logo image missing

  • > Machine Learning
  • > Statistics

What is Hypothesis Testing? Types and Methods

  • Soumyaa Rawat
  • Jul 23, 2021

What is Hypothesis Testing? Types and Methods title banner

Hypothesis Testing  

Hypothesis testing is the act of testing a hypothesis or a supposition in relation to a statistical parameter. Analysts implement hypothesis testing in order to test if a hypothesis is plausible or not. 

In data science and statistics , hypothesis testing is an important step as it involves the verification of an assumption that could help develop a statistical parameter. For instance, a researcher establishes a hypothesis assuming that the average of all odd numbers is an even number. 

In order to find the plausibility of this hypothesis, the researcher will have to test the hypothesis using hypothesis testing methods. Unlike a hypothesis that is ‘supposed’ to stand true on the basis of little or no evidence, hypothesis testing is required to have plausible evidence in order to establish that a statistical hypothesis is true. 

Perhaps this is where statistics play an important role. A number of components are involved in this process. But before understanding the process involved in hypothesis testing in research methodology, we shall first understand the types of hypotheses that are involved in the process. Let us get started! 

Types of Hypotheses

In data sampling, different types of hypothesis are involved in finding whether the tested samples test positive for a hypothesis or not. In this segment, we shall discover the different types of hypotheses and understand the role they play in hypothesis testing.

Alternative Hypothesis

Alternative Hypothesis (H1) or the research hypothesis states that there is a relationship between two variables (where one variable affects the other). The alternative hypothesis is the main driving force for hypothesis testing. 

It implies that the two variables are related to each other and the relationship that exists between them is not due to chance or coincidence. 

When the process of hypothesis testing is carried out, the alternative hypothesis is the main subject of the testing process. The analyst intends to test the alternative hypothesis and verifies its plausibility.

Null Hypothesis

The Null Hypothesis (H0) aims to nullify the alternative hypothesis by implying that there exists no relation between two variables in statistics. It states that the effect of one variable on the other is solely due to chance and no empirical cause lies behind it. 

The null hypothesis is established alongside the alternative hypothesis and is recognized as important as the latter. In hypothesis testing, the null hypothesis has a major role to play as it influences the testing against the alternative hypothesis. 

(Must read: What is ANOVA test? )

Non-Directional Hypothesis

The Non-directional hypothesis states that the relation between two variables has no direction. 

Simply put, it asserts that there exists a relation between two variables, but does not recognize the direction of effect, whether variable A affects variable B or vice versa. 

Directional Hypothesis

The Directional hypothesis, on the other hand, asserts the direction of effect of the relationship that exists between two variables. 

Herein, the hypothesis clearly states that variable A affects variable B, or vice versa. 

Statistical Hypothesis

A statistical hypothesis is a hypothesis that can be verified to be plausible on the basis of statistics. 

By using data sampling and statistical knowledge, one can determine the plausibility of a statistical hypothesis and find out if it stands true or not. 

(Related blog: z-test vs t-test )

Performing Hypothesis Testing  

Now that we have understood the types of hypotheses and the role they play in hypothesis testing, let us now move on to understand the process in a better manner. 

In hypothesis testing, a researcher is first required to establish two hypotheses - alternative hypothesis and null hypothesis in order to begin with the procedure. 

To establish these two hypotheses, one is required to study data samples, find a plausible pattern among the samples, and pen down a statistical hypothesis that they wish to test. 

A random population of samples can be drawn, to begin with hypothesis testing. Among the two hypotheses, alternative and null, only one can be verified to be true. Perhaps the presence of both hypotheses is required to make the process successful. 

At the end of the hypothesis testing procedure, either of the hypotheses will be rejected and the other one will be supported. Even though one of the two hypotheses turns out to be true, no hypothesis can ever be verified 100%. 

(Read also: Types of data sampling techniques )

Therefore, a hypothesis can only be supported based on the statistical samples and verified data. Here is a step-by-step guide for hypothesis testing.

Establish the hypotheses

First things first, one is required to establish two hypotheses - alternative and null, that will set the foundation for hypothesis testing. 

These hypotheses initiate the testing process that involves the researcher working on data samples in order to either support the alternative hypothesis or the null hypothesis. 

Generate a testing plan

Once the hypotheses have been formulated, it is now time to generate a testing plan. A testing plan or an analysis plan involves the accumulation of data samples, determining which statistic is to be considered and laying out the sample size. 

All these factors are very important while one is working on hypothesis testing.

Analyze data samples

As soon as a testing plan is ready, it is time to move on to the analysis part. Analysis of data samples involves configuring statistical values of samples, drawing them together, and deriving a pattern out of these samples. 

While analyzing the data samples, a researcher needs to determine a set of things -

Significance Level - The level of significance in hypothesis testing indicates if a statistical result could have significance if the null hypothesis stands to be true.

Testing Method - The testing method involves a type of sampling-distribution and a test statistic that leads to hypothesis testing. There are a number of testing methods that can assist in the analysis of data samples. 

Test statistic - Test statistic is a numerical summary of a data set that can be used to perform hypothesis testing.

P-value - The P-value interpretation is the probability of finding a sample statistic to be as extreme as the test statistic, indicating the plausibility of the null hypothesis. 

Infer the results

The analysis of data samples leads to the inference of results that establishes whether the alternative hypothesis stands true or not. When the P-value is less than the significance level, the null hypothesis is rejected and the alternative hypothesis turns out to be plausible. 

Methods of Hypothesis Testing

As we have already looked into different aspects of hypothesis testing, we shall now look into the different methods of hypothesis testing. All in all, there are 2 most common types of hypothesis testing methods. They are as follows -

Frequentist Hypothesis Testing

The frequentist hypothesis or the traditional approach to hypothesis testing is a hypothesis testing method that aims on making assumptions by considering current data. 

The supposed truths and assumptions are based on the current data and a set of 2 hypotheses are formulated. A very popular subtype of the frequentist approach is the Null Hypothesis Significance Testing (NHST). 

The NHST approach (involving the null and alternative hypothesis) has been one of the most sought-after methods of hypothesis testing in the field of statistics ever since its inception in the mid-1950s. 

Bayesian Hypothesis Testing

A much unconventional and modern method of hypothesis testing, the Bayesian Hypothesis Testing claims to test a particular hypothesis in accordance with the past data samples, known as prior probability, and current data that lead to the plausibility of a hypothesis. 

The result obtained indicates the posterior probability of the hypothesis. In this method, the researcher relies on ‘prior probability and posterior probability’ to conduct hypothesis testing on hand. 

On the basis of this prior probability, the Bayesian approach tests a hypothesis to be true or false. The Bayes factor, a major component of this method, indicates the likelihood ratio among the null hypothesis and the alternative hypothesis. 

The Bayes factor is the indicator of the plausibility of either of the two hypotheses that are established for hypothesis testing.  

(Also read - Introduction to Bayesian Statistics ) 

To conclude, hypothesis testing, a way to verify the plausibility of a supposed assumption can be done through different methods - the Bayesian approach or the Frequentist approach. 

Although the Bayesian approach relies on the prior probability of data samples, the frequentist approach assumes without a probability. A number of elements involved in hypothesis testing are - significance level, p-level, test statistic, and method of hypothesis testing. 

(Also read: Introduction to probability distributions )

A significant way to determine whether a hypothesis stands true or not is to verify the data samples and identify the plausible hypothesis among the null hypothesis and alternative hypothesis. 

