CrossRef ] [ Google Scholar ]
  • Maxwell S. E., Lau M. Y., Howard G. S. (2015). Is psychology suffering from a replication crisis? what does “failure to replicate” really mean? Am. Psychol. 70 , 487–498. 10.1037/a0039400 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Miles M. B., Huberman A. M., Saldaña J. (2014). Qualitative Data Analysis: A Methods Sourcebook, 3rd Edn . Los Angeles, CA; London; New Delhi; Singapore; Washington, DC: Sage. [ Google Scholar ]
  • Open Science, Collaboration (2015). Estimating the reproducibility of psychological science . Science 349 :Aac4716. 10.1126/science.aac4716 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Popper K. (1935). Logik Der Forschung . Wien: Springer; 10.1007/978-3-7091-4177-9 [ CrossRef ] [ Google Scholar ]
  • Ragin C. (1987). The Comparative Method : Moving Beyond Qualitative and Quantitative Strategies . Berkeley, CA: University Of California Press. [ Google Scholar ]
  • Rihoux B., Ragin C. (2009). Configurational Comparative Methods: Qualitative Comparative Analysis (Qca) And Related Techniques . Thousand Oaks, CA: Sage Publications, Inc; 10.4135/9781452226569 [ CrossRef ] [ Google Scholar ]
  • Scheunpflug A., Krogull S., Franz J. (2016). Understanding learning in world society: qualitative reconstructive research in global learning and learning for sustainability . Int. Journal Dev. Educ. Glob. Learn. 7 , 6–23. 10.18546/IJDEGL.07.3.02 [ CrossRef ] [ Google Scholar ]
  • Schurz G. (2008). Patterns of abduction . Synthese 164 , 201–234. 10.1007/s11229-007-9223-4 [ CrossRef ] [ Google Scholar ]
  • Shrout P. E., Rodgers J. L. (2018). Psychology, science, and knowledge construction: broadening perspectives from the replication crisis . Annu. Rev. Psychol . 69 , 487–510. 10.1146/annurev-psych-122216-011845 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Smith P. (2020). An Introduction To Formal Logic . Cambridge: Cambridge University Press. 10.1017/9781108328999 [ CrossRef ] [ Google Scholar ]
  • Suppes P., Krantz D. H., Luce D., Tversky A. (1971). Foundations of Measurement Volume II: Geometrical, Threshold, and Probabilistic Representations . New York, NY; London: Academic Press. [ Google Scholar ]
  • Tooley M. (Ed.). (1999). Necessity and Possibility. The Metaphysics of Modality . New York, NY; London: Garland Publishing. [ Google Scholar ]
  • Trafimow D. (2018). An a priori solution to the replication crisis . Philos. Psychol . 31 , 1188–1214. 10.1080/09515089.2018.1490707 [ CrossRef ] [ Google Scholar ]
  • Watanabe S. (2018). Mathematical Foundations of Bayesian Statistics. CRC Monographs On Statistics And Applied Probability . Boca Raton, FL: Chapman And Hall. [ Google Scholar ]
  • Wiggins B. J., Chrisopherson C. D. (2019). The replication crisis in psychology: an overview for theoretical and philosophical psychology . J. Theor. Philos. Psychol. 39 , 202–217. 10.1037/teo0000137 [ CrossRef ] [ Google Scholar ]

Banner

Research Basics - All Subjects

  • Getting Started
  • Evaluating Resources
  • Generating Search Terms
  • Physical Library Resources
  • Digital Library Resources
  • Primary Sources
  • Subject Guides: Find your Major This link opens in a new window
  • Open Educational Resources (OER) This link opens in a new window
  • Citations, Copyright, Plagiarism
  • Qualitative, Quantitative & Empirical Research

Quantitative Research

Qualitative Research

Empirical Studies

  • An empirical study is research derived from actual observation or experimentation.
  • The written articles resulting from empirical studies undergo a rigorous review by experts in the field of study prior to being published in journals.
  • After passing this review the articles are published in a scholarly, peer-reviewed, or academic journal.
  • Empirical study articles will generally contain the following features: Abstract - This is a summary of the article. Introduction - This is often identified as the hypothesis of the study and describes the researcher's intent.            Method - A description of how the research was conducted. Results - A description of the findings obtained as a result of the research. Most often answers the hypothesis. Conclusion - A description of how/if the findings were successful and the impact made as a result. References - A detailed listing of all resources cited in the article that support the written work.              

         

Mixed Methods Research

Mixed Methods Research uses strategies from both qualitative and quantitative research processes to provide a greater understanding of the subject matter.

  • << Previous: Citations, Copyright, Plagiarism
  • Next: Help >>
  • Last Updated: May 6, 2024 2:47 PM
  • URL: https://campbellsville.libguides.com/researchbasics

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

1.2: Theory and Empirical Research

  • Last updated
  • Save as PDF
  • Page ID 7203

  • Jenkins-Smith et al.
  • University of Oklahoma via University of Oklahoma Libraries

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

This book is concerned with the connection between theoretical claims and empirical data. It is about using statistical modeling; in particular, the tool of regression analysis, which is used to develop and refine theories. We define theory broadly as a set of interrelated propositions that seek to explain and, in some cases, predict an observed phenomenon.

Theory: A set of interrelated propositions that seek to explain and predict an observed phenomenon.

Theories contain three important characteristics that we discuss in detail below.

Characteristics of Good Theories Coherent and internally consistent Causal in nature Generate testable hypotheses

1.2.1 Coherent and Internally Consistent

The set of interrelated propositions that constitute a well-structured theory are based on concepts . In well-developed theories, the expected relationships among these concepts are both coherent and internally consistent. Coherence means the identification of concepts and the specified relationships among them are logical, ordered, and integrated. An internally consistent theory will explain relationships with respect to a set of common underlying causes and conditions, providing for consistency in expected relationships (and avoidance of contradictions). For systematic quantitative research, the relevant theoretical concepts are defined such that they can be measured and quantified. Some concepts are relatively easy to quantify, such as the number of votes cast for the winning Presidential candidate in a specified year or the frequency of arrests for gang-related crimes in a particular region and time period. Others are more difficult, such as the concepts of democratization, political ideology or presidential approval. Concepts that are more difficult to measure must be carefully operationalized , which is a process of relating a concept to an observation that can be measured using a defined procedure. For example, political ideology is often operationalized through public opinion surveys that ask respondents to place themselves on a Likert-type scale of ideological categories.

Concepts and Variables

A concept is a commonality across observed individual events or cases. It is a regularity that we find in a complex world. Concepts are our building blocks to understanding the world and to developing theory that explains the world. Once we have identified concepts we seek to explain them by developing theories based on them. Once we have explained a concept we need to define it. We do so in two steps. First, we give it a dictionary-like definition, called a nominal definition. Then, we develop an operational definition that identifies how we can measure and quantify it.

Once a concept has been quantified, it is employed in modeling as a variable . In statistical modeling, variables are thought of as either dependent or independent variables. A dependent variable , Y, is the outcome variable; this is the concept we are trying to explain and/or predict. The independent variable(s) , X, is the variable(s) that is used to predict or explain the dependent variable. The expected relationships between (and among) the variables are specified by the theory.

Measurement

When measuring concepts, the indicators that are used in building and testing theories should be both valid and reliable . Validity refers to how well the measurement captures the concept. Face validity, for example, refers to the plausibility and general acceptance of the measure, while the domain validity of the measure concerns the degree to which it captures all relevant aspects of the concept. Reliability, by contrast, refers to how consistent the measure is with repeated applications. A measure is reliable if, when applied to the repeated observations in similar settings, the outcomes are consistent.

Assessing the Quality of a Measure

Measurement is the process of assigning numbers to the phenomenon or concept that you are interested in. Measurement is straight-forward when we can directly observe the phenomenon. One agrees on a metric, such as inches or pounds, and then figures out how many of those units are present for the case in question. Measurement becomes more challenging when you cannot directly observe the concept of interest. In political science and public policy, some of the things we want to measure are directly observable: how many dollars were spent on a project or how many votes the incumbent receives, but many of our concepts are not observable: is issue X on the public’s agenda, how successful is a program, or how much do citizens trust the president. When the concept is not directly observable the operational definition is especially important. The operational definition explains exactly what the researcher will do to assign a number for each subject/case.

In reality, there is always some possibility that the number assigned does not reflect the true value for that case, i.e., there may be some error involved. Error can come about for any number of reasons, including mistakes in coding, the need for subjective judgments, or a measuring instrument that lacks precision. These kinds of error will generally produce inconsistent results; that is, they reduce reliability. We can assess the reliability of an indicator using one of two general approaches. One approach is a test-retest method where the same subjects are measured at two different points in time. If the measure is reliable the correlation between the two observations should be high. We can also assess reliability by using multiple indicators of the same concept and determining if there is a strong inter-correlation among them using statistical formulas such as Cronbach’s alpha or Kuder-Richardson Formula 20 (KR-20).

We can also have error when our measure is not valid. Valid indicators measure the concept we think they are measuring. The indicator should both converge with the concept and discriminate between the concept and similar yet different concepts. Unfortunately, there is no failsafe way to determine whether an indicator is valid. There are, however, a few things you can do to gain confidence in the validity of the indicator. First, you can simply look at it from a logical perspective and ask if it seems like it is valid. Does it have face validity? Second, you can see if it correlates well with other indicators that are considered valid, and in ways that are consistent with theory. This is called construct validity. Third, you can determine if it works in the way expected, which is referred to as predictive validity. Finally, we have more confidence if other researchers using the same concept agree that the indicator is considered valid. This consensual validity at least ensures that different researchers are talking about the same thing.

Measurement of Different Kinds of Concepts

Measurement can be applied to different kinds of concepts, which causes measures of different concepts to vary. There are three primary levels of measurement ; ordinal, interval, and nominal. Ordinal level measures indicate relative differences, such as more or less, but do not provide equal distances between intervals on the measurement scale. Therefore, ordinal measures cannot tell us how much more or less one observation is than another. Imagine a survey question asking respondents to identify their annual income. Respondents are given a choice of five different income levels: $0-20,000, $20,000-50,000, $50,000-$100,000, and $100,000+. This measure gives us an idea of the rank order of respondents’ income, but it is impossible for us to identify consistent differences between these responses. With an interval level measure, the variable is ordered and the differences between values are consistent. Sticking with the example of income, survey respondents are now asked to provide their annual income to the nearest ten thousand dollar mark (e.g., $10,000, $20,000, $30,000, etc.). This measurement technique produces an interval level variable because we have both a rank ordering and equal spacing between values. Ratio scales are interval measures with the special characteristic that the value of zero (0) indicates the absence of some property. A value of zero (0) income in our example may indicate a person does not have a job. Another example of a ratio scale is the Kelvin temperature scale because zero (0) degrees Kelvin indicates the complete absence of heat. Finally, a nominal level measure identifies categorical differences among observations. Numerical values assigned to nominal variables have no inherent meaning, but only differentiate one type" (e.g., gender, race, religion) from another.

1.2.2 Theories and Causality

Theories should be causal in nature, meaning that an independent variable is thought to have a causal influence on the dependent variable. In other words, a change in the independent variable causes a change in the dependent variable. Causality can be thought of as the motor" that drives the model and provides the basis for explanation and (possibly) prediction.

The Basis of Causality in Theories

  • Time Ordering: The cause precedes the effect, X→Y
  • Co-Variation: Changes in X are associated with changes in Y
  • Non-Spuriousness: There is not a variable Z that causes both X and Y

To establish causality we want to demonstrate that a change in the independent variable is a necessary and sufficient condition for a change in the dependent variable (though more complex, interdependent relationships can also be quantitatively modeled). We can think of the independent variable as a treatment, τ, and we speculate that τ causes a change in our dependent variable, Y. The gold standard’’ for causal inference is an experiment where a) the level of ττ is controlled by the researcher and b) subjects are randomly assigned to a treatment or control group. The group that receives the treatment has outcome Y 1 and the control group has outcome Y 0 ; the treatment effect can be defined as τ=Y 1 -Y 0 . Causality is inferred because the treatment was only given to one group, and since these groups were randomly assigned other influences should wash out. Thus the difference τ=Y 1 -Y0 can be attributed to the treatment.

