5 Characteristics of a Good Hypothesis: A Guide for Researchers

  • by Brian Thomas
  • October 10, 2023

Are you a curious soul, always seeking answers to the whys and hows of the world? As a researcher, formulating a hypothesis is a crucial first step towards unraveling the mysteries of your study. A well-crafted hypothesis not only guides your research but also lays the foundation for drawing valid conclusions. But what exactly makes a hypothesis a good one? In this blog post, we will explore the five key characteristics of a good hypothesis that every researcher should know.

Here, we will delve into the world of hypotheses, covering everything from their types in research to understanding if they can be proven true. Whether you’re a seasoned researcher or just starting out, this blog post will provide valuable insights on how to craft a sound hypothesis for your study. So let’s dive in and uncover the secrets to formulating a hypothesis that stands strong amidst the scientific rigor!

(Keywords: characteristics of a good hypothesis, important characteristics of a good hypothesis quizlet, types of hypothesis in research, can a hypothesis be proven true, 6 parts of hypothesis, how to start a hypothesis sentence, examples of hypothesis, five key elements of a good hypothesis, hypothesis in research papers, is a hypothesis always a question, three things needed for a good hypothesis, components of a good hypothesis, formulate a hypothesis, characteristics of a hypothesis mcq, criteria for a scientific hypothesis, steps of theory development in scientific methods, what makes a good hypothesis, characteristics of a good hypothesis quizlet, five-step p-value approach to hypothesis testing , stages of hypothesis, good hypothesis characteristics, writing a good hypothesis example, difference between hypothesis and hypotheses, good hypothesis statement, not a characteristic of a good hypothesis)

5 Characteristics of a Good Hypothesis

Clear and specific.

A good hypothesis is like a GPS that guides you to the right destination. It needs to be clear and specific so that you know exactly what you’re testing. Avoid vague statements or general ideas. Instead, focus on crafting a hypothesis that clearly states the relationship between variables and the expected outcome. Clarity is key, my friend!

Testable and Falsifiable

A hypothesis might sound great in theory, but if you can’t test it or prove it wrong, then it’s like chasing unicorns. A good hypothesis should be testable and falsifiable – meaning there should be a way to gather evidence to support or refute it. Don’t be afraid to challenge your hypothesis and put it to the test. Only when it can be proven false can it truly be considered a good hypothesis.

Based on Existing Knowledge

Imagine trying to build a Lego tower without any Lego bricks. That’s what it’s like to come up with a hypothesis that has no basis in existing knowledge. A good hypothesis is grounded in previous research, theories, or observations. It shows that you’ve done your homework and understand the current state of knowledge in your field. So, put on your research hat and gather those building blocks for a solid hypothesis!

Specific Predictions

No, we’re not talking about crystal ball predictions or psychic abilities here. A good hypothesis includes specific predictions about what you expect to happen. It’s like making an educated guess based on your understanding of the variables involved. These predictions help guide your research and give you something concrete to look for. So, put on those prediction goggles, my friend, and let’s get specific!

Relevant to the Research Question

A hypothesis is a road sign that points you in the right direction. But if it’s not relevant to your research question, then you might end up in a never-ending detour. A good hypothesis aligns with your research question and addresses the specific problem or phenomenon you’re investigating. Keep your focus on the main topic and avoid getting sidetracked by shiny distractions. Stay relevant, my friend, and you’ll find the answers you seek!

And there you have it: the five characteristics of a good hypothesis. Remember, a good hypothesis is clear, testable, based on existing knowledge, makes specific predictions, and is relevant to your research question. So go forth, my friend, and hypothesize your way to scientific discovery!

FAQs: Characteristics of a Good Hypothesis

In the realm of scientific research, a hypothesis plays a crucial role in formulating and testing ideas. A good hypothesis serves as the foundation for an experiment or study, guiding the researcher towards meaningful results. In this FAQ-style subsection, we’ll explore the characteristics of a good hypothesis, their types, formulation, and more. So let’s dive in and unravel the mysteries of hypothesis-making!

What Are Two Important Characteristics of a Good Hypothesis

A good hypothesis possesses two important characteristics:

Testability : A hypothesis must be testable to determine its validity. It should be formulated in a way that allows researchers to design and conduct experiments or gather data for analysis. For example, if we hypothesize that “drinking herbal tea reduces stress,” we can easily test it by conducting a study with a control group and a group drinking herbal tea.

Falsifiability : Falsifiability refers to the potential for a hypothesis to be proven wrong. A good hypothesis should make specific predictions that can be refuted or supported by evidence. This characteristic ensures that hypotheses are based on empirical observations rather than personal opinions. For instance, the hypothesis “all swans are white” can be falsified by discovering a single black swan.

What Are the Types of Hypothesis in Research

In research, there are three main types of hypotheses:

Null Hypothesis (H0) : The null hypothesis is a statement of no effect or relationship. It assumes that there is no significant difference between variables or no effect of a treatment. Researchers aim to reject the null hypothesis in favor of an alternative hypothesis.

Alternative Hypothesis (HA or H1) : The alternative hypothesis is the opposite of the null hypothesis. It asserts that there is a significant difference between variables or an effect of a treatment. Researchers seek evidence to support the alternative hypothesis.

Directional Hypothesis : A directional hypothesis predicts the specific direction of the relationship or difference between variables. For example, “increasing exercise duration will lead to greater weight loss.”

Can a Hypothesis Be Proven True

In scientific research, hypotheses are not proven true; they are supported or rejected based on empirical evidence . Even if a hypothesis is supported by multiple studies, new evidence could arise that contradicts it. Scientific knowledge is always subject to revision and refinement. Therefore, the goal is to gather enough evidence to either support or reject a hypothesis, rather than proving it absolutely true.

What Are the Six Parts of a Hypothesis

A hypothesis typically consists of six essential parts:

Research Question : A clear and concise question that the hypothesis seeks to answer.

Variables : Identification of the independent (manipulated) and dependent (measured) variables involved in the hypothesis.

Population : The specific group or individuals the hypothesis is concerned with.

Relationship or Comparison : The expected relationship or difference between variables, often indicated by directional terms like “more,” “less,” “higher,” or “lower.”

Predictability : A statement of the predicted outcome or result based on the relationship between variables.

Testability : The ability to design an experiment or gather data to support or reject the hypothesis.

How Do You Start a Hypothesis Sentence

When starting a hypothesis sentence, it is essential to use clear and concise language to express your ideas. A common approach is to use the phrase “If…then…” to establish the conditional relationship between variables. For example:

  • If [independent variable], then [dependent variable] because [explanation of expected relationship].

This structure allows for a straightforward and logical formulation of the hypothesis.

What Are Examples of Hypotheses

Here are a few examples of well-formulated hypotheses:

If exposure to sunlight increases, then plants will grow taller because sunlight is necessary for photosynthesis.

If students receive praise for good grades, then their motivation to excel will increase because they seek recognition and approval.

If the dose of a painkiller is increased, then the relief from pain will last longer because a higher dosage has a prolonged effect.

What Are the Five Key Elements to a Good Hypothesis

A good hypothesis should include the following five key elements:

Clarity : The hypothesis should be clear and specific, leaving no room for interpretation.

Testability : It should be possible to test the hypothesis through experimentation or data collection.

Relevance : The hypothesis should be directly tied to the research question or problem being investigated.

Specificity : It must clearly state the relationship or difference between variables being studied.

Falsifiability : The hypothesis should make predictions that can be refuted or supported by empirical evidence.

What Makes a Good Hypothesis in a Research Paper

In a research paper, a good hypothesis should have the following characteristics:

Relevance : It must directly relate to the research topic and address the objectives of the study.

Clarity : The hypothesis should be concise and precisely worded to avoid confusion.

Unambiguous : It must leave no room for multiple interpretations or ambiguity.

Logic : The hypothesis should be based on rational and logical reasoning, considering existing theories and observations.

Empirical Support : Ideally, the hypothesis should be supported by prior empirical evidence or strong theoretical justifications.

Is a Hypothesis Always a Question

No, a hypothesis is not always in the form of a question. While some hypotheses can take the form of a question, others may be statements asserting a relationship or difference between variables. The form of a hypothesis depends on the research question being addressed and the researcher’s preferred style of expression.

What Are the Three Things Needed for a Good Hypothesis

For a hypothesis to be considered good, it must fulfill the following three criteria:

Testability : The hypothesis should be formulated in a way that allows for empirical testing through experimentation or data collection.

Falsifiability : It must make specific predictions that can be potentially refuted or supported by evidence.

Relevance : The hypothesis should directly address the research question or problem being investigated.

What Are the Four Components to a Good Hypothesis

A good hypothesis typically consists of four components:

Independent Variable : The variable being manipulated or controlled by the researcher.

Dependent Variable : The variable being measured or observed to determine the effect of the independent variable.

Directionality : The predicted relationship or difference between the independent and dependent variables.

Population : The specific group or individuals to which the hypothesis applies.

How Do You Formulate a Hypothesis

To formulate a hypothesis, follow these steps:

Identify the Research Topic : Clearly define the area or phenomenon you want to study.

Conduct Background Research : Review existing literature and research to gain knowledge about the topic.

Formulate a Research Question : Ask a clear and focused question that you want to answer through your hypothesis.

State the Null and Alternative Hypotheses : Develop a null hypothesis to assume no effect or relationship, and an alternative hypothesis to propose a significant effect or relationship.

Decide on Variables and Relationships : Determine the independent and dependent variables and the predicted relationship between them.

Refine and Test : Refine your hypothesis, ensuring it is clear, testable, and falsifiable. Then, design experiments or gather data to support or reject it.

What Is a Characteristic of a Hypothesis MCQ

Multiple-choice questions (MCQ) regarding the characteristics of a hypothesis often assess knowledge on the testability and falsifiability of hypotheses. They may ask about the criteria that distinguish a good hypothesis from a poor one or the importance of making specific predictions. Remember to choose answers that emphasize the empirical and testable nature of hypotheses.

What Five Criteria Must Be Satisfied for a Hypothesis to Be Scientific

For a hypothesis to be considered scientific, it must satisfy the following five criteria:

Testability : The hypothesis must be formulated in a way that allows it to be tested through experimentation or data collection.

Falsifiability : It should make specific predictions that can be potentially refuted or supported by empirical evidence.

Empirical Basis : The hypothesis should be based on empirical observations or existing theories and knowledge.

Relevance : It must directly address the research question or problem being investigated.

Objective : A scientific hypothesis should be free from personal biases or subjective opinions, focusing on objective observations and analysis.

What Are the Steps of Theory Development in Scientific Methods

In scientific methods, theory development typically involves the following steps:

Observation : Identifying a phenomenon or pattern worthy of investigation through observation or empirical data.

Formulation of a Hypothesis : Constructing a hypothesis that explains the observed phenomena or predicts a relationship between variables.

Data Collection : Gathering relevant data through experiments, surveys, observations, or other research methods.

Analysis : Analyzing the collected data to evaluate the hypothesis’s predictions and determine their validity.

Revision and Refinement : Based on the analysis, refining the hypothesis, modifying the theory, or formulating new hypotheses for further investigation.

Which of the Following Makes a Good Hypothesis

A good hypothesis is characterized by:

Testability : The ability to form experiments or gather data to support or refute the hypothesis.

Falsifiability : The potential for the hypothesis’s predictions to be proven wrong based on empirical evidence.

Clarity : A clear and concise statement or question that leaves no room for ambiguity.

Relevancy : Directly addressing the research question or problem at hand.

Remember, it is important to select the option that encompasses all these characteristics.

What Are the Characteristics of a Good Hypothesis

A good hypothesis possesses several characteristics, such as:

Testability : It should allow for empirical testing through experiments or data collection.

Falsifiability : The hypothesis should make specific predictions that can be potentially refuted or supported by evidence.

Clarity : It must be clearly and precisely formulated, leaving no room for ambiguity or multiple interpretations.

Relevance : The hypothesis should directly relate to the research question or problem being investigated.

What Is the Five-Step p-value Approach to Hypothesis Testing

The five-step p-value approach is a commonly used framework for hypothesis testing:

Step 1: Formulating the Hypotheses : The null hypothesis (H0) assumes no effect or relationship, while the alternative hypothesis (HA) proposes a significant effect or relationship.

Step 2: Setting the Significance Level : Decide on the level of significance (α), which represents the probability of rejecting the null hypothesis when it is true. The commonly used level is 0.05 (5%).

Step 3: Collecting Data and Performing the Test : Acquire and analyze the data, calculating the test statistic and the corresponding p-value.

Step 4: Comparing the p-value with the Significance Level : If the p-value is less than the significance level (α), reject the null hypothesis. Otherwise, fail to reject the null hypothesis.

Step 5: Drawing Conclusions : Based on the comparison in Step 4, interpret the results and draw conclusions about the hypothesis.

What Are the Stages of Hypothesis

The stages of hypothesis generally include:

Observation : Identifying a pattern, phenomenon, or research question that warrants investigation.

Formulation : Developing a hypothesis that explains or predicts the relationship or difference between variables.

Testing : Collecting data, designing experiments, or conducting studies to gather evidence supporting or refuting the hypothesis.

Analysis : Assessing the collected data to determine whether the results support or reject the hypothesis.

Conclusion : Drawing conclusions based on the analysis and making further iterations, refinements, or new hypotheses for future research.

What Is a Characteristic of a Good Hypothesis

A characteristic of a good hypothesis is its ability to make specific predictions about the relationship or difference between variables. Good hypotheses avoid vague statements and clearly articulate the expected outcomes. By doing so, researchers can design experiments or gather data that directly test the predictions, leading to meaningful results.

How Do You Write a Good Hypothesis Example

To write a good hypothesis example, follow these guidelines:

If possible, use the “If…then…” format to express a conditional relationship between variables.

Be clear and concise in stating the variables involved, the predicted relationship, and the expected outcome.

Ensure the hypothesis is testable, meaning it can be evaluated through experiments or data collection.

For instance, consider the following example:

If students study for longer periods of time, then their test scores will improve because increased study time allows for better retention of information and increased proficiency.