Share Blog :

procedure for hypothesis testing in research methodology

Be a part of our Instagram community

Trending blogs

5 Factors Influencing Consumer Behavior

Elasticity of Demand and its Types

An Overview of Descriptive Analysis

What is PESTLE Analysis? Everything you need to know about it

What is Managerial Economics? Definition, Types, Nature, Principles, and Scope

5 Factors Affecting the Price Elasticity of Demand (PED)

6 Major Branches of Artificial Intelligence (AI)

Scope of Managerial Economics

Dijkstra’s Algorithm: The Shortest Path Algorithm

Different Types of Research Methods

Latest Comments

procedure for hypothesis testing in research methodology

  • How it works

researchprospect post subheader

Hypothesis Testing – A Complete Guide with Examples

Published by Alvin Nicolas at August 14th, 2021 , Revised On October 26, 2023

In statistics, hypothesis testing is a critical tool. It allows us to make informed decisions about populations based on sample data. Whether you are a researcher trying to prove a scientific point, a marketer analysing A/B test results, or a manufacturer ensuring quality control, hypothesis testing plays a pivotal role. This guide aims to introduce you to the concept and walk you through real-world examples.

What is a Hypothesis and a Hypothesis Testing?

A hypothesis is considered a belief or assumption that has to be accepted, rejected, proved or disproved. In contrast, a research hypothesis is a research question for a researcher that has to be proven correct or incorrect through investigation.

What is Hypothesis Testing?

Hypothesis testing  is a scientific method used for making a decision and drawing conclusions by using a statistical approach. It is used to suggest new ideas by testing theories to know whether or not the sample data supports research. A research hypothesis is a predictive statement that has to be tested using scientific methods that join an independent variable to a dependent variable.  

Example: The academic performance of student A is better than student B

Characteristics of the Hypothesis to be Tested

A hypothesis should be:

  • Clear and precise
  • Capable of being tested
  • Able to relate to a variable
  • Stated in simple terms
  • Consistent with known facts
  • Limited in scope and specific
  • Tested in a limited timeframe
  • Explain the facts in detail

What is a Null Hypothesis and Alternative Hypothesis?

A  null hypothesis  is a hypothesis when there is no significant relationship between the dependent and the participants’ independent  variables . 

In simple words, it’s a hypothesis that has been put forth but hasn’t been proved as yet. A researcher aims to disprove the theory. The abbreviation “Ho” is used to denote a null hypothesis.

If you want to compare two methods and assume that both methods are equally good, this assumption is considered the null hypothesis.

Example: In an automobile trial, you feel that the new vehicle’s mileage is similar to the previous model of the car, on average. You can write it as: Ho: there is no difference between the mileage of both vehicles. If your findings don’t support your hypothesis and you get opposite results, this outcome will be considered an alternative hypothesis.

If you assume that one method is better than another method, then it’s considered an alternative hypothesis. The alternative hypothesis is the theory that a researcher seeks to prove and is typically denoted by H1 or HA.

If you support a null hypothesis, it means you’re not supporting the alternative hypothesis. Similarly, if you reject a null hypothesis, it means you are recommending the alternative hypothesis.

Example: In an automobile trial, you feel that the new vehicle’s mileage is better than the previous model of the vehicle. You can write it as; Ha: the two vehicles have different mileage. On average/ the fuel consumption of the new vehicle model is better than the previous model.

If a null hypothesis is rejected during the hypothesis test, even if it’s true, then it is considered as a type-I error. On the other hand, if you don’t dismiss a hypothesis, even if it’s false because you could not identify its falseness, it’s considered a type-II error.

Hire an Expert Researcher

Orders completed by our expert writers are

  • Formally drafted in academic style
  • 100% Plagiarism free & 100% Confidential
  • Never resold
  • Include unlimited free revisions
  • Completed to match exact client requirements

Hire an Expert Researcher

How to Conduct Hypothesis Testing?

Here is a step-by-step guide on how to conduct hypothesis testing.

Step 1: State the Null and Alternative Hypothesis

Once you develop a research hypothesis, it’s important to state it is as a Null hypothesis (Ho) and an Alternative hypothesis (Ha) to test it statistically.

A null hypothesis is a preferred choice as it provides the opportunity to test the theory. In contrast, you can accept the alternative hypothesis when the null hypothesis has been rejected.

Example: You want to identify a relationship between obesity of men and women and the modern living style. You develop a hypothesis that women, on average, gain weight quickly compared to men. Then you write it as: Ho: Women, on average, don’t gain weight quickly compared to men. Ha: Women, on average, gain weight quickly compared to men.

Step 2: Data Collection

Hypothesis testing follows the statistical method, and statistics are all about data. It’s challenging to gather complete information about a specific population you want to study. You need to  gather the data  obtained through a large number of samples from a specific population. 

Example: Suppose you want to test the difference in the rate of obesity between men and women. You should include an equal number of men and women in your sample. Then investigate various aspects such as their lifestyle, eating patterns and profession, and any other variables that may influence average weight. You should also determine your study’s scope, whether it applies to a specific group of population or worldwide population. You can use available information from various places, countries, and regions.

Step 3: Select Appropriate Statistical Test

There are many  types of statistical tests , but we discuss the most two common types below, such as One-sided and two-sided tests.

Note: Your choice of the type of test depends on the purpose of your study 

One-sided Test

In the one-sided test, the values of rejecting a null hypothesis are located in one tail of the probability distribution. The set of values is less or higher than the critical value of the test. It is also called a one-tailed test of significance.

Example: If you want to test that all mangoes in a basket are ripe. You can write it as: Ho: All mangoes in the basket, on average, are ripe. If you find all ripe mangoes in the basket, the null hypothesis you developed will be true.

Two-sided Test

In the two-sided test, the values of rejecting a null hypothesis are located on both tails of the probability distribution. The set of values is less or higher than the first critical value of the test and higher than the second critical value test. It is also called a two-tailed test of significance. 

Example: Nothing can be explicitly said whether all mangoes are ripe in the basket. If you reject the null hypothesis (Ho: All mangoes in the basket, on average, are ripe), then it means all mangoes in the basket are not likely to be ripe. A few mangoes could be raw as well.

Get statistical analysis help at an affordable price

  • An expert statistician will complete your work
  • Rigorous quality checks
  • Confidentiality and reliability
  • Any statistical software of your choice
  • Free Plagiarism Report

Get statistical analysis help at an affordable price

Step 4: Select the Level of Significance

When you reject a null hypothesis, even if it’s true during a statistical hypothesis, it is considered the  significance level . It is the probability of a type one error. The significance should be as minimum as possible to avoid the type-I error, which is considered severe and should be avoided. 

If the significance level is minimum, then it prevents the researchers from false claims. 

The significance level is denoted by  P,  and it has given the value of 0.05 (P=0.05)

If the P-Value is less than 0.05, then the difference will be significant. If the P-value is higher than 0.05, then the difference is non-significant.

Example: Suppose you apply a one-sided test to test whether women gain weight quickly compared to men. You get to know about the average weight between men and women and the factors promoting weight gain.

Step 5: Find out Whether the Null Hypothesis is Rejected or Supported

After conducting a statistical test, you should identify whether your null hypothesis is rejected or accepted based on the test results. It would help if you observed the P-value for this.

Example: If you find the P-value of your test is less than 0.5/5%, then you need to reject your null hypothesis (Ho: Women, on average, don’t gain weight quickly compared to men). On the other hand, if a null hypothesis is rejected, then it means the alternative hypothesis might be true (Ha: Women, on average, gain weight quickly compared to men. If you find your test’s P-value is above 0.5/5%, then it means your null hypothesis is true.

Step 6: Present the Outcomes of your Study

The final step is to present the  outcomes of your study . You need to ensure whether you have met the objectives of your research or not. 

In the discussion section and  conclusion , you can present your findings by using supporting evidence and conclude whether your null hypothesis was rejected or supported.

In the result section, you can summarise your study’s outcomes, including the average difference and P-value of the two groups.

If we talk about the findings, our study your results will be as follows:

Example: In the study of identifying whether women gain weight quickly compared to men, we found the P-value is less than 0.5. Hence, we can reject the null hypothesis (Ho: Women, on average, don’t gain weight quickly than men) and conclude that women may likely gain weight quickly than men.

