U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

This publication is provided for historical reference only and the information may be out of date.

Cover of StatPearls

StatPearls [Internet].

Case study: 33-year-old female presents with chronic sob and cough (archive).

Sandeep Sharma ; Muhammad F. Hashmi ; Deepa Rawat .

Affiliations

Last Update: February 20, 2023 .

  • Case Presentation

History of Present Illness:  A 33-year-old white female presents after admission to the general medical/surgical hospital ward with a chief complaint of shortness of breath on exertion. She reports that she was seen for similar symptoms previously at her primary care physician’s office six months ago. At that time, she was diagnosed with acute bronchitis and treated with bronchodilators, empiric antibiotics, and a short course oral steroid taper. This management did not improve her symptoms, and she has gradually worsened over six months. She reports a 20-pound (9 kg) intentional weight loss over the past year. She denies camping, spelunking, or hunting activities. She denies any sick contacts. A brief review of systems is negative for fever, night sweats, palpitations, chest pain, nausea, vomiting, diarrhea, constipation, abdominal pain, neural sensation changes, muscular changes, and increased bruising or bleeding. She admits a cough, shortness of breath, and shortness of breath on exertion.

Social History: Her tobacco use is 33 pack-years; however, she quit smoking shortly prior to the onset of symptoms, six months ago. She denies alcohol and illicit drug use. She is in a married, monogamous relationship and has three children aged 15 months to 5 years. She is employed in a cookie bakery. She has two pet doves. She traveled to Mexico for a one-week vacation one year ago.

Allergies:  No known medicine, food, or environmental allergies.

Past Medical History: Hypertension

Past Surgical History: Cholecystectomy

Medications: Lisinopril 10 mg by mouth every day

Physical Exam:

Vitals: Temperature, 97.8 F; heart rate 88; respiratory rate, 22; blood pressure 130/86; body mass index, 28

General: She is well appearing but anxious, a pleasant female lying on a hospital stretcher. She is conversing freely, with respiratory distress causing her to stop mid-sentence.

Respiratory: She has diffuse rales and mild wheezing; tachypneic.

Cardiovascular: She has a regular rate and rhythm with no murmurs, rubs, or gallops.

Gastrointestinal: Bowel sounds X4. No bruits or pulsatile mass.

  • Initial Evaluation

Laboratory Studies:  Initial work-up from the emergency department revealed pancytopenia with a platelet count of 74,000 per mm3; hemoglobin, 8.3 g per and mild transaminase elevation, AST 90 and ALT 112. Blood cultures were drawn and currently negative for bacterial growth or Gram staining.

Chest X-ray

Impression:  Mild interstitial pneumonitis

  • Differential Diagnosis
  • Aspiration pneumonitis and pneumonia
  • Bacterial pneumonia
  • Immunodeficiency state and Pneumocystis jiroveci pneumonia
  • Carcinoid lung tumors
  • Tuberculosis
  • Viral pneumonia
  • Chlamydial pneumonia
  • Coccidioidomycosis and valley fever
  • Recurrent Legionella pneumonia
  • Mediastinal cysts
  • Mediastinal lymphoma
  • Recurrent mycoplasma infection
  • Pancoast syndrome
  • Pneumococcal infection
  • Sarcoidosis
  • Small cell lung cancer
  • Aspergillosis
  • Blastomycosis
  • Histoplasmosis
  • Actinomycosis
  • Confirmatory Evaluation

CT of the chest was performed to further the pulmonary diagnosis; it showed a diffuse centrilobular micronodular pattern without focal consolidation.

On finding pulmonary consolidation on the CT of the chest, a pulmonary consultation was obtained. Further history was taken, which revealed that she has two pet doves. As this was her third day of broad-spectrum antibiotics for a bacterial infection and she was not getting better, it was decided to perform diagnostic bronchoscopy of the lungs with bronchoalveolar lavage to look for any atypical or rare infections and to rule out malignancy (Image 1).

Bronchoalveolar lavage returned with a fluid that was cloudy and muddy in appearance. There was no bleeding. Cytology showed Histoplasma capsulatum .

Based on the bronchoscopic findings, a diagnosis of acute pulmonary histoplasmosis in an immunocompetent patient was made.

Pulmonary histoplasmosis in asymptomatic patients is self-resolving and requires no treatment. However, once symptoms develop, such as in our above patient, a decision to treat needs to be made. In mild, tolerable cases, no treatment other than close monitoring is necessary. However, once symptoms progress to moderate or severe, or if they are prolonged for greater than four weeks, treatment with itraconazole is indicated. The anticipated duration is 6 to 12 weeks total. The response should be monitored with a chest x-ray. Furthermore, observation for recurrence is necessary for several years following the diagnosis. If the illness is determined to be severe or does not respond to itraconazole, amphotericin B should be initiated for a minimum of 2 weeks, but up to 1 year. Cotreatment with methylprednisolone is indicated to improve pulmonary compliance and reduce inflammation, thus improving work of respiration. [1] [2] [3]

Histoplasmosis, also known as Darling disease, Ohio valley disease, reticuloendotheliosis, caver's disease, and spelunker's lung, is a disease caused by the dimorphic fungi  Histoplasma capsulatum native to the Ohio, Missouri, and Mississippi River valleys of the United States. The two phases of Histoplasma are the mycelial phase and the yeast phase.

Etiology/Pathophysiology 

Histoplasmosis is caused by inhaling the microconidia of  Histoplasma  spp. fungus into the lungs. The mycelial phase is present at ambient temperature in the environment, and upon exposure to 37 C, such as in a host’s lungs, it changes into budding yeast cells. This transition is an important determinant in the establishment of infection. Inhalation from soil is a major route of transmission leading to infection. Human-to-human transmission has not been reported. Infected individuals may harbor many yeast-forming colonies chronically, which remain viable for years after initial inoculation. The finding that individuals who have moved or traveled from endemic to non-endemic areas may exhibit a reactivated infection after many months to years supports this long-term viability. However, the precise mechanism of reactivation in chronic carriers remains unknown.

Infection ranges from an asymptomatic illness to a life-threatening disease, depending on the host’s immunological status, fungal inoculum size, and other factors. Histoplasma  spp. have grown particularly well in organic matter enriched with bird or bat excrement, leading to the association that spelunking in bat-feces-rich caves increases the risk of infection. Likewise, ownership of pet birds increases the rate of inoculation. In our case, the patient did travel outside of Nebraska within the last year and owned two birds; these are her primary increased risk factors. [4]

Non-immunocompromised patients present with a self-limited respiratory infection. However, the infection in immunocompromised hosts disseminated histoplasmosis progresses very aggressively. Within a few days, histoplasmosis can reach a fatality rate of 100% if not treated aggressively and appropriately. Pulmonary histoplasmosis may progress to a systemic infection. Like its pulmonary counterpart, the disseminated infection is related to exposure to soil containing infectious yeast. The disseminated disease progresses more slowly in immunocompetent hosts compared to immunocompromised hosts. However, if the infection is not treated, fatality rates are similar. The pathophysiology for disseminated disease is that once inhaled, Histoplasma yeast are ingested by macrophages. The macrophages travel into the lymphatic system where the disease, if not contained, spreads to different organs in a linear fashion following the lymphatic system and ultimately into the systemic circulation. Once this occurs, a full spectrum of disease is possible. Inside the macrophage, this fungus is contained in a phagosome. It requires thiamine for continued development and growth and will consume systemic thiamine. In immunocompetent hosts, strong cellular immunity, including macrophages, epithelial, and lymphocytes, surround the yeast buds to keep infection localized. Eventually, it will become calcified as granulomatous tissue. In immunocompromised hosts, the organisms disseminate to the reticuloendothelial system, leading to progressive disseminated histoplasmosis. [5] [6]

Symptoms of infection typically begin to show within three to17 days. Immunocompetent individuals often have clinically silent manifestations with no apparent ill effects. The acute phase of infection presents as nonspecific respiratory symptoms, including cough and flu. A chest x-ray is read as normal in 40% to 70% of cases. Chronic infection can resemble tuberculosis with granulomatous changes or cavitation. The disseminated illness can lead to hepatosplenomegaly, adrenal enlargement, and lymphadenopathy. The infected sites usually calcify as they heal. Histoplasmosis is one of the most common causes of mediastinitis. Presentation of the disease may vary as any other organ in the body may be affected by the disseminated infection. [7]

The clinical presentation of the disease has a wide-spectrum presentation which makes diagnosis difficult. The mild pulmonary illness may appear as a flu-like illness. The severe form includes chronic pulmonary manifestation, which may occur in the presence of underlying lung disease. The disseminated form is characterized by the spread of the organism to extrapulmonary sites with proportional findings on imaging or laboratory studies. The Gold standard for establishing the diagnosis of histoplasmosis is through culturing the organism. However, diagnosis can be established by histological analysis of samples containing the organism taken from infected organs. It can be diagnosed by antigen detection in blood or urine, PCR, or enzyme-linked immunosorbent assay. The diagnosis also can be made by testing for antibodies again the fungus. [8]

Pulmonary histoplasmosis in asymptomatic patients is self-resolving and requires no treatment. However, once symptoms develop, such as in our above patient, a decision to treat needs to be made. In mild, tolerable cases, no treatment other than close monitoring is necessary. However, once symptoms progress to moderate or severe or if they are prolonged for greater than four weeks, treatment with itraconazole is indicated. The anticipated duration is 6 to 12 weeks. The patient's response should be monitored with a chest x-ray. Furthermore, observation for recurrence is necessary for several years following the diagnosis. If the illness is determined to be severe or does not respond to itraconazole, amphotericin B should be initiated for a minimum of 2 weeks, but up to 1 year. Cotreatment with methylprednisolone is indicated to improve pulmonary compliance and reduce inflammation, thus improving the work of respiration.

The disseminated disease requires similar systemic antifungal therapy to pulmonary infection. Additionally, procedural intervention may be necessary, depending on the site of dissemination, to include thoracentesis, pericardiocentesis, or abdominocentesis. Ocular involvement requires steroid treatment additions and necessitates ophthalmology consultation. In pericarditis patients, antifungals are contraindicated because the subsequent inflammatory reaction from therapy would worsen pericarditis.

Patients may necessitate intensive care unit placement dependent on their respiratory status, as they may pose a risk for rapid decompensation. Should this occur, respiratory support is necessary, including non-invasive BiPAP or invasive mechanical intubation. Surgical interventions are rarely warranted; however, bronchoscopy is useful as both a diagnostic measure to collect sputum samples from the lung and therapeutic to clear excess secretions from the alveoli. Patients are at risk for developing a coexistent bacterial infection, and appropriate antibiotics should be considered after 2 to 4 months of known infection if symptoms are still present. [9]

Prognosis 

If not treated appropriately and in a timely fashion, the disease can be fatal, and complications will arise, such as recurrent pneumonia leading to respiratory failure, superior vena cava syndrome, fibrosing mediastinitis, pulmonary vessel obstruction leading to pulmonary hypertension and right-sided heart failure, and progressive fibrosis of lymph nodes. Acute pulmonary histoplasmosis usually has a good outcome on symptomatic therapy alone, with 90% of patients being asymptomatic. Disseminated histoplasmosis, if untreated, results in death within 2 to 24 months. Overall, there is a relapse rate of 50% in acute disseminated histoplasmosis. In chronic treatment, however, this relapse rate decreases to 10% to 20%. Death is imminent without treatment.

  • Pearls of Wisdom

While illnesses such as pneumonia are more prevalent, it is important to keep in mind that more rare diseases are always possible. Keeping in mind that every infiltrates on a chest X-ray or chest CT is not guaranteed to be simple pneumonia. Key information to remember is that if the patient is not improving under optimal therapy for a condition, the working diagnosis is either wrong or the treatment modality chosen by the physician is wrong and should be adjusted. When this occurs, it is essential to collect a more detailed history and refer the patient for appropriate consultation with a pulmonologist or infectious disease specialist. Doing so, in this case, yielded workup with bronchoalveolar lavage and microscopic evaluation. Microscopy is invaluable for definitively diagnosing a pulmonary consolidation as exemplified here where the results showed small, budding, intracellular yeast in tissue sized 2 to 5 microns that were readily apparent on hematoxylin and eosin staining and minimal, normal flora bacterial growth. 

  • Enhancing Healthcare Team Outcomes

This case demonstrates how all interprofessional healthcare team members need to be involved in arriving at a correct diagnosis. Clinicians, specialists, nurses, pharmacists, laboratory technicians all bear responsibility for carrying out the duties pertaining to their particular discipline and sharing any findings with all team members. An incorrect diagnosis will almost inevitably lead to incorrect treatment, so coordinated activity, open communication, and empowerment to voice concerns are all part of the dynamic that needs to drive such cases so patients will attain the best possible outcomes.

  • Review Questions
  • Access free multiple choice questions on this topic.
  • Comment on this article.

Histoplasma Contributed by Sandeep Sharma, MD

Disclosure: Sandeep Sharma declares no relevant financial relationships with ineligible companies.

Disclosure: Muhammad Hashmi declares no relevant financial relationships with ineligible companies.

Disclosure: Deepa Rawat declares no relevant financial relationships with ineligible companies.

This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.

  • Cite this Page Sharma S, Hashmi MF, Rawat D. Case Study: 33-Year-Old Female Presents with Chronic SOB and Cough (Archive) [Updated 2023 Feb 20]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

In this Page

Bulk download.

  • Bulk download StatPearls data from FTP

Similar articles in PubMed

  • Review Palliative Chemotherapy: Does It Only Provide False Hope? The Role of Palliative Care in a Young Patient With Newly Diagnosed Metastatic Adenocarcinoma. [J Adv Pract Oncol. 2017] Review Palliative Chemotherapy: Does It Only Provide False Hope? The Role of Palliative Care in a Young Patient With Newly Diagnosed Metastatic Adenocarcinoma. Doverspike L, Kurtz S, Selvaggi K. J Adv Pract Oncol. 2017 May-Jun; 8(4):382-386. Epub 2017 May 1.
  • Review Breathlessness with pulmonary metastases: a multimodal approach. [J Adv Pract Oncol. 2013] Review Breathlessness with pulmonary metastases: a multimodal approach. Brant JM. J Adv Pract Oncol. 2013 Nov; 4(6):415-22.
  • A 50-Year Old Woman With Recurrent Right-Sided Chest Pain. [Chest. 2022] A 50-Year Old Woman With Recurrent Right-Sided Chest Pain. Saha BK, Bonnier A, Chong WH, Chenna P. Chest. 2022 Feb; 161(2):e85-e89.
  • Suicidal Ideation. [StatPearls. 2024] Suicidal Ideation. Harmer B, Lee S, Rizvi A, Saadabadi A. StatPearls. 2024 Jan
  • [Clinical analysis of the first patient with imported Middle East respiratory syndrome in China]. [Zhonghua Wei Zhong Bing Ji Jiu...] [Clinical analysis of the first patient with imported Middle East respiratory syndrome in China]. Ling Y, Qu R, Luo Y. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2015 Aug; 27(8):630-4.

Recent Activity

  • Case Study: 33-Year-Old Female Presents with Chronic SOB and Cough (Archive) - S... Case Study: 33-Year-Old Female Presents with Chronic SOB and Cough (Archive) - StatPearls

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

Library Home

Health Case Studies

(29 reviews)

example of case study in medicine

Glynda Rees, British Columbia Institute of Technology

Rob Kruger, British Columbia Institute of Technology

Janet Morrison, British Columbia Institute of Technology

Copyright Year: 2017

Publisher: BCcampus

Language: English

Formats Available

Conditions of use.

Attribution-ShareAlike

Learn more about reviews.

Reviewed by Jessica Sellars, Medical assistant office instructor, Blue Mountain Community College on 10/11/23

This is a book of compiled and very well organized patient case studies. The author has broken it up by disease patient was experiencing and even the healthcare roles that took place in this patients care. There is a well thought out direction and... read more

Comprehensiveness rating: 5 see less

This is a book of compiled and very well organized patient case studies. The author has broken it up by disease patient was experiencing and even the healthcare roles that took place in this patients care. There is a well thought out direction and plan. There is an appendix to refer to as well if you are needing to find something specific quickly. I have been looking for something like this to help my students have a base to do their project on. This is the most comprehensive version I have found on the subject.

Content Accuracy rating: 5

This is a book compiled of medical case studies. It is very accurate and can be used to learn from great care and mistakes.

Relevance/Longevity rating: 5

This material is very relevant in this context. It also has plenty of individual case studies to utilize in many ways in all sorts of medical courses. This is a very useful textbook and it will continue to be useful for a very long time as you can still learn from each study even if medicine changes through out the years.

Clarity rating: 5

The author put a lot of thought into the ease of accessibility and reading level of the target audience. There is even a "how to use this resource" section which could be extremely useful to students.

Consistency rating: 5

The text follows a very consistent format throughout the book.

Modularity rating: 5

Each case study is individual broken up and in a group of similar case studies. This makes it extremely easy to utilize.

Organization/Structure/Flow rating: 5

The book is very organized and the appendix is through. It flows seamlessly through each case study.

Interface rating: 5

I had no issues navigating this book, It was clearly labeled and very easy to move around in.

Grammatical Errors rating: 5

I did not catch any grammar errors as I was going through the book

Cultural Relevance rating: 5

This is a challenging question for any medical textbook. It is very culturally relevant to those in medical or medical office degrees.

I have been looking for something like this for years. I am so happy to have finally found it.

Reviewed by Cindy Sun, Assistant Professor, Marshall University on 1/7/23

Interestingly, this is not a case of ‘you get what you pay for’. Instead, not only are the case studies organized in a fashion for ease of use through a detailed table of contents, the authors have included more support for both faculty and... read more

Interestingly, this is not a case of ‘you get what you pay for’. Instead, not only are the case studies organized in a fashion for ease of use through a detailed table of contents, the authors have included more support for both faculty and students. For faculty, the introduction section titled ‘How to use this resource’ and individual notes to educators before each case study contain application tips. An appendix overview lists key elements as issues / concepts, scenario context, and healthcare roles for each case study. For students, learning objectives are presented at the beginning of each case study to provide a framework of expectations.

The content is presented accurately and realistic.

The case studies read similar to ‘A Day In the Life of…’ with detailed intraprofessional communications similar to what would be overheard in patient care areas. The authors present not only the view of the patient care nurse, but also weave interprofessional vantage points through each case study by including patient interaction with individual professionals such as radiology, physician, etc.

In addition to objective assessment findings, the authors integrate standard orders for each diagnosis including medications, treatments, and tests allowing the student to incorporate pathophysiology components to their assessments.

Each case study is arranged in the same framework for consistency and ease of use.

This compilation of eight healthcare case studies focusing on new onset and exacerbation of prevalent diagnoses, such as heart failure, deep vein thrombosis, cancer, and chronic obstructive pulmonary disease advancing to pneumonia.

Each case study has a photo of the ‘patient’. Simple as this may seem, it gives an immediate mental image for the student to focus.

Interface rating: 4

As noted by previous reviewers, most of the links do not connect active web pages. This may be due to the multiple options for accessing this resource (pdf download, pdf electronic, web view, etc.).

Grammatical Errors rating: 4

A minor weakness that faculty will probably need to address prior to use is regarding specific term usages differences between Commonwealth countries and United States, such as lung sound descriptors as ‘quiet’ in place of ‘diminished’ and ‘puffers’ in place of ‘inhalers’.

The authors have provided a multicultural, multigenerational approach in selection of patient characteristics representing a snapshot of today’s patient population. Additionally, one case study focusing on heart failure is about a middle-aged adult, contrasting to the average aged patient the students would normally see during clinical rotations. This option provides opportunities for students to expand their knowledge on risk factors extending beyond age.

This resource is applicable to nursing students learning to care for patients with the specific disease processes presented in each case study or for the leadership students focusing on intraprofessional communication. Educators can assign as a supplement to clinical experiences or as an in-class application of knowledge.

Reviewed by Stephanie Sideras, Assistant Professor, University of Portland on 8/15/22

The eight case studies included in this text addressed high frequency health alterations that all nurses need to be able to manage competently. While diabetes was not highlighted directly, it was included as a potential comorbidity. The five... read more

The eight case studies included in this text addressed high frequency health alterations that all nurses need to be able to manage competently. While diabetes was not highlighted directly, it was included as a potential comorbidity. The five overarching learning objectives pulled from the Institute of Medicine core competencies will clearly resonate with any faculty familiar with Quality and Safety Education for Nurses curriculum.

The presentation of symptoms, treatments and management of the health alterations was accurate. Dialogue between the the interprofessional team was realistic. At times the formatting of lab results was confusing as they reflected reference ranges specific to the Canadian healthcare system but these occurrences were minimal and could be easily adapted.

The focus for learning from these case studies was communication - patient centered communication and interprofessional team communication. Specific details, such as drug dosing, was minimized, which increases longevity and allows for easy individualization of the case data.

While some vocabulary was specific to the Canadian healthcare system, overall the narrative was extremely engaging and easy to follow. Subjective case data from patient or provider were formatted in italics and identified as 'thoughts'. Objective and behavioral case data were smoothly integrated into the narrative.

The consistency of formatting across the eight cases was remarkable. Specific learning objectives are identified for each case and these remain consistent across the range of cases, varying only in the focus for the goals for each different health alterations. Each case begins with presentation of essential patient background and the progress across the trajectory of illness as the patient moves from location to location encountering different healthcare professionals. Many of the characters (the triage nurse in the Emergency Department, the phlebotomist) are consistent across the case situations. These consistencies facilitate both application of a variety of teaching methods and student engagement with the situated learning approach.

Case data is presented by location and begins with the patient's first encounter with the healthcare system. This allows for an examination of how specific trajectories of illness are manifested and how care management needs to be prioritized at different stages. This approach supports discussions of care transitions and the complexity of the associated interprofessional communication.

The text is well organized. The case that has two levels of complexity is clearly identified

The internal links between the table of contents and case specific locations work consistently. In the EPUB and the Digital PDF the external hyperlinks are inconsistently valid.

The grammatical errors were minimal and did not detract from readability

Cultural diversity is present across the cases in factors including race, ethnicity, socioeconomic status, family dynamics and sexual orientation.

The level of detail included in these cases supports a teaching approach to address all three spectrums of learning - knowledge, skills and attitudes - necessary for the development of competent practice. I also appreciate the inclusion of specific assessment instruments that would facilitate a discussion of evidence based practice. I will enjoy using these case to promote clinical reasoning discussions of data that is noticed and interpreted with the resulting prioritizes that are set followed by reflections that result from learner choices.

Reviewed by Chris Roman, Associate Professor, Butler University on 5/19/22

It would be extremely difficult for a book of clinical cases to comprehensively cover all of medicine, and this text does not try. Rather, it provides cases related to common medical problems and introduces them in a way that allows for various... read more

Comprehensiveness rating: 4 see less

It would be extremely difficult for a book of clinical cases to comprehensively cover all of medicine, and this text does not try. Rather, it provides cases related to common medical problems and introduces them in a way that allows for various learning strategies to be employed to leverage the cases for deeper student learning and application.

The narrative form of the cases is less subject to issues of accuracy than a more content-based book would be. That said, the cases are realistic and reasonable, avoiding being too mundane or too extreme.

These cases are narrative and do not include many specific mentions of drugs, dosages, or other aspects of clinical care that may grow/evolve as guidelines change. For this reason, the cases should be “evergreen” and can be modified to suit different types of learners.

Clarity rating: 4

The text is written in very accessible language and avoids heavy use of technical language. Depending on the level of learner, this might even be too simplistic and omit some details that would be needed for physicians, pharmacists, and others to make nuanced care decisions.

The format is very consistent with clear labeling at transition points.

The authors point out in the introductory materials that this text is designed to be used in a modular fashion. Further, they have built in opportunities to customize each cases, such as giving dates of birth at “19xx” to allow for adjustments based on instructional objectives, etc.

The organization is very easy to follow.

I did not identify any issues in navigating the text.

The text contains no grammatical errors, though the language is a little stiff/unrealistic in some cases.

Cases involve patients and members of the care team that are of varying ages, genders, and racial/ethnic backgrounds

Reviewed by Trina Larery, Assistant Professor, Pittsburg State University on 4/5/22

The book covers common scenarios, providing allied health students insight into common health issues. The information in the book is thorough and easily modified if needed to include other scenarios not listed. The material was easy to understand... read more

The book covers common scenarios, providing allied health students insight into common health issues. The information in the book is thorough and easily modified if needed to include other scenarios not listed. The material was easy to understand and apply to the classroom. The E-reader format included hyperlinks that bring the students to subsequent clinical studies.

Content Accuracy rating: 4

The treatments were explained and rationales were given, which can be very helpful to facilitate effective learning for a nursing student or novice nurse. The case studies were accurate in explanation. The DVT case study incorrectly identifies the location of the clot in the popliteal artery instead of in the vein.

The content is relevant to a variety of different types of health care providers and due to the general nature of the cases, will remain relevant over time. Updates should be made annually to the hyperlinks and to assure current standard of practice is still being met.

Clear, simple and easy to read.

Consistent with healthcare terminology and framework throughout all eight case studies.

The text is modular. Cases can be used individually within a unit on the given disease process or relevant sections of a case could be used to illustrate a specific point providing great flexibility. The appendix is helpful in locating content specific to a certain diagnosis or a certain type of health care provider.

The book is well organized, presenting in a logical clear fashion. The appendix allows the student to move about the case study without difficulty.

The interface is easy and simple to navigate. Some links to external sources might need to be updated regularly since those links are subject to change based on current guidelines. A few hyperlinks had "page not found".

Few grammatical errors were noted in text.