What Is the Difference Between Hypothesis and Hypotheses

The main difference between a hypothesis and hypotheses lies in their grammatical number. A hypothesis refers to a single statement or proposition that is formulated to explain or predict the relationship between variables. On the other hand, hypotheses is the plural form of the term hypothesis, commonly used when multiple statements or propositions are proposed and tested simultaneously.

What Is a Good Hypothesis Statement

A good hypothesis statement exhibits the following qualities:

Clarity : It is written in clear and concise language, leaving no room for confusion or ambiguity.

Testability : The hypothesis should be formulated in a way that enables testing through experiments or data collection.

Specificity : It must clearly state the predicted relationship or difference between variables.

By adhering to these criteria, a good hypothesis statement guides research efforts effectively.

What Is Not a Characteristic of a Good Hypothesis

A characteristic that does not align with a good hypothesis is subjectivity . A hypothesis should be objective, based on empirical observations or existing theories, and free from personal bias. While personal interpretations and opinions can inspire the formulation of a hypothesis, it must ultimately rely on objective observations and be open to empirical testing.

By now, you’ve gained insights into the characteristics of a good hypothesis, including testability, falsifiability, clarity,

  • characteristics
  • falsifiable
  • good hypothesis
  • hypothesis testing
  • null hypothesis
  • observations
  • scientific rigor

' src=

Brian Thomas

Is july really a 31-day month unraveling the puzzling calendar quirk, how long does it take to become l5 at amazon, you may also like, is tilex discontinued all your questions answered.

  • by Donna Gonzalez
  • October 7, 2023

Does Duraflame Last Longer Than Wood?

  • by Daniel Taylor
  • October 21, 2023

White Nail Polish: What Does It Mean?

  • by Thomas Harrison
  • November 4, 2023

Can You Fake an Extra Point in the NFL?

Does the elf pet move everything you need to know in 2023.

  • October 19, 2023

Why Did Julia Leave Jonathan Creek

  • by Brandon Thompson
  • October 29, 2023

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

experiments disproving spontaneous generation

  • When did science begin?
  • Where was science invented?

Blackboard inscribed with scientific formulas and calculations in physics and mathematics

scientific hypothesis

Our editors will review what you’ve submitted and determine whether to revise the article.

  • National Center for Biotechnology Information - PubMed Central - On the scope of scientific hypotheses
  • LiveScience - What is a scientific hypothesis?
  • The Royal Society - Open Science - On the scope of scientific hypotheses

experiments disproving spontaneous generation

scientific hypothesis , an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an “If…then” statement summarizing the idea and in the ability to be supported or refuted through observation and experimentation. The notion of the scientific hypothesis as both falsifiable and testable was advanced in the mid-20th century by Austrian-born British philosopher Karl Popper .

The formulation and testing of a hypothesis is part of the scientific method , the approach scientists use when attempting to understand and test ideas about natural phenomena. The generation of a hypothesis frequently is described as a creative process and is based on existing scientific knowledge, intuition , or experience. Therefore, although scientific hypotheses commonly are described as educated guesses, they actually are more informed than a guess. In addition, scientists generally strive to develop simple hypotheses, since these are easier to test relative to hypotheses that involve many different variables and potential outcomes. Such complex hypotheses may be developed as scientific models ( see scientific modeling ).

Depending on the results of scientific evaluation, a hypothesis typically is either rejected as false or accepted as true. However, because a hypothesis inherently is falsifiable, even hypotheses supported by scientific evidence and accepted as true are susceptible to rejection later, when new evidence has become available. In some instances, rather than rejecting a hypothesis because it has been falsified by new evidence, scientists simply adapt the existing idea to accommodate the new information. In this sense a hypothesis is never incorrect but only incomplete.

The investigation of scientific hypotheses is an important component in the development of scientific theory . Hence, hypotheses differ fundamentally from theories; whereas the former is a specific tentative explanation and serves as the main tool by which scientists gather data, the latter is a broad general explanation that incorporates data from many different scientific investigations undertaken to explore hypotheses.

Countless hypotheses have been developed and tested throughout the history of science . Several examples include the idea that living organisms develop from nonliving matter, which formed the basis of spontaneous generation , a hypothesis that ultimately was disproved (first in 1668, with the experiments of Italian physician Francesco Redi , and later in 1859, with the experiments of French chemist and microbiologist Louis Pasteur ); the concept proposed in the late 19th century that microorganisms cause certain diseases (now known as germ theory ); and the notion that oceanic crust forms along submarine mountain zones and spreads laterally away from them ( seafloor spreading hypothesis ).

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism. Run a free check.

Step 1. ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.
Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is high school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout high school will have lower rates of unplanned pregnancy teenagers who did not receive any sex education. High school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved September 18, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Hypothesis Examples

Hypothesis Examples

A hypothesis is a prediction of the outcome of a test. It forms the basis for designing an experiment in the scientific method . A good hypothesis is testable, meaning it makes a prediction you can check with observation or experimentation. Here are different hypothesis examples.

Null Hypothesis Examples

The null hypothesis (H 0 ) is also known as the zero-difference or no-difference hypothesis. It predicts that changing one variable ( independent variable ) will have no effect on the variable being measured ( dependent variable ). Here are null hypothesis examples:

  • Plant growth is unaffected by temperature.
  • If you increase temperature, then solubility of salt will increase.
  • Incidence of skin cancer is unrelated to ultraviolet light exposure.
  • All brands of light bulb last equally long.
  • Cats have no preference for the color of cat food.
  • All daisies have the same number of petals.

Sometimes the null hypothesis shows there is a suspected correlation between two variables. For example, if you think plant growth is affected by temperature, you state the null hypothesis: “Plant growth is not affected by temperature.” Why do you do this, rather than say “If you change temperature, plant growth will be affected”? The answer is because it’s easier applying a statistical test that shows, with a high level of confidence, a null hypothesis is correct or incorrect.

Research Hypothesis Examples

A research hypothesis (H 1 ) is a type of hypothesis used to design an experiment. This type of hypothesis is often written as an if-then statement because it’s easy identifying the independent and dependent variables and seeing how one affects the other. If-then statements explore cause and effect. In other cases, the hypothesis shows a correlation between two variables. Here are some research hypothesis examples:

  • If you leave the lights on, then it takes longer for people to fall asleep.
  • If you refrigerate apples, they last longer before going bad.
  • If you keep the curtains closed, then you need less electricity to heat or cool the house (the electric bill is lower).
  • If you leave a bucket of water uncovered, then it evaporates more quickly.
  • Goldfish lose their color if they are not exposed to light.
  • Workers who take vacations are more productive than those who never take time off.

Is It Okay to Disprove a Hypothesis?

Yes! You may even choose to write your hypothesis in such a way that it can be disproved because it’s easier to prove a statement is wrong than to prove it is right. In other cases, if your prediction is incorrect, that doesn’t mean the science is bad. Revising a hypothesis is common. It demonstrates you learned something you did not know before you conducted the experiment.

Test yourself with a Scientific Method Quiz .

  • Mellenbergh, G.J. (2008). Chapter 8: Research designs: Testing of research hypotheses. In H.J. Adèr & G.J. Mellenbergh (eds.), Advising on Research Methods: A Consultant’s Companion . Huizen, The Netherlands: Johannes van Kessel Publishing.
  • Popper, Karl R. (1959). The Logic of Scientific Discovery . Hutchinson & Co. ISBN 3-1614-8410-X.
  • Schick, Theodore; Vaughn, Lewis (2002). How to think about weird things: critical thinking for a New Age . Boston: McGraw-Hill Higher Education. ISBN 0-7674-2048-9.
  • Tobi, Hilde; Kampen, Jarl K. (2018). “Research design: the methodology for interdisciplinary research framework”. Quality & Quantity . 52 (3): 1209–1225. doi: 10.1007/s11135-017-0513-8

Related Posts

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

ZME Science

Home → Features → Resources → Metascience

What makes a good hypothesis?

Formulating a good hypothesis is the backbone of the scientific method.

Tibi Puiu

A hypothesis is a precise and testable statement of what a researcher predicts will be the outcome of a study. This usually involves proposing a relationship between two or more variables.

Verifying a hypothesis, also sometimes referred to as a working statement , requires using the scientific method , usually by designing an experiment.

For instance, one common adage is ‘an apple a day keeps the doctor away’. If we use this aphorism as our hypothesis then we can make a prediction that consuming at least one apple per day should result in fewer visits to the doctor than the general population that eats apples sparingly or never.

In 2015 , researchers at Dartmouth College, the University of Michigan School of Nursing, and the Veteran Affairs Medical Center in White River actually investigated this hypothesis. They combed national nutrition data collected from nearly 8,400 men and women — 753 of whom ate an apple a day. The study found that “evidence does not support that an apple a day keeps the doctor away; however, the small fraction of US adults who eat an apple a day do appear to use fewer prescription medications.”

So perhaps there’s a glimmer of truth to this hypothesis, but not necessarily because apples are some miracle foods. It could be that people who eat apples every day also consume other fresh produce and less processed foods than the general population, a diet that helps to prevent obesity, a huge risk factor for a myriad of illnesses such as hypertension and diabetes that require prescription medication. This is why hypotheses need to be defined as precisely and as narrowly as possible in order to isolate confounding effects.

Types of hypothesis

The ‘apple a day’ study is an example of an alternative hypothesis , which states that there is a relationship between two variables being studied, the daily apple consumption and visits to the GP. One variable, called the independent variable , has an effect on the other, known as the dependent variable . The independent variable is what you change and the dependent variable is what you measure. For example, if I am measuring how a plant grows with different fertilizers, the fertilizers are what I can change freely (independent) while the plant’s growth would be dependent on what it is given. In order for an alternative hypothesis to be validated, the results have to have statistical significance in order to rule out chance.

Examples of alternative hypotheses:

  • Dogs wag their tails when they’re happy.
  • The accumulation of greenhouse gases in the atmosphere raises global average temperature.
  • Wearing a seatbelt reduces traffic-related fatalities.
  • Students who attend class earn higher scores than students who skip class.
  • People exposed to higher levels of UV light have a higher incidence of skin cancer than the general population.

Another common type of hypothesis used in science is the null hypothesis , which states that there is no relationship between two variables. This means that controlling one variable has no effect on the other. Any results are due to chance and thus pursuing a cause-effect relationship between the two variables is futile.

The null hypothesis is the polar opposite of the alternative hypothesis since they contain opposing viewpoints. In fact, the latter is called this way because it is an alternative to the null hypothesis. An apple a day doesn’t keep the doctor away, you could propose if you were designing a null hypothesis experiment.

Examples of null hypotheses:

  • Taking an aspirin a day doesn’t reduce the risk of a heart attack.
  • Playing classical music doesn’t help plants grow more biomass.
  • Vaccines don’t cause autism.
  • Hyperactivity is unrelated to sugar consumption.

The acceptance of the alternative hypothesis, often denoted by H 1 , depends on the rejection of the null hypothesis (H 0 ). A null hypothesis can never be proven, it can only be rejected. To test a null hypothesis and determine whether the observed data is not due to change or the manipulation of data, scientists employ a significance test.

Rejecting the null hypothesis does not necessarily imply that a study did not produce the required results. Instead, it sets the stage for further experimentation to see if a relationship between the two variables truly exists.

For instance, say a scientist proposes a null hypothesis stating that “the rate of plant growth is not affected by sunlight.” One way to investigate this conjecture would be to monitor a random sample of plants grown with or without sunlight. You then measure the average mass of each group of plants and if there’s a statistically significant difference in the observed change, then the null hypothesis is rejected. Consequently, the alternate hypothesis that “plant growth is affected by sunlight” is accepted, then scientists can perform further research into the effects of different wavelengths of light or intensities of light on plant growth.

At this point, you might be wondering why we need the null hypothesis. Why not propose and test an alternate hypothesis and see if it is true? One explanation is that science cannot provide absolute proofs, but rather approximations. The scientific method cannot explicitly “prove” propositions. We can never prove an alternative hypothesis with 100% confidence. What we can do instead is reject the null hypothesis, supporting the alternative hypothesis.

It just so happens that it is easier to disprove a hypothesis than to positively prove one. But the supposition that the null hypothesis is incorrect allows for a stable foundation on which scientists can build. You can view it this way: the results from testing the null hypothesis lay the groundwork for the alternate hypothesis, which explores multiple ideas that may or may not be correct.

The alternative and null hypotheses are the two main types you’ll encounter in studies. But the alternative hypothesis can be further broken down into two categories: directional and nondirectional alternative hypotheses.

The directional alternative hypothesis predicts that the independent variable will have an effect on the dependent variable and the direction in which the change will take place. The nondirectional alternative hypothesis predicts the independent variable will have an effect but its direction is not specific, without stating the magnitude of the difference.

For instance, a non-directional hypothesis could be “there will be a difference in how many words children and adults can recall,” while the directional hypothesis could predict that “adults will recall more words than children.”

Hypotheses can be simple or complex. A simple hypothesis predicts a relationship between a single dependent variable and a single independent variable while a complex one predicts a relationship between two or more independent and dependent variables. An example of a complex hypothesis could be “Do age and weight affect the chances of getting diabetes and heart diseases?” There are two independent and two dependent variables in this statement whose relationship we seek to verify.

How to write a good hypothesis

The way you formulate a hypothesis can make or break your research because the validity of an experiment and its results rely heavily on a robust testable hypothesis. A good research hypothesis typically involves more effort than a simple guess or assumption.

Generally, a good hypothesis:

  • is testable, meaning it must be possible to show that a hypothesis is true or false, and the results of this investigation have to be replicable;
  • includes both an independent and dependent variable.
  • allows for the manipulation of the variables ethically.
  • has clear and focused language. Don’t be vague.
  • is related to other published research.
  • is written, either explicitly or not, as an “if-then” statement because we can then make a prediction of the outcome of an experiment.

An example of a testable good hypothesis is a conjecture such as “Students recall more information during the afternoon than during the morning.” The independent variable is the time of the lecture and the dependent variable is the recall of the information presented in the lecture, which can be verified with standardized tests.

A bad hypothesis could be something like “Goldfish make better pets than cats.” Right off the bat, you can see a couple of problems with this statement. What constitutes a good pet? Is a good pet fluffy and interactive or one that is low maintenance? Can I predict whether a cat or goldfish will make for a good pet? This is more a matter of opinion that doesn’t provide any meaningful results.