Did you know in your academic paper you should not mention whether you have accepted or rejected the null hypothesis? 

Always remember that you either conclude to reject Ho in favor of Haor   do not reject Ho . It would help if you never rejected  Ha  or even  accept Ha .

Suppose your null hypothesis is rejected in the hypothesis testing. If you conclude  reject Ho in favor of Haor   do not reject Ho,  then it doesn’t mean that the null hypothesis is true. It only means that there is a lack of evidence against Ho in favour of Ha. If your null hypothesis is not true, then the alternative hypothesis is likely to be true.

Example: We found that the P-value is less than 0.5. Hence, we can conclude reject Ho in favour of Ha (Ho: Women, on average, don’t gain weight quickly than men) reject Ho in favour of Ha. However, rejected in favour of Ha means (Ha: women may likely to gain weight quickly than men)

Frequently Asked Questions

What are the 3 types of hypothesis test.

The 3 types of hypothesis tests are:

  • One-Sample Test : Compare sample data to a known population value.
  • Two-Sample Test : Compare means between two sample groups.
  • ANOVA : Analyze variance among multiple groups to determine significant differences.

What is a hypothesis?

A hypothesis is a proposed explanation or prediction about a phenomenon, often based on observations. It serves as a starting point for research or experimentation, providing a testable statement that can either be supported or refuted through data and analysis. In essence, it’s an educated guess that drives scientific inquiry.

What are null hypothesis?

A null hypothesis (often denoted as H0) suggests that there is no effect or difference in a study or experiment. It represents a default position or status quo. Statistical tests evaluate data to determine if there’s enough evidence to reject this null hypothesis.

What is the probability value?

The probability value, or p-value, is a measure used in statistics to determine the significance of an observed effect. It indicates the probability of obtaining the observed results, or more extreme, if the null hypothesis were true. A small p-value (typically <0.05) suggests evidence against the null hypothesis, warranting its rejection.

What is p value?

The p-value is a fundamental concept in statistical hypothesis testing. It represents the probability of observing a test statistic as extreme, or more so, than the one calculated from sample data, assuming the null hypothesis is true. A low p-value suggests evidence against the null, possibly justifying its rejection.

What is a t test?

A t-test is a statistical test used to compare the means of two groups. It determines if observed differences between the groups are statistically significant or if they likely occurred by chance. Commonly applied in research, there are different t-tests, including independent, paired, and one-sample, tailored to various data scenarios.

When to reject null hypothesis?

Reject the null hypothesis when the test statistic falls into a predefined rejection region or when the p-value is less than the chosen significance level (commonly 0.05). This suggests that the observed data is unlikely under the null hypothesis, indicating evidence for the alternative hypothesis. Always consider the study’s context.

You May Also Like

Experimental research refers to the experiments conducted in the laboratory or under observation in controlled conditions. Here is all you need to know about experimental research.

Sampling methods are used to to draw valid conclusions about a large community, organization or group of people, but they are based on evidence and reasoning.

Thematic analysis is commonly used for qualitative data. Researchers give preference to thematic analysis when analysing audio or video transcripts.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Hypothesis Testing

When you conduct a piece of quantitative research, you are inevitably attempting to answer a research question or hypothesis that you have set. One method of evaluating this research question is via a process called hypothesis testing , which is sometimes also referred to as significance testing . Since there are many facets to hypothesis testing, we start with the example we refer to throughout this guide.

An example of a lecturer's dilemma

Two statistics lecturers, Sarah and Mike, think that they use the best method to teach their students. Each lecturer has 50 statistics students who are studying a graduate degree in management. In Sarah's class, students have to attend one lecture and one seminar class every week, whilst in Mike's class students only have to attend one lecture. Sarah thinks that seminars, in addition to lectures, are an important teaching method in statistics, whilst Mike believes that lectures are sufficient by themselves and thinks that students are better off solving problems by themselves in their own time. This is the first year that Sarah has given seminars, but since they take up a lot of her time, she wants to make sure that she is not wasting her time and that seminars improve her students' performance.

The research hypothesis

The first step in hypothesis testing is to set a research hypothesis. In Sarah and Mike's study, the aim is to examine the effect that two different teaching methods – providing both lectures and seminar classes (Sarah), and providing lectures by themselves (Mike) – had on the performance of Sarah's 50 students and Mike's 50 students. More specifically, they want to determine whether performance is different between the two different teaching methods. Whilst Mike is skeptical about the effectiveness of seminars, Sarah clearly believes that giving seminars in addition to lectures helps her students do better than those in Mike's class. This leads to the following research hypothesis:

Before moving onto the second step of the hypothesis testing process, we need to take you on a brief detour to explain why you need to run hypothesis testing at all. This is explained next.

Sample to population

If you have measured individuals (or any other type of "object") in a study and want to understand differences (or any other type of effect), you can simply summarize the data you have collected. For example, if Sarah and Mike wanted to know which teaching method was the best, they could simply compare the performance achieved by the two groups of students – the group of students that took lectures and seminar classes, and the group of students that took lectures by themselves – and conclude that the best method was the teaching method which resulted in the highest performance. However, this is generally of only limited appeal because the conclusions could only apply to students in this study. However, if those students were representative of all statistics students on a graduate management degree, the study would have wider appeal.

In statistics terminology, the students in the study are the sample and the larger group they represent (i.e., all statistics students on a graduate management degree) is called the population . Given that the sample of statistics students in the study are representative of a larger population of statistics students, you can use hypothesis testing to understand whether any differences or effects discovered in the study exist in the population. In layman's terms, hypothesis testing is used to establish whether a research hypothesis extends beyond those individuals examined in a single study.

Another example could be taking a sample of 200 breast cancer sufferers in order to test a new drug that is designed to eradicate this type of cancer. As much as you are interested in helping these specific 200 cancer sufferers, your real goal is to establish that the drug works in the population (i.e., all breast cancer sufferers).

As such, by taking a hypothesis testing approach, Sarah and Mike want to generalize their results to a population rather than just the students in their sample. However, in order to use hypothesis testing, you need to re-state your research hypothesis as a null and alternative hypothesis. Before you can do this, it is best to consider the process/structure involved in hypothesis testing and what you are measuring. This structure is presented on the next page .

Sociology Institute

The Essential Guide to Hypothesis Testing in Scientific Research

procedure for hypothesis testing in research methodology

Table of Contents

Have you ever wondered how scientists make confident claims from their experiments? Or how medical professionals determine the effectiveness of a new drug? The secret lies in a process known as hypothesis testing , a cornerstone of statistical inference and scientific research. Hypothesis testing is like the Sherlock Holmes of the research world – it helps us deduce the truth from clues hidden within the data. Let’s dive into the captivating world of hypothesis testing and see how it shapes our understanding of the world around us.

What is hypothesis testing?

Hypothesis testing is a statistical method that enables researchers to make decisions about a population based on sample data. It starts with an assumption, known as a null hypothesis , which suggests that there is no effect or no difference. Then, there’s the alternative hypothesis , which is what the researcher aims to support, indicating that there is an effect or a difference. Through hypothesis testing, we can determine whether to accept the alternative hypothesis or fail to reject the null hypothesis based on the evidence provided by the data.

Steps in hypothesis testing

To grasp how hypothesis testing unfolds, consider the following steps that researchers typically follow:

  • State the hypotheses : Clearly articulate the null hypothesis (H0) and the alternative hypothesis (H1).
  • Choose a significance level : Decide on the alpha level (commonly 0.05), which is the probability of rejecting the null hypothesis when it is actually true.
  • Identify the test statistic : Select an appropriate test statistic that will measure how much the sample data deviates from what is expected under the null hypothesis.
  • Calculate the p\-value : Determine the p-value, which indicates the probability of observing the test result, or something more extreme, if the null hypothesis is true.
  • Make a decision : Based on the p-value and the significance level, decide whether to reject the null hypothesis or not.