Given the nature of social science and public policy theorizing, we often can’t control the treatment of interest. For example, our case study in this text concerns the effect of political ideology on views about the environment. For this type of relationship, we cannot randomly assign ideology in an experimental sense. Instead, we employ statistical controls to account for the possible influences of confounding factors, such as age and gender. Using multiple regression we control for other factors that might influence the dependent variable. 1

1.2.3 Generation of Testable Hypothesis

Theory building is accomplished through the testing of hypotheses derived from theory. In simple form, a theory implies (sets of) relationships among concepts. These concepts are then operationalized. Finally, models are developed to examine how the measures are related. Properly specified hypotheses can be tested with empirical data, which are derived from the application of valid and reliable measures to relevant observations. The testing and re-testing of hypotheses develops levels of confidence that we can have for the core propositions that constitute the theory. In short, empirically grounded theories must be able to posit clear hypotheses that are testable. In this text, we discuss hypotheses and test them using relevant models and data.

As noted above, this text uses the concepts of political ideology and views about the environment as a case study in order to generate and test hypotheses about the relationships between these variables. For example, based on popular media accounts, it is plausible to expect that political conservatives are less likely to be concerned about the environment than political moderates or liberals. Therefore, we can pose the working hypothesis that measures of political ideology will be systematically related to measures of concern for the environment – with conservatives showing less concern for the environment. In classical hypothesis testing, the working hypothesis is tested against a null hypothesis . A null hypothesis is an implicit hypothesis that posits the independent variable has no effect (i.e., null effect) on the dependent variable. In our example, the null hypothesis states ideology has no effect on environmental concern.

  • Search Menu
  • Sign in through your institution
  • Advance articles
  • Author Interviews
  • Research Curations
  • Author Guidelines
  • Open Access
  • Submission Site
  • Why Submit?
  • About Journal of Consumer Research
  • Editorial Board
  • Advertising and Corporate Services
  • Self-Archiving Policy
  • Dispatch Dates
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Article Contents

Consumer literature on context effects, quantitative models of context effects, a roadmap for the future, author notes.

  • < Previous

50 Years of Context Effects: Merging the Behavioral and Quantitative Perspectives

ORCID logo

  • Article contents
  • Figures & tables
  • Supplementary Data

Ioannis Evangelidis, Sudeep Bhatia, Jonathan Levav, Itamar Simonson, 50 Years of Context Effects: Merging the Behavioral and Quantitative Perspectives, Journal of Consumer Research , Volume 51, Issue 1, June 2024, Pages 19–28, https://doi.org/10.1093/jcr/ucad028

  • Permissions Icon Permissions

Over the past 50 years, consumer researchers have presented extensive evidence that consumer preference can be swayed by the decision context, particularly the configuration of the choice set. Importantly, behavioral research on context effects has inspired prominent quantitative research on multialternative decision-making published in leading psychology, management, economics, and general interest journals. While both streams of research seem to agree that context effects are an important research area, there has been relatively limited interaction, communication, and collaboration between the two research camps. In this article, we seek to initiate an active dialogue between the two sides. We begin by providing a critical overview of the two literatures on context effects, discussing both their strengths and weaknesses, as well as disparities and complementarities. Here, we place particular emphasis on deepening consumer researchers’ understanding of context effects by drawing on prominent quantitative research published in non-marketing journals over the last decades. Importantly, we provide a roadmap for the future that can inspire further research and potential collaborations between the two camps, overcoming silos in knowledge creation.

Over the past 50 years, a substantial volume of consumer research has demonstrated that preference is contingent on the configuration of the choice set ( table 1 ). This research has garnered thousands of citations over the past decades and has managed to inspire substantial work on this topic both within marketing, but also in other disciplines across social sciences. Specifically, consumer research on context effects has heavily influenced prominent quantitative research on multialternative decision-making, published in leading psychology, management, economics, neuroscience, and general interest journals ( table 2 ). Curiously, there has been limited interaction, communication, and collaboration between the two research camps, with strands of literature existing in parallel, focusing on their own research questions, and thus missing important opportunities to advance a more holistic view on context effects.

OVERVIEW OF BEHAVIORAL RESEARCH ON CONTEXT EFFECTS

OVERVIEW OF MAIN QUANTITATIVE MODELS OF CONTEXT EFFECTS

In this article, we explore the insights that might arise from a more active dialogue between the two research approaches. We begin by providing a brief historical overview of research on context effects. We then discuss how the two literatures can be integrated to form a more holistic view of preference construction. We conclude with a discussion of new research directions that follow from our synthesis, as well as the main avenues for potential collaborations between the two research communities.

Contemporary research on context effects in consumer behavior traces its roots back to the 1950s, when psychologists and economists began to explore the mathematical underpinnings of choice ( Edwards 1954 ; Luce 1959 ). Researchers initially believed that multiattribute choice could be modeled using context-independent decision rules. However, studies showing that the introduction of new alternatives to a choice set disproportionately reduces the choice probability of similar alternatives (the “similarity effect”; Debreu 1960 ; Tversky 1972 ) made it clear that behavior is much more complex. This work attracted the attention of consumer researchers, who were interested in understanding how the composition of the market determined the market share of brands. Huber, Payne and Puto (1982 ) and Huber and Puto (1983) found that the similarity effect could be violated when an asymmetrically dominated decoy option is added to the set, a finding known as the attraction effect. Following Huber et al. (1982) , behavioral research on context effects pursued three general directions ( table 1 ): (1) research demonstrating additional context effects besides attraction and similarity, (2) research that establishes moderators of context effects, and (3) research focused on advancing theoretical accounts that could explain context effects. For the sake of brevity, we refer readers to table 1 that provides an illustrative selection of behavioral studies of context effects.

Importantly, while the consumer literature on context effects provides insights into consumers’ psychology, particularly the cognitive and affective processes that underlie these effects as well as moderators of the effects, it is characterized by several limitations. First, the lack of formal mathematical models hampers the ability of academics and practitioners to make predictions about market shares of options as a function of the configuration of the choice set. Second, while the consumer literature on context effects has advanced several theoretical accounts, those accounts are rather disjointed, in part because they were developed to explain different empirical regularities without the goal of developing an overarching theoretical model. As such, to date, there is no unifying account of context effects in the consumer literature.

Early Models

While behavioral researchers explored the nuances of context dependence in consumer behavior, psychologists focused on building quantitative models for describing and predicting multiattribute choice. Even though theories proposed by psychologists in the 1970s and 1980s assumed some type of context dependence ( Dawes 1964 ; Einhorn 1970 ; Mellers and Birnbaum 1982 ), it was only in the 1990s that researchers began quantitatively modeling how introducing new options to a choice set alters the choice probabilities of existing options. The first article in this area ( Tversky and Simonson 1993) proposed that decision-makers make pairwise comparisons between the attributes of choice options and that disadvantageous comparisons are more impactful than advantageous comparisons (an assumption derived from theories of loss aversion in risky choice, Kahneman and Tversky 1979) . Tversky and Simonson implemented this mechanism as a utility-maximization model, in which the utility of an option was a function of the composition of the choice set, and showed that the resulting (tournament-like) model could explain the attraction and compromise effects (they did not attempt to model the similarity effect). Tversky and Simonson’s foundational work showed that it was possible to describe context dependence as the outcome of a mathematically precise set of decision processes that could be implemented in a formal model and be used to make quantitative predictions. This insight would motivate a large and influential set of research papers, spanning several disciplines in the 2000s and 2010s.

Computational Cognitive Models

The first computational cognitive model of context-dependent choice in psychology was published by Roe et al. (2001) . Roe et al. built a model that specified how decision-makers acquired and integrated information over the time course of the decision process. Central to Roe et al.’s model was an accumulation-to-threshold process, according to which decision-makers attend to attributes stochastically and update preferences dynamically ( Busemeyer and Townsend 1993 ). This process continues over time until the preference for an option reaches a threshold value, at which deliberation is terminated and the option that reached the preference threshold is selected. Although it is widely agreed that the accumulation-to-threshold process describes the cognitive and neural bases of low-level perceptual decision-making (see Gold and Shadlen 2007 for a review), Roe et al. were the first to apply this idea to context-dependent choice. To do this, Roe et al. (2001) assumed that the pairwise similarity between options determined the degree to which one option influenced the evaluation of another. Thus, for example, a decoy that was similar to—but less desirable than—a target could make the target’s preference accumulate at a faster rate than that of the competitor. Roe et al.’s pairwise-similarity and accumulation-to-threshold mechanisms were also inspired by neurobiological models of perception, and Roe et al. showed that they could provide a single, unifying account of the attraction, compromise, and similarity effects. Roe et al. also accounted for several moderators of these effects documented by consumer behavior researchers, such as the differential effect of range and frequency decoys ( Huber et al. 1982 ) and the non-zero effect of inferior decoys ( Huber and Puto 1983 ; Pettibone and Wedell 2000 ). Finally, by assuming that preferences evolve dynamically over time, Roe et al. were also able to model response times and thus predict how the strength of the decoy effects changes with time pressure ( Dhar et al. 2000 ; Pettibone 2012 ).

Since Roe et al., psychologists have proposed several other models of context dependence. Crucially, these models all attempt to describe observed context effects, as well as their moderators, using a set of algorithmic assumptions about how people perceive, evaluate, and compare choice options over the time course of deliberation. For this reason, these types of models are often referred to as computational cognitive models. For example, Usher and McClelland (2004) implemented Tversky and Simonson’s (1993) pairwise-comparison process in the type of dynamic accumulation-to-threshold process proposed by Roe et al. and, in turn, used it to explain the similarity effect and time pressure effects in Roe et al., as well as new effects involving the phantom decoys (decoys that are removed from the choice set prior to choice; table 1 ). Likewise, Bhatia (2013) has proposed a model of decoy effects that assumes that available choice options activate associated attributes. This can generate choice-set dependence as adding options to the choice set can alter the activation and sampling of attributes and thus the accumulation of preferences and eventual choice. With this implementation, Bhatia’s model accounts for the findings captured by Roe et al., as well as additional moderators of the attraction, compromise, similarity, and phantom decoy effects. Bhatia also extended his model to describe alignability and comparability effects ( Kivetz and Simonson 2000 ; Nowlis and Simonson 1997) and the less-is-more effect ( Hsee 1998) . Additionally, by assuming that reference points have a bigger effect on attribute activation, this model captures multiattribute reference point effects. Finally, when equipped with an appropriate mechanism for choice deferral ( Bhatia and Mullett 2016 ), Bhatia’s model can also predict several contextual moderators of choice deferral effects ( Dhar 1997 ; Tversky and Shafir 1992 ; however, note that the reproducibility of some of the findings in Dhar [1997] and Tversky and Shafir [1992] was recently challenged by Evangelidis, Levav, and Simonson [2023b] ).

Another well-known computational model of context dependence has been proposed by Trueblood, Brown, and Heathcote (2014). This model assumes that the weights placed on attributes depend on the similarities of options on the attributes, which is an assumption derived from the psychophysical models described earlier in this section. Relatedly, Noguchi and Stewart (2018) have assumed that decisions are a product of pairwise ordinal comparisons between attribute values. Again, both Trueblood et al. and Noguchi and Stewart have embedded their proposed mechanisms in an accumulation-to-threshold process, allowing them to predict the attraction, compromise, and similarity effects, several associated effects, as well as their interplay with response time and time pressure. Trueblood’s model is also notable in being able to predict similar context effects in perceptual choice ( Trueblood et al. 2013 ), whereas Noguchi and Stewart’s model provides a good account of findings related to the range and spacing of attribute values ( Mellers and Cooke 1994 ) as well as observed eye-movement patterns ( Noguchi and Stewart 2014) .