Often, the best hypotheses start from observation. For instance, everybody has witnessed that objects that are thrown into the air will fall toward the ground. Sir Isaac Newton formulated a hypothesis in the 17th-century that explains this observation, stating that ‘objects with mass attract each other through a gravitational field.’

But despite Newton’s hypothesis being very well written, in the sense that it is testable, simple, clear, and universal, we now know it was wrong. In the 20th-century, Albert Einstein showed that a hypothesis that more precisely explains the observed phenomenon is that ‘objects with mass cause space to bend.’ The lesson here is that all hypotheses are temporary and partial, they’re never permanent and irrefutable. This is also a good example of why the null hypothesis is so paramount.

Hypothesis formulation and testing through statistical methods are integral parts of the scientific method, the systematic approach to assessing whether a statement is true or false. All the best stories in science start with a good hypothesis. 

Was this helpful?

Related posts.

  • This man played the guitar as doctors removed a tumor from his brain  
  • Amateur paleontologist finds nearly complete 70-million-year-old massive Titanosaur while walking his dog
  • Myth debunked? Most male mammals aren’t larger than females
  • This cool website lets you know which dinosaurs used to live near your city

Recent news

a good scientific hypothesis must be

TikTok Fitness Influencers Promote Unrealistic Body Standards, 60% Share Bogus Advice, Study Says

a good scientific hypothesis must be

This tiny shrimp finds its way back home by “smelling” the ocean

a good scientific hypothesis must be

Earth Might Have Had a Ring System Like Saturn Millions of Years Ago

  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products

© 2007-2023 ZME Science - Not exactly rocket science. All Rights Reserved.

  • Science News
  • Environment
  • Natural Sciences
  • Matter and Energy
  • Quantum Mechanics
  • Thermodynamics
  • Periodic Table
  • Applied Chemistry
  • Physical Chemistry
  • Biochemistry
  • Microbiology
  • Plants and Fungi
  • Planet Earth
  • Earth Dynamics
  • Rocks and Minerals
  • Invertebrates
  • Conservation
  • Animal facts
  • Climate change
  • Weather and atmosphere
  • Diseases and Conditions
  • Mind and Brain
  • Food and Nutrition
  • Anthropology
  • Archaeology
  • The Solar System
  • Asteroids, meteors & comets
  • Astrophysics
  • Exoplanets & Alien Life
  • Spaceflight and Exploration
  • Computer Science & IT
  • Engineering
  • Sustainability
  • Renewable Energy
  • Green Living
  • Editorial policy
  • Privacy Policy

Science and the scientific method: Definitions and examples

Here's a look at the foundation of doing science — the scientific method.

Kids follow the scientific method to carry out an experiment.

The scientific method

Hypothesis, theory and law, a brief history of science, additional resources, bibliography.

Science is a systematic and logical approach to discovering how things in the universe work. It is also the body of knowledge accumulated through the discoveries about all the things in the universe. 

The word "science" is derived from the Latin word "scientia," which means knowledge based on demonstrable and reproducible data, according to the Merriam-Webster dictionary . True to this definition, science aims for measurable results through testing and analysis, a process known as the scientific method. Science is based on fact, not opinion or preferences. The process of science is designed to challenge ideas through research. One important aspect of the scientific process is that it focuses only on the natural world, according to the University of California, Berkeley . Anything that is considered supernatural, or beyond physical reality, does not fit into the definition of science.

When conducting research, scientists use the scientific method to collect measurable, empirical evidence in an experiment related to a hypothesis (often in the form of an if/then statement) that is designed to support or contradict a scientific theory .

"As a field biologist, my favorite part of the scientific method is being in the field collecting the data," Jaime Tanner, a professor of biology at Marlboro College, told Live Science. "But what really makes that fun is knowing that you are trying to answer an interesting question. So the first step in identifying questions and generating possible answers (hypotheses) is also very important and is a creative process. Then once you collect the data you analyze it to see if your hypothesis is supported or not."

Here's an illustration showing the steps in the scientific method.

The steps of the scientific method go something like this, according to Highline College :

  • Make an observation or observations.
  • Form a hypothesis — a tentative description of what's been observed, and make predictions based on that hypothesis.
  • Test the hypothesis and predictions in an experiment that can be reproduced.
  • Analyze the data and draw conclusions; accept or reject the hypothesis or modify the hypothesis if necessary.
  • Reproduce the experiment until there are no discrepancies between observations and theory. "Replication of methods and results is my favorite step in the scientific method," Moshe Pritsker, a former post-doctoral researcher at Harvard Medical School and CEO of JoVE, told Live Science. "The reproducibility of published experiments is the foundation of science. No reproducibility — no science."

Some key underpinnings to the scientific method:

  • The hypothesis must be testable and falsifiable, according to North Carolina State University . Falsifiable means that there must be a possible negative answer to the hypothesis.
  • Research must involve deductive reasoning and inductive reasoning . Deductive reasoning is the process of using true premises to reach a logical true conclusion while inductive reasoning uses observations to infer an explanation for those observations.
  • An experiment should include a dependent variable (which does not change) and an independent variable (which does change), according to the University of California, Santa Barbara .
  • An experiment should include an experimental group and a control group. The control group is what the experimental group is compared against, according to Britannica .

The process of generating and testing a hypothesis forms the backbone of the scientific method. When an idea has been confirmed over many experiments, it can be called a scientific theory. While a theory provides an explanation for a phenomenon, a scientific law provides a description of a phenomenon, according to The University of Waikato . One example would be the law of conservation of energy, which is the first law of thermodynamics that says that energy can neither be created nor destroyed. 

A law describes an observed phenomenon, but it doesn't explain why the phenomenon exists or what causes it. "In science, laws are a starting place," said Peter Coppinger, an associate professor of biology and biomedical engineering at the Rose-Hulman Institute of Technology. "From there, scientists can then ask the questions, 'Why and how?'"

Laws are generally considered to be without exception, though some laws have been modified over time after further testing found discrepancies. For instance, Newton's laws of motion describe everything we've observed in the macroscopic world, but they break down at the subatomic level.

This does not mean theories are not meaningful. For a hypothesis to become a theory, scientists must conduct rigorous testing, typically across multiple disciplines by separate groups of scientists. Saying something is "just a theory" confuses the scientific definition of "theory" with the layperson's definition. To most people a theory is a hunch. In science, a theory is the framework for observations and facts, Tanner told Live Science.

This Copernican heliocentric solar system, from 1708, shows the orbit of the moon around the Earth, and the orbits of the Earth and planets round the sun, including Jupiter and its moons, all surrounded by the 12 signs of the zodiac.

The earliest evidence of science can be found as far back as records exist. Early tablets contain numerals and information about the solar system , which were derived by using careful observation, prediction and testing of those predictions. Science became decidedly more "scientific" over time, however.

1200s: Robert Grosseteste developed the framework for the proper methods of modern scientific experimentation, according to the Stanford Encyclopedia of Philosophy. His works included the principle that an inquiry must be based on measurable evidence that is confirmed through testing.

1400s: Leonardo da Vinci began his notebooks in pursuit of evidence that the human body is microcosmic. The artist, scientist and mathematician also gathered information about optics and hydrodynamics.

1500s: Nicolaus Copernicus advanced the understanding of the solar system with his discovery of heliocentrism. This is a model in which Earth and the other planets revolve around the sun, which is the center of the solar system.

1600s: Johannes Kepler built upon those observations with his laws of planetary motion. Galileo Galilei improved on a new invention, the telescope, and used it to study the sun and planets. The 1600s also saw advancements in the study of physics as Isaac Newton developed his laws of motion.

1700s: Benjamin Franklin discovered that lightning is electrical. He also contributed to the study of oceanography and meteorology. The understanding of chemistry also evolved during this century as Antoine Lavoisier, dubbed the father of modern chemistry , developed the law of conservation of mass.

1800s: Milestones included Alessandro Volta's discoveries regarding electrochemical series, which led to the invention of the battery. John Dalton also introduced atomic theory, which stated that all matter is composed of atoms that combine to form molecules. The basis of modern study of genetics advanced as Gregor Mendel unveiled his laws of inheritance. Later in the century, Wilhelm Conrad Röntgen discovered X-rays , while George Ohm's law provided the basis for understanding how to harness electrical charges.

1900s: The discoveries of Albert Einstein , who is best known for his theory of relativity, dominated the beginning of the 20th century. Einstein's theory of relativity is actually two separate theories. His special theory of relativity, which he outlined in a 1905 paper, " The Electrodynamics of Moving Bodies ," concluded that time must change according to the speed of a moving object relative to the frame of reference of an observer. His second theory of general relativity, which he published as " The Foundation of the General Theory of Relativity ," advanced the idea that matter causes space to curve.

In 1952, Jonas Salk developed the polio vaccine , which reduced the incidence of polio in the United States by nearly 90%, according to Britannica . The following year, James D. Watson and Francis Crick discovered the structure of DNA , which is a double helix formed by base pairs attached to a sugar-phosphate backbone, according to the National Human Genome Research Institute .

2000s: The 21st century saw the first draft of the human genome completed, leading to a greater understanding of DNA. This advanced the study of genetics, its role in human biology and its use as a predictor of diseases and other disorders, according to the National Human Genome Research Institute .

  • This video from City University of New York delves into the basics of what defines science.
  • Learn about what makes science science in this book excerpt from Washington State University .
  • This resource from the University of Michigan — Flint explains how to design your own scientific study.

Merriam-Webster Dictionary, Scientia. 2022. https://www.merriam-webster.com/dictionary/scientia

University of California, Berkeley, "Understanding Science: An Overview." 2022. ​​ https://undsci.berkeley.edu/article/0_0_0/intro_01  

Highline College, "Scientific method." July 12, 2015. https://people.highline.edu/iglozman/classes/astronotes/scimeth.htm  

North Carolina State University, "Science Scripts." https://projects.ncsu.edu/project/bio183de/Black/science/science_scripts.html  

University of California, Santa Barbara. "What is an Independent variable?" October 31,2017. http://scienceline.ucsb.edu/getkey.php?key=6045  

Encyclopedia Britannica, "Control group." May 14, 2020. https://www.britannica.com/science/control-group  

The University of Waikato, "Scientific Hypothesis, Theories and Laws." https://sci.waikato.ac.nz/evolution/Theories.shtml  

Stanford Encyclopedia of Philosophy, Robert Grosseteste. May 3, 2019. https://plato.stanford.edu/entries/grosseteste/  

Encyclopedia Britannica, "Jonas Salk." October 21, 2021. https://www.britannica.com/ biography /Jonas-Salk

National Human Genome Research Institute, "​Phosphate Backbone." https://www.genome.gov/genetics-glossary/Phosphate-Backbone  

National Human Genome Research Institute, "What is the Human Genome Project?" https://www.genome.gov/human-genome-project/What  

‌ Live Science contributor Ashley Hamer updated this article on Jan. 16, 2022.

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Ocean Photographer of the Year 2024: See stunning photos of hungry whale, surfing seagull, freaky fish babies, land-loving eel and adorable toxic octopus

Earth from space: Ghostly figure emerges in Greenland ice after underground lake collapses

Earth once wore a Saturn-like ring, study of ancient craters suggests

Most Popular

  • 2 Watch mesmerizing video of weird waves that 'shape life itself' inside a fly embryo
  • 3 A passing star may have kicked the solar system's weirdest moons into place
  • 4 'Their capacity to emulate human language and thought is immensely powerful': Far from ending the world, AI systems might actually save it
  • 5 The bubbling surface of a distant star was captured on video for the 1st time ever

a good scientific hypothesis must be

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • R Soc Open Sci
  • v.10(8); 2023 Aug
  • PMC10465209

On the scope of scientific hypotheses

William hedley thompson.

1 Department of Applied Information Technology, University of Gothenburg, Gothenburg, Sweden

2 Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

3 Department of Pedagogical, Curricular and Professional Studies, Faculty of Education, University of Gothenburg, Gothenburg, Sweden

4 Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden

Associated Data

This article has no additional data.

Hypotheses are frequently the starting point when undertaking the empirical portion of the scientific process. They state something that the scientific process will attempt to evaluate, corroborate, verify or falsify. Their purpose is to guide the types of data we collect, analyses we conduct, and inferences we would like to make. Over the last decade, metascience has advocated for hypotheses being in preregistrations or registered reports, but how to formulate these hypotheses has received less attention. Here, we argue that hypotheses can vary in specificity along at least three independent dimensions: the relationship, the variables, and the pipeline. Together, these dimensions form the scope of the hypothesis. We demonstrate how narrowing the scope of a hypothesis in any of these three ways reduces the hypothesis space and that this reduction is a type of novelty. Finally, we discuss how this formulation of hypotheses can guide researchers to formulate the appropriate scope for their hypotheses and should aim for neither too broad nor too narrow a scope. This framework can guide hypothesis-makers when formulating their hypotheses by helping clarify what is being tested, chaining results to previous known findings, and demarcating what is explicitly tested in the hypothesis.

1.  Introduction

Hypotheses are an important part of the scientific process. However, surprisingly little attention is given to hypothesis-making compared to other skills in the scientist's skillset within current discussions aimed at improving scientific practice. Perhaps this lack of emphasis is because the formulation of the hypothesis is often considered less relevant, as it is ultimately the scientific process that will eventually decide the veracity of the hypothesis. However, there are more hypotheses than scientific studies as selection occurs at various stages: from funder selection and researcher's interests. So which hypotheses are worthwhile to pursue? Which hypotheses are the most effective or pragmatic for extending or enhancing our collective knowledge? We consider the answer to these questions by discussing how broad or narrow a hypothesis can or should be (i.e. its scope).

We begin by considering that the two statements below are both hypotheses and vary in scope:

  • H 1 : For every 1 mg decrease of x , y will increase by, on average, 2.5 points.
  • H 2 : Changes in x 1 or x 2 correlate with y levels in some way.