The role of the p-value

One of the most critical concepts in hypothesis testing is the p-value. It’s a tool that helps us understand the strength of the evidence against the null hypothesis. A low p-value (typically less than 0.05) suggests that the observed data is unlikely under the null hypothesis and thus provides evidence in favor of the alternative hypothesis. On the other hand, a high p-value indicates that the data is consistent with the null hypothesis.

Types of errors in hypothesis testing

Even with meticulous planning and execution, hypothesis testing is not foolproof. There are two main types of errors to be aware of:

  • Type I error : Occurs when the null hypothesis is incorrectly rejected when it is actually true. This is also known as a false positive.
  • Type II error : Happens when the null hypothesis is not rejected when it is actually false. This is known as a false negative.

The significance level (alpha) is directly related to the probability of making a Type I error. By setting a low alpha level, researchers can reduce the chances of this error, though it may increase the risk of a Type II error. It’s a delicate balance that researchers must manage.

Real-world applications of hypothesis testing

Hypothesis testing is not just for the lab-coated scientist; it has practical applications in numerous fields. Here are some examples:

  • Medicine : Determining whether a new treatment is more effective than the current standard.
  • Business : Evaluating the success of a new marketing strategy compared to the previous one.
  • Manufacturing : Checking if a change in the production process leads to better product quality.
  • Policy-making : Assessing the impact of a new policy on public welfare.

Advancing scientific knowledge

Hypothesis testing is a vital tool for pushing the boundaries of scientific knowledge. By systematically testing hypotheses, researchers can build upon existing theories or disprove them, leading to new discoveries and advancements in every scientific field.

Challenges and considerations in hypothesis testing

While hypothesis testing is a powerful tool, it’s not without its challenges. Researchers must consider sample size, data variability , and the proper selection of statistical tests. Misapplication of hypothesis testing can lead to incorrect conclusions, which is why it’s crucial for researchers to have a thorough understanding of the process and its underlying principles.

Understanding data variability and uncertainty

Data variability is a natural part of research, as no two samples will be exactly the same. Hypothesis testing helps researchers make sense of this variability and determine if the observed differences are meaningful or just due to random chance. Understanding and accounting for uncertainty is key to making valid inferences from the data.

Hypothesis testing is an indispensable part of research that helps us navigate through data’s inherent variability and uncertainty. It empowers researchers to make informed decisions and contributes significantly to expanding our scientific knowledge. As you’ve seen, hypothesis testing isn’t just for statisticians; it’s a fundamental process that affects many aspects of our lives, from healthcare to policy decisions.

How do you think hypothesis testing might impact decisions in your own life? Can you think of a situation where understanding the outcome of a hypothesis test could influence your choices? Share your thoughts and let’s discuss the wide-reaching implications of this powerful statistical tool.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

Research Methodologies & Methods

1 Logic of Inquiry in Social Research

  • A Science of Society
  • Comte’s Ideas on the Nature of Sociology
  • Observation in Social Sciences
  • Logical Understanding of Social Reality

2 Empirical Approach

  • Empirical Approach
  • Rules of Data Collection
  • Cultural Relativism
  • Problems Encountered in Data Collection
  • Difference between Common Sense and Science
  • What is Ethical?
  • What is Normal?
  • Understanding the Data Collected
  • Managing Diversities in Social Research
  • Problematising the Object of Study
  • Conclusion: Return to Good Old Empirical Approach

3 Diverse Logic of Theory Building

  • Concern with Theory in Sociology
  • Concepts: Basic Elements of Theories
  • Why Do We Need Theory?
  • Hypothesis Description and Experimentation
  • Controlled Experiment
  • Designing an Experiment
  • How to Test a Hypothesis
  • Sensitivity to Alternative Explanations
  • Rival Hypothesis Construction
  • The Use and Scope of Social Science Theory
  • Theory Building and Researcher’s Values

4 Theoretical Analysis

  • Premises of Evolutionary and Functional Theories
  • Critique of Evolutionary and Functional Theories
  • Turning away from Functionalism
  • What after Functionalism
  • Post-modernism
  • Trends other than Post-modernism

5 Issues of Epistemology

  • Some Major Concerns of Epistemology
  • Rationalism
  • Phenomenology: Bracketing Experience

6 Philosophy of Social Science

  • Foundations of Science
  • Science, Modernity, and Sociology
  • Rethinking Science
  • Crisis in Foundation

7 Positivism and its Critique

  • Heroic Science and Origin of Positivism
  • Early Positivism
  • Consolidation of Positivism
  • Critiques of Positivism

8 Hermeneutics

  • Methodological Disputes in the Social Sciences
  • Tracing the History of Hermeneutics
  • Hermeneutics and Sociology
  • Philosophical Hermeneutics
  • The Hermeneutics of Suspicion
  • Phenomenology and Hermeneutics

9 Comparative Method

  • Relationship with Common Sense; Interrogating Ideological Location
  • The Historical Context
  • Elements of the Comparative Approach

10 Feminist Approach

  • Features of the Feminist Method
  • Feminist Methods adopt the Reflexive Stance
  • Feminist Discourse in India

11 Participatory Method

  • Delineation of Key Features

12 Types of Research

  • Basic and Applied Research
  • Descriptive and Analytical Research
  • Empirical and Exploratory Research
  • Quantitative and Qualitative Research
  • Explanatory (Causal) and Longitudinal Research
  • Experimental and Evaluative Research
  • Participatory Action Research

13 Methods of Research

  • Evolutionary Method
  • Comparative Method
  • Historical Method
  • Personal Documents

14 Elements of Research Design

  • Structuring the Research Process

15 Sampling Methods and Estimation of Sample Size

  • Classification of Sampling Methods
  • Sample Size

16 Measures of Central Tendency

  • Relationship between Mean, Mode, and Median
  • Choosing a Measure of Central Tendency

17 Measures of Dispersion and Variability

  • The Variance
  • The Standard Deviation
  • Coefficient of Variation

18 Statistical Inference- Tests of Hypothesis

  • Statistical Inference
  • Tests of Significance

19 Correlation and Regression

  • Correlation
  • Method of Calculating Correlation of Ungrouped Data
  • Method Of Calculating Correlation Of Grouped Data

20 Survey Method

  • Rationale of Survey Research Method
  • History of Survey Research
  • Defining Survey Research
  • Sampling and Survey Techniques
  • Operationalising Survey Research Tools
  • Advantages and Weaknesses of Survey Research

21 Survey Design

  • Preliminary Considerations
  • Stages / Phases in Survey Research
  • Formulation of Research Question
  • Survey Research Designs
  • Sampling Design

22 Survey Instrumentation

  • Techniques/Instruments for Data Collection
  • Questionnaire Construction
  • Issues in Designing a Survey Instrument

23 Survey Execution and Data Analysis

  • Problems and Issues in Executing Survey Research
  • Data Analysis
  • Ethical Issues in Survey Research

24 Field Research – I

  • History of Field Research
  • Ethnography
  • Theme Selection
  • Gaining Entry in the Field
  • Key Informants
  • Participant Observation

25 Field Research – II

  • Interview its Types and Process
  • Feminist and Postmodernist Perspectives on Interviewing
  • Narrative Analysis
  • Interpretation
  • Case Study and its Types
  • Life Histories
  • Oral History
  • PRA and RRA Techniques

26 Reliability, Validity and Triangulation

  • Concepts of Reliability and Validity
  • Three Types of “Reliability”
  • Working Towards Reliability
  • Procedural Validity
  • Field Research as a Validity Check
  • Method Appropriate Criteria
  • Triangulation
  • Ethical Considerations in Qualitative Research

27 Qualitative Data Formatting and Processing

  • Qualitative Data Processing and Analysis
  • Description
  • Classification
  • Making Connections
  • Theoretical Coding
  • Qualitative Content Analysis

