EDUCBA

Types of Research Reports

Shamli Desai

What is a Research Report?

A research report is a concise document that summarizes the findings, methods, and conclusions of a research study or investigation. There are various types of research reports available for different purposes.

It typically includes details on the research question, methodology, data analysis, and results, providing a structured and informative account of the research process and outcomes.

Types of Research Reports

Table of Contents

  • Market Research
  • Experimental
  • Descriptive
  • Exploratory
  • Explanatory

Types of Research Report Writing

Limitations, key highlights.

  • A research report is a document that gives a quick overview of a research study.
  • Types of research reports offer a standardized format and structure, making it easier for readers to navigate and comprehend the information.
  • They are useful in fields like academia, business, healthcare, social sciences, and more.
  • Different types of report writing determine the report’s primary purpose, i.e., if it should be short, long, or for internal purposes, etc.

Different Types Of Research Reports

1. technical or scientific reports.

Technical and scientific reports communicate research findings to experts and professionals in a particular field.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

Characteristics:

  • These reports include technical jargon, detailed methodologies, and in-depth analysis.
  • They often have a standardized format for peer review.

 2. Popular Reports

Popular reports are designed for a general audience and aim to inform, educate, or entertain on a wide range of topics.

  • Includes clear and jargon-free language
  • Uses storytelling, visuals, and anecdotes to engage readers
  • Prioritizes readability over deep analysis.

3. Survey Reports

Survey reports include data collected through surveys and focus on presenting insights and opinions on specific issues or questions.

  • Contains information on survey methodology, including sample size and data collection methods.
  • Presents statistical summaries like percentages and charts.

4. Market Research Reports

Market research reports provide insights into consumer behavior, market trends, and industry analysis.

  • Includes market surveys, competitor analysis, and consumer demographics.
  • Helps businesses in making strategic decisions.

5. Case Study Reports

Case study reports focus on an in-depth examination of a single entity, often to explore complex, real-life situations.

  • Includes detailed descriptions of the case, data collection methods, and analysis.
  • Common in business and psychology fields.

6. Analytical Research Reports

Analytical research reports involve a deep analysis of data to uncover patterns, trends, or relationships.

  • Uses statistical tools and software to analyze data comprehensively
  • Common in fields like economics and social sciences.

7. Review or Literature Survey Reports

Literature review reports provide an overview of existing research on a specific topic, highlighting gaps and trends.

  • Synthesizes findings from various sources and provides a historical context
  • Often offers recommendations for future research.

8. Experimental Research Reports

Experimental research reports involve controlled experiments to test hypotheses and determine if the results support or reject the hypothesis.

  • Uses random sampling and control groups to minimize bias.
  • Includes detailed descriptions of the experiment, hypothesis, methods, and statistical analyses.

9. Descriptive Research Reports

Descriptive research reports aim to provide a comprehensive picture of a phenomenon, group, or situation. They seek to answer the “what” and “how” questions.

  • Typically, it relies on observations, surveys, and content analysis.
  • Focuses on describing and summarizing data.

10. Exploratory Research Reports

Exploratory research reports are conducted when there is little prior knowledge about a subject. They aim to identify key variables and research questions.

  • Involves open-ended interviews, focus groups, and literature reviews.
  • Findings are preliminary, serving as a basis for further research.

11. Explanatory Research Reports

Explanatory research reports seek to understand the relationships between variables and explain why certain phenomena occur.

  • Uses experimental designs, surveys, and statistical analyses.
  • Provides in-depth insights into the research problem.

12. Policy or White Papers

Policy or white papers aim to inform policymakers, stakeholders, and the public about specific issues and recommend actions.

  • Presents research findings in a concise and accessible manner
  • Often consists of policy recommendations.

Components of Research Reports

These are some common components you must know while writing different types of research reports.

1. Title Page:

  • Title of the Report
  • Institutional Affiliation

2. Abstract: Add a concise summary of the research, including the research question or objective, methodology, key findings, and implications. Typically, it should be no more than 150-250 words.

3. Table of Contents: Include a list of sections and subsections with page numbers.

4. List of Figures and Tables: If your research includes numerical data, add all the statistics and tables along with their corresponding page numbers. It is similar to a table of contents for quantitative data.

5. List of Abbreviations and Symbols: Include any abbreviations or symbols you have used in the report and their meanings.

6. Introduction:

  • Provide background information on the topic.
  • State the research question or objective.
  • Explain the significance and purpose of the study.
  • Provide an outline of the report’s structure.

7. Literature Review:

  • Review relevant literature and previous research on the topic.
  • Identify gaps in existing knowledge.
  • Explain how your study contributes to the field.

8. Methodology:

  • Describe the research methods and techniques that you used.
  • Explain the sampling methods, data collection, and data analysis procedures.
  • Discuss any ethical considerations.

9. Results:

  • Present the findings of your research.
  • Use tables, figures, charts, and graphs to illustrate key points.
  • Include descriptive and inferential statistics as needed.

10. Discussion:

  • Interpret the results and relate them to the research question.
  • Discuss the implications of your findings.
  • Compare your results to previous research.
  • Address any limitations of your study.

11. Conclusion:

  • Summarize the main findings and their significance.
  • Restate the research question and how it was addressed.
  • Suggest areas for future research.

12. References: Include a list of all the sources cited in your report in a standardized citation style (e.g., APA, MLA, Chicago).

Let us see an example of a research report.

Research Report: The Impact of Artificial Intelligence on the Labor Market

This research study explores the profound changes occurring in the labor market due to the increasing adoption of artificial intelligence (AI) technologies. The study examines the potential benefits and challenges AI poses for the workforce, job displacement, and the skills required in the future job market.

List of Figures and Tables

Introduction, literature review, methodology.

  • Figure 1: Trend in AI Adoption by Industry (Page 7)
  • Table 1: Summary of Job Displacement Data (Page 9)
  • Figure 2: Projected Growth of AI-Related Occupations (Page 11)

The introduction section provides an overview of the research topic. It explains the significance of studying the impact of AI on the labor market, outlines the research questions, and previews the structure of the report.

The literature review section reviews existing research on the effects of AI on employment and the labor market. It discusses the different perspectives on whether AI will create new jobs or lead to job displacement. It also explores the skills and education required for the future workforce.

This section explains the research methods used, such as data collection methods, sources, and analytical techniques. It outlines how data on AI adoption, job displacement, and future job projections were gathered and analyzed.

The results section presents the key findings of the study. It includes data on the extent of AI adoption across industries, job displacement rates, and projections for AI-related occupations.

The discussion section interprets the results in the context of the research questions. It analyzes the potential benefits and challenges AI poses for the labor market, discusses policy implications, and explores the role of education and training in preparing the workforce for the AI era.

In conclusion, this research highlights the transformative impact of artificial intelligence on the labor market. While AI brings opportunities for innovation and efficiency, it also presents challenges related to job displacement and workforce adaptation. Preparing for this evolving job landscape is crucial for individuals and policymakers.

Given below are various types of research reports writing that researchers and organizations use to present findings, progress, and other information.

Outlines a plan for a project or research for approval or funding. Research proposal submitted to study the impact of climate change on local ecosystems.
Generated at regular intervals to provide project updates. Weekly sales reports summarizing product sales figures.
Detailed, structured reports often used in academic, scientific, or business settings. Formal business report analyzing a company’s financial performance for the year.
Less structured reports for quick internal communication. Email summarizing key takeaways from a team meeting.
Concise documents offering a brief overview of a specific topic. A one-page summary of customer feedback from a product launch.
Comprehensive reports with in-depth analysis and information. 100-page research report on the effects of a new drug on a medical condition.
Focus on data analysis and provide insights or recommendations. Market research report analyzing consumer behavior trends and recommending marketing strategies.
Convey information without providing analysis or recommendations. Report detailing the steps of a manufacturing process for new employees.
Flow within the organizational hierarchy, moving up or down. Report from a department manager to the company’s vice president on department performance.
Sent between individuals or departments at the same organizational level. Report from one project manager to another project manager in a different department.
Created and distributed within an organization for internal purposes. Internal audit report examining the company’s financial records for compliance.
Prepared for external audiences, such as clients, investors, or regulators. A publicly traded company publishes an annual report for shareholders and the general public.

Here is why the different types of research reports are important.

  • Research reports are a primary means of sharing new knowledge and insights with the academic and scientific community. They contribute to the growth of human understanding in various fields.
  • They provide a detailed and structured account of the research process, including methods, data, analysis, and conclusions. This documentation is crucial for transparency, replication, and future reference.
  • These reports hold researchers accountable for their work. They provide a transparent record of the study, allowing others to assess the validity and reliability of the research.
  • These often influence policy decisions, business strategies, and practical applications. For instance, medical research informs healthcare practices, while market research guides business decisions.

Listed below are some limitations of different types of research reports.

  • Research reports can be influenced by the researcher’s biases, preferences, or the funder’s interests. It’s essential to assess the methodology critically.
  • Findings in research reports may not always be directly applicable to other contexts or populations.
  • Certain research reports are not available to everyone due to several barriers, making it hard for people to access important information.
  • The process of conducting research, writing a report, and getting it published can be time-consuming.

Final Thoughts

Different types of research reports are important for sharing knowledge, making smart choices, and moving forward in different areas of study. It’s vital for both researchers and those who use research to grasp the different kinds of reports, what goes into them, and why they matter.

Frequently Asked Questions (FAQs)

Q1. Are research reports the same as research papers? Answer: Research reports and research papers share similarities but have distinct purposes and structures. Research papers are often more academic and can vary in structure, while research reports are typically more structured and cater to a broader audience.

Q2. How do I choose the right type of research report for my study? Answer: The choice of research report type depends on your research goals, audience, and the nature of your study. Consider whether you are conducting scientific research, market analysis, academic research, or policy analysis, and select the format that aligns with your objectives.

Q3. Can research reports be used as references in other research reports? Answer: Yes, research reports can be cited and used as references in other research reports as long as they are credible sources. Citing previous research reports adds depth and credibility to your work.

Recommended Articles

This article lists all the types of research reports available for research methodologies. We have also included its format, example, and several report-writing methods. For similar articles, you can check the following articles,

  • Types of Research Methodology
  • Types of Quantitative Research
  • Quantitative Research Examples
  • What is Qualitative Data Analysis

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy .

Forgot Password?

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Quiz

Explore 1000+ varieties of Mock tests View more

Submit Next Question

Early-Bird Offer: ENROLL NOW

quiz

  • Privacy Policy

Research Method

Home » Research Methodology – Types, Examples and writing Guide

Research Methodology – Types, Examples and writing Guide

Table of Contents

Research Methodology

Research Methodology

Definition:

Research Methodology refers to the systematic and scientific approach used to conduct research, investigate problems, and gather data and information for a specific purpose. It involves the techniques and procedures used to identify, collect , analyze , and interpret data to answer research questions or solve research problems . Moreover, They are philosophical and theoretical frameworks that guide the research process.

Structure of Research Methodology

Research methodology formats can vary depending on the specific requirements of the research project, but the following is a basic example of a structure for a research methodology section:

I. Introduction

  • Provide an overview of the research problem and the need for a research methodology section
  • Outline the main research questions and objectives

II. Research Design

  • Explain the research design chosen and why it is appropriate for the research question(s) and objectives
  • Discuss any alternative research designs considered and why they were not chosen
  • Describe the research setting and participants (if applicable)

III. Data Collection Methods

  • Describe the methods used to collect data (e.g., surveys, interviews, observations)
  • Explain how the data collection methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or instruments used for data collection

IV. Data Analysis Methods

  • Describe the methods used to analyze the data (e.g., statistical analysis, content analysis )
  • Explain how the data analysis methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or software used for data analysis

V. Ethical Considerations

  • Discuss any ethical issues that may arise from the research and how they were addressed
  • Explain how informed consent was obtained (if applicable)
  • Detail any measures taken to ensure confidentiality and anonymity

VI. Limitations

  • Identify any potential limitations of the research methodology and how they may impact the results and conclusions

VII. Conclusion

  • Summarize the key aspects of the research methodology section
  • Explain how the research methodology addresses the research question(s) and objectives

Research Methodology Types

Types of Research Methodology are as follows:

Quantitative Research Methodology

This is a research methodology that involves the collection and analysis of numerical data using statistical methods. This type of research is often used to study cause-and-effect relationships and to make predictions.

Qualitative Research Methodology

This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

Mixed-Methods Research Methodology

This is a research methodology that combines elements of both quantitative and qualitative research. This approach can be particularly useful for studies that aim to explore complex phenomena and to provide a more comprehensive understanding of a particular topic.

Case Study Research Methodology

This is a research methodology that involves in-depth examination of a single case or a small number of cases. Case studies are often used in psychology, sociology, and anthropology to gain a detailed understanding of a particular individual or group.

Action Research Methodology

This is a research methodology that involves a collaborative process between researchers and practitioners to identify and solve real-world problems. Action research is often used in education, healthcare, and social work.

Experimental Research Methodology

This is a research methodology that involves the manipulation of one or more independent variables to observe their effects on a dependent variable. Experimental research is often used to study cause-and-effect relationships and to make predictions.

Survey Research Methodology

This is a research methodology that involves the collection of data from a sample of individuals using questionnaires or interviews. Survey research is often used to study attitudes, opinions, and behaviors.

Grounded Theory Research Methodology

This is a research methodology that involves the development of theories based on the data collected during the research process. Grounded theory is often used in sociology and anthropology to generate theories about social phenomena.

Research Methodology Example

An Example of Research Methodology could be the following:

Research Methodology for Investigating the Effectiveness of Cognitive Behavioral Therapy in Reducing Symptoms of Depression in Adults

Introduction:

The aim of this research is to investigate the effectiveness of cognitive-behavioral therapy (CBT) in reducing symptoms of depression in adults. To achieve this objective, a randomized controlled trial (RCT) will be conducted using a mixed-methods approach.

Research Design:

The study will follow a pre-test and post-test design with two groups: an experimental group receiving CBT and a control group receiving no intervention. The study will also include a qualitative component, in which semi-structured interviews will be conducted with a subset of participants to explore their experiences of receiving CBT.

Participants:

Participants will be recruited from community mental health clinics in the local area. The sample will consist of 100 adults aged 18-65 years old who meet the diagnostic criteria for major depressive disorder. Participants will be randomly assigned to either the experimental group or the control group.

Intervention :

The experimental group will receive 12 weekly sessions of CBT, each lasting 60 minutes. The intervention will be delivered by licensed mental health professionals who have been trained in CBT. The control group will receive no intervention during the study period.

Data Collection:

Quantitative data will be collected through the use of standardized measures such as the Beck Depression Inventory-II (BDI-II) and the Generalized Anxiety Disorder-7 (GAD-7). Data will be collected at baseline, immediately after the intervention, and at a 3-month follow-up. Qualitative data will be collected through semi-structured interviews with a subset of participants from the experimental group. The interviews will be conducted at the end of the intervention period, and will explore participants’ experiences of receiving CBT.

Data Analysis:

Quantitative data will be analyzed using descriptive statistics, t-tests, and mixed-model analyses of variance (ANOVA) to assess the effectiveness of the intervention. Qualitative data will be analyzed using thematic analysis to identify common themes and patterns in participants’ experiences of receiving CBT.

Ethical Considerations:

This study will comply with ethical guidelines for research involving human subjects. Participants will provide informed consent before participating in the study, and their privacy and confidentiality will be protected throughout the study. Any adverse events or reactions will be reported and managed appropriately.

Data Management:

All data collected will be kept confidential and stored securely using password-protected databases. Identifying information will be removed from qualitative data transcripts to ensure participants’ anonymity.

Limitations:

One potential limitation of this study is that it only focuses on one type of psychotherapy, CBT, and may not generalize to other types of therapy or interventions. Another limitation is that the study will only include participants from community mental health clinics, which may not be representative of the general population.

Conclusion:

This research aims to investigate the effectiveness of CBT in reducing symptoms of depression in adults. By using a randomized controlled trial and a mixed-methods approach, the study will provide valuable insights into the mechanisms underlying the relationship between CBT and depression. The results of this study will have important implications for the development of effective treatments for depression in clinical settings.

How to Write Research Methodology

Writing a research methodology involves explaining the methods and techniques you used to conduct research, collect data, and analyze results. It’s an essential section of any research paper or thesis, as it helps readers understand the validity and reliability of your findings. Here are the steps to write a research methodology:

  • Start by explaining your research question: Begin the methodology section by restating your research question and explaining why it’s important. This helps readers understand the purpose of your research and the rationale behind your methods.
  • Describe your research design: Explain the overall approach you used to conduct research. This could be a qualitative or quantitative research design, experimental or non-experimental, case study or survey, etc. Discuss the advantages and limitations of the chosen design.
  • Discuss your sample: Describe the participants or subjects you included in your study. Include details such as their demographics, sampling method, sample size, and any exclusion criteria used.
  • Describe your data collection methods : Explain how you collected data from your participants. This could include surveys, interviews, observations, questionnaires, or experiments. Include details on how you obtained informed consent, how you administered the tools, and how you minimized the risk of bias.
  • Explain your data analysis techniques: Describe the methods you used to analyze the data you collected. This could include statistical analysis, content analysis, thematic analysis, or discourse analysis. Explain how you dealt with missing data, outliers, and any other issues that arose during the analysis.
  • Discuss the validity and reliability of your research : Explain how you ensured the validity and reliability of your study. This could include measures such as triangulation, member checking, peer review, or inter-coder reliability.
  • Acknowledge any limitations of your research: Discuss any limitations of your study, including any potential threats to validity or generalizability. This helps readers understand the scope of your findings and how they might apply to other contexts.
  • Provide a summary: End the methodology section by summarizing the methods and techniques you used to conduct your research. This provides a clear overview of your research methodology and helps readers understand the process you followed to arrive at your findings.

When to Write Research Methodology

Research methodology is typically written after the research proposal has been approved and before the actual research is conducted. It should be written prior to data collection and analysis, as it provides a clear roadmap for the research project.

The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

The methodology should be written in a clear and concise manner, and it should be based on established research practices and standards. It is important to provide enough detail so that the reader can understand how the research was conducted and evaluate the validity of the results.

Applications of Research Methodology

Here are some of the applications of research methodology:

  • To identify the research problem: Research methodology is used to identify the research problem, which is the first step in conducting any research.
  • To design the research: Research methodology helps in designing the research by selecting the appropriate research method, research design, and sampling technique.
  • To collect data: Research methodology provides a systematic approach to collect data from primary and secondary sources.
  • To analyze data: Research methodology helps in analyzing the collected data using various statistical and non-statistical techniques.
  • To test hypotheses: Research methodology provides a framework for testing hypotheses and drawing conclusions based on the analysis of data.
  • To generalize findings: Research methodology helps in generalizing the findings of the research to the target population.
  • To develop theories : Research methodology is used to develop new theories and modify existing theories based on the findings of the research.
  • To evaluate programs and policies : Research methodology is used to evaluate the effectiveness of programs and policies by collecting data and analyzing it.
  • To improve decision-making: Research methodology helps in making informed decisions by providing reliable and valid data.

Purpose of Research Methodology

Research methodology serves several important purposes, including:

  • To guide the research process: Research methodology provides a systematic framework for conducting research. It helps researchers to plan their research, define their research questions, and select appropriate methods and techniques for collecting and analyzing data.
  • To ensure research quality: Research methodology helps researchers to ensure that their research is rigorous, reliable, and valid. It provides guidelines for minimizing bias and error in data collection and analysis, and for ensuring that research findings are accurate and trustworthy.
  • To replicate research: Research methodology provides a clear and detailed account of the research process, making it possible for other researchers to replicate the study and verify its findings.
  • To advance knowledge: Research methodology enables researchers to generate new knowledge and to contribute to the body of knowledge in their field. It provides a means for testing hypotheses, exploring new ideas, and discovering new insights.
  • To inform decision-making: Research methodology provides evidence-based information that can inform policy and decision-making in a variety of fields, including medicine, public health, education, and business.

Advantages of Research Methodology

Research methodology has several advantages that make it a valuable tool for conducting research in various fields. Here are some of the key advantages of research methodology:

  • Systematic and structured approach : Research methodology provides a systematic and structured approach to conducting research, which ensures that the research is conducted in a rigorous and comprehensive manner.
  • Objectivity : Research methodology aims to ensure objectivity in the research process, which means that the research findings are based on evidence and not influenced by personal bias or subjective opinions.
  • Replicability : Research methodology ensures that research can be replicated by other researchers, which is essential for validating research findings and ensuring their accuracy.
  • Reliability : Research methodology aims to ensure that the research findings are reliable, which means that they are consistent and can be depended upon.
  • Validity : Research methodology ensures that the research findings are valid, which means that they accurately reflect the research question or hypothesis being tested.
  • Efficiency : Research methodology provides a structured and efficient way of conducting research, which helps to save time and resources.
  • Flexibility : Research methodology allows researchers to choose the most appropriate research methods and techniques based on the research question, data availability, and other relevant factors.
  • Scope for innovation: Research methodology provides scope for innovation and creativity in designing research studies and developing new research techniques.

Research Methodology Vs Research Methods

Research MethodologyResearch Methods
Research methodology refers to the philosophical and theoretical frameworks that guide the research process. refer to the techniques and procedures used to collect and analyze data.
It is concerned with the underlying principles and assumptions of research.It is concerned with the practical aspects of research.
It provides a rationale for why certain research methods are used.It determines the specific steps that will be taken to conduct research.
It is broader in scope and involves understanding the overall approach to research.It is narrower in scope and focuses on specific techniques and tools used in research.
It is concerned with identifying research questions, defining the research problem, and formulating hypotheses.It is concerned with collecting data, analyzing data, and interpreting results.
It is concerned with the validity and reliability of research.It is concerned with the accuracy and precision of data.
It is concerned with the ethical considerations of research.It is concerned with the practical considerations of research.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Process

Research Process – Steps, Examples and Tips

Dissertation

Dissertation – Format, Example and Template

Data Verification

Data Verification – Process, Types and Examples

Tables in Research Paper

Tables in Research Paper – Types, Creating Guide...

Thesis Format

Thesis Format – Templates and Samples

Research Techniques

Research Techniques – Methods, Types and Examples

  • Research Report: Definition, Types + [Writing Guide]

busayo.longe

One of the reasons for carrying out research is to add to the existing body of knowledge. Therefore, when conducting research, you need to document your processes and findings in a research report. 

With a research report, it is easy to outline the findings of your systematic investigation and any gaps needing further inquiry. Knowing how to create a detailed research report will prove useful when you need to conduct research.  

What is a Research Report?

A research report is a well-crafted document that outlines the processes, data, and findings of a systematic investigation. It is an important document that serves as a first-hand account of the research process, and it is typically considered an objective and accurate source of information.

In many ways, a research report can be considered as a summary of the research process that clearly highlights findings, recommendations, and other important details. Reading a well-written research report should provide you with all the information you need about the core areas of the research process.

Features of a Research Report 

So how do you recognize a research report when you see one? Here are some of the basic features that define a research report. 

  • It is a detailed presentation of research processes and findings, and it usually includes tables and graphs. 
  • It is written in a formal language.
  • A research report is usually written in the third person.
  • It is informative and based on first-hand verifiable information.
  • It is formally structured with headings, sections, and bullet points.
  • It always includes recommendations for future actions. 

Types of Research Report 

The research report is classified based on two things; nature of research and target audience.

Nature of Research

  • Qualitative Research Report

This is the type of report written for qualitative research . It outlines the methods, processes, and findings of a qualitative method of systematic investigation. In educational research, a qualitative research report provides an opportunity for one to apply his or her knowledge and develop skills in planning and executing qualitative research projects.

A qualitative research report is usually descriptive in nature. Hence, in addition to presenting details of the research process, you must also create a descriptive narrative of the information.

  • Quantitative Research Report

A quantitative research report is a type of research report that is written for quantitative research. Quantitative research is a type of systematic investigation that pays attention to numerical or statistical values in a bid to find answers to research questions. 

In this type of research report, the researcher presents quantitative data to support the research process and findings. Unlike a qualitative research report that is mainly descriptive, a quantitative research report works with numbers; that is, it is numerical in nature. 

Target Audience

Also, a research report can be said to be technical or popular based on the target audience. If you’re dealing with a general audience, you would need to present a popular research report, and if you’re dealing with a specialized audience, you would submit a technical report. 

  • Technical Research Report

A technical research report is a detailed document that you present after carrying out industry-based research. This report is highly specialized because it provides information for a technical audience; that is, individuals with above-average knowledge in the field of study. 

In a technical research report, the researcher is expected to provide specific information about the research process, including statistical analyses and sampling methods. Also, the use of language is highly specialized and filled with jargon. 

Examples of technical research reports include legal and medical research reports. 

  • Popular Research Report

A popular research report is one for a general audience; that is, for individuals who do not necessarily have any knowledge in the field of study. A popular research report aims to make information accessible to everyone. 

It is written in very simple language, which makes it easy to understand the findings and recommendations. Examples of popular research reports are the information contained in newspapers and magazines. 

Importance of a Research Report 

  • Knowledge Transfer: As already stated above, one of the reasons for carrying out research is to contribute to the existing body of knowledge, and this is made possible with a research report. A research report serves as a means to effectively communicate the findings of a systematic investigation to all and sundry.  
  • Identification of Knowledge Gaps: With a research report, you’d be able to identify knowledge gaps for further inquiry. A research report shows what has been done while hinting at other areas needing systematic investigation. 
  • In market research, a research report would help you understand the market needs and peculiarities at a glance. 
  • A research report allows you to present information in a precise and concise manner. 
  • It is time-efficient and practical because, in a research report, you do not have to spend time detailing the findings of your research work in person. You can easily send out the report via email and have stakeholders look at it. 

Guide to Writing a Research Report

A lot of detail goes into writing a research report, and getting familiar with the different requirements would help you create the ideal research report. A research report is usually broken down into multiple sections, which allows for a concise presentation of information.

Structure and Example of a Research Report

This is the title of your systematic investigation. Your title should be concise and point to the aims, objectives, and findings of a research report. 

  • Table of Contents

This is like a compass that makes it easier for readers to navigate the research report.

An abstract is an overview that highlights all important aspects of the research including the research method, data collection process, and research findings. Think of an abstract as a summary of your research report that presents pertinent information in a concise manner. 

An abstract is always brief; typically 100-150 words and goes straight to the point. The focus of your research abstract should be the 5Ws and 1H format – What, Where, Why, When, Who and How. 

  • Introduction

Here, the researcher highlights the aims and objectives of the systematic investigation as well as the problem which the systematic investigation sets out to solve. When writing the report introduction, it is also essential to indicate whether the purposes of the research were achieved or would require more work.

In the introduction section, the researcher specifies the research problem and also outlines the significance of the systematic investigation. Also, the researcher is expected to outline any jargons and terminologies that are contained in the research.  

  • Literature Review

A literature review is a written survey of existing knowledge in the field of study. In other words, it is the section where you provide an overview and analysis of different research works that are relevant to your systematic investigation. 

It highlights existing research knowledge and areas needing further investigation, which your research has sought to fill. At this stage, you can also hint at your research hypothesis and its possible implications for the existing body of knowledge in your field of study. 

  • An Account of Investigation

This is a detailed account of the research process, including the methodology, sample, and research subjects. Here, you are expected to provide in-depth information on the research process including the data collection and analysis procedures. 

In a quantitative research report, you’d need to provide information surveys, questionnaires and other quantitative data collection methods used in your research. In a qualitative research report, you are expected to describe the qualitative data collection methods used in your research including interviews and focus groups. 

In this section, you are expected to present the results of the systematic investigation. 

This section further explains the findings of the research, earlier outlined. Here, you are expected to present a justification for each outcome and show whether the results are in line with your hypotheses or if other research studies have come up with similar results.

  • Conclusions

This is a summary of all the information in the report. It also outlines the significance of the entire study. 

  • References and Appendices

This section contains a list of all the primary and secondary research sources. 

Tips for Writing a Research Report

  • Define the Context for the Report

As is obtainable when writing an essay, defining the context for your research report would help you create a detailed yet concise document. This is why you need to create an outline before writing so that you do not miss out on anything. 

  • Define your Audience

Writing with your audience in mind is essential as it determines the tone of the report. If you’re writing for a general audience, you would want to present the information in a simple and relatable manner. For a specialized audience, you would need to make use of technical and field-specific terms. 

  • Include Significant Findings

The idea of a research report is to present some sort of abridged version of your systematic investigation. In your report, you should exclude irrelevant information while highlighting only important data and findings. 

  • Include Illustrations

Your research report should include illustrations and other visual representations of your data. Graphs, pie charts, and relevant images lend additional credibility to your systematic investigation.

  • Choose the Right Title

A good research report title is brief, precise, and contains keywords from your research. It should provide a clear idea of your systematic investigation so that readers can grasp the entire focus of your research from the title. 

  • Proofread the Report

Before publishing the document, ensure that you give it a second look to authenticate the information. If you can, get someone else to go through the report, too, and you can also run it through proofreading and editing software. 

How to Gather Research Data for Your Report  

  • Understand the Problem

Every research aims at solving a specific problem or set of problems, and this should be at the back of your mind when writing your research report. Understanding the problem would help you to filter the information you have and include only important data in your report. 

  • Know what your report seeks to achieve

This is somewhat similar to the point above because, in some way, the aim of your research report is intertwined with the objectives of your systematic investigation. Identifying the primary purpose of writing a research report would help you to identify and present the required information accordingly. 

  • Identify your audience

Knowing your target audience plays a crucial role in data collection for a research report. If your research report is specifically for an organization, you would want to present industry-specific information or show how the research findings are relevant to the work that the company does. 

  • Create Surveys/Questionnaires

A survey is a research method that is used to gather data from a specific group of people through a set of questions. It can be either quantitative or qualitative. 

A survey is usually made up of structured questions, and it can be administered online or offline. However, an online survey is a more effective method of research data collection because it helps you save time and gather data with ease. 

You can seamlessly create an online questionnaire for your research on Formplus . With the multiple sharing options available in the builder, you would be able to administer your survey to respondents in little or no time. 

Formplus also has a report summary too l that you can use to create custom visual reports for your research.

Step-by-step guide on how to create an online questionnaire using Formplus  

  • Sign into Formplus

In the Formplus builder, you can easily create different online questionnaires for your research by dragging and dropping preferred fields into your form. To access the Formplus builder, you will need to create an account on Formplus. 

Once you do this, sign in to your account and click on Create new form to begin. 

  • Edit Form Title : Click on the field provided to input your form title, for example, “Research Questionnaire.”
  • Edit Form : Click on the edit icon to edit the form.
  • Add Fields : Drag and drop preferred form fields into your form in the Formplus builder inputs column. There are several field input options for questionnaires in the Formplus builder. 
  • Edit fields
  • Click on “Save”
  • Form Customization: With the form customization options in the form builder, you can easily change the outlook of your form and make it more unique and personalized. Formplus allows you to change your form theme, add background images, and even change the font according to your needs. 
  • Multiple Sharing Options: Formplus offers various form-sharing options, which enables you to share your questionnaire with respondents easily. You can use the direct social media sharing buttons to share your form link to your organization’s social media pages.  You can also send out your survey form as email invitations to your research subjects too. If you wish, you can share your form’s QR code or embed it on your organization’s website for easy access. 

Conclusion  

Always remember that a research report is just as important as the actual systematic investigation because it plays a vital role in communicating research findings to everyone else. This is why you must take care to create a concise document summarizing the process of conducting any research. 

In this article, we’ve outlined essential tips to help you create a research report. When writing your report, you should always have the audience at the back of your mind, as this would set the tone for the document. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • ethnographic research survey
  • research report
  • research report survey
  • busayo.longe

Formplus

You may also like:

Ethnographic Research: Types, Methods + [Question Examples]

Simple guide on ethnographic research, it types, methods, examples and advantages. Also highlights how to conduct an ethnographic...

different types of reports in research methodology

21 Chrome Extensions for Academic Researchers in 2022

In this article, we will discuss a number of chrome extensions you can use to make your research process even seamless

Assessment Tools: Types, Examples & Importance

In this article, you’ll learn about different assessment tools to help you evaluate performance in various contexts

How to Write a Problem Statement for your Research

Learn how to write problem statements before commencing any research effort. Learn about its structure and explore examples

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

different types of reports in research methodology

What is Research Methodology? Definition, Types, and Examples

different types of reports in research methodology

Research methodology 1,2 is a structured and scientific approach used to collect, analyze, and interpret quantitative or qualitative data to answer research questions or test hypotheses. A research methodology is like a plan for carrying out research and helps keep researchers on track by limiting the scope of the research. Several aspects must be considered before selecting an appropriate research methodology, such as research limitations and ethical concerns that may affect your research.

The research methodology section in a scientific paper describes the different methodological choices made, such as the data collection and analysis methods, and why these choices were selected. The reasons should explain why the methods chosen are the most appropriate to answer the research question. A good research methodology also helps ensure the reliability and validity of the research findings. There are three types of research methodology—quantitative, qualitative, and mixed-method, which can be chosen based on the research objectives.

What is research methodology ?

A research methodology describes the techniques and procedures used to identify and analyze information regarding a specific research topic. It is a process by which researchers design their study so that they can achieve their objectives using the selected research instruments. It includes all the important aspects of research, including research design, data collection methods, data analysis methods, and the overall framework within which the research is conducted. While these points can help you understand what is research methodology, you also need to know why it is important to pick the right methodology.

Why is research methodology important?

Having a good research methodology in place has the following advantages: 3

  • Helps other researchers who may want to replicate your research; the explanations will be of benefit to them.
  • You can easily answer any questions about your research if they arise at a later stage.
  • A research methodology provides a framework and guidelines for researchers to clearly define research questions, hypotheses, and objectives.
  • It helps researchers identify the most appropriate research design, sampling technique, and data collection and analysis methods.
  • A sound research methodology helps researchers ensure that their findings are valid and reliable and free from biases and errors.
  • It also helps ensure that ethical guidelines are followed while conducting research.
  • A good research methodology helps researchers in planning their research efficiently, by ensuring optimum usage of their time and resources.

Writing the methods section of a research paper? Let Paperpal help you achieve perfection

Types of research methodology.

There are three types of research methodology based on the type of research and the data required. 1

  • Quantitative research methodology focuses on measuring and testing numerical data. This approach is good for reaching a large number of people in a short amount of time. This type of research helps in testing the causal relationships between variables, making predictions, and generalizing results to wider populations.
  • Qualitative research methodology examines the opinions, behaviors, and experiences of people. It collects and analyzes words and textual data. This research methodology requires fewer participants but is still more time consuming because the time spent per participant is quite large. This method is used in exploratory research where the research problem being investigated is not clearly defined.
  • Mixed-method research methodology uses the characteristics of both quantitative and qualitative research methodologies in the same study. This method allows researchers to validate their findings, verify if the results observed using both methods are complementary, and explain any unexpected results obtained from one method by using the other method.

What are the types of sampling designs in research methodology?

Sampling 4 is an important part of a research methodology and involves selecting a representative sample of the population to conduct the study, making statistical inferences about them, and estimating the characteristics of the whole population based on these inferences. There are two types of sampling designs in research methodology—probability and nonprobability.

  • Probability sampling

In this type of sampling design, a sample is chosen from a larger population using some form of random selection, that is, every member of the population has an equal chance of being selected. The different types of probability sampling are:

  • Systematic —sample members are chosen at regular intervals. It requires selecting a starting point for the sample and sample size determination that can be repeated at regular intervals. This type of sampling method has a predefined range; hence, it is the least time consuming.
  • Stratified —researchers divide the population into smaller groups that don’t overlap but represent the entire population. While sampling, these groups can be organized, and then a sample can be drawn from each group separately.
  • Cluster —the population is divided into clusters based on demographic parameters like age, sex, location, etc.
  • Convenience —selects participants who are most easily accessible to researchers due to geographical proximity, availability at a particular time, etc.
  • Purposive —participants are selected at the researcher’s discretion. Researchers consider the purpose of the study and the understanding of the target audience.
  • Snowball —already selected participants use their social networks to refer the researcher to other potential participants.
  • Quota —while designing the study, the researchers decide how many people with which characteristics to include as participants. The characteristics help in choosing people most likely to provide insights into the subject.

What are data collection methods?

During research, data are collected using various methods depending on the research methodology being followed and the research methods being undertaken. Both qualitative and quantitative research have different data collection methods, as listed below.

Qualitative research 5

  • One-on-one interviews: Helps the interviewers understand a respondent’s subjective opinion and experience pertaining to a specific topic or event
  • Document study/literature review/record keeping: Researchers’ review of already existing written materials such as archives, annual reports, research articles, guidelines, policy documents, etc.
  • Focus groups: Constructive discussions that usually include a small sample of about 6-10 people and a moderator, to understand the participants’ opinion on a given topic.
  • Qualitative observation : Researchers collect data using their five senses (sight, smell, touch, taste, and hearing).

Quantitative research 6

  • Sampling: The most common type is probability sampling.
  • Interviews: Commonly telephonic or done in-person.
  • Observations: Structured observations are most commonly used in quantitative research. In this method, researchers make observations about specific behaviors of individuals in a structured setting.
  • Document review: Reviewing existing research or documents to collect evidence for supporting the research.
  • Surveys and questionnaires. Surveys can be administered both online and offline depending on the requirement and sample size.

Let Paperpal help you write the perfect research methods section. Start now!

What are data analysis methods.

The data collected using the various methods for qualitative and quantitative research need to be analyzed to generate meaningful conclusions. These data analysis methods 7 also differ between quantitative and qualitative research.

Quantitative research involves a deductive method for data analysis where hypotheses are developed at the beginning of the research and precise measurement is required. The methods include statistical analysis applications to analyze numerical data and are grouped into two categories—descriptive and inferential.

Descriptive analysis is used to describe the basic features of different types of data to present it in a way that ensures the patterns become meaningful. The different types of descriptive analysis methods are:

  • Measures of frequency (count, percent, frequency)
  • Measures of central tendency (mean, median, mode)
  • Measures of dispersion or variation (range, variance, standard deviation)
  • Measure of position (percentile ranks, quartile ranks)

Inferential analysis is used to make predictions about a larger population based on the analysis of the data collected from a smaller population. This analysis is used to study the relationships between different variables. Some commonly used inferential data analysis methods are:

  • Correlation: To understand the relationship between two or more variables.
  • Cross-tabulation: Analyze the relationship between multiple variables.
  • Regression analysis: Study the impact of independent variables on the dependent variable.
  • Frequency tables: To understand the frequency of data.
  • Analysis of variance: To test the degree to which two or more variables differ in an experiment.

Qualitative research involves an inductive method for data analysis where hypotheses are developed after data collection. The methods include:

  • Content analysis: For analyzing documented information from text and images by determining the presence of certain words or concepts in texts.
  • Narrative analysis: For analyzing content obtained from sources such as interviews, field observations, and surveys. The stories and opinions shared by people are used to answer research questions.
  • Discourse analysis: For analyzing interactions with people considering the social context, that is, the lifestyle and environment, under which the interaction occurs.
  • Grounded theory: Involves hypothesis creation by data collection and analysis to explain why a phenomenon occurred.
  • Thematic analysis: To identify important themes or patterns in data and use these to address an issue.

How to choose a research methodology?

Here are some important factors to consider when choosing a research methodology: 8

  • Research objectives, aims, and questions —these would help structure the research design.
  • Review existing literature to identify any gaps in knowledge.
  • Check the statistical requirements —if data-driven or statistical results are needed then quantitative research is the best. If the research questions can be answered based on people’s opinions and perceptions, then qualitative research is most suitable.
  • Sample size —sample size can often determine the feasibility of a research methodology. For a large sample, less effort- and time-intensive methods are appropriate.
  • Constraints —constraints of time, geography, and resources can help define the appropriate methodology.

Got writer’s block? Kickstart your research paper writing with Paperpal now!

How to write a research methodology .

A research methodology should include the following components: 3,9

  • Research design —should be selected based on the research question and the data required. Common research designs include experimental, quasi-experimental, correlational, descriptive, and exploratory.
  • Research method —this can be quantitative, qualitative, or mixed-method.
  • Reason for selecting a specific methodology —explain why this methodology is the most suitable to answer your research problem.
  • Research instruments —explain the research instruments you plan to use, mainly referring to the data collection methods such as interviews, surveys, etc. Here as well, a reason should be mentioned for selecting the particular instrument.
  • Sampling —this involves selecting a representative subset of the population being studied.
  • Data collection —involves gathering data using several data collection methods, such as surveys, interviews, etc.
  • Data analysis —describe the data analysis methods you will use once you’ve collected the data.
  • Research limitations —mention any limitations you foresee while conducting your research.
  • Validity and reliability —validity helps identify the accuracy and truthfulness of the findings; reliability refers to the consistency and stability of the results over time and across different conditions.
  • Ethical considerations —research should be conducted ethically. The considerations include obtaining consent from participants, maintaining confidentiality, and addressing conflicts of interest.

Streamline Your Research Paper Writing Process with Paperpal

The methods section is a critical part of the research papers, allowing researchers to use this to understand your findings and replicate your work when pursuing their own research. However, it is usually also the most difficult section to write. This is where Paperpal can help you overcome the writer’s block and create the first draft in minutes with Paperpal Copilot, its secure generative AI feature suite.  

With Paperpal you can get research advice, write and refine your work, rephrase and verify the writing, and ensure submission readiness, all in one place. Here’s how you can use Paperpal to develop the first draft of your methods section.  

  • Generate an outline: Input some details about your research to instantly generate an outline for your methods section 
  • Develop the section: Use the outline and suggested sentence templates to expand your ideas and develop the first draft.  
  • P araph ras e and trim : Get clear, concise academic text with paraphrasing that conveys your work effectively and word reduction to fix redundancies. 
  • Choose the right words: Enhance text by choosing contextual synonyms based on how the words have been used in previously published work.  
  • Check and verify text : Make sure the generated text showcases your methods correctly, has all the right citations, and is original and authentic. .   

You can repeat this process to develop each section of your research manuscript, including the title, abstract and keywords. Ready to write your research papers faster, better, and without the stress? Sign up for Paperpal and start writing today!

Frequently Asked Questions

Q1. What are the key components of research methodology?

A1. A good research methodology has the following key components:

  • Research design
  • Data collection procedures
  • Data analysis methods
  • Ethical considerations

Q2. Why is ethical consideration important in research methodology?

A2. Ethical consideration is important in research methodology to ensure the readers of the reliability and validity of the study. Researchers must clearly mention the ethical norms and standards followed during the conduct of the research and also mention if the research has been cleared by any institutional board. The following 10 points are the important principles related to ethical considerations: 10

  • Participants should not be subjected to harm.
  • Respect for the dignity of participants should be prioritized.
  • Full consent should be obtained from participants before the study.
  • Participants’ privacy should be ensured.
  • Confidentiality of the research data should be ensured.
  • Anonymity of individuals and organizations participating in the research should be maintained.
  • The aims and objectives of the research should not be exaggerated.
  • Affiliations, sources of funding, and any possible conflicts of interest should be declared.
  • Communication in relation to the research should be honest and transparent.
  • Misleading information and biased representation of primary data findings should be avoided.

Q3. What is the difference between methodology and method?