Clearly, the specificity of the two hypotheses is very different. H 1 states a precise relationship between two variables ( x and y ), while H 2 specifies a vaguer relationship and does not specify which variables will show the relationship. However, they are both still hypotheses about how x and y relate to each other. This claim of various degrees of the broadness of hypotheses is, in and of itself, not novel. In Epistemetrics, Rescher [ 1 ], while drawing upon the physicist Duhem's work, develops what he calls Duhem's Law. This law considers a trade-off between certainty or precision in statements about physics when evaluating them. Duhem's Law states that narrower hypotheses, such as H 1 above, are more precise but less likely to be evaluated as true than broader ones, such as H 2 above. Similarly, Popper, when discussing theories, describes the reverse relationship between content and probability of a theory being true, i.e. with increased content, there is a decrease in probability and vice versa [ 2 ]. Here we will argue that it is important that both H 1 and H 2 are still valid scientific hypotheses, and their appropriateness depends on certain scientific questions.

The question of hypothesis scope is relevant since there are multiple recent prescriptions to improve science, ranging from topics about preregistrations [ 3 ], registered reports [ 4 ], open science [ 5 ], standardization [ 6 ], generalizability [ 7 ], multiverse analyses [ 8 ], dataset reuse [ 9 ] and general questionable research practices [ 10 ]. Within each of these issues, there are arguments to demarcate between confirmatory and exploratory research or normative prescriptions about how science should be done (e.g. science is ‘bad’ or ‘worse’ if code/data are not open). Despite all these discussions and improvements, much can still be done to improve hypothesis-making. A recent evaluation of preregistered studies in psychology found that over half excluded the preregistered hypotheses [ 11 ]. Further, evaluations of hypotheses in ecology showed that most hypotheses are not explicitly stated [ 12 , 13 ]. Other research has shown that obfuscated hypotheses are more prevalent in retracted research [ 14 ]. There have been recommendations for simpler hypotheses in psychology to avoid misinterpretations and misspecifications [ 15 ]. Finally, several evaluations of preregistration practices have found that a significant proportion of articles do not abide by their stated hypothesis or add additional hypotheses [ 11 , 16 – 18 ]. In sum, while multiple efforts exist to improve scientific practice, our hypothesis-making could improve.

One of our intentions is to provide hypothesis-makers with tools to assist them when making hypotheses. We consider this useful and timely as, with preregistrations becoming more frequent, the hypothesis-making process is now open and explicit . However, preregistrations are difficult to write [ 19 ], and preregistered articles can change or omit hypotheses [ 11 ] or they are vague and certain degrees of freedom hard to control for [ 16 – 18 ]. One suggestion has been to do less confirmatory research [ 7 , 20 ]. While we agree that all research does not need to be confirmatory, we also believe that not all preregistrations of confirmatory work must test narrow hypotheses. We think there is a possible point of confusion that the specificity in preregistrations, where researcher degrees of freedom should be stated, necessitates the requirement that the hypothesis be narrow. Our belief that this confusion is occurring is supported by the study Akker et al . [ 11 ] where they found that 18% of published psychology studies changed their preregistered hypothesis (e.g. its direction), and 60% of studies selectively reported hypotheses in some way. It is along these lines that we feel the framework below can be useful to help formulate appropriate hypotheses to mitigate these identified issues.

We consider this article to be a discussion of the researcher's different choices when formulating hypotheses and to help link hypotheses over time. Here we aim to deconstruct what aspects there are in the hypothesis about their specificity. Throughout this article, we intend to be neutral to many different philosophies of science relating to the scientific method (i.e. how one determines the veracity of a hypothesis). Our idea of neutrality here is that whether a researcher adheres to falsification, verification, pragmatism, or some other philosophy of science, then this framework can be used when formulating hypotheses. 1

The framework this article advocates for is that there are (at least) three dimensions that hypotheses vary along regarding their narrowness and broadness: the selection of relationships, variables, and pipelines. We believe this discussion is fruitful for the current debate regarding normative practices as some positions make, sometimes implicit, commitments about which set of hypotheses the scientific community ought to consider good or permissible. We proceed by outlining a working definition of ‘scientific hypothesis' and then discuss how it relates to theory. Then, we justify how hypotheses can vary along the three dimensions. Using this framework, we then discuss the scopes in relation to appropriate hypothesis-making and an argument about what constitutes a scientifically novel hypothesis. We end the article with practical advice for researchers who wish to use this framework.

2.  The scientific hypothesis

In this section, we will describe a functional and descriptive role regarding how scientists use hypotheses. Jeong & Kwon [ 21 ] investigated and summarized the different uses the concept of ‘hypothesis’ had in philosophical and scientific texts. They identified five meanings: assumption, tentative explanation, tentative cause, tentative law, and prediction. Jeong & Kwon [ 21 ] further found that researchers in science and philosophy used all the different definitions of hypotheses, although there was some variance in frequency between fields. Here we see, descriptively , that the way researchers use the word ‘hypothesis’ is diverse and has a wide range in specificity and function. However, whichever meaning a hypothesis has, it aims to be true, adequate, accurate or useful in some way.

Not all hypotheses are ‘scientific hypotheses'. For example, consider the detective trying to solve a crime and hypothesizing about the perpetrator. Such a hypothesis still aims to be true and is a tentative explanation but differs from the scientific hypothesis. The difference is that the researcher, unlike the detective, evaluates the hypothesis with the scientific method and submits the work for evaluation by the scientific community. Thus a scientific hypothesis entails a commitment to evaluate the statement with the scientific process . 2 Additionally, other types of hypotheses can exist. As discussed in more detail below, scientific theories generate not only scientific hypotheses but also contain auxiliary hypotheses. The latter refers to additional assumptions considered to be true and not explicitly evaluated. 3

Next, the scientific hypothesis is generally made antecedent to the evaluation. This does not necessitate that the event (e.g. in archaeology) or the data collection (e.g. with open data reuse) must be collected before the hypothesis is made, but that the evaluation of the hypothesis cannot happen before its formulation. This claim state does deny the utility of exploratory hypothesis testing of post hoc hypotheses (see [ 25 ]). However, previous results and exploration can generate new hypotheses (e.g. via abduction [ 22 , 26 – 28 ], which is the process of creating hypotheses from evidence), which is an important part of science [ 29 – 32 ], but crucially, while these hypotheses are important and can be the conclusion of exploratory work, they have yet to be evaluated (by whichever method of choice). Hence, they still conform to the antecedency requirement. A further way to justify the antecedency is seen in the practice of formulating a post hoc hypothesis, and considering it to have been evaluated is seen as a questionable research practice (known as ‘hypotheses after results are known’ or HARKing [ 33 ]). 4

While there is a varying range of specificity, is the hypothesis a critical part of all scientific work, or is it reserved for some subset of investigations? There are different opinions regarding this. Glass and Hall, for example, argue that the term only refers to falsifiable research, and model-based research uses verification [ 36 ]. However, this opinion does not appear to be the consensus. Osimo and Rumiati argue that any model based on or using data is never wholly free from hypotheses, as hypotheses can, even implicitly, infiltrate the data collection [ 37 ]. For our definition, we will consider hypotheses that can be involved in different forms of scientific evaluation (i.e. not just falsification), but we do not exclude the possibility of hypothesis-free scientific work.

Finally, there is a debate about whether theories or hypotheses should be linguistic or formal [ 38 – 40 ]. Neither side in this debate argues that verbal or formal hypotheses are not possible, but instead, they discuss normative practices. Thus, for our definition, both linguistic and formal hypotheses are considered viable.

Considering the above discussion, let us summarize the scientific process and the scientific hypothesis: a hypothesis guides what type of data are sampled and what analysis will be done. With the new observations, evidence is analysed or quantified in some way (often using inferential statistics) to judge the hypothesis's truth value, utility, credibility, or likelihood. The following working definition captures the above:

  • Scientific hypothesis : an implicit or explicit statement that can be verbal or formal. The hypothesis makes a statement about some natural phenomena (via an assumption, explanation, cause, law or prediction). The scientific hypothesis is made antecedent to performing a scientific process where there is a commitment to evaluate it.

For simplicity, we will only use the term ‘hypothesis’ for ‘scientific hypothesis' to refer to the above definition for the rest of the article except when it is necessary to distinguish between other types of hypotheses. Finally, this definition could further be restrained in multiple ways (e.g. only explicit hypotheses are allowed, or assumptions are never hypotheses). However, if the definition is more (or less) restrictive, it has little implication for the argument below.

3.  The hypothesis, theory and auxiliary assumptions

While we have a definition of the scientific hypothesis, we have yet to link it with how it relates to scientific theory, where there is frequently some interconnection (i.e. a hypothesis tests a scientific theory). Generally, for this paper, we believe our argument applies regardless of how scientific theory is defined. Further, some research lacks theory, sometimes called convenience or atheoretical studies [ 41 ]. Here a hypothesis can be made without a wider theory—and our framework fits here too. However, since many consider hypotheses to be defined or deducible from scientific theory, there is an important connection between the two. Therefore, we will briefly clarify how hypotheses relate to common formulations of scientific theory.

A scientific theory is generally a set of axioms or statements about some objects, properties and their relations relating to some phenomena. Hypotheses can often be deduced from the theory. Additionally, a theory has boundary conditions. The boundary conditions specify the domain of the theory stating under what conditions it applies (e.g. all things with a central neural system, humans, women, university teachers) [ 42 ]. Boundary conditions of a theory will consequently limit all hypotheses deduced from the theory. For example, with a boundary condition ‘applies to all humans’, then the subsequent hypotheses deduced from the theory are limited to being about humans. While this limitation of the hypothesis by the theory's boundary condition exists, all the considerations about a hypothesis scope detailed below still apply within the boundary conditions. Finally, it is also possible (depending on the definition of scientific theory) for a hypothesis to test the same theory under different boundary conditions. 5

The final consideration relating scientific theory to scientific hypotheses is auxiliary hypotheses. These hypotheses are theories or assumptions that are considered true simultaneously with the theory. Most philosophies of science from Popper's background knowledge [ 24 ], Kuhn's paradigms during normal science [ 44 ], and Laktos' protective belt [ 45 ] all have their own versions of this auxiliary or background information that is required for the hypothesis to test the theory. For example, Meelh [ 46 ] auxiliary theories/assumptions are needed to go from theoretical terms to empirical terms (e.g. neural activity can be inferred from blood oxygenation in fMRI research or reaction time to an indicator of cognition) and auxiliary theories about instruments (e.g. the experimental apparatus works as intended) and more (see also Other approaches to categorizing hypotheses below). As noted in the previous section, there is a difference between these auxiliary hypotheses, regardless of their definition, and the scientific hypothesis defined above. Recall that our definition of the scientific hypothesis included a commitment to evaluate it. There are no such commitments with auxiliary hypotheses, but rather they are assumed to be correct to test the theory adequately. This distinction proves to be important as auxiliary hypotheses are still part of testing a theory but are separate from the hypothesis to be evaluated (discussed in more detail below).

4.  The scope of hypotheses

In the scientific hypothesis section, we defined the hypothesis and discussed how it relates back to the theory. In this section, we want to defend two claims about hypotheses:

  • (A1) Hypotheses can have different scopes . Some hypotheses are narrower in their formulation, and some are broader.
  • (A2) The scope of hypotheses can vary along three dimensions relating to relationship selection , variable selection , and pipeline selection .

A1 may seem obvious, but it is important to establish what is meant by narrower and broader scope. When a hypothesis is very narrow, it is specific. For example, it might be specific about the type of relationship between some variables. In figure 1 , we make four different statements regarding the relationship between x and y . The narrowest hypothesis here states ‘there is a positive linear relationship with a magnitude of 0.5 between x and y ’ ( figure 1 a ), and the broadest hypothesis states ‘there is a relationship between x and y ’ ( figure 1 d ). Note that many other hypotheses are possible that are not included in this example (such as there being no relationship).

An external file that holds a picture, illustration, etc.
Object name is rsos230607f01.jpg

Examples of narrow and broad hypotheses between x and y . Circles indicate a set of possible relationships with varying slopes that can pivot or bend.

We see that the narrowest of these hypotheses claims a type of relationship (linear), a direction of the relationship (positive) and a magnitude of the relationship (0.5). As the hypothesis becomes broader, the specific magnitude disappears ( figure 1 b ), the relationship has additional options than just being linear ( figure 1 c ), and finally, the direction of the relationship disappears. Crucially, all the examples in figure 1 can meet the above definition of scientific hypotheses. They are all statements that can be evaluated with the same scientific method. There is a difference between these statements, though— they differ in the scope of the hypothesis . Here we have justified A1.

Within this framework, when we discuss whether a hypothesis is narrower or broader in scope, this is a relation between two hypotheses where one is a subset of the other. This means that if H 1 is narrower than H 2 , and if H 1 is true, then H 2 is also true. This can be seen in figure 1 a–d . Suppose figure 1 a , the narrowest of all the hypotheses, is true. In that case, all the other broader statements are also true (i.e. a linear correlation of 0.5 necessarily entails that there is also a positive linear correlation, a linear correlation, and some relationship). While this property may appear trivial, it entails that it is only possible to directly compare the hypothesis scope between two hypotheses (i.e. their broadness or narrowness) where one is the subset of the other. 6

4.1. Sets, disjunctions and conjunctions of elements

The above restraint defines the scope as relations between sets. This property helps formalize the framework of this article. Below, when we discuss the different dimensions that can impact the scope, these become represented as a set. Each set contains elements. Each element is a permissible situation that allows the hypothesis to be accepted. We denote elements as lower case with italics (e.g. e 1 , e 2 , e 3 ) and sets as bold upper case (e.g. S ). Each of the three different dimensions discussed below will be formalized as sets, while the total number of elements specifies their scope.

Let us reconsider the above restraint about comparing hypotheses as narrower or broader. This can be formally shown if:

  • e 1 , e 2 , e 3 are elements of S 1 ; and
  • e 1 and e 2 are elements of S 2 ,

then S 2 is narrower than S 1 .

Each element represents specific propositions that, if corroborated, would support the hypothesis. Returning to figure 1 a , b , the following statements apply to both:

  • ‘There is a positive linear relationship between x and y with a slope of 0.5’.