28 Writing up Qualitative Data

  • Problems of Writing Up
  • Grasp and Then Render
  • “Writing Down” and “Writing Up”
  • Write Early
  • Writing Styles
  • First Draft

29 Using Internet and Word Processor

  • What is Internet and How Does it Work?
  • Internet Services
  • Searching on the Web: Search Engines
  • Accessing and Using Online Information
  • Online Journals and Texts
  • Statistical Reference Sites
  • Data Sources
  • Uses of E-mail Services in Research

30 Using SPSS for Data Analysis Contents

  • Introduction
  • Starting and Exiting SPSS
  • Creating a Data File
  • Univariate Analysis
  • Bivariate Analysis

31 Using SPSS in Report Writing

  • Why to Use SPSS
  • Working with SPSS Output
  • Copying SPSS Output to MS Word Document

32 Tabulation and Graphic Presentation- Case Studies

  • Structure for Presentation of Research Findings
  • Data Presentation: Editing, Coding, and Transcribing
  • Case Studies
  • Qualitative Data Analysis and Presentation through Software
  • Types of ICT used for Research

33 Guidelines to Research Project Assignment

  • Overview of Research Methodologies and Methods (MSO 002)
  • Research Project Objectives
  • Preparation for Research Project
  • Stages of the Research Project
  • Supervision During the Research Project
  • Submission of Research Project
  • Methodology for Evaluating Research Project

Share on Mastodon

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

11.2.1 - five step hypothesis testing procedure.

The examples on the following pages use the five step hypothesis testing procedure outlined below. This is the same procedure that we used to conduct a hypothesis test for a single mean, single proportion, difference in two means, and difference in two proportions.

When conducting a chi-square goodness-of-fit test, it makes the most sense to write the hypotheses first. The hypotheses will depend on the research question. The null hypothesis will always contain the equalities and the alternative hypothesis will be that at least one population proportion is not as specified in the null.

In order to use the chi-square distribution to approximate the sampling distribution, all expected counts must be at least five.

Where \(n\) is the total sample size and \(p_i\) is the hypothesized population proportion in the "ith" group.

To check this assumption, compute all expected counts and confirm that each is at least five.

In Step 1 you already computed the expected counts. Use this formula to compute the chi-square test statistic:

Construct a chi-square distribution with degrees of freedom equal to the number of groups minus one. The p-value is the area under that distribution to the right of the test statistic that was computed in Step 2. You can find this area by constructing a probability distribution plot in Minitab. 

Unless otherwise stated, use the standard 0.05 alpha level.

\(p \leq \alpha\) reject the null hypothesis.

\(p > \alpha\) fail to reject the null hypothesis.

Go back to the original research question and address it directly. If you rejected the null hypothesis, then there is evidence that at least one of the population proportions is not as stated in the null hypothesis. If you failed to reject the null hypothesis, then there is not enough evidence that any of the population proportions are different from what is stated in the null hypothesis. 

procedure for hypothesis testing in research methodology

Quantitative Research Methods

  • Introduction
  • Descriptive and Inferential Statistics
  • Hypothesis Testing
  • Regression and Correlation
  • Time Series
  • Meta-Analysis
  • Mixed Methods
  • Additional Resources
  • Get Research Help

Hypothesis Tests

A hypothesis test is exactly what it sounds like: You make a hypothesis about the parameters of a population, and the test determines whether your hypothesis is consistent with your sample data.

  • Hypothesis Testing Penn State University tutorial
  • Hypothesis Testing Wolfram MathWorld overview
  • Hypothesis Testing Minitab Blog entry
  • List of Statistical Tests A list of commonly used hypothesis tests and the circumstances under which they're used.

The p-value of a hypothesis test is the probability that your sample data would have occurred if you hypothesis were not correct. Traditionally, researchers have used a p-value of 0.05 (a 5% probability that your sample data would have occurred if your hypothesis was wrong) as the threshold for declaring that a hypothesis is true. But there is a long history of debate and controversy over p-values and significance levels.

Nonparametric Tests

Many of the most commonly used hypothesis tests rely on assumptions about your sample data—for instance, that it is continuous, and that its parameters follow a Normal distribution. Nonparametric hypothesis tests don't make any assumptions about the distribution of the data, and many can be used on categorical data.

  • Nonparametric Tests at Boston University A lesson covering four common nonparametric tests.
  • Nonparametric Tests at Penn State Tutorial covering the theory behind nonparametric tests as well as several commonly used tests.
  • << Previous: Descriptive and Inferential Statistics
  • Next: Regression and Correlation >>
  • Last Updated: Aug 18, 2023 11:55 AM
  • URL: https://guides.library.duq.edu/quant-methods

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

8.1: Steps in Hypothesis Testing

  • Last updated
  • Save as PDF
  • Page ID 10970

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

CHAPTER OBJECTIVES

By the end of this chapter, the student should be able to:

  • Differentiate between Type I and Type II Errors
  • Describe hypothesis testing in general and in practice
  • Conduct and interpret hypothesis tests for a single population mean, population standard deviation known.
  • Conduct and interpret hypothesis tests for a single population mean, population standard deviation unknown.
  • Conduct and interpret hypothesis tests for a single population proportion

One job of a statistician is to make statistical inferences about populations based on samples taken from the population. Confidence intervals are one way to estimate a population parameter. Another way to make a statistical inference is to make a decision about a parameter. For instance, a car dealer advertises that its new small truck gets 35 miles per gallon, on average. A tutoring service claims that its method of tutoring helps 90% of its students get an A or a B. A company says that women managers in their company earn an average of $60,000 per year.

CNX_Stats_C09_CO.jpg

A statistician will make a decision about these claims. This process is called "hypothesis testing." A hypothesis test involves collecting data from a sample and evaluating the data. Then, the statistician makes a decision as to whether or not there is sufficient evidence, based upon analysis of the data, to reject the null hypothesis. In this chapter, you will conduct hypothesis tests on single means and single proportions. You will also learn about the errors associated with these tests.

Hypothesis testing consists of two contradictory hypotheses or statements, a decision based on the data, and a conclusion. To perform a hypothesis test, a statistician will:

  • Set up two contradictory hypotheses.
  • Collect sample data (in homework problems, the data or summary statistics will be given to you).
  • Determine the correct distribution to perform the hypothesis test.
  • Analyze sample data by performing the calculations that ultimately will allow you to reject or decline to reject the null hypothesis.
  • Make a decision and write a meaningful conclusion.

To do the hypothesis test homework problems for this chapter and later chapters, make copies of the appropriate special solution sheets. See Appendix E .

  • The desired confidence level.
  • Information that is known about the distribution (for example, known standard deviation).
  • The sample and its size.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

hmhub

Procedure and Flow Diagram for Hypothesis Testing: Understanding the Steps Involved

by Prince Kumar

Last updated: 27 February 2023

Table of Contents

Hypothesis testing is a statistical method used to make decisions about a population based on a sample of data. The process of hypothesis testing involves several steps, including defining the null and alternative hypotheses, choosing a significance level, calculating the test statistic, and interpreting the results. In this article, we will discuss the procedure and flow diagram for hypothesis testing.

Procedure for Hypothesis Testing

The procedure for hypothesis testing involves the following steps:

a. Define the Null and Alternative Hypotheses

The first step in hypothesis testing is to define the null and alternative hypotheses. The null hypothesis assumes that there is no significant difference between the sample data and the population data, while the alternative hypothesis assumes that there is a significant difference.

b. Choose a Significance Level

The significance level is a measure of the strength of evidence against the null hypothesis. The significance level is usually set at 0.05 or 0.01. The choice of significance level depends on the research question and objectives.

c. Calculate the Test Statistic

The test statistic is a measure of the difference between the sample data and the population data. The choice of test statistic depends on the research question and objectives. Common test statistics include t-tests, ANOVA, and chi-square tests.

d. Calculate the P-Value

The p-value is the probability of obtaining the observed sample data assuming that the null hypothesis is true. The p-value is compared to the significance level to determine whether to reject or fail to reject the null hypothesis.

e. Interpret the Results

The final step in hypothesis testing is to interpret the results. If the p-value is less than the significance level, then the null hypothesis is rejected in favor of the alternative hypothesis. If the p-value is greater than the significance level, then the null hypothesis is failed to be rejected.