A3. Research methodology is different from a research method, although both terms are often confused. Research methods are the tools used to gather data, while the research methodology provides a framework for how research is planned, conducted, and analyzed. The latter guides researchers in making decisions about the most appropriate methods for their research. Research methods refer to the specific techniques, procedures, and tools used by researchers to collect, analyze, and interpret data, for instance surveys, questionnaires, interviews, etc.

Research methodology is, thus, an integral part of a research study. It helps ensure that you stay on track to meet your research objectives and answer your research questions using the most appropriate data collection and analysis tools based on your research design.

Accelerate your research paper writing with Paperpal. Try for free now!

  • Research methodologies. Pfeiffer Library website. Accessed August 15, 2023. https://library.tiffin.edu/researchmethodologies/whatareresearchmethodologies
  • Types of research methodology. Eduvoice website. Accessed August 16, 2023. https://eduvoice.in/types-research-methodology/
  • The basics of research methodology: A key to quality research. Voxco. Accessed August 16, 2023. https://www.voxco.com/blog/what-is-research-methodology/
  • Sampling methods: Types with examples. QuestionPro website. Accessed August 16, 2023. https://www.questionpro.com/blog/types-of-sampling-for-social-research/
  • What is qualitative research? Methods, types, approaches, examples. Researcher.Life blog. Accessed August 15, 2023. https://researcher.life/blog/article/what-is-qualitative-research-methods-types-examples/
  • What is quantitative research? Definition, methods, types, and examples. Researcher.Life blog. Accessed August 15, 2023. https://researcher.life/blog/article/what-is-quantitative-research-types-and-examples/
  • Data analysis in research: Types & methods. QuestionPro website. Accessed August 16, 2023. https://www.questionpro.com/blog/data-analysis-in-research/#Data_analysis_in_qualitative_research
  • Factors to consider while choosing the right research methodology. PhD Monster website. Accessed August 17, 2023. https://www.phdmonster.com/factors-to-consider-while-choosing-the-right-research-methodology/
  • What is research methodology? Research and writing guides. Accessed August 14, 2023. https://paperpile.com/g/what-is-research-methodology/
  • Ethical considerations. Business research methodology website. Accessed August 17, 2023. https://research-methodology.net/research-methodology/ethical-considerations/

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Dangling Modifiers and How to Avoid Them in Your Writing 
  • Webinar: How to Use Generative AI Tools Ethically in Your Academic Writing
  • Research Outlines: How to Write An Introduction Section in Minutes with Paperpal Copilot
  • How to Paraphrase Research Papers Effectively

Language and Grammar Rules for Academic Writing

Climatic vs. climactic: difference and examples, you may also like, dissertation printing and binding | types & comparison , what is a dissertation preface definition and examples , how to write a research proposal: (with examples..., how to write your research paper in apa..., how to choose a dissertation topic, how to write a phd research proposal, how to write an academic paragraph (step-by-step guide), maintaining academic integrity with paperpal’s generative ai writing..., research funding basics: what should a grant proposal..., how to write an abstract in research papers....

Research report guide: Definition, types, and tips

Last updated

5 March 2024

Reviewed by

Short on time? Get an AI generated summary of this article instead

From successful product launches or software releases to planning major business decisions, research reports serve many vital functions. They can summarize evidence and deliver insights and recommendations to save companies time and resources. They can reveal the most value-adding actions a company should take.

However, poorly constructed reports can have the opposite effect! Taking the time to learn established research-reporting rules and approaches will equip you with in-demand skills. You’ll be able to capture and communicate information applicable to numerous situations and industries, adding another string to your resume bow.

  • What are research reports?

A research report is a collection of contextual data, gathered through organized research, that provides new insights into a particular challenge (which, for this article, is business-related). Research reports are a time-tested method for distilling large amounts of data into a narrow band of focus.

Their effectiveness often hinges on whether the report provides:

Strong, well-researched evidence

Comprehensive analysis

Well-considered conclusions and recommendations

Though the topic possibilities are endless, an effective research report keeps a laser-like focus on the specific questions or objectives the researcher believes are key to achieving success. Many research reports begin as research proposals, which usually include the need for a report to capture the findings of the study and recommend a course of action.

A description of the research method used, e.g., qualitative, quantitative, or other

Statistical analysis

Causal (or explanatory) research (i.e., research identifying relationships between two variables)

Inductive research, also known as ‘theory-building’

Deductive research, such as that used to test theories

Action research, where the research is actively used to drive change

  • Importance of a research report

Research reports can unify and direct a company's focus toward the most appropriate strategic action. Of course, spending resources on a report takes up some of the company's human and financial resources. Choosing when a report is called for is a matter of judgment and experience.

Some development models used heavily in the engineering world, such as Waterfall development, are notorious for over-relying on research reports. With Waterfall development, there is a linear progression through each step of a project, and each stage is precisely documented and reported on before moving to the next.

The pace of the business world is faster than the speed at which your authors can produce and disseminate reports. So how do companies strike the right balance between creating and acting on research reports?

The answer lies, again, in the report's defined objectives. By paring down your most pressing interests and those of your stakeholders, your research and reporting skills will be the lenses that keep your company's priorities in constant focus.

Honing your company's primary objectives can save significant amounts of time and align research and reporting efforts with ever-greater precision.

Some examples of well-designed research objectives are:

Proving whether or not a product or service meets customer expectations

Demonstrating the value of a service, product, or business process to your stakeholders and investors

Improving business decision-making when faced with a lack of time or other constraints

Clarifying the relationship between a critical cause and effect for problematic business processes

Prioritizing the development of a backlog of products or product features

Comparing business or production strategies

Evaluating past decisions and predicting future outcomes

  • Features of a research report

Research reports generally require a research design phase, where the report author(s) determine the most important elements the report must contain.

Just as there are various kinds of research, there are many types of reports.

Here are the standard elements of almost any research-reporting format:

Report summary. A broad but comprehensive overview of what readers will learn in the full report. Summaries are usually no more than one or two paragraphs and address all key elements of the report. Think of the key takeaways your primary stakeholders will want to know if they don’t have time to read the full document.

Introduction. Include a brief background of the topic, the type of research, and the research sample. Consider the primary goal of the report, who is most affected, and how far along the company is in meeting its objectives.

Methods. A description of how the researcher carried out data collection, analysis, and final interpretations of the data. Include the reasons for choosing a particular method. The methods section should strike a balance between clearly presenting the approach taken to gather data and discussing how it is designed to achieve the report's objectives.

Data analysis. This section contains interpretations that lead readers through the results relevant to the report's thesis. If there were unexpected results, include here a discussion on why that might be. Charts, calculations, statistics, and other supporting information also belong here (or, if lengthy, as an appendix). This should be the most detailed section of the research report, with references for further study. Present the information in a logical order, whether chronologically or in order of importance to the report's objectives.

Conclusion. This should be written with sound reasoning, often containing useful recommendations. The conclusion must be backed by a continuous thread of logic throughout the report.

  • How to write a research paper

With a clear outline and robust pool of research, a research paper can start to write itself, but what's a good way to start a research report?

Research report examples are often the quickest way to gain inspiration for your report. Look for the types of research reports most relevant to your industry and consider which makes the most sense for your data and goals.

The research report outline will help you organize the elements of your report. One of the most time-tested report outlines is the IMRaD structure:

Introduction

...and Discussion

Pay close attention to the most well-established research reporting format in your industry, and consider your tone and language from your audience's perspective. Learn the key terms inside and out; incorrect jargon could easily harm the perceived authority of your research paper.

Along with a foundation in high-quality research and razor-sharp analysis, the most effective research reports will also demonstrate well-developed:

Internal logic

Narrative flow

Conclusions and recommendations

Readability, striking a balance between simple phrasing and technical insight

How to gather research data for your report

The validity of research data is critical. Because the research phase usually occurs well before the writing phase, you normally have plenty of time to vet your data.

However, research reports could involve ongoing research, where report authors (sometimes the researchers themselves) write portions of the report alongside ongoing research.

One such research-report example would be an R&D department that knows its primary stakeholders are eager to learn about a lengthy work in progress and any potentially important outcomes.

However you choose to manage the research and reporting, your data must meet robust quality standards before you can rely on it. Vet any research with the following questions in mind:

Does it use statistically valid analysis methods?

Do the researchers clearly explain their research, analysis, and sampling methods?

Did the researchers provide any caveats or advice on how to interpret their data?

Have you gathered the data yourself or were you in close contact with those who did?

Is the source biased?

Usually, flawed research methods become more apparent the further you get through a research report.

It's perfectly natural for good research to raise new questions, but the reader should have no uncertainty about what the data represents. There should be no doubt about matters such as:

Whether the sampling or analysis methods were based on sound and consistent logic

What the research samples are and where they came from

The accuracy of any statistical functions or equations

Validation of testing and measuring processes

When does a report require design validation?

A robust design validation process is often a gold standard in highly technical research reports. Design validation ensures the objects of a study are measured accurately, which lends more weight to your report and makes it valuable to more specialized industries.

Product development and engineering projects are the most common research-report examples that typically involve a design validation process. Depending on the scope and complexity of your research, you might face additional steps to validate your data and research procedures.

If you’re including design validation in the report (or report proposal), explain and justify your data-collection processes. Good design validation builds greater trust in a research report and lends more weight to its conclusions.

Choosing the right analysis method

Just as the quality of your report depends on properly validated research, a useful conclusion requires the most contextually relevant analysis method. This means comparing different statistical methods and choosing the one that makes the most sense for your research.

Most broadly, research analysis comes down to quantitative or qualitative methods (respectively: measurable by a number vs subjectively qualified values). There are also mixed research methods, which bridge the need for merging hard data with qualified assessments and still reach a cohesive set of conclusions.

Some of the most common analysis methods in research reports include:

Significance testing (aka hypothesis analysis), which compares test and control groups to determine how likely the data was the result of random chance.

Regression analysis , to establish relationships between variables, control for extraneous variables , and support correlation analysis.

Correlation analysis (aka bivariate testing), a method to identify and determine the strength of linear relationships between variables. It’s effective for detecting patterns from complex data, but care must be exercised to not confuse correlation with causation.

With any analysis method, it's important to justify which method you chose in the report. You should also provide estimates of the statistical accuracy (e.g., the p-value or confidence level of quantifiable data) of any data analysis.

This requires a commitment to the report's primary aim. For instance, this may be achieving a certain level of customer satisfaction by analyzing the cause and effect of changes to how service is delivered. Even better, use statistical analysis to calculate which change is most positively correlated with improved levels of customer satisfaction.

  • Tips for writing research reports

There's endless good advice for writing effective research reports, and it almost all depends on the subjective aims of the people behind the report. Due to the wide variety of research reports, the best tips will be unique to each author's purpose.

Consider the following research report tips in any order, and take note of the ones most relevant to you:

No matter how in depth or detailed your report might be, provide a well-considered, succinct summary. At the very least, give your readers a quick and effective way to get up to speed.

Pare down your target audience (e.g., other researchers, employees, laypersons, etc.), and adjust your voice for their background knowledge and interest levels

For all but the most open-ended research, clarify your objectives, both for yourself and within the report.

Leverage your team members’ talents to fill in any knowledge gaps you might have. Your team is only as good as the sum of its parts.

Justify why your research proposal’s topic will endure long enough to derive value from the finished report.

Consolidate all research and analysis functions onto a single user-friendly platform. There's no reason to settle for less than developer-grade tools suitable for non-developers.

What's the format of a research report?

The research-reporting format is how the report is structured—a framework the authors use to organize their data, conclusions, arguments, and recommendations. The format heavily determines how the report's outline develops, because the format dictates the overall structure and order of information (based on the report's goals and research objectives).

What's the purpose of a research-report outline?

A good report outline gives form and substance to the report's objectives, presenting the results in a readable, engaging way. For any research-report format, the outline should create momentum along a chain of logic that builds up to a conclusion or interpretation.

What's the difference between a research essay and a research report?

There are several key differences between research reports and essays:

Research report:

Ordered into separate sections

More commercial in nature

Often includes infographics

Heavily descriptive

More self-referential

Usually provides recommendations

Research essay

Does not rely on research report formatting

More academically minded

Normally text-only

Less detailed

Omits discussion of methods

Usually non-prescriptive 

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

Exploring different types of reports

Create beautiful charts & infographics get started, 09.11.2023 by anete ezera.

Reports are great for conveying complex information and data in a structured and organized manner. And there are many different types of reports that are widely used in business, education, healthcare, and other sectors. For example, in business, reports are used for performance analysis, financial statements, and project updates. However, in education, reports are vital for research findings and academic assessments. Overall, reports enable effective decision-making and communication within organizations. However, not all types of reports are created equally. To create a truly compelling and useful report , it’s essential to understand the different types of reporting and best practices for creating and designing reports. Also, it’s helpful to recognize how Infogram can elevate your reports through engaging visualizations.

In this article, we’re going to explore what are the different types of reports and what are the best practices for each of them. Also, we’re going to discuss how Infogram can help you create reports faster and better.

Click to jump ahead: Informative reports Analytical reports Research reports Progress reports Different types of reporting Elevating different types of reports with Infogram

Man working at home, writing different types of reports.

Different types of reports

Informative reports.

Informative reports represent one of the most prominent and essential types of documentation across various fields. These reports are structured to offer a clear and direct presentation of information, making them highly valuable in academic, scientific, and business contexts. 

Key characteristics 

Objective presentation: Informative reports maintain objectivity by presenting information in a straightforward, unbiased manner. They avoid the use of opinion, focusing solely on verifiable facts and data.

Concise summarization: These reports aim to transform large amounts of information into a concise, easily digestible format. They are a valuable tool for shortening extensive research or complex data into a manageable form.

Structured format: Informative reports often follow a standardized structure, including sections such as an introduction, methods, results, discussion, and conclusion. This structure helps to locate and understand key information efficiently.

Supporting visuals: The inclusion of charts, graphs, tables, and other visual aids can improve the clarity and impact of an informative report. Visual elements help readers understand complex data more quickly.

Use cases 

Informative reports serve various purposes across different domains:

Academic: In education, informative reports are commonly used to present research findings, summarize experiments, or provide data analysis. Students and researchers use these reports to communicate their work to peers and the academic community.

Scientific: In science, informative reports are vital for sharing research results, observations, and discoveries. Scientific journals often feature these reports to showcase new knowledge and advancements within a particular field.

Business: In business, informative reports are instrumental in decision-making. Market research, financial analysis, and performance reports are all examples of informative reports that help business leaders make informed choices and strategies.

Government and policy: Government agencies use informative reports to share data and insights with the public, legislators, and policymakers. These reports can influence important decisions, laws, and policies.

Healthcare and medicine: In healthcare, informative reports are crucial for presenting clinical trial results, medical research, and patient data. These reports inform healthcare professionals, researchers, and the public about medical advancements and best practices.

Best practices for creating informative reports

Clear language: Use clear, jargon-free language that your target audience can easily understand. Avoid technical terms or jargon that might be unfamiliar to your readers.

Logical structure: Follow a well-defined structure, typically starting with an introduction, followed by the main body, conclusions, and any necessary appendices.

Visual aids: Incorporate relevant visuals, such as graphs, charts, or images, to illustrate key points and enhance comprehension. To create highly effective visuals, use Infogram . 

Citations and references: Properly cite all sources and references used to maintain credibility and avoid plagiarism.

Proofreading: Thoroughly proofread your report to eliminate errors in grammar, spelling, and formatting.

Analytical reports

Analytical reports delve deeper into data analysis to draw conclusions and offer recommendations. These reports are vital for decision-makers across different fields, providing a profound understanding of complex issues and the insights necessary for making informed choices. 

Key characteristics

Data examination: Analytical reports begin with a thorough examination of data, often involving complex datasets. The aim is to convey information, identifying patterns, trends, and relationships among variables.

Conclusions and recommendations: Unlike informative reports, analytical reports don’t just present facts and data; they go further to draw conclusions and offer recommendations. These recommendations are grounded in data analysis and are crucial for informing decision-makers.

Multiple perspectives: Analytical reports often present multiple perspectives on an issue. They consider various factors and viewpoints, offering a holistic understanding of the subject matter.

Actionable insights: The primary goal of an analytical report is to provide insights that can guide decision-making. These insights should be practical and actionable, empowering stakeholders to make informed choices.

Contextualization: Analytical reports often provide context for the data presented. They explain why certain findings are significant and how they relate to the broader context or problem under consideration.

Analytical reports serve a wide range of purposes across different sectors:

Business and management: In the corporate world, analytical reports are useful for assessing market trends, financial performance, and operational efficiencies. They provide management with the insights needed to improve processes and make strategic decisions.

Policy and government: Government agencies use analytical reports to inform policy decisions. These reports assess the impact of existing policies, explore potential alternatives, and recommend the best course of action for societal issues.

Healthcare and medicine: In healthcare, analytical reports help healthcare administrators and policymakers make informed decisions about resource allocation, patient care, and public health strategies.

Environmental and scientific research: Analytical reports play an important role in analyzing research findings and drawing scientific conclusions. They are crucial for peer-reviewed publications and for advancing scientific knowledge.

Education: Educational institutions and policymakers use analytical reports to assess the effectiveness of teaching methods, educational programs, and policies.

Best practices for creating analytical reports

Data quality: Ensure that the data used in the report is accurate, reliable, and relevant. The analysis is only as good as the data it’s based on.

Clear structure: Organize the report logically, with a clear introduction, data analysis, conclusions, and actionable recommendations. Each section should flow smoothly, guiding the reader through the report.

Visual representation: Use visual aids, such as charts, graphs, and tables, to enhance data presentation and make complex information more accessible.

Causal relationships: If applicable, explore causal relationships and correlations within the data, providing a nuanced understanding of the subject matter.

Research reports

Research reports play an important role in communicating the outcomes of a research process or scientific experiments. These reports serve as a reservoir of knowledge, storing the details of a research process, from methodology to data analysis, and ultimately leading to well-communicated conclusions. 

Methodology detailing: Research reports outline the methods used in the research. This includes research design, data collection techniques, and any tools or instruments used. A clear methodology section is vital for understanding the study’s credibility and replicability.

Data analysis and interpretation: These reports offer a well-rounded analysis of the collected data. Researchers often use statistical or qualitative methods to interpret the information, providing insights into the relationships between variables and the significance of findings.

Conclusions and implications: Research reports present conclusions drawn from the data and analysis. These conclusions provide valuable insights into the research question or problem, shedding light on its implications for theory, practice, or further research.

Citations and references: Proper citations and references are crucial for the study. This enhances the credibility and scholarly integrity of the report.

Peer review and publication: Many research reports undergo rigorous peer review before being published in academic journals. Peer review ensures the quality and validity of the research, making it accessible to the wider scientific community.

Research reports serve a multitude of purposes across various domains:

Academic advancement: In academia, research reports are the backbone of knowledge. They contribute to the gathering of scientific knowledge, advance theories, and inform future research directions.

Scientific discovery: In the scientific community, research reports are crucial for documenting groundbreaking discoveries, experimental results, and innovations. These reports fuel scientific progress and underpin the development of new technologies.

Policy formation: Research reports provide evidence and insights that policymakers and government agencies use to formulate and revise policies. They inform decisions related to public health, education, environmental regulations, and more.

Corporate research and development: In the corporate world, research reports drive innovation and strategic decision-making. They help businesses identify market trends, improve products, and optimize operations.

Healthcare and medicine: Research reports in healthcare and medicine contribute to the development of medical treatments, inform clinical guidelines, and shape public health interventions.

Best practices for creating research reports

Comprehensive methodology: Describe the research methodology in precise detail, ensuring that other researchers can replicate the study. Transparency is essential for the credibility of the report.

Data integrity: Ensure the data collected is reliable and that the analysis methods are appropriate for the research question. 

Logical structure: Follow a structured format with sections for the introduction, literature review, methodology, results, discussion, and conclusion. This provides a clear path for readers to follow.

Contributions to knowledge: Clearly outline how the research contributes to the existing body of knowledge. Discuss the theoretical and practical implications of the findings.

Peer review: Consider submitting the research report to peer-reviewed journals or seeking feedback from colleagues and mentors. Peer review helps ensure the quality and accuracy of the research.

Progress reports

Progress reports are key in project management, offering a dynamic snapshot of ongoing activities, projects, or initiatives. These reports are instrumental in tracking and communicating the status of a venture, helping stakeholders stay informed and make informed decisions.

Regular updates: Progress reports are typically issued at regular intervals, such as weekly, monthly, or quarterly. They serve as a means of consistent communication, ensuring that stakeholders are well-informed throughout the project’s duration.

Status overview: These reports provide a comprehensive overview of the project’s status, summarizing achievements, challenges, and milestones reached during the reporting period.

Issues and challenges: Progress reports include information about any issues, bottlenecks, or challenges that have arisen during the project. This transparency is essential for addressing problems in a timely manner.

Next steps: They outline the planned actions and goals for the next reporting period. This helps to understand the project’s trajectory and future objectives.

Visual representation: Using charts, graphs, and visuals can make the report more engaging and help stakeholders quickly grasp key information.

Progress reports serve a range of purposes across different spheres:

Project management: In project management, these reports help project managers keep stakeholders updated on the progress of various tasks and activities. This, in turn, supports effective decision-making and the timely resolution of issues.

Business operations: Businesses use progress reports to monitor the development of strategic initiatives, product launches, and performance metrics. These reports help leadership teams assess the effectiveness of their strategies.

Government and public projects: Government agencies use progress reports to inform the public and policymakers about the advancement of infrastructure projects, public programs, and policy implementations.

Academic and research projects: In the academic world, progress reports are critical for tracking research projects, grant-funded studies, and academic initiatives. They help researchers and institutions remain accountable for their work.

Nonprofit and NGO activities: Nonprofit organizations and NGOs use progress reports to demonstrate the impact of their work to donors, volunteers, and the communities they serve.

Best practices for creating progress reports

Clarity: Ensure the report is clear, concise, and easily understood. Use plain language and avoid unnecessary jargon or technical details.

Timeliness: Deliver progress reports on schedule to maintain trust and accountability.

Transparent reporting: Be honest about challenges and setbacks. Transparency fosters trust and allows stakeholders to offer support and guidance when needed.

Visual aids: Incorporate visuals like Gantt charts , progress bars , or infographics to make data more visually appealing and digestible. Interested in discovering how Infogram can enhance your team’s work? Join a brief Zoom session with our Customer Success Manager to explore key features, get answers to your questions, and understand how we can assist. It’s quick, informative, and just like a coffee-break chat. Schedule your call now!

The delivery methods: Different types of reporting

While reports themselves come in various formats depending on their content (informational, analytical, etc.), the way we deliver that information can also be categorized. Here’s a closer look at different types of reporting, along with examples:

Frequency-based reporting

Scheduled reporting: This is the bread and butter of reporting, delivering information at predefined intervals. Think of it like clockwork – you get your weekly sales report every Monday or your monthly inventory report on the first day of each month. For example, a company receives a quarterly financial performance report that analyzes revenue, expenses, and profitability.

Real-time reporting: This type of reporting provides up-to-the-minute insights, crucial for situations where immediate action is necessary. Imagine monitoring website traffic during a product launch – real-time reporting shows how many people are visiting and interacting with the site. 

Woman working at home office hand on keyboard. Home workspace - wooden table laptop. Beautiful workspace - online remote work from home concept. close up

Target audience-based reporting

Internal reporting: Internal type of reporting keeps colleagues within an organization informed. It might include project updates for team members or departmental performance reviews for managers. 

External reporting: This reporting disseminates information to people outside the organization, such as investors, regulators, or the public. External reports often adhere to stricter formatting guidelines and may require legal or financial disclosures. 

Ad-hoc vs. scheduled reporting

Ad-hoc reporting: This type of reporting responds to specific needs or situations and isn’t tied to a predetermined schedule. For example, imagine needing to analyze data for a specific product launch – you’d generate an ad-hoc report to answer your questions. 

Scheduled reporting (as mentioned above): This reporting delivers information at regular intervals, providing a consistent flow of data for analysis and decision-making.

Choosing the right type of reporting method

The best reporting method depends on the information you’re presenting and who you’re presenting it to. Scheduled reports keep everyone on the same page, while real-time reporting allows for immediate action. Internal reports can be more informal, while external reports need to adhere to specific standards.

By understanding these different types of reporting, you can choose the method that ensures your information reaches the right people at the right time, ultimately leading to better communication and informed decisions.

Elevating different types of reports with Infogram

Infogram is a powerful tool for creating visually appealing and engaging reports. Here’s how it can help:

Easy-to-use templates: Infogram offers a range of customizable templates for different report types, saving you time and ensuring a professional look. Also, make sure to take a look at the best report examples and get inspired to create your own!

Data visualization: Infogram enables you to create interactive and impactful data visualizations , including charts, maps , and infographics . The interactivity and visual appeal help convey complex information in a comprehensible and highly engaging manner.

Real-time updates: With real-time data integration , you can keep your reports up-to-date, making them even more valuable for decision-making.

Collaboration features: Collaborate with team members and stakeholders in real-time, streamlining the report creation process and ensuring input from all relevant parties. 

Note: To collaborate in real-time, you’ll need to have a team or higher plan. Check out what other features you can easily unlock with Infogram plans.

Shareability: Infogram makes it easy to share your reports online, embed them in websites, or export them in various formats, improving their accessibility and reach.

woman using laptop working from home in study room writing headset

Different types of reports – one solution

Reports are vital tools for conveying information, insights, and data. Understanding the different types of reports and following best practices for creating and designing them is crucial for their effectiveness. Infogram takes report creation to the next level by offering tools for visually engaging and impactful data visualizations. By integrating Infogram into your report creation process, you can create reports that not only inform but also captivate your audience. So, harness the power of reports and elevate your data storytelling with Infogram. Start creating today!

Get data visualization tips every week:

New features, special offers, and exciting news about the world of data visualization.

Join more than 200,000 readers and receive the latest data visualization news, tips and trends every week.

How to write alt text descriptions: a comprehensive guide, 8 effective ways to visualize data about elections, how to create accessible charts and graphs with infogram.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • BMC Med Res Methodol

Logo of bmcmrm

A tutorial on methodological studies: the what, when, how and why

Lawrence mbuagbaw.

1 Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON Canada

2 Biostatistics Unit/FSORC, 50 Charlton Avenue East, St Joseph’s Healthcare—Hamilton, 3rd Floor Martha Wing, Room H321, Hamilton, Ontario L8N 4A6 Canada

3 Centre for the Development of Best Practices in Health, Yaoundé, Cameroon

Daeria O. Lawson

Livia puljak.

4 Center for Evidence-Based Medicine and Health Care, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia

David B. Allison

5 Department of Epidemiology and Biostatistics, School of Public Health – Bloomington, Indiana University, Bloomington, IN 47405 USA

Lehana Thabane

6 Departments of Paediatrics and Anaesthesia, McMaster University, Hamilton, ON Canada

7 Centre for Evaluation of Medicine, St. Joseph’s Healthcare-Hamilton, Hamilton, ON Canada

8 Population Health Research Institute, Hamilton Health Sciences, Hamilton, ON Canada

Associated Data

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Methodological studies – studies that evaluate the design, analysis or reporting of other research-related reports – play an important role in health research. They help to highlight issues in the conduct of research with the aim of improving health research methodology, and ultimately reducing research waste.

We provide an overview of some of the key aspects of methodological studies such as what they are, and when, how and why they are done. We adopt a “frequently asked questions” format to facilitate reading this paper and provide multiple examples to help guide researchers interested in conducting methodological studies. Some of the topics addressed include: is it necessary to publish a study protocol? How to select relevant research reports and databases for a methodological study? What approaches to data extraction and statistical analysis should be considered when conducting a methodological study? What are potential threats to validity and is there a way to appraise the quality of methodological studies?

Appropriate reflection and application of basic principles of epidemiology and biostatistics are required in the design and analysis of methodological studies. This paper provides an introduction for further discussion about the conduct of methodological studies.

The field of meta-research (or research-on-research) has proliferated in recent years in response to issues with research quality and conduct [ 1 – 3 ]. As the name suggests, this field targets issues with research design, conduct, analysis and reporting. Various types of research reports are often examined as the unit of analysis in these studies (e.g. abstracts, full manuscripts, trial registry entries). Like many other novel fields of research, meta-research has seen a proliferation of use before the development of reporting guidance. For example, this was the case with randomized trials for which risk of bias tools and reporting guidelines were only developed much later – after many trials had been published and noted to have limitations [ 4 , 5 ]; and for systematic reviews as well [ 6 – 8 ]. However, in the absence of formal guidance, studies that report on research differ substantially in how they are named, conducted and reported [ 9 , 10 ]. This creates challenges in identifying, summarizing and comparing them. In this tutorial paper, we will use the term methodological study to refer to any study that reports on the design, conduct, analysis or reporting of primary or secondary research-related reports (such as trial registry entries and conference abstracts).

In the past 10 years, there has been an increase in the use of terms related to methodological studies (based on records retrieved with a keyword search [in the title and abstract] for “methodological review” and “meta-epidemiological study” in PubMed up to December 2019), suggesting that these studies may be appearing more frequently in the literature. See Fig.  1 .

An external file that holds a picture, illustration, etc.
Object name is 12874_2020_1107_Fig1_HTML.jpg

Trends in the number studies that mention “methodological review” or “meta-

epidemiological study” in PubMed.

The methods used in many methodological studies have been borrowed from systematic and scoping reviews. This practice has influenced the direction of the field, with many methodological studies including searches of electronic databases, screening of records, duplicate data extraction and assessments of risk of bias in the included studies. However, the research questions posed in methodological studies do not always require the approaches listed above, and guidance is needed on when and how to apply these methods to a methodological study. Even though methodological studies can be conducted on qualitative or mixed methods research, this paper focuses on and draws examples exclusively from quantitative research.

The objectives of this paper are to provide some insights on how to conduct methodological studies so that there is greater consistency between the research questions posed, and the design, analysis and reporting of findings. We provide multiple examples to illustrate concepts and a proposed framework for categorizing methodological studies in quantitative research.

What is a methodological study?

Any study that describes or analyzes methods (design, conduct, analysis or reporting) in published (or unpublished) literature is a methodological study. Consequently, the scope of methodological studies is quite extensive and includes, but is not limited to, topics as diverse as: research question formulation [ 11 ]; adherence to reporting guidelines [ 12 – 14 ] and consistency in reporting [ 15 ]; approaches to study analysis [ 16 ]; investigating the credibility of analyses [ 17 ]; and studies that synthesize these methodological studies [ 18 ]. While the nomenclature of methodological studies is not uniform, the intents and purposes of these studies remain fairly consistent – to describe or analyze methods in primary or secondary studies. As such, methodological studies may also be classified as a subtype of observational studies.

Parallel to this are experimental studies that compare different methods. Even though they play an important role in informing optimal research methods, experimental methodological studies are beyond the scope of this paper. Examples of such studies include the randomized trials by Buscemi et al., comparing single data extraction to double data extraction [ 19 ], and Carrasco-Labra et al., comparing approaches to presenting findings in Grading of Recommendations, Assessment, Development and Evaluations (GRADE) summary of findings tables [ 20 ]. In these studies, the unit of analysis is the person or groups of individuals applying the methods. We also direct readers to the Studies Within a Trial (SWAT) and Studies Within a Review (SWAR) programme operated through the Hub for Trials Methodology Research, for further reading as a potential useful resource for these types of experimental studies [ 21 ]. Lastly, this paper is not meant to inform the conduct of research using computational simulation and mathematical modeling for which some guidance already exists [ 22 ], or studies on the development of methods using consensus-based approaches.

When should we conduct a methodological study?

Methodological studies occupy a unique niche in health research that allows them to inform methodological advances. Methodological studies should also be conducted as pre-cursors to reporting guideline development, as they provide an opportunity to understand current practices, and help to identify the need for guidance and gaps in methodological or reporting quality. For example, the development of the popular Preferred Reporting Items of Systematic reviews and Meta-Analyses (PRISMA) guidelines were preceded by methodological studies identifying poor reporting practices [ 23 , 24 ]. In these instances, after the reporting guidelines are published, methodological studies can also be used to monitor uptake of the guidelines.

These studies can also be conducted to inform the state of the art for design, analysis and reporting practices across different types of health research fields, with the aim of improving research practices, and preventing or reducing research waste. For example, Samaan et al. conducted a scoping review of adherence to different reporting guidelines in health care literature [ 18 ]. Methodological studies can also be used to determine the factors associated with reporting practices. For example, Abbade et al. investigated journal characteristics associated with the use of the Participants, Intervention, Comparison, Outcome, Timeframe (PICOT) format in framing research questions in trials of venous ulcer disease [ 11 ].

How often are methodological studies conducted?

There is no clear answer to this question. Based on a search of PubMed, the use of related terms (“methodological review” and “meta-epidemiological study”) – and therefore, the number of methodological studies – is on the rise. However, many other terms are used to describe methodological studies. There are also many studies that explore design, conduct, analysis or reporting of research reports, but that do not use any specific terms to describe or label their study design in terms of “methodology”. This diversity in nomenclature makes a census of methodological studies elusive. Appropriate terminology and key words for methodological studies are needed to facilitate improved accessibility for end-users.

Why do we conduct methodological studies?

Methodological studies provide information on the design, conduct, analysis or reporting of primary and secondary research and can be used to appraise quality, quantity, completeness, accuracy and consistency of health research. These issues can be explored in specific fields, journals, databases, geographical regions and time periods. For example, Areia et al. explored the quality of reporting of endoscopic diagnostic studies in gastroenterology [ 25 ]; Knol et al. investigated the reporting of p -values in baseline tables in randomized trial published in high impact journals [ 26 ]; Chen et al. describe adherence to the Consolidated Standards of Reporting Trials (CONSORT) statement in Chinese Journals [ 27 ]; and Hopewell et al. describe the effect of editors’ implementation of CONSORT guidelines on reporting of abstracts over time [ 28 ]. Methodological studies provide useful information to researchers, clinicians, editors, publishers and users of health literature. As a result, these studies have been at the cornerstone of important methodological developments in the past two decades and have informed the development of many health research guidelines including the highly cited CONSORT statement [ 5 ].

Where can we find methodological studies?

Methodological studies can be found in most common biomedical bibliographic databases (e.g. Embase, MEDLINE, PubMed, Web of Science). However, the biggest caveat is that methodological studies are hard to identify in the literature due to the wide variety of names used and the lack of comprehensive databases dedicated to them. A handful can be found in the Cochrane Library as “Cochrane Methodology Reviews”, but these studies only cover methodological issues related to systematic reviews. Previous attempts to catalogue all empirical studies of methods used in reviews were abandoned 10 years ago [ 29 ]. In other databases, a variety of search terms may be applied with different levels of sensitivity and specificity.

Some frequently asked questions about methodological studies

In this section, we have outlined responses to questions that might help inform the conduct of methodological studies.

Q: How should I select research reports for my methodological study?

A: Selection of research reports for a methodological study depends on the research question and eligibility criteria. Once a clear research question is set and the nature of literature one desires to review is known, one can then begin the selection process. Selection may begin with a broad search, especially if the eligibility criteria are not apparent. For example, a methodological study of Cochrane Reviews of HIV would not require a complex search as all eligible studies can easily be retrieved from the Cochrane Library after checking a few boxes [ 30 ]. On the other hand, a methodological study of subgroup analyses in trials of gastrointestinal oncology would require a search to find such trials, and further screening to identify trials that conducted a subgroup analysis [ 31 ].

The strategies used for identifying participants in observational studies can apply here. One may use a systematic search to identify all eligible studies. If the number of eligible studies is unmanageable, a random sample of articles can be expected to provide comparable results if it is sufficiently large [ 32 ]. For example, Wilson et al. used a random sample of trials from the Cochrane Stroke Group’s Trial Register to investigate completeness of reporting [ 33 ]. It is possible that a simple random sample would lead to underrepresentation of units (i.e. research reports) that are smaller in number. This is relevant if the investigators wish to compare multiple groups but have too few units in one group. In this case a stratified sample would help to create equal groups. For example, in a methodological study comparing Cochrane and non-Cochrane reviews, Kahale et al. drew random samples from both groups [ 34 ]. Alternatively, systematic or purposeful sampling strategies can be used and we encourage researchers to justify their selected approaches based on the study objective.

Q: How many databases should I search?

A: The number of databases one should search would depend on the approach to sampling, which can include targeting the entire “population” of interest or a sample of that population. If you are interested in including the entire target population for your research question, or drawing a random or systematic sample from it, then a comprehensive and exhaustive search for relevant articles is required. In this case, we recommend using systematic approaches for searching electronic databases (i.e. at least 2 databases with a replicable and time stamped search strategy). The results of your search will constitute a sampling frame from which eligible studies can be drawn.

Alternatively, if your approach to sampling is purposeful, then we recommend targeting the database(s) or data sources (e.g. journals, registries) that include the information you need. For example, if you are conducting a methodological study of high impact journals in plastic surgery and they are all indexed in PubMed, you likely do not need to search any other databases. You may also have a comprehensive list of all journals of interest and can approach your search using the journal names in your database search (or by accessing the journal archives directly from the journal’s website). Even though one could also search journals’ web pages directly, using a database such as PubMed has multiple advantages, such as the use of filters, so the search can be narrowed down to a certain period, or study types of interest. Furthermore, individual journals’ web sites may have different search functionalities, which do not necessarily yield a consistent output.

Q: Should I publish a protocol for my methodological study?

A: A protocol is a description of intended research methods. Currently, only protocols for clinical trials require registration [ 35 ]. Protocols for systematic reviews are encouraged but no formal recommendation exists. The scientific community welcomes the publication of protocols because they help protect against selective outcome reporting, the use of post hoc methodologies to embellish results, and to help avoid duplication of efforts [ 36 ]. While the latter two risks exist in methodological research, the negative consequences may be substantially less than for clinical outcomes. In a sample of 31 methodological studies, 7 (22.6%) referenced a published protocol [ 9 ]. In the Cochrane Library, there are 15 protocols for methodological reviews (21 July 2020). This suggests that publishing protocols for methodological studies is not uncommon.

Authors can consider publishing their study protocol in a scholarly journal as a manuscript. Advantages of such publication include obtaining peer-review feedback about the planned study, and easy retrieval by searching databases such as PubMed. The disadvantages in trying to publish protocols includes delays associated with manuscript handling and peer review, as well as costs, as few journals publish study protocols, and those journals mostly charge article-processing fees [ 37 ]. Authors who would like to make their protocol publicly available without publishing it in scholarly journals, could deposit their study protocols in publicly available repositories, such as the Open Science Framework ( https://osf.io/ ).

Q: How to appraise the quality of a methodological study?

A: To date, there is no published tool for appraising the risk of bias in a methodological study, but in principle, a methodological study could be considered as a type of observational study. Therefore, during conduct or appraisal, care should be taken to avoid the biases common in observational studies [ 38 ]. These biases include selection bias, comparability of groups, and ascertainment of exposure or outcome. In other words, to generate a representative sample, a comprehensive reproducible search may be necessary to build a sampling frame. Additionally, random sampling may be necessary to ensure that all the included research reports have the same probability of being selected, and the screening and selection processes should be transparent and reproducible. To ensure that the groups compared are similar in all characteristics, matching, random sampling or stratified sampling can be used. Statistical adjustments for between-group differences can also be applied at the analysis stage. Finally, duplicate data extraction can reduce errors in assessment of exposures or outcomes.

Q: Should I justify a sample size?

A: In all instances where one is not using the target population (i.e. the group to which inferences from the research report are directed) [ 39 ], a sample size justification is good practice. The sample size justification may take the form of a description of what is expected to be achieved with the number of articles selected, or a formal sample size estimation that outlines the number of articles required to answer the research question with a certain precision and power. Sample size justifications in methodological studies are reasonable in the following instances:

  • Comparing two groups
  • Determining a proportion, mean or another quantifier
  • Determining factors associated with an outcome using regression-based analyses

For example, El Dib et al. computed a sample size requirement for a methodological study of diagnostic strategies in randomized trials, based on a confidence interval approach [ 40 ].

Q: What should I call my study?

A: Other terms which have been used to describe/label methodological studies include “ methodological review ”, “methodological survey” , “meta-epidemiological study” , “systematic review” , “systematic survey”, “meta-research”, “research-on-research” and many others. We recommend that the study nomenclature be clear, unambiguous, informative and allow for appropriate indexing. Methodological study nomenclature that should be avoided includes “ systematic review” – as this will likely be confused with a systematic review of a clinical question. “ Systematic survey” may also lead to confusion about whether the survey was systematic (i.e. using a preplanned methodology) or a survey using “ systematic” sampling (i.e. a sampling approach using specific intervals to determine who is selected) [ 32 ]. Any of the above meanings of the words “ systematic” may be true for methodological studies and could be potentially misleading. “ Meta-epidemiological study” is ideal for indexing, but not very informative as it describes an entire field. The term “ review ” may point towards an appraisal or “review” of the design, conduct, analysis or reporting (or methodological components) of the targeted research reports, yet it has also been used to describe narrative reviews [ 41 , 42 ]. The term “ survey ” is also in line with the approaches used in many methodological studies [ 9 ], and would be indicative of the sampling procedures of this study design. However, in the absence of guidelines on nomenclature, the term “ methodological study ” is broad enough to capture most of the scenarios of such studies.

Q: Should I account for clustering in my methodological study?

A: Data from methodological studies are often clustered. For example, articles coming from a specific source may have different reporting standards (e.g. the Cochrane Library). Articles within the same journal may be similar due to editorial practices and policies, reporting requirements and endorsement of guidelines. There is emerging evidence that these are real concerns that should be accounted for in analyses [ 43 ]. Some cluster variables are described in the section: “ What variables are relevant to methodological studies?”

A variety of modelling approaches can be used to account for correlated data, including the use of marginal, fixed or mixed effects regression models with appropriate computation of standard errors [ 44 ]. For example, Kosa et al. used generalized estimation equations to account for correlation of articles within journals [ 15 ]. Not accounting for clustering could lead to incorrect p -values, unduly narrow confidence intervals, and biased estimates [ 45 ].

Q: Should I extract data in duplicate?

A: Yes. Duplicate data extraction takes more time but results in less errors [ 19 ]. Data extraction errors in turn affect the effect estimate [ 46 ], and therefore should be mitigated. Duplicate data extraction should be considered in the absence of other approaches to minimize extraction errors. However, much like systematic reviews, this area will likely see rapid new advances with machine learning and natural language processing technologies to support researchers with screening and data extraction [ 47 , 48 ]. However, experience plays an important role in the quality of extracted data and inexperienced extractors should be paired with experienced extractors [ 46 , 49 ].

Q: Should I assess the risk of bias of research reports included in my methodological study?

A : Risk of bias is most useful in determining the certainty that can be placed in the effect measure from a study. In methodological studies, risk of bias may not serve the purpose of determining the trustworthiness of results, as effect measures are often not the primary goal of methodological studies. Determining risk of bias in methodological studies is likely a practice borrowed from systematic review methodology, but whose intrinsic value is not obvious in methodological studies. When it is part of the research question, investigators often focus on one aspect of risk of bias. For example, Speich investigated how blinding was reported in surgical trials [ 50 ], and Abraha et al., investigated the application of intention-to-treat analyses in systematic reviews and trials [ 51 ].

Q: What variables are relevant to methodological studies?