The case studies include people of different ethnicities, socioeconomic status, ages, and genders to make this a very useful book.

I enjoyed reading the text. It was interesting and relevant to today's nursing student. There are roughly 25 broken online links or "pages not found", care needs to be taken to update at least annually and assure links are valid and utilizing the most up to date information.

Reviewed by Benjamin Silverberg, Associate Professor/Clinician, West Virginia University on 3/24/22

The appendix reviews the "key roles" and medical venues found in all 8 cases, but is fairly spartan on medical content. The table of contents at the beginning only lists the cases and locations of care. It can be a little tricky to figure out what... read more

Comprehensiveness rating: 3 see less

The appendix reviews the "key roles" and medical venues found in all 8 cases, but is fairly spartan on medical content. The table of contents at the beginning only lists the cases and locations of care. It can be a little tricky to figure out what is going on where, especially since each case is largely conversation-based. Since this presents 8 cases (really 7 with one being expanded upon), there are many medical topics (and venues) that are not included. It's impossible to include every kind of situation, but I'd love to see inclusion of sexual health, renal pathology, substance abuse, etc.

Though there are differences in how care can be delivered based on personal style, changing guidelines, available supplies, etc, the medical accuracy seems to be high. I did not detect bias or industry influence.

Relevance/Longevity rating: 4

Medications are generally listed as generics, with at least current dosing recommendations. The text gives a picture of what care looks like currently, but will be a little challenging to update based on new guidelines (ie, it can be hard to find the exact page in which a medication is dosed/prescribed). Even if the text were to be a little out of date, an instructor can use that to point out what has changed (and why).

Clear text, usually with definitions of medical slang or higher-tier vocabulary. Minimal jargon and there are instances where the "characters" are sorting out the meaning as well, making it accessible for new learners, too.

Overall, the style is consistent between cases - largely broken up into scenes and driven by conversation rather than descriptions of what is happening.

There are 8 (well, again, 7) cases which can be reviewed in any order. Case #2 builds upon #1, which is intentional and a good idea, though personally I would have preferred one case to have different possible outcomes or even a recurrence of illness. Each scene within a case is reasonably short.

Organization/Structure/Flow rating: 4

These cases are modular and don't really build on concepts throughout. As previously stated, case #2 builds upon #1, but beyond that, there is no progression. (To be sure, the authors suggest using case #1 for newer learners and #2 for more advanced ones.) The text would benefit from thematic grouping, a longer introduction and debriefing for each case (there are learning objectives but no real context in medical education nor questions to reflect on what was just read), and progressively-increasing difficulty in medical complexity, ethics, etc.

I used the PDF version and had no interface issues. There are minimal photographs and charts. Some words are marked in blue but those did not seem to be hyperlinked anywhere.

No noticeable errors in grammar, spelling, or formatting were noted.

I appreciate that some diversity of age and ethnicity were offered, but this could be improved. There were Canadian Indian and First Nations patients, for example, as well as other characters with implied diversity, but there didn't seem to be any mention of gender diverse or non-heterosexual people, or disabilities. The cases tried to paint family scenes (the first patient's dog was fairly prominently mentioned) to humanize them. Including more cases would allow for more opportunities to include sex/gender minorities, (hidden) disabilities, etc.

The text (originally from 2017) could use an update. It could be used in conjunction with other Open Texts, as a compliment to other coursework, or purely by itself. The focus is meant to be on improving communication, but there are only 3 short pages at the beginning of the text considering those issues (which are really just learning objectives). In addition to adding more cases and further diversity, I personally would love to see more discussion before and after the case to guide readers (and/or instructors). I also wonder if some of the ambiguity could be improved by suggesting possible health outcomes - this kind of counterfactual comparison isn't possible in real life and could be really interesting in a text. Addition of comprehension/discussion questions would also be worthwhile.

Reviewed by Danielle Peterson, Assistant Professor, University of Saint Francis on 12/31/21

This text provides readers with 8 case studies which include both chronic and acute healthcare issues. Although not comprehensive in regard to types of healthcare conditions, it provides a thorough look at the communication between healthcare... read more

This text provides readers with 8 case studies which include both chronic and acute healthcare issues. Although not comprehensive in regard to types of healthcare conditions, it provides a thorough look at the communication between healthcare workers in acute hospital settings. The cases are primarily set in the inpatient hospital setting, so the bulk of the clinical information is basic emergency care and inpatient protocol: vitals, breathing, medication management, etc. The text provides a table of contents at opening of the text and a handy appendix at the conclusion of the text that outlines each case’s issue(s), scenario, and healthcare roles. No index or glossary present.

Although easy to update, it should be noted that the cases are taking place in a Canadian healthcare system. Terms may be unfamiliar to some students including “province,” “operating theatre,” “physio/physiotherapy,” and “porter.” Units of measurement used include Celsius and meters. Also, the issue of managed care, health insurance coverage, and length of stay is missing for American students. These are primary issues that dictate much of the healthcare system in the US and a primary job function of social workers, nurse case managers, and medical professionals in general. However, instructors that wish to add this to the case studies could do so easily.

The focus of this text is on healthcare communication which makes it less likely to become obsolete. Much of the clinical information is stable healthcare practice that has been standard of care for quite some time. Nevertheless, given the nature of text, updates would be easy to make. Hyperlinks should be updated to the most relevant and trustworthy sources and checked frequently for effectiveness.

The spacing that was used to note change of speaker made for ease of reading. Although unembellished and plain, I expect students to find this format easy to digest and interesting, especially since the script is appropriately balanced with ‘human’ qualities like the current TV shows and songs, the use of humor, and nonverbal cues.

A welcome characteristic of this text is its consistency. Each case is presented in a similar fashion and the roles of the healthcare team are ‘played’ by the same character in each of the scenarios. This allows students to see how healthcare providers prioritize cases and juggle the needs of multiple patients at once. Across scenarios, there was inconsistency in when clinical terms were hyperlinked.

The text is easily divisible into smaller reading sections. However, since the nature of the text is script-narrative format, if significant reorganization occurs, one will need to make sure that the communication of the script still makes sense.

The text is straightforward and presented in a consistent fashion: learning objectives, case history, a script of what happened before the patient enters the healthcare setting, and a script of what happens once the patient arrives at the healthcare setting. The authors use the term, “ideal interactions,” and I would agree that these cases are in large part, ‘best case scenarios.’ Due to this, the case studies are well organized, clear, logical, and predictable. However, depending on the level of student, instructors may want to introduce complications that are typical in the hospital setting.

The interface is pleasing and straightforward. With exception to the case summary and learning objectives, the cases are in narrative, script format. Each case study supplies a photo of the ‘patient’ and one of the case studies includes a link to a 3-minute video that introduces the reader to the patient/case. One of the highlights of this text is the use of hyperlinks to various clinical practices (ABG, vital signs, transfer of patient). Unfortunately, a majority of the links are broken. However, since this is an open text, instructors can update the links to their preference.

Although not free from grammatical errors, those that were noticed were minimal and did not detract from reading.

Cultural Relevance rating: 4

Cultural diversity is visible throughout the patients used in the case studies and includes factors such as age, race, socioeconomic status, family dynamics, and sexual orientation. A moderate level of diversity is noted in the healthcare team with some stereotypes: social workers being female, doctors primarily male.

As a social work instructor, I was grateful to find a text that incorporates this important healthcare role. I would have liked to have seen more content related to advance directives, mediating decision making between the patient and care team, emotional and practical support related to initial diagnosis and discharge planning, and provision of support to colleagues, all typical roles of a medical social worker. I also found it interesting that even though social work was included in multiple scenarios, the role was only introduced on the learning objectives page for the oncology case.

example of case study in medicine

Reviewed by Crystal Wynn, Associate Professor, Virginia State University on 7/21/21

The text covers a variety of chronic diseases within the cases; however, not all of the common disease states were included within the text. More chronic diseases need to be included such as diabetes, cancer, and renal failure. Not all allied... read more

The text covers a variety of chronic diseases within the cases; however, not all of the common disease states were included within the text. More chronic diseases need to be included such as diabetes, cancer, and renal failure. Not all allied health care team members are represented within the case study. Key terms appear throughout the case study textbook and readers are able to click on a hyperlink which directs them to the definition and an explanation of the key term.

Content is accurate, error-free and unbiased.

The content is up-to-date, but not in a way that will quickly make the text obsolete within a short period of time. The text is written and/or arranged in such a way that necessary updates will be relatively easy and straightforward to implement.

The text is written in lucid, accessible prose, and provides adequate context for any jargon/technical terminology used

The text is internally consistent in terms of terminology and framework.

The text is easily and readily divisible into smaller reading sections that can be assigned at different points within the course. Each case can be divided into a chronic disease state unit, which will allow the reader to focus on one section at a time.

Organization/Structure/Flow rating: 3

The topics in the text are presented in a logical manner. Each case provides an excessive amount of language that provides a description of the case. The cases in this text reads more like a novel versus a clinical textbook. The learning objectives listed within each case should be in the form of questions or activities that could be provided as resources for instructors and teachers.

Interface rating: 3

There are several hyperlinks embedded within the textbook that are not functional.

The text contains no grammatical errors.

Cultural Relevance rating: 3

The text is not culturally insensitive or offensive in any way. More examples of cultural inclusiveness is needed throughout the textbook. The cases should be indicative of individuals from a variety of races and ethnicities.

Reviewed by Rebecca Hillary, Biology Instructor, Portland Community College on 6/15/21

This textbook consists of a collection of clinical case studies that can be applicable to a wide range of learning environments from supplementing an undergraduate Anatomy and Physiology Course, to including as part of a Medical or other health... read more

This textbook consists of a collection of clinical case studies that can be applicable to a wide range of learning environments from supplementing an undergraduate Anatomy and Physiology Course, to including as part of a Medical or other health care program. I read the textbook in E-reader format and this includes hyperlinks that bring the students to subsequent clinical study if the book is being used in a clinical classroom. This book is significantly more comprehensive in its approach from other case studies I have read because it provides a bird’s eye view of the many clinicians, technicians, and hospital staff working with one patient. The book also provides real time measurements for patients that change as they travel throughout the hospital until time of discharge.

Each case gave an accurate sense of the chaos that would be present in an emergency situation and show how the conditions affect the practitioners as well as the patients. The reader gets an accurate big picture--a feel for each practitioner’s point of view as well as the point of view of the patient and the patient’s family as the clock ticks down and the patients are subjected to a number of procedures. The clinical information contained in this textbook is all in hyperlinks containing references to clinical skills open text sources or medical websites. I did find one broken link on an external medical resource.

The diseases presented are relevant and will remain so. Some of the links are directly related to the Canadian Medical system so they may not be applicable to those living in other regions. Clinical links may change over time but the text itself will remain relevant.

Each case study clearly presents clinical data as is it recorded in real time.

Each case study provides the point of view of several practitioners and the patient over several days. While each of the case studies covers different pathology they all follow this same format, several points of view and data points, over a number of days.

The case studies are divided by days and this was easy to navigate as a reader. It would be easy to assign one case study per body system in an Anatomy and Physiology course, or to divide them up into small segments for small in class teaching moments.

The topics are presented in an organized way showing clinical data over time and each case presents a large number of view points. For example, in the first case study, the patient is experiencing difficulty breathing. We follow her through several days from her entrance to the emergency room. We meet her X Ray Technicians, Doctor, Nurses, Medical Assistant, Porter, Physiotherapist, Respiratory therapist, and the Lab Technicians running her tests during her stay. Each practitioner paints the overall clinical picture to the reader.

I found the text easy to navigate. There were not any figures included in the text, only clinical data organized in charts. The figures were all accessible via hyperlink. Some figures within the textbook illustrating patient scans could have been helpful but I did not have trouble navigating the links to visualize the scans.

I did not see any grammatical errors in the text.

The patients in the text are a variety of ages and have a variety of family arrangements but there is not much diversity among the patients. Our seven patients in the eight case studies are mostly white and all cis gendered.

Some of the case studies, for example the heart failure study, show clinical data before and after drug treatments so the students can get a feel for mechanism in physiological action. I also liked that the case studies included diet and lifestyle advice for the patients rather than solely emphasizing these pharmacological interventions. Overall, I enjoyed reading through these case studies and I plan to utilize them in my Anatomy and Physiology courses.

Reviewed by Richard Tarpey, Assistant Professor, Middle Tennessee State University on 5/11/21

As a case study book, there is no index or glossary. However, medical and technical terms provide a useful link to definitions and explanations that will prove useful to students unfamiliar with the terms. The information provided is appropriate... read more

As a case study book, there is no index or glossary. However, medical and technical terms provide a useful link to definitions and explanations that will prove useful to students unfamiliar with the terms. The information provided is appropriate for entry-level health care students. The book includes important health problems, but I would like to see coverage of at least one more chronic/lifestyle issue such as diabetes. The book covers adult issues only.

Content is accurate without bias

The content of the book is relevant and up-to-date. It addresses conditions that are prevalent in today's population among adults. There are no pediatric cases, but this does not significantly detract from the usefulness of the text. The format of the book lends to easy updating of data or information.

The book is written with clarity and is easy to read. The writing style is accessible and technical terminology is explained with links to more information.

Consistency is present. Lack of consistency is typically a problem with case study texts, but this book is consistent with presentation, format, and terminology throughout each of the eight cases.

The book has high modularity. Each of the case studies can be used independently from the others providing flexibility. Additionally, each case study can be partitioned for specific learning objectives based on the learning objectives of the course or module.

The book is well organized, presenting students conceptually with differing patient flow patterns through a hospital. The patient information provided at the beginning of each case is a wonderful mechanism for providing personal context for the students as they consider the issues. Many case studies focus on the problem and the organization without students getting a patient's perspective. The patient perspective is well represented in these cases.

The navigation through the cases is good. There are some terminology and procedure hyperlinks within the cases that do not work when accessed. This is troubling if you intend to use the text for entry-level health care students since many of these links are critical for a full understanding of the case.

There are some non-US variants of spelling and a few grammatical errors, but these do not detract from the content of the messages of each case.

The book is inclusive of differing backgrounds and perspectives. No insensitive or offensive references were found.

I like this text for its application flexibility. The book is useful for non-clinical healthcare management students to introduce various healthcare-related concepts and terminology. The content is also helpful for the identification of healthcare administration managerial issues for students to consider. The book has many applications.

Reviewed by Paula Baldwin, Associate Professor/Communication Studies, Western Oregon University on 5/10/21

The different case studies fall on a range, from crisis care to chronic illness care. read more

The different case studies fall on a range, from crisis care to chronic illness care.

The contents seems to be written as they occurred to represent the most complete picture of each medical event's occurence.

These case studies are from the Canadian medical system, but that does not interfere with it's applicability.

It is written for a medical audience, so the terminology is mostly formal and technical.

Some cases are shorter than others and some go in more depth, but it is not problematic.

The eight separate case studies is the perfect size for a class in the quarter system. You could combine this with other texts, videos or learning modalities, or use it alone.

As this is a case studies book, there is not a need for a logical progression in presentation of topics.

No problems in terms of interface.

I have not seen any grammatical errors.

I did not see anything that was culturally insensitive.

I used this in a Health Communication class and it has been extraordinarily successful. My studies are analyzing the messaging for the good, the bad, and the questionable. The case studies are widely varied and it gives the class insights into hospital experiences, both front and back stage, that they would not normally be able to examine. I believe that because it is based real-life medical incidents, my students are finding the material highly engaging.

Reviewed by Marlena Isaac, Instructor, Aiken Technical College on 4/23/21

This text is great to walk through patient care with entry level healthcare students. The students are able to take in the information, digest it, then provide suggestions to how they would facilitate patient healing. Then when they are faced with... read more

This text is great to walk through patient care with entry level healthcare students. The students are able to take in the information, digest it, then provide suggestions to how they would facilitate patient healing. Then when they are faced with a situation in clinical they are not surprised and now how to move through it effectively.

The case studies provided accurate information that relates to the named disease.

It is relevant to health care studies and the development of critical thinking.

Cases are straightforward with great clinical information.

Clinical information is provided concisely.

Appropriate for clinical case study.

Presented to facilitate information gathering.

Takes a while to navigate in the browser.

Cultural Relevance rating: 1

Text lacks adequate representation of minorities.

Reviewed by Kim Garcia, Lecturer III, University of Texas Rio Grande Valley on 11/16/20

The book has 8 case studies, so obviously does not cover the whole of medicine, but the cases provided are descriptive and well developed. Cases are presented at different levels of difficulty, making the cases appropriate for students at... read more

The book has 8 case studies, so obviously does not cover the whole of medicine, but the cases provided are descriptive and well developed. Cases are presented at different levels of difficulty, making the cases appropriate for students at different levels of clinical knowledge. The human element of both patient and health care provider is well captured. The cases are presented with a focus on interprofessional interaction and collaboration, more so than teaching medical content.

Content is accurate and un-biased. No errors noted. Most diagnostic and treatment information is general so it will remain relevant over time. The content of these cases is more appropriate for teaching interprofessional collaboration and less so for teaching the medical care for each diagnosis.

The content is relevant to a variety of different types of health care providers (nurses, radiologic technicians, medical laboratory personnel, etc) and due to the general nature of the cases, will remain relevant over time.

Easy to read. Clear headings are provided for sections of each case study and these section headings clearly tell when time has passed or setting has changed. Enough description is provided to help set the scene for each part of the case. Much of the text is written in the form of dialogue involving patient, family and health care providers, making it easy to adapt for role play. Medical jargon is limited and links for medical terms are provided to other resources that expound on medical terms used.

The text is consistent in structure of each case. Learning objectives are provided. Cases generally start with the patient at home and move with the patient through admission, testing and treatment, using a variety of healthcare services and encountering a variety of personnel.

The text is modular. Cases could be used individually within a unit on the given disease process or relevant sections of a case could be used to illustrate a specific point. The appendix is helpful in locating content specific to a certain diagnosis or a certain type of health care provider.

Each case follows a patient in a logical, chronologic fashion. A clear table of contents and appendix are provided which allows the user to quickly locate desired content. It would be helpful if the items in the table of contents and appendix were linked to the corresponding section of the text.

The hyperlinks to content outside this book work, however using the back arrow on your browser returns you to the front page of the book instead of to the point at which you left the text. I would prefer it if the hyperlinks opened in a new window or tab so closing that window or tab would leave you back where you left the text.

No grammatical errors were noted.

The text is culturally inclusive and appropriate. Characters, both patients and care givers are of a variety of races, ethnicities, ages and backgrounds.

I enjoyed reading the cases and reviewing this text. I can think of several ways in which I will use this content.

Reviewed by Raihan Khan, Instructor/Assistant Professor, James Madison University on 11/3/20

The book contains several important health issues, however still missing some chronic health issues that the students should learn before they join the workforce, such as diabetes-related health issues suffered by the patients. read more

The book contains several important health issues, however still missing some chronic health issues that the students should learn before they join the workforce, such as diabetes-related health issues suffered by the patients.

The health information contained in the textbook is mostly accurate.

I think the book is written focusing on the current culture and health issues faced by the patients. To keep the book relevant in the future, the contexts especially the culture/lifestyle/health care modalities, etc. would need to be updated regularly.

The language is pretty simple, clear, and easy to read.

There is no complaint about consistency. One of the main issues of writing a book, consistency was well managed by the authors.

The book is easy to explore based on how easy the setup is. Students can browse to the specific section that they want to read without much hassle of finding the correct information.

The organization is simple but effective. The authors organized the book based on what can happen in a patient's life and what possible scenarios students should learn about the disease. From that perspective, the book does a good job.

The interface is easy and simple to navigate. Some links to external sources might need to be updated regularly since those links are subject to change that is beyond the author's control. It's frustrating for the reader when the external link shows no information.

The book is free of any major language and grammatical errors.

The book might do a little better in cultural competency. e.g. Last name Singh is mainly for Sikh people. In the text Harj and Priya Singh are Muslim. the authors can consult colleagues who are more familiar with those cultures and revise some cultural aspects of the cases mentioned in the book.

The book is a nice addition to the open textbook world. Hope to see more health issues covered by the book.

Reviewed by Ryan Sheryl, Assistant Professor, California State University, Dominguez Hills on 7/16/20

This text contains 8 medical case studies that reflect best practices at the time of publication. The text identifies 5 overarching learning objectives: interprofessional collaboration, client centered care, evidence-based practice, quality... read more

This text contains 8 medical case studies that reflect best practices at the time of publication. The text identifies 5 overarching learning objectives: interprofessional collaboration, client centered care, evidence-based practice, quality improvement, and informatics. While the case studies do not cover all medical conditions or bodily systems, the book is thorough in conveying details of various patients and medical team members in a hospital environment. Rather than an index or glossary at the end of the text, it contains links to outside websites for more information on medical tests and terms referenced in the cases.

The content provided is reflective of best practices in patient care, interdisciplinary collaboration, and communication at the time of publication. It is specifically accurate for the context of hospitals in Canada. The links provided throughout the text have the potential to supplement with up-to-date descriptions and definitions, however, many of them are broken (see notes in Interface section).

The content of the case studies reflects the increasingly complex landscape of healthcare, including a variety of conditions, ages, and personal situations of the clients and care providers. The text will require frequent updating due to the rapidly changing landscape of society and best practices in client care. For example, a future version may include inclusive practices with transgender clients, or address ways medical racism implicitly impacts client care (see notes in Cultural Relevance section).

The text is written clearly and presents thorough, realistic details about working and being treated in an acute hospital context.

The text is very straightforward. It is consistent in its structure and flow. It uses consistent terminology and follows a structured framework throughout.

Being a series of 8 separate case studies, this text is easily and readily divisible into smaller sections. The text was designed to be taken apart and used piece by piece in order to serve various learning contexts. The parts of each case study can also be used independently of each other to facilitate problem solving.

The topics in the case studies are presented clearly. The structure of each of the case studies proceeds in a similar fashion. All of the cases are set within the same hospital so the hospital personnel and service providers reappear across the cases, giving a textured portrayal of the experiences of the various service providers. The cases can be used individually, or one service provider can be studied across the various studies.

The text is very straightforward, without complex charts or images that could become distorted. Many of the embedded links are broken and require updating. The links that do work are a very useful way to define and expand upon medical terms used in the case studies.

Grammatical errors are minimal and do not distract from the flow of the text. In one instance the last name Singh is spelled Sing, and one patient named Fred in the text is referred to as Frank in the appendix.

The cases all show examples of health care personnel providing compassionate, client-centered care, and there is no overt discrimination portrayed. Two of the clients are in same-sex marriages and these are shown positively. It is notable, however, that the two cases presenting people of color contain more negative characteristics than the other six cases portraying Caucasian people. The people of color are the only two examples of clients who smoke regularly. In addition, the Indian client drinks and is overweight, while the First Nations client is the only one in the text to have a terminal diagnosis. The Indian client is identified as being Punjabi and attending a mosque, although there are only 2% Muslims in the Punjab province of India. Also, the last name Singh generally indicates a person who is a Hindu or Sikh, not Muslim.

Reviewed by Monica LeJeune, RN Instructor, LSUE on 4/24/20

Has comprehensive unfolding case studies that guide the reader to recognize and manage the scenario presented. Assists in critical thinking process. read more

Has comprehensive unfolding case studies that guide the reader to recognize and manage the scenario presented. Assists in critical thinking process.

Accurately presents health scenarios with real life assessment techniques and patient outcomes.

Relevant to nursing practice.

Clearly written and easily understood.

Consistent with healthcare terminology and framework

Has a good reading flow.

Topics presented in logical fashion

Easy to read.

No grammatical errors noted.

Text is not culturally insensitive or offensive.

Good book to have to teach nursing students.

Reviewed by april jarrell, associate professor, J. Sargeant Reynolds Community College on 1/7/20

The text is a great case study tool that is appropriate for nursing school instructors to use in aiding students to learn the nursing process. read more

The text is a great case study tool that is appropriate for nursing school instructors to use in aiding students to learn the nursing process.

The content is accurate and evidence based. There is no bias noted

The content in the text is relevant, up to date for nursing students. It will be easy to update content as needed because the framework allows for addition to the content.

The text is clear and easy to understand.

Framework and terminology is consistent throughout the text; the case study is a continual and takes the student on a journey with the patient. Great for learning!

The case studies can be easily divided into smaller sections to allow for discussions, and weekly studies.

The text and content progress in a logical, clear fashion allowing for progression of learning.

No interface issues noted with this text.

No grammatical errors noted in the text.

No racial or culture insensitivity were noted in the text.

I would recommend this text be used in nursing schools. The use of case studies are helpful for students to learn and practice the nursing process.

Reviewed by Lisa Underwood, Practical Nursing Instructor, NTCC on 12/3/19

The text provides eight comprehensive case studies that showcase the different viewpoints of the many roles involved in patient care. It encompasses the most common seen diagnoses seen across healthcare today. Each case study comes with its own... read more

The text provides eight comprehensive case studies that showcase the different viewpoints of the many roles involved in patient care. It encompasses the most common seen diagnoses seen across healthcare today. Each case study comes with its own set of learning objectives that can be tweaked to fit several allied health courses. Although the case studies are designed around the Canadian Healthcare System, they are quite easily adaptable to fit most any modern, developed healthcare system.

Content Accuracy rating: 3

Overall, the text is quite accurate. There is one significant error that needs to be addressed. It is located in the DVT case study. In the study, a popliteal artery clot is mislabeled as a DVT. DVTs are located in veins, not in arteries. That said, the case study on the whole is quite good. This case study could be used as a learning tool in the classroom for discussion purposes or as a way to test student understanding of DVTs, on example might be, "Can they spot the error?"