Flow Diagram for Hypothesis Testing

The flow diagram for hypothesis testing is as follows:

  • Define the null and alternative hypotheses
  • Choose a significance level
  • Calculate the test statistic
  • Calculate the p-value
  • Interpret the results

In conclusion, understanding the procedure and flow diagram for hypothesis testing is crucial for conducting high-quality research. By following the steps in the procedure and flow diagram, researchers can test their assumptions and draw conclusions based on the data. By conducting high-quality hypothesis testing in research, researchers can provide valuable insights into the research question and objectives.

How useful was this post?

5 star mean very useful & 1 star means not useful at all.

Average rating / 5. Vote count:

No votes so far! Be the first to rate this post.

We are sorry that this post was not useful for you! 😔

Let us improve this post!

Tell us how we can improve this post?

Syllabus – Research Methodology

01 Introduction To Research Methodology

  • Meaning and objectives of Research
  • Types of Research
  • Research Approaches
  • Significance of Research
  • Research methods vs Methodology
  • Research Process
  • Criteria of Good Research
  • Problems faced by Researchers
  • Techniques Involved in defining a problem

02 Research Design

  • Meaning and Need for Research Design
  • Features and important concepts relating to research design
  • Different Research design
  • Important Experimental Designs

03 Sample Design

  • Introduction to Sample design
  • Censure and sample survey
  • Implications of Sample design
  • Steps in sampling design
  • Criteria for selecting a sampling procedure
  • Characteristics of a good sample design
  • Different types of Sample design
  • Measurement Scales
  • Important scaling Techniques

04 Methods of Data Collection

  • Introduction
  • Collection of Primary Data
  • Collection through Questionnaire and schedule collection of secondary data
  • Differences in Questionnaire and schedule
  • Different methods to collect secondary data

05 Data Analysis Interpretation and Presentation Techniques

  • Hypothesis Testing
  • Basic concepts concerning Hypothesis Testing
  • Procedure and flow diagram for Hypothesis Testing
  • Test of Significance
  • Chi-Square Analysis
  • Report Presentation Techniques

Hypotheses and Models for Theory Testing

  • First Online: 02 March 2019

Cite this chapter

procedure for hypothesis testing in research methodology

  • Martin Eisend 3 &
  • Alfred Kuss 4  

2186 Accesses

Based on hypotheses , theories can be examined empirically (see Sect. 5.2). This chapter illustrates the nature of hypotheses and the procedure for testing them empirically. The chapter specifically addresses the increasingly important relationship between significance tests and effect sizes in research, as well as the problem of post hoc hypothesis tests . Modeling can test several hypotheses simultaneously, by working empirically with regression analyses or with structural equation models .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Aguinis, H., Dalton, D. R., Bosco, F. A., Pierce, C. A., & Dalton, C. M. (2011). Meta-analytic choices and judgment calls: Implications for theory building and testing, obtained effect sizes, and scholarly impact. Journal of Management, 37 (1), 5–38. 

Article   Google Scholar  

Aguinis, H., Cascio, W. F., & Ramani, R. S. (2017). Science’s reproducibility and replicability crisis: International business is not immune. Journal of International Business Studies, 48 (6), 653–663.

Allison, P. D. (1999). Multiple regression: A primer . Thousand Oaks, CA: Pine Forge.

Google Scholar  

Banks, G., O’Boyle, E., Pollack, J., White, C., Batchelor, J., Whelpley, C., et al. (2016). Questions about questionable research practices in the field of management: A guest commentary. Journal of Management, 42 (1), 5–20.

Bettis, R. A., Ehtiraj, S., Gambardella, A., Helfat, C., & Mitchell, W. (2016). Creating repeatable cumulative knowledge in strategic management. Strategic Management Journal, 37 (2), 257–261.

Bortz, J., & Döring, N. (2006). Forschungsmethoden und Evaluation (4th ed.). Berlin: Springer.

Book   Google Scholar  

Burke, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30 (2), 199–218.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York: Academic.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35 (8), 982–1003.

Eisend, M. (2015). Have we progressed marketing knowledge? A meta-meta-analysis of effect sizes in marketing research. Journal of Marketing, 79 (3), 23–40. 

Ellis, P. D. (2010). The essential guide to effect sizes: An introduction to statistical power, meta-analysis and the interpretation of research results . Cambridge: Cambridge University Press.

Fisher, R. A. (1925). Statistical methods for research workers . Edingburgh: Oliver & Boyd.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18 (2), 39–50.

Gujarati, D. N. (2003). Basic econometrics (4th ed.). Boston: McGraw-Hill.

Hair, J., Black, W., Babin, B., & Anderson, R. (2010). Multivariate data analysis (7th ed.). Upper Saddle River, NJ: Prentice-Hall.

Hunt, S. D. (2010). Marketing theory—Foundations, controversy, strategy, resource—Advantage theory . Armonk, NY: Sharpe.

Jaccard, J., & Becker, M. (2002). Statistics for the behavioral sciences (4th ed.). Belmont, CA: Wadsworth.

Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological Methods, 17 (2), 137–152.

Kerr, N. (1988). HARKing: Hypothesizing after the results are known. Personality and Social Psychology Review, 2 (3), 196–217.

Kruskal, W. (1968). Tests of statistical significance. In D. Sills (Ed.), International encyclopedia of the social sciences (pp. 238–250). New York: Macmillan and Free Press.

Leung, K. (2011). Presenting post hoc hypotheses as a priori: Ethical and theoretical issues. Management and Organization Review, 7 (3), 471–479.

Lipsey, M. W., & Wilson, D. T. (2001). Practical meta-analysis . Thousand Oaks, CA: Sage.

Neuman, W. L. (2011). Social research methods—Qualitative and quantitative approaches (6th ed.). Boston: Pearson.

Peter, J. (1991). Philosophical tensions in consumer inquiry. In T. Robertson & H. Kassarjian (Eds.), Handbook of consumer behavior (pp. 533–547). Englewood Cliffs, NJ: Prentice-Hall.

Ringle, C., Boysen, N., Wende, S., & Will, A. (2006). Messung von Kausalmodellen mit dem Partial-Least-Squares-Verfahren. Wirtschaftswissenschaftliches Studium, 35 (1), 81–87.

Sawyer, A. G., & Peter, J. P. (1983). The significance of statistical significance tests in marketing research. Journal of Marketing Research, 20 (2), 122–133.

Selvin, H., & Stuart, A. (1966). Data-dredging procedures in survey analysis. The American Statistician, 20 (3), 20–23.

Shugan, S. (2002). Marketing science, models, monopoly models, and why we need them. Marketing Science, 21 (3), 223–228.

Trafimow, D., & Marks, M. (2015). Editorial. Basic and Applied Social Psychology, 37 (1), 1–2.

Further Reading

Hair, J., Black, W., Babin, B., & Anderson, R. (2010). Multivariate data analysis (7th ed.). Upper Saddle River, NJ: Pearson.

Download references

Author information

Authors and affiliations.