A: There is empirical evidence that certain variables may inform the findings in a methodological study. We outline some of these and provide a brief overview below:

  • Country: Countries and regions differ in their research cultures, and the resources available to conduct research. Therefore, it is reasonable to believe that there may be differences in methodological features across countries. Methodological studies have reported loco-regional differences in reporting quality [ 52 , 53 ]. This may also be related to challenges non-English speakers face in publishing papers in English.
  • Authors’ expertise: The inclusion of authors with expertise in research methodology, biostatistics, and scientific writing is likely to influence the end-product. Oltean et al. found that among randomized trials in orthopaedic surgery, the use of analyses that accounted for clustering was more likely when specialists (e.g. statistician, epidemiologist or clinical trials methodologist) were included on the study team [ 54 ]. Fleming et al. found that including methodologists in the review team was associated with appropriate use of reporting guidelines [ 55 ].
  • Source of funding and conflicts of interest: Some studies have found that funded studies report better [ 56 , 57 ], while others do not [ 53 , 58 ]. The presence of funding would indicate the availability of resources deployed to ensure optimal design, conduct, analysis and reporting. However, the source of funding may introduce conflicts of interest and warrant assessment. For example, Kaiser et al. investigated the effect of industry funding on obesity or nutrition randomized trials and found that reporting quality was similar [ 59 ]. Thomas et al. looked at reporting quality of long-term weight loss trials and found that industry funded studies were better [ 60 ]. Kan et al. examined the association between industry funding and “positive trials” (trials reporting a significant intervention effect) and found that industry funding was highly predictive of a positive trial [ 61 ]. This finding is similar to that of a recent Cochrane Methodology Review by Hansen et al. [ 62 ]
  • Journal characteristics: Certain journals’ characteristics may influence the study design, analysis or reporting. Characteristics such as journal endorsement of guidelines [ 63 , 64 ], and Journal Impact Factor (JIF) have been shown to be associated with reporting [ 63 , 65 – 67 ].
  • Study size (sample size/number of sites): Some studies have shown that reporting is better in larger studies [ 53 , 56 , 58 ].
  • Year of publication: It is reasonable to assume that design, conduct, analysis and reporting of research will change over time. Many studies have demonstrated improvements in reporting over time or after the publication of reporting guidelines [ 68 , 69 ].
  • Type of intervention: In a methodological study of reporting quality of weight loss intervention studies, Thabane et al. found that trials of pharmacologic interventions were reported better than trials of non-pharmacologic interventions [ 70 ].
  • Interactions between variables: Complex interactions between the previously listed variables are possible. High income countries with more resources may be more likely to conduct larger studies and incorporate a variety of experts. Authors in certain countries may prefer certain journals, and journal endorsement of guidelines and editorial policies may change over time.

Q: Should I focus only on high impact journals?

A: Investigators may choose to investigate only high impact journals because they are more likely to influence practice and policy, or because they assume that methodological standards would be higher. However, the JIF may severely limit the scope of articles included and may skew the sample towards articles with positive findings. The generalizability and applicability of findings from a handful of journals must be examined carefully, especially since the JIF varies over time. Even among journals that are all “high impact”, variations exist in methodological standards.

Q: Can I conduct a methodological study of qualitative research?

A: Yes. Even though a lot of methodological research has been conducted in the quantitative research field, methodological studies of qualitative studies are feasible. Certain databases that catalogue qualitative research including the Cumulative Index to Nursing & Allied Health Literature (CINAHL) have defined subject headings that are specific to methodological research (e.g. “research methodology”). Alternatively, one could also conduct a qualitative methodological review; that is, use qualitative approaches to synthesize methodological issues in qualitative studies.

Q: What reporting guidelines should I use for my methodological study?

A: There is no guideline that covers the entire scope of methodological studies. One adaptation of the PRISMA guidelines has been published, which works well for studies that aim to use the entire target population of research reports [ 71 ]. However, it is not widely used (40 citations in 2 years as of 09 December 2019), and methodological studies that are designed as cross-sectional or before-after studies require a more fit-for purpose guideline. A more encompassing reporting guideline for a broad range of methodological studies is currently under development [ 72 ]. However, in the absence of formal guidance, the requirements for scientific reporting should be respected, and authors of methodological studies should focus on transparency and reproducibility.

Q: What are the potential threats to validity and how can I avoid them?

A: Methodological studies may be compromised by a lack of internal or external validity. The main threats to internal validity in methodological studies are selection and confounding bias. Investigators must ensure that the methods used to select articles does not make them differ systematically from the set of articles to which they would like to make inferences. For example, attempting to make extrapolations to all journals after analyzing high-impact journals would be misleading.

Many factors (confounders) may distort the association between the exposure and outcome if the included research reports differ with respect to these factors [ 73 ]. For example, when examining the association between source of funding and completeness of reporting, it may be necessary to account for journals that endorse the guidelines. Confounding bias can be addressed by restriction, matching and statistical adjustment [ 73 ]. Restriction appears to be the method of choice for many investigators who choose to include only high impact journals or articles in a specific field. For example, Knol et al. examined the reporting of p -values in baseline tables of high impact journals [ 26 ]. Matching is also sometimes used. In the methodological study of non-randomized interventional studies of elective ventral hernia repair, Parker et al. matched prospective studies with retrospective studies and compared reporting standards [ 74 ]. Some other methodological studies use statistical adjustments. For example, Zhang et al. used regression techniques to determine the factors associated with missing participant data in trials [ 16 ].

With regard to external validity, researchers interested in conducting methodological studies must consider how generalizable or applicable their findings are. This should tie in closely with the research question and should be explicit. For example. Findings from methodological studies on trials published in high impact cardiology journals cannot be assumed to be applicable to trials in other fields. However, investigators must ensure that their sample truly represents the target sample either by a) conducting a comprehensive and exhaustive search, or b) using an appropriate and justified, randomly selected sample of research reports.

Even applicability to high impact journals may vary based on the investigators’ definition, and over time. For example, for high impact journals in the field of general medicine, Bouwmeester et al. included the Annals of Internal Medicine (AIM), BMJ, the Journal of the American Medical Association (JAMA), Lancet, the New England Journal of Medicine (NEJM), and PLoS Medicine ( n  = 6) [ 75 ]. In contrast, the high impact journals selected in the methodological study by Schiller et al. were BMJ, JAMA, Lancet, and NEJM ( n  = 4) [ 76 ]. Another methodological study by Kosa et al. included AIM, BMJ, JAMA, Lancet and NEJM ( n  = 5). In the methodological study by Thabut et al., journals with a JIF greater than 5 were considered to be high impact. Riado Minguez et al. used first quartile journals in the Journal Citation Reports (JCR) for a specific year to determine “high impact” [ 77 ]. Ultimately, the definition of high impact will be based on the number of journals the investigators are willing to include, the year of impact and the JIF cut-off [ 78 ]. We acknowledge that the term “generalizability” may apply differently for methodological studies, especially when in many instances it is possible to include the entire target population in the sample studied.

Finally, methodological studies are not exempt from information bias which may stem from discrepancies in the included research reports [ 79 ], errors in data extraction, or inappropriate interpretation of the information extracted. Likewise, publication bias may also be a concern in methodological studies, but such concepts have not yet been explored.

A proposed framework

In order to inform discussions about methodological studies, the development of guidance for what should be reported, we have outlined some key features of methodological studies that can be used to classify them. For each of the categories outlined below, we provide an example. In our experience, the choice of approach to completing a methodological study can be informed by asking the following four questions:

  • What is the aim?

A methodological study may be focused on exploring sources of bias in primary or secondary studies (meta-bias), or how bias is analyzed. We have taken care to distinguish bias (i.e. systematic deviations from the truth irrespective of the source) from reporting quality or completeness (i.e. not adhering to a specific reporting guideline or norm). An example of where this distinction would be important is in the case of a randomized trial with no blinding. This study (depending on the nature of the intervention) would be at risk of performance bias. However, if the authors report that their study was not blinded, they would have reported adequately. In fact, some methodological studies attempt to capture both “quality of conduct” and “quality of reporting”, such as Richie et al., who reported on the risk of bias in randomized trials of pharmacy practice interventions [ 80 ]. Babic et al. investigated how risk of bias was used to inform sensitivity analyses in Cochrane reviews [ 81 ]. Further, biases related to choice of outcomes can also be explored. For example, Tan et al investigated differences in treatment effect size based on the outcome reported [ 82 ].

Methodological studies may report quality of reporting against a reporting checklist (i.e. adherence to guidelines) or against expected norms. For example, Croituro et al. report on the quality of reporting in systematic reviews published in dermatology journals based on their adherence to the PRISMA statement [ 83 ], and Khan et al. described the quality of reporting of harms in randomized controlled trials published in high impact cardiovascular journals based on the CONSORT extension for harms [ 84 ]. Other methodological studies investigate reporting of certain features of interest that may not be part of formally published checklists or guidelines. For example, Mbuagbaw et al. described how often the implications for research are elaborated using the Evidence, Participants, Intervention, Comparison, Outcome, Timeframe (EPICOT) format [ 30 ].

Sometimes investigators may be interested in how consistent reports of the same research are, as it is expected that there should be consistency between: conference abstracts and published manuscripts; manuscript abstracts and manuscript main text; and trial registration and published manuscript. For example, Rosmarakis et al. investigated consistency between conference abstracts and full text manuscripts [ 85 ].

In addition to identifying issues with reporting in primary and secondary studies, authors of methodological studies may be interested in determining the factors that are associated with certain reporting practices. Many methodological studies incorporate this, albeit as a secondary outcome. For example, Farrokhyar et al. investigated the factors associated with reporting quality in randomized trials of coronary artery bypass grafting surgery [ 53 ].

Methodological studies may also be used to describe methods or compare methods, and the factors associated with methods. Muller et al. described the methods used for systematic reviews and meta-analyses of observational studies [ 86 ].

Some methodological studies synthesize results from other methodological studies. For example, Li et al. conducted a scoping review of methodological reviews that investigated consistency between full text and abstracts in primary biomedical research [ 87 ].

Some methodological studies may investigate the use of names and terms in health research. For example, Martinic et al. investigated the definitions of systematic reviews used in overviews of systematic reviews (OSRs), meta-epidemiological studies and epidemiology textbooks [ 88 ].

In addition to the previously mentioned experimental methodological studies, there may exist other types of methodological studies not captured here.

  • 2. What is the design?

Most methodological studies are purely descriptive and report their findings as counts (percent) and means (standard deviation) or medians (interquartile range). For example, Mbuagbaw et al. described the reporting of research recommendations in Cochrane HIV systematic reviews [ 30 ]. Gohari et al. described the quality of reporting of randomized trials in diabetes in Iran [ 12 ].

Some methodological studies are analytical wherein “analytical studies identify and quantify associations, test hypotheses, identify causes and determine whether an association exists between variables, such as between an exposure and a disease.” [ 89 ] In the case of methodological studies all these investigations are possible. For example, Kosa et al. investigated the association between agreement in primary outcome from trial registry to published manuscript and study covariates. They found that larger and more recent studies were more likely to have agreement [ 15 ]. Tricco et al. compared the conclusion statements from Cochrane and non-Cochrane systematic reviews with a meta-analysis of the primary outcome and found that non-Cochrane reviews were more likely to report positive findings. These results are a test of the null hypothesis that the proportions of Cochrane and non-Cochrane reviews that report positive results are equal [ 90 ].

  • 3. What is the sampling strategy?

Methodological reviews with narrow research questions may be able to include the entire target population. For example, in the methodological study of Cochrane HIV systematic reviews, Mbuagbaw et al. included all of the available studies ( n  = 103) [ 30 ].

Many methodological studies use random samples of the target population [ 33 , 91 , 92 ]. Alternatively, purposeful sampling may be used, limiting the sample to a subset of research-related reports published within a certain time period, or in journals with a certain ranking or on a topic. Systematic sampling can also be used when random sampling may be challenging to implement.

  • 4. What is the unit of analysis?

Many methodological studies use a research report (e.g. full manuscript of study, abstract portion of the study) as the unit of analysis, and inferences can be made at the study-level. However, both published and unpublished research-related reports can be studied. These may include articles, conference abstracts, registry entries etc.

Some methodological studies report on items which may occur more than once per article. For example, Paquette et al. report on subgroup analyses in Cochrane reviews of atrial fibrillation in which 17 systematic reviews planned 56 subgroup analyses [ 93 ].

This framework is outlined in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 12874_2020_1107_Fig2_HTML.jpg

A proposed framework for methodological studies

Conclusions

Methodological studies have examined different aspects of reporting such as quality, completeness, consistency and adherence to reporting guidelines. As such, many of the methodological study examples cited in this tutorial are related to reporting. However, as an evolving field, the scope of research questions that can be addressed by methodological studies is expected to increase.

In this paper we have outlined the scope and purpose of methodological studies, along with examples of instances in which various approaches have been used. In the absence of formal guidance on the design, conduct, analysis and reporting of methodological studies, we have provided some advice to help make methodological studies consistent. This advice is grounded in good contemporary scientific practice. Generally, the research question should tie in with the sampling approach and planned analysis. We have also highlighted the variables that may inform findings from methodological studies. Lastly, we have provided suggestions for ways in which authors can categorize their methodological studies to inform their design and analysis.

Acknowledgements

Abbreviations.

CONSORTConsolidated Standards of Reporting Trials
EPICOTEvidence, Participants, Intervention, Comparison, Outcome, Timeframe
GRADEGrading of Recommendations, Assessment, Development and Evaluations
PICOTParticipants, Intervention, Comparison, Outcome, Timeframe
PRISMAPreferred Reporting Items of Systematic reviews and Meta-Analyses
SWARStudies Within a Review
SWATStudies Within a Trial

Authors’ contributions

LM conceived the idea and drafted the outline and paper. DOL and LT commented on the idea and draft outline. LM, LP and DOL performed literature searches and data extraction. All authors (LM, DOL, LT, LP, DBA) reviewed several draft versions of the manuscript and approved the final manuscript.

This work did not receive any dedicated funding.

Availability of data and materials

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

DOL, DBA, LM, LP and LT are involved in the development of a reporting guideline for methodological studies.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

different types of reports in research methodology

Home Market Research

Research Reports: Definition and How to Write Them

Research Reports

Reports are usually spread across a vast horizon of topics but are focused on communicating information about a particular topic and a niche target market. The primary motive of research reports is to convey integral details about a study for marketers to consider while designing new strategies.

Certain events, facts, and other information based on incidents need to be relayed to the people in charge, and creating research reports is the most effective communication tool. Ideal research reports are extremely accurate in the offered information with a clear objective and conclusion. These reports should have a clean and structured format to relay information effectively.

What are Research Reports?

Research reports are recorded data prepared by researchers or statisticians after analyzing the information gathered by conducting organized research, typically in the form of surveys or qualitative methods .

A research report is a reliable source to recount details about a conducted research. It is most often considered to be a true testimony of all the work done to garner specificities of research.

The various sections of a research report are:

  • Background/Introduction
  • Implemented Methods
  • Results based on Analysis
  • Deliberation

Learn more: Quantitative Research

Components of Research Reports

Research is imperative for launching a new product/service or a new feature. The markets today are extremely volatile and competitive due to new entrants every day who may or may not provide effective products. An organization needs to make the right decisions at the right time to be relevant in such a market with updated products that suffice customer demands.

The details of a research report may change with the purpose of research but the main components of a report will remain constant. The research approach of the market researcher also influences the style of writing reports. Here are seven main components of a productive research report:

  • Research Report Summary: The entire objective along with the overview of research are to be included in a summary which is a couple of paragraphs in length. All the multiple components of the research are explained in brief under the report summary.  It should be interesting enough to capture all the key elements of the report.
  • Research Introduction: There always is a primary goal that the researcher is trying to achieve through a report. In the introduction section, he/she can cover answers related to this goal and establish a thesis which will be included to strive and answer it in detail.  This section should answer an integral question: “What is the current situation of the goal?”.  After the research design was conducted, did the organization conclude the goal successfully or they are still a work in progress –  provide such details in the introduction part of the research report.
  • Research Methodology: This is the most important section of the report where all the important information lies. The readers can gain data for the topic along with analyzing the quality of provided content and the research can also be approved by other market researchers . Thus, this section needs to be highly informative with each aspect of research discussed in detail.  Information needs to be expressed in chronological order according to its priority and importance. Researchers should include references in case they gained information from existing techniques.
  • Research Results: A short description of the results along with calculations conducted to achieve the goal will form this section of results. Usually, the exposition after data analysis is carried out in the discussion part of the report.

Learn more: Quantitative Data

  • Research Discussion: The results are discussed in extreme detail in this section along with a comparative analysis of reports that could probably exist in the same domain. Any abnormality uncovered during research will be deliberated in the discussion section.  While writing research reports, the researcher will have to connect the dots on how the results will be applicable in the real world.
  • Research References and Conclusion: Conclude all the research findings along with mentioning each and every author, article or any content piece from where references were taken.

Learn more: Qualitative Observation

15 Tips for Writing Research Reports

Writing research reports in the manner can lead to all the efforts going down the drain. Here are 15 tips for writing impactful research reports:

  • Prepare the context before starting to write and start from the basics:  This was always taught to us in school – be well-prepared before taking a plunge into new topics. The order of survey questions might not be the ideal or most effective order for writing research reports. The idea is to start with a broader topic and work towards a more specific one and focus on a conclusion or support, which a research should support with the facts.  The most difficult thing to do in reporting, without a doubt is to start. Start with the title, the introduction, then document the first discoveries and continue from that. Once the marketers have the information well documented, they can write a general conclusion.
  • Keep the target audience in mind while selecting a format that is clear, logical and obvious to them:  Will the research reports be presented to decision makers or other researchers? What are the general perceptions around that topic? This requires more care and diligence. A researcher will need a significant amount of information to start writing the research report. Be consistent with the wording, the numbering of the annexes and so on. Follow the approved format of the company for the delivery of research reports and demonstrate the integrity of the project with the objectives of the company.
  • Have a clear research objective: A researcher should read the entire proposal again, and make sure that the data they provide contributes to the objectives that were raised from the beginning. Remember that speculations are for conversations, not for research reports, if a researcher speculates, they directly question their own research.
  • Establish a working model:  Each study must have an internal logic, which will have to be established in the report and in the evidence. The researchers’ worst nightmare is to be required to write research reports and realize that key questions were not included.

Learn more: Quantitative Observation

  • Gather all the information about the research topic. Who are the competitors of our customers? Talk to other researchers who have studied the subject of research, know the language of the industry. Misuse of the terms can discourage the readers of research reports from reading further.
  • Read aloud while writing. While reading the report, if the researcher hears something inappropriate, for example, if they stumble over the words when reading them, surely the reader will too. If the researcher can’t put an idea in a single sentence, then it is very long and they must change it so that the idea is clear to everyone.
  • Check grammar and spelling. Without a doubt, good practices help to understand the report. Use verbs in the present tense. Consider using the present tense, which makes the results sound more immediate. Find new words and other ways of saying things. Have fun with the language whenever possible.
  • Discuss only the discoveries that are significant. If some data are not really significant, do not mention them. Remember that not everything is truly important or essential within research reports.

Learn more: Qualitative Data

  • Try and stick to the survey questions. For example, do not say that the people surveyed “were worried” about an research issue , when there are different degrees of concern.
  • The graphs must be clear enough so that they understand themselves. Do not let graphs lead the reader to make mistakes: give them a title, include the indications, the size of the sample, and the correct wording of the question.
  • Be clear with messages. A researcher should always write every section of the report with an accuracy of details and language.
  • Be creative with titles – Particularly in segmentation studies choose names “that give life to research”. Such names can survive for a long time after the initial investigation.
  • Create an effective conclusion: The conclusion in the research reports is the most difficult to write, but it is an incredible opportunity to excel. Make a precise summary. Sometimes it helps to start the conclusion with something specific, then it describes the most important part of the study, and finally, it provides the implications of the conclusions.
  • Get a couple more pair of eyes to read the report. Writers have trouble detecting their own mistakes. But they are responsible for what is presented. Ensure it has been approved by colleagues or friends before sending the find draft out.

Learn more: Market Research and Analysis

MORE LIKE THIS

different types of reports in research methodology

Why You Should Attend XDAY 2024

Aug 30, 2024

Alchemer vs Qualtrics

Alchemer vs Qualtrics: Find out which one you should choose

target population

Target Population: What It Is + Strategies for Targeting

Aug 29, 2024

Microsoft Customer Voice vs QuestionPro

Microsoft Customer Voice vs QuestionPro: Choosing the Best

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence
  • Open access
  • Published: 07 September 2020

A tutorial on methodological studies: the what, when, how and why

  • Lawrence Mbuagbaw   ORCID: orcid.org/0000-0001-5855-5461 1 , 2 , 3 ,
  • Daeria O. Lawson 1 ,
  • Livia Puljak 4 ,
  • David B. Allison 5 &
  • Lehana Thabane 1 , 2 , 6 , 7 , 8  

BMC Medical Research Methodology volume  20 , Article number:  226 ( 2020 ) Cite this article

42k Accesses

58 Citations

61 Altmetric

Metrics details

Methodological studies – studies that evaluate the design, analysis or reporting of other research-related reports – play an important role in health research. They help to highlight issues in the conduct of research with the aim of improving health research methodology, and ultimately reducing research waste.

We provide an overview of some of the key aspects of methodological studies such as what they are, and when, how and why they are done. We adopt a “frequently asked questions” format to facilitate reading this paper and provide multiple examples to help guide researchers interested in conducting methodological studies. Some of the topics addressed include: is it necessary to publish a study protocol? How to select relevant research reports and databases for a methodological study? What approaches to data extraction and statistical analysis should be considered when conducting a methodological study? What are potential threats to validity and is there a way to appraise the quality of methodological studies?

Appropriate reflection and application of basic principles of epidemiology and biostatistics are required in the design and analysis of methodological studies. This paper provides an introduction for further discussion about the conduct of methodological studies.

Peer Review reports

The field of meta-research (or research-on-research) has proliferated in recent years in response to issues with research quality and conduct [ 1 , 2 , 3 ]. As the name suggests, this field targets issues with research design, conduct, analysis and reporting. Various types of research reports are often examined as the unit of analysis in these studies (e.g. abstracts, full manuscripts, trial registry entries). Like many other novel fields of research, meta-research has seen a proliferation of use before the development of reporting guidance. For example, this was the case with randomized trials for which risk of bias tools and reporting guidelines were only developed much later – after many trials had been published and noted to have limitations [ 4 , 5 ]; and for systematic reviews as well [ 6 , 7 , 8 ]. However, in the absence of formal guidance, studies that report on research differ substantially in how they are named, conducted and reported [ 9 , 10 ]. This creates challenges in identifying, summarizing and comparing them. In this tutorial paper, we will use the term methodological study to refer to any study that reports on the design, conduct, analysis or reporting of primary or secondary research-related reports (such as trial registry entries and conference abstracts).

In the past 10 years, there has been an increase in the use of terms related to methodological studies (based on records retrieved with a keyword search [in the title and abstract] for “methodological review” and “meta-epidemiological study” in PubMed up to December 2019), suggesting that these studies may be appearing more frequently in the literature. See Fig.  1 .

figure 1

Trends in the number studies that mention “methodological review” or “meta-

epidemiological study” in PubMed.

The methods used in many methodological studies have been borrowed from systematic and scoping reviews. This practice has influenced the direction of the field, with many methodological studies including searches of electronic databases, screening of records, duplicate data extraction and assessments of risk of bias in the included studies. However, the research questions posed in methodological studies do not always require the approaches listed above, and guidance is needed on when and how to apply these methods to a methodological study. Even though methodological studies can be conducted on qualitative or mixed methods research, this paper focuses on and draws examples exclusively from quantitative research.

The objectives of this paper are to provide some insights on how to conduct methodological studies so that there is greater consistency between the research questions posed, and the design, analysis and reporting of findings. We provide multiple examples to illustrate concepts and a proposed framework for categorizing methodological studies in quantitative research.

What is a methodological study?

Any study that describes or analyzes methods (design, conduct, analysis or reporting) in published (or unpublished) literature is a methodological study. Consequently, the scope of methodological studies is quite extensive and includes, but is not limited to, topics as diverse as: research question formulation [ 11 ]; adherence to reporting guidelines [ 12 , 13 , 14 ] and consistency in reporting [ 15 ]; approaches to study analysis [ 16 ]; investigating the credibility of analyses [ 17 ]; and studies that synthesize these methodological studies [ 18 ]. While the nomenclature of methodological studies is not uniform, the intents and purposes of these studies remain fairly consistent – to describe or analyze methods in primary or secondary studies. As such, methodological studies may also be classified as a subtype of observational studies.

Parallel to this are experimental studies that compare different methods. Even though they play an important role in informing optimal research methods, experimental methodological studies are beyond the scope of this paper. Examples of such studies include the randomized trials by Buscemi et al., comparing single data extraction to double data extraction [ 19 ], and Carrasco-Labra et al., comparing approaches to presenting findings in Grading of Recommendations, Assessment, Development and Evaluations (GRADE) summary of findings tables [ 20 ]. In these studies, the unit of analysis is the person or groups of individuals applying the methods. We also direct readers to the Studies Within a Trial (SWAT) and Studies Within a Review (SWAR) programme operated through the Hub for Trials Methodology Research, for further reading as a potential useful resource for these types of experimental studies [ 21 ]. Lastly, this paper is not meant to inform the conduct of research using computational simulation and mathematical modeling for which some guidance already exists [ 22 ], or studies on the development of methods using consensus-based approaches.

When should we conduct a methodological study?

Methodological studies occupy a unique niche in health research that allows them to inform methodological advances. Methodological studies should also be conducted as pre-cursors to reporting guideline development, as they provide an opportunity to understand current practices, and help to identify the need for guidance and gaps in methodological or reporting quality. For example, the development of the popular Preferred Reporting Items of Systematic reviews and Meta-Analyses (PRISMA) guidelines were preceded by methodological studies identifying poor reporting practices [ 23 , 24 ]. In these instances, after the reporting guidelines are published, methodological studies can also be used to monitor uptake of the guidelines.

These studies can also be conducted to inform the state of the art for design, analysis and reporting practices across different types of health research fields, with the aim of improving research practices, and preventing or reducing research waste. For example, Samaan et al. conducted a scoping review of adherence to different reporting guidelines in health care literature [ 18 ]. Methodological studies can also be used to determine the factors associated with reporting practices. For example, Abbade et al. investigated journal characteristics associated with the use of the Participants, Intervention, Comparison, Outcome, Timeframe (PICOT) format in framing research questions in trials of venous ulcer disease [ 11 ].

How often are methodological studies conducted?

There is no clear answer to this question. Based on a search of PubMed, the use of related terms (“methodological review” and “meta-epidemiological study”) – and therefore, the number of methodological studies – is on the rise. However, many other terms are used to describe methodological studies. There are also many studies that explore design, conduct, analysis or reporting of research reports, but that do not use any specific terms to describe or label their study design in terms of “methodology”. This diversity in nomenclature makes a census of methodological studies elusive. Appropriate terminology and key words for methodological studies are needed to facilitate improved accessibility for end-users.

Why do we conduct methodological studies?

Methodological studies provide information on the design, conduct, analysis or reporting of primary and secondary research and can be used to appraise quality, quantity, completeness, accuracy and consistency of health research. These issues can be explored in specific fields, journals, databases, geographical regions and time periods. For example, Areia et al. explored the quality of reporting of endoscopic diagnostic studies in gastroenterology [ 25 ]; Knol et al. investigated the reporting of p -values in baseline tables in randomized trial published in high impact journals [ 26 ]; Chen et al. describe adherence to the Consolidated Standards of Reporting Trials (CONSORT) statement in Chinese Journals [ 27 ]; and Hopewell et al. describe the effect of editors’ implementation of CONSORT guidelines on reporting of abstracts over time [ 28 ]. Methodological studies provide useful information to researchers, clinicians, editors, publishers and users of health literature. As a result, these studies have been at the cornerstone of important methodological developments in the past two decades and have informed the development of many health research guidelines including the highly cited CONSORT statement [ 5 ].

Where can we find methodological studies?

Methodological studies can be found in most common biomedical bibliographic databases (e.g. Embase, MEDLINE, PubMed, Web of Science). However, the biggest caveat is that methodological studies are hard to identify in the literature due to the wide variety of names used and the lack of comprehensive databases dedicated to them. A handful can be found in the Cochrane Library as “Cochrane Methodology Reviews”, but these studies only cover methodological issues related to systematic reviews. Previous attempts to catalogue all empirical studies of methods used in reviews were abandoned 10 years ago [ 29 ]. In other databases, a variety of search terms may be applied with different levels of sensitivity and specificity.

Some frequently asked questions about methodological studies

In this section, we have outlined responses to questions that might help inform the conduct of methodological studies.

Q: How should I select research reports for my methodological study?

A: Selection of research reports for a methodological study depends on the research question and eligibility criteria. Once a clear research question is set and the nature of literature one desires to review is known, one can then begin the selection process. Selection may begin with a broad search, especially if the eligibility criteria are not apparent. For example, a methodological study of Cochrane Reviews of HIV would not require a complex search as all eligible studies can easily be retrieved from the Cochrane Library after checking a few boxes [ 30 ]. On the other hand, a methodological study of subgroup analyses in trials of gastrointestinal oncology would require a search to find such trials, and further screening to identify trials that conducted a subgroup analysis [ 31 ].

The strategies used for identifying participants in observational studies can apply here. One may use a systematic search to identify all eligible studies. If the number of eligible studies is unmanageable, a random sample of articles can be expected to provide comparable results if it is sufficiently large [ 32 ]. For example, Wilson et al. used a random sample of trials from the Cochrane Stroke Group’s Trial Register to investigate completeness of reporting [ 33 ]. It is possible that a simple random sample would lead to underrepresentation of units (i.e. research reports) that are smaller in number. This is relevant if the investigators wish to compare multiple groups but have too few units in one group. In this case a stratified sample would help to create equal groups. For example, in a methodological study comparing Cochrane and non-Cochrane reviews, Kahale et al. drew random samples from both groups [ 34 ]. Alternatively, systematic or purposeful sampling strategies can be used and we encourage researchers to justify their selected approaches based on the study objective.

Q: How many databases should I search?

A: The number of databases one should search would depend on the approach to sampling, which can include targeting the entire “population” of interest or a sample of that population. If you are interested in including the entire target population for your research question, or drawing a random or systematic sample from it, then a comprehensive and exhaustive search for relevant articles is required. In this case, we recommend using systematic approaches for searching electronic databases (i.e. at least 2 databases with a replicable and time stamped search strategy). The results of your search will constitute a sampling frame from which eligible studies can be drawn.

Alternatively, if your approach to sampling is purposeful, then we recommend targeting the database(s) or data sources (e.g. journals, registries) that include the information you need. For example, if you are conducting a methodological study of high impact journals in plastic surgery and they are all indexed in PubMed, you likely do not need to search any other databases. You may also have a comprehensive list of all journals of interest and can approach your search using the journal names in your database search (or by accessing the journal archives directly from the journal’s website). Even though one could also search journals’ web pages directly, using a database such as PubMed has multiple advantages, such as the use of filters, so the search can be narrowed down to a certain period, or study types of interest. Furthermore, individual journals’ web sites may have different search functionalities, which do not necessarily yield a consistent output.

Q: Should I publish a protocol for my methodological study?

A: A protocol is a description of intended research methods. Currently, only protocols for clinical trials require registration [ 35 ]. Protocols for systematic reviews are encouraged but no formal recommendation exists. The scientific community welcomes the publication of protocols because they help protect against selective outcome reporting, the use of post hoc methodologies to embellish results, and to help avoid duplication of efforts [ 36 ]. While the latter two risks exist in methodological research, the negative consequences may be substantially less than for clinical outcomes. In a sample of 31 methodological studies, 7 (22.6%) referenced a published protocol [ 9 ]. In the Cochrane Library, there are 15 protocols for methodological reviews (21 July 2020). This suggests that publishing protocols for methodological studies is not uncommon.

Authors can consider publishing their study protocol in a scholarly journal as a manuscript. Advantages of such publication include obtaining peer-review feedback about the planned study, and easy retrieval by searching databases such as PubMed. The disadvantages in trying to publish protocols includes delays associated with manuscript handling and peer review, as well as costs, as few journals publish study protocols, and those journals mostly charge article-processing fees [ 37 ]. Authors who would like to make their protocol publicly available without publishing it in scholarly journals, could deposit their study protocols in publicly available repositories, such as the Open Science Framework ( https://osf.io/ ).

Q: How to appraise the quality of a methodological study?

A: To date, there is no published tool for appraising the risk of bias in a methodological study, but in principle, a methodological study could be considered as a type of observational study. Therefore, during conduct or appraisal, care should be taken to avoid the biases common in observational studies [ 38 ]. These biases include selection bias, comparability of groups, and ascertainment of exposure or outcome. In other words, to generate a representative sample, a comprehensive reproducible search may be necessary to build a sampling frame. Additionally, random sampling may be necessary to ensure that all the included research reports have the same probability of being selected, and the screening and selection processes should be transparent and reproducible. To ensure that the groups compared are similar in all characteristics, matching, random sampling or stratified sampling can be used. Statistical adjustments for between-group differences can also be applied at the analysis stage. Finally, duplicate data extraction can reduce errors in assessment of exposures or outcomes.

Q: Should I justify a sample size?

A: In all instances where one is not using the target population (i.e. the group to which inferences from the research report are directed) [ 39 ], a sample size justification is good practice. The sample size justification may take the form of a description of what is expected to be achieved with the number of articles selected, or a formal sample size estimation that outlines the number of articles required to answer the research question with a certain precision and power. Sample size justifications in methodological studies are reasonable in the following instances:

Comparing two groups

Determining a proportion, mean or another quantifier

Determining factors associated with an outcome using regression-based analyses

For example, El Dib et al. computed a sample size requirement for a methodological study of diagnostic strategies in randomized trials, based on a confidence interval approach [ 40 ].

Q: What should I call my study?

A: Other terms which have been used to describe/label methodological studies include “ methodological review ”, “methodological survey” , “meta-epidemiological study” , “systematic review” , “systematic survey”, “meta-research”, “research-on-research” and many others. We recommend that the study nomenclature be clear, unambiguous, informative and allow for appropriate indexing. Methodological study nomenclature that should be avoided includes “ systematic review” – as this will likely be confused with a systematic review of a clinical question. “ Systematic survey” may also lead to confusion about whether the survey was systematic (i.e. using a preplanned methodology) or a survey using “ systematic” sampling (i.e. a sampling approach using specific intervals to determine who is selected) [ 32 ]. Any of the above meanings of the words “ systematic” may be true for methodological studies and could be potentially misleading. “ Meta-epidemiological study” is ideal for indexing, but not very informative as it describes an entire field. The term “ review ” may point towards an appraisal or “review” of the design, conduct, analysis or reporting (or methodological components) of the targeted research reports, yet it has also been used to describe narrative reviews [ 41 , 42 ]. The term “ survey ” is also in line with the approaches used in many methodological studies [ 9 ], and would be indicative of the sampling procedures of this study design. However, in the absence of guidelines on nomenclature, the term “ methodological study ” is broad enough to capture most of the scenarios of such studies.

Q: Should I account for clustering in my methodological study?

A: Data from methodological studies are often clustered. For example, articles coming from a specific source may have different reporting standards (e.g. the Cochrane Library). Articles within the same journal may be similar due to editorial practices and policies, reporting requirements and endorsement of guidelines. There is emerging evidence that these are real concerns that should be accounted for in analyses [ 43 ]. Some cluster variables are described in the section: “ What variables are relevant to methodological studies?”

A variety of modelling approaches can be used to account for correlated data, including the use of marginal, fixed or mixed effects regression models with appropriate computation of standard errors [ 44 ]. For example, Kosa et al. used generalized estimation equations to account for correlation of articles within journals [ 15 ]. Not accounting for clustering could lead to incorrect p -values, unduly narrow confidence intervals, and biased estimates [ 45 ].

Q: Should I extract data in duplicate?

A: Yes. Duplicate data extraction takes more time but results in less errors [ 19 ]. Data extraction errors in turn affect the effect estimate [ 46 ], and therefore should be mitigated. Duplicate data extraction should be considered in the absence of other approaches to minimize extraction errors. However, much like systematic reviews, this area will likely see rapid new advances with machine learning and natural language processing technologies to support researchers with screening and data extraction [ 47 , 48 ]. However, experience plays an important role in the quality of extracted data and inexperienced extractors should be paired with experienced extractors [ 46 , 49 ].

Q: Should I assess the risk of bias of research reports included in my methodological study?

A : Risk of bias is most useful in determining the certainty that can be placed in the effect measure from a study. In methodological studies, risk of bias may not serve the purpose of determining the trustworthiness of results, as effect measures are often not the primary goal of methodological studies. Determining risk of bias in methodological studies is likely a practice borrowed from systematic review methodology, but whose intrinsic value is not obvious in methodological studies. When it is part of the research question, investigators often focus on one aspect of risk of bias. For example, Speich investigated how blinding was reported in surgical trials [ 50 ], and Abraha et al., investigated the application of intention-to-treat analyses in systematic reviews and trials [ 51 ].

Q: What variables are relevant to methodological studies?

A: There is empirical evidence that certain variables may inform the findings in a methodological study. We outline some of these and provide a brief overview below:

Country: Countries and regions differ in their research cultures, and the resources available to conduct research. Therefore, it is reasonable to believe that there may be differences in methodological features across countries. Methodological studies have reported loco-regional differences in reporting quality [ 52 , 53 ]. This may also be related to challenges non-English speakers face in publishing papers in English.

Authors’ expertise: The inclusion of authors with expertise in research methodology, biostatistics, and scientific writing is likely to influence the end-product. Oltean et al. found that among randomized trials in orthopaedic surgery, the use of analyses that accounted for clustering was more likely when specialists (e.g. statistician, epidemiologist or clinical trials methodologist) were included on the study team [ 54 ]. Fleming et al. found that including methodologists in the review team was associated with appropriate use of reporting guidelines [ 55 ].

Source of funding and conflicts of interest: Some studies have found that funded studies report better [ 56 , 57 ], while others do not [ 53 , 58 ]. The presence of funding would indicate the availability of resources deployed to ensure optimal design, conduct, analysis and reporting. However, the source of funding may introduce conflicts of interest and warrant assessment. For example, Kaiser et al. investigated the effect of industry funding on obesity or nutrition randomized trials and found that reporting quality was similar [ 59 ]. Thomas et al. looked at reporting quality of long-term weight loss trials and found that industry funded studies were better [ 60 ]. Kan et al. examined the association between industry funding and “positive trials” (trials reporting a significant intervention effect) and found that industry funding was highly predictive of a positive trial [ 61 ]. This finding is similar to that of a recent Cochrane Methodology Review by Hansen et al. [ 62 ]

Journal characteristics: Certain journals’ characteristics may influence the study design, analysis or reporting. Characteristics such as journal endorsement of guidelines [ 63 , 64 ], and Journal Impact Factor (JIF) have been shown to be associated with reporting [ 63 , 65 , 66 , 67 ].

Study size (sample size/number of sites): Some studies have shown that reporting is better in larger studies [ 53 , 56 , 58 ].

Year of publication: It is reasonable to assume that design, conduct, analysis and reporting of research will change over time. Many studies have demonstrated improvements in reporting over time or after the publication of reporting guidelines [ 68 , 69 ].

Type of intervention: In a methodological study of reporting quality of weight loss intervention studies, Thabane et al. found that trials of pharmacologic interventions were reported better than trials of non-pharmacologic interventions [ 70 ].

Interactions between variables: Complex interactions between the previously listed variables are possible. High income countries with more resources may be more likely to conduct larger studies and incorporate a variety of experts. Authors in certain countries may prefer certain journals, and journal endorsement of guidelines and editorial policies may change over time.

Q: Should I focus only on high impact journals?

A: Investigators may choose to investigate only high impact journals because they are more likely to influence practice and policy, or because they assume that methodological standards would be higher. However, the JIF may severely limit the scope of articles included and may skew the sample towards articles with positive findings. The generalizability and applicability of findings from a handful of journals must be examined carefully, especially since the JIF varies over time. Even among journals that are all “high impact”, variations exist in methodological standards.

Q: Can I conduct a methodological study of qualitative research?

A: Yes. Even though a lot of methodological research has been conducted in the quantitative research field, methodological studies of qualitative studies are feasible. Certain databases that catalogue qualitative research including the Cumulative Index to Nursing & Allied Health Literature (CINAHL) have defined subject headings that are specific to methodological research (e.g. “research methodology”). Alternatively, one could also conduct a qualitative methodological review; that is, use qualitative approaches to synthesize methodological issues in qualitative studies.

Q: What reporting guidelines should I use for my methodological study?

A: There is no guideline that covers the entire scope of methodological studies. One adaptation of the PRISMA guidelines has been published, which works well for studies that aim to use the entire target population of research reports [ 71 ]. However, it is not widely used (40 citations in 2 years as of 09 December 2019), and methodological studies that are designed as cross-sectional or before-after studies require a more fit-for purpose guideline. A more encompassing reporting guideline for a broad range of methodological studies is currently under development [ 72 ]. However, in the absence of formal guidance, the requirements for scientific reporting should be respected, and authors of methodological studies should focus on transparency and reproducibility.

Q: What are the potential threats to validity and how can I avoid them?

A: Methodological studies may be compromised by a lack of internal or external validity. The main threats to internal validity in methodological studies are selection and confounding bias. Investigators must ensure that the methods used to select articles does not make them differ systematically from the set of articles to which they would like to make inferences. For example, attempting to make extrapolations to all journals after analyzing high-impact journals would be misleading.

Many factors (confounders) may distort the association between the exposure and outcome if the included research reports differ with respect to these factors [ 73 ]. For example, when examining the association between source of funding and completeness of reporting, it may be necessary to account for journals that endorse the guidelines. Confounding bias can be addressed by restriction, matching and statistical adjustment [ 73 ]. Restriction appears to be the method of choice for many investigators who choose to include only high impact journals or articles in a specific field. For example, Knol et al. examined the reporting of p -values in baseline tables of high impact journals [ 26 ]. Matching is also sometimes used. In the methodological study of non-randomized interventional studies of elective ventral hernia repair, Parker et al. matched prospective studies with retrospective studies and compared reporting standards [ 74 ]. Some other methodological studies use statistical adjustments. For example, Zhang et al. used regression techniques to determine the factors associated with missing participant data in trials [ 16 ].

With regard to external validity, researchers interested in conducting methodological studies must consider how generalizable or applicable their findings are. This should tie in closely with the research question and should be explicit. For example. Findings from methodological studies on trials published in high impact cardiology journals cannot be assumed to be applicable to trials in other fields. However, investigators must ensure that their sample truly represents the target sample either by a) conducting a comprehensive and exhaustive search, or b) using an appropriate and justified, randomly selected sample of research reports.