Whereas the following two apply to figure 1 b but not figure 1 a :

  • ‘There is a positive linear relationship between x and y with a slope of 0.4’ ( figure 1 b ).
  • ‘There is a positive linear relationship between x and y with a slope of 0.3’ ( figure 1 b ).

Figure 1 b allows for a considerably larger number of permissible situations (which is obvious as it allows for any positive linear relationship). When formulating the hypothesis in figure 1 b , we do not need to specify every single one of these permissible relationships. We can simply specify all possible positive slopes, which entails the set of permissible elements it includes.

That broader hypotheses have more elements in their sets entails some important properties. When we say S contains the elements e 1 , e 2 , and e 3 , the hypothesis is corroborated if e 1 or e 2 or e 3 is the case. This means that the set requires only one of the elements to be corroborated for the hypothesis to be considered correct (i.e. the positive linear relationship needs to be 0.3 or 0.4 or 0.5). Contrastingly, we will later see cases when conjunctions of elements occur (i.e. both e 1 and e 2 are the case). When a conjunction occurs, in this formulation, the conjunction itself becomes an element in the set (i.e. ‘ e 1 and e 2 ’ is a single element). Figure 2 illustrates how ‘ e 1 and e 2 ’ is narrower than ‘ e 1 ’, and ‘ e 1 ’ is narrower than ‘ e 1 or e 2 ’. 7 This property relating to the conjunction being narrower than individual elements is explained in more detail in the pipeline selection section below.

An external file that holds a picture, illustration, etc.
Object name is rsos230607f02.jpg

Scope as sets. Left : four different sets (grey, red, blue and purple) showing different elements which they contain. Right : a list of each colour explaining which set is a subset of the other (thereby being ‘narrower’).

4.2. Relationship selection

We move to A2, which is to show the different dimensions that a hypothesis scope can vary along. We have already seen an example of the first dimension of a hypothesis in figure 1 , the relationship selection . Let R denote the set of all possible configurations of relationships that are permissible for the hypothesis to be considered true. For example, in the narrowest formulation above, there was one allowed relationship for the hypothesis to be true. Consequently, the size of R (denoted | R |) is one. As discussed above, in the second narrowest formulation ( figure 1 b ), R has more possible relationships where it can still be considered true:

  • r 1 = ‘a positive linear relationship of 0.1’
  • r 2 = ‘a positive linear relationship of 0.2’
  • r 3 = ‘a positive linear relationship of 0.3’.

Additionally, even broader hypotheses will be compatible with more types of relationships. In figure 1 c , d , nonlinear and negative relationships are also possible relationships included in R . For this broader statement to be affirmed, more elements are possible to be true. Thus if | R | is greater (i.e. contains more possible configurations for the hypothesis to be true), then the hypothesis is broader. Thus, the scope of relating to the relationship selection is specified by | R |. Finally, if |R H1 | > |R H2 | , then H 1 is broader than H 2 regarding the relationship selection.

Figure 1 is an example of the relationship narrowing. That the relationship became linear is only an example and does not necessitate a linear relationship or that this scope refers only to correlations. An alternative example of a relationship scope is a broad hypothesis where there is no knowledge about the distribution of some data. In such situations, one may assume a uniform relationship or a Cauchy distribution centred at zero. Over time the specific distribution can be hypothesized. Thereafter, the various parameters of the distribution can be hypothesized. At each step, the hypothesis of the distribution gets further specified to narrower formulations where a smaller set of possible relationships are included (see [ 47 , 48 ] for a more in-depth discussion about how specific priors relate to more narrow tests). Finally, while figure 1 was used to illustrate the point of increasingly narrow relationship hypotheses, it is more likely to expect the narrowest relationship, within fields such as psychology, to have considerable uncertainty and be formulated with confidence or credible intervals (i.e. we will rarely reach point estimates).

4.3. Variable selection

We have demonstrated that relationship selection can affect the scope of a hypothesis. Additionally, at least two other dimensions can affect the scope of a hypothesis: variable selection and pipeline selection . The variable selection in figure 1 was a single bivariate relationship (e.g. x 's relationship with y ). However, it is not always the case that we know which variables will be involved. For example, in neuroimaging, we can be confident that one or more brain regions will be processing some information following a stimulus. Still, we might not be sure which brain region(s) this will be. Consequently, our hypothesis becomes broader because we have selected more variables. The relationship selection may be identical for each chosen variable, but the variable selection becomes broader. We can consider the following three hypotheses to be increasing in their scope:

  • H 1 : x relates to y with relationship R .
  • H 2 : x 1 or x 2 relates to y with relationship R .
  • H 3 : x 1 or x 2 or x 3 relates to y with relationship R .

For H 1 –H 3 above, we assume that R is the same. Further, we assume that there is no interaction between these variables.

In the above examples, we have multiple x ( x 1 , x 2 , x 3 , … , x n ). Again, we can symbolize the variable selection as a non-empty set XY , containing either a single variable or many variables. Our motivation for designating it XY is that the variable selection can include multiple possibilities for both the independent variable ( x ) and the dependent variable ( y ). Like with relationship selection, we can quantify the broadness between two hypotheses with the size of the set XY . Consequently, | XY | denotes the total scope concerning variable selection. Thus, in the examples above | XY H1 | < | XY H2 | < | XY H3 |. Like with relationship selection, hypotheses that vary in | XY | still meet the definition of a hypothesis. 8

An obvious concern for many is that a broader XY is much easier to evaluate as correct. Generally, when | XY 1 | > | XY 2 |, there is a greater chance of spurious correlations when evaluating XY 1 . This concern is an issue relating to the evaluation of hypotheses (e.g. applying statistics to the evaluation), which will require additional assumptions relating to how to evaluate the hypotheses. Strategies to deal with this apply some correction or penalization for multiple statistical testing [ 49 ] or partial pooling and regularizing priors [ 50 , 51 ]. These strategies aim to evaluate a broader variable selection ( x 1 or x 2 ) on equal or similar terms to a narrow variable selection ( x 1 ).

4.4. Pipeline selection

Scientific studies require decisions about how to perform the analysis. This scope considers transformations applied to the raw data ( XY raw ) to achieve some derivative ( XY ). These decisions can also involve selection procedures that drop observations deemed unreliable, standardizing, correcting confounding variables, or different philosophies. We can call the array of decisions and transformations used as the pipeline . A hypothesis varies in the number of pipelines:

  • H 1 : XY has a relationship(s) R with pipeline p 1 .
  • H 2 : XY has a relationship(s) R with pipeline p 1 or pipeline p 2 .
  • H 3 : XY has a relationship(s) R with pipeline p 1 or pipeline p 2 , or pipeline p 3 .

Importantly, the pipeline here considers decisions regarding how the hypothesis shapes the data collection and transformation. We do not consider this to include decisions made regarding the assumptions relating to the statistical inference as those relate to operationalizing the evaluation of the hypothesis and not part of the hypothesis being evaluated (these assumptions are like auxiliary hypotheses, which are assumed to be true but not explicitly evaluated).

Like with variable selection ( XY ) and relationship selection ( R ), we can see that pipelines impact the scope of hypotheses. Again, we can symbolize the pipeline selection with a set P . As previously, | P | will denote the dimension of the pipeline selection. In the case of pipeline selection, we are testing the same variables, looking for the same relationship, but processing the variables or relationships with different pipelines to evaluate the relationship. Consequently, | P H1 | < | P H2 | < | P H3 |.

These issues regarding pipelines have received attention as the ‘garden of forking paths' [ 52 ]. Here, there are calls for researchers to ensure that their entire pipeline has been specified. Additionally, recent work has highlighted the diversity of results based on multiple analytical pipelines [ 53 , 54 ]. These results are often considered a concern, leading to calls that results should be pipeline resistant.

The wish for pipeline-resistant methods entails that hypotheses, in their narrowest form, are possible for all pipelines. Consequently, a narrower formulation will entail that this should not impact the hypothesis regardless of which pipeline is chosen. Thus the conjunction of pipelines is narrower than single pipelines. Consider the following three scenarios:

  • H 3 : XY has a relationship(s) R with pipeline p 1 and pipeline p 2 .

In this instance, since H 1 is always true if H 3 is true, thus H 3 is a narrower formulation than H 1 . Consequently, | P H3 | < | P H1 | < | P H2 |. Decreasing the scope of the pipeline dimension also entails the increase in conjunction of pipelines (i.e. creating pipeline-resistant methods) rather than just the reduction of disjunctional statements.

4.5. Combining the dimensions

In summary, we then have three different dimensions that independently affect the scope of the hypothesis. We have demonstrated the following general claim regarding hypotheses:

  • The variables XY have a relationship R with pipeline P .

And that the broadness and narrowness of a hypothesis depend on how large the three sets XY , R and P are. With this formulation, we can conclude that hypotheses have a scope that can be determined with a 3-tuple argument of (| R |, | XY |, | P |).

While hypotheses can be formulated along these three dimensions and generally aim to be reduced, it does not entail that these dimensions behave identically. For example, the relationship dimensions aim to reduce the number of elements as far as possible (e.g. to an interval). Contrastingly, for both variables and pipeline, the narrower hypothesis can reduce to single variables/pipelines or become narrower still and become conjunctions where all variables/pipelines need to corroborate the hypothesis (i.e. regardless of which method one follows, the hypothesis is correct).

5.  Additional possible dimensions

No commitment is being made about the exhaustive nature of there only being three dimensions that specify the hypothesis scope. Other dimensions may exist that specify the scope of a hypothesis. For example, one might consider the pipeline dimension as two different dimensions. The first would consider the experimental pipeline dimension regarding all variables relating to the experimental setup to collect data, and the latter would be the analytical pipeline dimension regarding the data analysis of any given data snapshot. Another possible dimension is adding the number of situations or contexts under which the hypothesis is valid. For example, any restraint such as ‘in a vacuum’, ‘under the speed of light’, or ‘in healthy human adults' could be considered an additional dimension of the hypothesis. There is no objection to whether these should be additional dimensions of the hypothesis. However, as stated above, these usually follow from the boundary conditions of the theory.

6.  Specifying the scope versus assumptions

We envision that this framework can help hypothesis-makers formulate hypotheses (in research plans, registered reports, preregistrations etc.). Further, using this framework while formulating hypotheses can help distinguish between auxiliary hypotheses and parts of the scientific hypothesis being tested. When writing preregistrations, it can frequently occur that some step in the method has two alternatives (e.g. a preprocessing step), and there is not yet reason to choose one over the other, and the researcher needs to make a decision. These following scenarios are possible:

  • 1. Narrow pipeline scope . The researcher evaluates the hypothesis with both pipeline variables (i.e. H holds for both p 1 and p 2 where p 1 and p 2 can be substituted with each other in the pipeline).
  • 2. Broad pipeline scope. The researcher evaluates the hypothesis with both pipeline variables, and only one needs to be correct (i.e. H holds for either p 1 or p 2 where p 1 and p 2 can be substituted with each other in the pipeline). The result of this experiment may help motivate choosing either p 1 or p 2 in future studies.
  • 3. Auxiliary hypothesis. Based on some reason (e.g. convention), the researcher assumes p 1 and evaluates H assuming p 1 is true.

Here we see that the same pipeline step can be part of either the auxiliary hypotheses or the pipeline scope. This distinction is important because if (3) is chosen, the decision becomes an assumption that is not explicitly tested by the hypothesis. Consequently, a researcher confident in the hypothesis may state that the auxiliary hypothesis p 1 was incorrect, and they should retest their hypothesis using different assumptions. In the cases where this decision is part of the pipeline scope, the hypothesis is intertwined with this decision, removing the eventual wiggle-room to reject auxiliary hypotheses that were assumed. Furthermore, starting with broader pipeline hypotheses that gradually narrow down can lead to a more well-motivated protocol for approaching the problem. Thus, this framework can help researchers while writing their hypotheses in, for example, preregistrations because they can consider when they are committing to a decision, assuming it, or when they should perhaps test a broader hypothesis with multiple possible options (discussed in more detail in §11 below).

7.  The reduction of scope in hypothesis space

Having established that different scopes of a hypothesis are possible, we now consider how the hypotheses change over time. In this section, we consider how the scope of the hypothesis develops ideally within science.

Consider a new research question. A large number of hypotheses are possible. Let us call this set of all possible hypotheses the hypothesis space . Hypotheses formulated within this space can be narrower or broader based on the dimensions discussed previously ( figure 3 ).

An external file that holds a picture, illustration, etc.
Object name is rsos230607f03.jpg

Example of hypothesis space. The hypothesis scope is expressed as cuboids in three dimensions (relationship ( R ), variable ( XY ), pipeline ( P )). The hypothesis space is the entire possible space within the three dimensions. Three hypotheses are shown in the hypothesis space (H 1 , H 2 , H 3 ). H 2 and H 3 are subsets of H 1 .

After the evaluation of the hypothesis with the scientific process, the hypothesis will be accepted or rejected. 9 The evaluation could be done through falsification or via verification, depending on the philosophy of science commitments. Thereafter, other narrower formulations of the hypothesis can be formulated by reducing the relationship, variable or pipeline scope. If a narrower hypothesis is accepted, more specific details about the subject matter are known, or a theory has been refined in greater detail. A narrower hypothesis will entail a more specific relationship, variable or pipeline detailed in the hypothesis. Consequently, hypotheses linked to each other in this way will become narrower over time along one or more dimensions. Importantly, considering that the conjunction of elements is narrower than single elements for pipelines and variables, this process of narrower hypotheses will lead to more general hypotheses (i.e. they have to be applied in all conditions and yield less flexibility when they do not apply). 10

Considering that the scopes of hypotheses were defined as sets above, some properties can be deduced from this framework about how narrower hypotheses relate to broader hypotheses. Let us consider three hypotheses (H 1 , H 2 , and H 3 ; figure 3 ). H 2 and H 3 are non-overlapping subsets of H 1 . Thus H 2 and H 3 are both narrower in scope than H 1 . Thus the following is correct:

  • P1: If H 1 is false, then H 2 is false, and H 2 does not need to be evaluated.
  • P2: If H 2 is true, then the broader H 1 is true, and H 1 does not need to be evaluated.
  • P3: If H 1 is true and H 2 is false, some other hypothesis H 3 of similar scope to H 2 is possible.