Faculty of Business Administration and Economics, European University Viadrina, Frankfurt (Oder), Germany

Martin Eisend

Marketing Department, Freie Universität Berlin, Berlin, Germany

Alfred Kuss

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Eisend, M., Kuss, A. (2019). Hypotheses and Models for Theory Testing. In: Research Methodology in Marketing. Springer, Cham. https://doi.org/10.1007/978-3-030-10794-9_7

Download citation

DOI : https://doi.org/10.1007/978-3-030-10794-9_7

Published : 02 March 2019

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-10793-2

Online ISBN : 978-3-030-10794-9

eBook Packages : Business and Management Business and Management (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

HYPOTHESIS TESTING IN RESEARCH METHODOLOGY: A REVIEW

Profile image of IJESRT  Journal

Hypothesis is usually considered as the principal instrument in research. It plays a major role in research. Its main function is to suggest new experiments and observations. It occupies a very small space in the thesis. A researcher cannot proceed in the research work without formulating one or more than one hypothesis. Hypothesis brings clarity, specificity and focus to a research problem. There are two types of hypothesis which are called the Null Hypothesis and the Alternative Hypothesis. There are four steps in hypothesis testing. After getting the results, the researcher tests whether the collected facts support the hypothesis formulated or not. There exist a number of statistical tools like ttest, F-test, chi-square test, D-W test, etc., to test the validity of hypothesis. Hypothesis testing shows whether the hypothesis should be accepted or rejected. It has been rightly said that “You torture the data until they confess”. This paper include the introduction, steps of hypothesis testing, function of hypothesis and testing of hypothesis.

Related Papers

IJESRT Journal

In order to survive in the present day global competitive environment, it now becomes essential for the manufacturing organizations to take prompt and correct decisions regarding effective use of their scarce resources. The content of this paper to promote the wider understanding and application of statistical methods for manufacturing decision making problems under uncertainty conditions. It is important for managers to know the statistical techniques that can be applied in industry and the ways in which these techniques can help them in their decision making. The aims of the study are the managers make decisions using Statistics. This paper will provide you with hands-on experience to promote the use of statistical thinking and techniques to apply them to make educated decisions, whenever you encounter variation in business data.

procedure for hypothesis testing in research methodology

International Journal of Engineering Sciences & Research Technology (IJESRT) ISSN: 2277-9655 Chokshi et al., Journal Impact Factor (2013): 1.852

Prof. (Dr.) Jayeshkumar Pitroda

Fly-ash bricks are well known bricks. Fly-ash bricks are slow but surely replacing conventional clay bricks for wall constructions. It is green and environmentally friendly material. Fly ash brick is a really good option against Clay brick. It is green and environmentally friendly material. The fly ash bricks are comparatively lighter in weight and stronger and less costly than common clay bricks. Fly-ash Bricks is low value and high volume product and transporting it over long distances is uneconomical. But due to less awareness of fly ash bricks the different agencies of the construction wing using clay bricks. This research paper presents a comparison of fly-ash bricks and clay bricks. Based on Fly-ash bricks and clay bricks the data collected, Data will be collected through questionnaires and personal interviews targeting residential building and infrastructure projects. We can easily able to analysis of fly ash bricks and clay bricks by using Chi-square test through statistical methods (SPSS SOFTWARE).

Recently there has been a greater inclination towards natural fiber reinforced plastic composites because these are environmental friendly and cost effective to synthetic fiber reinforced composites. The availability of natural fiber and ease of manufacturing have tempted researchers worldwide to try locally available inexpensive fiber and to study their feasibility of reinforcement purposes and to what extent they satisfy the required specifications of good reinforced polymer composite for structural application. Now a-days, the natural fibres from renewable natural resources offer the potential to act as a reinforcing material for polymer composites alternative to the utilize of glass, carbon and other man-made fibres. Among an assortment of fibres, jute is widely used natural fibre due to its advantages like easy of availability, low concentration, low fabrication cost and satisfactory mechanical assets. designed for a composite material, its mechanical actions depends on many issues such as fibre content, orientation, types, length etc. In this research paper, we will study the effect of fibre loading and orientation on the mechanical, physical and water absorption behavior of jute/glass fibre reinforced epoxy based hybrid composites. A hybrid composite is a combination of two or more dissimilar kinds of fibre in which one type of fibre stability the scarcity of an additional fibre.

International Journal of Engineering Sciences & Research Technology

Ijesrt Journal

Fly-ash bricks are well known bricks. Fly-ash bricks are slow but surely replacing conventional clay bricks for wall constructions. It is green and environmentally friendly material. Fly ash brick is a really good option against Clay brick. It is green and environmentally friendly material. The fly ash bricks are comparatively lighter in weight and stronger and less costly than common clay bricks. Fly- ash Bricks is low value and high volume product and transporting it over long distances is uneconomical. But due to less awareness of fly ash bricks the different agencies of the construction wing using clay bricks. This research paper presents a comparison of fly-ash bricks and clay bricks. Based on Fly-ash bricks and clay bricks the data collected, Data will be collected through questionnaires and personal interviews targeting residential building and infrastructure projects. We can easily able to analysis of fly ash bricks and clay bricks by using Chi-square test through statistical methods (SPSS SOFTWARE).

Yapang Jamir

Analysis of variance (ANOVA) is the method used to compare continuous measurements to determine if the measurements are sampled from the same or different distributions. It is an analytical tool used to determine the significance of factors on measurements by looking at the relationship between a quantitative "response variable" and a proposed explanatory "factor." This method is similar to the process of comparing the statistical difference between two samples, in that it invokes the concept of hypothesis testing. Instead of comparing two samples, however, a variable is correlated with one or more explanatory factors, typically using the F-statistic. From this F-statistic, the P-value can be calculated to see if the difference is significant. For example, if the P-value is low (P-value<0.05 or P-value<0.01-this depends on desired level of significance), then there is a low probability that the two groups are the same. The method is highly versatile in that it can be used to analyze complicated systems, with numerous variables and factors. INTRODUCTION ANOVA is a quantitative research method that tests hypotheses that are made about differences between two or more means. If independent estimates of variance can be obtained from the data, ANOVA compares the means of different groups by analyzing comparisons of variance estimates. There are two models for ANOVA, the fixed effects model, and the random effects model (in the latter, the treatments are not fixed). ANOVA is a very useful technique for testing the equality of more than two means of population. The word analysis of variance is used because the technique involves first finding out the total variation among the observation in the collection data, then assigning causes of components of variation to various factors and finally drawing conclusion about the equality of means. It also used to test the significance of a regression equation as a whole i.e., whether all the equation are equal to zero. Factor analysis is the process by which a complicated system of many variables is simplified by completely defining it with a smaller number of "factors." If these factors can be studied and determined, they can be used to predict the value of the variables in a system.

This paper aimed at studying the factors that affect the academic achievement of students at the Faculty of Sciences and Humanities, Thadiq, Shaqraa University-KSA. Multinomial Logistic Regression (M. Lo.R.) was used to analyze the data. A significant relationship was found between academic achievement and the studied factors. The variables father's educational status, mother's educational status, existence of desire in the specialization (EDS), existence of somebody helps in the study, the average number of hours of revision per day has an effect on the students’ academic achievement. Nearly 56 % of student academic achievement depends upon all the fifteen studied variables. Nearly 50 % of student academic achievement depends upon the five variables that mentioned above. The results of the present study can be made use of in planning for the enhancement of a student's academic achievement. Similar studies in other faculties are needed to support the results reached in the present study.

محمدحسن فرج

This paper aims at studying the factors that affect academic achievement of the student in Faculty of Sciences and Humanities (Thadiq) -Shaqraa University-KSA. The Logistic Regression (Lo.R.) was used to analyze the data. The important result was, there is significant relationship between the academic achievement of the student on one hand and the studied factors on the other hand. In consequence of the above mentioned results, there are two discussions: The first is to conduct similar studies in the other faculties, and the second is to take the advantages of this study in the planning and improvement of student's academic rate.