Even applicability to high impact journals may vary based on the investigators’ definition, and over time. For example, for high impact journals in the field of general medicine, Bouwmeester et al. included the Annals of Internal Medicine (AIM), BMJ, the Journal of the American Medical Association (JAMA), Lancet, the New England Journal of Medicine (NEJM), and PLoS Medicine ( n  = 6) [ 75 ]. In contrast, the high impact journals selected in the methodological study by Schiller et al. were BMJ, JAMA, Lancet, and NEJM ( n  = 4) [ 76 ]. Another methodological study by Kosa et al. included AIM, BMJ, JAMA, Lancet and NEJM ( n  = 5). In the methodological study by Thabut et al., journals with a JIF greater than 5 were considered to be high impact. Riado Minguez et al. used first quartile journals in the Journal Citation Reports (JCR) for a specific year to determine “high impact” [ 77 ]. Ultimately, the definition of high impact will be based on the number of journals the investigators are willing to include, the year of impact and the JIF cut-off [ 78 ]. We acknowledge that the term “generalizability” may apply differently for methodological studies, especially when in many instances it is possible to include the entire target population in the sample studied.

Finally, methodological studies are not exempt from information bias which may stem from discrepancies in the included research reports [ 79 ], errors in data extraction, or inappropriate interpretation of the information extracted. Likewise, publication bias may also be a concern in methodological studies, but such concepts have not yet been explored.

A proposed framework

In order to inform discussions about methodological studies, the development of guidance for what should be reported, we have outlined some key features of methodological studies that can be used to classify them. For each of the categories outlined below, we provide an example. In our experience, the choice of approach to completing a methodological study can be informed by asking the following four questions:

What is the aim?

Methodological studies that investigate bias

A methodological study may be focused on exploring sources of bias in primary or secondary studies (meta-bias), or how bias is analyzed. We have taken care to distinguish bias (i.e. systematic deviations from the truth irrespective of the source) from reporting quality or completeness (i.e. not adhering to a specific reporting guideline or norm). An example of where this distinction would be important is in the case of a randomized trial with no blinding. This study (depending on the nature of the intervention) would be at risk of performance bias. However, if the authors report that their study was not blinded, they would have reported adequately. In fact, some methodological studies attempt to capture both “quality of conduct” and “quality of reporting”, such as Richie et al., who reported on the risk of bias in randomized trials of pharmacy practice interventions [ 80 ]. Babic et al. investigated how risk of bias was used to inform sensitivity analyses in Cochrane reviews [ 81 ]. Further, biases related to choice of outcomes can also be explored. For example, Tan et al investigated differences in treatment effect size based on the outcome reported [ 82 ].

Methodological studies that investigate quality (or completeness) of reporting

Methodological studies may report quality of reporting against a reporting checklist (i.e. adherence to guidelines) or against expected norms. For example, Croituro et al. report on the quality of reporting in systematic reviews published in dermatology journals based on their adherence to the PRISMA statement [ 83 ], and Khan et al. described the quality of reporting of harms in randomized controlled trials published in high impact cardiovascular journals based on the CONSORT extension for harms [ 84 ]. Other methodological studies investigate reporting of certain features of interest that may not be part of formally published checklists or guidelines. For example, Mbuagbaw et al. described how often the implications for research are elaborated using the Evidence, Participants, Intervention, Comparison, Outcome, Timeframe (EPICOT) format [ 30 ].

Methodological studies that investigate the consistency of reporting

Sometimes investigators may be interested in how consistent reports of the same research are, as it is expected that there should be consistency between: conference abstracts and published manuscripts; manuscript abstracts and manuscript main text; and trial registration and published manuscript. For example, Rosmarakis et al. investigated consistency between conference abstracts and full text manuscripts [ 85 ].

Methodological studies that investigate factors associated with reporting

In addition to identifying issues with reporting in primary and secondary studies, authors of methodological studies may be interested in determining the factors that are associated with certain reporting practices. Many methodological studies incorporate this, albeit as a secondary outcome. For example, Farrokhyar et al. investigated the factors associated with reporting quality in randomized trials of coronary artery bypass grafting surgery [ 53 ].

Methodological studies that investigate methods

Methodological studies may also be used to describe methods or compare methods, and the factors associated with methods. Muller et al. described the methods used for systematic reviews and meta-analyses of observational studies [ 86 ].

Methodological studies that summarize other methodological studies

Some methodological studies synthesize results from other methodological studies. For example, Li et al. conducted a scoping review of methodological reviews that investigated consistency between full text and abstracts in primary biomedical research [ 87 ].

Methodological studies that investigate nomenclature and terminology

Some methodological studies may investigate the use of names and terms in health research. For example, Martinic et al. investigated the definitions of systematic reviews used in overviews of systematic reviews (OSRs), meta-epidemiological studies and epidemiology textbooks [ 88 ].

Other types of methodological studies

In addition to the previously mentioned experimental methodological studies, there may exist other types of methodological studies not captured here.

What is the design?

Methodological studies that are descriptive

Most methodological studies are purely descriptive and report their findings as counts (percent) and means (standard deviation) or medians (interquartile range). For example, Mbuagbaw et al. described the reporting of research recommendations in Cochrane HIV systematic reviews [ 30 ]. Gohari et al. described the quality of reporting of randomized trials in diabetes in Iran [ 12 ].

Methodological studies that are analytical

Some methodological studies are analytical wherein “analytical studies identify and quantify associations, test hypotheses, identify causes and determine whether an association exists between variables, such as between an exposure and a disease.” [ 89 ] In the case of methodological studies all these investigations are possible. For example, Kosa et al. investigated the association between agreement in primary outcome from trial registry to published manuscript and study covariates. They found that larger and more recent studies were more likely to have agreement [ 15 ]. Tricco et al. compared the conclusion statements from Cochrane and non-Cochrane systematic reviews with a meta-analysis of the primary outcome and found that non-Cochrane reviews were more likely to report positive findings. These results are a test of the null hypothesis that the proportions of Cochrane and non-Cochrane reviews that report positive results are equal [ 90 ].

What is the sampling strategy?

Methodological studies that include the target population

Methodological reviews with narrow research questions may be able to include the entire target population. For example, in the methodological study of Cochrane HIV systematic reviews, Mbuagbaw et al. included all of the available studies ( n  = 103) [ 30 ].

Methodological studies that include a sample of the target population

Many methodological studies use random samples of the target population [ 33 , 91 , 92 ]. Alternatively, purposeful sampling may be used, limiting the sample to a subset of research-related reports published within a certain time period, or in journals with a certain ranking or on a topic. Systematic sampling can also be used when random sampling may be challenging to implement.

What is the unit of analysis?

Methodological studies with a research report as the unit of analysis

Many methodological studies use a research report (e.g. full manuscript of study, abstract portion of the study) as the unit of analysis, and inferences can be made at the study-level. However, both published and unpublished research-related reports can be studied. These may include articles, conference abstracts, registry entries etc.

Methodological studies with a design, analysis or reporting item as the unit of analysis

Some methodological studies report on items which may occur more than once per article. For example, Paquette et al. report on subgroup analyses in Cochrane reviews of atrial fibrillation in which 17 systematic reviews planned 56 subgroup analyses [ 93 ].

This framework is outlined in Fig.  2 .

figure 2

A proposed framework for methodological studies

Conclusions

Methodological studies have examined different aspects of reporting such as quality, completeness, consistency and adherence to reporting guidelines. As such, many of the methodological study examples cited in this tutorial are related to reporting. However, as an evolving field, the scope of research questions that can be addressed by methodological studies is expected to increase.

In this paper we have outlined the scope and purpose of methodological studies, along with examples of instances in which various approaches have been used. In the absence of formal guidance on the design, conduct, analysis and reporting of methodological studies, we have provided some advice to help make methodological studies consistent. This advice is grounded in good contemporary scientific practice. Generally, the research question should tie in with the sampling approach and planned analysis. We have also highlighted the variables that may inform findings from methodological studies. Lastly, we have provided suggestions for ways in which authors can categorize their methodological studies to inform their design and analysis.

Availability of data and materials

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Abbreviations

Consolidated Standards of Reporting Trials

Evidence, Participants, Intervention, Comparison, Outcome, Timeframe

Grading of Recommendations, Assessment, Development and Evaluations

Participants, Intervention, Comparison, Outcome, Timeframe

Preferred Reporting Items of Systematic reviews and Meta-Analyses

Studies Within a Review

Studies Within a Trial

Chalmers I, Glasziou P. Avoidable waste in the production and reporting of research evidence. Lancet. 2009;374(9683):86–9.

PubMed   Google Scholar  

Chan AW, Song F, Vickers A, Jefferson T, Dickersin K, Gotzsche PC, Krumholz HM, Ghersi D, van der Worp HB. Increasing value and reducing waste: addressing inaccessible research. Lancet. 2014;383(9913):257–66.

PubMed   PubMed Central   Google Scholar  

Ioannidis JP, Greenland S, Hlatky MA, Khoury MJ, Macleod MR, Moher D, Schulz KF, Tibshirani R. Increasing value and reducing waste in research design, conduct, and analysis. Lancet. 2014;383(9912):166–75.

Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

Moher D, Schulz KF, Altman DG. The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomised trials. Lancet. 2001;357.

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100.

Shea BJ, Hamel C, Wells GA, Bouter LM, Kristjansson E, Grimshaw J, Henry DA, Boers M. AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. J Clin Epidemiol. 2009;62(10):1013–20.

Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, Moher D, Tugwell P, Welch V, Kristjansson E, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. Bmj. 2017;358:j4008.

Lawson DO, Leenus A, Mbuagbaw L. Mapping the nomenclature, methodology, and reporting of studies that review methods: a pilot methodological review. Pilot Feasibility Studies. 2020;6(1):13.

Puljak L, Makaric ZL, Buljan I, Pieper D. What is a meta-epidemiological study? Analysis of published literature indicated heterogeneous study designs and definitions. J Comp Eff Res. 2020.

Abbade LPF, Wang M, Sriganesh K, Jin Y, Mbuagbaw L, Thabane L. The framing of research questions using the PICOT format in randomized controlled trials of venous ulcer disease is suboptimal: a systematic survey. Wound Repair Regen. 2017;25(5):892–900.

Gohari F, Baradaran HR, Tabatabaee M, Anijidani S, Mohammadpour Touserkani F, Atlasi R, Razmgir M. Quality of reporting randomized controlled trials (RCTs) in diabetes in Iran; a systematic review. J Diabetes Metab Disord. 2015;15(1):36.

Wang M, Jin Y, Hu ZJ, Thabane A, Dennis B, Gajic-Veljanoski O, Paul J, Thabane L. The reporting quality of abstracts of stepped wedge randomized trials is suboptimal: a systematic survey of the literature. Contemp Clin Trials Commun. 2017;8:1–10.

Shanthanna H, Kaushal A, Mbuagbaw L, Couban R, Busse J, Thabane L: A cross-sectional study of the reporting quality of pilot or feasibility trials in high-impact anesthesia journals Can J Anaesthesia 2018, 65(11):1180–1195.

Kosa SD, Mbuagbaw L, Borg Debono V, Bhandari M, Dennis BB, Ene G, Leenus A, Shi D, Thabane M, Valvasori S, et al. Agreement in reporting between trial publications and current clinical trial registry in high impact journals: a methodological review. Contemporary Clinical Trials. 2018;65:144–50.

Zhang Y, Florez ID, Colunga Lozano LE, Aloweni FAB, Kennedy SA, Li A, Craigie S, Zhang S, Agarwal A, Lopes LC, et al. A systematic survey on reporting and methods for handling missing participant data for continuous outcomes in randomized controlled trials. J Clin Epidemiol. 2017;88:57–66.

CAS   PubMed   Google Scholar  

Hernández AV, Boersma E, Murray GD, Habbema JD, Steyerberg EW. Subgroup analyses in therapeutic cardiovascular clinical trials: are most of them misleading? Am Heart J. 2006;151(2):257–64.

Samaan Z, Mbuagbaw L, Kosa D, Borg Debono V, Dillenburg R, Zhang S, Fruci V, Dennis B, Bawor M, Thabane L. A systematic scoping review of adherence to reporting guidelines in health care literature. J Multidiscip Healthc. 2013;6:169–88.

Buscemi N, Hartling L, Vandermeer B, Tjosvold L, Klassen TP. Single data extraction generated more errors than double data extraction in systematic reviews. J Clin Epidemiol. 2006;59(7):697–703.

Carrasco-Labra A, Brignardello-Petersen R, Santesso N, Neumann I, Mustafa RA, Mbuagbaw L, Etxeandia Ikobaltzeta I, De Stio C, McCullagh LJ, Alonso-Coello P. Improving GRADE evidence tables part 1: a randomized trial shows improved understanding of content in summary-of-findings tables with a new format. J Clin Epidemiol. 2016;74:7–18.

The Northern Ireland Hub for Trials Methodology Research: SWAT/SWAR Information [ https://www.qub.ac.uk/sites/TheNorthernIrelandNetworkforTrialsMethodologyResearch/SWATSWARInformation/ ]. Accessed 31 Aug 2020.

Chick S, Sánchez P, Ferrin D, Morrice D. How to conduct a successful simulation study. In: Proceedings of the 2003 winter simulation conference: 2003; 2003. p. 66–70.

Google Scholar  

Mulrow CD. The medical review article: state of the science. Ann Intern Med. 1987;106(3):485–8.

Sacks HS, Reitman D, Pagano D, Kupelnick B. Meta-analysis: an update. Mount Sinai J Med New York. 1996;63(3–4):216–24.

CAS   Google Scholar  

Areia M, Soares M, Dinis-Ribeiro M. Quality reporting of endoscopic diagnostic studies in gastrointestinal journals: where do we stand on the use of the STARD and CONSORT statements? Endoscopy. 2010;42(2):138–47.

Knol M, Groenwold R, Grobbee D. P-values in baseline tables of randomised controlled trials are inappropriate but still common in high impact journals. Eur J Prev Cardiol. 2012;19(2):231–2.

Chen M, Cui J, Zhang AL, Sze DM, Xue CC, May BH. Adherence to CONSORT items in randomized controlled trials of integrative medicine for colorectal Cancer published in Chinese journals. J Altern Complement Med. 2018;24(2):115–24.

Hopewell S, Ravaud P, Baron G, Boutron I. Effect of editors' implementation of CONSORT guidelines on the reporting of abstracts in high impact medical journals: interrupted time series analysis. BMJ. 2012;344:e4178.

The Cochrane Methodology Register Issue 2 2009 [ https://cmr.cochrane.org/help.htm ]. Accessed 31 Aug 2020.

Mbuagbaw L, Kredo T, Welch V, Mursleen S, Ross S, Zani B, Motaze NV, Quinlan L. Critical EPICOT items were absent in Cochrane human immunodeficiency virus systematic reviews: a bibliometric analysis. J Clin Epidemiol. 2016;74:66–72.

Barton S, Peckitt C, Sclafani F, Cunningham D, Chau I. The influence of industry sponsorship on the reporting of subgroup analyses within phase III randomised controlled trials in gastrointestinal oncology. Eur J Cancer. 2015;51(18):2732–9.

Setia MS. Methodology series module 5: sampling strategies. Indian J Dermatol. 2016;61(5):505–9.

Wilson B, Burnett P, Moher D, Altman DG, Al-Shahi Salman R. Completeness of reporting of randomised controlled trials including people with transient ischaemic attack or stroke: a systematic review. Eur Stroke J. 2018;3(4):337–46.

Kahale LA, Diab B, Brignardello-Petersen R, Agarwal A, Mustafa RA, Kwong J, Neumann I, Li L, Lopes LC, Briel M, et al. Systematic reviews do not adequately report or address missing outcome data in their analyses: a methodological survey. J Clin Epidemiol. 2018;99:14–23.

De Angelis CD, Drazen JM, Frizelle FA, Haug C, Hoey J, Horton R, Kotzin S, Laine C, Marusic A, Overbeke AJPM, et al. Is this clinical trial fully registered?: a statement from the International Committee of Medical Journal Editors*. Ann Intern Med. 2005;143(2):146–8.

Ohtake PJ, Childs JD. Why publish study protocols? Phys Ther. 2014;94(9):1208–9.

Rombey T, Allers K, Mathes T, Hoffmann F, Pieper D. A descriptive analysis of the characteristics and the peer review process of systematic review protocols published in an open peer review journal from 2012 to 2017. BMC Med Res Methodol. 2019;19(1):57.

Grimes DA, Schulz KF. Bias and causal associations in observational research. Lancet. 2002;359(9302):248–52.

Porta M (ed.): A dictionary of epidemiology, 5th edn. Oxford: Oxford University Press, Inc.; 2008.

El Dib R, Tikkinen KAO, Akl EA, Gomaa HA, Mustafa RA, Agarwal A, Carpenter CR, Zhang Y, Jorge EC, Almeida R, et al. Systematic survey of randomized trials evaluating the impact of alternative diagnostic strategies on patient-important outcomes. J Clin Epidemiol. 2017;84:61–9.

Helzer JE, Robins LN, Taibleson M, Woodruff RA Jr, Reich T, Wish ED. Reliability of psychiatric diagnosis. I. a methodological review. Arch Gen Psychiatry. 1977;34(2):129–33.

Chung ST, Chacko SK, Sunehag AL, Haymond MW. Measurements of gluconeogenesis and Glycogenolysis: a methodological review. Diabetes. 2015;64(12):3996–4010.

CAS   PubMed   PubMed Central   Google Scholar  

Sterne JA, Juni P, Schulz KF, Altman DG, Bartlett C, Egger M. Statistical methods for assessing the influence of study characteristics on treatment effects in 'meta-epidemiological' research. Stat Med. 2002;21(11):1513–24.

Moen EL, Fricano-Kugler CJ, Luikart BW, O’Malley AJ. Analyzing clustered data: why and how to account for multiple observations nested within a study participant? PLoS One. 2016;11(1):e0146721.

Zyzanski SJ, Flocke SA, Dickinson LM. On the nature and analysis of clustered data. Ann Fam Med. 2004;2(3):199–200.

Mathes T, Klassen P, Pieper D. Frequency of data extraction errors and methods to increase data extraction quality: a methodological review. BMC Med Res Methodol. 2017;17(1):152.

Bui DDA, Del Fiol G, Hurdle JF, Jonnalagadda S. Extractive text summarization system to aid data extraction from full text in systematic review development. J Biomed Inform. 2016;64:265–72.

Bui DD, Del Fiol G, Jonnalagadda S. PDF text classification to leverage information extraction from publication reports. J Biomed Inform. 2016;61:141–8.

Maticic K, Krnic Martinic M, Puljak L. Assessment of reporting quality of abstracts of systematic reviews with meta-analysis using PRISMA-A and discordance in assessments between raters without prior experience. BMC Med Res Methodol. 2019;19(1):32.

Speich B. Blinding in surgical randomized clinical trials in 2015. Ann Surg. 2017;266(1):21–2.

Abraha I, Cozzolino F, Orso M, Marchesi M, Germani A, Lombardo G, Eusebi P, De Florio R, Luchetta ML, Iorio A, et al. A systematic review found that deviations from intention-to-treat are common in randomized trials and systematic reviews. J Clin Epidemiol. 2017;84:37–46.

Zhong Y, Zhou W, Jiang H, Fan T, Diao X, Yang H, Min J, Wang G, Fu J, Mao B. Quality of reporting of two-group parallel randomized controlled clinical trials of multi-herb formulae: A survey of reports indexed in the Science Citation Index Expanded. Eur J Integrative Med. 2011;3(4):e309–16.

Farrokhyar F, Chu R, Whitlock R, Thabane L. A systematic review of the quality of publications reporting coronary artery bypass grafting trials. Can J Surg. 2007;50(4):266–77.

Oltean H, Gagnier JJ. Use of clustering analysis in randomized controlled trials in orthopaedic surgery. BMC Med Res Methodol. 2015;15:17.

Fleming PS, Koletsi D, Pandis N. Blinded by PRISMA: are systematic reviewers focusing on PRISMA and ignoring other guidelines? PLoS One. 2014;9(5):e96407.

Balasubramanian SP, Wiener M, Alshameeri Z, Tiruvoipati R, Elbourne D, Reed MW. Standards of reporting of randomized controlled trials in general surgery: can we do better? Ann Surg. 2006;244(5):663–7.

de Vries TW, van Roon EN. Low quality of reporting adverse drug reactions in paediatric randomised controlled trials. Arch Dis Child. 2010;95(12):1023–6.

Borg Debono V, Zhang S, Ye C, Paul J, Arya A, Hurlburt L, Murthy Y, Thabane L. The quality of reporting of RCTs used within a postoperative pain management meta-analysis, using the CONSORT statement. BMC Anesthesiol. 2012;12:13.

Kaiser KA, Cofield SS, Fontaine KR, Glasser SP, Thabane L, Chu R, Ambrale S, Dwary AD, Kumar A, Nayyar G, et al. Is funding source related to study reporting quality in obesity or nutrition randomized control trials in top-tier medical journals? Int J Obes. 2012;36(7):977–81.

Thomas O, Thabane L, Douketis J, Chu R, Westfall AO, Allison DB. Industry funding and the reporting quality of large long-term weight loss trials. Int J Obes. 2008;32(10):1531–6.

Khan NR, Saad H, Oravec CS, Rossi N, Nguyen V, Venable GT, Lillard JC, Patel P, Taylor DR, Vaughn BN, et al. A review of industry funding in randomized controlled trials published in the neurosurgical literature-the elephant in the room. Neurosurgery. 2018;83(5):890–7.

Hansen C, Lundh A, Rasmussen K, Hrobjartsson A. Financial conflicts of interest in systematic reviews: associations with results, conclusions, and methodological quality. Cochrane Database Syst Rev. 2019;8:Mr000047.

Kiehna EN, Starke RM, Pouratian N, Dumont AS. Standards for reporting randomized controlled trials in neurosurgery. J Neurosurg. 2011;114(2):280–5.

Liu LQ, Morris PJ, Pengel LH. Compliance to the CONSORT statement of randomized controlled trials in solid organ transplantation: a 3-year overview. Transpl Int. 2013;26(3):300–6.

Bala MM, Akl EA, Sun X, Bassler D, Mertz D, Mejza F, Vandvik PO, Malaga G, Johnston BC, Dahm P, et al. Randomized trials published in higher vs. lower impact journals differ in design, conduct, and analysis. J Clin Epidemiol. 2013;66(3):286–95.

Lee SY, Teoh PJ, Camm CF, Agha RA. Compliance of randomized controlled trials in trauma surgery with the CONSORT statement. J Trauma Acute Care Surg. 2013;75(4):562–72.

Ziogas DC, Zintzaras E. Analysis of the quality of reporting of randomized controlled trials in acute and chronic myeloid leukemia, and myelodysplastic syndromes as governed by the CONSORT statement. Ann Epidemiol. 2009;19(7):494–500.

Alvarez F, Meyer N, Gourraud PA, Paul C. CONSORT adoption and quality of reporting of randomized controlled trials: a systematic analysis in two dermatology journals. Br J Dermatol. 2009;161(5):1159–65.

Mbuagbaw L, Thabane M, Vanniyasingam T, Borg Debono V, Kosa S, Zhang S, Ye C, Parpia S, Dennis BB, Thabane L. Improvement in the quality of abstracts in major clinical journals since CONSORT extension for abstracts: a systematic review. Contemporary Clin trials. 2014;38(2):245–50.

Thabane L, Chu R, Cuddy K, Douketis J. What is the quality of reporting in weight loss intervention studies? A systematic review of randomized controlled trials. Int J Obes. 2007;31(10):1554–9.

Murad MH, Wang Z. Guidelines for reporting meta-epidemiological methodology research. Evidence Based Med. 2017;22(4):139.

METRIC - MEthodological sTudy ReportIng Checklist: guidelines for reporting methodological studies in health research [ http://www.equator-network.org/library/reporting-guidelines-under-development/reporting-guidelines-under-development-for-other-study-designs/#METRIC ]. Accessed 31 Aug 2020.

Jager KJ, Zoccali C, MacLeod A, Dekker FW. Confounding: what it is and how to deal with it. Kidney Int. 2008;73(3):256–60.

Parker SG, Halligan S, Erotocritou M, Wood CPJ, Boulton RW, Plumb AAO, Windsor ACJ, Mallett S. A systematic methodological review of non-randomised interventional studies of elective ventral hernia repair: clear definitions and a standardised minimum dataset are needed. Hernia. 2019.

Bouwmeester W, Zuithoff NPA, Mallett S, Geerlings MI, Vergouwe Y, Steyerberg EW, Altman DG, Moons KGM. Reporting and methods in clinical prediction research: a systematic review. PLoS Med. 2012;9(5):1–12.

Schiller P, Burchardi N, Niestroj M, Kieser M. Quality of reporting of clinical non-inferiority and equivalence randomised trials--update and extension. Trials. 2012;13:214.

Riado Minguez D, Kowalski M, Vallve Odena M, Longin Pontzen D, Jelicic Kadic A, Jeric M, Dosenovic S, Jakus D, Vrdoljak M, Poklepovic Pericic T, et al. Methodological and reporting quality of systematic reviews published in the highest ranking journals in the field of pain. Anesth Analg. 2017;125(4):1348–54.

Thabut G, Estellat C, Boutron I, Samama CM, Ravaud P. Methodological issues in trials assessing primary prophylaxis of venous thrombo-embolism. Eur Heart J. 2005;27(2):227–36.

Puljak L, Riva N, Parmelli E, González-Lorenzo M, Moja L, Pieper D. Data extraction methods: an analysis of internal reporting discrepancies in single manuscripts and practical advice. J Clin Epidemiol. 2020;117:158–64.

Ritchie A, Seubert L, Clifford R, Perry D, Bond C. Do randomised controlled trials relevant to pharmacy meet best practice standards for quality conduct and reporting? A systematic review. Int J Pharm Pract. 2019.

Babic A, Vuka I, Saric F, Proloscic I, Slapnicar E, Cavar J, Pericic TP, Pieper D, Puljak L. Overall bias methods and their use in sensitivity analysis of Cochrane reviews were not consistent. J Clin Epidemiol. 2019.

Tan A, Porcher R, Crequit P, Ravaud P, Dechartres A. Differences in treatment effect size between overall survival and progression-free survival in immunotherapy trials: a Meta-epidemiologic study of trials with results posted at ClinicalTrials.gov. J Clin Oncol. 2017;35(15):1686–94.

Croitoru D, Huang Y, Kurdina A, Chan AW, Drucker AM. Quality of reporting in systematic reviews published in dermatology journals. Br J Dermatol. 2020;182(6):1469–76.

Khan MS, Ochani RK, Shaikh A, Vaduganathan M, Khan SU, Fatima K, Yamani N, Mandrola J, Doukky R, Krasuski RA: Assessing the Quality of Reporting of Harms in Randomized Controlled Trials Published in High Impact Cardiovascular Journals. Eur Heart J Qual Care Clin Outcomes 2019.

Rosmarakis ES, Soteriades ES, Vergidis PI, Kasiakou SK, Falagas ME. From conference abstract to full paper: differences between data presented in conferences and journals. FASEB J. 2005;19(7):673–80.

Mueller M, D’Addario M, Egger M, Cevallos M, Dekkers O, Mugglin C, Scott P. Methods to systematically review and meta-analyse observational studies: a systematic scoping review of recommendations. BMC Med Res Methodol. 2018;18(1):44.

Li G, Abbade LPF, Nwosu I, Jin Y, Leenus A, Maaz M, Wang M, Bhatt M, Zielinski L, Sanger N, et al. A scoping review of comparisons between abstracts and full reports in primary biomedical research. BMC Med Res Methodol. 2017;17(1):181.

Krnic Martinic M, Pieper D, Glatt A, Puljak L. Definition of a systematic review used in overviews of systematic reviews, meta-epidemiological studies and textbooks. BMC Med Res Methodol. 2019;19(1):203.

Analytical study [ https://medical-dictionary.thefreedictionary.com/analytical+study ]. Accessed 31 Aug 2020.

Tricco AC, Tetzlaff J, Pham B, Brehaut J, Moher D. Non-Cochrane vs. Cochrane reviews were twice as likely to have positive conclusion statements: cross-sectional study. J Clin Epidemiol. 2009;62(4):380–6 e381.

Schalken N, Rietbergen C. The reporting quality of systematic reviews and Meta-analyses in industrial and organizational psychology: a systematic review. Front Psychol. 2017;8:1395.

Ranker LR, Petersen JM, Fox MP. Awareness of and potential for dependent error in the observational epidemiologic literature: A review. Ann Epidemiol. 2019;36:15–9 e12.

Paquette M, Alotaibi AM, Nieuwlaat R, Santesso N, Mbuagbaw L. A meta-epidemiological study of subgroup analyses in cochrane systematic reviews of atrial fibrillation. Syst Rev. 2019;8(1):241.

Download references

Acknowledgements

This work did not receive any dedicated funding.

Author information

Authors and affiliations.

Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada

Lawrence Mbuagbaw, Daeria O. Lawson & Lehana Thabane

Biostatistics Unit/FSORC, 50 Charlton Avenue East, St Joseph’s Healthcare—Hamilton, 3rd Floor Martha Wing, Room H321, Hamilton, Ontario, L8N 4A6, Canada

Lawrence Mbuagbaw & Lehana Thabane

Centre for the Development of Best Practices in Health, Yaoundé, Cameroon

Lawrence Mbuagbaw

Center for Evidence-Based Medicine and Health Care, Catholic University of Croatia, Ilica 242, 10000, Zagreb, Croatia

Livia Puljak

Department of Epidemiology and Biostatistics, School of Public Health – Bloomington, Indiana University, Bloomington, IN, 47405, USA

David B. Allison

Departments of Paediatrics and Anaesthesia, McMaster University, Hamilton, ON, Canada

Lehana Thabane

Centre for Evaluation of Medicine, St. Joseph’s Healthcare-Hamilton, Hamilton, ON, Canada

Population Health Research Institute, Hamilton Health Sciences, Hamilton, ON, Canada

You can also search for this author in PubMed   Google Scholar

Contributions

LM conceived the idea and drafted the outline and paper. DOL and LT commented on the idea and draft outline. LM, LP and DOL performed literature searches and data extraction. All authors (LM, DOL, LT, LP, DBA) reviewed several draft versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Lawrence Mbuagbaw .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

DOL, DBA, LM, LP and LT are involved in the development of a reporting guideline for methodological studies.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Mbuagbaw, L., Lawson, D.O., Puljak, L. et al. A tutorial on methodological studies: the what, when, how and why. BMC Med Res Methodol 20 , 226 (2020). https://doi.org/10.1186/s12874-020-01107-7

Download citation

Received : 27 May 2020

Accepted : 27 August 2020

Published : 07 September 2020

DOI : https://doi.org/10.1186/s12874-020-01107-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Methodological study
  • Meta-epidemiology
  • Research methods
  • Research-on-research

BMC Medical Research Methodology

ISSN: 1471-2288

different types of reports in research methodology

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Types of Research Designs Compared | Guide & Examples

Types of Research Designs Compared | Guide & Examples

Published on June 20, 2019 by Shona McCombes . Revised on June 22, 2023.

When you start planning a research project, developing research questions and creating a  research design , you will have to make various decisions about the type of research you want to do.

There are many ways to categorize different types of research. The words you use to describe your research depend on your discipline and field. In general, though, the form your research design takes will be shaped by:

  • The type of knowledge you aim to produce
  • The type of data you will collect and analyze
  • The sampling methods , timescale and location of the research

This article takes a look at some common distinctions made between different types of research and outlines the key differences between them.

Table of contents

Types of research aims, types of research data, types of sampling, timescale, and location, other interesting articles.

The first thing to consider is what kind of knowledge your research aims to contribute.

Type of research What’s the difference? What to consider
Basic vs. applied Basic research aims to , while applied research aims to . Do you want to expand scientific understanding or solve a practical problem?
vs. Exploratory research aims to , while explanatory research aims to . How much is already known about your research problem? Are you conducting initial research on a newly-identified issue, or seeking precise conclusions about an established issue?
aims to , while aims to . Is there already some theory on your research problem that you can use to develop , or do you want to propose new theories based on your findings?

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

different types of reports in research methodology

The next thing to consider is what type of data you will collect. Each kind of data is associated with a range of specific research methods and procedures.

Type of research What’s the difference? What to consider
Primary research vs secondary research Primary data is (e.g., through or ), while secondary data (e.g., in government or scientific publications). How much data is already available on your topic? Do you want to collect original data or analyze existing data (e.g., through a )?
, while . Is your research more concerned with measuring something or interpreting something? You can also create a research design that has elements of both.
vs Descriptive research gathers data , while experimental research . Do you want to identify characteristics, patterns and or test causal relationships between ?

Finally, you have to consider three closely related questions: how will you select the subjects or participants of the research? When and how often will you collect data from your subjects? And where will the research take place?

Keep in mind that the methods that you choose bring with them different risk factors and types of research bias . Biases aren’t completely avoidable, but can heavily impact the validity and reliability of your findings if left unchecked.

Type of research What’s the difference? What to consider
allows you to , while allows you to draw conclusions . Do you want to produce  knowledge that applies to many contexts or detailed knowledge about a specific context (e.g. in a )?
vs Cross-sectional studies , while longitudinal studies . Is your research question focused on understanding the current situation or tracking changes over time?
Field research vs laboratory research Field research takes place in , while laboratory research takes place in . Do you want to find out how something occurs in the real world or draw firm conclusions about cause and effect? Laboratory experiments have higher but lower .
Fixed design vs flexible design In a fixed research design the subjects, timescale and location are begins, while in a flexible design these aspects may . Do you want to test hypotheses and establish generalizable facts, or explore concepts and develop understanding? For measuring, testing and making generalizations, a fixed research design has higher .

Choosing between all these different research types is part of the process of creating your research design , which determines exactly how your research will be conducted. But the type of research is only the first step: next, you have to make more concrete decisions about your research methods and the details of the study.

Read more about creating a research design

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, June 22). Types of Research Designs Compared | Guide & Examples. Scribbr. Retrieved August 29, 2024, from https://www.scribbr.com/methodology/types-of-research/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is a research design | types, guide & examples, qualitative vs. quantitative research | differences, examples & methods, what is a research methodology | steps & tips, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

  • Research Process
  • Manuscript Preparation
  • Manuscript Review
  • Publication Process
  • Publication Recognition
  • Language Editing Services
  • Translation Services

Elsevier QRcode Wechat

Choosing the Right Research Methodology: A Guide for Researchers

  • 3 minute read
  • 50.3K views

Table of Contents

Choosing an optimal research methodology is crucial for the success of any research project. The methodology you select will determine the type of data you collect, how you collect it, and how you analyse it. Understanding the different types of research methods available along with their strengths and weaknesses, is thus imperative to make an informed decision.

Understanding different research methods:

There are several research methods available depending on the type of study you are conducting, i.e., whether it is laboratory-based, clinical, epidemiological, or survey based . Some common methodologies include qualitative research, quantitative research, experimental research, survey-based research, and action research. Each method can be opted for and modified, depending on the type of research hypotheses and objectives.

Qualitative vs quantitative research:

When deciding on a research methodology, one of the key factors to consider is whether your research will be qualitative or quantitative. Qualitative research is used to understand people’s experiences, concepts, thoughts, or behaviours . Quantitative research, on the contrary, deals with numbers, graphs, and charts, and is used to test or confirm hypotheses, assumptions, and theories. 

Qualitative research methodology:

Qualitative research is often used to examine issues that are not well understood, and to gather additional insights on these topics. Qualitative research methods include open-ended survey questions, observations of behaviours described through words, and reviews of literature that has explored similar theories and ideas. These methods are used to understand how language is used in real-world situations, identify common themes or overarching ideas, and describe and interpret various texts. Data analysis for qualitative research typically includes discourse analysis, thematic analysis, and textual analysis. 

Quantitative research methodology:

The goal of quantitative research is to test hypotheses, confirm assumptions and theories, and determine cause-and-effect relationships. Quantitative research methods include experiments, close-ended survey questions, and countable and numbered observations. Data analysis for quantitative research relies heavily on statistical methods.

Analysing qualitative vs quantitative data:

The methods used for data analysis also differ for qualitative and quantitative research. As mentioned earlier, quantitative data is generally analysed using statistical methods and does not leave much room for speculation. It is more structured and follows a predetermined plan. In quantitative research, the researcher starts with a hypothesis and uses statistical methods to test it. Contrarily, methods used for qualitative data analysis can identify patterns and themes within the data, rather than provide statistical measures of the data. It is an iterative process, where the researcher goes back and forth trying to gauge the larger implications of the data through different perspectives and revising the analysis if required.

When to use qualitative vs quantitative research:

The choice between qualitative and quantitative research will depend on the gap that the research project aims to address, and specific objectives of the study. If the goal is to establish facts about a subject or topic, quantitative research is an appropriate choice. However, if the goal is to understand people’s experiences or perspectives, qualitative research may be more suitable. 

Conclusion:

In conclusion, an understanding of the different research methods available, their applicability, advantages, and disadvantages is essential for making an informed decision on the best methodology for your project. If you need any additional guidance on which research methodology to opt for, you can head over to Elsevier Author Services (EAS). EAS experts will guide you throughout the process and help you choose the perfect methodology for your research goals.

Why is data validation important in research

Why is data validation important in research?

Importance-of-Data-Collection

When Data Speak, Listen: Importance of Data Collection and Analysis Methods

You may also like.

what is a descriptive research design

Descriptive Research Design and Its Myriad Uses

Doctor doing a Biomedical Research Paper

Five Common Mistakes to Avoid When Writing a Biomedical Research Paper

Writing in Environmental Engineering

Making Technical Writing in Environmental Engineering Accessible

Risks of AI-assisted Academic Writing

To Err is Not Human: The Dangers of AI-assisted Academic Writing

Importance-of-Data-Collection

Writing a good review article

Scholarly Sources What are They and Where can You Find Them

Scholarly Sources: What are They and Where can You Find Them?

Input your search keywords and press Enter.

Types of Research Report

Meaning research report.

Research report is simply a structure compilation of data founded by analysist and researcher after concluding their research study. It consists of data that is collected after analyzing a large set of relevant data acquired through surveys and qualitative methods. It is systematic written document that defines key aspects of research project and serves a medium of communicating it with relevant individuals. It is designed in such a way that facilitate the easy understanding of all findings and recommendations to users. Preparation of research report requires a good knowledge, experience, expertise and imagination by individual. A considerable amount of money and time need to be invested for designing a proper report. 

Types of Research Report

Research report is mainly of 2 types: Technical report and Popular report.

Technical Report

Outline of a Technical report may not be same in all case and may vary in all technical reports.

Popular Report

Related posts:, add commercemates to your homescreen.

Geektonight

  • Research Report
  • Post last modified: 11 January 2022
  • Reading time: 25 mins read
  • Post category: Research Methodology

different types of reports in research methodology

What is Research Report?

Research reporting is the oral or written presentation of the findings in such detail and form as to be readily understood and assessed by the society, economy or particularly by the researchers.

As earlier said that it is the final stage of the research process and its purpose is to convey to interested persons the whole result of the study. Report writing is common to both academic and managerial situations. In academics, a research report is prepared for comprehensive and application-oriented learning. In businesses or organisations, reports are used for the basis of decision making.

Table of Content

  • 1 What is Research Report?
  • 2 Research Report Definition
  • 3.1 Preliminary Part
  • 3.2 Introduction of the Report
  • 3.3 Review of Literature
  • 3.4 The Research Methodology
  • 3.5 Results
  • 3.6 Concluding Remarks
  • 3.7 Bibliography
  • 4 Significance of Report Writing
  • 5 Qualities of Good Report
  • 6.1 Analysis of the subject matter
  • 6.2 Research outline
  • 6.3 Preparation of rough draft
  • 6.4 Rewriting and polishing
  • 6.5 Writing the final draft
  • 7 Precautions for Writing Research Reports
  • 8.1.1 Technical Report
  • 8.1.2 Popular Report
  • 8.2.1 Written Report
  • 8.2.2 Oral Report

Research Report Definition

According to C. A. Brown , “A report is a communication from someone who has information to someone who wants to use that information.”

According to Goode and Hatt , “The preparation of report is the final stage of research, and it’s purpose is to convey to the interested persons the whole result of the study, in sufficient detail and so arranged as to enable each reader to comprehend the data and to determine for himself the validity of the conclusions.”

It is clear from the above definitions of a research report, it is a brief account of the problem of investigation, the justification of its selection and the procedure of analysis and interpretation. It is only a summary of the entire research proceedings.

In other words, it can be defined as written documents, which presents information in a specialized and concise manner.

Contents of Research Report

Although no hard and fast rules can be laid down, the report must contain the following points.

  • Acknowledgement
  • Table of contents
  • List of tables
  • List of graphs
  • Introduction
  • Background of the research study
  • Statement of the problem
  • Brief outline of the chapters
  • Books review
  • Review of articles published in books, journals, periodicals, etc
  • Review of articles published in leading newspapers
  • Working papers / discusssion paper / study reports
  • Articles on authorised websites
  • A broad conclusion and indications for further research
  • The theoretical framework (variables)
  • Model / hypothesis
  • Instruments for data collection
  • Data collection
  • Pilot study
  • Processing of data
  • Hypothesis / model testing
  • Data analysis and interpretation
  • Tables and figures
  • Conclusions
  • Shortcomings
  • Suggestions to the problems
  • Direction for further research

Preliminary Part

The preliminary part may have seven major components – cover, title, preface, acknowledgement, table of contents, list of tables, list of graphs. Long reports presented in book form have a cover made up of a card sheet. The cover contains title of the research report, the authority to whom the report is submitted, name of the author, etc.

The preface introduces the report to the readers. It gives a very brief introduction of the report. In the acknowledgements author mention names of persons and organisations that have extended co-operation and helped in the various stages of research. Table of contents is essential. It gives the title and page number of each chapter.

Introduction of the Report

The introduction of the research report should clearly and logically bring out the background of the problem addressed in the research. The purpose of the introduction is to introduce the research project to the readers. A clear statement of the problem with specific questions to be answered is presented in the introduction. It contains a brief outline of the chapters.

Review of Literature

The third section reviews the important literature related to the study. A comprehensive review of the research literature referred to must be made. Previous research studies and the important writings in the area under study should be reviewed. Review of literature is helpful to provide a background for the development of the present study.

The researcher may review concerned books, articles published in edited books, journals and periodicals. Researcher may also take review of articles published in leading newspapers. A researcher should study working papers/discussion papers/study reports. It is essential for a broad conclusion and indications for further research.

The Research Methodology

Research methodology is an integral part of the research. It should clearly indicate the universe and the selection of samples, techniques of data collection, analysis and interpretation, statistical techniques, etc.

Results contain pilot study, processing of data, hypothesis/model testing, data analysis and interpretation, tables and figures, etc. This is the heart of the research report. If a pilot study is planned to be used, it’s purpose should be given in the research methodology.

The collected data and the information should be edited, coded, tabulated and analysed with a view to arriving at a valid and authentic conclusion. Tables and figures are used to clarify the significant relationship. The results obtained through tables, graphs should be critically interpreted.

Concluding Remarks

The concluding remarks should discuss the results obtained in the earlier sections, as well as their usefulness and implications. It contains findings, conclusions, shortcomings, suggestions to the problem and direction for future research. Findings are statements of factual information based upon the data analysis.

Conclusions must clearly explain whether the hypothesis have been established and rejected. This part requires great expertise and preciseness. A report should also refer to the limitations of the applicability of the research inferences. It is essential to suggest the theoretical, practical and policy implications of the research. The suggestions should be supported by scientific and logical arguments. The future direction of research based on the work completed should also be outlined.