For example, suppose H 1 is ‘there is a relationship between x and y ’, H 2 is ‘there is a positive relationship between x and y ’, and H 3 is ‘a negative relationship between x and y ’. In that case, it becomes apparent how each of these follows. 11 Logically, many deductions from set theory are possible but will not be explored here. Instead, we will discuss two additional consequences of hypothesis scopes: scientific novelty and applications for the researcher who formulates a hypothesis.

P1–P3 have been formulated as hypotheses being true or false. In practice, hypotheses are likely evaluated probabilistically (e.g. ‘H 1 is likely’ or ‘there is evidence in support of H 1 ’). In these cases, P1–P3 can be rephrased to account for this by substituting true/false with statements relating to evidence. For example, P2 could read: ‘If there is evidence in support of H 2 , then there is evidence in support of H 1 , and H 1 does not need to be evaluated’.

8.  Scientific novelty as the reduction of scope

Novelty is a key concept that repeatedly occurs in multiple aspects of the scientific enterprise, from funding to publishing [ 55 ]. Generally, scientific progress establishes novel results based on some new hypothesis. Consequently, the new hypothesis for the novel results must be narrower than previously established knowledge (i.e. the size of the scopes is reduced). Otherwise, the result is trivial and already known (see P2 above). Thus, scientific work is novel if the scientific process produces a result based on hypotheses with either a smaller | R |, | XY |, or | P | compared to previous work.

This framework of dimensions of the scope of a hypothesis helps to demarcate when a hypothesis and the subsequent result are novel. If previous studies have established evidence for R 1 (e.g. there is a positive relationship between x and y ), a hypothesis will be novel if and only if it is narrower than R 1 . Thus, if R 2 is narrower in scope than R 1 (i.e. | R 2 | < | R 1 |), R 2 is a novel hypothesis.

Consider the following example. Study 1 hypothesizes, ‘There is a positive relationship between x and y ’. It identifies a linear relationship of 0.6. Next, Study 2 hypothesizes, ‘There is a specific linear relationship between x and y that is 0.6’. Study 2 also identifies the relationship of 0.6. Since this was a narrower hypothesis, Study 2 is novel despite the same result. Frequently, researchers claim that they are the first to demonstrate a relationship. Being the first to demonstrate a relationship is not the final measure of novelty. Having a narrower hypothesis than previous researchers is a sign of novelty as it further reduces the hypothesis space.

Finally, it should be noted that novelty is not the only objective of scientific work. Other attributes, such as improving the certainty of a current hypothesis (e.g. through replications), should not be overlooked. Additional scientific explanations and improved theories are other aspects. Additionally, this definition of novelty relating to hypothesis scope does not exclude other types of novelty (e.g. new theories or paradigms).

9.  How broad should a hypothesis be?

Given the previous section, it is elusive to conclude that the hypothesis should be as narrow as possible as it entails maximal knowledge gain and scientific novelty when formulating hypotheses. Indeed, many who advocate for daring or risky tests seem to hold this opinion. For example, Meehl [ 46 ] argues that we should evaluate theories based on point (or interval) prediction, which would be compatible with very narrow versions of relationships. We do not necessarily think that this is the most fruitful approach. In this section, we argue that hypotheses should aim to be narrower than current knowledge , but too narrow may be problematic .

Let us consider the idea of confirmatory analyses. These studies will frequently keep the previous hypothesis scopes regarding P and XY but aim to become more specific regarding R (i.e. using the same method and the same variables to detect a more specific relationship). A very daring or narrow hypothesis is to minimize R to include the fewest possible relationships. However, it becomes apparent that simply pursuing specificness or daringness is insufficient for selecting relevant hypotheses. Consider a hypothetical scenario where a researcher believes virtual reality use leads people to overestimate the amount of exercise they have done. If unaware of previous studies on this project, an apt hypothesis is perhaps ‘increased virtual reality usage correlates with a less accuracy of reported exercise performed’ (i.e. R is broad). However, a more specific and more daring hypothesis would be to specify the relationship further. Thus, despite not knowing if there is a relationship at all, a more daring hypothesis could be: ‘for every 1 h of virtual reality usage, there will be, on average, a 0.5% decrease in the accuracy of reported exercise performed’ (i.e. R is narrow). We believe it would be better to establish the broader hypothesis in any scenario here for the first experiment. Otherwise, if we fail to confirm the more specific formulation, we could reformulate another equally narrow relative to the broader hypothesis. This process of tweaking a daring hypothesis could be pursued ad infinitum . Such a situation will neither quickly identify the true hypothesis nor effectively use limited research resources.

By first discounting a broader hypothesis that there is no relationship, it will automatically discard all more specific formulations of that relationship in the hypothesis space. Returning to figure 3 , it will be better to establish H 1 before attempting H 2 or H 3 to ensure the correct area in the hypothesis space is being investigated. To provide an analogy: when looking for a needle among hay, first identify which farm it is at, then which barn, then which haystack, then which part of the haystack it is at before we start picking up individual pieces of hay. Thus, it is preferable for both pragmatic and cost-of-resource reasons to formulate sufficiently broad hypotheses to navigate the hypothesis space effectively.

Conversely, formulating too broad a relationship scope in a hypothesis when we already have evidence for narrower scope would be superfluous research (unless the evidence has been called into question by, for example, not being replicated). If multiple studies have supported the hypothesis ‘there is a 20-fold decrease in mortality after taking some medication M’, it would be unnecessary to ask, ‘Does M have any effect?’.

Our conclusion is that the appropriate scope of a hypothesis, and its three dimensions, follow a Goldilocks-like principle where too broad is superfluous and not novel, while too narrow is unnecessary or wasteful. Considering the scope of one's hypothesis and how it relates to previous hypotheses' scopes ensures one is asking appropriate questions.

Finally, there has been a recent trend in psychology that hypotheses should be formal [ 38 , 56 – 60 ]. Formal theories are precise since they are mathematical formulations entailing that their interpretations are clear (non-ambiguous) compared to linguistic theories. However, this literature on formal theories often refers to ‘precise predictions’ and ‘risky testing’ while frequently referencing Meehl, who advocates for narrow hypotheses (e.g. [ 38 , 56 , 59 ]). While perhaps not intended by any of the proponents, one interpretation of some of these positions is that hypotheses derived from formal theories will be narrow hypotheses (i.e. the quality of being ‘precise’ can mean narrow hypotheses with risky tests and non-ambiguous interpretations simultaneously). However, the benefit from the clarity (non-ambiguity) that formal theories/hypotheses bring also applies to broad formal hypotheses as well. They can include explicit but formalized versions of uncertain relationships, multiple possible pipelines, and large sets of variables. For example, a broad formal hypothesis can contain a hyperparameter that controls which distribution the data fit (broad relationship scope), or a variable could represent a set of formalized explicit pipelines (broad pipeline scope) that will be tested. In each of these instances, it is possible to formalize non-ambiguous broad hypotheses from broad formal theories that do not yet have any justification for being overly narrow. In sum, our argumentation here stating that hypotheses should not be too narrow is not an argument against formal theories but rather that hypotheses (derived from formal theories) do not necessarily have to be narrow.

10.  Other approaches to categorizing hypotheses

The framework we present here is a way of categorizing hypotheses into (at least) three dimensions regarding the hypothesis scope, which we believe is accessible to researchers and help link scientific work over time while also trying to remain neutral with regard to a specific philosophy of science. Our proposal does not aim to be antagonistic or necessarily contradict other categorizing schemes—but we believe that our framework provides benefits.

One recent categorization scheme is the Theoretical (T), Auxiliary (A), Statistical (S) and Inferential (I) assumption model (together becoming the TASI model) [ 61 , 62 ]. Briefly, this model considers theory to generate theoretical hypotheses. To translate from theoretical unobservable terms (e.g. personality, anxiety, mass), auxiliary assumptions are needed to generate an empirical hypothesis. Statistical assumptions are often needed to test the empirical hypothesis (e.g. what is the distribution, is it skewed or not) [ 61 , 62 ]. Finally, additional inferential assumptions are needed to generalize to a larger population (e.g. was there a random and independent sampling from defined populations). The TASI model is insightful and helpful in highlighting the distance between a theory and the observation that would corroborate/contradict it. Part of its utility is to bring auxiliary hypotheses into the foreground, to improve comparisons between studies and improve theory-based interventions [ 63 , 64 ].

We do agree with the importance of being aware of or stating the auxiliary hypotheses, but there are some differences between the frameworks. First, the number of auxiliary assumptions in TASI can be several hundred [ 62 ], whereas our framework will consider some of them as part of the pipeline dimension. Consider the following four assumptions: ‘the inter-stimulus interval is between 2000 ms and 3000 ms', ‘the data will be z-transformed’, ‘subjects will perform correctly’, and ‘the measurements were valid’. According to the TASI model, all these will be classified similarly as auxiliary assumptions. Contrarily, within our framework, it is possible to consider the first two as part of the pipeline dimension and the latter two as auxiliary assumptions, and consequently, the first two become integrated as part of the hypothesis being tested and the latter two auxiliary assumptions. A second difference between the frameworks relates to non-theoretical studies (convenience, applied or atheoretical). Our framework allows for the possibility that the hypothesis space generated by theoretical and convenience studies can interact and inform each other within the same framework . Contrarily, in TASI, the theory assumptions no longer apply, and a different type of hypothesis model is needed; these assumptions must be replaced by another group of assumptions (where ‘substantive application assumptions' replace the T and the A, becoming SSI) [ 61 ]. Finally, part of our rationale for our framework is to be able to link and track hypotheses and hypothesis development together over time, so our classification scheme has different utility.

Another approach which has some similar utility to this framework is theory construction methodology (TCM) [ 57 ]. The similarity here is that TCM aims to be a practical guide to improve theory-making in psychology. It is an iterative process which relates theory, phenomena and data. Here hypotheses are not an explicit part of the model. However, what is designated as ‘proto theory’ could be considered a hypothesis in our framework as they are a product of abduction, shaping the theory space. Alternatively, what is deduced to evaluate the theory can also be considered a hypothesis. We consider both possible and that our framework can integrate with these two steps, especially since TCM does not have clear guidelines for how to do each step.

11.  From theory to practice: implementing this framework

We believe that many practising researchers can relate to many aspects of this framework. But, how can a researcher translate the above theoretical framework to their work? The utility of this framework lies in bringing these three scopes of a hypothesis together and explaining how each can be reduced. We believe researchers can use this framework to describe their current practices more clearly. Here we discuss how it can be helpful for researchers when formulating, planning, preregistering, and discussing the evaluation of their scientific hypotheses. These practical implications are brief, and future work can expand on the connection between the full interaction between hypothesis space and scope. Furthermore, both authors have the most experience in cognitive neuroscience, and some of the practical implications may revolve around this type of research and may not apply equally to other fields.

11.1. Helping to form hypotheses

Abduction, according to Peirce, is a hypothesis-making exercise [ 22 , 26 – 28 ]. Given some observations, a general testable explanation of the phenomena is formed. However, when making the hypothesis, this statement will have a scope (either explicitly or implicitly). Using our framework, the scope can become explicit. The hypothesis-maker can start with ‘The variables XY have a relationship R with pipeline P ’ as a scaffold to form the hypothesis. From here, the hypothesis-maker can ‘fill in the blanks’, explicitly adding each of the scopes. Thus, when making a hypothesis via abduction and using our framework, the hypothesis will have an explicit scope when it is made. By doing this, there is less chance that a formulated hypothesis is unclear, ambiguous, and needs amending at a later stage.

11.2. Assisting to clearly state hypotheses

A hypothesis is not just formulated but also communicated. Hypotheses are stated in funding applications, preregistrations, registered reports, and academic articles. Further, preregistered hypotheses are often omitted or changed in the final article [ 11 ], and hypotheses are not always explicitly stated in articles [ 12 ]. How can this framework help to make better hypotheses? Similar to the previous point, filling in the details of ‘The variables XY have a relationship R with pipeline P ’ is an explicit way to communicate the hypothesis. Thinking about each of these dimensions should entail an appropriate explicit scope and, hopefully, less variation between preregistered and reported hypotheses. The hypothesis does not need to be a single sentence, and details of XY and P will often be developed in the methods section of the text. However, using this template as a starting point can help ensure the hypothesis is stated, and the scope of all three dimensions has been communicated.

11.3. Helping to promote explicit and broad hypotheses instead of vague hypotheses

There is an important distinction between vague hypotheses and broad hypotheses, and this framework can help demarcate between them. A vague statement would be: ‘We will quantify depression in patients after treatment’. Here there is uncertainty relating to how the researcher will go about doing the experiment (i.e. how will depression be quantified?). However, a broad statement can be uncertain, but the uncertainty is part of the hypothesis: ‘Two different mood scales (S 1 or S 2 ) will be given to patients and test if only one (or both) changed after treatment’. This latter statement is transparently saying ‘S 1 or S 2 ’ is part of a broad hypothesis—the uncertainty is whether the two different scales are quantifying the same construct. We keep this uncertainty within the broad hypothesis, which will get evaluated, whereas a vague hypothesis has uncertainty as part of the interpretation of the hypothesis. This framework can be used when formulating hypotheses to help be broad (where needed) but not vague.

11.4. Which hypothesis should be chosen?

When considering the appropriate scope above, we argued for a Goldilocks-like principle of determining the hypothesis that is not too broad or too narrow. However, when writing, for example, a preregistration, how does one identify this sweet spot? There is no easy or definite universal answer to this question. However, one possible way is first to identify the XY , R , and P of previous hypotheses. From here, identify what a non-trivial step is to improve our knowledge of the research area. So, for example, could you be more specific about the exact nature of the relationship between the variables? Does the pipeline correspond to today's scientific standards, or were some suboptimal decisions made? Is there another population that you think the previous result also applies to? Do you think that maybe a more specific construct or subpopulation might explain the previous result? Could slightly different constructs (perhaps easier to quantify) be used to obtain a similar relationship? Are there even more constructs to which this relationship should apply simultaneously? Are you certain of the direction of the relationship? Answering affirmatively to any of these questions will likely make a hypothesis narrower and connect to previous research while being clear and explicit. Moreover, depending on the research question, answering any of these may be sufficiently narrow to be a non-trivial innovation. However, there are many other ways to make a hypothesis narrower than these guiding questions.