At this time, all of the case studies within the text are current. Healthcare is an ever evolving field that rests on the best evidence based practice. Keeping that in mind, educators can easily adapt the studies as the newest evidence emerges and changes practice in healthcare.

All of the case studies are well written and easy to understand. The text includes several hyperlinks and it also highlights certain medical terminology to prompt readers as a way to enhance their learning experience.

Across the text, the language, style, and format of the case studies are completely consistent.

The text is divided into eight separate case studies. Each case study may be used independently of the others. All case studies are further broken down as the focus patient passes through each aspect of their healthcare system. The text's modularity makes it possible to use a case study as individual work, group projects, class discussions, homework or in a simulation lab.

The case studies and the diagnoses that they cover are presented in such a way that educators and allied health students can easily follow and comprehend.

The book in itself is free of any image distortion and it prints nicely. The text is offered in a variety of digital formats. As noted in the above reviews, some of the hyperlinks have navigational issues. When the reader attempts to access them, a "page not found" message is received.

There were minimal grammatical errors. Some of which may be traced back to the differences in our spelling.

The text is culturally relevant in that it includes patients from many different backgrounds and ethnicities. This allows educators and students to explore cultural relevance and sensitivity needs across all areas in healthcare. I do not believe that the text was in any way insensitive or offensive to the reader.

By using the case studies, it may be possible to have an open dialogue about the differences noted in healthcare systems. Students will have the ability to compare and contrast the Canadian healthcare system with their own. I also firmly believe that by using these case studies, students can improve their critical thinking skills. These case studies help them to "put it all together".

Reviewed by Melanie McGrath, Associate Professor, TRAILS on 11/29/19

The text covered some of the most common conditions seen by healthcare providers in a hospital setting, which forms a solid general base for the discussions based on each case. read more

The text covered some of the most common conditions seen by healthcare providers in a hospital setting, which forms a solid general base for the discussions based on each case.

I saw no areas of inaccuracy

As in all healthcare texts, treatments and/or tests will change frequently. However, everything is currently up-to-date thus it should be a good reference for several years.

Each case is written so that any level of healthcare student would understand. Hyperlinks in the text is also very helpful.

All of the cases are written in a similar fashion.

Although not structured as a typical text, each case is easily assigned as a stand-alone.

Each case is organized clearly in an appropriate manner.

I did not see any issues.

I did not see any grammatical errors

The text seemed appropriately inclusive. There are no pediatric cases and no cases of intellectually-impaired patients, but those types of cases introduce more advanced problem-solving which perhaps exceed the scope of the text. May be a good addition to the text.

I found this text to be an excellent resource for healthcare students in a variety of fields. It would be best utilized in inter professional courses to help guide discussion.

Reviewed by Lynne Umbarger, Clinical Assistant Professor, Occupational Therapy, Emory and Henry College on 11/26/19

While the book does not cover every scenario, the ones in the book are quite common and troublesome for inexperienced allied health students. The information in the book is thorough enough, and I have found the cases easy to modify for educational... read more

While the book does not cover every scenario, the ones in the book are quite common and troublesome for inexperienced allied health students. The information in the book is thorough enough, and I have found the cases easy to modify for educational purposes. The material was easily understood by the students but challenging enough for classroom discussion. There are no mentions in the book about occupational therapy, but it is easy enough to add a couple words and make inclusion simple.

Very nice lab values are provided in the case study, making it more realistic for students.

These case studies focus on commonly encountered diagnoses for allied health and nursing students. They are comprehensive, realistic, and easily understood. The only difference is that the hospital in one case allows the patient's dog to visit in the room (highly unusual in US hospitals).

The material is easily understood by allied health students. The cases have links to additional learning materials for concepts that may be less familiar or should be explored further in a particular health field.

The language used in the book is consistent between cases. The framework is the same with each case which makes it easier to locate areas that would be of interest to a particular allied health profession.

The case studies are comprehensive but well-organized. They are short enough to be useful for class discussion or a full-blown assignment. The students seem to understand the material and have not expressed that any concepts or details were missing.

Each case is set up like the other cases. There are learning objectives at the beginning of each case to facilitate using the case, and it is easy enough to pull out material to develop useful activities and assignments.

There is a quick chart in the Appendix to allow the reader to determine the professions involved in each case as well as the pertinent settings and diagnoses for each case study. The contents are easy to access even while reading the book.

As a person who attends carefully to grammar, I found no errors in all of the material I read in this book.

There are a greater number of people of different ethnicities, socioeconomic status, ages, and genders to make this a very useful book. With each case, I could easily picture the person in the case. This book appears to be Canadian and more inclusive than most American books.

I was able to use this book the first time I accessed it to develop a classroom activity for first-year occupational therapy students and a more comprehensive activity for second-year students. I really appreciate the links to a multitude of terminology and medical lab values/issues for each case. I will keep using this book.

Reviewed by Cindy Krentz, Assistant Professor, Metropolitan State University of Denver on 6/15/19

The book covers eight case studies of common inpatient or emergency department scenarios. I appreciated that they had written out the learning objectives. I liked that the patient was described before the case was started, giving some... read more

The book covers eight case studies of common inpatient or emergency department scenarios. I appreciated that they had written out the learning objectives. I liked that the patient was described before the case was started, giving some understanding of the patient's background. I think it could benefit from having a glossary. I liked how the authors included the vital signs in an easily readable bar. I would have liked to see the labs also highlighted like this. I also felt that it would have been good written in a 'what would you do next?' type of case study.

The book is very accurate in language, what tests would be prudent to run and in the day in the life of the hospital in all cases. One inaccuracy is that the authors called a popliteal artery clot a DVT. The rest of the DVT case study was great, though, but the one mistake should be changed.

The book is up to date for now, but as tests become obsolete and new equipment is routinely used, the book ( like any other health textbook) will need to be updated. It would be easy to change, however. All that would have to happen is that the authors go in and change out the test to whatever newer, evidence-based test is being utilized.

The text is written clearly and easy to understand from a student's perspective. There is not too much technical jargon, and it is pretty universal when used- for example DVT for Deep Vein Thrombosis.

The book is consistent in language and how it is broken down into case studies. The same format is used for highlighting vital signs throughout the different case studies. It's great that the reader does not have to read the book in a linear fashion. Each case study can be read without needing to read the others.

The text is broken down into eight case studies, and within the case studies is broken down into days. It is consistent and shows how the patient can pass through the different hospital departments (from the ER to the unit, to surgery, to home) in a realistic manner. The instructor could use one or more of the case studies as (s)he sees fit.

The topics are eight different case studies- and are presented very clearly and organized well. Each one is broken down into how the patient goes through the system. The text is easy to follow and logical.

The interface has some problems with the highlighted blue links. Some of them did not work and I got a 'page not found' message. That can be frustrating for the reader. I'm wondering if a glossary could be utilized (instead of the links) to explain what some of these links are supposed to explain.

I found two or three typos, I don't think they were grammatical errors. In one case I think the Canadian spelling and the United States spelling of the word are just different.

This is a very culturally competent book. In today's world, however, one more type of background that would merit delving into is the trans-gender, GLBTQI person. I was glad that there were no stereotypes.

I enjoyed reading the text. It was interesting and relevant to today's nursing student. Since we are becoming more interprofessional, I liked that we saw what the phlebotomist and other ancillary personnel (mostly different technicians) did. I think that it could become even more interdisciplinary so colleges and universities could have more interprofessional education- courses or simulations- with the addition of the nurse using social work, nutrition, or other professional health care majors.

Reviewed by Catherine J. Grott, Interim Director, Health Administration Program, TRAILS on 5/5/19

The book is comprehensive but is specifically written for healthcare workers practicing in Canada. The title of the book should reflect this. read more

The book is comprehensive but is specifically written for healthcare workers practicing in Canada. The title of the book should reflect this.

The book is accurate, however it has numerous broken online links.

Relevance/Longevity rating: 3

The content is very relevant, but some links are out-dated. For example, WHO Guidelines for Safe Surgery 2009 (p. 186) should be updated.

The book is written in clear and concise language. The side stories about the healthcare workers make the text interesting.

The book is consistent in terms of terminology and framework. Some terms that are emphasized in one case study are not emphasized (with online links) in the other case studies. All of the case studies should have the same words linked to online definitions.

Modularity rating: 3

The book can easily be parsed out if necessary. However, the way the case studies have been written, it's evident that different authors contributed singularly to each case study.

The organization and flow are good.

Interface rating: 1

There are numerous broken online links and "pages not found."

The grammar and punctuation are correct. There are two errors detected: p. 120 a space between the word "heart" and the comma; also a period is needed after Dr (p. 113).

I'm not quite sure that the social worker (p. 119) should comment that the patient and partner are "very normal people."

There are roughly 25 broken online links or "pages not found." The BC & Canadian Guidelines (p. 198) could also include a link to US guidelines to make the text more universal . The basilar crackles (p. 166) is very good. Text could be used compare US and Canadian healthcare. Text could be enhanced to teach "soft skills" and interdepartmental communication skills in healthcare.

Reviewed by Lindsey Henry, Practical Nursing Instructor, Fletcher on 5/1/19

I really appreciated how in the introduction, five learning objectives were identified for students. These objectives are paramount in nursing care and they are each spelled out for the learner. Each Case study also has its own learning... read more

I really appreciated how in the introduction, five learning objectives were identified for students. These objectives are paramount in nursing care and they are each spelled out for the learner. Each Case study also has its own learning objectives, which were effectively met in the readings.

As a seasoned nurse, I believe that the content regarding pathophysiology and treatments used in the case studies were accurate. I really appreciated how many of the treatments were also explained and rationales were given, which can be very helpful to facilitate effective learning for a nursing student or novice nurse.

The case studies are up to date and correlate with the current time period. They are easily understood.

I really loved how several important medical terms, including specific treatments were highlighted to alert the reader. Many interventions performed were also explained further, which is great to enhance learning for the nursing student or novice nurse. Also, with each scenario, a background and history of the patient is depicted, as well as the perspectives of the patient, patients family member, and the primary nurse. This really helps to give the reader a full picture of the day in the life of a nurse or a patient, and also better facilitates the learning process of the reader.

These case studies are consistent. They begin with report, the patient background or updates on subsequent days, and follow the patients all the way through discharge. Once again, I really appreciate how this book describes most if not all aspects of patient care on a day to day basis.

Each case study is separated into days. While they can be divided to be assigned at different points within the course, they also build on each other. They show trends in vital signs, what happens when a patient deteriorates, what happens when they get better and go home. Showing the entire process from ER admit to discharge is really helpful to enhance the students learning experience.

The topics are all presented very similarly and very clearly. The way that the scenarios are explained could even be understood by a non-nursing student as well. The case studies are very clear and very thorough.

The book is very easy to navigate, prints well on paper, and is not distorted or confusing.

I did not see any grammatical errors.

Each case study involves a different type of patient. These differences include race, gender, sexual orientation and medical backgrounds. I do not feel the text was offensive to the reader.

I teach practical nursing students and after reading this book, I am looking forward to implementing it in my classroom. Great read for nursing students!

Reviewed by Leah Jolly, Instructor, Clinical Coordinator, Oregon Institute of Technology on 4/10/19

Good variety of cases and pathologies covered. read more

Good variety of cases and pathologies covered.

Content Accuracy rating: 2

Some examples and scenarios are not completely accurate. For example in the DVT case, the sonographer found thrombus in the "popliteal artery", which according to the book indicated presence of DVT. However in DVT, thrombus is located in the vein, not the artery. The patient would also have much different symptoms if located in the artery. Perhaps some of these inaccuracies are just typos, but in real-life situations this simple mistake can make a world of difference in the patient's course of treatment and outcomes.

Good examples of interprofessional collaboration. If only it worked this way on an every day basis!

Clear and easy to read for those with knowledge of medical terminology.

Good consistency overall.

Broken up well.

Topics are clear and logical.

Would be nice to simply click through to the next page, rather than going through the table of contents each time.

Minor typos/grammatical errors.

No offensive or insensitive materials observed.

Reviewed by Alex Sargsyan, Doctor of Nursing Practice/Assistant Professor , East Tennessee State University on 10/8/18

Because of the case study character of the book it does not have index or glossary. However it has summary for each health case study outlining key elements discussed in each case study. read more

Because of the case study character of the book it does not have index or glossary. However it has summary for each health case study outlining key elements discussed in each case study.

Overall the book is accurately depicting the clinical environment. There are numerous references to external sites. While most of them are correct, some of them are not working. For example Homan’s test link is not working "404 error"

Book is relevant in its current version and can be used in undergraduate and graduate classes. That said, the longevity of the book may be limited because of the character of the clinical education. Clinical guidelines change constantly and it may require a major update of the content.

Cases are written very clearly and have realistic description of an inpatient setting.

The book is easy to read and consistent in the language in all eight cases.

The cases are very well written. Each case is subdivided into logical segments. The segments reflect different setting where the patient is being seen. There is a flow and transition between the settings.

Book has eight distinct cases. This is a great format for a book that presents distinct clinical issues. This will allow the students to have immersive experiences and gain better understanding of the healthcare environment.

Book is offered in many different formats. Besides the issues with the links mentioned above, overall navigation of the book content is very smooth.

Book is very well written and has no grammatical errors.

Book is culturally relevant. Patients in the case studies come different cultures and represent diverse ethnicities.

Reviewed by Justin Berry, Physical Therapist Assistant Program Director, Northland Community and Technical College, East Grand Forks, MN on 8/2/18

This text provides eight patient case studies from a variety of diagnoses, which can be utilized by healthcare students from multiple disciplines. The cases are comprehensive and can be helpful for students to determine professional roles,... read more

This text provides eight patient case studies from a variety of diagnoses, which can be utilized by healthcare students from multiple disciplines. The cases are comprehensive and can be helpful for students to determine professional roles, interprofessional roles, when to initiate communication with other healthcare practitioners due to a change in patient status, and treatment ideas. Some additional patient information, such as lab values, would have been beneficial to include.

Case study information is accurate and unbiased.

Content is up to date. The case studies are written in a way so that they will not be obsolete soon, even with changes in healthcare.

The case studies are well written, and can be utilized for a variety of classroom assignments, discussions, and projects. Some additional lab value information for each patient would have been a nice addition.

The case studies are consistently organized to make it easy for the reader to determine the framework.

The text is broken up into eight different case studies for various patient diagnoses. This design makes it highly modular, and would be easy to assign at different points of a course.

The flow of the topics are presented consistently in a logical manner. Each case study follows a patient chronologically, making it easy to determine changes in patient status and treatment options.

The text is free of interface issues, with no distortion of images or charts.

The text is not culturally insensitive or offensive in any way. Patients are represented from a variety of races, ethnicities, and backgrounds

This book would be a good addition for many different health programs.

Reviewed by Ann Bell-Pfeifer, Instructor/Program Director, Minnesota State Community and Technical College on 5/21/18

The book gives a comprehensive overview of many types of cases for patient conditions. Emergency Room patients may arrive with COPD, heart failure, sepsis, pneumonia, or as motor vehicle accident victims. It is directed towards nurses, medical... read more

The book gives a comprehensive overview of many types of cases for patient conditions. Emergency Room patients may arrive with COPD, heart failure, sepsis, pneumonia, or as motor vehicle accident victims. It is directed towards nurses, medical laboratory technologists, medical radiology technologists, and respiratory therapists and their roles in caring for patients. Most of the overview is accurate. One suggestion is to provide an embedded radiologist interpretation of the exams which are performed which lead to the patients diagnosis.

Overall the book is accurate. Would like to see updates related to the addition of direct radiography technology which is commonly used in the hospital setting.

Many aspects of medicine will remain constant. The case studies seem fairly accurate and may be relevant for up to 3 years. Since technology changes so quickly in medicine, the CT and x-ray components may need minor updates within a few years.

The book clarity is excellent.

The case stories are consistent with each scenario. It is easy to follow the structure and learn from the content.

The book is quite modular. It is easy to break it up into cases and utilize them individually and sequentially.

The cases are listed by disease process and follow a logical flow through each condition. They are easy to follow as they have the same format from the beginning to the end of each case.

The interface seems seamless. Hyperlinks are inserted which provide descriptions and references to medical procedures and in depth definitions.

The book is free of most grammatical errors. There is a place where a few words do not fit the sentence structure and could be a typo.

The book included all types of relationships and ethnic backgrounds. One type which could be added is a transgender patient.

I think the book was quite useful for a variety of health care professionals. The authors did an excellent job of integrating patient cases which could be applied to the health care setting. The stories seemed real and relevant. This book could be used to teach health care professionals about integrated care within the emergency department.

Reviewed by Shelley Wolfe, Assistant Professor, Winona State University on 5/21/18

This text is comprised of comprehensive, detailed case studies that provide the reader with multiple character views throughout a patient’s encounter with the health care system. The Table of Contents accurately reflected the content. It should... read more

This text is comprised of comprehensive, detailed case studies that provide the reader with multiple character views throughout a patient’s encounter with the health care system. The Table of Contents accurately reflected the content. It should be noted that the authors include a statement that conveys that this text is not like traditional textbooks and is not meant to be read in a linear fashion. This allows the educator more flexibility to use the text as a supplement to enhance learning opportunities.

The content of the text appears accurate and unbiased. The “five overarching learning objectives” provide a clear aim of the text and the educator is able to glean how these objectives are captured into each of the case studies. While written for the Canadian healthcare system, this text is easily adaptable to the American healthcare system.

Overall, the content is up-to-date and the case studies provide a variety of uses that promote longevity of the text. However, not all of the blue font links (if using the digital PDF version) were still in working order. I encountered links that led to error pages or outdated “page not found” websites. While the links can be helpful, continued maintenance of these links could prove time-consuming.

I found the text easy to read and understand. I enjoyed that the viewpoints of all the different roles (patient, nurse, lab personnel, etc.) were articulated well and allowed the reader to connect and gain appreciation of the entire healthcare team. Medical jargon was noted to be appropriate for the intended audience of this text.

The terminology and organization of this text is consistent.

The text is divided into 8 case studies that follow a similar organizational structure. The case studies can further be divided to focus on individual learning objectives. For example, the case studies could be looked at as a whole for discussing communication or could be broken down into segments to focus on disease risk factors.

The case studies in this text follow a similar organizational structure and are consistent in their presentation. The flow of individual case studies is excellent and sets the reader on a clear path. As noted previously, this text is not meant to be read in a linear fashion.

This text is available in many different forms. I chose to review the text in the digital PDF version in order to use the embedded links. I did not encounter significant interface issues and did not find any images or features that would distract or confuse a reader.

No significant grammatical errors were noted.

The case studies in this text included patients and healthcare workers from a variety of backgrounds. Educators and students will benefit from expanding the case studies to include discussions and other learning opportunities to help develop culturally-sensitive healthcare providers.

I found the case studies to be very detailed, yet written in a way in which they could be used in various manners. The authors note a variety of ways in which the case studies could be employed with students; however, I feel the authors could also include that the case studies could be used as a basis for simulated clinical experiences. The case studies in this text would be an excellent tool for developing interprofessional communication and collaboration skills in a variety healthcare students.

Reviewed by Darline Foltz, Assistant Professor, University of Cincinnati - Clermont College on 3/27/18

This book covers all areas listed in the Table of Contents. In addition to the detailed patient case studies, there is a helpful section of "How to Use this Resource". I would like to note that this resource "aligns with the open textbooks... read more

This book covers all areas listed in the Table of Contents. In addition to the detailed patient case studies, there is a helpful section of "How to Use this Resource". I would like to note that this resource "aligns with the open textbooks Clinical Procedures for Safer Patient Care and Anatomy and Physiology: OpenStax" as noted by the authors.

The book appears to be accurate. Although one of the learning outcomes is as follows: "Demonstrate an understanding of the Canadian healthcare delivery system.", I did not find anything that is ONLY specific to the Canadian healthcare delivery system other than some of the terminology, i.e. "porter" instead of "transporter" and a few french words. I found this to make the book more interesting for students rather than deter from it. These are patient case studies that are relevant in any country.

The content is up-to-date. Changes in medical science may occur, i.e. a different test, to treat a diagnosis that is included in one or more of the case studies, however, it would be easy and straightforward to implement these changes.

This book is written in lucid, accessible prose. The technical/medical terminology that is used is appropriate for medical and allied health professionals. Something that would improve this text would to provide a glossary of terms for the terms in blue font.

This book is consistent with current medical terminology

This text is easily divided into each of the 6 case studies. The case studies can be used singly according to the body system being addressed or studied.

Because this text is a collection of case studies, flow doesn't pertain, however the organization and structure of the case studies are excellent as they are clear and easy to read.

There are no distractions in this text that would distract or confuse the reader.

I did not identify any grammatical errors.

This text is not culturally insensitive or offensive in any way and uses patients and healthcare workers that are of a variety of races, ethnicities and backgrounds.

I believe that this text would not only be useful to students enrolled in healthcare professions involved in direct patient care but would also be useful to students in supporting healthcare disciplines such as health information technology and management, medical billing and coding, etc.

Table of Contents

  • Introduction

Case Study #1: Chronic Obstructive Pulmonary Disease (COPD)

  • Learning Objectives
  • Patient: Erin Johns
  • Emergency Room

Case Study #2: Pneumonia

  • Day 0: Emergency Room
  • Day 1: Emergency Room
  • Day 1: Medical Ward
  • Day 2: Medical Ward
  • Day 3: Medical Ward
  • Day 4: Medical Ward

Case Study #3: Unstable Angina (UA)

  • Patient: Harj Singh

Case Study #4: Heart Failure (HF)

  • Patient: Meryl Smith
  • In the Supermarket
  • Day 0: Medical Ward

Case Study #5: Motor Vehicle Collision (MVC)

  • Patient: Aaron Knoll
  • Crash Scene
  • Operating Room
  • Post Anaesthesia Care Unit (PACU)
  • Surgical Ward

Case Study #6: Sepsis

  • Patient: George Thomas
  • Sleepy Hollow Care Facility

Case Study #7: Colon Cancer

  • Patient: Fred Johnson
  • Two Months Ago
  • Pre-Surgery Admission

Case Study #8: Deep Vein Thrombosis (DVT)

  • Patient: Jamie Douglas

Appendix: Overview About the Authors

Ancillary Material

About the book.

Health Case Studies is composed of eight separate health case studies. Each case study includes the patient narrative or story that models the best practice (at the time of publishing) in healthcare settings. Associated with each case is a set of specific learning objectives to support learning and facilitate educational strategies and evaluation.

The case studies can be used online in a learning management system, in a classroom discussion, in a printed course pack or as part of a textbook created by the instructor. This flexibility is intentional and allows the educator to choose how best to convey the concepts presented in each case to the learner.

Because these case studies were primarily developed for an electronic healthcare system, they are based predominantly in an acute healthcare setting. Educators can augment each case study to include primary healthcare settings, outpatient clinics, assisted living environments, and other contexts as relevant.

About the Contributors

Glynda Rees teaches at the British Columbia Institute of Technology (BCIT) in Vancouver, British Columbia. She completed her MSN at the University of British Columbia with a focus on education and health informatics, and her BSN at the University of Cape Town in South Africa. Glynda has many years of national and international clinical experience in critical care units in South Africa, the UK, and the USA. Her teaching background has focused on clinical education, problem-based learning, clinical techniques, and pharmacology.

Glynda‘s interests include the integration of health informatics in undergraduate education, open accessible education, and the impact of educational technologies on nursing students’ clinical judgment and decision making at the point of care to improve patient safety and quality of care.

Faculty member in the critical care nursing program at the British Columbia Institute of Technology (BCIT) since 2003, Rob has been a critical care nurse for over 25 years with 17 years practicing in a quaternary care intensive care unit. Rob is an experienced educator and supports student learning in the classroom, online, and in clinical areas. Rob’s Master of Education from Simon Fraser University is in educational technology and learning design. He is passionate about using technology to support learning for both faculty and students.

Part of Rob’s faculty position is dedicated to providing high fidelity simulation support for BCIT’s nursing specialties program along with championing innovative teaching and best practices for educational technology. He has championed the use of digital publishing and was the tech lead for Critical Care Nursing’s iPad Project which resulted in over 40 multi-touch interactive textbooks being created using Apple and other technologies.

Rob has successfully completed a number of specialist certifications in computer and network technologies. In 2015, he was awarded Apple Distinguished Educator for his innovation and passionate use of technology to support learning. In the past five years, he has presented and published abstracts on virtual simulation, high fidelity simulation, creating engaging classroom environments, and what the future holds for healthcare and education.

Janet Morrison is the Program Head of Occupational Health Nursing at the British Columbia Institute of Technology (BCIT) in Burnaby, British Columbia. She completed a PhD at Simon Fraser University, Faculty of Communication, Art and Technology, with a focus on health information technology. Her dissertation examined the effects of telehealth implementation in an occupational health nursing service. She has an MA in Adult Education from St. Francis Xavier University and an MA in Library and Information Studies from the University of British Columbia.

Janet’s research interests concern the intended and unintended impacts of health information technologies on healthcare students, faculty, and the healthcare workforce.

She is currently working with BCIT colleagues to study how an educational clinical information system can foster healthcare students’ perceptions of interprofessional roles.

Contribute to this Page

Search the world's largest collection of clinical case reports

Browse case reports by:

Publish in BMJ Case Reports

Global health case reports.

These are case reports that focus on the causes of ill health, the social determinants of health and access to healthcare services, prevailing local and national issues that affect health and wellbeing, and the challenges in providing care to vulnerable populations or with limited resources.