Bibliography

The bibliography is an alphabetic list of books, journal articles, reports, etc, published or unpublished, read, referred to, examined by the researcher in preparing the report. The bibliography should follow standard formats for books, journal articles, research reports.

The end of the research report may consist of appendices, listed in respect of all technical data. Appendices are for the purpose of providing detailed data or information that would be too cumbersome within the main body of the research report.

Significance of Report Writing

Report writing is an important communication medium in organisations. The most crucial findings might have come out through a research report. Report is common to academics and managers also. Reports are used for comprehensive and application oriented learning in academics. In organisations, reports are used for the basis of decision making. The importance of report writing can be discussed as under.

Through research reports, a manager or an executive can quickly get an idea of a current scenario which improves his information base for making sound decisions affecting future operations of the company or enterprise. The research report acts as a means of communication of various research findings to the interested parties, organisations and general public.

Good report writing play, a significant role of conveying unknown facts about the phenomenon to the concerned parties. This may provide new insights and new opportunities to the people. Research report plays a key role in making effective decisions in marketing, production, banking, materials, human resource development and government also. Good report writing is used for economic planning and optimum utilisation of resources for the development of a nation.

Report writing facilitates the validation of generalisation. A research report is an end product of research. As earlier said that report writing provides useful information in arriving at rational decisions that may reform the business and society. The findings, conclusions, suggestions and recommendations are useful to academicians, scholars and policymakers. Report writing provides reference material for further research in the same or similar areas of research to the concerned parties.

While preparing a research report, a researcher should take some proper precautions. Report writing should be simple, lucid and systematic. Report writing should be written speedily without interrupting the continuity of thought. The report writing should sustain the interest of readers.

Qualities of Good Report

Report writing is a highly skilled job. It is a process of analysing, understanding and consolidating the findings and projecting a meaningful view of the phenomenon studied. A good report writing is essential for effective communication.

Following are the essential qualities of good report:

  • A research report is essentially a scientific documentation. It should have a suggestive title, headings and sub-headings, paragraphs arranged in a logical sequence.
  • Good research report should include everything that is relevant and exclude everything that is irrelevant. It means that it should contain the facts rather than opinion.
  • The language of the report should be simple and unambiguous. It means that it should be free from biases of the researchers derived from the past experience. Confusion, pretentiousness and pomposity should be carefully guarded against. It means that the language of the report should be simple, employing appropriate words, idioms and expressions.
  • The report must be free from grammatical mistakes. It must be grammatically accurate. Faulty construction of sentences makes the meaning of the narrative obscure and ambiguous.
  • The report has to take into consideration two facts. Firstly, for whom the report is meant and secondly, what is his level of knowledge. The report has to look to the subject matter of the report and the fact as to the level of knowledge of the person for whom it is meant. Because all reports are not meant for research scholars.

Steps in Writing Research Report

Report writing is a time consuming and expensive exercise. Therefore, reports have to be very sharply focused in purpose content and readership. There is no single universally acceptable method of writing a research report.

Following are the general steps in writing a research report:

Analysis of the subject matter

Research outline, preparation of rough draft, rewriting and polishing, writing the final draft.

This is the first and important step in writing a research report. It is concerned with the development of a subject. Subject matter should be written in a clear, logical and concise manner. The style adopted should be open, straightforward and dignified and folk style language should be avoided.

The data, the reliability and validity of the results of the statistical analysis should be in the form of tables, figures and equations. All redundancy in the data or results presented should be eliminated.

The research outline is an organisational framework prepared by the researcher well in advance. It is an aid to logical organisation of material and a reminder of the points to be stressed in the report. In the process of writing, if need be, outline may be revised accordingly.

Time and place of the study, scope and limitations of the study, study design, summary of pilot study, methods of data collection, analysis interpretation, etc., may be included in a research outline.

Having prepared the primary and secondary data, the researcher has to prepare a rough draft. While preparing the rough draft, the researcher should keep the objectives of the research in mind, and focus on one objective at a time. The researcher should make a checklist of the important points that are necessary to be covered in the manuscript. A researcher should use dictionary and relevant reference materials as and when required.

This is an important step in writing a research report. It takes more time than a rough draft. While rewriting and polishing, a researcher should check the report for weakness in logical development or presentation. He should take breaks in between rewriting and polishing since this gives the time to incubate the ideas.

The last and important step is writing the final draft. The language of the report should be simple, employing appropriate words and expressions and should avoid vague expressions such as ‘it seems’ and ‘there may be’ etc.

It should not used personal pronouns, such as I, We, My, Us, etc and should substitute these by such expressions as a researcher, investigator, etc. Before the final drafting of the report, it is advisable that the researcher should prepare a first draft for critical considerations and possible improvements. It will be helpful in writing the final draft. Finally, the report should be logically outlined with the future directions of the research based on the work completed.

Precautions for Writing Research Reports

A research report is a means of conveying the research study to a specific target audience. The following precautions should be taken while preparing a research report:

  • Its hould belong enough to cover the subject and short enough to preserve interest.
  • It should not be dull and complicated.
  • It should be simple, without the usage of abstract terms and technical jargons.
  • It should offer ready availability of findings with the help of charts, tables and graphs, as readers prefer quick knowledge of main findings.
  • The layout of the report should be in accordance with the objectives of the research study.
  • There should be no grammatical errors and writing should adhere to the techniques of report writing in case of quotations, footnotes and documentations.
  • It should be original, intellectual and contribute to the solution of a problem or add knowledge to the concerned field.
  • Appendices should been listed with respect to all the technical data in the report.
  • It should be attractive, neat and clean, whether handwritten or typed.
  • The report writer should refrain from confusing the possessive form of the word ‘it’ is with ‘it’s.’ The accurate possessive form of ‘it is’ is ‘its.’ The use of ‘it’s’ is the contractive form of ‘it is.
  • A report should not have contractions. Examples are ‘didn’t’ or ‘it’s.’ In report writing, it is best to use the non-contractive form. Therefore, the examples would be replaced by ‘did not’ and ‘it is.’ Using ‘Figure’ instead of ‘Fig.’ and ‘Table’ instead of ‘Tab.’ will spare the reader of having to translate the abbreviations, while reading. If abbreviations are used, use them consistently throughout the report. For example, do not switch among ‘versus,’ and ‘vs’.
  • It is advisable to avoid using the word ‘very’ and other such words that try to embellish a description. They do not add any extra meaning and, therefore, should be dropped.
  • Repetition hampers lucidity. Report writers must avoid repeating the same word more than once within a sentence.
  • When you use the word ‘this’ or ‘these’ make sure you indicate to what you are referring. This reduces the ambiguity in your writing and helps to tie sentences together.
  • Do not use the word ‘they’ to refer to a singular person. You can either rewrite the sentence to avoid needing such a reference or use the singular ‘he or she.’

Types of Research Report

Research reports are designed in order to convey and record the information that will be of practical use to the reader. It is organized into distinct units of specific and highly visible information. The kind of audience addressed in the research report decides the type of report.

Research reports can be categorized on the following basis:

Classification on the Basis of Information

Classification on the basis of representation.

Following are the ways through which the results of the research report can be presented on the basis of information contained:

Technical Report

A technical report is written for other researchers. In writing the technical reports, the importance is mainly given to the methods that have been used to collect the information and data, the presumptions that are made and finally, the various presentation techniques that are used to present the findings and data.

Following are main features of a technical report:

  • Summary: It covers a brief analysis of the findings of the research in a very few pages. 
  • Nature: It contains the reasons for which the research is undertaken, the analysis and the data that is required in order to prepare a report. 
  • Methods employed: It contains a description of the methods that were employed in order to collect the data. 
  • Data: It covers a brief analysis of the various sources from which the data has been collected with their features and drawbacks 
  • Analysis of data and presentation of the findings: It contains the various forms through which the data that has been analysed can be presented. 
  • Conclusions: It contains a brief explanation of findings of the research. 
  • Bibliography: It contains a detailed analysis of the various bibliographies that have been used in order to conduct a research. 
  • Technical appendices: It contains the appendices for the technical matters and for questionnaires and mathematical derivations. 
  • Index: The index of the technical report must be provided at the end of the report.

Popular Report

A popular report is formulated when there is a need to draw conclusions of the findings of the research report. One of the main points of consideration that should be kept in mind while formulating a research report is that it must be simple and attractive. It must be written in a very simple manner that is understandable to all. It must also be made attractive by using large prints, various sub-headings and by giving cartoons occasionally.

Following are the main points that must be kept in mind while preparing a popular report:

  • Findings and their implications : While preparing a popular report, main importance is given to the findings of the information and the conclusions that can be drawn out of these findings.
  • Recommendations for action : If there are any deviations in the report then recommendations are made for taking corrective action in order to rectify the errors.
  • Objective of the study : In a popular report, the specific objective for which the research has been undertaken is presented.
  • Methods employed : The report must contain the various methods that has been employed in order to conduct a research.
  • Results : The results of the research findings must be presented in a suitable and appropriate manner by taking the help of charts and diagrams.
  • Technical appendices : The report must contain an in-depth information used to collect the data in the form of appendices.

Following are the ways through which the results of the research report can be presented on the basis of representation:

  • Writtenreport
  • Oral report

Written Report

A written report plays a vital role in every business operation. The manner in which an organization writes business letters and business reports creates an impression of its standard. Therefore, the organization should emphasize on the improvement of the writing skills of the employees in order to maintain effective relations with their customers.

Writing effective written reports requires a lot of hard work. Therefore, before you begin writing, it is important to know the objective, i.e., the purpose of writing, collection and organization of required data.

Oral Report

At times, oral presentation of the results that are drawn out of research is considered effective, particularly in cases where policy recommendations are to be made. This approach proves beneficial because it provides a medium of interaction between a listener and a speaker. This leads to a better understanding of the findings and their implications.

However, the main drawback of oral presentation is the lack of any permanent records related to the research. Oral presentation of the report is also effective when it is supported with various visual devices, such as slides, wall charts and whiteboards that help in better understanding of the research reports.

Business Ethics

( Click on Topic to Read )

  • What is Ethics?
  • What is Business Ethics?
  • Values, Norms, Beliefs and Standards in Business Ethics
  • Indian Ethos in Management
  • Ethical Issues in Marketing
  • Ethical Issues in HRM
  • Ethical Issues in IT
  • Ethical Issues in Production and Operations Management
  • Ethical Issues in Finance and Accounting
  • What is Corporate Governance?
  • What is Ownership Concentration?
  • What is Ownership Composition?
  • Types of Companies in India
  • Internal Corporate Governance
  • External Corporate Governance
  • Corporate Governance in India
  • What is Enterprise Risk Management (ERM)?
  • What is Assessment of Risk?
  • What is Risk Register?
  • Risk Management Committee

Corporate social responsibility (CSR)

  • Theories of CSR
  • Arguments Against CSR
  • Business Case for CSR
  • Importance of CSR in India
  • Drivers of Corporate Social Responsibility
  • Developing a CSR Strategy
  • Implement CSR Commitments
  • CSR Marketplace
  • CSR at Workplace
  • Environmental CSR
  • CSR with Communities and in Supply Chain
  • Community Interventions
  • CSR Monitoring
  • CSR Reporting
  • Voluntary Codes in CSR
  • What is Corporate Ethics?

Lean Six Sigma

  • What is Six Sigma?
  • What is Lean Six Sigma?
  • Value and Waste in Lean Six Sigma
  • Six Sigma Team
  • MAIC Six Sigma
  • Six Sigma in Supply Chains
  • What is Binomial, Poisson, Normal Distribution?
  • What is Sigma Level?
  • What is DMAIC in Six Sigma?
  • What is DMADV in Six Sigma?
  • Six Sigma Project Charter
  • Project Decomposition in Six Sigma
  • Critical to Quality (CTQ) Six Sigma
  • Process Mapping Six Sigma
  • Flowchart and SIPOC
  • Gage Repeatability and Reproducibility
  • Statistical Diagram
  • Lean Techniques for Optimisation Flow
  • Failure Modes and Effects Analysis (FMEA)
  • What is Process Audits?
  • Six Sigma Implementation at Ford
  • IBM Uses Six Sigma to Drive Behaviour Change
  • Research Methodology
  • What is Research?

What is Hypothesis?

  • Sampling Method
  • Research Methods

Data Collection in Research

Methods of collecting data.

  • Application of Business Research
  • Levels of Measurement
  • What is Sampling?
  • Hypothesis Testing
  • What is Management?
  • Planning in Management
  • Decision Making in Management
  • What is Controlling?
  • What is Coordination?
  • What is Staffing?
  • Organization Structure
  • What is Departmentation?
  • Span of Control
  • What is Authority?
  • Centralization vs Decentralization
  • Organizing in Management
  • Schools of Management Thought
  • Classical Management Approach
  • Is Management an Art or Science?
  • Who is a Manager?

Operations Research

  • What is Operations Research?
  • Operation Research Models
  • Linear Programming
  • Linear Programming Graphic Solution
  • Linear Programming Simplex Method
  • Linear Programming Artificial Variable Technique
  • Duality in Linear Programming
  • Transportation Problem Initial Basic Feasible Solution
  • Transportation Problem Finding Optimal Solution
  • Project Network Analysis with Critical Path Method
  • Project Network Analysis Methods
  • Project Evaluation and Review Technique (PERT)
  • Simulation in Operation Research
  • Replacement Models in Operation Research

Operation Management

  • What is Strategy?
  • What is Operations Strategy?
  • Operations Competitive Dimensions
  • Operations Strategy Formulation Process
  • What is Strategic Fit?
  • Strategic Design Process
  • Focused Operations Strategy
  • Corporate Level Strategy
  • Expansion Strategies
  • Stability Strategies
  • Retrenchment Strategies
  • Competitive Advantage
  • Strategic Choice and Strategic Alternatives
  • What is Production Process?
  • What is Process Technology?
  • What is Process Improvement?
  • Strategic Capacity Management
  • Production and Logistics Strategy
  • Taxonomy of Supply Chain Strategies
  • Factors Considered in Supply Chain Planning
  • Operational and Strategic Issues in Global Logistics
  • Logistics Outsourcing Strategy
  • What is Supply Chain Mapping?
  • Supply Chain Process Restructuring
  • Points of Differentiation
  • Re-engineering Improvement in SCM
  • What is Supply Chain Drivers?
  • Supply Chain Operations Reference (SCOR) Model
  • Customer Service and Cost Trade Off
  • Internal and External Performance Measures
  • Linking Supply Chain and Business Performance
  • Netflix’s Niche Focused Strategy
  • Disney and Pixar Merger
  • Process Planning at Mcdonald’s

Service Operations Management

  • What is Service?
  • What is Service Operations Management?
  • What is Service Design?
  • Service Design Process
  • Service Delivery
  • What is Service Quality?
  • Gap Model of Service Quality
  • Juran Trilogy
  • Service Performance Measurement
  • Service Decoupling
  • IT Service Operation
  • Service Operations Management in Different Sector

Procurement Management

  • What is Procurement Management?
  • Procurement Negotiation
  • Types of Requisition
  • RFX in Procurement
  • What is Purchasing Cycle?
  • Vendor Managed Inventory
  • Internal Conflict During Purchasing Operation
  • Spend Analysis in Procurement
  • Sourcing in Procurement
  • Supplier Evaluation and Selection in Procurement
  • Blacklisting of Suppliers in Procurement
  • Total Cost of Ownership in Procurement
  • Incoterms in Procurement
  • Documents Used in International Procurement
  • Transportation and Logistics Strategy
  • What is Capital Equipment?
  • Procurement Process of Capital Equipment
  • Acquisition of Technology in Procurement
  • What is E-Procurement?
  • E-marketplace and Online Catalogues
  • Fixed Price and Cost Reimbursement Contracts
  • Contract Cancellation in Procurement
  • Ethics in Procurement
  • Legal Aspects of Procurement
  • Global Sourcing in Procurement
  • Intermediaries and Countertrade in Procurement

Strategic Management

  • What is Strategic Management?
  • What is Value Chain Analysis?
  • Mission Statement
  • Business Level Strategy
  • What is SWOT Analysis?
  • What is Competitive Advantage?
  • What is Vision?
  • What is Ansoff Matrix?
  • Prahalad and Gary Hammel
  • Strategic Management In Global Environment
  • Competitor Analysis Framework
  • Competitive Rivalry Analysis
  • Competitive Dynamics
  • What is Competitive Rivalry?
  • Five Competitive Forces That Shape Strategy
  • What is PESTLE Analysis?
  • Fragmentation and Consolidation Of Industries
  • What is Technology Life Cycle?
  • What is Diversification Strategy?
  • What is Corporate Restructuring Strategy?
  • Resources and Capabilities of Organization
  • Role of Leaders In Functional-Level Strategic Management
  • Functional Structure In Functional Level Strategy Formulation
  • Information And Control System
  • What is Strategy Gap Analysis?
  • Issues In Strategy Implementation
  • Matrix Organizational Structure
  • What is Strategic Management Process?

Supply Chain

  • What is Supply Chain Management?
  • Supply Chain Planning and Measuring Strategy Performance
  • What is Warehousing?
  • What is Packaging?
  • What is Inventory Management?
  • What is Material Handling?
  • What is Order Picking?
  • Receiving and Dispatch, Processes
  • What is Warehouse Design?
  • What is Warehousing Costs?

You Might Also Like

What is hypothesis testing procedure, what is sampling need, advantages, limitations, what is measure of central tendency, what is questionnaire design characteristics, types, don’t, steps in questionnaire design, what is research types, purpose, characteristics, process, what is literature review importance, functions, process,, measures of relationship, what is measure of skewness, leave a reply cancel reply.

You must be logged in to post a comment.

World's Best Online Courses at One Place

We’ve spent the time in finding, so you can spend your time in learning

Digital Marketing

Personal Growth

different types of reports in research methodology

different types of reports in research methodology

Development

different types of reports in research methodology

different types of reports in research methodology

different types of reports in research methodology

Pfeiffer Library

Research Methodologies

  • What are research designs?

What are research methodologies?

Quantitative research methodologies, qualitative research methodologies, mixed method methodologies, selecting a methodology.

  • What are research methods?
  • Additional Sources

According to Dawson (2019),a research methodology is the primary principle that will guide your research.  It becomes the general approach in conducting research on your topic and determines what research method you will use. A research methodology is different from a research method because research methods are the tools you use to gather your data (Dawson, 2019).  You must consider several issues when it comes to selecting the most appropriate methodology for your topic.  Issues might include research limitations and ethical dilemmas that might impact the quality of your research.  Descriptions of each type of methodology are included below.

Quantitative research methodologies are meant to create numeric statistics by using survey research to gather data (Dawson, 2019).  This approach tends to reach a larger amount of people in a shorter amount of time.  According to Labaree (2020), there are three parts that make up a quantitative research methodology:

  • Sample population
  • How you will collect your data (this is the research method)
  • How you will analyze your data

Once you decide on a methodology, you can consider the method to which you will apply your methodology.

Qualitative research methodologies examine the behaviors, opinions, and experiences of individuals through methods of examination (Dawson, 2019).  This type of approach typically requires less participants, but more time with each participant.  It gives research subjects the opportunity to provide their own opinion on a certain topic.

Examples of Qualitative Research Methodologies

  • Action research:  This is when the researcher works with a group of people to improve something in a certain environment.  It is a common approach for research in organizational management, community development, education, and agriculture (Dawson, 2019).
  • Ethnography:  The process of organizing and describing cultural behaviors (Dawson, 2019).  Researchers may immerse themselves into another culture to receive in "inside look" into the group they are studying.  It is often a time consuming process because the researcher will do this for a long period of time.  This can also be called "participant observation" (Dawson, 2019).
  • Feminist research:  The goal of this methodology is to study topics that have been dominated by male test subjects.  It aims to study females and compare the results to previous studies that used male participants (Dawson, 2019).
  • Grounded theory:  The process of developing a theory to describe a phenomenon strictly through the data results collected in a study.  It is different from other research methodologies where the researcher attempts to prove a hypothesis that they create before collecting data.  Popular research methods for this approach include focus groups and interviews (Dawson, 2019).

A mixed methodology allows you to implement the strengths of both qualitative and quantitative research methods.  In some cases, you may find that your research project would benefit from this.  This approach is beneficial because it allows each methodology to counteract the weaknesses of the other (Dawson, 2019).  You should consider this option carefully, as it can make your research complicated if not planned correctly.

What should you do to decide on a research methodology?  The most logical way to determine your methodology is to decide whether you plan on conducting qualitative or qualitative research.  You also have the option to implement a mixed methods approach.  Looking back on Dawson's (2019) five "W's" on the previous page , may help you with this process.  You should also look for key words that indicate a specific type of research methodology in your hypothesis or proposal.  Some words may lean more towards one methodology over another.

Quantitative Research Key Words

  • How satisfied

Qualitative Research Key Words

  • Experiences
  • Thoughts/Think
  • Relationship
  • << Previous: What are research designs?
  • Next: What are research methods? >>
  • Last Updated: Aug 2, 2022 2:36 PM
  • URL: https://library.tiffin.edu/researchmethodologies

University of the People Logo

Home > Blog > Tips for Online Students > A Comprehensive Guide to Different Types of Research

Higher Education News , Tips for Online Students , Tips for Students

A Comprehensive Guide to Different Types of Research

different types of reports in research methodology

Updated: June 19, 2024

Published: June 15, 2024

two researchers working in a laboratory

When embarking on a research project, selecting the right methodology can be the difference between success and failure. With various methods available, each suited to different types of research, it’s essential you make an informed choice. This blog post will provide tips on how to choose a research methodology that best fits your research goals .

We’ll start with definitions: Research is the systematic process of exploring, investigating, and discovering new information or validating existing knowledge. It involves defining questions, collecting data, analyzing results, and drawing conclusions.

Meanwhile, a research methodology is a structured plan that outlines how your research is to be conducted. A complete methodology should detail the strategies, processes, and techniques you plan to use for your data collection and analysis.

 a computer keyboard being worked by a researcher

Research Methods

The first step of a research methodology is to identify a focused research topic, which is the question you seek to answer. By setting clear boundaries on the scope of your research, you can concentrate on specific aspects of a problem without being overwhelmed by information. This will produce more accurate findings. 

Along with clarifying your research topic, your methodology should also address your research methods. Let’s look at the four main types of research: descriptive, correlational, experimental, and diagnostic.

Descriptive Research

Descriptive research is an approach designed to describe the characteristics of a population systematically and accurately. This method focuses on answering “what” questions by providing detailed observations about the subject. Descriptive research employs surveys, observational studies , and case studies to gather qualitative or quantitative data. 

A real-world example of descriptive research is a survey investigating consumer behavior toward a competitor’s product. By analyzing the survey results, the company can gather detailed insights into how consumers perceive a competitor’s product, which can inform their marketing strategies and product development.

Correlational Research

Correlational research examines the statistical relationship between two or more variables to determine whether a relationship exists. Correlational research is particularly useful when ethical or practical constraints prevent experimental manipulation. It is often employed in fields such as psychology, education, and health sciences to provide insights into complex real-world interactions, helping to develop theories and inform further experimental research.

An example of correlational research is the study of the relationship between smoking and lung cancer. Researchers observe and collect data on individuals’ smoking habits and the incidence of lung cancer to determine if there is a correlation between the two variables. This type of research helps identify patterns and relationships, indicating whether increased smoking is associated with higher rates of lung cancer.

Experimental Research

Experimental research is a scientific approach where researchers manipulate one or more independent variables to observe their effect on a dependent variable. This method is designed to establish cause-and-effect relationships. Fields like psychology , medicine, and social sciences frequently employ experimental research to test hypotheses and theories under controlled conditions. 

A real-world example of experimental research is Pavlov’s Dog experiment. In this experiment, Ivan Pavlov demonstrated classical conditioning by ringing a bell each time he fed his dogs. After repeating this process multiple times, the dogs began to salivate just by hearing the bell, even when no food was presented. This experiment helped to illustrate how certain stimuli can elicit specific responses through associative learning.

Diagnostic Research

Diagnostic research tries to accurately diagnose a problem by identifying its underlying causes. This type of research is crucial for understanding complex situations where a precise diagnosis is necessary for formulating effective solutions. It involves methods such as case studies and data analysis and often integrates both qualitative and quantitative data to provide a comprehensive view of the issue at hand. 

An example of diagnostic research is studying the causes of a specific illness outbreak. During an outbreak of a respiratory virus, researchers might conduct diagnostic research to determine the factors contributing to the spread of the virus. This could involve analyzing patient data, testing environmental samples, and evaluating potential sources of infection. The goal is to identify the root causes and contributing factors to develop effective containment and prevention strategies.

Using an established research method is imperative, no matter if you are researching for marketing , technology , healthcare , engineering, or social science. A methodology lends legitimacy to your research by ensuring your data is both consistent and credible. A well-defined methodology also enhances the reliability and validity of the research findings, which is crucial for drawing accurate and meaningful conclusions. 

Additionally, methodologies help researchers stay focused and on track, limiting the scope of the study to relevant questions and objectives. This not only improves the quality of the research but also ensures that the study can be replicated and verified by other researchers, further solidifying its scientific value.

a graphical depiction of the wide possibilities of research

How to Choose a Research Methodology

Choosing the best research methodology for your project involves several key steps to ensure that your approach aligns with your research goals and questions. Here’s a simplified guide to help you make the best choice.

Understand Your Goals

Clearly define the objectives of your research. What do you aim to discover, prove, or understand? Understanding your goals helps in selecting a methodology that aligns with your research purpose.

Consider the Nature of Your Data

Determine whether your research will involve numerical data, textual data, or both. Quantitative methods are best for numerical data, while qualitative methods are suitable for textual or thematic data.

Understand the Purpose of Each Methodology

Becoming familiar with the four types of research – descriptive, correlational, experimental, and diagnostic – will enable you to select the most appropriate method for your research. Many times, you will want to use a combination of methods to gather meaningful data. 

Evaluate Resources and Constraints

Consider the resources available to you, including time, budget, and access to data. Some methodologies may require more resources or longer timeframes to implement effectively.

Review Similar Studies

Look at previous research in your field to see which methodologies were successful. This can provide insights and help you choose a proven approach.

By following these steps, you can select a research methodology that best fits your project’s requirements and ensures robust, credible results.

Completing Your Research Project

Upon completing your research, the next critical step is to analyze and interpret the data you’ve collected. This involves summarizing the key findings, identifying patterns, and determining how these results address your initial research questions. By thoroughly examining the data, you can draw meaningful conclusions that contribute to the body of knowledge in your field. 

It’s essential that you present these findings clearly and concisely, using charts, graphs, and tables to enhance comprehension. Furthermore, discuss the implications of your results, any limitations encountered during the study, and how your findings align with or challenge existing theories.

Your research project should conclude with a strong statement that encapsulates the essence of your research and its broader impact. This final section should leave readers with a clear understanding of the value of your work and inspire continued exploration and discussion in the field.

Now that you know how to perform quality research , it’s time to get started! Applying the right research methodologies can make a significant difference in the accuracy and reliability of your findings. Remember, the key to successful research is not just in collecting data, but in analyzing it thoughtfully and systematically to draw meaningful conclusions. So, dive in, explore, and contribute to the ever-growing body of knowledge with confidence. Happy researching!

In this article

At UoPeople, our blog writers are thinkers, researchers, and experts dedicated to curating articles relevant to our mission: making higher education accessible to everyone. Read More

  • Tips & Tricks
  • Website & Apps
  • ChatGPT Blogs
  • ChatGPT News
  • ChatGPT Tutorial

Types of Research Methods Explained with Examples

Research methods are the various strategies, techniques, and tools that researchers use to collect and analyze data . These methods help researchers find answers to their questions and gain a better understanding of different topics. Whether conducting experiments, surveys, or interviews, choosing the right research method is crucial for obtaining accurate and reliable results.

In the ever-evolving world of academia and professional inquiry, understanding the various research methods is crucial for anyone looking to delve into a new study or project. Research is a systematic investigation aimed at discovering and interpreting facts , plays a pivotal role in expanding our knowledge across various fields.

Table of Content

What is Research?

Types of research methods, types of research methodology, difference between qualitative and quantitative research.

This article will explore the different types of research methods , how they are used, and their importance in the world of research.

Research is the process of studying a subject in detail to discover new information or understand it better. This can be anything from studying plants or animals, to learning how people think and behave, to finding new ways to cure diseases. People do research by asking questions, collecting information, and then looking at that information to find answers or learn new things.

Research

This table provides a quick reference to understand the key aspects of each research type.

Research Methods Focus Methodology Applications
Qualitative Human behavior Interviews, Observations Social Sciences
Quantitative Data quantification Statistical Analysis Natural Sciences
Descriptive Phenomenon description Surveys, Observations Demographics
Analytical Underlying reasons Data Comparison Scientific Research
Applied Practical solutions Collaborative Research Healthcare
Fundamental Knowledge expansion Theoretical Research Physics, Math
Exploratory Undefined problems Secondary Research Product Development
Conclusive Decision-making Experiments, Testing Market Research

1. Qualitative Research

Qualitative research method is a methodological approach primarily used in fields like social sciences, anthropology, and psychology . It’s aimed at understanding human behavior and the motivations behind it. Qualitative research delves into the nature of phenomena through detailed, in-depth exploration.

Definition and Approach: Qualitative research focuses on understanding human behavior and the reasons that govern such behavior. It involves in-depth analysis of non-numerical data like texts, videos, or audio recordings.

Key Features:

  • Emphasis on exploring complex phenomena
  • Involves interviews, focus groups , and observations
  • Generates rich, detailed data that are often subjective

Applications: Widely used in social sciences, marketing, and user experience research.

2. Quantitative Research

Quantitative research method is a systematic approach used in various scientific fields to quantify data and generalize findings from a sample to a larger population.

Definition and Approach: Quantitative research is centered around quantifying data and generalizing results from a sample to the population of interest. It involves statistical analysis and numerical data .

  • Relies on structured data collection instruments
  • Large sample sizes for generalizability
  • Statistical methods to establish relationships between variables

Applications: Common in natural sciences, economics, and market research.

3. Descriptive Research

Descriptive research is a type of research method that is used to describe characteristics of a population or phenomenon being studied . It does not answer questions about how or why things are the way they are. Instead, it focuses on providing a snapshot of current conditions or describing what exists.

Definition and Approach: This Types of Research method aims to accurately describe characteristics of a particular phenomenon or population.

  • Provides detailed insights without explaining why or how something happens
  • Involves surveys and observations
  • Often used as a preliminary research method

Applications: Used in demographic studies, census, and organizational reporting.

4. Analytical Research

Analytical research is a type of research that s eeks to understand the underlying factors or causes behind phenomena or relationships . It goes beyond descriptive research by attempting to explain why things happen and how they happen.

Definition and Approach: Analytical research method goes beyond description to understand the underlying reasons or causes.

  • Involves comparing data and facts to make evaluations
  • Critical thinking is a key component
  • Often hypothesis-driven

Applications: Useful in scientific research, policy analysis, and business strategy.

5. Applied Research

Applied research is a type of scientific research method that aims to solve specific practical problems or address practical questions . Unlike fundamental research, which seeks to expand knowledge for knowledge’s sake, applied research is directed towards solving real-world issues .

Definition and Approach: Applied research focuses on finding solutions to practical problems.

  • Direct practical application
  • Often collaborative , involving stakeholders
  • Results are immediately applicable

Applications: Used in healthcare, engineering, and technology development.

6. Fundamental Research

Fundamental research, also known as basic research or pure research, is a type of scientific research method that aims to expand the existing knowledge base. It is driven by curiosity, interest in a particular subject, or the pursuit of knowledge for knowledge’s sake , rather than with a specific practical application in mind.

Definition and Approach: Also known as basic or pure research, it aims to expand knowledge without a direct application in mind.

  • Theoretical framework
  • Focus on understanding fundamental principles
  • Long-term in nature

Applications: Foundational in fields like physics, mathematics, and social sciences.

7. Exploratory Research

Exploratory research is a type of research method conducted for a problem that has not been clearly defined. Its primary goal is to gain insights and familiarity with the problem or to gain more information about a topic. Exploratory research is often conducted when a researcher or investigator does not know much about the issue and is looking to gather more information.

Definition and Approach: This type of research is conducted for a problem that has not been clearly defined.

  • Flexible and unstructured
  • Used to identify potential hypotheses
  • Relies on secondary research like reviewing available literature

Applications: Often the first step in social science research and product development.

8. Conclusive Research

Conclusive research, also known as confirmatory research, is a type of research method that aims to confirm or deny a hypotheses or provide answers to specific research questions. It is used to make conclusive decisions or draw conclusions about the relationships among variables.

Definition and Approach: Conclusive research is designed to provide information that is useful in decision-making.

  • Structured and methodical
  • Aims to test hypotheses
  • Involves experiments, surveys, and testing

Applications: Used in market research, clinical trials, and policy evaluations.

Here is detailed difference between the qualitative and quantitative research –

Focuses on exploring ideas, understanding concepts, and gathering insights. Involves the collection and analysis of numerical data to describe, predict, or control variables of interest.
To gain a deep understanding of underlying reasons, motivations, and opinions. To quantify data and generalize results from a sample to a larger population.
Non-numerical data such as words, images, or objects. Numerical data, often in the form of numbers and statistics.
Interviews, focus groups, observations, and review of documents or artifacts. Surveys, experiments, , and numerical measurements.
Interpretive, subjective analysis aimed at understanding context and complexity. Statistical, objective analysis focused on quantifying data and generalizing findings.
Descriptive, detailed narrative or thematic analysis. Statistical results, often presented in charts, tables, or graphs.
Generally smaller, focused on depth rather than breadth. Larger to ensure statistical significance and representativeness.
High flexibility in research design, allowing for changes as the study progresses. Structured and fixed design, with little room for changes once the study begins.
Exploratory, open-ended, and subjective. Conclusive, closed-ended, and objective.
Social sciences, humanities, psychology, and market research for understanding behaviors and experiences. Natural sciences, economics, and large-scale market research for testing hypotheses and making predictions.
Provides depth and detail, offers a more human touch and context, good for exploring new areas. Allows for a broader study, involving a greater number of subjects, and enhances generalizability of results.
Can be time-consuming, harder to generalize due to small sample size, and may be subject to researcher bias. May overlook the richness of context, less effective in understanding complex social phenomena.

Understanding the different types of research methods is crucial for anyone embarking on a research project. Each type has its unique approach, methodology, and application area, making it essential to choose the right type for your specific research question or problem. This guide serves as a starting point for researchers to explore and select the most suitable research method for their needs, ensuring effective and reliable outcomes.

Types of Research Methods – FAQs

What are the 4 main types of research methods.

There are four main types of Quantitative research:  Descriptive, Correlational, Causal-Comparative/Quasi-Experimental, and Experimental Research . attempts to establish cause- effect relationships among the variables. These types of design are very similar to true experiments, but with some key differences.

What are the 5 main purpose of research?

The primary purposes of basic research (as opposed to applied research) are  documentation, discovery, interpretation, and the research and development (R&D) of methods and systems for the advancement of human knowledge .

What are 7 C’s of research?

The 7 C’s define the principles that are essential for conducting rigorous and credible research. They are Curiosity, Clarity, Conciseness, Correctness, Completeness, Coherence, Credibility.

Please Login to comment...

Similar reads.

  • General Knowledge
  • SSC/Banking
  • tech-updates
  • SUMIF in Google Sheets with formula examples
  • How to Get a Free SSL Certificate
  • Best SSL Certificates Provider in India
  • Elon Musk's xAI releases Grok-2 AI assistant
  • Content Improvement League 2024: From Good To A Great Article

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

NTRS - NASA Technical Reports Server

Available downloads, related records.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 31 August 2024

Multipartite network analysis to identify environmental and genetic associations of metabolic syndrome in the Korean population

  • Ji-Eun Shin 1   na1 ,
  • Nari Shin 2   na1 ,
  • Taesung Park 3 &
  • Mira Park 4  

Scientific Reports volume  14 , Article number:  20283 ( 2024 ) Cite this article

Metrics details

  • Computational biology and bioinformatics

Network analysis has become a crucial tool in genetic research, enabling the exploration of associations between genes and diseases. Its utility extends beyond genetics to include the assessment of environmental factors. Unipartite network analysis is commonly used in genomics to visualize initial insights and relationships among variables. Syndromic diseases, such as metabolic syndrome, are characterized by the simultaneous occurrence of various signs, symptoms, and clinicopathological features. Metabolic syndrome encompasses hypertension, diabetes, obesity, and dyslipidemia, and both genetic and environmental factors contribute to its development. Given that relevant data often consist of distinct sets of variables, a more intuitive visualization method is needed. This study applied multipartite network analysis as an effective method to understand the associations among genetic, environmental, and disease components in syndromic diseases. We considered three distinct variable sets: genetic factors, environmental factors, and disease components. The process involved projecting a tripartite network onto a two-mode bipartite network and then simplifying it into a one-mode network. This approach facilitated the visualization of relationships among factors across different sets and within individual sets. To transition from multipartite to unipartite networks, we suggest both sequential and concurrent projection methods. Data from the Korean Association Resource (KARE) project were utilized, including 352,228 SNPs from 8840 individuals, alongside information on environmental factors such as lifestyle, dietary, and socioeconomic factors. The single-SNP analysis step filtered SNPs, supplemented by reference SNPs reported in a genome-wide association study catalog. The resulting network patterns differed significantly by sex: demographic factors and fat intake were crucial for women, while alcohol consumption was central for men. Indirect relationships were identified through projected bipartite networks, revealing that SNPs such as rs4244457, rs2156552, and rs10899345 had lifestyle interactions on metabolic components. Our approach offers several advantages: it simplifies the visualization of complex relationships among different datasets, identifies environmental interactions, and provides insights into SNP clusters sharing common environmental factors and metabolic components. This framework provides a comprehensive approach to elucidate the mechanisms underlying complex diseases like metabolic syndrome.

Introduction

Metabolic syndrome (MetS) is defined as a cluster of metabolic abnormalities conditions, including abdominal obesity, hypertension, diabetes, and dyslipidemia 1 , 2 . The prevalence of MetS has been reported as 20–25% worldwide 3 , 4 . MetS is known to be associated with an increased risk of type 2 diabetes mellitus, cardiovascular disease, and premature mortality. The individual components of MetS are also known to be important risk factors for cardiovascular diseases 5 , 6 , 7 .

Various attempts have been made to discover the genetic risk factors of MetS. The heritability of MetS has been estimated at over 30% 8 , 9 , 10 . Many genes and variants associated with MetS have been identified through genome-wide association studies (GWAS) 11 , 12 , 13 , 14 . Many studies have also sought to find genetic variants associated with each MetS component by population. For example, variants near insulin receptor substrate 1 were found to be associated with various traits of MetS, such as insulin resistance, HDL cholesterol, and triglycerides in a French population 15 . GCKR has been reported to be associated with fasting glucose and insulin levels in individuals of European ancestry 16 , 17 . UGT1A1 has been reported to impact MetS in both men and women in a Mediterranean population 18 . In the Korean population, CCDC63, LPL, MYL2 , and APOA5 were found to be associated with MetS 14 , 19 . The number of variants associated with MetS continues to increase 1 , 2 .

Meanwhile, studies on pleiotropic single-nucleotide polymorphisms (SNPs) for MetS-related traits have also been conducted. Kraja et al. 20 reported that the same loci were associated with more than one MetS-related trait. Based on pleiotropic associations, their research revealed relationships between SNPs, lipids, inflammation, and obesity 20 . More recently, pleiotropic SNPs and genes related to type 2 diabetes and obesity have been identified by applying genetic analyses incorporating pleiotropy and annotations using GWAS datasets 21 . A study found that IGF2BP2 and TNFRSF13B predisposed individuals to MetS from a pleiotropic standpoint 22 . These results suggest that examining pleiotropy among metabolic traits is essential.

Since MetS is a multifactorial disease, environmental factors influence MetS. Numerous studies have investigated the influence of both genetic and environmental factors on the development of MetS. Specifically, environmental factors including dietary patterns, physical activity levels, and smoking status have been extensively explored 23 , 24 , 25 , 26 , 27 , 28 , 29 . For instance, a sedentary lifestyle and consumption of energy-dense diets have been linked to patterns in the clustering of different MetS traits MetS 30 . Moreover, research indicates that weight loss and increased physical activity are prioritized over pharmacological interventions in managing MetS 31 . Similarly, risk factors related to overnutrition and sedentary behavior have been identified as significant contributors to MetS, alongside a genetic predisposition 27 . Furthermore, a study highlighted the substantial role of various environmental factors, including diet, physical inactivity, stress, education levels, exposure to pollutants, and addictive behaviors, in the development of obesity-related MetS 28 . Recent investigations in Korea have explored the associations between environmental factors—such as sleep duration, sedentary behavior, alcohol consumption, smoking habits, and dietary patterns—and the risk of developing MetS. These studies have reinforced the observation that individuals with unhealthy lifestyle habits are more prone to developing MetS 32 .

Several studies have emphasized the importance of simultaneously considering both environmental and genetic factors 8 , 30 , 31 , 33 , 34 , 35 , 36 , 37 . For instance, a multivariate genetic analysis was conducted on nine endophenotypes associated with MetS, utilizing twin data to identify common genetic and environmental factors 37 . Additionally, Prone-Olazabal et al. 36 provided an updated perspective on the genetics of MetS as a cohesive entity, examining SNPs and gene-diet interactions concerning cardiometabolic markers. In light of the understanding that genetic interactions intersect with an individual’s environment, the distinction between genetic disorders and traits from environmental influences remains challenging 35 .

Network analysis has recently been used for genetic data to investigate disease-gene associations 38 , 39 , 40 . A network is a collection of nodes and edges connecting the nodes. It can be used to visualize biological processes by taking biological entities such as genes, proteins, and diseases as nodes and representing the relationships between the entities by edges 41 , 42 . One-mode unipartite network analysis for each variable set or the whole variable set is widely used for genomic data.

Since it is not easy to investigate complex relationships through statistical models, we consider a more intuitive representation via a smart visualization method. Among several visualization methods, multipartite network analysis has the advantage of enabling researchers to easily grasp the relationships among genes, environments, and diseases. A multipartite network, often referred to as a k-partite graphs, can be seen as a complicated form of a network. The distinctive characteristic of a k-partite network is that the nodes can be divided into k disjoint sets. The edges do not connect nodes in the same set; instead, they only link nodes in different sets 43 .

We applied tripartite network analysis for the case of k = 3, considering that there are three different variable sets relevant to MetS—namely, MetS components, environmental factors, and genetic factors. We considered dichotomous variables for the diagnosis of metabolic syndrome as MetS components, demographic variables, and dietary habits as environmental factors, and selected SNPs from GWAS data as genetic factors. To represent the relationship between two sets of variables, we used projections with weights 38 . A tripartite network was projected onto a two-mode bipartite network, and the projected bipartite network was projected again onto a one-mode network with the least loss of information. Through this procedure, we could visualize not only the relationship among factors in the different sets but also the compressed relationship among factors within the sets.