11.5. The confirmatory–exploratory continuum

Research is often dichotomized into confirmatory (testing a hypothesis) or exploratory (without a priori hypotheses). With this framework, researchers can consider how their research acts on some hypothesis space. Confirmatory and exploratory work has been defined in terms of how each interacts with the researcher's degrees of freedom (where confirmatory aims to reduce while exploratory utilizes them [ 30 ]). Both broad confirmatory and narrow exploratory research are possible using this definition and possible within this framework. How research interacts with the hypothesis space helps demarcate it. For example, if a hypothesis reduces the scope, it becomes more confirmatory, and trying to understand data given the current scope would be more exploratory work. This further could help demarcate when exploration is useful. Future theoretical work can detail how different types of research impact the hypothesis space in more detail.

11.6. Understanding when multiverse analyses are needed

Researchers writing a preregistration may face many degrees of freedom they have to choose from, and different researchers may motivate different choices. If, when writing such a preregistration, there appears to be little evidential support for certain degrees of freedom over others, the researcher is left with the option to either make more auxiliary assumptions or identify when an investigation into the pipeline scope is necessary by conducting a multiverse analysis that tests the impact of the different degrees of freedom on the result (see [ 8 ]). Thus, when applying this framework to explicitly state what pipeline variables are part of the hypothesis or an auxiliary assumption, the researcher can identify when it might be appropriate to conduct a multiverse analysis because they are having difficulty formulating hypotheses.

11.7. Describing novelty

Academic journals and research funders often ask for novelty, but the term ‘novelty’ can be vague and open to various interpretations [ 55 ]. This framework can be used to help justify the novelty of research. For example, consider a scenario where a previous study has established a psychological construct (e.g. well-being) that correlates with a certain outcome measure (e.g. long-term positive health outcomes). This framework can be used to explicitly justify novelty by (i) providing a more precise understanding of the relationship (e.g. linear or linear–plateau) or (ii) identifying more specific variables related to well-being or health outcomes. Stating how some research is novel is clearer than merely stating that the work is novel. This practice might even help journals and funders identify what type of novelty they would like to reward. In sum, this framework can help identify and articulate how research is novel.

11.8. Help to identify when standardization of pipelines is beneficial or problematic to a field

Many consider standardization in a field to be important for ensuring the comparability of results. Standardization of methods and tools entails that the pipeline P is identical (or at least very similar) across studies. However, in such cases, the standardized pipeline becomes an auxiliary assumption representing all possible pipelines. Therefore, while standardized pipelines have their benefits, this assumption becomes broader without validating (e.g. via multiverse analysis) which pipelines a standardized P represents. In summary, because this framework helps distinguish between auxiliary assumptions and explicit parts of the hypothesis and identifies when a multiverse analysis is needed, it can help determine when standardizations of pipelines are representative (narrower hypotheses) or assumptive (broader hypotheses).

12.  Conclusion

Here, we have argued that the scope of a hypothesis is made up of three dimensions: the relationship ( R ), variable ( XY ) and pipeline ( P ) selection. Along each of these dimensions, the scope can vary. Different types of scientific enterprises will often have hypotheses that vary the size of the scopes. We have argued that this focus on the scope of the hypothesis along these dimensions helps the hypothesis-maker formulate their hypotheses for preregistrations while also helping demarcate auxiliary hypotheses (assumed to be true) from the hypothesis (those being evaluated during the scientific process).

Hypotheses are an essential part of the scientific process. Considering what type of hypothesis is sufficient or relevant is an essential job of the researcher that we think has been overlooked. We hope this work promotes an understanding of what a hypothesis is and how its formulation and reduction in scope is an integral part of scientific progress. We hope it also helps clarify how broad hypotheses need not be vague or inappropriate.

Finally, we applied this idea of scopes to scientific progress and considered how to formulate an appropriate hypothesis. We have also listed several ways researchers can practically implement this framework today. However, there are other practicalities of this framework that future work should explore. For example, it could be used to differentiate and demarcate different scientific contributions (e.g. confirmatory studies, exploration studies, validation studies) with how their hypotheses interact with the different dimensions of the hypothesis space. Further, linking hypotheses over time within this framework can be a foundation for open hypothesis-making by promoting explicit links to previous work and detailing the reduction of the hypothesis space. This framework helps quantify the contribution to the hypothesis space of different studies and helps clarify what aspects of hypotheses can be relevant at different times.

Acknowledgements

We thank Filip Gedin, Kristoffer Sundberg, Jens Fust, and James Steele for valuable feedback on earlier versions of this article. We also thank Mark Rubin and an unnamed reviewer for valuable comments that have improved the article.

1 While this is our intention, we cannot claim that every theory has been accommodated.

2 Similar requirements of science being able to evaluate the hypothesis can be found in pragmatism [ 22 ], logical positivism [ 23 ] and falsification [ 24 ].

3 Although when making inferences about a failed evaluation of a scientific hypothesis it is possible, due to underdetermination, to reject the auxiliary hypothesis instead of rejecting the hypothesis. However, that rejection occurs at a later inference stage. The evaluation using the scientific method aims to test the scientific hypothesis, not the auxiliary assumptions.

4 Although some have argued that this practice is not as problematic or questionable (see [ 34 , 35 ]).

5 Alternatively, theories sometimes expand their boundary conditions. A theory that was previously about ‘humans' can be used with a more inclusive boundary condition. Thus it is possible for the hypothesis-maker to use a theory about humans (decision making) and expand it to fruit flies or plants (see [ 43 ]).

6 A similarity exists here with Popper, where he uses set theory in a similar way to compare theories (not hypotheses). Popper also discusses how theories with overlapping sets but neither is a subset are also comparable (see [ 24 , §§32–34]). We do not exclude this possibility but can require additional assumptions.

7 When this could be unclear, we place the element within quotation marks.

8 Here, we have assumed that there is no interaction between these variables in variable selection. If an interaction between x 1 and x 2 is hypothesized, this should be viewed as a different variable compared to ‘ x 1 or x 2 ’. The motivation behind this is because the hypothesis ‘ x 1 or x 2 ’ is not a superset of the interaction (i.e. ‘ x 1 or x 2 ’ is not necessarily true when the interaction is true). The interaction should, in this case, be considered a third variable (e.g. I( x 1 , x 2 )) and the hypothesis ‘ x 1 or x 2 or I( x 1 , x 2 )’ is broader than ‘ x 1 or x 2 ’.

9 Or possibly ambiguous or inconclusive.

10 This formulation of scope is compatible with different frameworks from the philosophy of science. For example, by narrowing the scope would in a Popperian terminology mean prohibiting more basic statements (thus a narrower hypothesis has a higher degree of falsifiability). The reduction of scope in the relational dimension would in Popperian terminology mean increase in precision (e.g. a circle is more precise than an ellipse since circles are a subset of possible ellipses), whereas reduction in variable selection and pipeline dimension would mean increase universality (e.g. ‘all heavenly bodies' is more universal than just ‘planets') [ 24 ]. For Meehl the reduction of the relationship dimension would amount to decreasing the relative tolerance of a theory to the Spielraum [ 46 ] .

11 If there is no relationship between x and y , we do not need to test if there is a positive relationship. If we know there is a positive relationship between x and y , we do not need to test if there is a relationship. If we know there is a relationship but there is not a positive relationship, then it is possible that they have a negative relationship.

Data accessibility

Declaration of ai use.

We have not used AI-assisted technologies in creating this article.

Authors' contributions

W.H.T.: conceptualization, investigation, writing—original draft, writing—review and editing; S.S.: investigation, writing—original draft, writing—review and editing.

Both authors gave final approval for publication and agreed to be held accountable for the work performed therein.

Scientific Hypothesis Examples

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A hypothesis is an educated guess about what you think will happen in a scientific experiment, based on your observations. Before conducting the experiment, you propose a hypothesis so that you can determine if your prediction is supported.

There are several ways you can state a hypothesis, but the best hypotheses are ones you can test and easily refute. Why would you want to disprove or discard your own hypothesis? Well, it is the easiest way to demonstrate that two factors are related. Here are some good scientific hypothesis examples:

  • Hypothesis: All forks have three tines. This would be disproven if you find any fork with a different number of tines.
  • Hypothesis: There is no relationship between smoking and lung cancer. While it is difficult to establish cause and effect in health issues, you can apply statistics to data to discredit or support this hypothesis.
  • Hypothesis: Plants require liquid water to survive. This would be disproven if you find a plant that doesn't need it.
  • Hypothesis: Cats do not show a paw preference (equivalent to being right- or left-handed). You could gather data around the number of times cats bat at a toy with either paw and analyze the data to determine whether cats, on the whole, favor one paw over the other. Be careful here, because individual cats, like people, might (or might not) express a preference. A large sample size would be helpful.
  • Hypothesis: If plants are watered with a 10% detergent solution, their growth will be negatively affected. Some people prefer to state a hypothesis in an "If, then" format. An alternate hypothesis might be: Plant growth will be unaffected by water with a 10% detergent solution.
  • What Are Examples of a Hypothesis?
  • What Is a Hypothesis? (Science)
  • What Is a Testable Hypothesis?
  • Null Hypothesis Examples
  • What Are the Elements of a Good Hypothesis?
  • Scientific Method Flow Chart
  • Six Steps of the Scientific Method
  • Scientific Method Vocabulary Terms
  • Understanding Simple vs Controlled Experiments
  • Scientific Variable
  • What Is an Experimental Constant?
  • The Role of a Controlled Variable in an Experiment
  • What Is the Difference Between a Control Variable and Control Group?
  • Random Error vs. Systematic Error
  • DRY MIX Experiment Variables Acronym
  • What Is a Controlled Experiment?

Easy Sociology

  • Books, Journals, Papers
  • Guides & How To’s
  • Life Around The World
  • Research Methods
  • Functionalism
  • Postmodernism
  • Social Constructionism
  • Structuralism
  • Symbolic Interactionism
  • Sociology Theorists
  • General Sociology
  • Social Policy
  • Social Work
  • Sociology of Childhood
  • Sociology of Crime & Deviance
  • Sociology of Art
  • Sociology of Dance
  • Sociology of Food
  • Sociology of Sport
  • Sociology of Disability
  • Sociology of Economics
  • Sociology of Education
  • Sociology of Emotion
  • Sociology of Family & Relationships
  • Sociology of Gender
  • Sociology of Health
  • Sociology of Identity
  • Sociology of Ideology
  • Sociology of Inequalities
  • Sociology of Knowledge
  • Sociology of Language
  • Sociology of Law
  • Sociology of Anime
  • Sociology of Film
  • Sociology of Gaming
  • Sociology of Literature
  • Sociology of Music
  • Sociology of TV
  • Sociology of Migration
  • Sociology of Nature & Environment
  • Sociology of Politics
  • Sociology of Power
  • Sociology of Race & Ethnicity
  • Sociology of Religion
  • Sociology of Sexuality
  • Sociology of Social Movements
  • Sociology of Technology
  • Sociology of the Life Course
  • Sociology of Travel & Tourism
  • Sociology of Violence & Conflict
  • Sociology of Work
  • Urban Sociology
  • Changing Relationships Within Families
  • Conjugal Role Relationships
  • Criticisms of Families
  • Family Forms
  • Functions of the Family
  • Featured Articles
  • Privacy Policy
  • Terms & Conditions

What is a Hypothesis?

Mr Edwards

Table of Contents

Defining the hypothesis, the role of a hypothesis in the scientific method, types of hypotheses, hypothesis formulation, hypotheses and variables.

  • The Importance of Testing Hypotheses
  • The Hypothesis and Sociological Theory

In sociology, as in other scientific disciplines, the hypothesis serves as a crucial building block for research. It is a central element that directs the inquiry and provides a framework for testing the relationships between social phenomena. This article will explore what a hypothesis is, how it is formulated, and its role within the broader scientific method. By understanding the hypothesis, students of sociology can grasp how sociologists construct and test theories about the social world.

A hypothesis is a specific, testable statement about the relationship between two or more variables. It acts as a proposed explanation or prediction based on limited evidence, which researchers then test through empirical investigation. In essence, it is a statement that can be supported or refuted by data gathered from observation, experimentation, or other forms of systematic inquiry. The hypothesis typically takes the form of an “if-then” statement: if one variable changes, then another will change in response.

In sociological research, a hypothesis helps to focus the investigation by offering a clear proposition that can be tested. For instance, a sociologist might hypothesize that an increase in education levels leads to a decrease in crime rates. This hypothesis gives the researcher a direction, guiding them to collect data on education and crime, and analyze the relationship between the two variables. By doing so, the hypothesis serves as a tool for making sense of complex social phenomena.

The hypothesis is a key component of the scientific method, which is the systematic process by which sociologists and other scientists investigate the world. The scientific method begins with an observation of the world, followed by the formulation of a question or problem. Based on prior knowledge, theory, or preliminary observations, researchers then develop a hypothesis, which predicts an outcome or proposes a relationship between variables.

Once a hypothesis is established, researchers gather data to test it. If the data supports the hypothesis, it may be used to build a broader theory or to further refine the understanding of the social phenomenon in question. If the data contradicts the hypothesis, researchers may revise their hypothesis or abandon it altogether, depending on the strength of the evidence. In either case, the hypothesis helps to organize the research process, ensuring that it remains focused and methodologically sound.

In sociology, this method is particularly important because the social world is highly complex. Researchers must navigate a vast range of variables—age, gender, class, race, education, and countless others—that interact in unpredictable ways. A well-constructed hypothesis allows sociologists to narrow their focus to a manageable set of variables, making the investigation more precise and efficient.

Sociologists use different types of hypotheses, depending on the nature of their research question and the methods they plan to use. Broadly speaking, hypotheses can be classified into two main types: null hypotheses and alternative (or research) hypotheses.

Null Hypothesis

The null hypothesis, denoted as H0, states that there is no relationship between the variables being studied. It is a default assumption that any observed differences or relationships are due to random chance rather than a real underlying cause. In research, the null hypothesis serves as a point of comparison. Researchers collect data to see if the results allow them to reject the null hypothesis in favor of an alternative explanation.