Read the full collection now

Images in… :

24 January 2024

31 July 2023

Unusual association of diseases/symptoms :

Case report :

5 March 2024

18 October 2023

Obstetrics and gynaecology :

Case Reports by specialty

  • Anaesthesia
  • Dentistry and oral medicine
  • Dermatology
  • Emergency medicine
  • Endocrinology
  • General practice and family medicine
  • Geriatric medicine
  • Haematology
  • Infectious diseases
  • Obstetrics and gynaecology
  • Ophthalmology
  • Orthopaedics
  • Paediatrics
  • Respiratory medicine
  • Rheumatology

altmetric badge

Global Health Competition

Every year BMJ Case Reports selects authors of global health case reports to join our editorial team as a global health associate editor.

This is an opportunity to gain some editorial experience or join our team on research and educational projects. Students and graduates may apply.

Simply select Global Health Competition when you submit.

Latest Articles

Case Reports: Unusual association of diseases/symptoms :

Case Reports: Findings that shed new light on the possible pathogenesis of a disease :

15 May 2024

Case Reports: Rare disease :

13 May 2024

example of case study in medicine

  • - Google Chrome

Intended for healthcare professionals

  • Access provided by Google Indexer
  • My email alerts
  • BMA member login
  • Username * Password * Forgot your log in details? Need to activate BMA Member Log In Log in via OpenAthens Log in via your institution

Home

Search form

  • Advanced search
  • Search responses
  • Search blogs
  • How to present patient...

How to present patient cases

  • Related content
  • Peer review
  • Mary Ni Lochlainn , foundation year 2 doctor 1 ,
  • Ibrahim Balogun , healthcare of older people/stroke medicine consultant 1
  • 1 East Kent Foundation Trust, UK

A guide on how to structure a case presentation

This article contains...

-History of presenting problem

-Medical and surgical history

-Drugs, including allergies to drugs

-Family history

-Social history

-Review of systems

-Findings on examination, including vital signs and observations

-Differential diagnosis/impression

-Investigations

-Management

Presenting patient cases is a key part of everyday clinical practice. A well delivered presentation has the potential to facilitate patient care and improve efficiency on ward rounds, as well as a means of teaching and assessing clinical competence. 1

The purpose of a case presentation is to communicate your diagnostic reasoning to the listener, so that he or she has a clear picture of the patient’s condition and further management can be planned accordingly. 2 To give a high quality presentation you need to take a thorough history. Consultants make decisions about patient care based on information presented to them by junior members of the team, so the importance of accurately presenting your patient cannot be overemphasised.

As a medical student, you are likely to be asked to present in numerous settings. A formal case presentation may take place at a teaching session or even at a conference or scientific meeting. These presentations are usually thorough and have an accompanying PowerPoint presentation or poster. More often, case presentations take place on the wards or over the phone and tend to be brief, using only memory or short, handwritten notes as an aid.

Everyone has their own presenting style, and the context of the presentation will determine how much detail you need to put in. You should anticipate what information your senior colleagues will need to know about the patient’s history and the care he or she has received since admission, to enable them to make further management decisions. In this article, I use a fictitious case to show how you can structure case presentations, which can be adapted to different clinical and teaching settings (box 1).

Box 1: Structure for presenting patient cases

Presenting problem, history of presenting problem, medical and surgical history.

Drugs, including allergies to drugs

Family history

Social history, review of systems.

Findings on examination, including vital signs and observations

Differential diagnosis/impression

Investigations

Case: tom murphy.

You should start with a sentence that includes the patient’s name, sex (Mr/Ms), age, and presenting symptoms. In your presentation, you may want to include the patient’s main diagnosis if known—for example, “admitted with shortness of breath on a background of COPD [chronic obstructive pulmonary disease].” You should include any additional information that might give the presentation of symptoms further context, such as the patient’s profession, ethnic origin, recent travel, or chronic conditions.

“ Mr Tom Murphy is a 56 year old ex-smoker admitted with sudden onset central crushing chest pain that radiated down his left arm.”

In this section you should expand on the presenting problem. Use the SOCRATES mnemonic to help describe the pain (see box 2). If the patient has multiple problems, describe each in turn, covering one system at a time.

Box 2: SOCRATES—mnemonic for pain

Associations

Time course

Exacerbating/relieving factors

“ The pain started suddenly at 1 pm, when Mr Murphy was at his desk. The pain was dull in nature, and radiated down his left arm. He experienced shortness of breath and felt sweaty and clammy. His colleague phoned an ambulance. He rated the pain 9/10 in severity. In the ambulance he was given GTN [glyceryl trinitrate] spray under the tongue, which relieved the pain to 5/10. The pain lasted 30 minutes in total. No exacerbating factors were noted. Of note: Mr Murphy is an ex-smoker with a 20 pack year history”

Some patients have multiple comorbidities, and the most life threatening conditions should be mentioned first. They can also be categorised by organ system—for example, “has a long history of cardiovascular disease, having had a stroke, two TIAs [transient ischaemic attacks], and previous ACS [acute coronary syndrome].” For some conditions it can be worth stating whether a general practitioner or a specialist manages it, as this gives an indication of its severity.

In a surgical case, colleagues will be interested in exercise tolerance and any comorbidity that could affect the patient’s fitness for surgery and anaesthesia. If the patient has had any previous surgical procedures, mention whether there were any complications or reactions to anaesthesia.

“Mr Murphy has a history of type 2 diabetes, well controlled on metformin. He also has hypertension, managed with ramipril, and gout. Of note: he has no history of ischaemic heart disease (relevant negative) (see box 3).”

Box 3: Relevant negatives

Mention any relevant negatives that will help narrow down the differential diagnosis or could be important in the management of the patient, 3 such as any risk factors you know for the condition and any associations that you are aware of. For example, if the differential diagnosis includes a condition that you know can be hereditary, a relevant negative could be the lack of a family history. If the differential diagnosis includes cardiovascular disease, mention the cardiovascular risk factors such as body mass index, smoking, and high cholesterol.

Highlight any recent changes to the patient’s drugs because these could be a factor in the presenting problem. Mention any allergies to drugs or the patient’s non-compliance to a previously prescribed drug regimen.

To link the medical history and the drugs you might comment on them together, either here or in the medical history. “Mrs Walsh’s drugs include regular azathioprine for her rheumatoid arthritis.”Or, “His regular drugs are ramipril 5 mg once a day, metformin 1g three times a day, and allopurinol 200 mg once a day. He has no known drug allergies.”

If the family history is unrelated to the presenting problem, it is sufficient to say “no relevant family history noted.” For hereditary conditions more detail is needed.

“ Mr Murphy’s father experienced a fatal myocardial infarction aged 50.”

Social history should include the patient’s occupation; their smoking, alcohol, and illicit drug status; who they live with; their relationship status; and their sexual history, baseline mobility, and travel history. In an older patient, more detail is usually required, including whether or not they have carers, how often the carers help, and if they need to use walking aids.

“He works as an accountant and is an ex-smoker since five years ago with a 20 pack year history. He drinks about 14 units of alcohol a week. He denies any illicit drug use. He lives with his wife in a two storey house and is independent in all activities of daily living.”

Do not dwell on this section. If something comes up that is relevant to the presenting problem, it should be mentioned in the history of the presenting problem rather than here.

“Systems review showed long standing occasional lower back pain, responsive to paracetamol.”

Findings on examination

Initially, it can be useful to practise presenting the full examination to make sure you don’t leave anything out, but it is rare that you would need to present all the normal findings. Instead, focus on the most important main findings and any abnormalities.

“On examination the patient was comfortable at rest, heart sounds one and two were heard with no additional murmurs, heaves, or thrills. Jugular venous pressure was not raised. No peripheral oedema was noted and calves were soft and non-tender. Chest was clear on auscultation. Abdomen was soft and non-tender and normal bowel sounds were heard. GCS [Glasgow coma scale] was 15, pupils were equal and reactive to light [PEARL], cranial nerves 1-12 were intact, and he was moving all four limbs. Observations showed an early warning score of 1 for a tachycardia of 105 beats/ min. Blood pressure was 150/90 mm Hg, respiratory rate 18 breaths/min, saturations were 98% on room air, and he was apyrexial with a temperature of 36.8 ºC.”

Differential diagnoses

Mentioning one or two of the most likely diagnoses is sufficient. A useful phrase you can use is, “I would like to rule out,” especially when you suspect a more serious cause is in the differential diagnosis. “History and examination were in keeping with diverticular disease; however, I would like to rule out colorectal cancer in this patient.”

Remember common things are common, so try not to mention rare conditions first. Sometimes it is acceptable to report investigations you would do first, and then base your differential diagnosis on what the history and investigation findings tell you.

“My impression is acute coronary syndrome. The differential diagnosis includes other cardiovascular causes such as acute pericarditis, myocarditis, aortic stenosis, aortic dissection, and pulmonary embolism. Possible respiratory causes include pneumonia or pneumothorax. Gastrointestinal causes include oesophageal spasm, oesophagitis, gastro-oesophageal reflux disease, gastritis, cholecystitis, and acute pancreatitis. I would also consider a musculoskeletal cause for the pain.”

This section can include a summary of the investigations already performed and further investigations that you would like to request. “On the basis of these differentials, I would like to carry out the following investigations: 12 lead electrocardiography and blood tests, including full blood count, urea and electrolytes, clotting screen, troponin levels, lipid profile, and glycated haemoglobin levels. I would also book a chest radiograph and check the patient’s point of care blood glucose level.”

You should consider recommending investigations in a structured way, prioritising them by how long they take to perform and how easy it is to get them done and how long it takes for the results to come back. Put the quickest and easiest first: so bedside tests, electrocardiography, followed by blood tests, plain radiology, then special tests. You should always be able to explain why you would like to request a test. Mention the patient’s baseline test values if they are available, especially if the patient has a chronic condition—for example, give the patient’s creatinine levels if he or she has chronic kidney disease This shows the change over time and indicates the severity of the patient’s current condition.

“To further investigate these differentials, 12 lead electrocardiography was carried out, which showed ST segment depression in the anterior leads. Results of laboratory tests showed an initial troponin level of 85 µg/L, which increased to 1250 µg/L when repeated at six hours. Blood test results showed raised total cholesterol at 7.6 mmol /L and nil else. A chest radiograph showed clear lung fields. Blood glucose level was 6.3 mmol/L; a glycated haemoglobin test result is pending.”

Dependent on the case, you may need to describe the management plan so far or what further management you would recommend.“My management plan for this patient includes ACS [acute coronary syndrome] protocol, echocardiography, cardiology review, and treatment with high dose statins. If you are unsure what the management should be, you should say that you would discuss further with senior colleagues and the patient. At this point, check to see if there is a treatment escalation plan or a “do not attempt to resuscitate” order in place.

“Mr Murphy was given ACS protocol in the emergency department. An echocardiogram has been requested and he has been discussed with cardiology, who are going to come and see him. He has also been started on atorvastatin 80 mg nightly. Mr Murphy and his family are happy with this plan.”

The summary can be a concise recap of what you have presented beforehand or it can sometimes form a standalone presentation. Pick out salient points, such as positive findings—but also draw conclusions from what you highlight. Finish with a brief synopsis of the current situation (“currently pain free”) and next step (“awaiting cardiology review”). Do not trail off at the end, and state the diagnosis if you are confident you know what it is. If you are not sure what the diagnosis is then communicate this uncertainty and do not pretend to be more confident than you are. When possible, you should include the patient’s thoughts about the diagnosis, how they are feeling generally, and if they are happy with the management plan.

“In summary, Mr Murphy is a 56 year old man admitted with central crushing chest pain, radiating down his left arm, of 30 minutes’ duration. His cardiac risk factors include 20 pack year smoking history, positive family history, type 2 diabetes, and hypertension. Examination was normal other than tachycardia. However, 12 lead electrocardiography showed ST segment depression in the anterior leads and troponin rise from 85 to 250 µg/L. Acute coronary syndrome protocol was initiated and a diagnosis of NSTEMI [non-ST elevation myocardial infarction] was made. Mr Murphy is currently pain free and awaiting cardiology review.”

Originally published as: Student BMJ 2017;25:i4406

Competing interests: None declared.

Provenance and peer review: Not commissioned; externally peer reviewed

  • ↵ Green EH, Durning SJ, DeCherrie L, Fagan MJ, Sharpe B, Hershman W. Expectations for oral case presentations for clinical clerks: opinions of internal medicine clerkship directors. J Gen Intern Med 2009 ; 24 : 370 - 3 . doi:10.1007/s11606-008-0900-x   pmid:19139965 . OpenUrl CrossRef PubMed Web of Science
  • ↵ Olaitan A, Okunade O, Corne J. How to present clinical cases. Student BMJ 2010;18:c1539.
  • ↵ Gaillard F. The secret art of relevant negatives, Radiopedia 2016; http://radiopaedia.org/blog/the-secret-art-of-relevant-negatives .

example of case study in medicine

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • Medical Studies

How to Write a Medical Case Study Report

Last Updated: April 18, 2024 Fact Checked

This article was medically reviewed by Mark Ziats, MD, PhD and by wikiHow staff writer, Jennifer Mueller, JD . Dr. Mark Ziats is an Internal Medicine Physician, Scientist, Entrepreneur, and the Medical Director of xBiotech. With over five years of experience, he specializes in biotechnology, genomics, and medical devices. He earned a Doctor of Medicine degree from Baylor College of Medicine, a Ph.D. in Genetics from the University of Cambridge, and a BS in Biochemistry and Chemistry from Clemson University. He also completed the INNoVATE Program in Biotechnology Entrepreneurship at The Johns Hopkins University - Carey Business School. Dr. Ziats is board certified by the American Board of Internal Medicine. There are 15 references cited in this article, which can be found at the bottom of the page. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 187,008 times.

You've encountered an interesting and unusual case on your rounds, and a colleague or supervising physician says, "Why don't you write up a case study report?" If you've never written one before, that might sound intimidating, but it's a great way to get started in medical writing. Case studies always follow a standard structure and format, so the writing is very formulaic once you get the hang of it. Read on for a step-by-step guide to writing your first case study report.

What is a case study report?

Step 1 A case study report is an academic publication describing an unusual or unique case.

  • Medical students or residents typically do the bulk of the writing of the report. If you're just starting your medical career, a case study report is a great way to get a publication under your belt. [2] X Research source

Step 2 Your report discusses the case presented by one patient.

  • If the patient is a minor or is incapable of giving informed consent, get consent from their parents or closest relative. [4] X Trustworthy Source PubMed Central Journal archive from the U.S. National Institutes of Health Go to source
  • Your hospital likely has specific consent forms to use. Ask your supervising physician if you're not sure where to get one.
  • Some journals also have their own consent form. Check your target journal's author or submission information to make sure. [5] X Research source

How is a case study report structured?

Step 1 A typical report consists of an abstract, intro, case description, discussion, and conclusion.

  • Even though the introduction is the first part of a case study report, doctors typically write it last. You'll have a better idea of how to introduce your case study to readers after you've written it.
  • Your abstract comes at the top, before the introduction, and provides a brief summary of the entire report. Unless your case study is published in an open-access journal, the abstract is the only part of the article many readers will see.

Step 2 Check your target journal for possible variations.

  • Many journals offer templates and checklists you can use to make sure your case study includes everything necessary and is formatted properly—take advantage of these! Some journals, such as BMJ Case Reports , require all case studies submitted to use their templates.

Drafting Your Medical Case Study Report

Step 1 Pull all of the hospital records for the case.

  • Patient description
  • Chronological case history
  • Physical exam results
  • Results of any pathological tests, imaging, or other investigations
  • Treatment plan
  • Expected outcome of treatment
  • Actual outcome of treatment

Step 2 Write a draft of the case presentation.

  • Why the patient sought medical help (you can even use their own words)
  • Important information that helped you settle on your diagnosis
  • The results of your clinical examination, including diagnostic tests and their results, along with any helpful images
  • A description of the treatment plan
  • The outcome, including how and why treatment ended and how long the patient was under your care [11] X Trustworthy Source PubMed Central Journal archive from the U.S. National Institutes of Health Go to source

Step 3 Research the existing literature on the patient's condition and treatment.

  • You will need references to back up symptoms of the condition, common treatment, and the expected outcome of that common treatment.
  • Use your research to paint a picture of the usual case of a patient with a similar condition—it'll help you show how unusual and different your patient's case is.
  • Generally, aim for around 20 references—no fewer than 15, but no more than 25. [13] X Trustworthy Source PubMed Central Journal archive from the U.S. National Institutes of Health Go to source

Step 4 Write a section discussing the case in light of your research.

  • Close your discussion section with a summary of the lessons learned from the case and why it's significant to consider when treating similar cases in the future.
  • Outline any open questions that remain. You might also provide suggestions for future research.

Step 5 Complete your introduction and conclusion after you've written the body.

  • In your conclusion, you might also give suggestions or recommendations to readers based on what you learned as a result of the case.
  • Some journals don't want a separate conclusion section. If that's the case for one of your target journals, just move this paragraph to the end of your discussion section.

Polishing Your Report for Submission to Publishers

Step 1 Come up with a title for your case study.

  • Most titles are fewer than 10 words long and include the name of the disease or condition treated.
  • You might also include the treatment used and whether the outcome was successful. When deciding what to include, think about the reason you wrote the case study in the first place and why you think it's important for other clinicians to read.

Step 2 Identify the authors of the report on the title page.

  • Made a significant intellectual contribution to the case study report
  • Was involved in the medical care of the patient reported
  • Can explain and defend the data presented in the report
  • Has approved the final manuscript before submission for publication

Step 3 Write an abstract summarizing the entire article.

  • Keep in mind that the abstract is not just going to be the first thing people read—it will often be the only thing people read. Make sure that if someone is going to walk away having only read the abstract, they'll still get the same message they would have if they read the whole thing.
  • There are 2 basic types of abstract: narrative and structured. A narrative abstract is a single paragraph written in narrative prose. A structured abstract includes headings that correspond with the sections of the paper, then a brief summary of each section. Use the format preferred by your target journal.

Step 4 Choose keywords that will help readers find your case study.

  • Look for keywords that are relevant to your field or sub-field and directly related to the content of your article, such as the name of the condition or specific treatments you used.
  • Most journals allow 4-8 keywords but check the submission guidelines of your target journal to make sure.

Step 5 Obscure the patient's identity.

  • Blur out the patient's face as well as any tattoos, birthmarks, or unrelated scars that are visible in diagnostic images.

Step 6 Include your acknowledgments and conflict of interest statement.

  • It's common to thank the patient, but that's up to you. Even if you don't, include a statement indicating that you have the patient's written, informed consent to publish the information.
  • Read the journal's submission guidelines for a definition of what that journal considers a conflict of interest. They're generally the same, but some might be stricter than others. [22] X Research source

Step 7 Compile and format your reference section.

  • If you're not familiar with the citation style used by your target journal, check online for a guide. There might also be one available at your hospital or medical school library.
  • Medical librarians can also help with citation style and references if you run into something tricky—don't just wing it! Correct citation style insures that readers can access the materials you cite.

Step 8 Get feedback on your final draft.

  • It's also a good idea to get a beta reader who isn't a medical professional. Their comments can help you figure out where you need to clarify your points.
  • Read a lot of case studies published in your target journals—it will help you internalize the tone and style that journal is looking for.

Submitting Your Report to Publishers

Step 1 Choose target journals that publish similar content.

  • Look into the background and reputation of journals before you decide to submit to them. Only seek publication from reputable journals in which articles go through a peer-review process.
  • Find out what publishing fees the journals charge. Keep in mind that open-access journals tend to charge higher publishing fees. [26] X Research source
  • Read each journal's submission and editorial guidelines carefully. They'll tell you exactly how to format your case study, how long each section should be, and what citation style to use. [27] X Research source
  • For electronic journals that only publish case reports, try BMJ Case Reports , Journal of Medical Case Reports , or Radiology Case Reports .

Step 2 Submit your manuscript according to the journal's requirements.

  • If your manuscript isn't suitable for the journal you submitted to, the journal might offer to forward it to an associated journal where it would be a better fit.
  • When your manuscript is provisionally accepted, the journal will send it to other doctors for evaluation under the peer-review process.
  • Most medical journals don't accept simultaneous submissions, meaning you'll have to submit to your first choice, wait for their decision, then move to the next journal on the list if they don't bite.

Step 3 Revise your manuscript based on peer review comments.

  • Along with your revised manuscript, include a letter with your response to each of the reviewer's comments. Where you made revisions, add page numbers to indicate where the revisions are that address that reviewer's comments.
  • Sometimes, doctors involved in the peer review process will indicate that the journal should reject the manuscript. If that's the case, you'll get a letter explaining why your case study report won't be published and you're free to submit it elsewhere.

Step 4 Complete final copy-editing if the editors approve your article.

  • Some journals require you to have your article professionally copy-edited at your own cost while others do this in-house. The editors will let you know what you're responsible for.

Step 5 Pay the article processing charge if your article is accepted.

  • With your acceptance letter, you'll get instructions on how to make payment and how much you owe. Take note of the deadline and make sure you pay it as soon as possible to avoid publication delays.
  • Some journals will publish for free, with an "open-access option" that allows you to pay a fee only if you want open access to your article. [32] X Research source

Step 6 Sign your publishing agreement.

  • Through the publishing agreement, you assign your copyright in the article to the journal. This allows the journal to legally publish your work. That assignment can be exclusive or non-exclusive and may only last for a specific term. Read these details carefully!
  • If you published an open-access article, you don't assign the copyright to the publisher. The publishing agreement merely gives the journal the right to publish the "Version of Record." [33] X Research source

How do I find a suitable case for a report?

Step 1 Keep your eye out for unusual or interesting cases.

  • A rare disease, or unusual presentation of any disease
  • An unusual combination of diseases or conditions
  • A difficult or inconclusive diagnosis
  • Unexpected developments or responses to treatment
  • Personal impact
  • Observations that shed new light on the patient's disease or condition

Step 2 Discuss possible cases with your medical team.

  • There might be other members of your medical team that want to help with writing. If so, use one of these brainstorming sessions to divvy up writing responsibilities in a way that makes the most sense given your relative skills and experience.
  • Senior doctors might also be able to name some journals that would potentially publish your case study. [36] X Research source

Expert Q&A

You Might Also Like

Use a Stethoscope

  • ↑ https://www.elsevier.com/connect/authors-update/the-dos-and-donts-of-writing-and-publishing-case-reports
  • ↑ https://www.bmj.com/content/350/bmj.h2693
  • ↑ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686928/
  • ↑ https://health.usf.edu/medicine/internalmedicine/im-impact/~/media/B3A3421F4C144FA090AE965C21791A3C.ashx
  • ↑ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597880/
  • ↑ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476221/
  • ↑ https://www.springer.com/gp/authors-editors/authorandreviewertutorials/writing-a-journal-manuscript/title-abstract-and-keywords/10285522
  • ↑ http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597880/
  • ↑ https://thelancet.com/pb/assets/raw/Lancet/authors/tl-info-for-authors.pdf
  • ↑ https://jmedicalcasereports.biomedcentral.com/articles/10.1186/s13256-017-1351-y
  • ↑ https://guides.himmelfarb.gwu.edu/casereports
  • ↑ https://casereports.bmj.com/pages/authors/
  • ↑ https://jmedicalcasereports.biomedcentral.com/articles/10.1186/1752-1947-7-239
  • ↑ https://research.chm.msu.edu/students-residents/writing-a-case-report
  • ↑ https://authorservices.taylorandfrancis.com/publishing-your-research/moving-through-production/copyright-for-journal-authors/#

About This Article

Mark Ziats, MD, PhD

Medical Disclaimer

The content of this article is not intended to be a substitute for professional medical advice, examination, diagnosis, or treatment. You should always contact your doctor or other qualified healthcare professional before starting, changing, or stopping any kind of health treatment.

Read More...

To start a medical case study report, first choose a title that clearly reflects the contents of the report. You’ll also need to list any participating authors and develop a list of keywords, as well as an abstract summarizing the report. Your report will need to include an introduction summarizing the context of the report, as well as a detailed presentation of the case. Don’t forget to include a thorough citation list and acknowledgements of anyone else who participated in the study. For more tips from our Medical co-author, including how to get your case study report published, keep reading! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Dr V K Rao

Sep 5, 2020

Did this article help you?

Asfia Banu Pasha

Asfia Banu Pasha

Apr 10, 2017

Mason

Jun 20, 2021

C. L.

Mar 1, 2017

Am I a Narcissist or an Empath Quiz

Featured Articles

Accept Your Body

Trending Articles

How to Make Money on Cash App: A Beginner's Guide

Watch Articles

Make Homemade Liquid Dish Soap

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Get all the best how-tos!

Sign up for wikiHow's weekly email newsletter

  • Open access
  • Published: 15 May 2024

Learning together for better health using an evidence-based Learning Health System framework: a case study in stroke

  • Helena Teede 1 , 2   na1 ,
  • Dominique A. Cadilhac 3 , 4   na1 ,
  • Tara Purvis 3 ,
  • Monique F. Kilkenny 3 , 4 ,
  • Bruce C.V. Campbell 4 , 5 , 6 ,
  • Coralie English 7 ,
  • Alison Johnson 2 ,
  • Emily Callander 1 ,
  • Rohan S. Grimley 8 , 9 ,
  • Christopher Levi 10 ,
  • Sandy Middleton 11 , 12 ,
  • Kelvin Hill 13 &
  • Joanne Enticott   ORCID: orcid.org/0000-0002-4480-5690 1  

BMC Medicine volume  22 , Article number:  198 ( 2024 ) Cite this article

Metrics details

In the context of expanding digital health tools, the health system is ready for Learning Health System (LHS) models. These models, with proper governance and stakeholder engagement, enable the integration of digital infrastructure to provide feedback to all relevant parties including clinicians and consumers on performance against best practice standards, as well as fostering innovation and aligning healthcare with patient needs. The LHS literature primarily includes opinion or consensus-based frameworks and lacks validation or evidence of benefit. Our aim was to outline a rigorously codesigned, evidence-based LHS framework and present a national case study of an LHS-aligned national stroke program that has delivered clinical benefit.