Additional Models

The models of Roe et al., Usher and McClelland, Bhatia, Trueblood et al., and Noguchi and Stewart are cognitive models that quantitatively describe the full deliberation process, as well as the effect of the choice set on every stage of this process (see Busemeyer et al. 2019 for a detailed recent review). They are also able to explain several moderators of context effects, associated effects like choice deferral and reference dependence, and process-level data like response times and eye-movements. However, there have also been other attempts at formally modeling context dependence that simplify the modeling architecture at the expense of descriptive scope. For example, Pettibone and Wedell (2000) , Kivetz, Netzer, and Srinivasan (2004) , Rooderkerk, Van Heerde, and Bijmolt (2011) , Soltani, De Martino, and Camerer (2012) , Bordalo, Gennaioli, and Shleifer (2013) , Ronayne and Brown (2017) , Dumbalska et al. (2020) , Bushong, Rabin, and Schwartzstein (2021) , and Landry and Webb (2021) have all proposed models with a context-dependent utility function (in the spirit of Tversky and Simonson 1993 ), in which attribute weights or values depend on the composition of the choice set. These models calculate context-dependent utilities for all available options and simply choose the option with the highest utility. Utility-maximization models may not capture all three of the main context effects together with their moderators and are unable to make process-level (e.g., eye movement, response time) predictions. However, they do have more transparent properties and are often analyzed with mathematical precision (rather than computer simulation) (see also Wollschläger and Diederich 2012 for an analytically tractable model of response times). Researchers have also proposed models that describe context dependence as the product of rational decision processes ( Bergner, Oppenheimer, and Detre 2019 ; Howes et al. 2016 ; Shenoy and Yu 2013) . Again, these models are often analytically tractable but do not attempt to describe process-level data like response times. Table 2 provides an overview of the main models described above.

Similarities and Differences between Models

Some of the 20 models described above are complex algorithms that mimic cognitive and neural processes; others are simplified utility functions, and yet others assume Bayesian belief formation processes. These models also differ in their descriptive scope, with more complex models being able to capture all three main context effects—attraction, compromise, and similarity—as well as their moderators, response time patterns, and associated effects, and other more tractable models being able to capture only a subset of the effects.

In addition to this, different models also make different implicit assumptions about how options and attributes are compared. For example, one important class of models is based on the loss aversion assumptions of Tversky and Simonson (1993) ( Usher and McClelland 2004 ; Kivetz et al. 2004 ; Rooderkerk et al. 2011 ). For these models, altering the choice set alters the set of gains and losses that determine an option’s desirability. Another class of models assumes that the distribution of options on the attributes alters attribute weights and values ( Bordalo et al. 2013 ; Bushong et al. 2021 ; Dumbalska et al. 2020 ; Landry and Webb 2021 ; Pettibone and Wedell 2000 ; Soltani et al. 2012 ). For these models, changing the choice set affects choice by influencing statistical properties like the perceived range of attribute values. Yet another group of models relies on pairwise comparisons of options ( Bergner et al. 2019 ; Noguchi and Stewart 2018 ; Ronayne and Brown 2017 ), with new options altering the comparisons that a decision-maker uses to make a choice. Of course, models also differ in terms of whether they assume that the choice set influences the decision-maker’s values, with some models proposing that attribute values are fundamentally sensitive to the decision context, whereas others arguing that decision context only biases the attention to or perception of (but not the underlying valuation of) an attribute or option. Bhatia, Loomes, and Read (2021) provide a more detailed discussion of the properties discussed here and relate these to quantitative models in other behavioral domains, like risk and intertemporal choice.

Quantitative Predictions

Despite these differences, all models possess an important property: they can make quantitative predictions for novel choice sets with arbitrary attribute compositions. In this way, their underlying assumptions and descriptive scope can be rigorously tested on empirical data. Although several authors have attempted quantitative tests of their models, perhaps the most comprehensive analysis has been performed by Turner et al. (2018) . Turner et al. used the underlying assumptions of existing models to generate over 400 new models, each of which is composed of a unique combination of decision mechanisms. Turner et al. then tested their expansive set of models on empirical data to determine the best combination of decision mechanisms for predicting context effects in choice. With this approach, Turner et al. found that the pairwise-comparison assumptions of Tversky and Simonson (1993) and Usher and McClelland (2004) , and the attribute association assumptions of Bhatia (2013) are particularly useful for describing context dependence.

Another closely related property of quantitative models is their use of parameters to describe the extent to which a given decision mechanism plays a role in choice. Just like linear regressions uncover weights on predictor variables that best predict the dependent variable, fits of the decision models to choice data uncover parameter values that best predict context dependence. Importantly, these parameters can vary both across individuals and across decision settings, allowing these models to formally characterize individual and situational differences in choice processes. For example, some individuals may be more loss averse than others, leading to stronger context effects in the models of Tversky and Simonson (1993) and Usher and McClelland (2004) . This can explain why individuals vary in the degrees to which they display these effects, and why individuals do not typically display both the similarity and compromise effects ( Liew, Howe, and Little 2016 ). Likewise, some decision settings could reduce the threshold used in the models of Roe et al., Usher and McClelland, Bhatia, Trueblood et al., and Noguchi and Stewart. This has been used to explain differences in the strength of context effects when decision-makers are put under time pressure ( Dhar et al. 2000 ; Pettibone 2012) . Zhao, Coady, and Bhatia (2022) have also used a similar approach to study how behavioral interventions (like defaults, primes, and social norms) alter decision processes.

Limitations

Although the models discussed in this article provide a rigorous account of the processes at play in context effects, they are not without limitations. First, in their attempt to quantify all aspects of the decision process, quantitative models of context dependence have neglected less tangible variables like reasons and affect. As discussed earlier in this article, these variables play a central role in theories of context dependence in consumer behavior and are the basis for predicting effects of several types of situational manipulations on choice. Incorporating reason, affect, and other psychological drivers of choice remains a challenge for quantitative models.

Additionally, recent consumer research has uncovered numerous phenomena, such as single-option aversion ( Mochon 2013 ), the upscaling effect ( Evangelidis et al. 2023a ), and asymmetric context effects ( Evangelidis et al. 2018 ; Frederick et al. 2014 ; Heath and Chatterjee 1995 ), that are yet to be accounted for by quantitative models of context effects. Furthermore, Wu and Cosguner (2020) recently obtained evidence for the attraction effect in real-life diamond sales; yet, their result was contingent on consumers detecting dominance relationships between the alternatives. That is, in real-life settings, the attraction effect is likely to arise only for consumers who can detect that one option dominates the other, a factor that is typically ignored (or assumed to be stable) by quantitative models of context effects. Thus, recent consumer research provides evidence for numerous phenomena that are yet to be considered by extant models.

In the above paragraphs, we reviewed two research programs that have each attempted to understand context dependence in choice behavior. Although these research programs have the same origin in the pioneering work of Huber et al. and other scholars of consumer behavior, they have developed independently of each other, with minimal interaction. Both research programs have had tremendous influence on their respective fields, but each has several limitations and ambiguities. Here, we examine how these limitations can be addressed by combining the insights of each of these programs. We advance a roadmap for the future that seeks to inspire further research and potential collaborations between the two approaches.

One promising direction for future research involves incorporating, empirically testing, and further developing some of the key insights derived by accumulation-to-threshold models in consumer research. As we explained above, according to these models, consumers attend to attributes stochastically and update their preferences dynamically over time until the preference for an option reaches a threshold value, at which point consumers stop the decision process and select the option that reaches the threshold. The accumulation-to-threshold process has a number of implications that could be productively tested in the context of consumer research. On a fundamental level, it is not clear how consumers establish and use thresholds when making decisions. Are thresholds retrieved from memory or are they constructed based on the stimuli ( Lynch and Srull 1982 )? Relatedly, are thresholds fixed, or do they vary across options and choice sets? Are there different thresholds for the overall utility of an option versus independent thresholds for each of the attributes? How do different types of processing studied in consumer research, such as attribute-based versus attitude-based processing ( Mantel and Kardes 1999 ), contribute to the accumulation of value?

Another promising direction for theoretical cross-fertilization involves the development of models that incorporate insights from the behavioral literature. For instance, such insights could be derived from consumer research on the key factors that drive decisions, such as the use of reasons, or the role of emotions. Specifically, as we argue above, current models primarily trace context effects to algorithmic assumptions related to how consumers perceive, encode, and evaluate the performance of the options on the different attributes. The advantage of these algorithmic assumptions is their precise testability, but in doing so these models exclude some of the less precisely-identified—but clearly important—factors that are associated with context effects, such as through emotion regulation strategies aimed to mitigate negative emotions arising from decision conflict ( Hedgcock and Rao 2009 ), or the role of justifications or reasons that support choice of a given option ( Simonson 1989 ). It may be possible to incorporate the effect of emotions on choice processes through decision model parameters, which are flexible variables that modulate the strength of the underlying decision processes. In particular, situations that provoke negative affect ( Hedgcock and Rao 2009 ) could lead to systematic changes in choice model parameters, and subsequent effects on behavior ( Roberts and Hutcherson 2019 ). Likewise, inferences about ideal attribute values (which are based on the stimuli and the relationships between alternatives) could alter choice processes by increasing people’s propensity to use certain attribute comparisons and aggregation algorithms, or by shifting the attribute values that are used in these algorithms.

Relatedly, theories of context dependence in the behavioral literature ( Evangelidis et al. 2018 ), which propose that people encode dominance relationships between alternatives before evaluating and aggregating attributes, could be modeled by specifying additional algorithms that operate early on in the choice process. These dominance detection algorithms would likely have systemic effects on attention and response time, which could be tested using many of the tools currently used to evaluate decision model predictions. A similar approach could be applied to theories that propose a multi-stage process to consumer choice, for example, a 1st stage in which the larger choice set is reduced to a smaller consideration set and a 2nd stage in which a decision-maker selects between items in the consideration set ( Lei and Zhang 2021 ). Behavioral findings regarding the contextual determinants of dominance detection or consideration set formation could also be implemented in such models by varying the underlying parameters. These parameters could also be used to formally specify perceived and predicted effort, which is a prominent behavioral variable that guides consumer strategy selection ( Bettman, Luce, and Payne 1998 ). For example, effort could be modeled using response times or the decision thresholds that determine the tradeoff between the effort and accuracy generated by an accumulation-to-threshold process ( Bogacz et al., 2010 ).

Moreover, quantitative research could benefit from incorporating insights from consumer research on the interplay between the type of attributes under consideration, the decision context, and consumer preferences. Extant quantitative models of context effects assume that all attributes have the same properties and that decision-makers do not distinguish between different types of attributes along which options are described. By doing so, extant models largely neglect to consider and incorporate insights from the behavioral literature showing that there are different types of attributes, which may influence the association between context and people’s preferences, or the accumulation dynamics of preference. For instance, Frederick et al. (2014) advanced an important distinction between perceptual versus numeric attribute representations, showing that this distinction is particularly meaningful for the occurrence of the attraction effect. Relatedly, Brendl, Atasoy, and Samson (2023) showed that it is important to distinguish between quantitative and qualitative visual attributes when considering the impact of context on preferences, particularly the occurrence of the attraction effect. Evangelidis et al. (2018) argued that the prominence of the attributes may moderate the occurrence of context effects. Relatedly, Heath and Chatterjee (1995) and Evangelidis et al. (2023a ) argued that the target’s performance on attributes related to desirability (e.g., quality) versus feasibility (e.g., price) is an important factor that can explain whether the target will benefit from changes in the decision context. Other typologies of attributes that may hold important implications for quantitative models of multialternative preferences may involve attribute alignability ( Slovic and MacPhillamy 1974 ), or the distinction between approach versus avoidance orientation ( Coombs and Avrunin 1977 ).

Finally, we believe that there is a lot of promise in using quantitative models to study the effects of attention and memory on context dependence. There is already a long history of behavioral research on this topic using methods like eye-tracking or thought-listing ( Martinovici, Pieters, and Erdem 2022 ; Rosbergen, Pieters, and Wedel 1997 ). This work shows that attention is an important determinant of consumer choice. Importantly, the effect of attention on the decision process can be easily incorporated into accumulation-to-threshold models that make explicit the way in which sampled information guides the evolution of preferences. While there have been some attempts at using this approach ( Krajbich and Rangel, 2011 ), there are still several behavioral effects—particularly effects related to context dependence—that are yet to be formalized.