Materials and methods

We used data from the Korean Association Resource (KARE) project ( http://biobank.nih.go.kr ). This project, a part of the Korean Genome Epidemiological Study (KoGES), started in 2007 and is still in progress. The data comprise two community-based cohorts from a rural area (Ansung) and an urban area (Ansan). The cohorts consist of community dwellers and participants recruited from the national health examinee registry. For baseline recruitment, eligible participants were asked to volunteer. Participants completed consent forms and then underwent surveys and examinations to assess their current health status and lifestyle habits. Anthropometric and clinical measurements such as weight, height, waist circumference, and blood pressure were measured. Human biological materials, including blood, urine, and DNA, were collected for analysis. The data include information on genetic variants and environmental factors affecting chronic diseases such as type 2 diabetes, hypertension, obesity, MetS, osteoporosis, cardiovascular disease, and cancer in Koreans 44 . All participants provided their written informed consent to participate in this study. All methods were carried out following relevant guidelines and regulations (Declaration of Helsinki). This study was approved by the Institutional Review Board (IRB) of Eulji University (EU21-003-01).

Among the participants, 10,030 samples from individuals aged between 40 and 69 were genotyped using an Affymetrix Genome-Wide Human SNP Array 5.0. Quality control for the samples and genotypes was performed as previously described by Cho et al. 44 . SNPs with minor allele frequencies (< 0.01), low genotype calling rates (< 95%), and violation of Hardy–Weinberg equilibrium (p-values < 1E − 06) were removed. Participants whose sex/gender did not match or had a low calling rate (< 95%) were excluded. After quality control, 352,228 SNPs in 8840 individuals remained.

To diagnose MetS, the National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III) criteria are widely used 45 . These include different criteria for the Asian population 1 , 46 . A person who has three or more of the five MetS components is diagnosed with MetS. The five metabolic syndrome components are hypertension (> 130/85 mmHg), abdominal obesity (a waist circumference of ≥ 90 cm in Asian-American men, and ≥ 80 cm in Asian-American women), elevated triglycerides (≥ 150 mg/dL), reduced plasma high-density lipoprotein cholesterol (HDL-C; < 40 mg/dL in men and < 50 mg/dL in women), and impaired glucose tolerance (> 100 mg/dL). We followed these criteria and obtained five dichotomous variables as MetS components.

We also considered 10 variables of demographic characteristics, lifestyle factors, and dietary habits as environmental factors. The demographic variables comprised age, education level, and monthly household income. As lifestyle factors, we analyzed alcohol consumption, smoking, and physical activity (metabolic equivalents of task). The participants were questioned by trained interviewers regarding their socio-demographic status (age, education, household income) and lifestyle (diet, smoking, alcohol consumption, physical activity). Education level was categorized into six groups, and monthly household income was classified into eight groups. In the analysis, low-frequency items were integrated and finally, the education and household income items were reduced to four items and three items, respectively.

Protein, carbohydrates, and fat intake, as well as total energy, were used as variables for dietary habits. For dietary assessment, a food-frequency questionnaire (FFQ) involving 103 semi-quantitative items was developed 47 . Information regarding the protocol of the FFQ has been described elsewhere 48 . The frequencies of food consumption were categorized into nine groups, ranging from "rarely" to "more than three times per day." Portion sizes for each food item could be selected from three options: "small", "medium", or "large". The duration of seasonal fruit intake was classified into four categories (3, 6, 9, and 12 months). To assess the overall intake of nutrients such as protein and carbohydrates, the consumption frequency of each food item was multiplied by its nutrient content using the CAN-Pro 2.0 nutrient database developed by the Korean Nutrition Society 49 . Subsequently, the amounts of macronutrients were converted into calories, and the percentages of total calorie intake from each macronutrient were calculated. More details on the KoGES cohort profile can be found in Ref. 50 . The data description is summarized in Table 1 .

Foundations of multipartite network analysis

A multipartite network or a k-partite network consists of mutually exclusive sets of nodes. Edges can exist only between nodes belonging to different sets. A graph is called k-partite if it can be partitioned into k nonempty, vertex-disjoint, edgeless subgraphs 40 . A k-partite graph can be represented as G  = ( \(V,E)\) , where V and E represent vertices and edges satisfying \(V = V_{1} \cup V_{2} \cup \cdots \cup V_{k}\) and \(V_{i} \cap V_{j} = \emptyset\) for \(i \ne j\) and \(E = \{ (u,v):u \in V_{i} ,v \in V_{j} ,i \ne j\}\) , respectively 39 .

There are two types of multipartite networks: closed and open networks. While a closed network has no restriction on its structure, an open network does not allow a circular structure. The adjacent matrix for a k-partite graph is given by

for a closed network, and

for an open network, respectively. Here, \(A_{ij}\) is a rectangular matrix called an incidence matrix. The \(\left( {m,n} \right)\) -th element of \(A_{ij}\) is \(1\) if there is an edge between vertices \(m\) of part \(i\) and \(n\) of part \(j\) , and \(0\) otherwise. Networks can also be classified into directed and undirected networks. As the terms indicate, vertices in a directed network are connected by directed edges, while the nodes of an undirected network are interconnected.

To understand the structure of a multipartite network, various measures can be employed. Degree distribution, where the degree of a node represents the number of edges it connects to other nodes, provides insights into the network’s structure 35 , 51 . Connectivity measures the minimum number of vertices required to separate remaining nodes, indicating strong or weak graph linkage 42 , 52 , 53 . Closeness centrality gauges a node’s proximity to others by calculating the inverse of the average shortest distance to all nodes. Betweenness centrality quantifies a node’s importance by assessing its role in shortest paths 54 . Nodes with high closeness or betweenness centrality act as significant hubs. Additionally, the clustering coefficient indicates the likelihood of neighboring nodes being connected 54 .

When k = 2, the network is a bipartite network. From a bipartite network, a one-mode projection can be created to compress the network and reveal connections within one dataset 55 . This results in two one-mode projections for each dataset: \(P_{1} = A_{12}^{T} A_{12}\) and \(P_{2} = A_{12} A_{12}^{T}\) , where \(A_{12}\) is a bi-adjacency matrix encoding the edges from the first dataset to the second dataset. Similarly, a k-partite network produces k different (k − 1)-mode projections by consolidating information across the remaining set. However, a multi-stage projection onto the \(k - i \, \left( {i > 1} \right)\) mode from a k-partite network is not well established. Assigning weights, which can be simple, hyperbolic, or resource allocation-based, to edges can reduce information loss during the projection process 38 , 56 , 57 .

We propose utilizing k-partite networks to elucidate the complex relationship among genes, environments, and disease components in syndromic diseases. There is potential for k-partite networks to be applied in various fields, but no research has yet used this method to integrate multiple aspects of genetics, environment, and disease. We provide a series of analysis processes and propose concurrent and sequential projections to offer various visualizations of hidden relationships.

Implementing multipartite network analysis in GWAS

We employed a multipartite network to identify the environmental and genetic associations for a syndromic disease. We considered three distinct datasets: genetic factors, environmental factors, and MetS components. As genetic factors, we used SNPs. Ten environmental factors— E0 (age), E1 (education), E2 (income), E3 (alcohol), E4 (smoking), E5 (physical activity), E6 (total energy), E7 (protein intake), E8 (fat intake), E9 (carbohydrate intake)—were considered, as in previous research 29 . Five components of MetS—MetS1 (abdominal obesity), MetS2 (triglycerides), MetS3 (HDL-C), MetS4 (hypertension), and MetS5 (fasting glucose)—were considered as variables in the disease dataset. All analyses were stratified by sex since it is known that there are sex differences in metabolic homeostasis 58 , 59 .

The procedure for the analysis was as follows:

Variable selection: To reduce the number of SNPs in GWAS data, we performed a single SNP analysis using logistic regression. Age and area were considered as covariates. To address the issue of multiple comparisons, we adjusted the p-values using the Bonferroni correction. Since the number of SNPs selected based on this criterion was not sufficient, we used a less stringent threshold of p < 1E − 05. By filtering with this threshold, 42 SNPs for women and 57 SNPs for men were selected.

Addition of reference SNPs: To improve the validity of our study, we also included 131 referenced SNPs that were reported to affect each component of MetS in a GWAS catalog ( https://www.ebi.ac.uk/gwas/home ). We used the five components of MetS as search terms and targeted studies focusing on Asian populations. After reviewing the content of the selected papers, we retrieved a list of relevant SNPs. Using the same threshold of p < 1E − 05, significant SNPs were selected. Excluding overlapping SNPs, 168 SNPs for men and 160 SNPs for women were used in the analysis.

Construction of an adjacency matrix \(A\) , as shown in Eq. ( 1 ): The incidence matrix \(A_{ij}\) was set based on Pearson correlation coefficients. The (m,n) -th elements of \(A_{ij}\) were set to 1 if the correlation coefficient between the m -th variable in dataset i and the n -th variable in dataset j is significant ( \(p<0.001\) ), and 0 otherwise. Through this procedure, 67 nodes for women and 65 nodes for men in the genetic factor set remained. The environmental factor set and MetS component set still had 10 and 5 nodes, respectively.

Building the tripartite network: A tripartite graph was drawn using the adjacency matrix. To represent the strength of the connections between nodes, correlation coefficients were used as the weights of edges. An undirected and closed network was created.

Projection to a bipartite network: We constructed two-mode projections composed of two sets of variables using projection from a tripartite network. They were connected by an edge if they shared a common variable in a third dataset. For example, if an SNP and a MetS component were connected in the two-mode projection, they shared at least one environmental factor. We used the simple weighting method—that is, the strength of the connection between two nodes is proportional to the number of nodes that they shared in the original graph. In total, three two-mode projections were created.

Projection to a unipartite network: Unlike one-level projection, a method for conducting a multi-stage projection onto \(k - i \, \left( {i > 1} \right)\) from a k-partite network has not been well established. There can be various paths from a k-partite to a unipartite network. We proposed two types of projections for obtaining unipartite projections: sequential projection and concurrent projection.

Sequential projection: A \((k-i+1)\) -mode projection is compressed to a to \((k-i)\) -mode projection by aggregating information over the remaining set for \(i=1,\cdots ,k-1\) . That is, for the i -th stage, a \((k-i)\) -mode network is constructed by connecting two nodes within the same dataset if they share at least one node in a different dataset on the \((k-i+1)\) -mode projection. For example, if we have three different datasets, three two-mode bipartite networks are produced in the first stage, and three one-mode unipartite projections are obtained for each two-mode projection in the second stage. The final network varies depending on its route of derivation.

Concurrent projection: A \(k\) -partite network is compressed to a unipartite network at once. To draw a unipartite network of one set, the nodes of the other set are treated as if they belong to the same dataset. For example, if we have three different datasets, only one one-mode projection is obtained for each dataset.

To create a unipartite network via sequential projection, a two-mode projection is compressed in a similar way to (d). In this process, nodes within the same dataset are connected if they share at least one node in another dataset on the two-mode projection, resulting in three one-mode projections per two-mode projection. Concurrent projection compresses a tripartite network directly into a unipartite network without utilizing method (d). Here, nodes from the other set are considered part of the same dataset, yielding three one-mode projections in total.

Construction of one-mode projections from (d). In the network, nodes in the same dataset were connected. For the above procedure (c)–(e), separate networks were established for men and women.

Single SNP association testing was performed using PLINK ( http://pngu.mgh.harvard.edu/~purcell/plink/ ). To draw a multipartite network, the igraph package in R can be used. Since the igraph package does not provide projections of tripartite networks, we modified the algorithm to enable projections using simple weights.

Descriptive statistics

Table 2 demonstrates the descriptive statistics for participants by sex. Although the average age of men and women was similar, there were significant differences in every environmental factor ( \(p<0.001\) ). Each component of MetS showed a higher proportion in women than in men except for MetS5, and a particularly high value for MetS1 was found in women. The overall proportion of individuals with MetS was 32.8%. Therefore, we constructed a separate network for each sex.

Constructing tripartite networks

Figure  1 shows the tripartite network using the data from men. The nodes that had weak connections with other nodes (p ≥ 0.001) were eliminated in the drawing process. Total of 80 nodes were used to draw the network. The Rs numbers of the SNPs used in the graph are listed in Supplementary Table 1 . In the graph, MetS3 (HDL-C) seemed to have the most connections, followed by MetS2 (triglycerides). E3 (alcohol) was located at the center connecting metabolic components except for MetS1 (abdominal obesity). A group of SNPs, including S64–S67, S70–S73, S76, S78, S105–S107, and S110, showed connections to both MetS2 and MetS3. It is remarkable that MetS1 had no direct connection with most SNPs except for S20 and was mainly related to nutritional factors such as E6 (total energy), E7 (protein intake), E8 (fat intake), and E9 (carbohydrate intake).

figure 1

Tripartite network of data from men. E0 (age), E1 (education), E2 (income), E3 (alcohol), E4 (smoking), E5 (physical activity), E6 (total energy), E7 (protein intake), E8 (fat intake), E9 (carbohydrate intake); MetS1 (abdominal obesity), MetS2 (triglycerides), MetS3 (HDL-C), MetS4 (hypertension), MetS5 (fasting glucose); S1–S190 (SNPs); Line thickness (degree of association).

The node with the largest degree (i.e., the node that was connected to the most nodes) was MetS3, with a degree of 42. MetS2 had the second-highest degree (34). Among the nodes in the environmental factor set, E3 (alcohol) showed the largest degree (16), and among the nodes in the SNP set, S129 (rs12903590) and S130 (rs4821116) showed the largest degree (7). S129 is mapped to the ALDH1A2 gene and has been reported to be related to HDL-C levels 60 , 61 . S130 has been reported to be located in UBE2L3 and related to hepatitis B virus infections and HDL-C levels 62 , 63 . The nodes with large degrees also showed high centrality. A node with high closeness centrality tends to be in the center of the network, while many other nodes are connected. In contrast, a node with high betweenness centrality builds a bridge that connects a lateral node and a central node rather than being connected to many nodes. MetS3 showed the highest closeness centrality (0.0067) followed by MetS2, (0.0064), E3 (0.0064), S129 (0.0063), and S130 (0.0063). For betweenness centrality, MetS3 (1442.06), MetS2 (1256.88), and MetS4 (hypertension;492.39) showed high values. E3 (373.67) and E9 (370.14) also showed high betweenness centrality. Thus, these nodes played the role of hubs in the network for men.

The thickness of the edges denotes the strength of the connection between the nodes. Not only S129 and S130, but also S127 (rs17411126) and S138 (rs6805251) showed strong connection with E3 in Fig.  1 . S127 is mapped to the LPL gene and is known to be related to the cholesterol ratio in the Korean population 64 . S138 is mapped to the GSK3B gene and has been reported to be associated with HDL-C 65 . Table 3 shows the top five edges based on the absolute value of the correlation coefficients and their p-values. All relationships for which the absolute value of correlations was greater than 0.10 are presented in Supplementary Table 2 . The information obtained from the graph is confirmed.

Similarly, Fig.  2 represents the tripartite network for women. In this network, after eliminating the nodes with weak correlations (p ≥ 0.001), 82 nodes were used to form the network. The same process as with the data from men was conducted to filter the significant nodes. Instead of E3 (alcohol), which played an important role in the network for men, socioeconomic variables such as E0 (age), E1 (education), E2 (income), and E8 (fat intake) were located at the center, connecting various MetS components in the network for women. Moreover, these showed strong connections. As in the network for men, E3 was linked to MetS3, and there were several SNPs (S104-S107) linking MetS2 and MetS3, playing the role of bridges. S120 (rs10899345) connected MetS4 to the environmental variables of E0, E1, E2, and E8, while S162 (rs2156552) linked these environment variables to E5 (physical activity). S120 has been identified in the B3GNT6 gene, and the reported trait is waist circumference 66 . S162 is in LOC105372112 and is known to be associated with HDL-C and LDL-C in various populations 67 , 68 .

figure 2

Tripartite network of data from women. E0 (age), E1 (education), E2 (income), E3 (alcohol), E4 (smoking), E5 (physical activity), E6 (total energy), E7 (protein intake), E8 (fat intake), E9 (carbohydrate intake); MetS1 (abdominal obesity), MetS2 (triglycerides), MetS3 (HDL-C), MetS4 (hypertension), MetS5 (fasting glucose); S1–S190 (SNPs); Line thickness (degree of association).

MetS3 had the largest degree (41). Among the environmental nodes, E2 showed the largest degree (8). Among the SNPs, the degrees of S162 and S120 were high (6 and 4, respectively). MetS3, E2, E0, E1, E8 were the five nodes with the highest closeness centrality (MetS3:0.0069, E2:0.0063, E0:0.0062, E1:0.0062, E8:0.0061) while MetS3, MetS2, MetS4, E3, E2 were the five nodes with the highest betweenness centrality (MetS3:2404.22, MetS2:863.22, MetS4:738.17, E3:532.00, E2:484.00). No SNP seemed to be important in terms of centrality. MetS4 and MetS1 showed the highest correlations with E0 (age). It is remarkable that they had high negative correlation coefficients with E1 (education) (Table 3 ).

Constructing projected bipartite and unipartite networks

To elucidate the relationship between the nodes in two different sets, we projected the tripartite network into a two-mode bipartite network. Three two-mode projections were created for each sex. Among them, bipartite networks with the metabolic component set and SNP set for each sex are shown in Fig.  3 . The projected bipartite network implies an indirect relationship between the nodes. For instance, in the network for men, MetS4 and S62 (rs4244457) are connected because they share E0, E1, E2, and E5 in the tripartite network. To reduce the loss of information, we applied simple weighting for the projection. The thickness of the edges was proportional to the number of environmental factors shared by the two nodes. We can interpret this as indicating a large indirect association between MetS4 and S62 through environmental factors, although there was no significant direct association, as shown in the tripartite network. S162 (rs2156552) and MetS4 also showed slightly stronger indirect relationships than other nodes. In the network for women, S120 (rs10899345) and S162 (rs2156552) showed strong connections with every component of metabolic syndrome. These SNPs showed high degrees in the tripartite network, but their direct correlations with metabolic syndrome components were low. However, the projected bipartite network indicated that they had strong indirect relationships with metabolic components, reflecting environmental factors. The bipartite networks of MetS components and environmental factors, as well as environmental factors and the SNP set, can be interpreted similarly (Supplementary Figs. 1 , 2 ).

figure 3

Projected bipartite network of MetS components and the SNP set. MetS1 (abdominal obesity), MetS2 (triglycerides), MetS3 (HDL-C), MetS4 (hypertension), MetS5 (fasting glucose); S1–S190 (SNPs) ; Line thickness (degree of association). ( a ) Data from men ( b ) Data from women.

Figure  4 demonstrates the projected unipartite graph of data from men and women using concurrent projection. By the definition of a closed tripartite network, nodes in the same set were disconnected in the original tripartite network. However, through the projection, indirect relationships between the nodes in the same set could be discovered in the unipartite network. For men, MetS2 and MetS3 were strongly related through SNPs and environmental factors, and MetS1 was not related to other MetS components. In the data from women, the relationships involving MetS2 and MetS3 were weaker, but all the components were connected. For the environmental network, E0, E3, and E5 for men and E0, E1, E2, and E8 for women were strongly related through SNPs and MetS components. The unipartite network for SNPs showed several SNP clusters, each of which shared the same environments and MetS components.

figure 4

Projected unipartite networks using concurrent projection. E0 (age), E1 (education), E2 (income), E3 (alcohol), E4 (smoking), E5 (physical activity), E6 (total energy), E7 (protein intake), E8 (fat intake), E9 (carbohydrate intake); MetS1 (abdominal obesity), MetS2 (triglycerides), MetS3 (HDL-C), MetS4 (hypertension), MetS5 (fasting glucose); S1–S190 (SNPs) ; Line thickness (degree of association). ( a ) Data from men. ( b ) Data from women.

To obtain unipartite networks using sequential projection, we re-compressed the projected bipartite network. For each dataset, two different unipartite networks were produced. The resulting structure of the unipartite network and the relationship between the nodes differed according to the order of the aggregating dataset. For instance, although (b) and (d) in Fig.  5 both denote relationships between environmental factors, the graphs are completely different. This is because (b) was obtained by aggregating information over MetS component information from the environment-MetS components bipartite network (a), whereas (d) was obtained by aggregating information using the SNPs from the environment-SNP bipartite network (c). In the data from men, E3 and E4 were strongly connected by metabolic components, but nothing was connected to E4 via SNPs. The remaining unipartite networks obtained by sequential projection can be seen in Supplementary Figs. 3 – 7 .

figure 5

Projected unipartite networks using sequential projection for the data from men. ( a ) Projected bipartite network of the metabolic component set and the environmental set. ( b ) Projected unipartite network of environmental factors using sequential projection to ( a ). ( c ) Projected bipartite network of the environmental set and the SNP set. ( d ) Projected unipartite network of the environmental set using sequential projection to ( c ). E0 (age), E1 (education), E2 (income), E3 (alcohol), E4 (smoking), E5 (physical activity), E6 (total energy), E7 (protein intake), E8 (fat intake), E9 (carbohydrate intake); MetS1 (abdominal obesity), MetS2 (triglycerides), MetS3 (HDL-C), MetS4 (hypertension), MetS5 (fasting glucose); S1–S190 (SNPs) ; Line thickness (degree of association).

To visualize the structure of numerous relationships among different variable sets—corresponding to genes, environments, and diseases—at once, a multipartite network was used. From a methodological perspective, the following novel points are proposed.

Utilizing multipartite networks to explore genetic and environmental influences on syndromic diseases: To understand genetic and environmental influences on syndromic diseases, we constructed independent variable sets and utilized multipartite networks to visualize the relationships between each set of variables at a glance.

Identifying indirect relationships via projected bipartite networks: Using a projected bipartite network enabled the identification of indirect relationships between nodes that could not be discovered in a usual network. Connections in the lower mode network graphs derived through projection do not indicate direct associations, but rather indirect associations reflecting the factors in a hidden set. For example, if an SNP and a metabolic component are connected in a projected bipartite network, this does not imply a direct association between them, but rather that they share a hidden environmental factor.

Proposing two different multi-stage projection methods: To elucidate the relationship between nodes in the same set, we suggested two different projection methods. Using the concurrent method allows us to represent associations between variables explained by variables from different groups. For instance, in a graph of diseases obtained from the projection into a one-mode unipartite network, diseases with significant indirect influences from both environment and genetics are strongly connected. In our data, the concurrent projection method was preferred due to its ease of interpretation. However, if the variable sets are nested, such as SNPs, genes, and pathways, sequential projection would be more meaningful. It is recommended to choose a projection method considering the relationship between sets.

Applicability to small samples: Many studies did not conduct sex-stratified analyses due to sample size limitations or analytical complexities 69 , 70 . Moreover, the effects of individual variables can be weak in complex diseases. Multipartite networks serve as exploratory tools, capable of revealing not only strictly significant variables but also potential underlying associations. Therefore, they can offer advantages in small-scale studies.

Applicability to pleiotropy: We set each component of MetS as a node. However, if a node is defined as a disease, a pleiotropic effect can also be seen through a tripartite network graph.

From the perspective of MetS analysis results, the study’s novel findings can be summarized as follows:

Sex-based variations in network patterns on metabolic syndrome: Utilizing Korean GWAS data, we identified distinct patterns between men and women. A notable contrast is the central and hub role of alcohol in the network for men, whereas its significance was lower within the female network. While the impact of alcohol consumption on health issues such as hypertension and dyslipidemia has been acknowledged 71 , 72 , 73 , the use of multipartite networks helped confirm its influence on MetS components, particularly in men. Furthermore, within the male network structure, HDL-C, triglyceride, and hypertension from the MetS component set; rs12903590 and rs4821116 from the SNP set; and carbohydrate intake and alcohol from the environmental set served as central and bridging nodes. In contrast, key nodes in the female data comprised age, education, income, and fat intake from the environmental set, which were strongly linked with MetS components, displaying a distinct pattern compared to men. Previous studies have underscored sex/gender differences in the risk and genetic effects of MetS 58 , 59 , 74 . Additionally, the effects of socioeconomic variables and dietary habits on MetS have been reported 75 , 76 , 77 . Certain SNPs, such as rs12903590 and rs4821116, have been associated with HDL-C cholesterol levels in the Asian population 78 , 79 . However, network graphs offer a clear depiction of their associations with pertinent SNPs.

Environmental interactions on MetS and genes: The projected bipartite network enabled the identification of indirect relationships between MetS components influenced by environmental factors and SNPs can be identified. The analysis indicated that in men, rs4244457 is associated with hypertension through age, education, and physical activity, while rs2156552 appears to be prominently linked to hypertension through age, income level, and physical activity. In women, rs10899345 and rs2156552 are associated with all MetS components through age, education level, income, and fat intake. These findings could not be obtained through simple correlation analysis, underscoring the need for further analyses such as gene-environmental interaction analysis or mediation analysis. While there have been various prior studies on this topic 80 , 81 , 82 , the specific SNPs with lifestyle interactions on MetS addressed are, to the best of the authors’ knowledge, not covered in those studies.

Among the identified SNPs in this study, rs1290359, which showed a direct relationship with metabolic components, maps to the ALDH1A2 gene. ALDH1A2 is involved in converting retinol into retinoic acid (RA), a critical regulator of lung and cardiovascular development during human embryogenesis. Additionally, this gene is implicated in T-cell acute lymphoblastic leukemia and is considered a candidate tumor suppressor in prostate cancer 83 , 84 . ALDH1A2 may also promote a progressive phenotype in glioblastoma 85 . Furthermore, rs4821116 is located in the UBE2L3 gene, which has been associated with various autoimmune diseases, including rheumatoid arthritis, celiac disease, Crohn’s disease, and systemic lupus erythematosus, through its role in ubiquitination of the NF-κB precursor 86 , 87 , 88 . The SNP identified via indirect relationships, rs2156552, maps to the ACAA2 gene. ACAA2 is a rate-limiting enzyme in mitochondria responsible for catalyzing the final step of the mitochondrial beta-oxidation pathway 89 . Dysfunction of this enzyme may contribute to several metabolic disorders and diseases. The ACAA2 expression has been proposed as a potential molecular marker for small-cell neuroendocrine cancers 89 . The ACAA2 locus also has been linked to blood lipid abnormalities, particularly in HDL and LDL cholesterol levels 68 . Considering this information, future studies could explore potential associations with diseases related to these genes.

Although the data were obtained according to systematic and standardized epidemiological data quality control procedures, this study still has several limitations. First, bias is possible since the variables related to lifestyle and diet were obtained from self-reported survey forms. Second, we used SNP chip data, which could be impacted by bias according to the direct genotyping approach without imputation analysis.

A few noteworthy methodological points are as follows. First, in selecting the threshold of p < 1E − 05, we aimed to balance between the rigorous control of false positives, as done with the Bonferroni correction, and the need to include a sufficient number of SNPs to catch meaningful signals for exploratory analysis. This threshold enables more SNPs in our graph while still maintaining a reasonable level of statistical significance. Various studies have used the same threshold in the analysis of GWAS data 81 , 90 , 91 , 92 , 93 , 94 . Second, linkage disequilibrium (LD) pruning was not performed in the variable selection stage. Unlike regression-based methods, LD pruning is not required in the variable selection stage, because representing SNPs in LD does not influence the results of network-based methods. Instead, we investigated the selected SNPs in a post hoc analysis. A list of the SNP pairs with high LD (r 2  ≥ 0.9) is presented in Supplementary Table 2 .

For the indirect relationships identified in this study, validation through mediation analysis or Mendelian randomization could be considered. These avenues could be pursued in future research endeavors.

Data availability

The Korea Association Resource (KARE) project data will be publicly distributed by the Distribution Desk of the Korea Biobank Network. Researchers who wish to receive epidemiological and genomic information data should apply through the ‘Human Resources Distribution Desk ( http://biobank.nih.go.kr ).’ After completing the application form and submitting the research plan and IRB approval (or waiver), it goes through deliberation by the Distribution Review Committee, which meets once a month. The researchers will directly receive the distributed resources after approval. For any inquiries, contact [email protected].

Alberti, K. G. et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120 (16), 1640–1645 (2009).

Article   PubMed   Google Scholar  

Wan, J. Y. et al. Genome-wide association analysis of metabolic syndrome quantitative traits in the GENNID multiethnic family study. Diabetol. Metab. Syndr. 13 (1), 59 (2021).

Article   PubMed   PubMed Central   Google Scholar  

Ranasinghe, P. et al. Prevalence and trends of metabolic syndrome among adults in the Asia–Pacific Region: A systematic review. BMC Public Health 17 (1), 101 (2017).

Huh, J. H. et al . Metabolic syndrome fact sheet 2021: Executive report. CardioMetabolic Syndrome J . 1 (2), 125–134 (2021).

Article   Google Scholar  

Mottillo, S. et al. The metabolic syndrome and cardiovascular risk: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 56 (14), 1113–1132 (2010).

Kaur, J. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract. 2014 , 943162 (2014).

Esposito, K. et al. Metabolic syndrome and risk of cancer: A systematic review and meta-analysis. Diabetes Care 35 (11), 2402–2411 (2012).

Chen, X. et al. Genetic and environmental influences on the correlations between traits of metabolic syndrome and CKD. Clin. J. Am. Soc. Nephrol. 14 (11), 1590–1596 (2019).

Article   MathSciNet   PubMed   PubMed Central   Google Scholar  

Zhu, Y. et al. Susceptibility loci for metabolic syndrome and metabolic components identified in Han Chinese: A multi-stage genome-wide association study. J. Cell. Mol. Med. 21 (6), 1106–1116 (2017).

Musani, S. K. et al. Heritability of the severity of the metabolic syndrome in whites and blacks in 3 large cohorts. Circulat. Cardiovasc. Genet. 10 (2), e001621 (2017).

Povel, C. M. et al. Genetic variants and the metabolic syndrome: A systematic review. Obes. Rev. 12 (11), 952–967 (2011).

Carty, C. L. et al. Analysis of metabolic syndrome components in > 15,000 African Americans identifies pleiotropic variants: Results from the population architecture using genomics and epidemiology study. Circ. Cardiovasc. Genet. 7 (4), 505–513 (2014).

Tekola-Ayele, F. et al. Genome-wide association study identifies African-ancestry specific variants for metabolic syndrome. Mol. Genet. Metab. 116 (4), 305–313 (2015).

Oh, S.-W. et al. Genome-wide association study of metabolic syndrome in Korean populations. PloS One 15 (1), e0227357 (2020).

Rung, J. et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat. Genet. 41 (10), 1110–1115 (2009).

Lanktree, M. B. & Hegele, R. A. Metabolic syndrome. In Genomic and Precision Medicine 283–299 (Elsevier, 2017).

Chapter   Google Scholar  

Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466 (7307), 707–713 (2010).

Article   ADS   PubMed   PubMed Central   Google Scholar  

Coltell, O. et al. Genome-wide association study (GWAS) on bilirubin concentrations in subjects with metabolic syndrome: Sex-specific gwas analysis and gene-diet interactions in a mediterranean population. Nutrients 11 (1), 90 (2019).

Lee, H.-S., Kim, Y. & Park, T. New common and rare variants influencing metabolic syndrome and its individual components in a Korean Population. Sci. Rep. 8 (1), 5701 (2018).

Kraja, A. T. et al. Pleiotropic genes for metabolic syndrome and inflammation. Mol. Genet. Metab. 112 (4), 317–338 (2014).

Zeng, Y. et al. GWA-based pleiotropic analysis identified potential SNPs and genes related to type 2 diabetes and obesity. J. Hum. Genet. 66 (3), 297–306 (2021).

Zhang, Y. et al. QTL-based association analyses reveal novel genes influencing pleiotropy of metabolic syndrome (MetS). Obesity 21 (10), 2099–2111 (2013).

Al-Qawasmeh, R. H. & Tayyem, R. F. Dietary and lifestyle risk factors and metabolic syndrome: Literature review. Curr. Res. Nutr. Food Sci. J. 6 (3), 594–608 (2018).

Takahara, M. & Shimomura, I. Metabolic syndrome and lifestyle modification. Rev. Endocr. Metab. Disord. 15 , 317–327 (2014).

de Lorgeril, M. Commentary on the clinical management of metabolic syndrome: Why a healthy lifestyle is important. BMC Med. 10 , 1–3 (2012).

Deng, Y.-Y. et al. Combined influence of eight lifestyle factors on metabolic syndrome incidence: A prospective cohort study from the MECH-HK Study. Nutrients 16 (4), 547 (2024).

Magueresse-Battistoni, L., Vidal, H. & Naville, D. Environmental pollutants and metabolic disorders: The multi-exposure scenario of life. Front. Endocrinol. 9 , 413568 (2018).

Ghosh, S. et al. Contribution of environmental, genetic and epigenetic factors to obesity-related metabolic syndrome. Nucleus 66 (2), 215–237 (2023).

Paik, J.K., et al . Dietary protein to carbohydrate ratio and incidence of metabolic syndrome in Korean adults based on a long-term prospective community-based cohort. Nutrients . 12 (11) (2020).

Bosy-Westphal, A. et al. Common familial influences on clustering of metabolic syndrome traits with central obesity and insulin resistance: The Kiel obesity prevention study. Int. J. Obesity 31 (5), 784–790 (2007).

Adamo, K.B. & F. Tesson. Gene-environment interaction and the metabolic syndrome . in Novartis Foundation Symposium . 2008. (John Wiley, 1999).

Park, Y. S. et al. Association between lifestyle factors and the risk of metabolic syndrome in the South Korea. Sci. Rep. 12 (1), 13356 (2022).

Ordovas, J. M. & Shen, J. Gene-environment interactions and susceptibility to metabolic syndrome and other chronic diseases. J. Periodontol. 79 (8S), 1508–1513 (2008).

Maistry, T. et al. Gene-environmental interaction and the metabolic syndrome in Asian Indians with insulin resistance. Atherosclerosis 275 , e183 (2018).

Darabos, C., Harmon, S. H. & Moore, J. H. Using the bipartite human phenotype network to reveal pleiotropy and epistasis beyond the gene. In Biocomputing 2014 188–199 (World Scientific, 2014).

Google Scholar  

Prone-Olazabal, D., Davies, I. & González-Galarza, F. F. Metabolic syndrome: An overview on its genetic associations and gene–diet interactions. Metab. Syndrome Relat. Disord. 21 (10), 545–560 (2023).

Benyamin, B. et al. Are there common genetic and environmental factors behind the endophenotypes associated with the metabolic syndrome?. Diabetologia 50 , 1880–1888 (2007).

Zhou, T. et al. Bipartite network projection and personal recommendation. Phys. Rev. E 76 (4), 046115 (2007).

Article   ADS   MathSciNet   Google Scholar  

Ferreri, L., M. Ivaldi, & M.D.L. Giacobini. Tripartite Networks: A first exploratory step towards the understanding of multipartite networks. in NETSCI12 The International School and Conference on Network Science . (2012).

Phillips, C. A. et al. On finding and enumerating maximal and maximum k-partite cliques in k-partite graphs. Algorithms 12 (1), 23 (2019).

Zhang, Y., E.D. Kolaczyk, & B.D. Spencer. Estimating network degree distributions under sampling: An inverse problem, with applications to monitoring social media networks. (2015).

Diestel, R. The basics. In Graph Theory 1–34 (Springer, 2017).

Koc, I., Yuksel, I. & Caetano-Anollés, G. Metabolite-centric reporter pathway and tripartite network analysis of Arabidopsis under cold stress. Front. Bioeng. Biotechnol. 6 , 121 (2018).

Cho, Y. S. et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet. 41 (5), 527–534 (2009).

Article   ADS   PubMed   Google Scholar  

Expert Panel on Detection, E. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 285 (19), 2486–2497 (2001).

Grundy, S. M. et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 112 (17), 2735–2752 (2005).

Paik, J. K. et al. Dietary protein to carbohydrate ratio and incidence of metabolic syndrome in Korean adults based on a long-term prospective community-based cohort. Nutrients 12 (11), 3274 (2020).

Ahn, Y. et al. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 61 (12), 1435–1441 (2007).

Society, K.N. Computer aided nutritional analysis program for professionals . The Korean Nutrition Society Seoul. (2011).

Kim, Y., Han, B.-G., K. Group. Cohort profile: The Korean genome and epidemiology study (KoGES) consortium. Int. J. Epidemiol. 46 (2), e20 (2017).

Zhang, Y., Kolaczyk, E. D. & Spencer, B. D. Estimating network degree distributions under sampling: An inverse problem, with applications to monitoring social media networks. Ann. Appl. Stat. 9 (1), 166–199 (2015).

Article   MathSciNet   Google Scholar  

Abdallah, M. & Hung, C.-N. Neighbor connectivity of the alternating group graph. J. Interconnect. Netw. 21 (03), 2150014 (2021).

Diestel, R. Graph Theory 3rd ed. Graduate texts in mathematics. 173 , 33 (2005).

Zhang, J. & Y. Luo. Degree centrality, betweenness centrality, and closeness centrality in social network . in 2017 2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM2017) . (Atlantis Press, 2017).

Newman, M.E. Networks—An Introduction , 124–125. (Oxford University Press, 2010).

Neal, Z. The backbone of bipartite projections: Inferring relationships from co-authorship, co-sponsorship, co-attendance and other co-behaviors. Social Netw. 39 , 84–97 (2014).

Cann, T. J. B., Weaver, I. S. & Williams, H. T. P. Is it correct to project and detect? How weighting unipartite projections influences community detection. Netw. Sci. 8 (S1), S145–S163 (2020).

Sugiyama, M. G. & Agellon, L. B. Sex differences in lipid metabolism and metabolic disease risk. Biochem. Cell Biol. 90 (2), 124–141 (2012).

Mauvais-Jarvis, F. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol. Sex Differences 6 (1), 14 (2015).

Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50 (3), 390–400 (2018).

Article   MathSciNet   PubMed   Google Scholar  

Noordam, R. et al. Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration. Nat. Commun. 10 (1), 5121 (2019).

Li, C. et al. Variants identified by hepatocellular carcinoma and chronic hepatitis B virus infection susceptibility GWAS associated with survival in HBV-related hepatocellular carcinoma. PLoS One 9 (7), e101586 (2014).

Spracklen, C. N. et al. Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. Hum. Mol. Genet. 26 (9), 1770–1784 (2017).

Lee, J. S., Cheong, H. S. & Shin, H. D. Prediction of cholesterol ratios within a Korean population. R. Soc. Open Sci. 5 (1), 171204 (2018).

Discovery and refinement of loci associated with lipid levels. Nat. Genet . 45 (11), 1274–1283 (2013).

Li, D. et al. Progressive effects of single-nucleotide polymorphisms on 16 phenotypic traits based on longitudinal data. Genes Genom. 42 (4), 393–403 (2020).

Edmondson, A. C. et al. Dense genotyping of candidate gene loci identifies variants associated with high-density lipoprotein cholesterol. Circ. Cardiovasc. Genet. 4 (2), 145–155 (2011).

Kathiresan, S. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 40 (2), 189–197 (2008).

Shin, J.-A. et al. Metabolic syndrome as a predictor of type 2 diabetes, and its clinical interpretations and usefulness. J. Diabetes Investig. 4 (4), 334–343 (2013).

Shang, X. et al. Dietary protein from different food sources, incident metabolic syndrome and changes in its components: An 11-year longitudinal study in healthy community-dwelling adults. Clin. Nutr. 36 (6), 1540–1548 (2017).

Freiberg, M. S. et al. Alcohol consumption and the prevalence of the metabolic syndrome in the US: A cross-sectional analysis of data from the Third National Health and Nutrition Examination Survey. Diabetes care 27 (12), 2954–2959 (2004).

Stranges, S. et al. Relationship of alcohol drinking pattern to risk of hypertension: A population-based study. Hypertension 44 (6), 813–819 (2004).

Magis, D., Jandrain, B. & Scheen, A. Alcohol, insulin sensitivity and diabetes. Revue Medicale de Liege 58 (7–8), 501–507 (2003).

PubMed   Google Scholar  

Yi, Y. & An, J. Sex differences in risk factors for metabolic syndrome in the Korean Population. Int. J. Environ. Res. Public Health . 17 (24), 9513 (2020).

Julibert, A. et al. Dietary fat intake and metabolic syndrome in older adults. Nutrients 11 (8), 1901 (2019).

Silventoinen, K. et al. Educational inequalities in the metabolic syndrome and coronary heart disease among middle-aged men and women. Int. J. Epidemiol. 34 (2), 327–334 (2005).

Dallongeville, J. et al. Household income is associated with the risk of metabolic syndrome in a sex-specific manner. Diabetes Care 28 (2), 409–415 (2005).

Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50 , 390–400 (2018).

Spracklen, C. N. et al. Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. Hum. Mol. Genet. 27 (6), 1122–1122 (2018).

Adamo, K.B. & F. Tesson. Gene–environment interaction and the metabolic syndrome. in Genetic Effects on Environmental Vulnerability to Disease , 103–121 (2008).

Jeon, S. et al. Structural equation modeling for hypertension and type 2 diabetes based on multiple SNPs and multiple phenotypes. PLoS One 14 (9), e0217189 (2019).

Lutz, S.M. & J.E. Hokanson. Mediation analysis in genome-wide association studies: current perspectives. Open Access Bioinform . 1–5 (2015).

Kim, H. et al. The retinoic acid synthesis gene ALDH1a2 is a candidate tumor suppressor in prostate cancer. Cancer Res. 65 (18), 8118–8124 (2005).

Liu, Y. et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat. Genet. 49 (8), 1211–1218 (2017).

Sanders, S. et al. The presence and potential role of ALDH1A2 in the glioblastoma microenvironment. Cells 10 (9), 2485 (2021).

Hu, Z. et al. New loci associated with chronic hepatitis B virus infection in Han Chinese. Nat. Genet. 45 (12), 1499–1503 (2013).

Zuo, X.-B. et al. Variants in TNFSF4, TNFAIP3, TNIP1, BLK, SLC15A4 and UBE2L3 interact to confer risk of systemic lupus erythematosus in Chinese population. Rheumatol. Int. 34 , 459–464 (2014).

Wang, S. et al. A functional haplotype of UBE2L3 confers risk for systemic lupus erythematosus. Genes Immunity 13 (5), 380–387 (2012).

Shen, M. et al. ACAA2 is a novel molecular indicator for cancers with neuroendocrine phenotype. Br. J. Cancer 129 (11), 1818–1828 (2023).

Valette, K. et al. Prioritization of candidate causal genes for asthma in susceptibility loci derived from UK Biobank. Commun. Biol. 4 (1), 700 (2021).

Lafarge, T. et al. Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLOS ONE 12 (2), e0171254 (2017).

Chen, L. et al. Genome-wide assessment of genetic risk for systemic lupus erythematosus and disease severity. Hum. Mol. Genet. 29 (10), 1745–1756 (2020).

Chen, Z.-Q. et al. Leveraging breeding programs and genomic data in Norway spruce ( Picea abies L. Karst) for GWAS analysis. Genome Biol. 22 , 1–30 (2021).

Yan, Q. et al. Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Mol. Psychiatry 26 (1), 309–321 (2021).

Download references

Acknowledgements

This study was conducted with bioresources from the National Biobank of Korea, the Korea Disease Control and Prevention Agency, Republic of Korea (NBK-2021-059).

This research was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIT) (NRF-2021R1A2C1007788).

Author information

These authors contributed equally: Ji-Eun Shin and Nari Shin.