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

IMAGES

  1. Hypothesis Testing- Meaning, Types & Steps

    procedure for hypothesis testing in research methodology

  2. Hypothesis Testing Steps & Real Life Examples

    procedure for hypothesis testing in research methodology

  3. Here Are 9 Hypothesis Testing for Analyzing Six Sigma Data

    procedure for hypothesis testing in research methodology

  4. Six Sigma Tools

    procedure for hypothesis testing in research methodology

  5. Hypothesis In Research Methodology Examples

    procedure for hypothesis testing in research methodology

  6. Hypothesis Testing Presentation

    procedure for hypothesis testing in research methodology

VIDEO

  1. Proportion Hypothesis Testing, example 2

  2. Hypothesis Testing Procedure, Research Methodology #bba #bcom #process #research #hypothesis

  3. Selecting the Appropriate Hypothesis Test [FIL]

  4. Hypothesis Testing & It's Characteristics

  5. Hypothesis Testing

  6. 14. How to develop Hypothesis in research

COMMENTS

  1. Hypothesis Testing

    Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories. ... If you want to know more about statistics, methodology, or research bias, make sure to check out some of our other articles with ...

  2. What is Hypothesis Testing? Types and Methods

    Hypothesis Testing. Hypothesis testing is the act of testing a hypothesis or a supposition in relation to a statistical parameter. Analysts implement hypothesis testing in order to test if a hypothesis is plausible or not. In data science and statistics, hypothesis testing is an important step as it involves the verification of an assumption ...

  3. Hypothesis Testing

    Hypothesis testing is a scientific method used for making a decision and drawing conclusions by using a statistical approach. It is used to suggest new ideas by testing theories to know whether or not the sample data supports research. A research hypothesis is a predictive statement that has to be tested using scientific methods that join an ...

  4. PDF Introduction to Hypothesis Testing

    sample. In this method, we test some hypothesis by determining the likelihood that a sample statistic could have been selected, if the hypothesis regarding the population parameter were true. The method of hypothesis testing can be summarized in four steps. We will describe each of these four steps in greater detail in Section 8.2. 1.

  5. 1.2: The 7-Step Process of Statistical Hypothesis Testing

    Step 7: Based on steps 5 and 6, draw a conclusion about H0. If the F\calculated F \calculated from the data is larger than the Fα F α, then you are in the rejection region and you can reject the null hypothesis with (1 − α) ( 1 − α) level of confidence. Note that modern statistical software condenses steps 6 and 7 by providing a p p -value.

  6. Hypothesis Testing

    The first step in hypothesis testing is to set a research hypothesis. In Sarah and Mike's study, the aim is to examine the effect that two different teaching methods - providing both lectures and seminar classes (Sarah), and providing lectures by themselves (Mike) - had on the performance of Sarah's 50 students and Mike's 50 students.

  7. Hypothesis tests

    A hypothesis test is a procedure used in statistics to assess whether a particular viewpoint is likely to be true. They follow a strict protocol, and they generate a 'p-value', on the basis of which a decision is made about the truth of the hypothesis under investigation.All of the routine statistical 'tests' used in research—t-tests, χ 2 tests, Mann-Whitney tests, etc.—are all ...

  8. 1.2

    We will cover the seven steps one by one. Step 1: State the Null Hypothesis. The null hypothesis can be thought of as the opposite of the "guess" the researchers made. In the example presented in the previous section, the biologist "guesses" plant height will be different for the various fertilizers.

  9. The Essential Guide to Hypothesis Testing in Scientific Research

    Summarizes the importance of statistical inference and hypothesis testing in research. It emphasizes how these methods contribute to understanding and decision-making in the face of data variability and uncertainty, underlining their role in advancing scientific knowledge through the systematic testing of hypotheses.

  10. 10.1: Procedures of Hypotheses Testing and the Scientific Method

    After a general question is formulated, the scientific method consists of: designing an experiment, collecting data through observation and experimentation, testing hypotheses, and reporting overall conclusions. The conclusions themselves lead to other research ideas, making this process a continuous flow of adding to the body of knowledge ...

  11. Hypothesis Testing, P Values, Confidence Intervals, and Significance

    Medical providers often rely on evidence-based medicine to guide decision-making in practice. Often a research hypothesis is tested with results provided, typically with p values, confidence intervals, or both. Additionally, statistical or research significance is estimated or determined by the investigators. Unfortunately, healthcare providers may have different comfort levels in interpreting ...

  12. 11.2.1

    Step 1: Check assumptions and write hypotheses. When conducting a chi-square goodness-of-fit test, it makes the most sense to write the hypotheses first. The hypotheses will depend on the research question. The null hypothesis will always contain the equalities and the alternative hypothesis will be that at least one population proportion is ...

  13. LibGuides: Quantitative Research Methods: Hypothesis Testing

    The p-value of a hypothesis test is the probability that your sample data would have occurred if you hypothesis were not correct. Traditionally, researchers have used a p-value of 0.05 (a 5% probability that your sample data would have occurred if your hypothesis was wrong) as the threshold for declaring that a hypothesis is true.

  14. 8.1: Steps in Hypothesis Testing

    Figure 8.1.1 8.1. 1: You can use a hypothesis test to decide if a dog breeder's claim that every Dalmatian has 35 spots is statistically sound. (Credit: Robert Neff) A statistician will make a decision about these claims. This process is called "hypothesis testing." A hypothesis test involves collecting data from a sample and evaluating the data.

  15. A Practical Guide to Writing Quantitative and Qualitative Research

    Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes.2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed ...

  16. Procedure and Flow Diagram for Hypothesis Testing ...

    Hypothesis testing is a statistical method used to make decisions about a population based on a sample of data. The process of hypothesis testing involves several steps, including defining the null and alternative hypotheses, choosing a significance level, calculating the test statistic, and interpreting the results.

  17. Hypotheses and Models for Theory Testing

    Based on hypotheses, theories can be examined empirically (see Sect. 5.2).This chapter illustrates the nature of hypotheses and the procedure for testing them empirically. The chapter specifically addresses the increasingly important relationship between significance tests and effect sizes in research, as well as the problem of post hoc hypothesis tests.

  18. What is hypothesis testing?

    The research methods you use depend on the type of data you need to answer your research question. If you want to measure something or test a hypothesis, use quantitative methods. If you want to explore ideas, thoughts and meanings, use qualitative methods. If you want to analyze a large amount of readily-available data, use secondary data.

  19. (PDF) Hypotheses and Hypothesis Testing

    This approach consists of four steps: (1) s tate the hypotheses, (2) formulate an analysis plan, (3) analyze sample data, and (4) interpret results. State the Hypotheses. Every hypothesis test ...

  20. [PDF] Techniques Used in Hypothesis Testing in Research Methodology

    7. This paper reviews the methods to select correct statistical tests for research projects or other investigations. Research is a scientific search on a particular topic including various steps in which formulating and testing of hypothesis is an important step. To test a hypothesis there are various tests like Student's t-test, F test, Chi ...

  21. (PDF) FORMULATING AND TESTING HYPOTHESIS

    Procedure for/ Steps of Hypothesis Testing: All hypothesis tests are conducted the same way. The researcher states a hypothesis to be tested, formulates an analysis plan, analyzes sample data ...

  22. HYPOTHESIS TESTING IN RESEARCH METHODOLOGY: A REVIEW

    IJESRT Journal. Hypothesis is usually considered as the principal instrument in research. It plays a major role in research. Its main function is to suggest new experiments and observations. It occupies a very small space in the thesis. A researcher cannot proceed in the research work without formulating one or more than one hypothesis.

  23. Detecting Mediation Effects With the Bayes Factor ...

    In 2019 we wrote an article (Tendeiro & Kiers, 2019) in Psychological Methods over null hypothesis Bayesian testing and its working horse, the Bayes factor.

  24. Going Beyond the Conventional Service Profit Chain Model

    Adeinat and Kassim (2018) tried to retest the model of SPC to address gaps raised in the relevant literature in the Saudi setting. They highlighted two shortages in the relevant literature: namely, first, testing this complex model and interrelationships in only one industry and setting; second, more operational factors such as employees' productivity and achievement require full integration ...