Ultimately, there are three main benefits of the kind of theoretical integration proposed in this article. First, by incorporating additional relevant factors into decision models, researchers would be able to use these models to provide a quantitative explanation for a larger set of effects. These include many of the effects discussed in previous sections that currently remain outside of the descriptive scope of choice models ( Evangelidis et al. 2018 , 2023a ; Frederick et al. 2014 ; Heath and Chatterjee 1995 ; Mochon 2013 ). Such explanations could also be used to compare different decision models and, more generally, identify the set of decision processes that provide the best explanation for behavior in consumer settings. Second, incorporating additional processes and variables into choice models would help unify the consumer behavior literature and lead to more precisely described constructs. Currently, the consumer behavior literature on context effects is somewhat disjointed, and distinct theoretical accounts are seldom tied to the same framework. Decision models provide such a framework, leading to new opportunities for theoretical synthesis and development. Third, the proposed synthesis can facilitate algorithm-driven choice-set design, in which marketing researchers use decision models to identify the best possible choice set for a given goal (e.g., when will option X be chosen more frequently), given the space of all feasible choice sets. In a recent work, Zhao et al. (2022) have used simplified variants of the computational cognitive models introduced above, to study the effects of behavioral interventions (like defaults, primes, and social norms) on multiattribute choice. A similar modeling strategy can be used for context effects, particularly to introduce modeling precision to insights from consumer literature on this topic. Exploring the feasibility of this approach—which could be used to extend existing theories of context dependence to influence behavior in important real-world settings—is an exciting direction for future work.

Ioannis Evangelidis ( [email protected] ) is an associate professor of marketing at ESADE Business School, Universitat Ramon Llull, Avenida Torre Blanca 59, Sant Cugat del Valles, 08172 Barcelona, Spain.

Sudeep Bhatia is an associate professor of psychology at the University of Pennsylvania, 3720 Walnut Street, Philadelphia, PA 19104, USA.

Jonathan Levav is a King Philanthropies Professor of Marketing at Stanford Graduate School of Business, 655 Knight Center, Stanford University, Stanford, CA 94305-5015, USA.

Itamar Simonson is the Sebastian S. Kresge Professor of Marketing, Emeritus, Stanford Graduate School of Business, 655 Knight Center, Stanford University, Stanford, CA 94305-5015, USA.

Bergner Anouk S. , Oppenheimer Daniel M. , Detre Greg ( 2019 ), “ VAMP (Voting Agent Model of Preferences): a Computational Model of Individual Multi-Attribute Choice ,” Cognition , 192 , 103971 .

Google Scholar

Bettman James R. , Luce Mary Frances , Payne John W. ( 1998 ), “ Constructive Consumer Choice Processes ,” Journal of Consumer Research , 25 ( 3 ), 187 – 217 .

Bhatia Sudeep ( 2013 ), “ Associations and the Accumulation of Preference ,” Psychological Review , 120 ( 3 ), 522 – 43 .

Bhatia Sudeep , Mullett Timothy L. ( 2016 ), “ The Dynamics of Deferred Decision ,” Cognitive Psychology , 86 , 112 – 51 .

Bhatia Sudeep , Loomes Graham , Read Daniel ( 2021 ), “ Establishing the Laws of Preferential Choice Behavior ,” Judgment and Decision Making , 16 ( 6 ), 1324 – 69 .

Bogacz Rafal , Wagenmakers Eric-Jan , Forstmann Birte U. , Nieuwenhuis Sander ( 2010 ), “ The Neural Basis of the Speed–Accuracy Tradeoff ,” Trends in Neurosciences , 33 ( 1 ), 10 – 6 .

Bordalo Pedro , Gennaioli Nicola , Shleifer Andrei ( 2013 ), “ Salience and Consumer Choice ,” Journal of Political Economy , 121 ( 5 ), 803 – 43 .

Brendl Miguel C. , Atasoy Özgün , Samson Coralie ( 2023 ), “ Preferential Attraction Effects with Visual Stimuli: The Role of Quantitative versus Qualitative Visual Attributes ,” Psychological Science , 34 ( 2 ), 265 – 78 .

Busemeyer Jerome R. , Gluth Sebastian , Rieskamp Jörg , Turner Brandon M. ( 2019 ), “ Cognitive and Neural Bases of Multi-Attribute, Multi-Alternative, Value-Based Decisions ,” Trends in Cognitive Sciences , 23 ( 3 ), 251 – 63 .

Busemeyer Jerome R. , Townsend James T. ( 1993 ), “ Decision Field Theory: A Dynamic-Cognitive Approach to Decision Making in an Uncertain Environment., ” Psychological Review , 100 ( 3 ), 432 – 59 .

Bushong Benjamin , Rabin Matthew , Schwartzstein Joshua ( 2021 ), “ A Model of Relative Thinking ,” The Review of Economic Studies , 88 ( 1 ), 162 – 91 .

Coombs Clyde H. , Avrunin George S. ( 1977 ), “ Single-Peaked Functions and the Theory of Preference ,” Psychological Review , 84 ( 2 ), 216 – 30 .

Dawes Robyn Mason ( 1964 ), “ Cognitive Distortion ,” Psychological Reports , 14 ( 2 ), 443 – 59 .

Dhar Ravi ( 1997 ), “ Consumer Preference for a No-Choice Option ,” Journal of Consumer Research , 24 ( 2 ), 215 – 31 .

Dhar Ravi , Nowlis Stephen M. , Sherman Steven J. ( 2000 ), “ Trying Hard or Hardly Trying: An Analysis of Context Effects in Choice ,” Journal of Consumer Psychology , 9 ( 4 ), 189 – 200 .

Debreu Gerard ( 1960 ), “ Review of Individual Choice Behavior: A Theoretical Analysis , by R. D. Luce ,” American Economic Review , 50 ( 1 ), 186 – 8 .

Dumbalska Tsvetomira , Li Vickie , Tsetsos Konstantinos , Summerfield Christopher ( 2020 ), “ A Map of Decoy Influence in Human Multialternative Choice ,” Proceedings of the National Academy of Sciences of the United States of America , 117 ( 40 ), 25169 – 78 .

Edwards Ward ( 1954 ), “ The Theory of Decision Making ,” Psychological Bulletin , 51 ( 4 ), 380 – 417 .

Einhorn Hillel J. ( 1970 ), “ The Use of Nonlinear, Noncompensatory Models in Decision Making ,” Psychological Bulletin , 73 ( 3 ), 221 – 30 .

Evangelidis Ioannis , Levav Jonathan , Simonson Itamar ( 2018 ), “ The Asymmetric Impact of Context on Advantaged versus Disadvantaged Options ,” Journal of Marketing Research , 55 ( 2 ), 239 – 53 .

Evangelidis Ioannis , Levav Jonathan , Simonson Itamar ( 2023a ), “ The Upscaling Effect: How the Decision Context Influences Tradeoffs between Desirability and Feasibility ,” Journal of Consumer Research . https://doi.org/10.1093/jcr/ucac059 .

Evangelidis Ioannis , Levav Jonathan , Simonson Itamar ( 2023b ), “ A Reexamination of the Impact of Decision Conflict on Choice Deferral ,” Management Science . https://doi.org/10.1287/mnsc.2022.4484 .

Farquhar Peter H. , Pratkanis Anthony R. ( 1987 ), “Phantom Choices: The Effects of Unavailable Alternatives on Decision Making,” Technical Report 87-2. Carnegie Mellon University, Pittsburgh, PA.

Frederick Shane , Lee Leonard , Baskin Ernest ( 2014 ), “ The Limits of Attraction ,” Journal of Marketing Research , 51 ( 4 ), 487 – 507 .

Gold Joshua I. , Shadlen Michael N. ( 2007 ), “ The Neural Basis of Decision Making ,” Annual Review of Neuroscience , 30 ( 1 ), 535 – 74 .

Heath Timothy B. , Chatterjee Subimal ( 1995 ), “ Asymmetric Decoy Effects on Lower-Quality versus Higher-Quality Brands: Meta-Analytic and Experimental Evidence ,” Journal of Consumer Research , 22 ( 3 ), 268 – 84 .

Hedgcock William , Rao Akshay R. ( 2009 ), “ Trade-off Aversion as an Explanation for the Attraction Effect: A Functional Magnetic Resonance Imaging Study,” Journal of Marketing Research , 46 ( 1 ), 1 – 13 .

Howes Andrew , Warren Paul A. , Farmer George , El-Deredy Wael , Lewis Richard L. ( 2016 ), “ Why Contextual Preference Reversals Maximize Expected Value ,” Psychological Review , 123 ( 4 ), 368 – 91 .

Hsee Christopher K. ( 1996 ), “ The Evaluability Hypothesis: An Explanation for Preference Reversals between Joint and Separate Evaluations of Alternatives ,” Organizational Behavior and Human Decision Processes , 67 ( 3 ), 247 – 57 .

Hsee Christopher K. ( 1998 ), “ Less Is Better: When Low-Value Options Are Valued More Highly than High-Value Options ,” Journal of Behavioral Decision Making , 11 ( 2 ), 107 – 21 .

Huber Joel , Payne John W. , Puto Christopher ( 1982 ), “ Adding Asymmetrically Dominated Alternatives: Violations of Regularity and the Similarity Hypothesis ,” Journal of Consumer Research , 9 ( 1 ), 90 – 8 .

Huber Joel , Puto Christopher ( 1983 ), “ Market Boundaries and Product Choice: Illustrating Attraction and Substitution Effects ,” Journal of Consumer Research , 10 ( 1 ), 31 – 44 .

Kahneman Daniel , Tversky Amos ( 1979 ), “ Prospect Theory: An Analysis of Decision under Risk ,” Econometrica , 47 ( 2 ), 263 – 92 .

Kivetz Ran , Netzer Oded , Srinivasan V. ( 2004 ), “ Alternative Models for Capturing the Compromise Effect ,” Journal of Marketing Research , 41 ( 3 ), 237 – 57 .

Kivetz Ran , Simonson Itamar ( 2000 ), “ The Effects of Incomplete Information on Consumer Choice ,” Journal of Marketing Research , 37 ( 4 ), 427 – 48 .

Krajbich Ian , Rangel Antonio ( 2011 ), “ Multialternative Drift-Diffusion Model Predicts the Relationship between Visual Fixations and Choice in Value-Based Decisions ,” Proceedings of the National Academy of Sciences of the United States of America , 108 ( 33 ), 13852 – 7 .

Landry Peter , Webb Ryan ( 2021 ), “ Pairwise Normalization: A Neuroeconomic Theory of Multi-Attribute Choice ,” Journal of Economic Theory , 193 , 105221 .

Lei Jing , Zhang Ying ( 2021 ), “ The Impact of a Two-Step Choice Process on Trade-Off Decisions ,” Journal of Consumer Research , 48 ( 3 ), 415 – 27 .

Liew Shi Xian , Howe Piers D. L. , Little Daniel R. ( 2016 ), “ The Appropriacy of Averaging in the Study of Context Effects ,” Psychonomic Bulletin & Review , 23 ( 5 ), 1639 – 46 .

Luce R. Duncan ( 1959 ), Individual Choice Behavior , John Wiley .

Google Preview

Lynch John G. , Srull Thomas K. ( 1982 ), “ Memory and Attentional Factors in Consumer Choice: Concepts and Research Methods ,” Journal of Consumer Research , 9 ( 1 ), 18 – 37 .

Mantel Susan Powell , Kardes Frank R. ( 1999 ), “ The Role of Direction of Comparison, Attribute-Based Processing, and Attitude-Based Processing in Consumer Preference ,” Journal of Consumer Research , 25 ( 4 ), 335 – 52 .

Martinovici Ana , Pieters Rik , Erdem Tülin ( 2022 ), “ Attention Trajectories Capture Utility Accumulation and Predict Brand Choice ,” Journal of Marketing Research , 0 ( ja ), [TQ5]

Mellers Barbara A. , Birnbaum Michael H. ( 1982 ), “ Loci of Contextual Effects in Judgment ,” Journal of Experimental Psychology. Human Perception and Performance , 8 ( 4 ), 582 – 601 .

Mellers Barbara A. , Cooke Alan D. J. ( 1994 ), “ Trade-Offs Depend on Attribute Range ,” Journal of Experimental Psychology: Human Perception and Performance , 20 ( 5 ), 1055 – 67 .

Mochon Daniel ( 2013 ), “ Single-Option Aversion ,” Journal of Consumer Research , 40 ( 3 ), 555 – 66 .

Noguchi Takao , Stewart Neil ( 2014 ), “ In the Attraction, Compromise, and Similarity Effects, Alternatives Are Repeatedly Compared in Pairs on Single Dimensions,” Cognition , 132 ( 1 ), 44 – 56 .