For example, a sociologist studying the relationship between income and political participation might propose a null hypothesis that income has no effect on political participation. The goal of the research would then be to determine whether this null hypothesis can be rejected based on the data. If the data shows a significant correlation between income and political participation, the null hypothesis would be rejected.

Alternative Hypothesis

The alternative hypothesis, denoted as H1 or Ha, proposes that there is a significant relationship between the variables. This is the hypothesis that researchers aim to support with their data. In contrast to the null hypothesis, the alternative hypothesis predicts a specific direction or effect. For example, a researcher might hypothesize that higher levels of education lead to greater political engagement. In this case, the alternative hypothesis is proposing a positive correlation between the two variables.

The alternative hypothesis is the one that guides the research design, as it directs the researcher toward gathering evidence that will either support or refute the predicted relationship. The research process is structured around testing this hypothesis and determining whether the evidence is strong enough to reject the null hypothesis.

The process of formulating a hypothesis is both an art and a science. It requires a deep understanding of the social phenomena under investigation, as well as a clear sense of what is possible to observe and measure. Hypothesis formulation is closely linked to the theoretical framework that guides the research. Sociologists draw on existing theories to generate hypotheses, ensuring that their predictions are grounded in established knowledge.

To formulate a good hypothesis, a researcher must identify the key variables and determine how they are expected to relate to one another. Variables are the factors or characteristics that are being measured in a study. In sociology, these variables often include social attributes such as class, race, gender, age, education, and income, as well as behavioral variables like voting, criminal activity, or social participation.

For example, a sociologist studying the effects of social media on self-esteem might propose the following hypothesis: “Increased time spent on social media leads to lower levels of self-esteem among adolescents.” Here, the independent variable is the time spent on social media, and the dependent variable is the level of self-esteem. The hypothesis predicts a negative relationship between the two variables: as time spent on social media increases, self-esteem decreases.

A strong hypothesis has several key characteristics. It should be clear and specific, meaning that it unambiguously states the relationship between the variables. It should also be testable, meaning that it can be supported or refuted through empirical investigation. Finally, it should be grounded in theory, meaning that it is based on existing knowledge about the social phenomenon in question.

Membership Required

You must be a member to access this content.

View Membership Levels

Mr Edwards has a PhD in sociology and 10 years of experience in sociological knowledge

Related Articles

An abstract piece bearing similariy to grey wisps of smoke

Is it Possible to be Unbiased in Sociology?

Explore the concept of bias in sociology and the challenges of achieving unbiased research. Learn about strategies for mitigating bias...

An ominous blue cloud against a black background

Grounded Theory: A Comprehensive Sociological Approach

Grounded theory is a systematic methodology in the social sciences involving the construction of theory through the analysis of data.

GET THE LATEST SOCIOLOGY

How would you rate the content on Easy Sociology?

Recommended

A freight train

The Failure of Privatisation: Examining the Consequences of British Train Privatisation

A man engaging in slacktivism sociology

Understanding Slacktivism in Sociology

24 hour trending.

yellow police tape with black writing saying 'do not cross' - crime and deviance

Robert Merton’s Strain Theory: Understanding Societal Pressure and Deviance

Symbolic interactionism: understanding symbols, the connection between education and social stratification, functionalism: a sociological perspective, understanding the concept of ‘community’ in sociology.

Easy Sociology makes sociology as easy as possible. Our aim is to make sociology accessible for everybody. © 2023 Easy Sociology

© 2023 Easy Sociology

U.S. flag

A .gov website belongs to an official government organization in the United States.

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Surveys and Vitals Systems
  • Budget and Funding
  • Data and Analysis Tools
  • Partnerships
  • Board of Scientific Counselors
  • Policies and Procedures
  • Employment at NCHS
  • Responses to Health Data Requests
  • Email Updates

Related Topics:

  • View All Home
  • NCHS Publications
  • NCHS Pressroom

HHS Commitment to Scientific Integrity

  • Read the U.S. Department of Health and Human Services (HHS) Statement of Commitment to Scientific Integrity.
  • The statement is from the HHS Chief Data Officer, Evaluation Officer, and Statistical Official.
  • The National Center for Health Statistics Director serves as the HHS Statistical Official.

From the HHS Chief Data Officer, Evaluation Officer, and Statistical Official

As the Chief Data Officer, Evaluation Officer, and Statistical Official of the U.S. Department of Health and Human Services (HHS), we strongly affirm the principles expressed in President Biden's Memorandum on Restoring Trust in Government Through Scientific Integrity and Evidence-Based Policymaking 1 , signed on January 27, 2021, and commit to adhering to these principles in all aspects of HHS's work and in pursuit of its mission. HHS welcomes this government-wide commitment to science that is free of political influence and to policy decisions based on the best available evidence.

We hold primary responsibility within HHS for fulfilling the statutory requirements of the Foundations for Evidence-Based Policymaking Act of 2018 2 , which aims to make data accessible and develop statistical evidence to support policymaking. Adherence to the principles of scientific integrity is essential to fulfilling these objectives and integral to the spirit of this Act, which guides substantial work across HHS. We commit to ensuring that the scientific integrity policies of the Department consider, supplement, and support the HHS plans for forming evidence-based policies, including the evidence-building plan, by incorporating scientific integrity principles into HHS's data governance and evaluation approaches.

HHS endorses the understanding of scientific integrity elaborated in the National Research Council of the National Academies' publication Principles and Practices for a Federal Statistical Agency . 3 This report establishes four principles for statistical agencies to follow: produce data that are relevant to policy issues, achieve and maintain credibility among data users, achieve and maintain trust among data providers, and achieve and maintain a strong position of independence from the appearance and reality of political control. These principles are the core of the scientific integrity ideal, which HHS strives to embody.

Scientific integrity is essential to achieving HHS's mission: to enhance the health and well-being of all Americans, by providing for effective health and human services and by fostering sound, sustained advances in the sciences underlying medicine, public health, and social services 4 . The development and delivery of health services, human services, and programs for health promotion and disease prevention must be based on the latest and best available scientific evidence and must continually evolve in response to developments in scientific understanding. Furthermore, HHS fosters new scientific knowledge through its investments in basic, clinical, and public health research, the results of which must be transparently communicated and acted upon to guide program and policy decisions. A commitment to following the science is not only ethical, it leads to more effective delivery of the HHS mission.

Scientific integrity is and always has been essential to the mission and operation of HHS. We renew this commitment today: to align the delivery of all HHS programs and the generation and sharing of research findings with the principles of scientific integrity. HHS stands besides its partners across the federal government in conducting work grounded in science to best serve the American people.

HHS Chief Data Officer HHS Evaluation Officer HHS Statistical Official

  • Memorandum on Restoring Trust in Government Through Scientific Integrity and Evidence-Based Policymaking
  • Principles and Practices for a Federal Statistical Agency
  • About the U.S. Department of Health and Human Services

National Center for Health Statistics

Homepage for the National Center for Health Statistics, the nation's provider of official health statistics

IMAGES

  1. PPT

    a good scientific hypothesis must be

  2. 7. Characteristics of a Good Scientific Hypothesis

    a good scientific hypothesis must be

  3. 13 Different Types of Hypothesis (2024)

    a good scientific hypothesis must be

  4. Research Hypothesis: Definition, Types, Examples and Quick Tips (2022)

    a good scientific hypothesis must be

  5. How to Write a Research Hypothesis: A Comprehensive Step-by-Step Guide

    a good scientific hypothesis must be

  6. PPT

    a good scientific hypothesis must be

VIDEO

  1. The Scientific Method

  2. What Is A Hypothesis?

  3. Scientific hypothesis

  4. NEED AND IMPORTANCE OF HYPOTHESIS

  5. The Good Genes Hypothesis

  6. The Scientific Method: Formulating Hypothesis

COMMENTS

  1. 5 Characteristics of a Good Hypothesis: A Guide for Researchers

    FAQs: Characteristics of a Good Hypothesis. In the realm of scientific research, a hypothesis plays a crucial role in formulating and testing ideas. A good hypothesis serves as the foundation for an experiment or study, guiding the researcher towards meaningful results. ... Testability: The hypothesis must be formulated in a way that allows it ...

  2. Scientific hypothesis

    hypothesis. science. scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ...

  3. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  4. Scientific Hypotheses: Writing, Promoting, and Predicting Implications

    A snapshot analysis of citation activity of hypothesis articles may reveal interest of the global scientific community towards their implications across various disciplines and countries. As a prime example, Strachan's hygiene hypothesis, published in 1989,10 is still attracting numerous citations on Scopus, the largest bibliographic database ...

  5. What is a scientific hypothesis?

    Bibliography. A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method. Many describe it as an ...

  6. Steps of the Scientific Method

    A hypothesis is an educated guess about how things work. It is an attempt to answer your question with an explanation that can be tested. A good hypothesis allows you to then make a prediction: "If _____[I do this] _____, then _____[this]_____ will happen." State both your hypothesis and the resulting prediction you will be testing.

  7. What Are the Elements of a Good Hypothesis?

    A hypothesis is an educated guess or prediction of what will happen. In science, a hypothesis proposes a relationship between factors called variables. A good hypothesis relates an independent variable and a dependent variable. The effect on the dependent variable depends on or is determined by what happens when you change the independent variable.

  8. Formulating Hypotheses for Different Study Designs

    A good hypothesis is usually based on previous evidence-based reports. Hypotheses without evidence-based justification and a priori ideas are not received favourably by the scientific community. Original research to test a hypothesis should be carefully planned to ensure appropriate methodology and adequate statistical power.

  9. Hypothesis Examples

    A hypothesis proposes a relationship between the independent and dependent variable. A hypothesis is a prediction of the outcome of a test. It forms the basis for designing an experiment in the scientific method.A good hypothesis is testable, meaning it makes a prediction you can check with observation or experimentation.

  10. What Is a Hypothesis? The Scientific Method

    A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject. In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

  11. Scientific Hypothesis, Model, Theory, and Law

    A scientific theory summarizes a hypothesis or group of hypotheses that have been supported with repeated testing. A theory is valid as long as there is no evidence to dispute it. Therefore, theories can be disproven. Basically, if evidence accumulates to support a hypothesis, then the hypothesis can become accepted as a good explanation of a ...

  12. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  13. What makes a good hypothesis?

    A good research hypothesis typically involves more effort than a simple guess or assumption. Generally, a good hypothesis: is testable, meaning it must be possible to show that a hypothesis is ...

  14. Science and the scientific method: Definitions and examples

    Some key underpinnings to the scientific method: The hypothesis must be testable and falsifiable, according to North Carolina State University. Falsifiable means that there must be a possible ...

  15. On the scope of scientific hypotheses

    2. The scientific hypothesis. In this section, we will describe a functional and descriptive role regarding how scientists use hypotheses. Jeong & Kwon [] investigated and summarized the different uses the concept of 'hypothesis' had in philosophical and scientific texts.They identified five meanings: assumption, tentative explanation, tentative cause, tentative law, and prediction.

  16. How to Write a Hypothesis in 6 Steps, With Examples

    4 Alternative hypothesis. An alternative hypothesis, abbreviated as H 1 or H A, is used in conjunction with a null hypothesis. It states the opposite of the null hypothesis, so that one and only one must be true. Examples: Plants grow better with bottled water than tap water. Professional psychics win the lottery more than other people. 5 ...

  17. A hypothesis can't be right unless it can be proven wrong

    A good scientific hypothesis is the opposite of this. If there is no experimental test to disprove the hypothesis, then it lies outside the realm of science. Scientists all too often generate hypotheses that cannot be tested by experiments whose results have the potential to show that the idea is false.

  18. Chapter 6 Formulating Hypotheses: Characteristics of a Good Hypothesis

    what are the characteristics of a good hypothesis? 1. must be testable. 2. must be falsifiable. 3. must be parsimonious. 4. must be fruitful. 5. must be synthetic.

  19. A Strong Hypothesis

    The hypothesis is an educated, testable prediction about what will happen. Make it clear. A good hypothesis is written in clear and simple language. Reading your hypothesis should tell a teacher or judge exactly what you thought was going to happen when you started your project. Keep the variables in mind.

  20. Scientific Hypothesis Examples

    Scientific Hypothesis Examples . Hypothesis: All forks have three tines. This would be disproven if you find any fork with a different number of tines. Hypothesis: There is no relationship between smoking and lung cancer.While it is difficult to establish cause and effect in health issues, you can apply statistics to data to discredit or support this hypothesis.

  21. IPC UNIT 1 Flashcards

    1 meter/ 1 milimeters. Study with Quizlet and memorize flashcards containing terms like meniscus 4 hypothesis 2 mass 6 liter 3 control 5 meter 1, A good hypothesis must be which of the following?, The scientific method is and more.

  22. What is a Hypothesis?

    In sociology, as in other scientific disciplines, the hypothesis serves as a crucial building block for research. It is a A hypothesis is a specific, testable statement about the relationship between two or more variables. ... To formulate a good hypothesis, a researcher must identify the key variables and determine how they are expected to ...

  23. BIO 111 Study Part 1 Flashcards

    BIO 111 Study Part 1. In order for a hypothesis to be used in science, which of the following must be true? a) The hypothesis must be proven correct. b) The hypothesis must be reproducible. c) The hypothesis represents established facts. d) The hypothesis must be popularly accepted. e) The hypothesis is testable and falsifiable.

  24. HHS Commitment to Scientific Integrity

    Furthermore, HHS fosters new scientific knowledge through its investments in basic, clinical, and public health research, the results of which must be transparently communicated and acted upon to guide program and policy decisions. A commitment to following the science is not only ethical, it leads to more effective delivery of the HHS mission.

  25. BIO60 Lab Exam 1: Intro to Scientific Method Flashcards

    1) Hand soap does not affect bacterial diversity. 2) Hand soap increases bacterial diversity. 3) Hand soap decreases bacterial diversity. *Note: these same hypotheses are used for Hand sanitizer, this example is just for hand soap. 1) Hand soap does not affect bacterial diversity (Null hypothesis).