Authors and Affiliations

Department of Biomedical Informatics, Konyang University, Daejeon, Republic of Korea

Ji-Eun Shin

Department of Statistics, Korea University, Seoul, Republic of Korea

Department of Statistics, Seoul National University, Seoul, Republic of Korea

Taesung Park

Department of Preventive Medicine, Eulji University, Daejeon, Republic of Korea

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualization: MP. Data curation: JS. Formal analysis: JS, NS. Funding acquisition: MP. Methodology: MP. Writing—original draft: MP, NS. Writing—review & editing: TP, MP.

Corresponding author

Correspondence to Mira Park .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary information., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Shin, JE., Shin, N., Park, T. et al. Multipartite network analysis to identify environmental and genetic associations of metabolic syndrome in the Korean population. Sci Rep 14 , 20283 (2024). https://doi.org/10.1038/s41598-024-71217-5

Download citation

Received : 29 October 2023

Accepted : 26 August 2024

Published : 31 August 2024

DOI : https://doi.org/10.1038/s41598-024-71217-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Environment
  • Genome-wide association study
  • Metabolic Syndrome
  • Multipartite network
  • Tripartite network

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

different types of reports in research methodology

Here’s how you know

  • U.S. Department of Health and Human Services
  • National Institutes of Health

Meditation and Mindfulness: Effectiveness and Safety

meditation_thinkstockphotos-505023182_square.jpg

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} What are meditation and mindfulness?

Meditation has a history that goes back thousands of years, and many meditative techniques began in Eastern traditions. The term “meditation” refers to a variety of practices that focus on mind and body integration and are used to calm the mind and enhance overall well-being. Some types of meditation involve maintaining mental focus on a particular sensation, such as breathing, a sound, a visual image, or a mantra, which is a repeated word or phrase. Other forms of meditation include the practice of mindfulness, which involves maintaining attention or awareness on the present moment without making judgments.

Programs that teach meditation or mindfulness may combine the practices with other activities. For example, mindfulness-based stress reduction is a program that teaches mindful meditation, but it also includes discussion sessions and other strategies to help people apply what they have learned to stressful experiences. Mindfulness-based cognitive therapy integrates mindfulness practices with aspects of cognitive behavioral therapy.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Are meditation and mindfulness practices safe?

Meditation and mindfulness practices usually are considered to have few risks. However, few studies have examined these practices for potentially harmful effects, so it isn’t possible to make definite statements about safety. 

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} More

A 2020 review examined 83 studies (a total of 6,703 participants) and found that 55 of those studies reported negative experiences related to meditation practices. The researchers concluded that about 8 percent of participants had a negative effect from practicing meditation, which is similar to the percentage reported for psychological therapies. The most commonly reported negative effects were anxiety and depression. In an analysis limited to 3 studies (521 participants) of mindfulness-based stress reduction programs, investigators found that the mindfulness practices were not more harmful than receiving no treatment.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} How popular are meditation and mindfulness?

According to the National Health Interview Survey, an annual nationally representative survey, the percentage of U.S. adults who practiced meditation more than doubled between 2002 and 2022, from 7.5 to 17.3 percent. Of seven complementary health approaches for which data were collected in the 2022 survey, meditation was the most popular, beating out yoga (used by 15.8 percent of adults), chiropractic care (11.0 percent), massage therapy (10.9 percent), guided imagery/progressive muscle relaxation (6.4 percent), acupuncture (2.2 percent), and naturopathy (1.3 percent).

For children aged 4 to 17 years, data are available for 2017; in that year, 5.4 percent of U.S. children used meditation. 

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Why do people practice mindfulness meditation?

In a 2012 U.S. survey, 1.9 percent of 34,525 adults reported that they had practiced mindfulness meditation in the past 12 months. Among those responders who practiced mindfulness meditation exclusively, 73 percent reported that they meditated for their general wellness and to prevent diseases, and most of them (approximately 92 percent) reported that they meditated to relax or reduce stress. In more than half of the responses, a desire for better sleep was a reason for practicing mindfulness meditation.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} What are the health benefits of meditation and mindfulness?

Meditation and mindfulness practices may have a variety of health benefits and may help people improve the quality of their lives. Recent studies have investigated if meditation or mindfulness helps people manage anxiety, stress, depression, pain, or symptoms related to withdrawal from nicotine, alcohol, or opioids. 

Other studies have looked at the effects of meditation or mindfulness on weight control or sleep quality. 

However, much of the research on these topics has been preliminary or not scientifically rigorous. Because the studies examined many different types of meditation and mindfulness practices, and the effects of those practices are hard to measure, results from the studies have been difficult to analyze and may have been interpreted too optimistically.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Stress, Anxiety, and Depression

  • A 2018 NCCIH-supported analysis of 142 groups of participants with diagnosed psychiatric disorders such as anxiety or depression examined mindfulness meditation approaches compared with no treatment and with established evidence-based treatments such as cognitive behavioral therapy and antidepressant medications. The analysis included more than 12,000 participants, and the researchers found that for treating anxiety and depression, mindfulness-based approaches were better than no treatment at all, and they worked as well as the evidence-based therapies.
  • A 2021 analysis of 23 studies (1,815 participants) examined mindfulness-based practices used as treatment for adults with diagnosed anxiety disorders. The studies included in the analysis compared the mindfulness-based interventions (alone or in combination with usual treatments) with other treatments such cognitive behavioral therapy, psychoeducation, and relaxation. The analysis showed mixed results for the short-term effectiveness of the different mindfulness-based approaches. Overall, they were more effective than the usual treatments at reducing the severity of anxiety and depression symptoms, but only some types of mindfulness approaches were as effective as cognitive behavioral therapy. However, these results should be interpreted with caution because the risk of bias for all of the studies was unclear. Also, the few studies that followed up with participants for periods longer than 2 months found no long-term effects of the mindfulness-based practices.
  • A 2019 analysis of 23 studies that included a total of 1,373 college and university students looked at the effects of yoga, mindfulness, and meditation practices on symptoms of stress, anxiety, and depression. Although the results showed that all the practices had some effect, most of the studies included in the review were of poor quality and had a high risk of bias.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} High Blood Pressure

Few high-quality studies have examined the effects of meditation and mindfulness on blood pressure. According to a 2017 statement from the American Heart Association, the practice of meditation may have a possible benefit, but its specific effects on blood pressure have not been determined.

  • A 2020 review of 14 studies (including more than 1,100 participants) examined the effects of mindfulness practices on the blood pressure of people who had health conditions such as hypertension, diabetes, or cancer. The analysis showed that for people with these health conditions, practicing mindfulness-based stress reduction was associated with a significant reduction in blood pressure.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Pain

Studies examining the effects of mindfulness or meditation on acute and chronic pain have produced mixed results.

  • A 2020 report by the Agency for Healthcare Research and Quality concluded that mindfulness-based stress reduction was associated with short-term (less than 6 months) improvement in low-back pain but not fibromyalgia pain.
  • A 2020 NCCIH-supported analysis of five studies of adults using opioids for acute or chronic pain (with a total of 514 participants) found that meditation practices were strongly associated with pain reduction.
  • Acute pain, such as pain from surgery, traumatic injuries, or childbirth, occurs suddenly and lasts only a short time. A 2020 analysis of 19 studies examined the effects of mindfulness-based therapies for acute pain and found no evidence of reduced pain severity. However, the same analysis found some evidence that the therapies could improve a person’s tolerance for pain.
  • A 2017 analysis of 30 studies (2,561 participants) found that mindfulness meditation was more effective at decreasing chronic pain than several other forms of treatment. However, the studies examined were of low quality.
  • A 2019 comparison of treatments for chronic pain did an overall analysis of 11 studies (697 participants) that evaluated cognitive behavioral therapy, which is the usual psychological intervention for chronic pain; 4 studies (280 participants) that evaluated mindfulness-based stress reduction; and 1 study (341 participants) of both therapies. The comparison found that both approaches were more effective at reducing pain intensity than no treatment, but there was no evidence of any important difference between the two approaches.
  • A 2019 review found that mindfulness-based approaches did not reduce the frequency, length, or pain intensity of headaches. However, the authors of this review noted that their results are likely imprecise because only five studies (a total of 185 participants) were included in the analysis, and any conclusions made from the analysis should be considered preliminary.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Insomnia and Sleep Quality

Mindfulness meditation practices may help reduce insomnia and improve sleep quality.

  • A 2019 analysis of 18 studies (1,654 total participants) found that mindfulness meditation practices improved sleep quality more than education-based treatments. However, the effects of mindfulness meditation approaches on sleep quality were no different than those of evidence-based treatments such as cognitive behavioral therapy and exercise.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Substance Use Disorder

Several clinical trials have investigated if mindfulness-based approaches such as mindfulness-based relapse prevention (MBRP) might help people recover from substance use disorders. These approaches have been used to help people increase their awareness of the thoughts and feelings that trigger cravings and learn ways to reduce their automatic reactions to those cravings.

  • A 2018 review of 37 studies (3,531 total participants) evaluated the effectiveness of several mindfulness-based approaches to substance use disorder treatment and found that they significantly decreased participants’ craving levels. The mindfulness-based practices were slightly better than other therapies at promoting abstinence from substance use.
  • A 2017 analysis specifically focused on MBRP examined 9 studies (901 total participants) of this approach. The analysis concluded that MBRP was not more effective at preventing substance use relapses than other treatments such as health education and cognitive behavioral therapy. However, MBRP did slightly reduce cravings and symptoms of withdrawal associated with alcohol use disorders.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Post-Traumatic Stress Disorder

Studies have suggested that meditation and mindfulness may help reduce symptoms of post-traumatic stress disorder (PTSD).

  • A 2018 review supported by NCCIH examined the effects of meditation (in 2 studies, 179 total participants) and other mindfulness-based practices (in 6 studies, 332 total participants) on symptoms of PTSD. Study participants included veterans, nurses, and people who experienced interpersonal violence. Six of the eight studies reported that participants had a reduction of PTSD symptoms after receiving some form of mindfulness-based treatment.
  • A 2018 clinical trial funded by the U.S. Department of Defense compared the effectiveness of meditation, health education, and prolonged exposure therapy, a widely accepted treatment for PTSD recommended by the American Psychological Association. Prolonged exposure therapy helps people reduce their PTSD symptoms by teaching them to gradually remember traumatic memories, feelings, and situations. The study included 203 veterans with PTSD as a result of their active military service. The results of the study showed that meditation was as effective as prolonged exposure therapy at reducing PTSD symptoms and depression, and it was more effective than PTSD health education. The veterans who used meditation also showed improvement in mood and overall quality of life.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Cancer

Mindfulness-based approaches may improve the mental health of people with cancer.

  • A 2019 analysis of 29 studies (3,274 total participants) of mindfulness-based practices showed that use of mindfulness practices among people with cancer significantly reduced psychological distress, fatigue, sleep disturbance, pain, and symptoms of anxiety and depression. However, most of the participants were women with breast cancer, so the effects may not be similar for other populations or other types of cancer.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Weight Control and Eating Behavior

Studies have suggested possible benefits of meditation and mindfulness programs for losing weight and managing eating behaviors.

  • A 2017 review of 15 studies (560 total participants) looked at the effects of mindfulness-based practices on the mental and physical health of adults with obesity or who were overweight. The review found that these practices were very effective methods for managing eating behaviors but less effective at helping people lose weight. Mindfulness-based approaches also helped participants manage symptoms of anxiety and depression.
  • A 2018 analysis of 19 studies (1,160 total participants) found that mindfulness programs helped people lose weight and manage eating-related behaviors such as binge, emotional, and restrained eating. The results of the analysis showed that treatment programs, such as mindfulness-based stress reduction and mindfulness-based cognitive therapy, that combine formal meditation and mindfulness practices with informal mindfulness exercises were especially effective methods for losing weight and managing eating.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Attention-Deficit Hyperactivity Disorder

Several studies have been done on using meditation and mindfulness practices to improve symptoms of attention-deficit hyperactivity disorder (ADHD). However, the studies have not been of high quality and the results have been mixed, so evidence that meditation or mindfulness approaches will help people manage symptoms of ADHD is not conclusive.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} How do meditation and mindfulness work?

Some research suggests that meditation and mindfulness practices may affect the functioning or structure of the brain. Studies have used various methods of measuring brain activity to look for measurable differences in the brains of people engaged in mindfulness-based practices. Other studies have theorized that training in meditation and mindfulness practices can change brain activity. However, the results of these studies are difficult to interpret, and the practical implications are not clear.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} NCCIH-Funded Research

NCCIH supports a variety of meditation and mindfulness studies, including:

  • An evaluation of how the brain responds to the use of mindfulness meditation as part of a combined treatment for migraine pain.
  • A study of the effectiveness of mindfulness therapy and medication (buprenorphine) as a treatment for opioid use disorder.
  • A study of a mindfulness training program designed to help law enforcement officers improve their mental health by managing stress and increasing resilience.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Tips To Consider

  • Don’t use meditation or mindfulness to replace conventional care or as a reason to postpone seeing a health care provider about a medical problem.
  • Ask about the training and experience of the instructor of the meditation or mindfulness practice you are considering.
  • Take charge of your health—talk with your health care providers about any complementary health approaches you use. Together, you can make shared, well-informed decisions

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} For More Information

Nccih clearinghouse.

The NCCIH Clearinghouse provides information on NCCIH and complementary and integrative health approaches, including publications and searches of Federal databases of scientific and medical literature. The Clearinghouse does not provide medical advice, treatment recommendations, or referrals to practitioners.

Toll-free in the U.S.: 1-888-644-6226

Telecommunications relay service (TRS): 7-1-1

Website: https://www.nccih.nih.gov

Email: [email protected] (link sends email)

Know the Science

NCCIH and the National Institutes of Health (NIH) provide tools to help you understand the basics and terminology of scientific research so you can make well-informed decisions about your health. Know the Science features a variety of materials, including interactive modules, quizzes, and videos, as well as links to informative content from Federal resources designed to help consumers make sense of health information.

Explaining How Research Works (NIH)

Know the Science: How To Make Sense of a Scientific Journal Article

Understanding Clinical Studies (NIH)

A service of the National Library of Medicine, PubMed® contains publication information and (in most cases) brief summaries of articles from scientific and medical journals. For guidance from NCCIH on using PubMed, see How To Find Information About Complementary Health Approaches on PubMed .

Website: https://pubmed.ncbi.nlm.nih.gov/

NIH Clinical Research Trials and You

The National Institutes of Health (NIH) has created a website, NIH Clinical Research Trials and You, to help people learn about clinical trials, why they matter, and how to participate. The site includes questions and answers about clinical trials, guidance on how to find clinical trials through ClinicalTrials.gov and other resources, and stories about the personal experiences of clinical trial participants. Clinical trials are necessary to find better ways to prevent, diagnose, and treat diseases.

Website: https://www.nih.gov/health-information/nih-clinical-research-trials-you

Research Portfolio Online Reporting Tools Expenditures & Results (RePORTER)

RePORTER is a database of information on federally funded scientific and medical research projects being conducted at research institutions.

Website: https://reporter.nih.gov

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Key References

  • Anheyer D, Leach MJ, Klose P, et al.  Mindfulness-based stress reduction for treating chronic headache: a systematic review and meta-analysis . Cephalalgia . 2019;39(4):544-555.
  • Black LI, Barnes PM, Clarke TC, Stussman BA, Nahin RL.  Use of yoga, meditation, and chiropractors among U.S. children aged 4–17 years . NCHS Data Brief, no 324. Hyattsville, MD: National Center for Health Statistics. 2018.
  • Breedvelt JJF, Amanvermez Y, Harrer M, et al.  The effects of meditation, yoga, and mindfulness on depression, anxiety, and stress in tertiary education students: a meta-analysis . Frontiers in Psychiatry . 2019;10:193. 
  • Burke A, Lam CN, Stussman B, et al.  Prevalence and patterns of use of mantra, mindfulness and spiritual meditation among adults in the United States . BMC Complementary and Alternative Medicine. 2017;17(1):316.
  • Carrière K, Khoury B, Günak MM, et al.  Mindfulness‐based interventions for weight loss: a systematic review and meta‐analysis . Obesity Reviews . 2018;19(2):164-177. 
  • Cavicchioli M, Movalli M, Maffei C.  The clinical efficacy of mindfulness-based treatments for alcohol and drugs use disorders: a meta-analytic review of randomized and nonrandomized controlled trials . European Addiction Research . 2018;24(3):137-162.
  • Cillessen L, Johannsen M, Speckens AEM, et al.  Mindfulness‐based interventions for psychological and physical health outcomes in cancer patients and survivors: a systematic review and meta‐analysis of randomized controlled trials . Psychooncology . 2019;28(12):2257-2269.
  • Creswell JD.  Mindfulness interventions . Annual Review of Psychology. 2017;68:491-516.
  • Davidson RJ, Kaszniak AW.  Conceptual and methodological issues in research on mindfulness and meditation . American Psychologist. 2015;70(7):581-592.
  • Farias M, Maraldi E, Wallenkampf KC, et al.  Adverse events in meditation practices and meditation-based therapies: a systematic review . Acta Psychiatrica Scandinavica. 2020;142(5):374-393. 
  • Garland EL, Brintz CE, Hanley AW, et al.  Mind-body therapies for opioid-treated pain: a systematic review and meta-analysis . JAMA Internal Medicine . 2020;180(1):91-105.
  • Goldberg SB, Tucker RP, Greene PA, et al. Mindfulness-based interventions for psychiatric disorders: a systematic review and meta-analysis . Clinical Psychology Review . 2018;59:52-60.
  • Grant S, Colaiaco B, Motala A, et al.  Mindfulness-based relapse prevention for substance use disorders: a systematic review and meta-analysis . Journal of Addiction Medicine . 2017;11(5):386-396. 
  • Haller H, Breilmann P, Schröter M et al.  A systematic review and meta‑analysis of acceptance and mindfulness‑based interventions for DSM‑5 anxiety disorders . Scientific Reports . 2021;11(1):20385.
  • Hilton L, Hempel S, Ewing BA, et al.  Mindfulness meditation for chronic pain: systematic review and meta-analysis . Annals of Behavioral Medicine. 2017;51(2):199-213.
  • Hirshberg MJ, Goldberg SB, Rosenkranz M, et al.  Prevalence of harm in mindfulness-based stress reduction . Psychological Medicine. August 18, 2020. [Epub ahead of print]. 
  • Intarakamhang U, Macaskill A, Prasittichok P.  Mindfulness interventions reduce blood pressure in patients with non-communicable diseases: a systematic review and meta-analysis . Heliyon. 2020;6(4):e03834.
  • Khoo E-L, Small R, Cheng W, et al.  Comparative evaluation of group-based mindfulness-based stress reduction and cognitive behavioural therapy for the treatment and management of chronic pain: a systematic review and network meta-analysis . Evidence-Based Mental Health.  2019;22(1):26-35.
  • Levine GN, Lange RA, Bairey-Merz CN, et al.  Meditation and cardiovascular risk reduction: a scientific statement from the American Heart Association . Journal of the American Heart Association. 2017;6(10):e002218.
  • Nidich S, Mills PJ, Rainforth M, et al.  Non-trauma-focused meditation versus exposure therapy in veterans with post-traumatic stress disorder: a randomised controlled trial . Lancet Psychiatry . 2018;5(12):975-986.
  • Niles BL, Mori DL, Polizzi C, et al.  A systematic review of randomized trials of mind-body interventions for PTSD . Journal of Clinical Psychology . 2018;74(9):1485-1508.
  • Rogers JM, Ferrari M, Mosely K, et al.  Mindfulness-based interventions for adults who are overweight or obese: a meta-analysis of physical and psychological health outcomes . Obesity Reviews . 2017;18(1):51-67. 
  • Rosenkranz MA, Dunne JD, Davidson RJ.  The next generation of mindfulness-based intervention research: what have we learned and where are we headed? Current Opinion in Psychology. 2019;28:179-183.
  • Rusch HL, Rosario M, Levison LM, et al.  The effect of mindfulness meditation on sleep quality: a systematic review and meta-analysis of randomized controlled trials . Annals of the New York Academy of Sciences . 2019;1445(1):5-16. 
  • Schell LK, Monsef I, Wöckel A, et al. Mindfulness-based stress reduction for women diagnosed with breast cancer. Cochrane Database of Systematic Reviews. 2019;3(3):CD011518. Accessed at cochranelibrary.com on June 3, 2022.
  • Semple RJ, Droutman V, Reid BA.  Mindfulness goes to school: things learned (so far) from research and real-world experiences . Psychology in the Schools. 2017;54(1):29-52.
  • Shires A, Sharpe L, Davies JN, et al.  The efficacy of mindfulness-based interventions in acute pain: a systematic review and meta-analysis . Pain . 2020;161(8):1698-1707. 
  • Van Dam NT, van Vugt MK, Vago DR, et al.  Mind the hype: a critical evaluation and prescriptive agenda for research on mindfulness and meditation . Perspectives on Psychological Science. 2018;13(1):36-61. 

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Other References

  • American Academy of Pediatrics Section on Integrative Medicine. Mind-body therapies in children and youth. Pediatrics . 2016;138(3):e20161896.
  • Coronado-Montoya S, Levis AW, Kwakkenbos L, et al. Reporting of positive results in randomized controlled trials of mindfulness-based mental health interventions. PLoS One . 2016;11(4):e0153220.
  • Dakwar E, Levin FR. The emerging role of meditation in addressing psychiatric illness, with a focus on substance use disorders. Harvard Review of Psychiatry . 2009;17(4):254-267.
  • Goyal M, Singh S, Sibinga EMS, et al. Meditation programs for psychological stress and well-being: a systematic review and meta-analysis. JAMA Internal Medicine. 2014;174(3):357-368.
  • Institute of Medicine (US) Committee on Advancing Pain Research, Care, and Education. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research . Washington, DC: National Academies Press; 2011. 
  • Kabat-Zinn J, Massion AO, Kristeller J, et al. Effectiveness of a meditation-based stress reduction program in the treatment of anxiety disorders. American Journal of Psychiatry. 1992;149(7):936-943.
  • Ludwig DS, Kabat-Zinn J. Mindfulness in medicine. JAMA. 2008;300(11):1350-1352.
  • McKeering P, Hwang Y-S. A systematic review of mindfulness-based school interventions with early adolescents. Mindfulness . 2019;10:593-610.
  • Muratori P, Conversano C, Levantini V, et al. Exploring the efficacy of a mindfulness program for boys with attention-deficit hyperactivity disorder and oppositional defiant disorder. Journal of Attention Disorders . 2021;25(11):1544-1553.
  • Nahin RL, Rhee A, Stussman B. Use of complementary health approaches overall and for pain management by US adults. JAMA. 2024;331(7):613-615.
  • Poissant H, Mendrek A, Talbot N, et al. Behavioral and cognitive impacts of mindfulness-based interventions on adults with attention-deficit hyperactivity disorder: a systematic review. Behavioural Neurology . 2019;2019:5682050.
  • Skelly AC, Chou R, Dettori JR, et al. Noninvasive Nonpharmacological Treatment for Chronic Pain: A Systematic Review Update. Comparative Effectiveness Review no. 227. Rockville, MD: Agency for Healthcare Research and Quality; 2020. AHRQ publication no. 20-EHC009.
  • Stieger JR, Engel S, Jiang H, et al. Mindfulness improves brain–computer interface performance by increasing control over neural activity in the alpha band. Cerebral Cortex . 2021;31(1):426-438.
  • Teasdale JD, Segal ZV, Williams JMG, et al. Prevention of relapse/recurrence in major depression by mindfulness-based cognitive therapy. Journal of Consulting and Clinical Psychology . 2000;68(4):615-623.
  • Weng HY, Lewis-Peacock JA, Hecht FM, et al. Focus on the breath: brain decoding reveals internal states of attention during meditation. Frontiers in Human Neuroscience . 2020;14:336.
  • Yoshida K, Takeda K, Kasai T, et al. Focused attention meditation training modifies neural activity and attention: longitudinal EEG data in non-meditators. Social Cognitive and Affective Neuroscience . 2020;15(2):215-223.
  • Yuan JP, Connolly CG, Henje E, et al. Gray matter changes in adolescents participating in a meditation training. Frontiers in Human Neuroscience . 2020;14:319.
  • Zhang J, Díaz-Román A, Cortese S. Meditation-based therapies for attention-deficit/hyperactivity disorder in children, adolescents and adults: a systematic review and meta-analysis.  Evidence-Based Mental Health . 2018;21(3):87-94.

Acknowledgments

Thanks to Elizabeth Ginexi, Ph.D., Erin Burke Quinlan, Ph.D., and David Shurtleff, Ph.D., NCCIH, for their review of this 2022 publication.

This publication is not copyrighted and is in the public domain. Duplication is encouraged.

NCCIH has provided this material for your information. It is not intended to substitute for the medical expertise and advice of your health care provider(s). We encourage you to discuss any decisions about treatment or care with your health care provider. The mention of any product, service, or therapy is not an endorsement by NCCIH.

Related Topics

Pain: Considering Complementary Approaches (eBook)

For Consumers

8 Things to Know About Meditation and Mindfulness

For Health Care Providers

Use of Yoga, Meditation, and Chiropractic by Adults and Children

Mind and Body Approaches for Chronic Pain

Meditation - Systematic Reviews/Reviews/Meta-analyses (PubMed®)

Meditation - Randomized Controlled Trials (PubMed®)

Research Results

National Survey Reveals Increased Use of Yoga, Meditation, and Chiropractic Care Among U.S. Adults

National Survey Reveals Increased Use of Yoga and Meditation Among U.S. Children

Mindfulness-Based Stress Reduction, Cognitive-Behavioral Therapy Shown To Be Cost Effective for Chronic Low-Back Pain

  • Open access
  • Published: 28 August 2024

The design, implementation, and evaluation of a blended (in-person and virtual) Clinical Competency Examination for final-year nursing students

  • Rita Mojtahedzadeh 1 ,
  • Tahereh Toulabi 2 , 3 &
  • Aeen Mohammadi 1  

BMC Medical Education volume  24 , Article number:  936 ( 2024 ) Cite this article

7 Altmetric

Metrics details

Introduction

Studies have reported different results of evaluation methods of clinical competency tests. Therefore, this study aimed to design, implement, and evaluate a blended (in-person and virtual) Competency Examination for final-year Nursing Students.

This interventional study was conducted in two semesters of 2020–2021 using an educational action research method in the nursing and midwifery faculty. Thirteen faculty members and 84 final-year nursing students were included in the study using a census method. Eight programs and related activities were designed and conducted during the examination process. Students completed the Spielberger Anxiety Inventory before the examination, and both faculty members and students completed the Acceptance and Satisfaction questionnaire.

The results of the analysis of focused group discussions and reflections indicated that the virtual CCE was not capable of adequately assessing clinical skills. Therefore, it was decided that the CCE for final-year nursing students would be conducted using a blended method. The activities required for performing the examination were designed and implemented based on action plans. Anxiety and satisfaction were also evaluated as outcomes of the study. There was no statistically significant difference in overt, covert, and overall anxiety scores between the in-person and virtual sections of the examination ( p  > 0.05). The mean (SD) acceptance and satisfaction scores for students in virtual, in-person, and blended sections were 25.49 (4.73), 27.60 (4.70), and 25.57 (4.97), respectively, out of 30 points, in which there was a significant increase in the in-person section compared to the other sections. ( p  = 0.008). The mean acceptance and satisfaction scores for faculty members were 30.31 (4.47) in the virtual, 29.86 (3.94) in the in-person, and 30.00 (4.16) out of 33 in the blended, and there was no significant difference between the three sections ( p  = 0.864).

Evaluating nursing students’ clinical competency using a blended method was implemented and solved the problem of students’ graduation. Therefore, it is suggested that the blended method be used instead of traditional in-person or entirely virtual exams in epidemics or based on conditions, facilities, and human resources. Also, the use of patient simulation, virtual reality, and the development of necessary virtual and in-person training infrastructure for students is recommended for future research. Furthermore, considering that the acceptance of traditional in-person exams among students is higher, it is necessary to develop virtual teaching strategies.

Peer Review reports

The primary mission of the nursing profession is to educate competent, capable, and qualified nurses with the necessary knowledge and skills to provide quality nursing care to preserve and improve the community’s health [ 1 ]. Clinical education is one of the most essential and fundamental components of nursing education, in which students gain clinical experience by interacting with actual patients and addressing real problems. Therefore, assessing clinical skills is very challenging. The main goal of educational evaluation is to improve, ensure, and enhance the quality of the academic program. In this regard, evaluating learners’ performance is one of the critical and sensitive aspects of the teaching and learning process. It is considered one of the fundamental elements of the educational program [ 2 ]. The study area is educational evaluation.

Various methods are used to evaluate nursing students. The Objective Structured Clinical Examination (OSCE) is a valid and reliable method for assessing clinical competence [ 1 , 2 ]. In the last twenty years, the use of OSCE has increased significantly in evaluating medical and paramedical students to overcome the limitations of traditional practical evaluation systems [ 3 , 4 ]. The advantages of this method include providing rapid feedback, uniformity for all examinees, and providing conditions close to reality. However, the time-consuming nature and the need for a lot of personnel and equipment are some disadvantages of OSCE [ 5 , 6 ]. Additionally, some studies have shown that this method is anxiety-provoking for some students and, due to time constraints, being observed by the evaluator and other factors can cause dissatisfaction among students [ 7 , 8 ].

However, some studies have also reported that this method is not only not associated with high levels of stress among students [ 9 ] but also has higher satisfaction than traditional evaluation methods [ 4 ]. In addition, during the COVID-19 pandemic, problems such as overcrowding and student quarantine during the exam have arisen. Therefore, reducing time and costs, eliminating or reducing the tiring quarantine time, optimizing the exam, utilizing all facilities for simulating the clinical environment, using innovative methods for conducting the exam, reducing stress, increasing satisfaction, and ultimately preventing the transmission of COVID-19 are significant problems that need to be further investigated.

Studies show that using virtual space as an alternative solution is strongly felt [ 10 , 11 , 12 ]. In the fall of 2009, following the outbreak of H1N1, educational classes in the United States were held virtually [ 13 ]. Also, in 2005, during Hurricane Katrina, 27 universities in the Gulf of Texas used emergency virtual education and evaluation [ 14 ].

One of the challenges faced by healthcare providers in Iran, like most countries in the world, especially during the COVID-19 outbreak, was the shortage of nursing staff [ 15 , 16 ]. Also, in evaluating and conducting CCE for final-year students and subsequent job seekers in the Clinical Skills Center, problems such as student overcrowding and the need for quarantine during the implementation of OSCE existed. This problem has been reported not only for us but also in other countries [ 17 ]. The intelligent use of technology can solve many of these problems. Therefore, almost all educational institutions have quickly started changing their policies’ paradigms to introduce online teaching and evaluation methods [ 18 , 19 ].

During the COVID-19 pandemic, for the first time, this exam was held virtually in our school. However, feedback from professors and students and the experiences of researchers have shown that the virtual exam can only partially evaluate clinical and practical skills in some stations, such as basic skills, resuscitation, and pediatrics [ 20 ].

Additionally, using OSCE in skills assessment facilitates the evaluation of psychological-motor knowledge and attitudes and helps identify strengths and weaknesses [ 21 ]. Clinical competency is a combination of theoretical knowledge and clinical skills. Therefore, using an effective blended method focusing on the quality and safety of healthcare that measures students’ clinical skills and theoretical expertise more accurately in both in-person and virtual environments is essential. The participation of students, professors, managers, education and training staff, and the Clinical Skills Center was necessary to achieve this important and inevitable goal. Therefore, the Clinical Competency Examination (CCE) for nursing students in our nursing and midwifery school was held in the form of an educational action research process to design, implement, and evaluate a blended method. Implementing this process during the COVID-19 pandemic, when it was impossible to hold an utterly in-person exam, helped improve the quality of the exam and address its limitations and weaknesses while providing the necessary evaluation for students.

The innovation of this research lies in evaluating the clinical competency of final-year nursing students using a blended method that focuses on clinical and practical aspects. In the searches conducted, only a few studies have been done on virtual exams and simulations, and a similar study using a blended method was not found.

The research investigates the scientific and clinical abilities of nursing students through the clinical competency exam. This exam, traditionally administered in person, is a crucial milestone for final-year nursing students, marking their readiness for graduation. However, the unforeseen circumstances of the COVID-19 pandemic and the resulting restrictions rendered in-person exams impractical in 2020. This necessitated a swift and significant transition to an online format, a decision that has profound implications for the future of nursing education. While the adoption of online assessment was a necessary step to ensure student graduation and address the nursing workforce shortage during the pandemic, it was not without its challenges. The accurate assessment of clinical skills, such as dressing and CPR, proved to be a significant hurdle. This underscored the urgent need for a change in the exam format, prompting a deeper exploration of innovative solutions.

To address these problems, the research was conducted collaboratively with stakeholders, considering the context and necessity for change in exam administration. Employing an Action Research (AR) approach, a blend of online and in-person exam modalities was adopted. Necessary changes were implemented through a cyclic process involving problem identification, program design, implementation, reflection, and continuous evaluation.

The research began by posing the following questions:

What are the problems of conducting the CCE for final-year nursing students during COVID-19?

How can these problems be addressed?

What are the solutions and suggestions from the involved stakeholders?

How can the CCE be designed, implemented, and evaluated?

What is the impact of exam type on student anxiety and satisfaction?

These questions guided the research in exploring the complexities of administering the CCE amidst the COVID-19 pandemic and in devising practical solutions to ensure the validity and reliability of the assessment while meeting stakeholders’ needs.

Materials and methods

Research setting, expert panel members, job analysis, and role delineation.

This action research was conducted at the Nursing and Midwifery School of Lorestan University of Medical Sciences, with a history of approximately 40 years. The school accommodates 500 undergraduate and graduate nursing students across six specialized fields, with 84 students enrolled in their final year of undergraduate studies. Additionally, the school employs 26 full-time faculty members in nursing education departments.

An expert panel was assembled, consisting of faculty members specializing in various areas, including medical-surgical nursing, psychiatric nursing, community health nursing, pediatric nursing, and intensive care nursing. The panel also included educational department managers and the examination department supervisor. Through focused group discussions, the panel identified and examined issues regarding the exam format, and members proposed various solutions. Subsequently, after analyzing the proposed solutions and drawing upon the panel members’ experiences, specific roles for each member were delineated.

Sampling and participant selection

Given the nature of the research, purposive sampling was employed, ensuring that all individuals involved in the design, implementation, and evaluation of the exam participated in this study.

The participants in this study included final-year nursing students, faculty members, clinical skills center experts, the dean of the school, the educational deputy, group managers, and the exam department head. However, in the outcome evaluation phase, 13 faculty members participated in-person and virtually (26 times), and 84 final-year nursing students enrolled in the study using a census method in two semesters of 2020–2021 completed the questionnaires, including 37 females and 47 males. In addition, three male and ten female faculty members participated in this study; of this number, 2 were instructors, and 11 were assistant professors.

Data collection tools

In order to enhance the validity and credibility of the study and thoroughly examine the results, this study utilized a triangulation method consisting of demographic information, focus group discussions, the Spielberger Anxiety Scale questionnaire, and an Acceptance and Satisfaction Questionnaire.

Demographic information

A questionnaire was used to gather demographic information from both students and faculty members. For students, this included age, gender, and place of residence, while for faculty members, it included age, gender, field of study, and employment status.

Focus group discussion

Multiple focused group discussions were conducted with the participation of professors, administrators, experts, and students. These discussions were held through various platforms such as WhatsApp Skype, and in-person meetings while adhering to health protocols. The researcher guided the talks toward the research objectives and raised fundamental questions, such as describing the strengths and weaknesses of the previous exam, determining how to conduct the CCE considering the COVID-19 situation, deciding on virtual and in-person stations, specifying the evaluation checklists for stations, and explaining the weighting and scoring of each station.

Spielberger anxiety scale questionnaire

This study used the Spielberger Anxiety Questionnaire to measure students’ overt and covert anxiety levels. This questionnaire is an internationally standardized tool known as the STAI questionnaire that measures both overt (state) and covert (trait) anxiety [ 22 ]. The state anxiety scale (Form Y-1 of STAI) comprises twenty statements that assess the individual’s feelings at the moment of responding. The trait anxiety scale (Form Y-2 of STAI) also includes twenty statements that measure individuals’ general and typical feelings. The scores of each of the two scales ranged from 20 to 80 in the current study. The reliability coefficient of the test for the apparent and hidden anxiety scales, based on Cronbach’s alpha, was confirmed to be 0.9084 and 0.9025, respectively [ 23 , 24 ]. Furthermore, in the present study, Cronbach’s alpha value for the total anxiety questionnaire, overt anxiety, and covert anxiety scales were 0.935, 0.921, and 0.760, respectively.

Acceptance and satisfaction questionnaire

The Acceptability and Satisfaction Questionnaire for Clinical Competency Test was developed by Farajpour et al. (2012). The student questionnaire consists of ten questions, and the professor questionnaire consists of eleven questions, using a four-point Likert scale. Experts have confirmed the validity of these questionnaires, and their Cronbach’s alpha coefficients have been determined to be 0.85 and 0.87 for the professor and student questionnaires, respectively [ 6 ]. In the current study, ten medical education experts also confirmed the validity of the questionnaires. Regarding internal reliability, Cronbach’s alpha coefficients for the student satisfaction questionnaire for both virtual and in-person sections were 0.76 and 0.87, respectively. The professor satisfaction questionnaires were 0.84 and 0.87, respectively. An online platform was used to collect data for the virtual exam.

Data analysis and rigor of study

Qualitative data analysis was conducted using the method proposed by Graneheim and Lundman. Additionally, the criteria established by Lincoln and Guba (1985) were employed to confirm the rigor and validity of the data, including credibility, transferability, dependability, and confirmability [ 26 ].

In this research, data synthesis was performed by combining the collected data with various tools and methods. The findings of this study were reviewed and confirmed by participants, supervisors, mentors, and experts in qualitative research, reflecting their opinions on the alignment of findings with their experiences and perspectives on clinical competence examinations. Therefore, the member check method was used to validate credibility.

Moreover, efforts were made in this study to provide a comprehensive description of the research steps, create a suitable context for implementation, assess the views of others, and ensure the transferability of the results.

Furthermore, researchers’ interest in identifying and describing problems, reflecting, designing, implementing, and evaluating clinical competence examinations, along with the engagement of stakeholders in these examinations, was ensured by the researchers’ long-term engagement of over 25 years with the environment and stakeholders, seeking their opinions and considering their ideas and views. These factors contributed to ensuring confirmability.

In this research, by reflecting the results to the participants and making revisions by the researchers, problem clarification and solution presentation, design, implementation, and evaluation of operational programs with stakeholder participation and continuous presence were attempted to prevent biases, assumptions, and research hypotheses, and to confirm dependability.

Data analysis was performed using SPSS version 21, and descriptive statistical tests (absolute and relative frequency, mean, and standard deviation) and inferential tests (paired t-test, independent t-test, and analysis of variance) were used. The significance level was set at 0.05. Parametric tests were used based on the normality of the data according to the Kolmogorov-Smirnov statistical test.

Given that conducting the CCE for final-year nursing students required the active participation of managers, faculty members, staff, and students, and to answer the research question “How can the CCE for final-year nursing students be conducted?” and achieve the research objective of “designing, implementing, and evaluating the clinical competency exam,” the action research method was employed.

The present study was conducted based on the Dickens & Watkins model. There are four primary stages (Fig.  1 ) in the cyclical action research process: reflect, plan, act, observe, and then reflect to continue through the cycle [ 27 ].

figure 1

The cyclical process of action research [ 27 ]

Stage 1: Reflection

Identification of the problem.

According to the educational regulations, final semester nursing students must complete the clinical competency exam. However, due to the COVID-19 pandemic and the critical situation in most provinces, inter-city travel restrictions, and insufficient dormitory space, conducting the CCE in-person was not feasible.

This exam was conducted virtually at our institution. However, based on the reflections from experts, researchers have found that virtual exams can only partially assess clinical and practical skills in certain stations, such as basic skills, resuscitation, and pediatrics. Furthermore, utilizing Objective Structured Clinical Examination (OSCE) in skills assessment facilitates the evaluation of psychomotor skills, knowledge, and attitudes, aiding in identifying strengths and weaknesses.

P3, “Due to the COVID-19 pandemic and the critical situation in most provinces, inter-city travel restrictions, and insufficient dormitory space, conducting the CCE in-person is not feasible.”

Stage 2: Planning

Based on the reflections gathered from the participants, the exam was designed using a blended approach (combining in-person and virtual components) as per the schedule outlined in Fig.  2 . All planned activities for the blended CCE for final-year nursing students were executed over two semesters.

P5, “Taking the exam virtually might seem easier for us and the students, but in my opinion, it’s not realistic. For instance, performing wound dressing or airway management is very practical, and it’s not possible to assess students with a virtual scenario. We need to see them in person.”

P6"I believe it’s better to conduct those activities that are highly practical in person, but for those involving communication skills like report writing, professional ethics, etc., we can opt for virtual assessment.”

figure 2

Design and implementation of the blended CCE

Stage 3: Act

Cce implementation steps.

The CCE was conducted based on the flowchart in Fig.  3 and the following steps:

figure 3

Steps for conducting the CCE for final-year nursing students using a blended method

Step 1: Designing the framework for conducting the blended Clinical Competency Examination

The panelists were guided to design the blended exam in focused group sessions and virtual panels based on the ADDIE (Analysis, Design, Development, Implementation, Evaluation) model [ 28 ]. Initially, needs assessment and opinion polling were conducted, followed by the operational planning of the exam, including the design of the blueprint table (Table  1 ), determination of station types (in-person or virtual), designing question stems in the form of scenarios, creating checklists and station procedure guides by expert panel groups based on participant analysis, and the development of exam implementation guidelines with participant input [ 27 ]. The design, execution, and evaluation were as follows:

In-person and virtual meetings with professors were held to determine the exam schedule, deadlines for submitting checklists, decision-making regarding the virtual or in-person nature of stations based on the type of skill (practical, communication), and presenting problems and solutions. Based on the decisions, primary skill stations, as well as cardiac and pediatric resuscitation stations, were held in person. In contrast, virtual stations for health, nursing ethics, nursing reports, nursing diagnosis, physical examinations, and psychiatric nursing were held.

News about the exam was communicated to students through the college website and text messages. Then, an online orientation session was held on Skype with students regarding the need assessment of pre-exam educational workshops, virtual and in-person exam standards, how to use exam software, how to conduct virtual exams, explaining the necessary infrastructure for participating in the exam by students, completing anxiety and satisfaction questionnaires, rules and regulations, how to deal with rejected individuals, and exam testing and Q&A. Additionally, a pre-exam in-person orientation session was held.

To inform students about the entire educational process, the resources and educational content recommended by the professors, including PDF files, photos and videos, instructions, and links, were shared through a virtual group on the social media messenger, and scientific information was also, questions were asked and answered through this platform.

Correspondence and necessary coordination were made with the university clinical skills center to conduct in-person workshops and exams.

Following the Test-centered approach, the Angoff Modified method [ 29 , 30 ] was used to determine the scoring criteria for each station by panelists tasked with assigning scores.

Additionally, in establishing standards for this blended CCE for fourth-year nursing students, for whom graduation was a prerequisite, the panelists, as experienced clinical educators familiar with the performance and future roles of these students and the assessment method of the blended exam, were involved [ 29 , 30 ](Table 1 ).

Step 2: Preparing the necessary infrastructure for conducting the exam

Software infrastructure.