Noguchi Takao , Stewart Neil ( 2018 ), “ Multialternative Decision by Sampling: A Model of Decision Making Constrained by Process Data ,” Psychological Review , 125 ( 4 ), 512 – 44 .

Nowlis Stephen M. , Simonson Itamar ( 1997 ), “ Attribute-Task Compatibility as a Determinant of Consumer Preference Reversals ,” Journal of Marketing Research , 34 ( 2 ), 205 – 18 .

Pettibone Jonathan C. ( 2012 ), “ Testing the Effect of Time Pressure on Asymmetric Dominance and Compromise Decoys in Choice ,” Judgment and Decision Making , 7 ( 4 ), 513 – 21 .

Pettibone Jonathan C. , Wedell Douglas H. ( 2000 ), “ Examining Models of Nondominated Decoy Effects across Judgment and Choice,” Organizational Behavior and Human Decision Processes , 81 ( 2 ), 300 – 28 .

Prelec Drazen , Wernerfelt Birger , Zettelmeyer Florian ( 1997 ), “ The Role of Inference in Context Effects: Inferring What You Want from What Is Available ,” Journal of Consumer Research , 24 ( 1 ), 118 – 26 .

Roberts Ian D. , Hutcherson Cendri A. ( 2019 ), “ Affect and Decision Making: Insights and Predictions from Computational Models ,” Trends in Cognitive Sciences , 23 ( 7 ), 602 – 14 .

Roe Robert M. , Busemeyer Jermone R. , Townsend James T. ( 2001 ), “ Multialternative Decision Field Theory: A Dynamic Connectionist Model of Decision Making ,” Psychological Review , 108 ( 2 ), 370 – 92 .

Ronayne David , Brown Gordon D. A. ( 2017 ), “ Multi-Attribute Decision by Sampling: An account of the Attraction, Compromise and Similarity Effects ,” Journal of Mathematical Psychology , 81 , 11 – 27 .

Rooderkerk Robert P. , Van Heerde Harald J. , Bijmolt Tammo H. A. ( 2011 ), “ Incorporating Context Effects into a Choice Model ,” Journal of Marketing Research , 48 ( 4 ), 767 – 80 .

Rosbergen Edward , Pieters Rik , Wedel Michel ( 1997 ), “ Visual Attention to Advertising: A Segment-Level Analysis ,” Journal of Consumer Research , 24 ( 3 ), 305 – 14 .

Shenoy Pradeep , Yu Angela J. ( 2013 ), “A Rational Account of Contextual Effects in Preference Choice: What Makes for a Bargain?” in Proceedings of the Thirty-Fifth Annual Conference of the Cognitive Science Society

Simonson Itamar ( 1989 ), “ Choice Based on Reasons: The Case of Attraction and Compromise Effects ,” Journal of Consumer Research , 16 ( 2 ), 158 – 74 .

Simonson Itamar , Tversky Amos ( 1992 ), “ Choice in Context: Tradeoff Contrast and Extremeness Aversion ,” Journal of Marketing Research , 29 ( 3 ), 281 – 95 .

Slovic Paul , MacPhillamy Douglas ( 1974 ), “ Dimensional Commensurability and Cue Utilization in Comparative Judgment ,” Organizational Behavior and Human Performance , 11 ( 2 ), 172 – 94 .

Soltani Alireza , De Martino Benedetto , Camerer Colin ( 2012 ), “ A Range-Normalization Model of Context-Dependent Choice: A New Model and Evidence ,” PLoS Computational Biology , 8 ( 7 ), e1002607 .

Trueblood Jennifer S. , Brown Scott D. , Heathcote Andrew ( 2014 ), “ The Multiattribute Linear Ballistic Accumulator Model of Context Effects in Multialternative Choice ,” Psychological Review , 121 ( 2 ), 179 – 205 .

Trueblood Jennifer S. , Brown Scott D. , Heathcote Andrew , Busemeyer Jerome R. ( 2013 ), “ Not Just for Consumers: Context Effects Are Fundamental to Decision Making ,” Psychological Science , 24 ( 6 ), 901 – 8 .

Tversky Amos ( 1972 ), “ Elimination by Aspects: A Theory of Choice ,” Psychological Review , 79 ( 4 ), 281 – 99 .

Turner Brandon M. , Schley Dan R. , Muller Carly , Tsetsos Konstantinos ( 2018 ), “ Competing Theories of Multialternative, Multiattribute Preferential Choice,” Psychological Review , 125 ( 3 ), 329 – 62 .

Tversky Amos , Shafir Eldar ( 1992 ), “ Choice under Conflict: The Dynamics of Deferred Decision ,” Psychological Science , 3 ( 6 ), 358 – 61 .

Tversky Amos , Simonson Itamar ( 1993 ), “ Context-Dependent Preferences ,” Management Science , 39 ( 10 ), 1179 – 89 .

Usher Marius , McClelland James L. ( 2004 ), “ Loss Aversion and Inhibition in Dynamical Models of Multialternative Choice ,” Psychological Review , 111 ( 3 ), 757 – 69 .

Wernerfelt Birger ( 1995 ), “ A Rational Reconstruction of the Compromise Effect: Using Market Data to Infer Utilities ,” Journal of Consumer Research , 21 ( 4 ), 627 – 33 .

Wollschläger Lena M. , Diederich Adele ( 2012 ), “ The 2N-Ary Choice Tree Model for N-Alternative Preferential Choice ,” Frontiers in Psychology , 3 , 189 . Article 189.

Wu Chunhua , Cosguner Koray ( 2020 ), “ Profiting from the Decoy Effect: A Case Study of an Online Diamond Retailer ,” Marketing Science , 39 ( 5 ), 974 – 95 .

Zhao Wenjia , Coady Aoife , Bhatia Sudeep ( 2022 ), “ Computational Mechanisms for Context-Based Behavioral Interventions: A Large-Scale Analysis ,” Proceedings of the National Academy of Sciences of the United States of America , 119 ( 15 ), e2114914119 .

Email alerts

Citing articles via.

  • Recommend to your Library

Affiliations

  • Online ISSN 1537-5277
  • Print ISSN 0093-5301
  • Copyright © 2024 Journal of Consumer Research Inc.
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Empirical antimicrobials in the intensive care unit

  • Published: 13 May 2024

Cite this article

empirical research quantitative

  • Liesbet De Bus   ORCID: orcid.org/0000-0003-1456-5857 1 , 2   na1 ,
  • Kostoula Arvaniti   ORCID: orcid.org/0000-0003-1171-4108 3   na1 &
  • Fredrik Sjövall   ORCID: orcid.org/0000-0001-5612-0325 4 , 5   na1  

7970 Accesses

73 Altmetric

Explore all metrics

Avoid common mistakes on your manuscript.

Critically ill patients frequently present with infection, potentially leading to sepsis or septic shock, where timely and appropriate antimicrobial treatment is paramount [ 1 , 2 ]. We aim to provide a step-by-step approach for prescribing empirical antimicrobials in intensive care unit (ICU) patients with a suspected infection.

Assessing the need and urgency

Antimicrobial therapy is vital for treating most infections, yet it poses potential harm when overused, making proper diagnostic assessment crucial. Diagnostic evaluation includes clinical examination, imaging and laboratory testing [ 3 ]. Intensivists have a key role in interpreting these results, integrating each test into the broader decision-making process on a case-by-case basis. Complex patients may necessitate a multi-disciplinary strategy involving ICU physicians, referring physicians, surgeons, microbiologists and infectious disease specialists [ 4 ].

Despite extensive research, no gold standard biomarker exits to distinguish infection from other inflammatory states. The 2021 Survival Sepsis Campaign Guidelines (SSCG) advise against using procalcitonin for diagnosing sepsis and initiation of antimicrobials, compared to clinical assessment alone [ 3 ].

Microbiological sampling is essential in both diagnosis and to allow targeted therapy at a later stage and should be performed before starting antimicrobials while ensuring it does not significantly delay treatment [ 3 ]. At a minimum, blood cultures and samples from suspected infection sites should be taken. For more guidance, see Fig.  1 . Rapid microbiological and molecular techniques can support earlier and tailored antimicrobial regimens [ 5 , 6 ]. Numerous commercial tests are now accessible, enabling faster identification of potentially implicated pathogens. Emerging clinical evidence generally indicates that these tests offer superior sensitivity and specificity compared to traditional culture-based diagnostics [ 6 ]. However, several caveats persist, including limitations to detecting only predefined pathogen panels, overly sensitive identification of non-viable pathogens and costs [ 7 ]. Prompt and accurate interpretation will demand in-depth knowledge and expertise to ensure appropriate action is taken. Further research is crucial to understand the impact on antibiotic stewardship and patient outcomes.

figure 1

A step-by-step approach for prescribing empirical antimicrobial therapy. Created with BioRender.com. AKI acute kidney injury, ARC augmented renal clearance, ECMO extracorporeal membrane oxygenation, ICU intensive care unit, MDR multidrug resistant, RRT renal replacement therapy [ 3 , 6 , 14 , 18 ]. AIRSPACE ESICM https://airspace.esicm.org/login

The urgency

Sepsis and septic shock are medical emergencies requiring prompt action. The SSCG advocate for immediate antimicrobial administration within 1 h of recognizing possible septic shock or a high likelihood of sepsis [ 3 ]. To mitigate the risks associated with the overuse of antimicrobial agents [ 8 ], the diagnostic assessment window is extended in patients presenting with possible sepsis without shock, allowing for a more thorough evaluation. A weak recommendation exists for deferring antimicrobials in patients with low infection likelihood and no shock, with careful patient observation. Previous research even indicates that, in certain well-monitored ICU environments, postponing the start of antimicrobial treatment until preliminary microbiological findings are accessible may be justifiable in the less severely ill, allowing for more precise targeting of therapy [ 9 ]. However, definitive conclusions remain elusive. The advent of rapid diagnostics is set to revolutionize this field.

Pathogen profiling

Profiling the suspected causative pathogen(s), by making an informed estimation of the species and susceptibility pattern is mandatory when determining empirical treatment. This process considers the presumed infection source, underlying comorbidities, local ecology and the risk of multidrug-resistant (MDR) organisms (Fig.  1 ) [ 10 ]. ICUs are known to have a high prevalence of MDR infections due to high antimicrobial pressure and extensive barrier breaching interventions [ 11 ]. Additional classical risk factors to be evaluated include history of colonization or infection with MDR pathogens, hospitalization for 5 days or longer within the past 90 days and recent antimicrobial treatment [ 12 ]. MDR prevalence thresholds have been proposed to guide empirical antimicrobial choice. However, these thresholds are largely based on expert opinion, using heterogeneous criteria, and with wide ranges that limit uniform applicability [ 13 ]. For more severely ill patients, a lower threshold (5–10%) for covering difficult-to-treat bacteria is generally accepted [ 13 ].

Selecting the right arsenal

No single empirical antimicrobial regimen is recognized as the gold standard. Once more, an individualized assessment is crucial, taking into account the severity of illness, the presumed source of infection, immunosuppressive status and patient-related risk factors for MDR [ 3 , 14 , 15 ]. Incorporating local ecological patterns into international guidelines presents significant challenges [ 3 ]. As a result, the development of hospital-specific guidelines should be encouraged to better address unique environmental factors and needs. The chosen agent should offer a spectrum that covers the majority of suspected causative pathogens. In this context, beta-lactams are one of the most commonly utilized classes [ 1 ]. Combining multiple agents to include a broader range of species and resistance patterns is generally accepted when deemed essential. The use of a combination of different drug classes, targeting the same (susceptible) pathogen to accelerate pathogen clearance or prevent the emergence of resistance, is more controversial [ 16 ]. In patients at low risk for MDR infection or when susceptibilities are known, the SSCG recommend against combination therapy [ 3 ]. In certain cases, specific agents are proposed as adjunctive therapy and available guidelines should be followed [ 17 ] . It is essential to incorporate the regular re-assessment of both spectrum and duration of treatment into the daily workflow to mitigate ecological pressure.