Current core components of a LHS involve capturing evidence from communities and stakeholders (quadrant 1), integrating evidence from research findings (quadrant 2), leveraging evidence from data and practice (quadrant 3), and generating evidence from implementation (quadrant 4) for iterative system-level improvement. The Australian Stroke program was selected as the case study as it provides an exemplar of how an iterative LHS works in practice at a national level encompassing and integrating evidence from all four LHS quadrants. Using this case study, we demonstrate how to apply evidence-based processes to healthcare improvement and embed real-world research for optimising healthcare improvement. We emphasize the transition from research as an endpoint, to research as an enabler and a solution for impact in healthcare improvement.

Conclusions

The Australian Stroke program has nationally improved stroke care since 2007, showcasing the value of integrated LHS-aligned approaches for tangible impact on outcomes. This LHS case study is a practical example for other health conditions and settings to follow suit.

Peer Review reports

Internationally, health systems are facing a crisis, driven by an ageing population, increasing complexity, multi-morbidity, rapidly advancing health technology and rising costs that threaten sustainability and mandate transformation and improvement [ 1 , 2 ]. Although research has generated solutions to healthcare challenges, and the advent of big data and digital health holds great promise, entrenched siloes and poor integration of knowledge generation, knowledge implementation and healthcare delivery between stakeholders, curtails momentum towards, and consistent attainment of, evidence-and value-based care [ 3 ]. This is compounded by the short supply of research and innovation leadership within the healthcare sector, and poorly integrated and often inaccessible health data systems, which have crippled the potential to deliver on digital-driven innovation [ 4 ]. Current approaches to healthcare improvement are also often isolated with limited sustainability, scale-up and impact [ 5 ].

Evidence suggests that integration and partnership across academic and healthcare delivery stakeholders are key to progress, including those with lived experience and their families (referred to here as consumers and community), diverse disciplines (both research and clinical), policy makers and funders. Utilization of evidence from research and evidence from practice including data from routine care, supported by implementation research, are key to sustainably embedding improvement and optimising health care and outcomes. A strategy to achieve this integration is through the Learning Health System (LHS) (Fig.  1 ) [ 2 , 6 , 7 , 8 ]. Although there are numerous publications on LHS approaches [ 9 , 10 , 11 , 12 ], many focus on research perspectives and data, most do not demonstrate tangible healthcare improvement or better health outcomes. [ 6 ]

figure 1

Monash Learning Health System: The Learn Together for Better Health Framework developed by Monash Partners and Monash University (from Enticott et al. 2021 [ 7 ]). Four evidence quadrants: Q1 (orange) is evidence from stakeholders; Q2 (green) is evidence from research; Q3 (light blue) is evidence from data; and, Q4 (dark blue) is evidence from implementation and healthcare improvement

In developed nations, it has been estimated that 60% of care provided aligns with the evidence base, 30% is low value and 10% is potentially harmful [ 13 ]. In some areas, clinical advances have been rapid and research and evidence have paved the way for dramatic improvement in outcomes, mandating rapid implementation of evidence into healthcare (e.g. polio and COVID-19 vaccines). However, healthcare improvement is challenging and slow [ 5 ]. Health systems are highly complex in their design, networks and interacting components, and change is difficult to enact, sustain and scale up. [ 3 ] New effective strategies are needed to meet community needs and deliver evidence-based and value-based care, which reorients care from serving the provider, services and system, towards serving community needs, based on evidence and quality. It goes beyond cost to encompass patient and provider experience, quality care and outcomes, efficiency and sustainability [ 2 , 6 ].

The costs of stroke care are expected to rise rapidly in the next decades, unless improvements in stroke care to reduce the disabling effects of strokes can be successfully developed and implemented [ 14 ]. Here, we briefly describe the Monash LHS framework (Fig.  1 ) [ 2 , 6 , 7 ] and outline an exemplar case in order to demonstrate how to apply evidence-based processes to healthcare improvement and embed real-world research for optimising healthcare. The Australian LHS exemplar in stroke care has driven nationwide improvement in stroke care since 2007.

An evidence-based Learning Health System framework

In Australia, members of this author group (HT, AJ, JE) have rigorously co-developed an evidence-based LHS framework, known simply as the Monash LHS [ 7 ]. The Monash LHS was designed to support sustainable, iterative and continuous robust benefit of improved clinical outcomes. It was created with national engagement in order to be applicable to Australian settings. Through this rigorous approach, core LHS principles and components have been established (Fig.  1 ). Evidence shows that people/workforce, culture, standards, governance and resources were all key to an effective LHS [ 2 , 6 ]. Culture is vital including trust, transparency, partnership and co-design. Key processes include legally compliant data sharing, linkage and governance, resources, and infrastructure [ 4 ]. The Monash LHS integrates disparate and often siloed stakeholders, infrastructure and expertise to ‘Learn Together for Better Health’ [ 7 ] (Fig.  1 ). This integrates (i) evidence from community and stakeholders including priority areas and outcomes; (ii) evidence from research and guidelines; (iii) evidence from practice (from data) with advanced analytics and benchmarking; and (iv) evidence from implementation science and health economics. Importantly, it starts with the problem and priorities of key stakeholders including the community, health professionals and services and creates an iterative learning system to address these. The following case study was chosen as it is an exemplar of how a Monash LHS-aligned national stroke program has delivered clinical benefit.

Australian Stroke Learning Health System

Internationally, the application of LHS approaches in stroke has resulted in improved stroke care and outcomes [ 12 ]. For example, in Canada a sustained decrease in 30-day in-hospital mortality has been found commensurate with an increase in resources to establish the multifactorial stroke system intervention for stroke treatment and prevention [ 15 ]. Arguably, with rapid advances in evidence and in the context of an ageing population with high cost and care burden and substantive impacts on quality of life, stroke is an area with a need for rapid research translation into evidence-based and value-based healthcare improvement. However, a recent systematic review found that the existing literature had few comprehensive examples of LHS adoption [ 12 ]. Although healthcare improvement systems and approaches were described, less is known about patient-clinician and stakeholder engagement, governance and culture, or embedding of data informatics into everyday practice to inform and drive improvement [ 12 ]. For example, in a recent review of quality improvement collaborations, it was found that although clinical processes in stroke care are improved, their short-term nature means there is uncertainty about sustainability and impacts on patient outcomes [ 16 ]. Table  1 provides the main features of the Australian Stroke LHS based on the four core domains and eight elements of the Learning Together for Better Health Framework described in Fig.  1 . The features are further expanded on in the following sections.

Evidence from stakeholders (LHS quadrant 1, Fig.  1 )

Engagement, partners and priorities.

Within the stroke field, there have been various support mechanisms to facilitate an LHS approach including partnership and broad stakeholder engagement that includes clinical networks and policy makers from different jurisdictions. Since 2008, the Australian Stroke Coalition has been co-led by the Stroke Foundation, a charitable consumer advocacy organisation, and Stroke Society of Australasia a professional society with membership covering academics and multidisciplinary clinician networks, that are collectively working to improve stroke care ( https://australianstrokecoalition.org.au/ ). Surveys, focus groups and workshops have been used for identifying priorities from stakeholders. Recent agreed priorities have been to improve stroke care and strengthen the voice for stroke care at a national ( https://strokefoundation.org.au/ ) and international level ( https://www.world-stroke.org/news-and-blog/news/world-stroke-organization-tackle-gaps-in-access-to-quality-stroke-care ), as well as reduce duplication amongst stakeholders. This activity is built on a foundation and culture of research and innovation embedded within the stroke ‘community of practice’. Consumers, as people with lived experience of stroke are important members of the Australian Stroke Coalition, as well as representatives from different clinical colleges. Consumers also provide critical input to a range of LHS activities via the Stroke Foundation Consumer Council, Stroke Living Guidelines committees, and the Australian Stroke Clinical Registry (AuSCR) Steering Committee (described below).

Evidence from research (LHS quadrant 2, Fig.  1 )

Advancement of the evidence for stroke interventions and synthesis into clinical guidelines.

To implement best practice, it is crucial to distil the large volume of scientific and trial literature into actionable recommendations for clinicians to use in practice [ 24 ]. The first Australian clinical guidelines for acute stroke were produced in 2003 following the increasing evidence emerging for prevention interventions (e.g. carotid endarterectomy, blood pressure lowering), acute medical treatments (intravenous thrombolysis, aspirin within 48 h of ischemic stroke), and optimised hospital management (care in dedicated stroke units by a specialised and coordinated multidisciplinary team) [ 25 ]. Importantly, a number of the innovations were developed, researched and proven effective by key opinion leaders embedded in the Australian stroke care community. In 2005, the clinical guidelines for Stroke Rehabilitation and Recovery [ 26 ] were produced, with subsequent merged guidelines periodically updated. However, the traditional process of periodic guideline updates is challenging for end users when new research can render recommendations redundant and this lack of currency erodes stakeholder trust [ 27 ]. In response to this challenge the Stroke Foundation and Cochrane Australia entered a pioneering project to produce the first electronic ‘living’ guidelines globally [ 20 ]. Major shifts in the evidence for reperfusion therapies (e.g. extended time-window intravenous thrombolysis and endovascular clot retrieval), among other advances, were able to be converted into new recommendations, approved by the Australian National Health and Medical Research Council within a few months of publication. Feedback on this process confirmed the increased use and trust in the guidelines by clinicians. The process informed other living guidelines programs, including the successful COVID-19 clinical guidelines [ 28 ].

However, best practice clinical guideline recommendations are necessary but insufficient for healthcare improvement and nesting these within an LHS with stakeholder partnership, enables implementation via a range of proven methods, including audit and feedback strategies [ 29 ].

Evidence from data and practice (LHS quadrant 3, Fig.  1 )

Data systems and benchmarking : revealing the disparities in care between health services. A national system for standardized stroke data collection was established as the National Stroke Audit program in 2007 by the Stroke Foundation [ 30 ] following various state-level programs (e.g. New South Wales Audit) [ 31 ] to identify evidence-practice gaps and prioritise improvement efforts to increase access to stroke units and other acute treatments [ 32 ]. The Audit program alternates each year between acute (commencing in 2007) and rehabilitation in-patient services (commencing in 2008). The Audit program provides a ‘deep dive’ on the majority of recommendations in the clinical guidelines whereby participating hospitals provide audits of up to 40 consecutive patient medical records and respond to a survey about organizational resources to manage stroke. In 2009, the AuSCR was established to provide information on patients managed in acute hospitals based on a small subset of quality processes of care linked to benchmarked reports of performance (Fig.  2 ) [ 33 ]. In this way, the continuous collection of high-priority processes of stroke care could be regularly collected and reviewed to guide improvement to care [ 34 ]. Plus clinical quality registry programs within Australia have shown a meaningful return on investment attributed to enhanced survival, improvements in quality of life and avoided costs of treatment or hospital stay [ 35 ].

figure 2

Example performance report from the Australian Stroke Clinical Registry: average door-to-needle time in providing intravenous thrombolysis by different hospitals in 2021 [ 36 ]. Each bar in the figure represents a single hospital

The Australian Stroke Coalition endorsed the creation of an integrated technological solution for collecting data through a single portal for multiple programs in 2013. In 2015, the Stroke Foundation, AuSCR consortium, and other relevant groups cooperated to design an integrated data management platform (the Australian Stroke Data Tool) to reduce duplication of effort for hospital staff in the collection of overlapping variables in the same patients [ 19 ]. Importantly, a national data dictionary then provided the common data definitions to facilitate standardized data capture. Another important feature of AuSCR is the collection of patient-reported outcome surveys between 90 and 180 days after stroke, and annual linkage with national death records to ascertain survival status [ 33 ]. To support a LHS approach, hospitals that participate in AuSCR have access to a range of real-time performance reports. In efforts to minimize the burden of data collection in the AuSCR, interoperability approaches to import data directly from hospital or state-level managed stroke databases have been established (Fig.  3 ); however, the application has been variable and 41% of hospitals still manually enter all their data.

figure 3

Current status of automated data importing solutions in the Australian Stroke Clinical Registry, 2022, with ‘ n ’ representing the number of hospitals. AuSCR, Australian Stroke Clinical Registry; AuSDaT, Australian Stroke Data Tool; API, Application Programming Interface; ICD, International Classification of Diseases; RedCAP, Research Electronic Data Capture; eMR, electronic medical records

For acute stroke care, the Australian Commission on Quality and Safety in Health Care facilitated the co-design (clinicians, academics, consumers) and publication of the national Acute Stroke Clinical Care Standard in 2015 [ 17 ], and subsequent review [ 18 ]. The indicator set for the Acute Stroke Standard then informed the expansion of the minimum dataset for AuSCR so that hospitals could routinely track their performance. The national Audit program enabled hospitals not involved in the AuSCR to assess their performance every two years against the Acute Stroke Standard. Complementing these efforts, the Stroke Foundation, working with the sector, developed the Acute and Rehabilitation Stroke Services Frameworks to outline the principles, essential elements, models of care and staffing recommendations for stroke services ( https://informme.org.au/guidelines/national-stroke-services-frameworks ). The Frameworks are intended to guide where stroke services should be developed, and monitor their uptake with the organizational survey component of the Audit program.

Evidence from implementation and healthcare improvement (LHS quadrant 4, Fig.  1 )

Research to better utilize and augment data from registries through linkage [ 37 , 38 , 39 , 40 ] and to ensure presentation of hospital or service level data are understood by clinicians has ensured advancement in the field for the Australian Stroke LHS [ 41 ]. Importantly, greater insights into whole patient journeys, before and after a stroke, can now enable exploration of value-based care. The LHS and stroke data platform have enabled focused and time-limited projects to create a better understanding of the quality of care in acute or rehabilitation settings [ 22 , 42 , 43 ]. Within stroke, all the elements of an LHS culminate into the ready availability of benchmarked performance data and support for implementation of strategies to address gaps in care.

Implementation research to grow the evidence base for effective improvement interventions has also been a key pillar in the Australian context. These include multi-component implementation interventions to achieve behaviour change for particular aspects of stroke care, [ 22 , 23 , 44 , 45 ] and real-world approaches to augmenting access to hyperacute interventions in stroke through the use of technology and telehealth [ 46 , 47 , 48 , 49 ]. The evidence from these studies feeds into the living guidelines program and the data collection systems, such as the Audit program or AuSCR, which are then amended to ensure data aligns to recommended care. For example, the use of ‘hyperacute aspirin within the first 48 h of ischemic stroke’ was modified to be ‘hyperacute antiplatelet…’ to incorporate new evidence that other medications or combinations are appropriate to use. Additionally, new datasets have been developed to align with evidence such as the Fever, Sugar, and Swallow variables [ 42 ]. Evidence on improvements in access to best practice care from the acute Audit program [ 50 ] and AuSCR is emerging [ 36 ]. For example, between 2007 and 2017, the odds of receiving intravenous thrombolysis after ischemic stroke increased by 16% 9OR 1.06 95% CI 1.13–1.18) and being managed in a stroke unit by 18% (OR 1.18 95% CI 1.17–1.20). Over this period, the median length of hospital stay for all patients decreased from 6.3 days in 2007 to 5.0 days in 2017 [ 51 ]. When considering the number of additional patients who would receive treatment in 2017 in comparison to 2007 it was estimated that without this additional treatment, over 17,000 healthy years of life would be lost in 2017 (17,786 disability-adjusted life years) [ 51 ]. There is evidence on the cost-effectiveness of different system-focussed strategies to augment treatment access for acute ischemic stroke (e.g. Victorian Stroke Telemedicine program [ 52 ] and Melbourne Mobile Stroke Unit ambulance [ 53 ]). Reciprocally, evidence from the national Rehabilitation Audit, where the LHS approach has been less complete or embedded, has shown fewer areas of healthcare improvement over time [ 51 , 54 ].

Within the field of stroke in Australia, there is indirect evidence that the collective efforts that align to establishing the components of a LHS have had an impact. Overall, the age-standardised rate of stroke events has reduced by 27% between 2001 and 2020, from 169 to 124 events per 100,000 population. Substantial declines in mortality rates have been reported since 1980. Commensurate with national clinical guidelines being updated in 2007 and the first National Stroke Audit being undertaken in 2007, the mortality rates for men (37.4 deaths per 100,000) and women (36.1 deaths per 100,0000 has declined to 23.8 and 23.9 per 100,000, respectively in 2021 [ 55 ].

Underpinning the LHS with the integration of the four quadrants of evidence from stakeholders, research and guidelines, practice and implementation, and core LHS principles have been addressed. Leadership and governance have been important, and programs have been established to augment workforce training and capacity building in best practice professional development. Medical practitioners are able to undertake courses and mentoring through the Australasian Stroke Academy ( http://www.strokeacademy.com.au/ ) while nurses (and other health professionals) can access teaching modules in stroke care from the Acute Stroke Nurses Education Network ( https://asnen.org/ ). The Association of Neurovascular Clinicians offers distance-accessible education and certification to develop stroke expertise for interdisciplinary professionals, including advanced stroke co-ordinator certification ( www.anvc.org ). Consumer initiative interventions are also used in the design of the AuSCR Public Summary Annual reports (available at https://auscr.com.au/about/annual-reports/ ) and consumer-related resources related to the Living Guidelines ( https://enableme.org.au/resources ).

The important success factors and lessons from stroke as a national exemplar LHS in Australia include leadership, culture, workforce and resources integrated with (1) established and broad partnerships across the academic-clinical sector divide and stakeholder engagement; (2) the living guidelines program; (3) national data infrastructure, including a national data dictionary that provides the common data framework to support standardized data capture; (4) various implementation strategies including benchmarking and feedback as well as engagement strategies targeting different levels of the health system; and (5) implementation and improvement research to advance stroke systems of care and reduce unwarranted variation in practice (Fig.  1 ). Priority opportunities now include the advancement of interoperability with electronic medical records as an area all clinical quality registry’s programs needs to be addressed, as well as providing more dynamic and interactive data dashboards tailored to the need of clinicians and health service executives.

There is a clear mandate to optimise healthcare improvement with big data offering major opportunities for change. However, we have lacked the approaches to capture evidence from the community and stakeholders, to integrate evidence from research, to capture and leverage data or evidence from practice and to generate and build on evidence from implementation using iterative system-level improvement. The LHS provides this opportunity and is shown to deliver impact. Here, we have outlined the process applied to generate an evidence-based LHS and provide a leading exemplar in stroke care. This highlights the value of moving from single-focus isolated approaches/initiatives to healthcare improvement and the benefit of integration to deliver demonstrable outcomes for our funders and key stakeholders — our community. This work provides insight into strategies that can both apply evidence-based processes to healthcare improvement as well as implementing evidence-based practices into care, moving beyond research as an endpoint, to research as an enabler, underpinning delivery of better healthcare.

Availability of data and materials

Not applicable

Abbreviations

Australian Stroke Clinical Registry

Confidence interval

  • Learning Health System

World Health Organization. Delivering quality health services . OECD Publishing; 2018.

Enticott J, Braaf S, Johnson A, Jones A, Teede HJ. Leaders’ perspectives on learning health systems: A qualitative study. BMC Health Serv Res. 2020;20:1087.

Article   PubMed   PubMed Central   Google Scholar  

Melder A, Robinson T, McLoughlin I, Iedema R, Teede H. An overview of healthcare improvement: Unpacking the complexity for clinicians and managers in a learning health system. Intern Med J. 2020;50:1174–84.

Article   PubMed   Google Scholar  

Alberto IRI, Alberto NRI, Ghosh AK, Jain B, Jayakumar S, Martinez-Martin N, et al. The impact of commercial health datasets on medical research and health-care algorithms. Lancet Digit Health. 2023;5:e288–94.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Dixon-Woods M. How to improve healthcare improvement—an essay by Mary Dixon-Woods. BMJ. 2019;367: l5514.

Enticott J, Johnson A, Teede H. Learning health systems using data to drive healthcare improvement and impact: A systematic review. BMC Health Serv Res. 2021;21:200.

Enticott JC, Melder A, Johnson A, Jones A, Shaw T, Keech W, et al. A learning health system framework to operationalize health data to improve quality care: An Australian perspective. Front Med (Lausanne). 2021;8:730021.

Dammery G, Ellis LA, Churruca K, Mahadeva J, Lopez F, Carrigan A, et al. The journey to a learning health system in primary care: A qualitative case study utilising an embedded research approach. BMC Prim Care. 2023;24:22.

Foley T, Horwitz L, Zahran R. The learning healthcare project: Realising the potential of learning health systems. 2021. Available from https://learninghealthcareproject.org/wp-content/uploads/2021/05/LHS2021report.pdf . Accessed Jan 2024.

Institute of Medicine. Best care at lower cost: The path to continuously learning health care in America. Washington: The National Academies Press; 2013.

Google Scholar  

Zurynski Y, Smith CL, Vedovi A, Ellis LA, Knaggs G, Meulenbroeks I, et al. Mapping the learning health system: A scoping review of current evidence - a white paper. 2020:63

Cadilhac DA, Bravata DM, Bettger J, Mikulik R, Norrving B, Uvere E, et al. Stroke learning health systems: A topical narrative review with case examples. Stroke. 2023;54:1148–59.

Braithwaite J, Glasziou P, Westbrook J. The three numbers you need to know about healthcare: The 60–30-10 challenge. BMC Med. 2020;18:1–8.

Article   Google Scholar  

King D, Wittenberg R, Patel A, Quayyum Z, Berdunov V, Knapp M. The future incidence, prevalence and costs of stroke in the UK. Age Ageing. 2020;49:277–82.

Ganesh A, Lindsay P, Fang J, Kapral MK, Cote R, Joiner I, et al. Integrated systems of stroke care and reduction in 30-day mortality: A retrospective analysis. Neurology. 2016;86:898–904.

Lowther HJ, Harrison J, Hill JE, Gaskins NJ, Lazo KC, Clegg AJ, et al. The effectiveness of quality improvement collaboratives in improving stroke care and the facilitators and barriers to their implementation: A systematic review. Implement Sci. 2021;16:16.

Australian Commission on Safety and Quality in Health Care. Acute stroke clinical care standard. 2015. Available from https://www.safetyandquality.gov.au/our-work/clinical-care-standards/acute-stroke-clinical-care-standard . Accessed Jan 2024.

Australian Commission on Safety and Quality in Health Care. Acute stroke clinical care standard. Sydney: ACSQHC; 2019. Available from https://www.safetyandquality.gov.au/publications-and-resources/resource-library/acute-stroke-clinical-care-standard-evidence-sources . Accessed Jan 2024.

Ryan O, Ghuliani J, Grabsch B, Hill K, G CC, Breen S, et al. Development, implementation, and evaluation of the Australian Stroke Data Tool (AuSDaT): Comprehensive data capturing for multiple uses. Health Inf Manag. 2022:18333583221117184.

English C, Bayley M, Hill K, Langhorne P, Molag M, Ranta A, et al. Bringing stroke clinical guidelines to life. Int J Stroke. 2019;14:337–9.

English C, Hill K, Cadilhac DA, Hackett ML, Lannin NA, Middleton S, et al. Living clinical guidelines for stroke: Updates, challenges and opportunities. Med J Aust. 2022;216:510–4.

Cadilhac DA, Grimley R, Kilkenny MF, Andrew NE, Lannin NA, Hill K, et al. Multicenter, prospective, controlled, before-and-after, quality improvement study (Stroke123) of acute stroke care. Stroke. 2019;50:1525–30.

Cadilhac DA, Marion V, Andrew NE, Breen SJ, Grabsch B, Purvis T, et al. A stepped-wedge cluster-randomized trial to improve adherence to evidence-based practices for acute stroke management. Jt Comm J Qual Patient Saf. 2022.

Elliott J, Lawrence R, Minx JC, Oladapo OT, Ravaud P, Jeppesen BT, et al. Decision makers need constantly updated evidence synthesis. Nature. 2021;600:383–5.

Article   CAS   PubMed   Google Scholar  

National Stroke Foundation. National guidelines for acute stroke management. Melbourne: National Stroke Foundation; 2003.

National Stroke Foundation. Clinical guidelines for stroke rehabilitation and recovery. Melbourne: National Stroke Foundation; 2005.

Phan TG, Thrift A, Cadilhac D, Srikanth V. A plea for the use of systematic review methodology when writing guidelines and timely publication of guidelines. Intern Med J . 2012;42:1369–1371; author reply 1371–1362

Tendal B, Vogel JP, McDonald S, Norris S, Cumpston M, White H, et al. Weekly updates of national living evidence-based guidelines: Methods for the Australian living guidelines for care of people with COVID-19. J Clin Epidemiol. 2021;131:11–21.

Grimshaw JM, Eccles MP, Lavis JN, Hill SJ, Squires JE. Knowledge translation of research findings. Implement Sci. 2012;7:50.

Harris D, Cadilhac D, Hankey GJ, Hillier S, Kilkenny M, Lalor E. National stroke audit: The Australian experience. Clin Audit. 2010;2:25–31.

Cadilhac DA, Purvis T, Kilkenny MF, Longworth M, Mohr K, Pollack M, et al. Evaluation of rural stroke services: Does implementation of coordinators and pathways improve care in rural hospitals? Stroke. 2013;44:2848–53.

Cadilhac DA, Moss KM, Price CJ, Lannin NA, Lim JY, Anderson CS. Pathways to enhancing the quality of stroke care through national data monitoring systems for hospitals. Med J Aust. 2013;199:650–1.