The pre- and post-virtual exam questions, scenarios, and questionnaires were uploaded using online software.

The exam was conducted on a trial basis in multiple sessions with the participation of several faculty members, and any issues were addressed. Students were authenticated to enter the exam environment via email and personal information verification. The questions for each station were designed and entered into the software by the respective station instructors and the examination coordinator, who facilitated the exam. The questions were formatted as clinical scenarios, images, descriptive questions, and multiple-choice questions, emphasizing the clinical and practical aspects. This software had various features for administering different types of exams and various question formats, including multiple-choice, descriptive, scenario-based, image-based, video-based, matching, Excel output, and graphical and descriptive statistical analyses. It also had automatic questionnaire completion, notification emails, score addition to questionnaires, prevention of multiple answer submissions, and the ability to upload files up to 4 gigabytes. Student authentication was based on national identification numbers and student IDs, serving as user IDs and passwords. Students could enter the exam environment using their email and multi-level personal information verification. If the information did not match, individuals could not access the exam environment.

Checklists and questionnaires

A student list was prepared, and checklists for the in-person exam and anxiety and satisfaction questionnaires were reproduced.

Empowerment workshops for professors and education staff

Educational needs of faculty members and academic staff include conducting clinical competency exams using the OSCE method; simulating and evaluating OSCE exams; designing standardized questions, checklists, and scenarios; innovative approaches in clinical evaluations; designing physical spaces and setting up stations; and assessing ethics and professional commitment in clinical competency exams.

Student empowerment programs

According to the students’ needs assessment results, in-person workshops on cardiopulmonary resuscitation and airway management and online workshops were held on health, pediatrics, cardiopulmonary resuscitation, ethics, nursing diagnosis, and report writing through Skype messenger. In addition, vaccination notes, psychiatric nursing, and educational files on clinical examinations and basic skills were recorded by instructors and made available to students via virtual groups.

Step 3: CCE implementation

The CCE was held in two parts, in-person and virtual.

In-person exam

The OSCE method was used for this section of the exam. The basic skills station exam included dressing and injections, and the CPR and pediatrics stations were conducted in person. The students were divided into two groups of 21 each semester, and the exam was held in two shifts. While adhering to quarantine protocols, the students performed the procedures for seven minutes at each station, and instructors evaluated them using a checklist. An additional minute was allotted for transitioning to the next station.

Virtual exam

The professional ethics, nursing diagnosis, nursing report, health, psychiatric nursing, and physical examination stations were conducted virtually after the in-person exam. This exam was made available to students via a primary and a secondary link in a virtual space at the scheduled time. Students were first verified, and after the specified time elapsed, the ability to respond to inactive questions and submitted answers was sent. During the exam, full support was provided by the examination center.

The examination coordinator conducted the entire virtual exam process. The exam results were announced 48 h after the exam. A passing grade was considered to be a score higher than 60% in all stations. Students who failed in various stations were given the opportunity for remediation based on faculty feedback, either through additional study or participation in educational workshops. Subsequent exams were held one week apart from the initial exam. It was stipulated that students who failed in more than half of the stations would be evaluated in the following semester. If they failed in more than three sessions at a station, a decision would be made by the faculty’s educational council. However, no students met these situations.

Step 4: Evaluation

The evaluation of the exam was conducted by examiners using a checklist, and the results were announced as pass or fail.

Stage 4: Observation / evaluation

In this study, both process and outcome evaluations were conducted:

Process evaluation

All programs and activities implemented during the test design and administration process were evaluated in the process evaluation. This evaluation was based on operational program control and reflections received from participants through group discussion sessions and virtual groups.

Sample reflections received from faculty members, managers, experts, and students through group discussions and social messaging platforms after the changes:

P7: “The implementation of the blended virtual exam, in the conditions of the COVID-19 crisis where the possibility of holding in-person exams was not fully available, in my opinion, was able to improve the quality of exam administration and address the limitations and weaknesses of the exam entirely virtually.”

P5: “In my opinion, this blended method was able to better evaluate students in terms of clinical readiness for entering clinical practice.”

Outcomes evaluation

The study outcomes were student anxiety, student acceptance and satisfaction, and faculty acceptance and satisfaction. Before the start of the in-person and virtual exams, the Spielberger Anxiety Questionnaire was provided to students. Additionally, immediately after the exam, students and instructors completed the acceptance and satisfaction questionnaire for the relevant section. After the exam, students and instructors completed the acceptance and satisfaction questionnaire again for the entire exam process, including feasibility, satisfaction with its implementation, and educational impact.

Design framework and implementation for the blended Clinical Competency Examination

The exam was planned using a blended method (part in-person, part virtual) according to the Fig.  2 schedule, and all planned programs for the blended CCE for final-year nursing students were implemented in two semesters.

Evaluation results

In this study, 84 final-year nursing students participated, including 37 females (44.05%) and 47 males (55.95%). Among them, 28 (33.3%) were dormitory residents, and 56 (66.7%) were non-dormitory residents.

In this study, both process and outcome evaluations were conducted.

All programs and activities implemented during the test design and administration process were evaluated in the process evaluation (Table  2 ). This evaluation was based on operational program control and reflections received from participants through group discussion sessions and virtual groups on social media.

Anxiety and satisfaction were examined and evaluated as study outcomes, and the results are presented below.

The paired t-test results in Table  3 showed no statistically significant difference in overt anxiety ( p  = 0.56), covert anxiety ( p  = 0.13), and total anxiety scores ( p  = 0.167) between the in-person and virtual sections before the blended Clinical Competency Examination.

However, the mean (SD) of overt anxiety in persons in males and females was 49.27 (11.16) and 43.63 (13.60), respectively, and this difference was statistically significant ( p  = 0.03). Also, the mean (SD) of overt virtual anxiety in males and females was 45.70 (11.88) and 51.00 (9.51), respectively, and this difference was statistically significant ( p  = 0.03). However, there was no significant difference between males and females regarding covert anxiety in the person ( p  = 0.94) and virtual ( p  = 0.60) sections. In addition, the highest percentage of overt anxiety was apparent in the virtual section among women (15.40%) and the in-person section among men (21.28%) and was prevalent at a moderate to high level.

According to Table  4 , One-way analysis of variance showed a significant difference between the virtual, in-person, and blended sections in terms of acceptance and satisfaction scores.

The results of the One-way analysis of variance showed that the mean (SD) acceptance and satisfaction scores of nursing students of the CCE in virtual, in-person, and blended sections were 25.49 (4.73), 27.60 (4.70), and 25.57 (4.97) out of 30, respectively. There was a significant difference between the three sections ( p  = 0.008).

In addition, 3 (7.23%) male and 10 (76.3%) female faculty members participated in this study; of this number, 2 (15.38%) were instructors, and 11 (84.62%) were assistant professors. Moreover, they were between 29 and 50 years old, with a mean (SD) of 41.37 (6.27). Furthermore, they had 4 to 20 years of work experience with a mean and standard deviation of 13.22(4.43).

The results of the analysis of variance showed that the mean (SD) acceptance and satisfaction scores of faculty members of the CCE in virtual, in-person, and blended sections were 30.31 (4.47), 29.86 (3.94), and 30.00 (4.16) out of 33, respectively. There was no significant difference between the three sections ( p  = 0.864).

This action research study showed that the blended CCE for nursing students is feasible and, depending on the conditions and objectives, evaluation stations can be designed and implemented virtually or in person.

The blended exam, combining in-person and virtual elements, managed to address some of the weaknesses of entirely virtual exams conducted in previous terms due to the COVID-19 pandemic. Given the pandemic conditions, the possibility of performing all in-person stations was not feasible due to the risk of students and evaluators contracting the virus, as well as the need for prolonged quarantine. Additionally, to meet the staffing needs of hospitals, nursing students needed to graduate. By implementing the blended exam idea and conducting in-person evaluations at clinical stations, the assessment of nursing students’ clinical competence was brought closer to reality compared to the entirely virtual method.

Furthermore, the need for human resources, station setup costs, and time spent was less than the entirely in-person method. Therefore, in pandemics or conditions where sufficient financial resources and human resources are not available, the blended approach can be utilized.

Additionally, the evaluation results showed that students’ total and overt anxiety in both virtual and in-person sections of the blended CCE did not differ significantly. However, the overt anxiety of female students in the virtual section and male students in the in-person section was considerably higher. Nevertheless, students’ covert anxiety related to personal characteristics did not differ in virtual and in-person exam sections. However, students’ acceptance and satisfaction in the in-person section were higher than in the virtual and blended sections, with a significant difference. The acceptance and satisfaction of faculty members from the CCE in in-person, virtual, and blended sections were the same and relatively high.

A blended CCE nursing competency exam was not found in the literature review. However, recent studies, especially during the COVID-19 pandemic, have designed and implemented this exam using virtual OSCE. Previously, the CCE was held in-person or through traditional OSCE methods.

During the COVID-19 pandemic, nursing schools worldwide faced difficulties administering clinical competency exams for students. The virtual simulation was used to evaluate clinical competency and develop nursing students’ clinical skills in the United States, including standard videos, home videos, and clinical scenarios. Additionally, an online virtual simulation program was designed to assess the clinical competency of senior nursing students in Hong Kong as a potential alternative to traditional clinical training [ 31 ].

A traditional in-person OSCE was also redesigned and developed through a virtual conferencing platform for nursing students at the University of Texas Medical Branch in Galveston. Survey findings showed that most professors and students considered virtual OSCE a highly effective tool for evaluating communication skills, obtaining a medical history, making differential diagnoses, and managing patients. However, professors noted that evaluating examination techniques in a virtual environment is challenging [ 32 ].

However, Biranvand reported that less than half of the nursing students believed the in-person OSCE was stressful [ 33 ]. At the same time, the results of another study showed that 96.2% of nursing students perceived the exam as anxiety-provoking [ 1 ]. Students believe that the stress of this exam is primarily related to exam time, complexity, and the execution of techniques, as well as confusion about exam methods [ 7 ]. In contrast to previous research results, in a study conducted in Egypt, 75% of students reported that the OSCE method has less stress than other examination methods [ 9 ]. However, there has yet to be a consensus across studies on the causes and extent of anxiety-provoking in the OSCE exam. In a study, the researchers found that in addition to the factors mentioned above, the evaluator’s presence could also be a cause of stress [ 34 ]. Another survey study showed that students perceived the OSCE method as more stressful than the traditional method, mainly due to the large number of stations, exam items, and time constraints [ 7 ]. Another study in Egypt, which designed two stages of the OSCE exam for 75 nursing students, found that 65.6% of students reported that the second stage exam was stressful due to the problem-solving station. In contrast, only 38.9% of participants considered the first-stage exam stressful [ 35 ]. Given that various studies have reported anxiety as one of the disadvantages of the OSCE exam, in this study, one of the outcomes evaluated was the anxiety of final-year nursing students. There was no significant difference in total anxiety and overt anxiety between students in the in-person and virtual sections of the blended Clinical Competency Examination. The overt anxiety was higher in male students in the in-person part and female students in the virtual section, which may be due to their personality traits, but further research is needed to confirm this. Moreover, since students’ total and overt anxiety in the in-person and virtual sections of the exam are the same in resource and workforce shortages or pandemics, the blended CCE is suggested as a suitable alternative to the traditional OSCE test. However, for generalization of the results, it is recommended that future studies consider three intervention groups, where all OSCE stations are conducted virtually in the first group, in-person in the second group, and a blend of in-person and virtual in the third group. Furthermore, the results of the study by Rafati et al. showed that the use of the OSCE clinical competency exam using the OSCE method is acceptable, valid, and reliable for assessing nursing skills, as 50% of the students were delighted, and 34.6% were relatively satisfied with the OSCE clinical competency exam. Additionally, 57.7% of the students believed the exam revealed learning weaknesses [ 1 ]. Another survey study showed that despite higher anxiety about the OSCE exam, students thought that this exam provides equal opportunities for everyone, is less complicated than the traditional method, and encourages the active participation of students [ 7 ]. In another study on maternal and infant care, 95% of the students believed the traditional exam only evaluates memory or practical skills. In contrast, the OSCE exam assesses knowledge, understanding, cognitive and analytical skills, communication, and emotional skills. They believed that explicit evaluation goals, appropriate implementation guidelines, appropriate scheduling, wearing uniforms, equipping the workroom, evaluating many skills, and providing fast feedback are among the advantages of this exam [ 36 ]. Moreover, in a survey study, most students were satisfied with the clinical environment offered by the OSCE CCE using the OSCE method, which is close to reality and involves a hypothetical patient in necessary situations that increase work safety. On the other hand, factors such as the scheduling of stations and time constraints have led to dissatisfaction among students [ 37 ].

Furthermore, another study showed that virtual simulations effectively improve students’ skills in tracheostomy suctioning, triage concepts, evaluation, life-saving interventions, clinical reasoning skills, clinical judgment skills, intravenous catheterization skills, role-based nursing care, individual readiness, critical thinking, reducing anxiety levels, and increasing confidence in the laboratory, clinical nursing education, interactive communication, and health evaluation skills. In addition to knowledge and skills, new findings indicate that virtual simulations can increase confidence, change attitudes and behaviors, and be an innovative, flexible, and hopeful approach for new nurses and nursing students [ 38 ].

Various studies have evaluated the satisfaction of students and faculty members with the OSCE Clinical Competency Examination. In this study, one of the evaluated outcomes was the acceptability and satisfaction of students and faculty members with implementing the CCE in blended, virtual, and in-person sections, which was relatively high and consistent with other studies. One crucial factor that influenced the satisfaction of this study was the provision of virtual justification sessions for students and coordination sessions with faculty members. Social messaging groups were formed through virtual and in-person communication, instructions were explained, expectations and tasks were clarified, and questions were answered. Students and faculty members could access the required information with minimal presence in medical education centers and time and cost constraints. Moreover, with the blended evaluation, the researcher’s communication with participants was more accessible. The written guidelines and uploaded educational content of the workshops enabled students to save the desired topics and review them later if needed. Students had easy access to scientific and up-to-date information, and the application of social messengers and Skype allowed for sending photos and videos, conducting workshops, and questions and answering questions. However, the clinical workshops and examinations were held in-person to ensure accuracy. The virtual part of the examination was conducted through online software, and questions focused on each station’s clinical and practical aspects. Students answered various questions, including multiple-choice, descriptive, scenario, picture, and puzzle questions, within a specified time. The blended examination evaluated clinical competency and did not delay these individuals’ entry into the job market. Moreover, during the severe human resource shortage faced by the healthcare system, the examination allowed several nurses to enter the country’s healthcare system. The blended examination can substitute in-person examination in pandemic and non-pandemic situations, saving facilities, equipment, and human resources. The results of this study can also serve as a model to guide other nursing departments that require appropriate planning and arrangements for Conducting Clinical Competency Examinations in blended formats. This examination can also be developed to evaluate students’ clinical performance.

One of the practical limitations of the study was the possibility that participants might need to complete the questionnaires accurately or be concerned about losing marks. Therefore, in a virtual session before the in-person exam, the objectives and importance of the study were explained. Participants were assured that it would not affect their evaluation and that they should not worry about losing marks. Additionally, active participation from all nursing students, faculty members, and staff was necessary for implementing this plan, achieved through prior coordination, virtual meetings, virtual group formation, and continuous reflection of results, creating the motivation for continued collaboration and participation.

Among other limitations of this study included the use of the Spielberger Anxiety Questionnaire to measure students’ anxiety. It is suggested that future studies use a dedicated anxiety questionnaire designed explicitly for pre-exam anxiety measurement. Another limitation of the current research was its implementation in nursing and midwifery faculty. Therefore, it is recommended that similar studies be conducted in nursing and midwifery faculties of other universities, as well as in related fields, and over multiple consecutive semesters. Additionally, for more precise effectiveness assessment, intervention studies in three separate virtual, in-person, and hybrid groups using electronic checklists are proposed. Furthermore, it is recommended that students be evaluated in terms of other dimensions and variables such as awareness, clinical skill acquisition, self-confidence, and self-efficacy.

Conducting in-person Clinical Competency Examination (CCE) during critical situations, such as the COVID-19 pandemic, is challenging. Instead of virtual exams, blended evaluation is a feasible approach to overcome the shortages of virtual ones and closely mimic in-person scenarios. Using a blended method in pandemics or resource shortages, it is possible to design, implement, and evaluate stations that evaluate basic and advanced clinical skills in in-person section, as well as stations that focus on communication, reporting, nursing diagnosis, professional ethics, mental health, and community health based on scenarios in a virtual section, and replace traditional OSCE exams. Furthermore, the use of patient simulators, virtual reality, virtual practice, and the development of virtual and in-person training infrastructure to improve the quality of clinical education and evaluation and obtain the necessary clinical competencies for students is recommended. Also, since few studies have been conducted using the blended method, it is suggested that future research be conducted in three intervention groups, over longer semesters, based on clinical evaluation models and influential on other outcomes such as awareness and clinical skill acquisition self-efficacy, confidence, obtained grades, and estimation of material and human resources costs. This approach reduced the need for physical space for in-person exams, ensuring participant quarantine and health safety with higher quality. Additionally, a more accurate assessment of nursing students’ practical abilities was achieved compared to a solely virtual exam.

Data availability

The datasets generated and analyzed during the current study are available on request from the corresponding author.

Rafati F, Pilevarzade M, Kiani A. Designing, implementing and evaluating once to assess nursing students’ clinical competence in Jiroft faculty of nursing and midwifery. Nurs Midwifery J. 2020;18(2):118–28.

Google Scholar  

Sadeghi T, Ravari A, Shahabinejad M, Hallakoei M, Shafiee M, Khodadadi H. Performing of OSCE method in nursing students of Rafsanjan University of Medical science before entering the clinical field in the year 2010: a process for quality improvement. Community Health J. 2012;6(1):1–8.

Ali GA, Mehdi AY, Ali HA. Objective structured clinical examination (OSCE) as an assessment tool for clinical skills in Sohag University: nursing students’ perspective. J Environ Stud. 2012;8(1):59–69.

Article   Google Scholar  

Bolourchifard F, Neishabouri M, Ashktorab T, Nasrollahzadeh S. Satisfaction of nursing students with two clinical evaluation methods: objective structured clinical examination (OSCE) and practical examination of clinical competence. Adv Nurs Midwifery. 2010;19(66):38–42.

Noohi E, Motesadi M, Haghdoost A. Clinical teachers’ viewpoints towards Objective Structured Clinical examination in Kerman University of Medical Science. Iran J Med Educ. 2008;8(1):113–20.

Reza Masouleh S, Zare A, Chehrzad M, Atrkarruoshan Z. Comparing two methods of evaluation, objective structured practical examination and traditional examination, on the satisfaction of students in Shahid Beheshti faculty of nursing and midwifery. J Holist Nurs Midwifery. 2008;18(1):22–30.

Bagheri M, Sadeghineajad Forotagheh M, Shaghayee Fallah M. The comparison of stressors in the assessment of basic clinical skills with traditional method and OSCE in nursing students. Life Sci J. 2012;9(4):1748–52.

Eldarir SH, El Sebaae HA, El Feky HA, Hussein HA, El Fadil NA, El Shaeer IH. An introduction of OSCE versus the traditional method in nursing education: Faculty capacity building and students’ perspectives. J Am Sci. 2010;6(12):1002–14.

Al-Zeftawy AM, Khaton SE. Student evaluation of an OSCE in Community Health nursing clinical course at Faculty of nursing, Tanta University. J Nurs Health Sci. 2016;5(4):68–76.

Hayter M, Jackson D. Pre-registration undergraduate nurses and the COVID-19 pandemic: students or workers? J Clin Nurs. 2020;29(17–18):3115–6.

Bayham J, Fenichel EP. Impact of school closures for COVID-19 on the US health-care workforce and net mortality: a modeling study. Lancet Public Health. 2020;5(5):e271–8.

Murphy MPA. COVID-19 and emergency eLearning: consequences of the securitization of higher education for post-pandemic pedagogy. Contemp Secur Policy. 2020;41(3):492–505.

Allen IE, Seaman J. Learning on demand: Online education in the United States, 2009.

Meyer KA, Wilson JL. The role of Online Learning in the emergency plans of Flagship Institutions. Online J Distance Learn Adm. 2011;14(1):110–8.

Kursumovic E, Lennane S, Cook TM. Deaths in healthcare workers due to COVID-19: the need for robust data and analysis. Anaesthesia. 2020;75(8):989–92.

Malekshahi Beiranvand F, Hatami Varzaneh A. Health care workers challenges during coronavirus outbreak: the qualitative study. J Res Behav Sci. 2020;18(2):180–90.

Boursicot K, Kemp S, Ong TH, Wijaya L, Goh SH, Freeman K, Curran I. Conducting a high-stakes OSCE in a COVID-19 environment. MedEdPublish. 2020;9:285–89.

Atwa H, Shehata MH, Al-Ansari A, Kumar A, Jaradat A, Ahmed J, Deifalla A, Online. Face-to-Face, or blended learning? Faculty and Medical Students’ perceptions during the COVID-19 pandemic: a mixed-method study. Front Med. 2022;9:791352.

Chan MMK, Yu DS, Lam VS, Wong JY. Online clinical training in the COVID-19 pandemic. Clin Teach. 2020;17(4):445–6.

Toulabi T, Yarahmadi S. Conducting a clinical competency test for nursing students in a virtual method during the Covid-19 pandemic: a case study. J Nurs Educ. 2021;9(5):33–42.

Meskell P, Burke E, Kropmans TJB, Byrne E, Setyonugroho W, Kennedy KM. Back to the future: an online OSCE Management Information System for nursing OSCEs. Nurse Educ Today. 2015;35(11):1091–6.

Lichtenberg PA. (2010). Handbook of Assessment in Clinical Gerontology, 2nd Ed. Academic Press, https://doi.org/10.1016/B978-0-12-374961-1.10030-2

Gholami Booreng F, Mahram B, Kareshki H. Construction and validation of a scale of research anxiety for students. IJPCP. 2017;23(1):78–93.

Esmaili M. A survey of the influence of Murita therapy on reducing the rate of anxiety in clients of counseling centers. Res Clin Psychol Couns. 2011;1(1):15–30.

Farajpour A, Amini M, Pishbin E, Arshadi H, Sanjarmusavi N, Yousefi J, Sarafrazyazdi M. Teachers’ and students’ satisfaction with DOPS Examination in Islamic Azad University of Mashhad, a study in Year 2012. Iran J Med Educ. 2014;14(2):165–73.

StraussAC, Corbin JM. Basics of qualitative research: grounded theory procedures and technique. 2nd ed. London: Sage, Newbury Park; 1998.

Dickens L, Watkins K. Action research: rethinking Lewin. Manage Learn. 1999;30(2):127–40.

Rezaeerad M, Nadri Kh, Mohammadi Etergoleh R. The effect of ADDIE (analysis, design, development, implementation, evaluation) designing method with emphasizing on mobile learning on students’ self-conception, development motivation and academic development in English course. Educational Adm Res Q. 2013;4(15):15–32.

Ben-David MF. AMEE Guide 18: standard setting in student assessment. Med Teach. 2000;22(2):120–30.

McKinley DW, Norcini JJ. How to set standards on performance-based examinations: AMEE Guide 85. Med Teach. 2014;36(2):97–110.

Fung JTC, Zhang W, Yeung MN, Pang MTH, Lam VSF, Chan BKY, Wong JYH. Evaluation of students perceived clinical competence and learning needs following an online virtual simulation education programmed with debriefing during the COVID-19 pandemic. Nurs Open. 2021;8(6):3045–54.

Luke S, Petitt E, Tombrella J, McGoff E. Virtual evaluation of clinical competence in nurse practitioner students. Med Sci Educ. 2021;31:1267–71.

Beiranvand SH, Hosseinabadi R, Ghasemi F, Anbari KH. An Assessment of nursing and Midwifery Student Veiwwpoin, Performance, and feedback with an objective structured clinical examination. J Nurs Educ. 2017;6(1):63–7.

Sheikh Abumasoudi R, Moghimian M, Hashemi M, Kashani F, Karimi T, Atashi V. Comparison of the Effect of Objective Structured Clinical evaluation (OSCE) with Direct and Indirect Supervision on nursing student’s test anxiety. J Nurs Educ. 2015;4(2):1–8.

Zahran EM, Taha EE. Students’ feedback on Objective Structured Clinical examinations (OSCEs) experience in emergency nursing. J High Inst Public Health. 2009;39(2):370–87.

Na A-G. Assessment of Students’ knowledge, clinical performance and satisfaction with objective structured clinical exam. Med J Cairo Univ. 2009;77(4):287–93.

Adib-Hajbaghery M, Yazdani M. Effects of OSCE on learning, satisfaction and test anxiety of nursing students: a review study. Iran J Med Educ. 2018;18:70–83.

Purwanti LE, Sukartini T, Kurniawati ND, Nursalam N, Susilowati T. Virtual Simulation in clinical nursing education to improve knowledge and clinical skills: Literature Review. Open Access Maced J Med Sci. 2022;10(F):396–404.

Download references

Acknowledgements

We want to thank the Research and Technology deputy of Smart University of Medical Sciences, Tehran, Iran, the faculty members, staff, and officials of the School of Nursing and Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran, and all individuals who participated in this study.

All steps of the study, including study design and data collection, analysis, interpretation, and manuscript drafting, were supported by the Deputy of Research of Smart University of Medical Sciences.

Author information

Authors and affiliations.

Department of E-Learning in Medical Education, Center of Excellence for E-learning in Medical Education, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Rita Mojtahedzadeh & Aeen Mohammadi

Department of Medical Education, Smart University of Medical Sciences, Tehran, Iran

Tahereh Toulabi

Cardiovascular Research Center, School of Nursing and Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran

You can also search for this author in PubMed   Google Scholar

Contributions

RM. Participating in study design, accrual of study participants, review of the manuscript, and critical revisions for important intellectual content. TT : The investigator; participated in study design, data collection, accrual of study participants, and writing and reviewing the manuscript. AM: Participating in study design, data analysis, accrual of study participants, and reviewing the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Tahereh Toulabi .

Ethics declarations

Ethics approval and consent to participate.

This action research was conducted following the participatory method. All methods were performed according to the relevant guidelines and regulations in the Declaration of Helsinki (ethics approval and consent to participate). The study’s aims and procedures were explained to all participants, and necessary assurance was given to them for the anonymity and confidentiality of their information. The results were continuously provided as feedback to the participants. Informed consent (explaining the goals and methods of the study) was obtained from participants. The Smart University of Medical Sciences Ethics Committee approved the study protocol (IR.VUMS.REC.1400.011).

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Mojtahedzadeh, R., Toulabi, T. & Mohammadi, A. The design, implementation, and evaluation of a blended (in-person and virtual) Clinical Competency Examination for final-year nursing students. BMC Med Educ 24 , 936 (2024). https://doi.org/10.1186/s12909-024-05935-9

Download citation

Received : 21 July 2023

Accepted : 20 August 2024

Published : 28 August 2024

DOI : https://doi.org/10.1186/s12909-024-05935-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Clinical Competency Examination (CCE)
  • Objective Structural Clinical Examination (OSCE)
  • Blended method
  • Satisfaction

BMC Medical Education

ISSN: 1472-6920

different types of reports in research methodology

  • All topics »
  • Fact sheets
  • Feature stories
  • Publications
  • Questions & answers
  • Tools and toolkits
  • Coronavirus disease (COVID-19) pandemic
  • Ukraine emergency
  • Environment and health

Mpox (monkeypox)

different types of reports in research methodology

  • Calls for experts
  • Initiatives
  • European Programme of Work
  • Sustainable Development Goals
  • The Pan-European Mental Health Coalition
  • Empowerment through Digital Health
  • The European Immunization Agenda 2030
  • Healthier behaviours: incorporating behavioural and cultural insights
  • Moving towards UHC
  • Protecting against health emergencies
  • Promoting health and well-being
  • News stories
  • Media releases
  • Photo stories
  • Questions and answers

Media Contacts

Newsletters

  • European Health Information Gateway
  • European health report
  • Core health indicators
  • WHO Immunization Data portal
  • Noncommunicable diseases (NCD) dashboard 
  • Events 
  • Teams »
  • Data and digital health
  • Policy & Governance f. Health through the Life Course
  • Groups and networks »
  • Health Evidence Network (HEN)

The European Health Report 2021 »

european health report 2021

  • Conflict in Israel and the occupied Palestinian territory
  • Armenian refugee health response
  • Climate crisis: extreme weather
  • Türkiye and Syria earthquakes
  • About health emergencies
  • Health emergencies newsletter 
  • Health emergencies list

different types of reports in research methodology

  • Regional Director
  • Executive Council
  • Technical centres
  • Faces of WHO
  • Regional Committee for Europe
  • Standing Committee
  • Partners 
  • Groups and networks
  • WHO collaborating centres

74th session of the WHO Regional Committee for Europe

74th session of the WHO Regional Committee for Europe

Alarming decline in adolescent condom use, increased risk of sexually transmitted infections and unintended pregnancies, reveals new WHO report

Copenhagen, 29 August 2024

New report reveals high rates of unprotected sex among adolescents across Europe, with significant implications for health and safety

An urgent report from the WHO Regional Office for Europe reveals that condom use among sexually active adolescents has declined significantly since 2014, with rates of unprotected sex worryingly high. This is putting young people at significant risk of sexually transmitted infections (STIs) and unplanned pregnancies. The new data were published as part of the multi-part Health Behaviour in School-aged Children (HBSC) study, which surveyed over 242 000 15-year-olds across 42 countries and regions in 2014–2022.

Far-reaching consequences of unprotected sex

Overall, the report highlights that a substantial proportion of sexually active 15-year-olds are engaging in unprotected sexual intercourse, which WHO warns can have far-reaching consequences for young people, including unintended pregnancies, unsafe abortions and an increased risk of contracting STIs. The high prevalence of unprotected sex indicates significant gaps in age-appropriate comprehensive sexuality education, including sexual health education, and access to contraceptive methods.

Worrying decline in condom use

Compared to 2014 levels, the new data show a significant decline in the number of adolescents reporting condom use during last sexual intercourse. From the data, it is clear that the decrease in condom use is pervasive, spanning multiple countries and regions, with some experiencing more dramatic reductions than others.

The report underscores the urgent need for targeted interventions to address these concerning trends and promote safer sexual practices among young people within the wider context of equipping them with the foundation they need for optimal health and well-being.

“While the report’s findings are dismaying, they are not surprising,” noted Dr Hans Henri P. Kluge, WHO Regional Director for Europe. “Age-appropriate comprehensive sexuality education remains neglected in many countries, and where it is available, it has increasingly come under attack in recent years on the false premise that it encourages sexual behaviour, when the truth is that equipping young persons with the right knowledge at the right time leads to optimal health outcomes linked to responsible behaviour and choices. We are reaping the bitter fruit of these reactionary efforts, with worse to come, unless governments, health authorities, the education sector and other essential stakeholders truly recognize the root causes of the current situation and take steps to rectify it. We need immediate and sustained action, underpinned by data and evidence, to halt this cascade of negative outcomes, including the likelihood of higher STI rates, increased health-care costs, and – not least – disrupted education and career paths for young persons who do not receive the timely information and support they need.”

Key findings from the report

  • Decline in condom use: the proportion of sexually active adolescents who used a condom at last intercourse fell from 70% to 61% among boys and 63% to 57% among girls between 2014 and 2022.
  • High rates of unprotected sex: almost a third of adolescents (30%) reported using neither a condom nor the contraceptive pill at last intercourse, a figure that has barely changed since 2018.
  • Socioeconomic differences: adolescents from low-affluence families were more likely to report not using a condom or the contraceptive pill at last sexual intercourse than their peers from more affluent families (33% compared with 25%).
  • Contraceptive pill use: the report indicates that contraceptive pill use during last sexual intercourse remained relatively stable between 2014 and 2022, with 26% of 15-year-olds reporting that they or their partners used the contraceptive pill at their last sexual intercourse.

Need for comprehensive sexuality education

The findings underscore the importance of providing comprehensive sexual health education and resources for young people. “As teenagers, having access to accurate information about sexual health is vital,” said Éabha, a 16-year-old from Ireland. “We need education that covers everything from consent to contraception, so we can make informed decisions and protect ourselves.”

“Comprehensive sexuality education is key to closing these gaps and empowering all young people to make informed decisions about sex at a particularly vulnerable moment in their lives, as they transition from adolescence to adulthood,” said Dr András Költő of the University of Galway, the lead author of the report. “But education must go beyond just providing information. Young people need safe spaces to discuss issues like consent, intimate relationships, gender identity and sexual orientation, and we – governments, health and education authorities, and civil society organizations – should help them develop crucial life skills including transparent, non-judgmental communication and decision-making.”

Roadmap for action, despite worrying trends

While the findings are sobering, they also offer a roadmap for the way ahead.

The report calls for sustainable investments in age-appropriate comprehensive sexuality education, youth-friendly sexual and reproductive health services, and enabling policies and environments that support adolescent health and rights.

“The findings of this report should serve as a catalyst for action. Adolescents deserve the knowledge and resources to make informed decisions about their sexual health. We have the evidence, the tools and the strategies to improve adolescent sexual health outcomes. What we need, though, is the political will and the resources to make it happen,” said Dr Margreet de Looze of Utrecht University, one of the report’s co-authors.

Call to action for policy-makers and educators

The WHO Regional Office for Europe calls upon policy-makers, educators and health-care providers to prioritize adolescent sexual health by:

  • Investing in comprehensive sexuality education: implementing and funding evidence-based sexuality education programmes in schools that cover a wide range of topics, including contraception, STIs, consent, healthy relationships, gender equality and LGBTQIA+ (lesbian, gay, bisexual, transgender, queer, questioning, intersex, asexual, plus) issues. In this, the International Technical Guidance on Sexuality Education, produced by a consortium of United Nations agencies and partners, is key.
  • Enhancing access to youth-friendly sexual health services: ensuring that adolescents everywhere have access to confidential, non-judgmental and affordable sexual health services that meet their specific needs and preferences.
  • Promoting open dialogue: encouraging open and honest conversations about sexual health within families, schools and communities to reduce stigma and increase awareness.
  • Training educators: providing specialized training for teachers and health-care providers to deliver effective and inclusive sex education. Such resources should be made available in both school and out-of-school settings.
  • Conducting further research: investigating the underlying reasons for the decline in condom use and the variations in sexual health behaviours across different populations to inform targeted interventions. This includes analysing messages and other content adolescents are exposed to across social media and online platforms, given their reach and impact.

“Ultimately, what we are seeking to achieve for young persons is a solid foundation for life and love,” said Dr Kluge. “Sexual and reproductive health and rights, informed by the right knowledge at the right time along with the right health and well-being services, is critical. By empowering adolescents to make informed decisions about their sexual health, we ultimately safeguard and improve their overall well-being. This is what all parents and families should want for their children, everywhere.”

Communications officer

Bhanu Bhatnagar

Press & Media Relations Officer WHO Regional Office for Europe

Joseph Hancock

Communications Officer for the HBSC study

WHO/Europe Press Office

A focus on adolescent sexual health in Europe, central Asia and Canada: Health Behaviour in School-aged Children international report from the 2021/2022 survey

Health Behaviour in School-aged Children (HBSC) study

IMAGES

  1. Types of Research Report

    different types of reports in research methodology

  2. Types of Research Methodology: Uses, Types & Benefits

    different types of reports in research methodology

  3. 12 Types of Research Reports in Research Report Writing

    different types of reports in research methodology

  4. Research Methodology Diagram Template

    different types of reports in research methodology

  5. 15 Research Methodology Examples (2024)

    different types of reports in research methodology

  6. Types of Research Methodology: Uses, Types & Benefits

    different types of reports in research methodology

VIDEO

  1. Types of Report ( Written & Oral Reports ) Part 1 Research Methodology

  2. Types of Research Design

  3. Report Writing || Very important questions of Research

  4. INTRODUCTION TO RESEARCH METHODOLOGY

  5. Types of Reports

  6. Types of Research methodology

COMMENTS

  1. 12 Types of Research Reports in Research Report Writing

    Comprehensive reports with in-depth analysis and information. 100-page research report on the effects of a new drug on a medical condition. Analytical. Focus on data analysis and provide insights or recommendations. Market research report analyzing consumer behavior trends and recommending marketing strategies.

  2. Research Report

    Thesis. Thesis is a type of research report. A thesis is a long-form research document that presents the findings and conclusions of an original research study conducted by a student as part of a graduate or postgraduate program. It is typically written by a student pursuing a higher degree, such as a Master's or Doctoral degree, although it ...

  3. Research Methodology

    Qualitative Research Methodology. This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

  4. Research Report: Definition, Types + [Writing Guide]

    Types of Research Report The research report is classified based on two things; nature of research and target audience. Nature of Research. Qualitative Research Report; This is the type of report written for qualitative research. It outlines the methods, processes, and findings of a qualitative method of systematic investigation.

  5. What is Research Methodology? Definition, Types, and Examples

    Definition, Types, and Examples. Research methodology 1,2 is a structured and scientific approach used to collect, analyze, and interpret quantitative or qualitative data to answer research questions or test hypotheses. A research methodology is like a plan for carrying out research and helps keep researchers on track by limiting the scope of ...

  6. Research Report: Definition, Types, Guide

    A research report is a collection of contextual data, gathered through organized research, that provides new insights into a particular challenge (which, for this article, is business-related). Research reports are a time-tested method for distilling large amounts of data into a narrow band of focus. Their effectiveness often hinges on whether ...

  7. Different types of reports

    Best practices for creating research reports. Comprehensive methodology: Describe the research methodology in precise detail, ensuring that other researchers can replicate the study. Transparency is essential for the credibility of the report. ... Understanding the different types of reports and following best practices for creating and ...

  8. PDF A quick guide to report writing

    Sections of a report Research reports are the most common type of report. The table below outlines the requirements of the different sections. Although this table is concentrating on a research report, many of the sections are applicable to other types of reports. Sections of a Report Section Features Ask yourself Title Title of report

  9. A tutorial on methodological studies: the what, when, how and why

    Many methodological studies use a research report (e.g. full manuscript of study, abstract portion of the study) as the unit of analysis, and inferences can be made at the study-level. However, both published and unpublished research-related reports can be studied. These may include articles, conference abstracts, registry entries etc.

  10. Research Reports: Definition and How to Write Them

    Research reports are recorded data prepared by researchers or statisticians after analyzing the information gathered by conducting organized research, typically in the form of surveys or qualitative methods. A research report is a reliable source to recount details about a conducted research. It is most often considered to be a true testimony ...

  11. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  12. What Is a Research Methodology?

    Step 1: Explain your methodological approach. Step 2: Describe your data collection methods. Step 3: Describe your analysis method. Step 4: Evaluate and justify the methodological choices you made. Tips for writing a strong methodology chapter. Other interesting articles.

  13. A tutorial on methodological studies: the what, when, how and why

    Methodological studies - studies that evaluate the design, analysis or reporting of other research-related reports - play an important role in health research. They help to highlight issues in the conduct of research with the aim of improving health research methodology, and ultimately reducing research waste. We provide an overview of some of the key aspects of methodological studies such ...

  14. Types of Research Designs Compared

    Other interesting articles. If you want to know more about statistics, methodology, or research bias, make sure to check out some of our other articles with explanations and examples. Statistics. Normal distribution. Skewness. Kurtosis. Degrees of freedom. Variance. Null hypothesis.

  15. Choosing the Right Research Methodology: A Guide

    Conclusion: Choosing an optimal research methodology is crucial for the success of any research project. The methodology you select will determine the type of data you collect, how you collect it, and how you analyse it. Understanding the different types of research methods available along with their strengths and weaknesses, is thus imperative ...

  16. Types of Research Report

    These components are: Research summary, introduction, methodology, results, discussions, references and conclusion. Types of Research Report Types of Research Report. Research report is mainly of 2 types: Technical report and Popular report. ... Technical Appendices- Technical appendices provides a detailed informed on different methods used ...

  17. What Is Research Report? Definition, Contents, Significance, Qualities

    Research reporting is the oral or written presentation of the findings in such detail and form as to be readily understood and assessed by the society, economy or particularly by the researchers. As earlier said that it is the final stage of the research process and its purpose is to convey to interested persons the whole result of the study.

  18. PDF REPORT WRITING: TYPES, FORMATS, STRUCTURE and RELEVANCE

    RITING: TYPES, FORMATS, STRUCTURE and RELEVANCEREPORTIt is any informational work made with an intention to relay informati. or recounting certain events in a presentable manner.Reports are. ften conveyed in writing, speech, tele. sion, or film.Report is an administrative necessity.Most offici. n order of occurrenceTYPES OF REPORT:FORMAL ...

  19. (PDF) Research Methodology WRITING A RESEARCH REPORT

    4. A research report should normally be written in the third person and aoid use of pronouns like, 'I', 'Me', 'My' etc. 5. The report should facilitate the reader with systematic ...

  20. What are research methodologies?

    According to Dawson (2019),a research methodology is the primary principle that will guide your research. It becomes the general approach in conducting research on your topic and determines what research method you will use. A research methodology is different from a research method because research methods are the tools you use to gather your ...

  21. A Comprehensive Guide to Different Types of Research

    Understand the Purpose of Each Methodology. Becoming familiar with the four types of research - descriptive, correlational, experimental, and diagnostic - will enable you to select the most appropriate method for your research. Many times, you will want to use a combination of methods to gather meaningful data.

  22. Types of Research

    Results are immediately applicable. Applications: Used in healthcare, engineering, and technology development. 6. Fundamental Research. Fundamental research, also known as basic research or pure research, is a type of scientific research method that aims to expand the existing knowledge base.

  23. What are Different Research Approaches? Comprehensive Review of

    Research Approaches Different types of research are classified based on a range of criteria including the application of study, the objectives of the research, and information sought [1].

  24. NTRS

    Structural Health Monitoring plays a crucial role in ensuring the safety and reliability of critical infrastructure, including pressure vessels involved in various applications. This research reports the damage detection of a pressure box employed in space habitat that operates in harsh environment where both structural failure and bolt joint loosening may occur.

  25. Multipartite network analysis to identify environmental and ...

    Network analysis has become a crucial tool in genetic research, enabling the exploration of associations between genes and diseases. Its utility extends beyond genetics to include the assessment ...

  26. Meditation and Mindfulness: Effectiveness and Safety

    Because the studies examined many different types of meditation and mindfulness practices, and the effects of those practices are hard to measure, results from the studies have been difficult to analyze and may have been interpreted too optimistically. ... A 2020 report by the Agency for Healthcare Research and Quality concluded that ...

  27. The design, implementation, and evaluation of a blended (in-person and

    Studies have reported different results of evaluation methods of clinical competency tests. Therefore, this study aimed to design, implement, and evaluate a blended (in-person and virtual) Competency Examination for final-year Nursing Students. This interventional study was conducted in two semesters of 2020-2021 using an educational action research method in the nursing and midwifery faculty.

  28. Alarming decline in adolescent condom use, increased risk of sexually

    Copenhagen, 29 August 2024New report reveals high rates of unprotected sex among adolescents across Europe, with significant implications for health and safety An urgent report from the WHO Regional Office for Europe reveals that condom use among sexually active adolescents has declined significantly since 2014, with rates of unprotected sex worryingly high. This is putting young people at ...