In addition, choosing the appropriate empirical arsenal requires careful consideration of pharmacokinetic/pharmacodynamic factors to guarantee sufficient antimicrobial concentration at the infection site while reducing potential toxic effects. Precise dosing, including the amount, method of administration, and dosage frequency, is important to ensure effective treatment. During the initial phase, patients with sepsis, as a rule, have a larger volume of distribution and/or augmented drug clearance necessitating larger initial doses or more frequent dosing intervals, depending on the characteristics of the agents used. Once a steady state level has been reached, subsequent dosing should be adjusted according to the patient’s clinical status (presence of end organ failure, use of extra corporeal techniques) and the way of elimination of the antimicrobials (renal, hepatic). Therapeutic drug monitoring has been suggested as a valuable tool for optimizing doses and reducing adverse effects [ 18 ] .

Future perspectives

Advancements in diagnosing sepsis and identifying its causative microorganisms are key to increasing the effectiveness of treatments and simultaneously minimizing antimicrobial exposure. Decision tools incorporating patient, setting, and microbiology data, interpreted by artificial intelligence, represent a promising area currently under exploration.

There's a need for well-designed trials to establish timeframes for ICU physicians to commence or defer empirical therapy and to determine whether combination therapies are more effective than single-agent regimens, and if so, identify the most suitable types and settings for their use. Additionally, studying the ecological impact of various antimicrobial choices at the patient, institutional, and global levels is necessary.

Vincent JL, Sakr Y, Singer M, Martin-Loeches I, Machado FR, Marshall JC, Finfer S, Pelosi P, Brazzi L, Aditianingsih D, Timsit JF, Du B, Wittebole X, Máca J, Kannan S, Gorordo-Delsol LA, De Waele JJ, Mehta Y, Bonten MJM, Khanna AK, Kollef M, Human M, Angus DC, Investigators EPICIII (2020) Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA 323(15):1478–1487. https://doi.org/10.1001/jama.2020.2717

Article   PubMed   PubMed Central   Google Scholar  

Seymour CW, Gesten F, Prescott HC, Friedrich ME, Iwashyna TJ, Phillips GS, Lemeshow S, Osborn T, Terry KM, Levy MM (2017) Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med 376(23):2235–2244. https://doi.org/10.1056/NEJMoa1703058

Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, Mcintyre L, Ostermann M, Prescott HC, Schorr C, Simpson S, Wiersinga WJ, Alshamsi F, Angus DC, Arabi Y, Azevedo L, Beale R, Beilman G, Belley-Cote E et al (2021) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med 47(11):1181–1247. https://doi.org/10.1007/s00134-021-06506-y

Bonaconsa, C., Mbamalu, O., Surendran, S., George, A., Mendelson, M., & Charani, E. (2023). Optimizing infection control and antimicrobial stewardship bedside discussion: a scoping review of existing evidence on effective healthcare communication in hospitals. Clin Microbiol Infect S1198–743X(23)00601–8. Advance online publication. https://doi.org/10.1016/j.cmi.2023.12.011

Conway Morris A, Bos LDJ, Nseir S (2022) Molecular diagnostics in severe pneumonia: a new dawn or false promise? Intensive Care Med 48(6):740–742. https://doi.org/10.1007/s00134-022-06722-0

Article   PubMed   Google Scholar  

De Waele JJ, Boelens J (2024) Antimicrobial stewardship and molecular diagnostics: a symbiotic approach to combating resistance in the ED and ICU. Curr Opin Crit Care. https://doi.org/10.1097/MCC.0000000000001154

Garrido P, Gabaldó-Barrios X, Pujol-Bajador I, Fernández L, Ballester F, Garrido R, Cueto P, Camps J, Vallverdú I (2023) Assessing the utility of multiplexed polymerase chain reaction in detecting microorganisms causing infections in critically ill patients. Curr Microbiol 80(11):348. https://doi.org/10.1007/s00284-023-03461-3

Article   CAS   PubMed   PubMed Central   Google Scholar  

Rhee C, Kadri SS, Dekker JP, Danner RL, Chen HC, Fram D, Zhang F, Wang R, Klompas M, Prevention Epicenters Program CDC (2020) Prevalence of antibiotic-resistant pathogens in culture-proven sepsis and outcomes associated with inadequate and broad-spectrum empiric antibiotic use. JAMA Netw Open 3(4):e202899. https://doi.org/10.1001/jamanetworkopen.2020.2899

Hranjec T, Rosenberger LH, Swenson B, Metzger R, Flohr TR, Politano AD, Riccio LM, Popovsky KA, Sawyer RG (2012) Aggressive versus conservative initiation of antimicrobial treatment in critically ill surgical patients with suspected intensive-care-unit-acquired infection: a quasi-experimental, before and after observational cohort study. Lancet Infect Dis 12(10):774–780. https://doi.org/10.1016/S1473-3099(12)70151-2

Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ (2023). Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin Infect Dis, ciad428. Advance online publication. https://doi.org/10.1093/cid/ciad428

De Waele JJ, Boelens J, Leroux-Roels I (2020) Multidrug-resistant bacteria in ICU: fact or myth. Curr Opin Anaesthesiol 33(2):156–161. https://doi.org/10.1097/ACO.0000000000000830

Yassin A, Huralska M, Pogue JM, Dixit D, Sawyer RG, Kaye KS (2023) State of the management of infections caused by multidrug-resistant gram-negative organisms. Clin Infect Dis 77(9):e46–e56. https://doi.org/10.1093/cid/ciad499

Auzin A, Spits M, Tacconelli E, Rodríguez-Baño J, Hulscher M, Adang E, Voss A, Wertheim H (2022) What is the evidence base of used aggregated antibiotic resistance percentages to change empirical antibiotic treatment? A scoping review. Clin Microbiol Infect 28(7):928–935. https://doi.org/10.1016/j.cmi.2021.12.003

Article   CAS   PubMed   Google Scholar  

Timsit JF, Bassetti M, Cremer O, Daikos G, de Waele J, Kallil A, Kipnis E, Kollef M, Laupland K, Paiva JA, Rodríguez-Baño J, Ruppé É, Salluh J, Taccone FS, Weiss E, Barbier F (2019) Rationalizing antimicrobial therapy in the ICU: a narrative review. Intensive Care Med 45(2):172–189. https://doi.org/10.1007/s00134-019-05520-5

Strich JR, Heil EL, Masur H (2020) Considerations for empiric antimicrobial therapy in sepsis and septic shock in an Era of antimicrobial resistance. J Infect Dis 222(Suppl 2):S119–S131. https://doi.org/10.1093/infdis/jiaa221

IDSA Sepsis Task Force (2018) Infectious Diseases Society of America (IDSA) POSITION STATEMENT: Why IDSA Did Not Endorse the Surviving Sepsis Campaign Guidelines. Clin Infect Dis 66(10):1631–1635. https://doi.org/10.1093/cid/cix997

Article   Google Scholar  

Martin-Loeches I, Torres A, Nagavci B, Aliberti S, Antonelli M, Bassetti M, Bos LD, Chalmers JD, Derde L, de Waele J, Garnacho-Montero J, Kollef M, Luna CM, Menendez R, Niederman MS, Ponomarev D, Restrepo MI, Rigau D, Schultz MJ, Weiss E et al (2023) ERS/ESICM/ESCMID/ALAT guidelines for the management of severe community-acquired pneumonia. Intensive Care Med 49(6):615–632. https://doi.org/10.1007/s00134-023-07033-8

Abdul-Aziz, M. H., Alffenaar, J. C., Bassetti, M., Bracht, H., Dimopoulos, G., Marriott, D., Neely, M. N., Paiva, J. A., Pea, F., Sjovall, F., Timsit, J. F., Udy, A. A., Wicha, S. G., Zeitlinger, M., De Waele, J. J., Roberts, J. A., Infection Section of European Society of Intensive Care Medicine (ESICM), Pharmacokinetic/pharmacodynamic and Critically Ill Patient Study Groups of European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Group of International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT), & Infections in the ICU and Sepsis Working Group of International Society of Antimicrobial Chemotherapy (ISAC) (2020) Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper. Intensive Care Med 46(6):1127–1153. https://doi.org/10.1007/s00134-020-06050-1

Download references

Author information

Liesbet De Bus, Kostoula Arvaniti and Fredrik Sjövall have contributed equally to the work.

Authors and Affiliations

Department of Intensive Care Medicine, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium

Liesbet De Bus

Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium

Intensive Care Unit, Papageorgiou University Affiliated Hospital, Thessaloníki, Greece

Kostoula Arvaniti

Department of Intensive and Perioperative Care, Skåne University Hospital, Malmö, Sweden

Fredrik Sjövall

Department of Clinical Sciences, Lund university, Lund, Sweden

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Liesbet De Bus .

Ethics declarations

Conflicts of interest.

The authors confirm that they have no conflicts of interest to declare.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

De Bus, L., Arvaniti, K. & Sjövall, F. Empirical antimicrobials in the intensive care unit. Intensive Care Med (2024). https://doi.org/10.1007/s00134-024-07453-0

Download citation

Received : 10 February 2024

Accepted : 18 April 2024

Published : 13 May 2024

DOI : https://doi.org/10.1007/s00134-024-07453-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Advertisement

  • Find a journal
  • Publish with us
  • Track your research

empirical research quantitative

CRO Platform

Test your insights. Run experiments. Win. Or learn. And then win.

empirical research quantitative

eCommerce Customer Analytics Platform

empirical research quantitative

Acquisition matters. But retention matters more. Understand, monitor & nurture the best customers.

  • Case Studies
  • Ebooks, Tools, Templates
  • Digital Marketing Glossary
  • eCommerce Growth Stories
  • eCommerce Growth Show
  • Help & Technical Documentation

CRO Guide   >  Chapter 3.1

Qualitative Research: Definition, Methodology, Limitation & Examples

Qualitative research is a method focused on understanding human behavior and experiences through non-numerical data. Examples of qualitative research include:

  • One-on-one interviews,
  • Focus groups, Ethnographic research,
  • Case studies,
  • Record keeping,
  • Qualitative observations

In this article, we’ll provide tips and tricks on how to use qualitative research to better understand your audience through real world examples and improve your ROI. We’ll also learn the difference between qualitative and quantitative data.

gathering data

Table of Contents

Marketers often seek to understand their customers deeply. Qualitative research methods such as face-to-face interviews, focus groups, and qualitative observations can provide valuable insights into your products, your market, and your customers’ opinions and motivations. Understanding these nuances can significantly enhance marketing strategies and overall customer satisfaction.

What is Qualitative Research

Qualitative research is a market research method that focuses on obtaining data through open-ended and conversational communication. This method focuses on the “why” rather than the “what” people think about you. Thus, qualitative research seeks to uncover the underlying motivations, attitudes, and beliefs that drive people’s actions. 

Let’s say you have an online shop catering to a general audience. You do a demographic analysis and you find out that most of your customers are male. Naturally, you will want to find out why women are not buying from you. And that’s what qualitative research will help you find out.

In the case of your online shop, qualitative research would involve reaching out to female non-customers through methods such as in-depth interviews or focus groups. These interactions provide a platform for women to express their thoughts, feelings, and concerns regarding your products or brand. Through qualitative analysis, you can uncover valuable insights into factors such as product preferences, user experience, brand perception, and barriers to purchase.

Types of Qualitative Research Methods

Qualitative research methods are designed in a manner that helps reveal the behavior and perception of a target audience regarding a particular topic.

The most frequently used qualitative analysis methods are one-on-one interviews, focus groups, ethnographic research, case study research, record keeping, and qualitative observation.

1. One-on-one interviews

Conducting one-on-one interviews is one of the most common qualitative research methods. One of the advantages of this method is that it provides a great opportunity to gather precise data about what people think and their motivations.

Spending time talking to customers not only helps marketers understand who their clients are, but also helps with customer care: clients love hearing from brands. This strengthens the relationship between a brand and its clients and paves the way for customer testimonials.

  • A company might conduct interviews to understand why a product failed to meet sales expectations.
  • A researcher might use interviews to gather personal stories about experiences with healthcare.

These interviews can be performed face-to-face or on the phone and usually last between half an hour to over two hours. 

When a one-on-one interview is conducted face-to-face, it also gives the marketer the opportunity to read the body language of the respondent and match the responses.

2. Focus groups

Focus groups gather a small number of people to discuss and provide feedback on a particular subject. The ideal size of a focus group is usually between five and eight participants. The size of focus groups should reflect the participants’ familiarity with the topic. For less important topics or when participants have little experience, a group of 10 can be effective. For more critical topics or when participants are more knowledgeable, a smaller group of five to six is preferable for deeper discussions.