Cadilhac DA, Lannin NA, Anderson CS, Levi CR, Faux S, Price C, et al. Protocol and pilot data for establishing the Australian Stroke Clinical Registry. Int J Stroke. 2010;5:217–26.

Ivers N, Jamtvedt G, Flottorp S, Young J, Odgaard-Jensen J, French S, et al. Audit and feedback: Effects on professional practice and healthcare outcomes. Cochrane Database Syst Rev . 2012

Australian Commission on Safety and Quality in Health Care. Economic evaluation of clinical quality registries. Final report. . 2016:79

Cadilhac DA, Dalli LL, Morrison J, Lester M, Paice K, Moss K, et al. The Australian Stroke Clinical Registry annual report 2021. Melbourne; 2022. Available from https://auscr.com.au/about/annual-reports/ . Accessed 6 May 2024.

Kilkenny MF, Kim J, Andrew NE, Sundararajan V, Thrift AG, Katzenellenbogen JM, et al. Maximising data value and avoiding data waste: A validation study in stroke research. Med J Aust. 2019;210:27–31.

Eliakundu AL, Smith K, Kilkenny MF, Kim J, Bagot KL, Andrew E, et al. Linking data from the Australian Stroke Clinical Registry with ambulance and emergency administrative data in Victoria. Inquiry. 2022;59:469580221102200.

PubMed   Google Scholar  

Andrew NE, Kim J, Cadilhac DA, Sundararajan V, Thrift AG, Churilov L, et al. Protocol for evaluation of enhanced models of primary care in the management of stroke and other chronic disease (PRECISE): A data linkage healthcare evaluation study. Int J Popul Data Sci. 2019;4:1097.

CAS   PubMed   PubMed Central   Google Scholar  

Mosalski S, Shiner CT, Lannin NA, Cadilhac DA, Faux SG, Kim J, et al. Increased relative functional gain and improved stroke outcomes: A linked registry study of the impact of rehabilitation. J Stroke Cerebrovasc Dis. 2021;30: 106015.

Ryan OF, Hancock SL, Marion V, Kelly P, Kilkenny MF, Clissold B, et al. Feedback of aggregate patient-reported outcomes (PROs) data to clinicians and hospital end users: Findings from an Australian codesign workshop process. BMJ Open. 2022;12:e055999.

Grimley RS, Rosbergen IC, Gustafsson L, Horton E, Green T, Cadigan G, et al. Dose and setting of rehabilitation received after stroke in Queensland, Australia: A prospective cohort study. Clin Rehabil. 2020;34:812–23.

Purvis T, Middleton S, Craig LE, Kilkenny MF, Dale S, Hill K, et al. Inclusion of a care bundle for fever, hyperglycaemia and swallow management in a national audit for acute stroke: Evidence of upscale and spread. Implement Sci. 2019;14:87.

Middleton S, McElduff P, Ward J, Grimshaw JM, Dale S, D’Este C, et al. Implementation of evidence-based treatment protocols to manage fever, hyperglycaemia, and swallowing dysfunction in acute stroke (QASC): A cluster randomised controlled trial. Lancet. 2011;378:1699–706.

Middleton S, Dale S, Cheung NW, Cadilhac DA, Grimshaw JM, Levi C, et al. Nurse-initiated acute stroke care in emergency departments. Stroke. 2019:STROKEAHA118020701.

Hood RJ, Maltby S, Keynes A, Kluge MG, Nalivaiko E, Ryan A, et al. Development and pilot implementation of TACTICS VR: A virtual reality-based stroke management workflow training application and training framework. Front Neurol. 2021;12:665808.

Bladin CF, Kim J, Bagot KL, Vu M, Moloczij N, Denisenko S, et al. Improving acute stroke care in regional hospitals: Clinical evaluation of the Victorian Stroke Telemedicine program. Med J Aust. 2020;212:371–7.

Bladin CF, Bagot KL, Vu M, Kim J, Bernard S, Smith K, et al. Real-world, feasibility study to investigate the use of a multidisciplinary app (Pulsara) to improve prehospital communication and timelines for acute stroke/STEMI care. BMJ Open. 2022;12:e052332.

Zhao H, Coote S, Easton D, Langenberg F, Stephenson M, Smith K, et al. Melbourne mobile stroke unit and reperfusion therapy: Greater clinical impact of thrombectomy than thrombolysis. Stroke. 2020;51:922–30.

Purvis T, Cadilhac DA, Hill K, Reyneke M, Olaiya MT, Dalli LL, et al. Twenty years of monitoring acute stroke care in Australia from the national stroke audit program (1999–2019): Achievements and areas of future focus. J Health Serv Res Policy. 2023.

Cadilhac DA, Purvis T, Reyneke M, Dalli LL, Kim J, Kilkenny MF. Evaluation of the national stroke audit program: 20-year report. Melbourne; 2019.

Kim J, Tan E, Gao L, Moodie M, Dewey HM, Bagot KL, et al. Cost-effectiveness of the Victorian Stroke Telemedicine program. Aust Health Rev. 2022;46:294–301.

Kim J, Easton D, Zhao H, Coote S, Sookram G, Smith K, et al. Economic evaluation of the Melbourne mobile stroke unit. Int J Stroke. 2021;16:466–75.

Stroke Foundation. National stroke audit – rehabilitation services report 2020. Melbourne; 2020.

Australian Institute of Health and Welfare. Heart, stroke and vascular disease: Australian facts. 2023. Webpage https://www.aihw.gov.au/reports/heart-stroke-vascular-diseases/hsvd-facts/contents/about (accessed Jan 2024).

Download references

Acknowledgements

The following authors hold National Health and Medical Research Council Research Fellowships: HT (#2009326), DAC (#1154273), SM (#1196352), MFK Future Leader Research Fellowship (National Heart Foundation #105737). The Funders of this work did not have any direct role in the design of the study, its execution, analyses, interpretation of the data, or decision to submit results for publication.

Author information

Helena Teede and Dominique A. Cadilhac contributed equally.

Authors and Affiliations

Monash Centre for Health Research and Implementation, 43-51 Kanooka Grove, Clayton, VIC, Australia

Helena Teede, Emily Callander & Joanne Enticott

Monash Partners Academic Health Science Centre, 43-51 Kanooka Grove, Clayton, VIC, Australia

Helena Teede & Alison Johnson

Stroke and Ageing Research, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Level 2 Monash University Research, Victorian Heart Hospital, 631 Blackburn Rd, Clayton, VIC, Australia

Dominique A. Cadilhac, Tara Purvis & Monique F. Kilkenny

Stroke Theme, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, VIC, Australia

Dominique A. Cadilhac, Monique F. Kilkenny & Bruce C.V. Campbell

Department of Neurology, Melbourne Brain Centre, Royal Melbourne Hospital, Parkville, VIC, Australia

Bruce C.V. Campbell

Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia

School of Health Sciences, Heart and Stroke Program, University of Newcastle, Hunter Medical Research Institute, University Drive, Callaghan, NSW, Australia

Coralie English

School of Medicine and Dentistry, Griffith University, Birtinya, QLD, Australia

Rohan S. Grimley

Clinical Excellence Division, Queensland Health, Brisbane, Australia

John Hunter Hospital, Hunter New England Local Health District and University of Newcastle, Sydney, NSW, Australia

Christopher Levi

School of Nursing, Midwifery and Paramedicine, Australian Catholic University, Sydney, NSW, Australia

Sandy Middleton

Nursing Research Institute, St Vincent’s Health Network Sydney and and Australian Catholic University, Sydney, NSW, Australia

Stroke Foundation, Level 7, 461 Bourke St, Melbourne, VIC, Australia

Kelvin Hill

You can also search for this author in PubMed   Google Scholar

Contributions

HT: conception, design and initial draft, developed the theoretical formalism for learning health system framework, approved the submitted version. DAC: conception, design and initial draft, provided essential literature and case study examples, approved the submitted version. TP: revised the manuscript critically for important intellectual content, approved the submitted version. MFK: revised the manuscript critically for important intellectual content, provided essential literature and case study examples, approved the submitted version. BC: revised the manuscript critically for important intellectual content, provided essential literature and case study examples, approved the submitted version. CE: revised the manuscript critically for important intellectual content, provided essential literature and case study examples, approved the submitted version. AJ: conception, design and initial draft, developed the theoretical formalism for learning health system framework, approved the submitted version. EC: revised the manuscript critically for important intellectual content, approved the submitted version. RSG: revised the manuscript critically for important intellectual content, provided essential literature and case study examples, approved the submitted version. CL: revised the manuscript critically for important intellectual content, provided essential literature and case study examples, approved the submitted version. SM: revised the manuscript critically for important intellectual content, provided essential literature and case study examples, approved the submitted version. KH: revised the manuscript critically for important intellectual content, provided essential literature and case study examples, approved the submitted version. JE: conception, design and initial draft, developed the theoretical formalism for learning health system framework, approved the submitted version. All authors read and approved the final manuscript.

Authors’ Twitter handles

@HelenaTeede

@DominiqueCad

@Coralie_English

@EmilyCallander

@EnticottJo

Corresponding authors

Correspondence to Helena Teede or Dominique A. Cadilhac .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests, additional information, publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Teede, H., Cadilhac, D.A., Purvis, T. et al. Learning together for better health using an evidence-based Learning Health System framework: a case study in stroke. BMC Med 22 , 198 (2024). https://doi.org/10.1186/s12916-024-03416-w

Download citation

Received : 23 July 2023

Accepted : 30 April 2024

Published : 15 May 2024

DOI : https://doi.org/10.1186/s12916-024-03416-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Evidence-based medicine
  • Person-centred care
  • Models of care
  • Healthcare improvement

BMC Medicine

ISSN: 1741-7015

example of case study in medicine

  • Search Menu
  • Cytogenetics
  • Cytotechnology
  • Histotechnology
  • Management/Administration
  • Microbiology
  • Molecular Pathology
  • Molecular Biology
  • Transfusion Medicine
  • Advance articles
  • COVID-19 articles
  • Current Virtual Issue
  • Cover Archive
  • Author Guidelines
  • Open Access
  • Submission Site
  • Why publish?
  • Advertising and Corporate Services
  • Advertising
  • Reprints and ePrints
  • Sponsored Supplements
  • Branded Books
  • About Laboratory Medicine
  • About the American Society for Clinical Pathology
  • Editorial Board
  • Self-Archiving Policy
  • Journals on Oxford Academic
  • Books on Oxford Academic

Case Studies

EDTA-Induced Pseudothrombocytopenia up to 9 Months after Initial COVID-19 Infection Associated with Persistent Anti-SARS-CoV-2 IgM/IgG Seropositivity 

A Novel Mutation of the Membrane Metallo-Endopeptidase Gene Related to Late-Onset Hereditary Polyneuropathy: Case Report and Review of the Literature

An African American Male Patient with Rare Type B Insulin Resistance Syndrome 

Unexpectedly Abnormal Electrolytes in a 60 Year Old Man with Dementia

Massive Transfusion Protocol in a 69 Year Old Woman with Alloantibodies

From A to AB: A Caucasian Mother with High Anti-B Titer Causing Hemolytic Disease of the Newborn

Achondroplasia—First Report from India of a Rare FGFR3 Gene Variant

Analysis of Multiple Bands on Serum Protein Immunofixation Electrophoresis: Challenge in Interpretation of Clonality in a Patient with Light Chain–Predominant Multiple Myeloma

Loss and Reappearance of A Antigen After Chemotherapy Leading to Blood Group Discrepancy in Acute Myeloid Leukemia: A Case Report

Sky High or Undetectable? A Patient with Discordant Hemoglobin A1c

Lymphocyte Aggregation in Low-Grade B-Cell Lymphoma

Hemolytic Disease of the Fetus and Newborn Caused by Maternal Autoantibody with Mimicking Anti-E Specificity

The Impact of Mass Spectrometry on Patients’ Medical and Nonmedical Lives

Daratumumab Interference in Flow Cytometry Producing a False Kappa Light Chain Restriction in Plasma Cells

Monocytic Acute Myeloid Leukemias with KM2TA Translocations to Chromosome 17q that May Clinically Mimic Acute Promyelocytic Leukemia

Detection of a Cryptic  EP300/ZNF384  Gene Fusion by Chromosomal Microarray and Next-Generation Sequencing Studies in a Pediatric Patient with B-Lymphoblastic Leukemia

A Hemolytic Transfusion Reaction Caused by an Unexpected Le b  Antibody

Cording in Disseminated  Mycobacterium chelonae Infection in an Immunocompromised Patient

Acute Hemolytic Transfusion Reaction Due to Pooled Platelets: A Rare but Serious Adverse Event

Unexpected Short-Tandem-Repeat Patterns in Posttransplant Chimerism Testing: Investigation of 3 Cases with Help from Forensic Science

Phenotypes Associated with 16p11.2 Copy Number Gains and Losses at a Single Institution

Severe Platelet Transfusion Refractoriness in Association with Antibodies Against CD36

Interference of M-protein on Thrombin Time Test: A Case Report

Paradoxical Hypercholesterolemia in an Otherwise Healthy Adult Man

Persistent Rivaroxaban Effect Due to Impaired Renal Clearance and Medication Effects

Pulmonary Coccidioidomycosis Mimicking Aspergillosis Fungus Ball

Post-Transfusion Purpura Mimicking Idiopathic Thrombocytopenic Purpura: A Case Report

Benign Pancreatic Hyperenzymemia, Also Known as Gullo’s Syndrome

Anti-M–Induced Delayed Hemolytic Transfusion Reaction

Mixed Phenotype Acute Leukemia that Evolved from Myelodysplastic Syndrome with Excess Blasts

Unexpectedly Weak Anti-B in 2 Group O Pediatric Patients on Parenteral Nutrition and Disease Specific Supplemental Enteral Feeds

α-1 Antitrypsin Genotype-Phenotype Discrepancy in a 42-Year-Old Man Who Carries the Null-Allele

A Novel Pathogenic  CALR  Exon 9 Mutation in a Patient with Essential Thrombocythemia

A 70-Year-Old Female with Unexpected Platelet Function Testing Results

Myelodysplastic Syndrome/Myeloproliferative Neoplasm with Ring Sideroblasts and Thrombocytosis with Cooccurrent  SF3B1  and  MPLGene Mutations: A Case Report and Brief Review of the Literature

BCR-ABL1-like B-Lymphoblastic Leukemia/Lymphoma with FOXP1-ABL1 Rearrangement: Comprehensive Laboratory Identification Allowing Tyrosine Kinase Inhibitor Use

A Case of Chronic Thrombocytopenia in a 17-Year-Old Female

Blood Donation During Pregnancy Due to Anti-Ku Hemolytic Disease of the Fetus and Newborn

Disseminated  Hormographiella aspergillata  Infection with Lung and Brain Involvement after Allogenic Hematopoietic Stem-Cell Transplantation in a 54-Year-Old Man

Cryoglobulinemia as a Possible Primer for TRALI: Report of a Case

Case Report and Literature Review of Nodular Hiradenoma, a Rare Adnexal Tumor That Mimics Breast Carcinoma, in a 20-Year-Old Woman

Monitoring Fondaparinux in the Setting of Antithrombin Deficiency

Iron Overload in an HFE Heterozygous Carrier: A Case Report and Literature Review

Differential Diagnosis of a Patient with Lysosomal Acid Lipase Deficiency: A Case Report

Severe Underestimation of Serum Na following IVIG Treatment

Interference by Rheumatoid Factor in Immunoglobulin M-Class Herpes Simplex Virus Types 1 + 2 Immunoassays

The Diagnostic Challenge of Acquired Thrombotic Thrombocytopenic Purpura in Children: Case Report and Review of the Literature

Rat Poisoning: A Challenging Diagnosis With Clinical and Psychological Implications

A Positive Urine Alcohol with Negative Urine Ethyl-Glucuronide

Critically Elevated Potassium in a 55-Year-Old Female With Chronic Lymphocytic Leukemia

Establishing the Cause of Anemia in a Premature Newborn Infant

Lymph Node With Extensive Involvement by Cryptococcus Shortly Following Liver Transplantation

Acute Liver Failure in an Adolescent Male Induced by Human Herpesvirus 6 (HHV-6): A Case Report With Literature Review

Developmental Defects Associated With DNA Copy Number Gain of Chromosome 2q33.1: A Case Report and Review of Literature

A Noninvasive Rhizopus Infection With a Bladder Fungal Ball in a Patient With Poorly Controlled Diabetes Mellitus

A Case of Hodgkin Lymphoma Mimicking Lymphomatoid Granulomatosis Diagnosed at Autopsy

Multiple Myeloma: The Case of the Disappearing Band

Detection of an Underlying 22q11.2 Duplication in a Female Neonate With Trisomy 18

Acute Myeloid Leukemia With a Rare t(7;14)(q21;q32) and Trisomy 4 With Poor Clinical Outcome: A Case Report

Histoplasmosis in Pleural Effusion in a 23-Year-Old Man With Mixed-Phenotype Acute Leukemia

R634W KIT Mutation in an Adult With Systemic Mastocytosis

Acute Hemolytic Transfusion Reaction Caused by a Red Cell Antibody That Was Missed by Pretransfusion Testing Using Tube Method

Intra-Pericardial Use of Recombinant Factor VIIa in a Patient With Acute Hemorrhagic Pericardial Effusion Following Transcutaneous Aortic Valve Replacement—A Case Report

A Food Debris–Like Component in the Urine Sediment From a Urostomy Pouch

Variable Potassium Concentrations: Which Is Right and Which Is Wrong?

What Clinical Laboratorians Should Do in Response to Extremely Low Hemoglobin A1c Results

Warm Autoimmune Hemolytic Anemia and Direct Antiglobulin Testing With a False-Negative Result in a 53-Year-Old Man

A Case of Unexplained Cerebral Sinus Thrombosis in a 22-Year-Old Obese Caucasian Woman

Pasteurella multocida Bacteremia With Associated Knee Arthroplasty Infection in an 80-Year-Old Caucasian Man

A Case Report of May-Hegglin Anomaly in a 33-Year-Old White Woman

Clostridium Sordellii as an Uncommon Cause of Fatal Toxic Shock Syndrome in a Postpartum 33-Year-Old Asian Woman

Trichosporon loubieri Fungemia in a 39-Year-Old Caucasian Woman With B-Cell Lymphoblastic Leukemia

Folate Insufficiency Due to Celiac Disease in a 49-Year-Old Woman of Southeast Asian-Indian Ethnicity

Rhizobium Radiobacter Infection in a 27-Year-Old African American Woman With Munchausen Syndrome

Naegleria fowleri That Induces Primary Amoebic Meningoencephalitis: Rapid Diagnosis and Rare Case of Survival in a 12-Year-Old Caucasian Girl

Leukemic Transdifferentiation of Follicular Lymphoma Into an Acute Histiocytic Leukemia in a 52-Year-Old Caucasian Woman

Skin Rash and Microscopic Hematuria in a 10-Year-Old Caucasian Male

Hematogones With Lambda Light Chain Restriction in a 4-Year-Old Boy With Burkitt Lymphoma: A Potential Diagnostic Pitfall

Reciprocal Microduplication of the Williams-Beuren Syndrome Chromosome Region in a 9-Year-Old Omani Boy

A Case of Sepsis in a 92-Year-Old Korean Woman Caused by Aerococcus urinae and Identified by Sequencing the 16S Ribosomal RNA Gene

Concurrent and Clonally Related Pediatric Follicular Lymphoma and Burkitt Lymphoma in a 5-Year-Old Boy

Sudden Development of Thrombocytopenia After Reversal of Anticoagulation for Surgery

Cervical FISH Testing for Triage and Support of Challenging Diagnoses: A Case Study of 2 Patients

Genotyping and Resolution of a Case of Osteomyelitis in a 16-Month-Old Boy of Hispanic/African American Ethnicity

Brodifacoum Inhalation and its Clinical Manifestations in a 21-Year-Old Caucasian Man

Selected Noninvasive Markers in Diagnosing Liver Diseases

Nitrous Oxide Abuse and Vitamin B12 Action in a 20-Year-Old Woman: A Case Report

Elevated CA125 Levels in a 72-Year-Old Ethnic Indian Patient: A Diagnostic Pointer Toward Tuberculosis?  

B Lymphoblastic Leukemia With a Novel t(11;15) (q23;q15) and Unique Burkittoid Morphologic and Immunophenotypic Findings in a 9-Year-Old Boy

Mucoepidermoid Carcinoma in a 33-Year-Old White Man

Invasive Paget Disease of the Nipple of Luminal-B Subtype With Axillary Lymph Node Metastasis in a 60-Year-Old White Woman

Trichosporon asahii  Infection in a Patient with Metastatic Prostate Cancer as an Example of an Emerging Fungal Pathogen  

Differentiation Between Sickle Cell Anemia and S/β 0  Thalassemia

Acute Precursor B-Cell Lymphoblastic Leukemia in a 1-Year-Old White Male: Diagnostic Evaluation and Flow Cytometric Analysis  

Development and Detection of Kidd Antibodies

Low-Grade Adenosquamous Carcinoma of the Breast Developing Around a Localization Wire Fragment

Case Report of Autopsy and Placental Examination After Radiofrequency Ablation of an Acardiac Twin 

Persistent Human Chorionic Gonadotropin After Methotrexate Treatment and an Emergency Surgical Procedure for Ectopic Pregnancy  

Encrusted Cystitis Secondary to Corynebacterium glucuronolyticum in a 57-Year-Old Man Without Predisposing Factors

Thyroid Cancer and T Lymphoblastic Leukemia in Crohn Disease: A Case Report and Literature Review

A Nontoxic Case of Vitamin D Toxicity

An Unexpected Emergency Request for Glucose-6-Phosphate Dehydrogenase Testing in a 9-Year-Old African American Boy

Cytologic Features of Metanephric Adenoma of the Kidney: Case Report and Review of the Literature

Primary CNS T-Cell Lymphoma of the Spinal Cord: Case Report and Literature Review

Benzodiazepine in a Urine Specimen Without Drug Metabolites

  • Recommend to your Library

Affiliations

  • Online ISSN 1943-7730
  • Print ISSN 0007-5027
  • Copyright © 2024 American Society for Clinical Pathology
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

  • Intranet Login
  • Clinical Services
  • Patient Care
  • Department Videos
  • Job Opportunities
  • Diversity and Inclusion
  • Administration
  • Student Fellows
  • Recent Graduates
  • Affiliated Hospitals
  • Pepper Talk
  • Residency Matters
  • Roth Report
  • Application
  • AP/Neuropathology
  • Physician-Scientist Pathway
  • Conferences
  • Teaching Opportunities
  • Salary & Benefits
  • Living in Philly
  • Breast Pathology
  • Cellular Therapy
  • Clinical Chemistry
  • Clinical Informatics
  • Clinical Microbiology
  • Cytopathology
  • GI/Hepatic Pathology
  • Hematopathology
  • Molecular Genetic Pathology
  • Neuropathology
  • Soft Tissue/Bone Pathology
  • Surgical Pathology
  • Transfusion Medicine
  • Student Fellowship
  • Graduate Studies
  • Medical School
  • Case Studies
  • PennLab Summer Internship
  • Cancer and Immunobiology
  • Neuropathology and Neurodegeneration
  • Diagnostic Innovation
  • Info for Investigators
  • Research Labs
  • Centers and Institutes
  • Clinical Cell and Vaccine Production Facility
  • CRISPR/Cas9 Mouse Targeting Core
  • Penn Cytomics and Cell Sorting Resource Laboratory
  • Human Immunology
  • Tumor Tissue/ Biospecimen Bank
  • Publications
  • Electron Microscopy
  • Immunohistochemistry
  • Medical Pathology
  • Clinical Chemistry Core Lab
  • Endocrinology
  • Coagulation
  • Immunology and HLA
  • Microbiology
  • Point-of-Care Testing
  • Reference Testing
  • Apheresis Unit
  • Flow Cytometry
  • Center for Personalized Diagnostics
  • Clinical Cancer Cytogenetics Laboratory
  • Molecular Pathology
  • Rittenhouse Molecular Laboratory
  • Test, Biospecimen, & Research Requests
  • Clinical Assay Development
  • Molecular Genetic Pathology Fellowship
  • AP Consults
  • Immunotherapy
  • Meet Your Pathologist
  • Making an Appointment
  • Clinical Trials
  • Patient Resources

CASE STUDIES

  • All case studies

Filter by: Clear Filters

This page offers a collection of interesting cases from the Penn Department of Pathology and Laboratory Medicine that are available to download as PDFs. To view specific case studies by organ system or subspecialty, use the filter checkboxes in the left sidebar.

56-year-old woman with 3.5 cm large right nasal mass, resected after 2 nondiagnostic biopsies

33-year-old man with complex ethmoid sinus mass and imaging concerning for a sinonasal malignancy, 34-year-old man with aml with sudden onset of headache and fever, 36-year-old woman presenting with hemoptysis, 65-year-old man with 2.3 cm right lower thyroid nodule, 56-year-old female presenting with a 3-month history of abdominal pain, 55-year-old male presenting with back pain, 62-year-old man with a right posterior nasal mass, 65-year-old female with a mass involving the maxillary sinus, 74-year-old female with an extradural tumor compressing the right frontal lobe, 35-year-old man with chronic rhinosinusitis and nasal septal perforation, 54-year-old man with a 3.6 cm right neck mass, 21-year-old man with asthma, chronic sinusitis, polyps, headache and proptosis, 57-year-old woman with a renal mass, 63-year-old man with history of iv drug use, 72-year-old man with polypoid esophageal mass, 20-year-old woman with 3 cm mass in the tail of pancreas, 40-year-old man with increasing frequency of hypoglycemic spells, 52-year-old woman with transient symptomatic hyperthyroidism, stay connected.