The main goal of a focus group is to find answers to the “why”, “what”, and “how” questions. This method is highly effective in exploring people’s feelings and ideas in a social setting, where group dynamics can bring out insights that might not emerge in one-on-one situations.

  • A focus group could be used to test reactions to a new product concept.
  • Marketers might use focus groups to see how different demographic groups react to an advertising campaign.

One advantage that focus groups have is that the marketer doesn’t necessarily have to interact with the group in person. Nowadays focus groups can be sent as online qualitative surveys on various devices.

Focus groups are an expensive option compared to the other qualitative research methods, which is why they are typically used to explain complex processes.

3. Ethnographic research

Ethnographic research is the most in-depth observational method that studies individuals in their naturally occurring environment.

This method aims at understanding the cultures, challenges, motivations, and settings that occur.

  • A study of workplace culture within a tech startup.
  • Observational research in a remote village to understand local traditions.

Ethnographic research requires the marketer to adapt to the target audiences’ environments (a different organization, a different city, or even a remote location), which is why geographical constraints can be an issue while collecting data.

This type of research can last from a few days to a few years. It’s challenging and time-consuming and solely depends on the expertise of the marketer to be able to analyze, observe, and infer the data.

4. Case study research

The case study method has grown into a valuable qualitative research method. This type of research method is usually used in education or social sciences. It involves a comprehensive examination of a single instance or event, providing detailed insights into complex issues in real-life contexts.  

  • Analyzing a single school’s innovative teaching method.
  • A detailed study of a patient’s medical treatment over several years.

Case study research may seem difficult to operate, but it’s actually one of the simplest ways of conducting research as it involves a deep dive and thorough understanding of the data collection methods and inferring the data.

5. Record keeping

Record keeping is similar to going to the library: you go over books or any other reference material to collect relevant data. This method uses already existing reliable documents and similar sources of information as a data source.

  • Historical research using old newspapers and letters.
  • A study on policy changes over the years by examining government records.

This method is useful for constructing a historical context around a research topic or verifying other findings with documented evidence.

6. Qualitative observation

Qualitative observation is a method that uses subjective methodologies to gather systematic information or data. This method deals with the five major sensory organs and their functioning, sight, smell, touch, taste, and hearing.

  • Sight : Observing the way customers visually interact with product displays in a store to understand their browsing behaviors and preferences.
  • Smell : Noting reactions of consumers to different scents in a fragrance shop to study the impact of olfactory elements on product preference.
  • Touch : Watching how individuals interact with different materials in a clothing store to assess the importance of texture in fabric selection.
  • Taste : Evaluating reactions of participants in a taste test to identify flavor profiles that appeal to different demographic groups.
  • Hearing : Documenting responses to changes in background music within a retail environment to determine its effect on shopping behavior and mood.

Below we are also providing real-life examples of qualitative research that demonstrate practical applications across various contexts:

Qualitative Research Real World Examples

Let’s explore some examples of how qualitative research can be applied in different contexts.

1. Online grocery shop with a predominantly male audience

Method used: one-on-one interviews.

Let’s go back to one of the previous examples. You have an online grocery shop. By nature, it addresses a general audience, but after you do a demographic analysis you find out that most of your customers are male.

One good method to determine why women are not buying from you is to hold one-on-one interviews with potential customers in the category.

Interviewing a sample of potential female customers should reveal why they don’t find your store appealing. The reasons could range from not stocking enough products for women to perhaps the store’s emphasis on heavy-duty tools and automotive products, for example. These insights can guide adjustments in inventory and marketing strategies.

2. Software company launching a new product

Method used: focus groups.

Focus groups are great for establishing product-market fit.

Let’s assume you are a software company that wants to launch a new product and you hold a focus group with 12 people. Although getting their feedback regarding users’ experience with the product is a good thing, this sample is too small to define how the entire market will react to your product.

So what you can do instead is holding multiple focus groups in 20 different geographic regions. Each region should be hosting a group of 12 for each market segment; you can even segment your audience based on age. This would be a better way to establish credibility in the feedback you receive.

3. Alan Pushkin’s “God’s Choice: The Total World of a Fundamentalist Christian School”

Method used: ethnographic research.

Moving from a fictional example to a real-life one, let’s analyze Alan Peshkin’s 1986 book “God’s Choice: The Total World of a Fundamentalist Christian School”.

Peshkin studied the culture of Bethany Baptist Academy by interviewing the students, parents, teachers, and members of the community alike, and spending eighteen months observing them to provide a comprehensive and in-depth analysis of Christian schooling as an alternative to public education.

The study highlights the school’s unified purpose, rigorous academic environment, and strong community support while also pointing out its lack of cultural diversity and openness to differing viewpoints. These insights are crucial for understanding how such educational settings operate and what they offer to students.

Even after discovering all this, Peshkin still presented the school in a positive light and stated that public schools have much to learn from such schools.

Peshkin’s in-depth research represents a qualitative study that uses observations and unstructured interviews, without any assumptions or hypotheses. He utilizes descriptive or non-quantifiable data on Bethany Baptist Academy specifically, without attempting to generalize the findings to other Christian schools.

4. Understanding buyers’ trends

Method used: record keeping.

Another way marketers can use quality research is to understand buyers’ trends. To do this, marketers need to look at historical data for both their company and their industry and identify where buyers are purchasing items in higher volumes.

For example, electronics distributors know that the holiday season is a peak market for sales while life insurance agents find that spring and summer wedding months are good seasons for targeting new clients.

5. Determining products/services missing from the market

Conducting your own research isn’t always necessary. If there are significant breakthroughs in your industry, you can use industry data and adapt it to your marketing needs.

The influx of hacking and hijacking of cloud-based information has made Internet security a topic of many industry reports lately. A software company could use these reports to better understand the problems its clients are facing.

As a result, the company can provide solutions prospects already know they need.

Real-time Customer Lifetime Value (CLV) Benchmark Report

See where your business stands compared to 1,000+ e-stores in different industries.

35 reports by industry and business size.

Qualitative Research Approaches

Once the marketer has decided that their research questions will provide data that is qualitative in nature, the next step is to choose the appropriate qualitative approach.

The approach chosen will take into account the purpose of the research, the role of the researcher, the data collected, the method of data analysis , and how the results will be presented. The most common approaches include:

  • Narrative : This method focuses on individual life stories to understand personal experiences and journeys. It examines how people structure their stories and the themes within them to explore human existence. For example, a narrative study might look at cancer survivors to understand their resilience and coping strategies.
  • Phenomenology : attempts to understand or explain life experiences or phenomena; It aims to reveal the depth of human consciousness and perception, such as by studying the daily lives of those with chronic illnesses.
  • Grounded theory : investigates the process, action, or interaction with the goal of developing a theory “grounded” in observations and empirical data. 
  • Ethnography : describes and interprets an ethnic, cultural, or social group;
  • Case study : examines episodic events in a definable framework, develops in-depth analyses of single or multiple cases, and generally explains “how”. An example might be studying a community health program to evaluate its success and impact.

How to Analyze Qualitative Data

Analyzing qualitative data involves interpreting non-numerical data to uncover patterns, themes, and deeper insights. This process is typically more subjective and requires a systematic approach to ensure reliability and validity. 

1. Data Collection

Ensure that your data collection methods (e.g., interviews, focus groups, observations) are well-documented and comprehensive. This step is crucial because the quality and depth of the data collected will significantly influence the analysis.

2. Data Preparation

Once collected, the data needs to be organized. Transcribe audio and video recordings, and gather all notes and documents. Ensure that all data is anonymized to protect participant confidentiality where necessary.

3. Familiarization

Immerse yourself in the data by reading through the materials multiple times. This helps you get a general sense of the information and begin identifying patterns or recurring themes.

Develop a coding system to tag data with labels that summarize and account for each piece of information. Codes can be words, phrases, or acronyms that represent how these segments relate to your research questions.

  • Descriptive Coding : Summarize the primary topic of the data.
  • In Vivo Coding : Use language and terms used by the participants themselves.
  • Process Coding : Use gerunds (“-ing” words) to label the processes at play.
  • Emotion Coding : Identify and record the emotions conveyed or experienced.

5. Thematic Development

Group codes into themes that represent larger patterns in the data. These themes should relate directly to the research questions and form a coherent narrative about the findings.

6. Interpreting the Data

Interpret the data by constructing a logical narrative. This involves piecing together the themes to explain larger insights about the data. Link the results back to your research objectives and existing literature to bolster your interpretations.

7. Validation

Check the reliability and validity of your findings by reviewing if the interpretations are supported by the data. This may involve revisiting the data multiple times or discussing the findings with colleagues or participants for validation.

8. Reporting

Finally, present the findings in a clear and organized manner. Use direct quotes and detailed descriptions to illustrate the themes and insights. The report should communicate the narrative you’ve built from your data, clearly linking your findings to your research questions.

Limitations of qualitative research

The disadvantages of qualitative research are quite unique. The techniques of the data collector and their own unique observations can alter the information in subtle ways. That being said, these are the qualitative research’s limitations:

1. It’s a time-consuming process

The main drawback of qualitative study is that the process is time-consuming. Another problem is that the interpretations are limited. Personal experience and knowledge influence observations and conclusions.

Thus, qualitative research might take several weeks or months. Also, since this process delves into personal interaction for data collection, discussions often tend to deviate from the main issue to be studied.

2. You can’t verify the results of qualitative research

Because qualitative research is open-ended, participants have more control over the content of the data collected. So the marketer is not able to verify the results objectively against the scenarios stated by the respondents. For example, in a focus group discussing a new product, participants might express their feelings about the design and functionality. However, these opinions are influenced by individual tastes and experiences, making it difficult to ascertain a universally applicable conclusion from these discussions.

3. It’s a labor-intensive approach

Qualitative research requires a labor-intensive analysis process such as categorization, recording, etc. Similarly, qualitative research requires well-experienced marketers to obtain the needed data from a group of respondents.

4. It’s difficult to investigate causality

Qualitative research requires thoughtful planning to ensure the obtained results are accurate. There is no way to analyze qualitative data mathematically. This type of research is based more on opinion and judgment rather than results. Because all qualitative studies are unique they are difficult to replicate.

5. Qualitative research is not statistically representative

Because qualitative research is a perspective-based method of research, the responses given are not measured.

Comparisons can be made and this can lead toward duplication, but for the most part, quantitative data is required for circumstances that need statistical representation and that is not part of the qualitative research process.

While doing a qualitative study, it’s important to cross-reference the data obtained with the quantitative data. By continuously surveying prospects and customers marketers can build a stronger database of useful information.

Quantitative vs. Qualitative Research

Qualitative and quantitative research side by side in a table

Image source

Quantitative and qualitative research are two distinct methodologies used in the field of market research, each offering unique insights and approaches to understanding consumer behavior and preferences.

As we already defined, qualitative analysis seeks to explore the deeper meanings, perceptions, and motivations behind human behavior through non-numerical data. On the other hand, quantitative research focuses on collecting and analyzing numerical data to identify patterns, trends, and statistical relationships.  

Let’s explore their key differences: 

Nature of Data:

  • Quantitative research : Involves numerical data that can be measured and analyzed statistically.
  • Qualitative research : Focuses on non-numerical data, such as words, images, and observations, to capture subjective experiences and meanings.

Research Questions:

  • Quantitative research : Typically addresses questions related to “how many,” “how much,” or “to what extent,” aiming to quantify relationships and patterns.
  • Qualitative research: Explores questions related to “why” and “how,” aiming to understand the underlying motivations, beliefs, and perceptions of individuals.

Data Collection Methods:

  • Quantitative research : Relies on structured surveys, experiments, or observations with predefined variables and measures.
  • Qualitative research : Utilizes open-ended interviews, focus groups, participant observations, and textual analysis to gather rich, contextually nuanced data.

Analysis Techniques:

  • Quantitative research: Involves statistical analysis to identify correlations, associations, or differences between variables.
  • Qualitative research: Employs thematic analysis, coding, and interpretation to uncover patterns, themes, and insights within qualitative data.

empirical research quantitative

Do Conversion Rate Optimization the Right way.