Facebook

  • Therapeutic Pathology
  • Anatomic Pathology
  • Lab Medicine Advances
  • Science Breakthroughs

Sign up for the Department Newsletter:

Thank you for subscribing!

Department of Pathology and Laboratory Medicine

Perelman School of Medicine at the University of Pennsylvania 3400 Spruce St. Philadelphia, PA 19104-4238

© 2024 Trustees of the University of Pennsylvania

  • About This Site

Perelman School of Medicine

  • Education Home
  • Medical Education Technology Support
  • Graduate Medical Education
  • Medical Scientist Training Program
  • Public Health Sciences Program
  • Continuing Medical Education
  • Clinical Performance Education Center
  • Center for Excellence in Education
  • Research Home
  • Biochemistry & Molecular Genetics
  • Biomedical Engineering
  • Cell Biology
  • Microbiology, Immunology, & Cancer Biology (MIC)
  • Molecular Physiology & Biological Physics
  • Neuroscience
  • Pharmacology
  • Public Health Sciences
  • Office for Research
  • Clinical Research
  • Clinical Trials Office
  • Funding Opportunities
  • Grants & Contracts
  • Research Faculty Directory
  • Cancer Center
  • Cardiovascular Research Center
  • Carter Immunology Center
  • Center for Behavioral Health & Technology
  • Center for Brain Immunology & Glia
  • Center for Diabetes Technology
  • Center for Immunity, Inflammation & Regenerative Medicine
  • Center for Public Health Genomics
  • Center for Membrane & Cell Physiology
  • Center for Research in Reproduction
  • Myles H. Thaler Center for AIDS & Human Retrovirus Research
  • Child Health Research Center (Pediatrics)
  • Division of Perceptual Studies
  • Research News: The Making of Medicine
  • Core Facilities
  • Virginia Research Resources Consortium
  • Center for Advanced Vision Science
  • Charles O. Strickler Transplant Center
  • Keck Center for Cellular Imaging
  • Institute of Law, Psychiatry & Public Policy
  • Translational Health Research Institute of Virginia
  • Clinical Home
  • Anesthesiology
  • Dermatology
  • Emergency Medicine
  • Family Medicine
  • Neurosurgery
  • Obstetrics & Gynecology
  • Ophthalmology
  • Orthopaedic Surgery
  • Otolaryngology
  • Physical Medicine & Rehabilitation
  • Plastic Surgery, Maxillofacial, & Oral Health
  • Psychiatry & Neurobehavioral Sciences
  • Radiation Oncology
  • Radiology & Medical Imaging
  • UVA Health: Patient Care
  • Diversity Home
  • Diversity Overview
  • Student Resources
  • GME Trainee Resources
  • Faculty Resources
  • Community Resources
  • Medical Student Case Studies

Each student is required to prepare a teaching case to present to his/her colleagues and the course director. Past examples provided below.

General Diagnostic Case Studies

  • Arteriovenous Fistula Secondary to Trauma
  • Chylothorax, Cellulitis, Gas Gangrene
  • Ectopic ACTH-Secreting Tumor
  • Epiphrenic Diverticula
  • Incidental Mediastinal Hilar Lymphadenopathy
  • Liver Metastasis
  • Neurocystercircosis
  • Pneumoperitoneum
  • Pneumothorax
  • Posterior Urethralcutaneous Fistula
  • Renal Cysts
  • Rocky Mountain Spotted Fever
  • Septic Emboli to the Brain
  • Submassive Bilateral PE
  • Tailgut Duplication Cyst
  • Tension Pneumocephalus
  • Tracheo-Esophageal Fistula
  • Vestibular Schwannoma

Radiology Pathology Correlation Case Studies

  • Adenoid Cystic Carcinoma
  • Cholangiocarcinoma
  • Cryptococcal PNA
  • Disseminated Histoplasmosis
  • Lung Adenocarcinoma
  • Marginal Zone B-cell Lymphoma
  • Metastatic Urothelial Carcinoma
  • Mixed Clear Cell Papillary RCC
  • Ovarian Carcinoma
  • Pancreatic Adenocarcinoma
  • Squamous Cell Carcinoma of the Lung
  • Squamous Cell Carcinoma
  • Uterine Leiomyosarcoma
  • Cervical Adenosquamous Carcinoma
  • Clear Cell Renal Cell Carcinoma
  • Esophageal Adenocarcinoma
  • Metastic Esophageal Gastrointestinal Stomal Tumor
  • Ocular Melanoma with Mets to Liver
  • Pancreatic Metatasis
  • Papillary Thyroid Carcinoma
  • Papillary Thyroid Carcinoma #2
  • Renal Transplant Rejection
  • Small Cell Lung Cancer
  • Urothelial Carcinoma Lung Met
  • Yolk Sac Tumor
  • Burkitt’s Lymphoma
  • Ewing Sarcoma
  • Hepatocellular Carcinoma
  • Hepatocellular Carcinoma #2
  • High-grade Serous Ovarian Carcinoma
  • Metastatic Duodenal Adenocarcinoma
  • Metastatic Melanoma
  • Ovarian Cancer
  • Papillary Thyroid Carcinoma #3
  • Papillary Thyroid Carcinoma with Nodal Involvement
  • Well Differentiated Hepatocellular Carcinoma
  • How to Apply
  • Connor Sleeth, MD
  • Eric Fromke, MD
  • Hannah Clode, MD
  • Jenna Pollock, MD
  • Joshua Ravicz, MD
  • Julia Kariher, MD
  • Kaelin Cockrell, MD
  • Nabeel Mirza, MD
  • Samantha Epstein, MD
  • Tyler Dalton, MD
  • Vatsal Lal, MD
  • Wayne Dell, MD
  • Salary and Benefits
  • Resident Lifestyle
  • Early Specialization in Interventional Radiology (ESIR)
  • Diagnostic Radiology/Nuclear Medicine (DR/NM) Pathway
  • Diagnostic Radiology Research Track
  • Current IR Residents
  • Where Are They Now?
  • Letter from the Chief Residents
  • Former Residents
  • Your UVA Interview Day
  • Living in Charlottesville
  • Participating Residents
  • Program News and Updates
  • Make a Gift
  • Current Representatives
  • Ladyologists – Supporting Each Other
  • 4th-year Medical Students Scholarship
  • Radiology Electives
  • Radiology Interest Group
  • Abdominal Imaging
  • Breast Imaging
  • Cardiothoracic Imaging
  • Diagnostic Neuroradiology
  • Musculoskeletal Imaging
  • Nuclear Radiology
  • Pediatric Radiology
  • Angiography and Interventional Radiology Observership
  • Breast Imaging International Visiting Scholars
  • Why Choose Structured Education?
  • Program Directors
  • Verification of Graduate Medical Education Training and Faculty Appointment
  • Online Training Resources
  • Search by keyword
  • Search by citation

Page 1 of 143

Resolution of severe gastroparesis induced by parasympathetic surge following facial trauma: a case report

Gastroparesis is a condition that affects the motility of the gastrointestinal (GI) tract, causing a delay in the emptying process and leading to nausea, vomiting, bloating, and upper abdominal pain. Motility ...

  • View Full Text

Successful pregnancy with intracytoplasmic sperm injection after bacterial contamination of embryo culture in in vitro fertilization: a case report

Bacterial infection of embryo culture medium is rare but may be detrimental. The main source of embryo culture contamination is semen. Assisted reproduction centers currently lack consensus regarding the metho...

Unveiling a foreign body masquerading as periarticular calcification: a case report

Evaluating isolated extremity discomfort can be challenging when initial imaging and exams provide limited information. Though subtle patient history hints often underlie occult pathologies, benign symptoms ar...

Portal vein thrombosis as extraintestinal complications of Crohn’s disease: a case report and review of literature

Thrombotic events are more than twice as common in inflammatory bowel disease patients as in the general population. We report an interesting and rare case of portal vein thrombosis as a venous thromboembolic ...

Long-lasting severe anemia following treatment with natalizumab for relapsing–remitting multiple sclerosis: a case report

Natalizumab is a monoclonal antibody used to treat patients with relapsing–remitting multiple sclerosis. Anemia is a recognized side effect, but it is usually mild and of a short duration when natalizumab is s...

Endovascular treatment in Danon disease: a case report

Danon disease is a lysosomal storage disorder with X-linked inheritance. The classic triad is severe hypertrophic cardiomyopathy, myopathy, and intellectual disability, with different phenotypes between both g...

Unusual phenotype in 35delG mutation: a case report

Mutations in the GJB2 gene, which encodes the protein connexin 26 and is involved in inner ear homeostasis, are identified in approximately 50% of patients with autosomal recessive nonsyndromic hearing loss, m...

In situ ascending aortic thrombus in a patient with metastatic lung adenocarcinoma and no aortic atherosclerosis or cisplatin exposure: a case report

An ascending aortic thrombus is exceedingly rare. Two instances have been reported in the setting of lung cancer, but only after cisplatin use, which is associated with hypercoagulability. We present the first...

Management of complete intra-articular distal femur and patellar fractures in an achondroplastic young adult; small is challenging’ revisited: a case-report

People with achondroplasia exhibit distinct physical characteristics, but their cognitive abilities remain within the normal range. The challenges encountered during surgical procedures and perioperative care ...

Demonstrating antibiotic stewardship while diagnosing and treating bilateral pseudoseptic arthritis: a case report

Although viscosupplementation is a commonly used treatment for osteoarthritis and is widely regarded as a safe treatment option, it is associated with the rare complication of pseudoseptic arthritis. Most exis...

Chronic radiation proctitis refractory to steroid enema was successfully treated by metformin and sodium butyrate: a case report

Radiation proctitis (RP) is a significant complication of pelvic radiation. Effective treatments for chronic RP are currently lacking. We report a case where chronic RP was successfully managed by metformin an...

Carbon ion radiotherapy for mesonephric adenocarcinoma of the uterine cervix: a case report

Mesonephric adenocarcinoma is an extremely rare subtype of uterine cervical cancer that is associated with a poor prognosis and for which a standardized treatment protocol has not been established. Carbon ion ...

Stenting for subclavian steal phenomenon to restore cerebral perfusion due to acute carotid occlusion following carotid endarterectomy: a case report

Perioperative symptomatic carotid artery occlusion after carotid endarterectomy is a rare complication. In this study, we present a case of symptomatic acute carotid artery occlusion that occurred after caroti...

Solitary primary intraosseous xanthoma of the mandible in a 15-year-old boy: a case report

A xanthoma is a rare bone condition consisting of a predominant collection of lipid-rich, foamy histiocytes. The central xanthoma of the jaws is a unique benign tumor.

Takotsubo cardiomyopathy following pacemaker insertion complicated with polymorphic ventricular tachycardia: a case report

Takotsubo cardiomyopathy is a novel form of rapidly reversible heart failure occurring secondary to a stressor that mimics an acute coronary event. The underlying etiology of the stressor is highly variable an...

Sirenomelia or mermaid syndrome with a cleft lip in a Tanzanian newborn: a case report

Sirenomelia or sirenomelia sequence, also known as mermaid syndrome, is a rare congenital anomaly involving the caudal region of the body. The syndrome is characterized by partial or complete fusion of lower e...

Mature cystic teratoma with co-existent mucinous cystadenocarcinoma: describing a diagnostic challenge—a case report

Mature cystic teratoma co-existing with a mucinous cystadenocarcinoma is a rare tumor that few cases have been reported until now. In these cases, either a benign teratoma is malignantly transformed into adeno...

Primary omental smooth muscle tumor in an adult male: a diagnostic dilemma for leiomyoma: a case report

The greater omentum comprises peritoneal, adipose, vascular, and lymphoid tissues. Most omental malignancies are metastatic tumors, and the incidence of primary tumors is rare. We report on a prior omental smo...

Unusual presentation of Sjogren’s syndrome during pregnancy: a case report

Pregnancy imposes significant physiological changes, including alterations in electrolyte balance and renal function. This is especially important because certain disorders might worsen and make people more su...

A giant peripheral ossifying fibroma of the maxilla with extreme difficulty in clinical differentiation from malignancy: a case report and review of the literature

Peripheral ossifying fibroma is a nonneoplastic inflammatory hyperplasia that originates in the periodontal ligament or periosteum in response to chronic mechanical irritation. Peripheral ossifying fibroma dev...

Remission induced by renal protective therapy in nephrotic syndrome with thin basement membrane in an older patient: a case report

Adult nephrotic syndrome is a well-known kidney disease that causes heavy proteinuria, hypoalbuminemia, hypercholesterolemia, edema, and hypertension. The treatment varies according to its underlying cause but...

Lymphoma presenting as preauricular tumor in unilateral parotid gland agenesis: a case report and review of literature

Parotid gland agenesis is a rare, congenital, usually asymptomatic disorder. Until now, only 24 cases with unilateral, incidentally found, parotid gland agenesis have been described. Here, we present the first...

Colonic lymphomatous polyposis mantle cell lymphoma: a case report and review of literature

Mantle cell lymphoma is a rare lymphoma of the gastrointestinal tract that may present as multiple lymphomatous polyposis. We report a case of lymphomatous polyposis with a review of the literature.

Cardiac evaluation in amiodarone-induced thyroid dysfunction with suspected cardiac ischemia?: a case report and review of the literature

Amiodarone-induced thyroid dysfunction (AIT) is a side-effect associated with the use of Amiodarone for the treatment of refractory arrythmias. Resulting hyperthyroidism can precipitate cardiac complications, ...

Nexplanonectomy—the surgical removal of an embolized implanted contraceptive device: a case report and review of the literature

Nexplanon implants are a common hormonal contraceptive modality. Though rare, these devices can embolize into the injured wall of the basilic vein, through the right heart, and finally wedge itself into a pulm...

An isolated vaginal metastasis from rectal cancer: a case report

Vaginal metastasis from colorectal cancer is a rare occurrence, typically associated with other metastatic lesions. Isolated metastasis is exceedingly uncommon, with only a few cases documented in the literatu...

Melanotic neuroectodermal tumor of infancy: a case report

Melanotic neuroectodermal tumor of infancy (MNTI) is a rare clinically benign, pigmented, tumor of neural crest origin which commonly occurs in the maxilla. It is a rare tumor that may pose difficulty in diffe...

Metastasis of small cell lung cancer to bilateral extraocular muscles: a case report

Orbital metastasis is a possible complication of small cell lung cancer and a pattern of bilateral invasion of the extraocular muscles has rarely been reported in literature.

Mycophenolate-induced colitis in a patient with lupus nephritis: a case report and review of the literature

Mycophenolate mofetil (MMF) is an immunosuppressive drug that is frequently prescribed to patients with rheumatological diseases. MMF’s side effects include abdominal discomfort, nausea, vomiting, and other ga...

Pembrolizumab response in stage IV luminal-type breast cancer with high microsatellite instability: a case report

Pembrolizumab (PEM), an immune checkpoint inhibitor (ICI), is often used for triple-negative breast cancer, but can also be used to treat solid tumors that exhibit high microsatellite instability (MSI-High). H...

Refractory pneumonia caused by Prevotella heparinolytica : a case report

Prevotella heparinolytica is a Gram-negative bacterium that is commonly found in the oral, intestinal, and urinary tracts. It has been extensively studied in lower respiratory tract infections in horses, which ha...

Giant intraperitoneal non-pancreatic pseudocyst: a case report

Non-pancreatic pseudocysts are rare lesions that typically form from the omentum and mesentery. These cysts have a thick fibrotic wall made up of fibrous tissue and may show signs of calcifications and inflamm...

Neglected Sprengel’s deformity in an 80-year-old female cadaver: a case report

Sprengel’s deformity is a congenital abnormality of the shoulder girdle. Because scapular retraction, such as the Green procedure, is usually performed during childhood to improve esthetics and shoulder functi...

An 11-month-old boy with tuberculous meningitis presenting as progressive limb weakness, fever, developmental retardation, and loss of consciousness: a case report

Tuberculous meningitis (TBM) accounts for about 1% of all tuberculosis cases and about 5% of extrapulmonary tuberculosis cases. However, it poses major importance because approximately half of those affected d...

Successful preimplantation genetic testing for fibrodysplasia ossificans progressiva: a case report

Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant condition that leads to significant disability and morbidity, characterised by the formation of heterotopic hard tissues within connecti...

An unusual case of severe asphyxia with the fetal position unexpectedly inverted in a malformed uterus: a case report

We present a severe neonatal consequence due to the unexpected and crucial inversion of the fetal position after sudden termination of tocolysis during early labor of a woman with congenital uterine anomaly. I...

Optic neuritis and mydriasis after vaccination: a case report

Optic neuritis (ON) is an inflammatory demyelinating condition of the optic nerve, with various causes. Its incidence is higher in children and young adults than in older adults of both genders, but is more co...

Postoperative delayed massive bleeding in gastric cancer: a case report

Postoperative delayed bleeding of gastric cancer is a complication of radical gastrectomy with low incidence rate and high mortality.

Idiopathic intracranial hypertension associated with SARS-CoV-2 infection in an adult male patient: a case report and review of the literature

Headache is a frequent symptom in coronavirus disease 2019 (COVID-19) patients, and idiopathic intracranial hypertension (pseudotumor cerebri) has been reported among patients who underwent lumbar puncture for...

Microblading reaction as a manifestation of systemic sarcoidosis: two case reports and a review of the literature

Sarcoidosis is a multisystemic disease characterized by granulomatous inflammation. Sarcoidosis often poses a diagnostic challenge owing to its nonspecific or mild clinical features. In 20–35% of cases, sarcoi...

Exceptional lymph node recurrence of an unusual ovarian tumor 16 years later: a case report

Sex cord-stromal tumors with annular tubules are a rare tumor accounting for less than 1% of all ovarian malignancies. However, they are characterized by very late recurrence, which can be as late as 30 years ...

Real-time ultrasound-guided sacral plexus block combined with mild sedation for hemorrhoidectomy and hemorrhoidal artery ligation in a patient with amyotrophic lateral sclerosis: a case report

Patients with amyotrophic lateral sclerosis present perioperative challenges for clinical anesthesiologists for anesthesia-associated complications.

Genetic exploration of Dravet syndrome: two case report

Dravet syndrome is an infantile-onset developmental and epileptic encephalopathy (DEE) characterized by drug resistance, intractable seizures, and developmental comorbidities. This article focuses on manifesta...

Surgical management of renal cell carcinoma with subhepatic inferior vena cava tumor thrombus: a case report and review of the literature

Renal cell carcinomas are the most common form of kidney cancer in adults. In addition to metastasizing in lungs, soft tissues, bones, and the liver, it also spreads locally. In 2–10% of patients, it causes a ...

Laparoscopic extraction of a symptomatic upper abdominal pedunculated parietal peritoneal lipoma arising intermittent abdominal pain: a case report

Lipomas arising in the parietal peritoneum are rare, and some of them cause abdominal pain due to torsion of the pedunculated peritoneum. We encountered a case of parietal peritoneal lipoma arising upper perit...

Peripartal management of dichorial twin pregnancy in a bicornuate bicollis uterus: a case report and review of the literature

The management of a pregnancy in a bicornuate uterus is particularly challenging. A bicornuate uterus is a rare occurrence and a twin pregnancy in a bicornuate uterus even more rare. These pregnancies call for...

Immunoglobulin G4-related disease presenting with nephrotic syndrome due to minimal change disease: a case report

Immunoglobulin G4-related disease is an inflammatory disease affecting multiple organs including the kidney. Immunoglobulin G4-related kidney disease most commonly manifests as a tubulointerstitial nephritis a...

Renal artery pseudoaneurysm following robot assisted nephron sparing surgery: two case reports

Renal artery pseudoaneurysm following partial nephrectomy is a rare entity, the incidence of this entity is more common following penetrating abdominal injuries, percutaneous renal interventions such as percut...

Aripiprazole-induced quasi-neuroleptic malignant syndrome: two case reports

Significant elevation of creatine kinase levels (above three digits) and leucocytosis in the absence of muscle rigidity, tremors, or autonomic dysfunction can pose a real challenge in the context of antipsycho...

Pneumoperitoneum, pneumoretroperitoneum and pneumomediastinum: rare complications of perforation peritonitis: a case report

Gas extravasation complications arising from perforated diverticulitis are common but manifestations such as pneumoperitoneum, pneumoretroperitoneum, and pneumomediastinum happening at the same time are exceed...

  • Editorial Board
  • Manuscript editing services
  • Meet the Editors
  • Instructions for Editors
  • Sign up for article alerts and news from this journal

Annual Journal Metrics

2022 Citation Impact 1.0 - 2-year Impact Factor 0.628 - SNIP (Source Normalized Impact per Paper) 0.284 - SJR (SCImago Journal Rank)

2023 Speed 33 days submission to first editorial decision for all manuscripts (Median) 148 days submission to accept (Median)

2023 Usage  4,048,208 downloads 2,745 Altmetric mentions

  • More about our metrics

New Content Item

  • Follow us on Twitter

Journal of Medical Case Reports

ISSN: 1752-1947

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]
  • Open access
  • Published: 14 May 2024

Developing a survey to measure nursing students’ knowledge, attitudes and beliefs, influences, and willingness to be involved in Medical Assistance in Dying (MAiD): a mixed method modified e-Delphi study

  • Jocelyn Schroeder 1 ,
  • Barbara Pesut 1 , 2 ,
  • Lise Olsen 2 ,
  • Nelly D. Oelke 2 &
  • Helen Sharp 2  

BMC Nursing volume  23 , Article number:  326 ( 2024 ) Cite this article

Metrics details

Medical Assistance in Dying (MAiD) was legalized in Canada in 2016. Canada’s legislation is the first to permit Nurse Practitioners (NP) to serve as independent MAiD assessors and providers. Registered Nurses’ (RN) also have important roles in MAiD that include MAiD care coordination; client and family teaching and support, MAiD procedural quality; healthcare provider and public education; and bereavement care for family. Nurses have a right under the law to conscientious objection to participating in MAiD. Therefore, it is essential to prepare nurses in their entry-level education for the practice implications and moral complexities inherent in this practice. Knowing what nursing students think about MAiD is a critical first step. Therefore, the purpose of this study was to develop a survey to measure nursing students’ knowledge, attitudes and beliefs, influences, and willingness to be involved in MAiD in the Canadian context.

The design was a mixed-method, modified e-Delphi method that entailed item generation from the literature, item refinement through a 2 round survey of an expert faculty panel, and item validation through a cognitive focus group interview with nursing students. The settings were a University located in an urban area and a College located in a rural area in Western Canada.

During phase 1, a 56-item survey was developed from existing literature that included demographic items and items designed to measure experience with death and dying (including MAiD), education and preparation, attitudes and beliefs, influences on those beliefs, and anticipated future involvement. During phase 2, an expert faculty panel reviewed, modified, and prioritized the items yielding 51 items. During phase 3, a sample of nursing students further evaluated and modified the language in the survey to aid readability and comprehension. The final survey consists of 45 items including 4 case studies.

Systematic evaluation of knowledge-to-date coupled with stakeholder perspectives supports robust survey design. This study yielded a survey to assess nursing students’ attitudes toward MAiD in a Canadian context.

The survey is appropriate for use in education and research to measure knowledge and attitudes about MAiD among nurse trainees and can be a helpful step in preparing nursing students for entry-level practice.

Peer Review reports

Medical Assistance in Dying (MAiD) is permitted under an amendment to Canada’s Criminal Code which was passed in 2016 [ 1 ]. MAiD is defined in the legislation as both self-administered and clinician-administered medication for the purpose of causing death. In the 2016 Bill C-14 legislation one of the eligibility criteria was that an applicant for MAiD must have a reasonably foreseeable natural death although this term was not defined. It was left to the clinical judgement of MAiD assessors and providers to determine the time frame that constitutes reasonably foreseeable [ 2 ]. However, in 2021 under Bill C-7, the eligibility criteria for MAiD were changed to allow individuals with irreversible medical conditions, declining health, and suffering, but whose natural death was not reasonably foreseeable, to receive MAiD [ 3 ]. This population of MAiD applicants are referred to as Track 2 MAiD (those whose natural death is foreseeable are referred to as Track 1). Track 2 applicants are subject to additional safeguards under the 2021 C-7 legislation.

Three additional proposed changes to the legislation have been extensively studied by Canadian Expert Panels (Council of Canadian Academics [CCA]) [ 4 , 5 , 6 ] First, under the legislation that defines Track 2, individuals with mental disease as their sole underlying medical condition may apply for MAiD, but implementation of this practice is embargoed until March 2027 [ 4 ]. Second, there is consideration of allowing MAiD to be implemented through advanced consent. This would make it possible for persons living with dementia to receive MAID after they have lost the capacity to consent to the procedure [ 5 ]. Third, there is consideration of extending MAiD to mature minors. A mature minor is defined as “a person under the age of majority…and who has the capacity to understand and appreciate the nature and consequences of a decision” ([ 6 ] p. 5). In summary, since the legalization of MAiD in 2016 the eligibility criteria and safeguards have evolved significantly with consequent implications for nurses and nursing care. Further, the number of Canadians who access MAiD shows steady increases since 2016 [ 7 ] and it is expected that these increases will continue in the foreseeable future.