Explore helps you make the most out of your CRO efforts through advanced A/B testing, surveys, advanced segmentation and optimised customer journeys.

An isometric image of an adobe adobe adobe adobe ad.

If you haven’t subscribed yet to our newsletter, now is your chance!

A man posing happily in front of a vivid purple background for an engaging blog post.

Like what you’re reading?

Join the informed ecommerce crowd.

We will never bug you with irrelevant info.

By clicking the Button, you confirm that you agree with our Terms and Conditions .

Continue your Conversion Rate Optimization Journey

  • Last modified: January 3, 2023
  • Conversion Rate Optimization , User Research

Valentin Radu

Valentin Radu

Omniconvert logo on a black background.

We’re a team of people that want to empower marketers around the world to create marketing campaigns that matter to consumers in a smart way. Meet us at the intersection of creativity, integrity, and development, and let us show you how to optimize your marketing.

Our Software

  • > Book a Demo
  • > Partner Program
  • > Affiliate Program
  • Blog Sitemap
  • Terms and Conditions
  • Privacy & Security
  • Cookies Policy
  • REVEAL Terms and Conditions

Examples

Significance of the Study: Quantitative Research

Ai generator.

Significance of the Study: Quantitative Research on the Impact of Remote Work on Employee Productivity in the Tech Industry

1. Introduction: The rapid shift to remote work due to the COVID-19 pandemic has significantly altered workplace dynamics, particularly in the tech industry. This quantitative research paper explores the impact of remote work on employee productivity through statistical analysis.

2. Purpose of the Study: The primary objective is to quantify the productivity levels of tech employees working remotely compared to those working in office environments. The study uses metrics such as task completion rates, quality of work, and employee satisfaction, gathered through structured surveys and performance data.

3. Importance to the Field : This research contributes significantly to the academic field by providing empirical data on the productivity impacts of remote work. It enhances existing theoretical models of workplace productivity with quantitative data, offering new insights into the effectiveness of remote work in the tech sector.

4. Practical Implications: The findings from this study have crucial practical implications for tech companies looking to optimize their remote work policies. Managers and HR departments can use the data to develop strategies that improve employee performance and well-being in remote settings. These insights can help in designing targeted interventions and support mechanisms for remote workers.

5. Advancement of Future Research : By providing robust quantitative data on remote work productivity, this study sets a foundation for future research. It addresses current gaps in the literature and encourages further studies to explore remote work impacts across different industries and contexts. Future research can build on these findings to examine the long-term effects of remote work and its sustainability.

6. Societal Impact: The study highlights broader societal benefits of remote work, such as promoting work-life balance, reducing urban congestion, and lowering environmental pollution. These findings can influence public policy and corporate strategies towards adopting more flexible and sustainable working conditions, contributing to overall societal well-being.

7. Conclusion : Understanding the quantitative impact of remote work on productivity is essential for developing effective work policies and creating healthier work environments. This research provides valuable insights that can guide tech companies in refining their remote work strategies. Future research should continue to explore the long-term effects of remote work across various sectors to gain a comprehensive understanding of its benefits and challenges.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

Advertisement

Issue Cover

  • Previous Issue

Research Articles

On the shoulders of fallen giants: what do references to retracted research tell us about citation behaviors, completeness degree of publication metadata in eight free-access scholarly databases, opencitations meta, examining the quality of the corresponding authorship field in web of science and scopus, the challenge of assessing academic books: the u.k. and lithuanian cases through the isbn lens, individual and gender inequality in computer science: a career study of cohorts from 1970 to 2000, large-scale text analysis using generative language models: a case study in discovering public value expressions in ai patents, technological impact of funded research: a case study of nonpatent references, keeping a close watch on innovation studies: opening the black box of journal editorships, exploring evidence selection with the inclusion network, scholarly publications and data set evidence for the human reference atlas, the gendered structure of science does not transpire in an experimental vacuum, are open access fees a good use of taxpayers’ money, product(s) added to cart, email alerts, affiliations.

  • Online ISSN 2641-3337

A product of The MIT Press

Mit press direct.

  • About MIT Press Direct

Information

  • Accessibility
  • For Authors
  • For Customers
  • For Librarians
  • Direct to Open
  • Open Access
  • Media Inquiries
  • Rights and Permissions
  • For Advertisers
  • About the MIT Press
  • The MIT Press Reader
  • MIT Press Blog
  • Seasonal Catalogs
  • MIT Press Home
  • Give to the MIT Press
  • Direct Service Desk
  • Terms of Use
  • Privacy Statement
  • Crossref Member
  • COUNTER Member  
  • The MIT Press colophon is registered in the U.S. Patent and Trademark Office

This Feature Is Available To Subscribers Only

Sign In or Create an Account

COMMENTS

  1. Empirical Research: Definition, Methods, Types and Examples

    Empirical research is defined as any research where conclusions of the study is strictly drawn from concretely empirical evidence, and therefore "verifiable" evidence. This empirical evidence can be gathered using quantitative market research and qualitative market research methods. For example: A research is being conducted to find out if ...

  2. What Is Quantitative Research?

    Revised on June 22, 2023. Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and analyzing ...

  3. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  4. Empirical Research: Defining, Identifying, & Finding

    Empirical research methodologies can be described as quantitative, qualitative, or a mix of both (usually called mixed-methods). Ruane (2016) (UofM login required) gets at the basic differences in approach between quantitative and qualitative research: Quantitative research -- an approach to documenting reality that relies heavily on numbers both for the measurement of variables and for data ...

  5. Empirical Research: Quantitative & Qualitative

    Description of the methodology or research design used to study this population or phenomena, including selection criteria, controls, and testing instruments (such as surveys); Two basic research processes or methods in empirical research: quantitative methods and qualitative methods (see the rest of the guide for more about these methods).

  6. Quantitative Research

    Quantitative research commonly involves experimentation, surveys, or questionnaires in the context of a large, randomly selected group. EMPIRICAL. The term empirical research is often used as a synonym for quantitative research, but strictly speaking, empirical research is simply any form of research based upon direct observation. It might also ...

  7. What is "Empirical Research"?

    Another hint: some scholarly journals use a specific layout, called the "IMRaD" format, to communicate empirical research findings. Such articles typically have 4 components: Introduction : sometimes called "literature review" -- what is currently known about the topic -- usually includes a theoretical framework and/or discussion of previous ...

  8. Empirical research

    Empirical research is research using empirical evidence. ... Many researchers combine qualitative and quantitative forms of analysis to better answer questions that cannot be studied in laboratory settings, particularly in the social sciences and in education. In some fields, quantitative research may begin with a research question (e.g., "Does ...

  9. Empirical Research

    Strategies for Empirical Research in Writing is a particularly accessible approach to both qualitative and quantitative empirical research methods, helping novices appreciate the value of empirical research in writing while easing their fears about the research process. This comprehensive book covers research methods ranging from traditional ...

  10. Data, measurement and empirical methods in the science of science

    The discovery of empirical regularities in science has had a key role in driving conceptual developments and the directions of future research. By observing empirical patterns at scale ...

  11. Quantitative research

    Quantitative research is a research strategy that focuses on quantifying the collection and analysis of data. It is formed from a deductive approach where emphasis is placed on the testing of theory, shaped by empiricist and positivist philosophies.. Associated with the natural, applied, formal, and social sciences this research strategy promotes the objective empirical investigation of ...

  12. Empirical Research: Quantitative & Qualitative

    This guide provides an overview of empirical research and quantitative and qualitative social science research methods.

  13. What Is Empirical Research? Definition, Types & Samples in 2024

    II. Types and Methodologies of Empirical Research. Empirical research is done using either qualitative or quantitative methods. Qualitative research Qualitative research methods are utilized for gathering non-numerical data. It is used to determine the underlying reasons, views, or meanings from study participants or subjects.

  14. PDF Getting Started with Quantitative Empirical Methods

    Overview of quantitative empirical research (stepwise procedures) 1. Research Question 2. Hypothesis construction 3. Research design: concepts quantification (variables) 4. Data collection/Data finding (data coding and cleaning) 5. Data analysis (model construction) 6. Results interpretation . 2014 9

  15. What is Empirical Research? Definition, Methods, Examples

    Empirical research is characterized by several key features: Observation and Measurement: It involves the systematic observation or measurement of variables, events, or behaviors. Data Collection: Researchers collect data through various methods, such as surveys, experiments, observations, or interviews.

  16. PDF 1 Introduction

    This book concentrates on empirical research, but I believe many of the points it makes apply also to other types of research. 1.2 QUANTITATIVE AND QUALITATIVE DATA Data is obviously a very broad term, so we subdivide data for empirical research into two main types: • quantitative data - which are data in the form of numbers (or measure ...

  17. Empirical Research: A Comprehensive Guide for Academics

    Disadvantages of Empirical Research. While empirical research has notable strengths, researchers must also be aware of its limitations when deciding on the right research method for their study.4 One significant drawback of empirical research is the risk of oversimplifying complex phenomena, especially when relying solely on quantitative methods.

  18. Quantitative or Empirical

    Quantitative research is generally empirical in nature; it relies upon observation and in some cases, experimentation. Quantitative research is usually highly structured, with results which have numerical values. These results can be compared with other number-based results. Sometimes, generalisations of wider populations in the form of ...

  19. Quantitative and Qualitative Research

    Social scientists are concerned with the study of people. Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population. Allen, M. (2017). The SAGE encyclopedia ...

  20. Quantitative and Qualitative Approaches to Generalization and

    Lacking a common methodological background, qualitative and quantitative research methodologies have developed rather distinct standards with regard to the aims and scope of empirical science (Freeman et al., 2007). These different standards affect the way researchers handle contradictory empirical findings.

  21. Qualitative, Quantitative & Empirical Research

    An empirical study is research derived from actual observation or experimentation. The written articles resulting from empirical studies undergo a rigorous review by experts in the field of study prior to being published in journals.

  22. 1.2: Theory and Empirical Research

    This page titled 1.2: Theory and Empirical Research is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Jenkins-Smith et al. (University of Oklahoma Libraries) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

  23. Research Problems and Hypotheses in Empirical Research

    The account is limited to individual, substantive, empirical, and quantitative research studies in education, psychology, and related disciplines. The philosophical frame of critical realism is supposed, i.e., it is assumed that an external reality exists, though it can never be known perfectly by observers (Cook & Campbell, Citation 1979 , ch. 1).

  24. The Landscape of Research Method Rigor in the Field of Human Resource

    Out of 488 selected studies, quantitative (n = 269) and qualitative (n = 185) methodologies were dominantly used in empirical studies with only 7.0% being mixed methods research (n = 34). The study findings provide implications and reflections on (1) the current status of published scholarly research; and (2) the research practices in the field.

  25. 50 Years of Context Effects: Merging the Behavioral and Quantitative

    Turner et al. then tested their expansive set of models on empirical data to determine the best combination of decision mechanisms for predicting context effects in choice. ... quantitative research could benefit from incorporating insights from consumer research on the interplay between the type of attributes under consideration, the decision ...

  26. Empirical antimicrobials in the intensive care unit

    The need. Antimicrobial therapy is vital for treating most infections, yet it poses potential harm when overused, making proper diagnostic assessment crucial. Diagnostic evaluation includes clinical examination, imaging and laboratory testing [ 3 ]. Intensivists have a key role in interpreting these results, integrating each test into the ...

  27. Qualitative Research: Definition, Methodology, Limitation, Examples

    Qualitative research is a method focused on understanding human behavior and experiences through non-numerical data. Examples of qualitative research include: One-on-one interviews, Focus groups, Ethnographic research, Case studies, Record keeping, Qualitative observations. In this article, we'll provide tips and tricks on how to use ...

  28. Significance of the Study: Quantitative Research

    3. Importance to the Field: This research contributes significantly to the academic field by providing empirical data on the productivity impacts of remote work. It enhances existing theoretical models of workplace productivity with quantitative data, offering new insights into the effectiveness of remote work in the tech sector. 4.

  29. Volume 5 Issue 1

    Haiko Lietz, Mohsen Jadidi, Daniel Kostic, Milena Tsvetkova, Claudia Wagner. Quantitative Science Studies (2024) 5 (1): 128-152. Abstract. View article titled, Individual and gender inequality in computer science: A career study of cohorts from 1970 to 2000. Supplementary data.