Nurses have been integral to MAiD care in the Canadian context. While other countries such as Belgium and the Netherlands also permit euthanasia, Canada is the first country to allow Nurse Practitioners (Registered Nurses with additional preparation typically achieved at the graduate level) to act independently as assessors and providers of MAiD [ 1 ]. Although the role of Registered Nurses (RNs) in MAiD is not defined in federal legislation, it has been addressed at the provincial/territorial-level with variability in scope of practice by region [ 8 , 9 ]. For example, there are differences with respect to the obligation of the nurse to provide information to patients about MAiD, and to the degree that nurses are expected to ensure that patient eligibility criteria and safeguards are met prior to their participation [ 10 ]. Studies conducted in the Canadian context indicate that RNs perform essential roles in MAiD care coordination; client and family teaching and support; MAiD procedural quality; healthcare provider and public education; and bereavement care for family [ 9 , 11 ]. Nurse practitioners and RNs are integral to a robust MAiD care system in Canada and hence need to be well-prepared for their role [ 12 ].

Previous studies have found that end of life care, and MAiD specifically, raise complex moral and ethical issues for nurses [ 13 , 14 , 15 , 16 ]. The knowledge, attitudes, and beliefs of nurses are important across practice settings because nurses have consistent, ongoing, and direct contact with patients who experience chronic or life-limiting health conditions. Canadian studies exploring nurses’ moral and ethical decision-making in relation to MAiD reveal that although some nurses are clear in their support for, or opposition to, MAiD, others are unclear on what they believe to be good and right [ 14 ]. Empirical findings suggest that nurses go through a period of moral sense-making that is often informed by their family, peers, and initial experiences with MAID [ 17 , 18 ]. Canadian legislation and policy specifies that nurses are not required to participate in MAiD and may recuse themselves as conscientious objectors with appropriate steps to ensure ongoing and safe care of patients [ 1 , 19 ]. However, with so many nurses having to reflect on and make sense of their moral position, it is essential that they are given adequate time and preparation to make an informed and thoughtful decision before they participate in a MAID death [ 20 , 21 ].

It is well established that nursing students receive inconsistent exposure to end of life care issues [ 22 ] and little or no training related to MAiD [ 23 ]. Without such education and reflection time in pre-entry nursing preparation, nurses are at significant risk for moral harm. An important first step in providing this preparation is to be able to assess the knowledge, values, and beliefs of nursing students regarding MAID and end of life care. As demand for MAiD increases along with the complexities of MAiD, it is critical to understand the knowledge, attitudes, and likelihood of engagement with MAiD among nursing students as a baseline upon which to build curriculum and as a means to track these variables over time.

Aim, design, and setting

The aim of this study was to develop a survey to measure nursing students’ knowledge, attitudes and beliefs, influences, and willingness to be involved in MAiD in the Canadian context. We sought to explore both their willingness to be involved in the registered nursing role and in the nurse practitioner role should they chose to prepare themselves to that level of education. The design was a mixed-method, modified e-Delphi method that entailed item generation, item refinement through an expert faculty panel [ 24 , 25 , 26 ], and initial item validation through a cognitive focus group interview with nursing students [ 27 ]. The settings were a University located in an urban area and a College located in a rural area in Western Canada.

Participants

A panel of 10 faculty from the two nursing education programs were recruited for Phase 2 of the e-Delphi. To be included, faculty were required to have a minimum of three years of experience in nurse education, be employed as nursing faculty, and self-identify as having experience with MAiD. A convenience sample of 5 fourth-year nursing students were recruited to participate in Phase 3. Students had to be in good standing in the nursing program and be willing to share their experiences of the survey in an online group interview format.

The modified e-Delphi was conducted in 3 phases: Phase 1 entailed item generation through literature and existing survey review. Phase 2 entailed item refinement through a faculty expert panel review with focus on content validity, prioritization, and revision of item wording [ 25 ]. Phase 3 entailed an assessment of face validity through focus group-based cognitive interview with nursing students.

Phase I. Item generation through literature review

The goal of phase 1 was to develop a bank of survey items that would represent the variables of interest and which could be provided to expert faculty in Phase 2. Initial survey items were generated through a literature review of similar surveys designed to assess knowledge and attitudes toward MAiD/euthanasia in healthcare providers; Canadian empirical studies on nurses’ roles and/or experiences with MAiD; and legislative and expert panel documents that outlined proposed changes to the legislative eligibility criteria and safeguards. The literature review was conducted in three online databases: CINAHL, PsycINFO, and Medline. Key words for the search included nurses , nursing students , medical students , NPs, MAiD , euthanasia , assisted death , and end-of-life care . Only articles written in English were reviewed. The legalization and legislation of MAiD is new in many countries; therefore, studies that were greater than twenty years old were excluded, no further exclusion criteria set for country.

Items from surveys designed to measure similar variables in other health care providers and geographic contexts were placed in a table and similar items were collated and revised into a single item. Then key variables were identified from the empirical literature on nurses and MAiD in Canada and checked against the items derived from the surveys to ensure that each of the key variables were represented. For example, conscientious objection has figured prominently in the Canadian literature, but there were few items that assessed knowledge of conscientious objection in other surveys and so items were added [ 15 , 21 , 28 , 29 ]. Finally, four case studies were added to the survey to address the anticipated changes to the Canadian legislation. The case studies were based upon the inclusion of mature minors, advanced consent, and mental disorder as the sole underlying medical condition. The intention was to assess nurses’ beliefs and comfort with these potential legislative changes.

Phase 2. Item refinement through expert panel review

The goal of phase 2 was to refine and prioritize the proposed survey items identified in phase 1 using a modified e-Delphi approach to achieve consensus among an expert panel [ 26 ]. Items from phase 1 were presented to an expert faculty panel using a Qualtrics (Provo, UT) online survey. Panel members were asked to review each item to determine if it should be: included, excluded or adapted for the survey. When adapted was selected faculty experts were asked to provide rationale and suggestions for adaptation through the use of an open text box. Items that reached a level of 75% consensus for either inclusion or adaptation were retained [ 25 , 26 ]. New items were categorized and added, and a revised survey was presented to the panel of experts in round 2. Panel members were again asked to review items, including new items, to determine if it should be: included, excluded, or adapted for the survey. Round 2 of the modified e-Delphi approach also included an item prioritization activity, where participants were then asked to rate the importance of each item, based on a 5-point Likert scale (low to high importance), which De Vaus [ 30 ] states is helpful for increasing the reliability of responses. Items that reached a 75% consensus on inclusion were then considered in relation to the importance it was given by the expert panel. Quantitative data were managed using SPSS (IBM Corp).

Phase 3. Face validity through cognitive interviews with nursing students

The goal of phase 3 was to obtain initial face validity of the proposed survey using a sample of nursing student informants. More specifically, student participants were asked to discuss how items were interpreted, to identify confusing wording or other problematic construction of items, and to provide feedback about the survey as a whole including readability and organization [ 31 , 32 , 33 ]. The focus group was held online and audio recorded. A semi-structured interview guide was developed for this study that focused on clarity, meaning, order and wording of questions; emotions evoked by the questions; and overall survey cohesion and length was used to obtain data (see Supplementary Material 2  for the interview guide). A prompt to “think aloud” was used to limit interviewer-imposed bias and encourage participants to describe their thoughts and response to a given item as they reviewed survey items [ 27 ]. Where needed, verbal probes such as “could you expand on that” were used to encourage participants to expand on their responses [ 27 ]. Student participants’ feedback was collated verbatim and presented to the research team where potential survey modifications were negotiated and finalized among team members. Conventional content analysis [ 34 ] of focus group data was conducted to identify key themes that emerged through discussion with students. Themes were derived from the data by grouping common responses and then using those common responses to modify survey items.

Ten nursing faculty participated in the expert panel. Eight of the 10 faculty self-identified as female. No faculty panel members reported conscientious objector status and ninety percent reported general agreement with MAiD with one respondent who indicated their view as “unsure.” Six of the 10 faculty experts had 16 years of experience or more working as a nurse educator.

Five nursing students participated in the cognitive interview focus group. The duration of the focus group was 2.5 h. All participants identified that they were born in Canada, self-identified as female (one preferred not to say) and reported having received some instruction about MAiD as part of their nursing curriculum. See Tables  1 and 2 for the demographic descriptors of the study sample. Study results will be reported in accordance with the study phases. See Fig.  1 for an overview of the results from each phase.

figure 1

Fig. 1  Overview of survey development findings

Phase 1: survey item generation

Review of the literature identified that no existing survey was available for use with nursing students in the Canadian context. However, an analysis of themes across qualitative and quantitative studies of physicians, medical students, nurses, and nursing students provided sufficient data to develop a preliminary set of items suitable for adaptation to a population of nursing students.

Four major themes and factors that influence knowledge, attitudes, and beliefs about MAiD were evident from the literature: (i) endogenous or individual factors such as age, gender, personally held values, religion, religiosity, and/or spirituality [ 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 ], (ii) experience with death and dying in personal and/or professional life [ 35 , 40 , 41 , 43 , 44 , 45 ], (iii) training including curricular instruction about clinical role, scope of practice, or the law [ 23 , 36 , 39 ], and (iv) exogenous or social factors such as the influence of key leaders, colleagues, friends and/or family, professional and licensure organizations, support within professional settings, and/or engagement in MAiD in an interdisciplinary team context [ 9 , 35 , 46 ].

Studies of nursing students also suggest overlap across these categories. For example, value for patient autonomy [ 23 ] and the moral complexity of decision-making [ 37 ] are important factors that contribute to attitudes about MAiD and may stem from a blend of personally held values coupled with curricular content, professional training and norms, and clinical exposure. For example, students report that participation in end of life care allows for personal growth, shifts in perception, and opportunities to build therapeutic relationships with their clients [ 44 , 47 , 48 ].

Preliminary items generated from the literature resulted in 56 questions from 11 published sources (See Table  3 ). These items were constructed across four main categories: (i) socio-demographic questions; (ii) end of life care questions; (iii) knowledge about MAiD; or (iv) comfort and willingness to participate in MAiD. Knowledge questions were refined to reflect current MAiD legislation, policies, and regulatory frameworks. Falconer [ 39 ] and Freeman [ 45 ] studies were foundational sources for item selection. Additionally, four case studies were written to reflect the most recent anticipated changes to MAiD legislation and all used the same open-ended core questions to address respondents’ perspectives about the patient’s right to make the decision, comfort in assisting a physician or NP to administer MAiD in that scenario, and hypothesized comfort about serving as a primary provider if qualified as an NP in future. Response options for the survey were also constructed during this stage and included: open text, categorical, yes/no , and Likert scales.

Phase 2: faculty expert panel review

Of the 56 items presented to the faculty panel, 54 questions reached 75% consensus. However, based upon the qualitative responses 9 items were removed largely because they were felt to be repetitive. Items that generated the most controversy were related to measuring religion and spirituality in the Canadian context, defining end of life care when there is no agreed upon time frames (e.g., last days, months, or years), and predicting willingness to be involved in a future events – thus predicting their future selves. Phase 2, round 1 resulted in an initial set of 47 items which were then presented back to the faculty panel in round 2.

Of the 47 initial questions presented to the panel in round 2, 45 reached a level of consensus of 75% or greater, and 34 of these questions reached a level of 100% consensus [ 27 ] of which all participants chose to include without any adaptations) For each question, level of importance was determined based on a 5-point Likert scale (1 = very unimportant, 2 = somewhat unimportant, 3 = neutral, 4 = somewhat important, and 5 = very important). Figure  2 provides an overview of the level of importance assigned to each item.

figure 2

Ranking level of importance for survey items

After round 2, a careful analysis of participant comments and level of importance was completed by the research team. While the main method of survey item development came from participants’ response to the first round of Delphi consensus ratings, level of importance was used to assist in the decision of whether to keep or modify questions that created controversy, or that rated lower in the include/exclude/adapt portion of the Delphi. Survey items that rated low in level of importance included questions about future roles, sex and gender, and religion/spirituality. After deliberation by the research committee, these questions were retained in the survey based upon the importance of these variables in the scientific literature.

Of the 47 questions remaining from Phase 2, round 2, four were revised. In addition, the two questions that did not meet the 75% cut off level for consensus were reviewed by the research team. The first question reviewed was What is your comfort level with providing a MAiD death in the future if you were a qualified NP ? Based on a review of participant comments, it was decided to retain this question for the cognitive interviews with students in the final phase of testing. The second question asked about impacts on respondents’ views of MAiD and was changed from one item with 4 subcategories into 4 separate items, resulting in a final total of 51 items for phase 3. The revised survey was then brought forward to the cognitive interviews with student participants in Phase 3. (see Supplementary Material 1 for a complete description of item modification during round 2).

Phase 3. Outcomes of cognitive interview focus group

Of the 51 items reviewed by student participants, 29 were identified as clear with little or no discussion. Participant comments for the remaining 22 questions were noted and verified against the audio recording. Following content analysis of the comments, four key themes emerged through the student discussion: unclear or ambiguous wording; difficult to answer questions; need for additional response options; and emotional response evoked by questions. An example of unclear or ambiguous wording was a request for clarity in the use of the word “sufficient” in the context of assessing an item that read “My nursing education has provided sufficient content about the nursing role in MAiD.” “Sufficient” was viewed as subjective and “laden with…complexity that distracted me from the question.” The group recommended rewording the item to read “My nursing education has provided enough content for me to care for a patient considering or requesting MAiD.”

An example of having difficulty answering questions related to limited knowledge related to terms used in the legislation such as such as safeguards , mature minor , eligibility criteria , and conscientious objection. Students were unclear about what these words meant relative to the legislation and indicated that this lack of clarity would hamper appropriate responses to the survey. To ensure that respondents are able to answer relevant questions, student participants recommended that the final survey include explanation of key terms such as mature minor and conscientious objection and an overview of current legislation.

Response options were also a point of discussion. Participants noted a lack of distinction between response options of unsure and unable to say . Additionally, scaling of attitudes was noted as important since perspectives about MAiD are dynamic and not dichotomous “agree or disagree” responses. Although the faculty expert panel recommended the integration of the demographic variables of religious and/or spiritual remain as a single item, the student group stated a preference to have religion and spirituality appear as separate items. The student focus group also took issue with separate items for the variables of sex and gender, specifically that non-binary respondents might feel othered or “outed” particularly when asked to identify their sex. These variables had been created based upon best practices in health research but students did not feel they were appropriate in this context [ 49 ]. Finally, students agreed with the faculty expert panel in terms of the complexity of projecting their future involvement as a Nurse Practitioner. One participant stated: “I certainly had to like, whoa, whoa, whoa. Now let me finish this degree first, please.” Another stated, “I'm still imagining myself, my future career as an RN.”

Finally, student participants acknowledged the array of emotions that some of the items produced for them. For example, one student described positive feelings when interacting with the survey. “Brought me a little bit of feeling of joy. Like it reminded me that this is the last piece of independence that people grab on to.” Another participant, described the freedom that the idea of an advance request gave her. “The advance request gives the most comfort for me, just with early onset Alzheimer’s and knowing what it can do.” But other participants described less positive feelings. For example, the mature minor case study yielded a comment: “This whole scenario just made my heart hurt with the idea of a child requesting that.”

Based on the data gathered from the cognitive interview focus group of nursing students, revisions were made to 11 closed-ended questions (see Table  4 ) and 3 items were excluded. In the four case studies, the open-ended question related to a respondents’ hypothesized actions in a future role as NP were removed. The final survey consists of 45 items including 4 case studies (see Supplementary Material 3 ).

The aim of this study was to develop and validate a survey that can be used to track the growth of knowledge about MAiD among nursing students over time, inform training programs about curricular needs, and evaluate attitudes and willingness to participate in MAiD at time-points during training or across nursing programs over time.

The faculty expert panel and student participants in the cognitive interview focus group identified a need to establish core knowledge of the terminology and legislative rules related to MAiD. For example, within the cognitive interview group of student participants, several acknowledged lack of clear understanding of specific terms such as “conscientious objector” and “safeguards.” Participants acknowledged discomfort with the uncertainty of not knowing and their inclination to look up these terms to assist with answering the questions. This survey can be administered to nursing or pre-nursing students at any phase of their training within a program or across training programs. However, in doing so it is important to acknowledge that their baseline knowledge of MAiD will vary. A response option of “not sure” is important and provides a means for respondents to convey uncertainty. If this survey is used to inform curricular needs, respondents should be given explicit instructions not to conduct online searches to inform their responses, but rather to provide an honest appraisal of their current knowledge and these instructions are included in the survey (see Supplementary Material 3 ).

Some provincial regulatory bodies have established core competencies for entry-level nurses that include MAiD. For example, the BC College of Nurses and Midwives (BCCNM) requires “knowledge about ethical, legal, and regulatory implications of medical assistance in dying (MAiD) when providing nursing care.” (10 p. 6) However, across Canada curricular content and coverage related to end of life care and MAiD is variable [ 23 ]. Given the dynamic nature of the legislation that includes portions of the law that are embargoed until 2024, it is important to ensure that respondents are guided by current and accurate information. As the law changes, nursing curricula, and public attitudes continue to evolve, inclusion of core knowledge and content is essential and relevant for investigators to be able to interpret the portions of the survey focused on attitudes and beliefs about MAiD. Content knowledge portions of the survey may need to be modified over time as legislation and training change and to meet the specific purposes of the investigator.

Given the sensitive nature of the topic, it is strongly recommended that surveys be conducted anonymously and that students be provided with an opportunity to discuss their responses to the survey. A majority of feedback from both the expert panel of faculty and from student participants related to the wording and inclusion of demographic variables, in particular religion, religiosity, gender identity, and sex assigned at birth. These and other demographic variables have the potential to be highly identifying in small samples. In any instance in which the survey could be expected to yield demographic group sizes less than 5, users should eliminate the demographic variables from the survey. For example, the profession of nursing is highly dominated by females with over 90% of nurses who identify as female [ 50 ]. Thus, a survey within a single class of students or even across classes in a single institution is likely to yield a small number of male respondents and/or respondents who report a difference between sex assigned at birth and gender identity. When variables that serve to identify respondents are included, respondents are less likely to complete or submit the survey, to obscure their responses so as not to be identifiable, or to be influenced by social desirability bias in their responses rather than to convey their attitudes accurately [ 51 ]. Further, small samples do not allow for conclusive analyses or interpretation of apparent group differences. Although these variables are often included in surveys, such demographics should be included only when anonymity can be sustained. In small and/or known samples, highly identifying variables should be omitted.

There are several limitations associated with the development of this survey. The expert panel was comprised of faculty who teach nursing students and are knowledgeable about MAiD and curricular content, however none identified as a conscientious objector to MAiD. Ideally, our expert panel would have included one or more conscientious objectors to MAiD to provide a broader perspective. Review by practitioners who participate in MAiD, those who are neutral or undecided, and practitioners who are conscientious objectors would ensure broad applicability of the survey. This study included one student cognitive interview focus group with 5 self-selected participants. All student participants had held discussions about end of life care with at least one patient, 4 of 5 participants had worked with a patient who requested MAiD, and one had been present for a MAiD death. It is not clear that these participants are representative of nursing students demographically or by experience with end of life care. It is possible that the students who elected to participate hold perspectives and reflections on patient care and MAiD that differ from students with little or no exposure to end of life care and/or MAiD. However, previous studies find that most nursing students have been involved with end of life care including meaningful discussions about patients’ preferences and care needs during their education [ 40 , 44 , 47 , 48 , 52 ]. Data collection with additional student focus groups with students early in their training and drawn from other training contexts would contribute to further validation of survey items.

Future studies should incorporate pilot testing with small sample of nursing students followed by a larger cross-program sample to allow evaluation of the psychometric properties of specific items and further refinement of the survey tool. Consistent with literature about the importance of leadership in the context of MAiD [ 12 , 53 , 54 ], a study of faculty knowledge, beliefs, and attitudes toward MAiD would provide context for understanding student perspectives within and across programs. Additional research is also needed to understand the timing and content coverage of MAiD across Canadian nurse training programs’ curricula.

The implementation of MAiD is complex and requires understanding of the perspectives of multiple stakeholders. Within the field of nursing this includes clinical providers, educators, and students who will deliver clinical care. A survey to assess nursing students’ attitudes toward and willingness to participate in MAiD in the Canadian context is timely, due to the legislation enacted in 2016 and subsequent modifications to the law in 2021 with portions of the law to be enacted in 2027. Further development of this survey could be undertaken to allow for use in settings with practicing nurses or to allow longitudinal follow up with students as they enter practice. As the Canadian landscape changes, ongoing assessment of the perspectives and needs of health professionals and students in the health professions is needed to inform policy makers, leaders in practice, curricular needs, and to monitor changes in attitudes and practice patterns over time.

Availability of data and materials

The datasets used and/or analysed during the current study are not publicly available due to small sample sizes, but are available from the corresponding author on reasonable request.

Abbreviations

British Columbia College of Nurses and Midwives

Medical assistance in dying

Nurse practitioner

Registered nurse

University of British Columbia Okanagan

Nicol J, Tiedemann M. Legislative Summary: Bill C-14: An Act to amend the Criminal Code and to make related amendments to other Acts (medical assistance in dying). Available from: https://lop.parl.ca/staticfiles/PublicWebsite/Home/ResearchPublications/LegislativeSummaries/PDF/42-1/c14-e.pdf .

Downie J, Scallion K. Foreseeably unclear. The meaning of the “reasonably foreseeable” criterion for access to medical assistance in dying in Canada. Dalhousie Law J. 2018;41(1):23–57.

Nicol J, Tiedeman M. Legislative summary of Bill C-7: an act to amend the criminal code (medical assistance in dying). Ottawa: Government of Canada; 2021.

Google Scholar  

Council of Canadian Academies. The state of knowledge on medical assistance in dying where a mental disorder is the sole underlying medical condition. Ottawa; 2018. Available from: https://cca-reports.ca/wp-content/uploads/2018/12/The-State-of-Knowledge-on-Medical-Assistance-in-Dying-Where-a-Mental-Disorder-is-the-Sole-Underlying-Medical-Condition.pdf .

Council of Canadian Academies. The state of knowledge on advance requests for medical assistance in dying. Ottawa; 2018. Available from: https://cca-reports.ca/wp-content/uploads/2019/02/The-State-of-Knowledge-on-Advance-Requests-for-Medical-Assistance-in-Dying.pdf .

Council of Canadian Academies. The state of knowledge on medical assistance in dying for mature minors. Ottawa; 2018. Available from: https://cca-reports.ca/wp-content/uploads/2018/12/The-State-of-Knowledge-on-Medical-Assistance-in-Dying-for-Mature-Minors.pdf .

Health Canada. Third annual report on medical assistance in dying in Canada 2021. Ottawa; 2022. [cited 2023 Oct 23]. Available from: https://www.canada.ca/en/health-canada/services/medical-assistance-dying/annual-report-2021.html .

Banner D, Schiller CJ, Freeman S. Medical assistance in dying: a political issue for nurses and nursing in Canada. Nurs Philos. 2019;20(4): e12281.

Article   PubMed   Google Scholar  

Pesut B, Thorne S, Stager ML, Schiller CJ, Penney C, Hoffman C, et al. Medical assistance in dying: a review of Canadian nursing regulatory documents. Policy Polit Nurs Pract. 2019;20(3):113–30.

Article   PubMed   PubMed Central   Google Scholar  

College of Registered Nurses of British Columbia. Scope of practice for registered nurses [Internet]. Vancouver; 2018. Available from: https://www.bccnm.ca/Documents/standards_practice/rn/RN_ScopeofPractice.pdf .

Pesut B, Thorne S, Schiller C, Greig M, Roussel J, Tishelman C. Constructing good nursing practice for medical assistance in dying in Canada: an interpretive descriptive study. Global Qual Nurs Res. 2020;7:2333393620938686. https://doi.org/10.1177/2333393620938686 .

Article   Google Scholar  

Pesut B, Thorne S, Schiller CJ, Greig M, Roussel J. The rocks and hard places of MAiD: a qualitative study of nursing practice in the context of legislated assisted death. BMC Nurs. 2020;19:12. https://doi.org/10.1186/s12912-020-0404-5 .

Pesut B, Greig M, Thorne S, Burgess M, Storch JL, Tishelman C, et al. Nursing and euthanasia: a narrative review of the nursing ethics literature. Nurs Ethics. 2020;27(1):152–67.

Pesut B, Thorne S, Storch J, Chambaere K, Greig M, Burgess M. Riding an elephant: a qualitative study of nurses’ moral journeys in the context of Medical Assistance in Dying (MAiD). Journal Clin Nurs. 2020;29(19–20):3870–81.

Lamb C, Babenko-Mould Y, Evans M, Wong CA, Kirkwood KW. Conscientious objection and nurses: results of an interpretive phenomenological study. Nurs Ethics. 2018;26(5):1337–49.

Wright DK, Chan LS, Fishman JR, Macdonald ME. “Reflection and soul searching:” Negotiating nursing identity at the fault lines of palliative care and medical assistance in dying. Social Sci & Med. 2021;289: 114366.

Beuthin R, Bruce A, Scaia M. Medical assistance in dying (MAiD): Canadian nurses’ experiences. Nurs Forum. 2018;54(4):511–20.

Bruce A, Beuthin R. Medically assisted dying in Canada: "Beautiful Death" is transforming nurses' experiences of suffering. The Canadian J Nurs Res | Revue Canadienne de Recherche en Sci Infirmieres. 2020;52(4):268–77. https://doi.org/10.1177/0844562119856234 .

Canadian Nurses Association. Code of ethics for registered nurses. Ottawa; 2017. Available from: https://www.cna-aiic.ca/en/nursing/regulated-nursing-in-canada/nursing-ethics .

Canadian Nurses Association. National nursing framework on Medical Assistance in Dying in Canada. Ottawa: 2017. Available from: https://www.virtualhospice.ca/Assets/cna-national-nursing-framework-on-maidEng_20170216155827.pdf .

Pesut B, Thorne S, Greig M. Shades of gray: conscientious objection in medical assistance in dying. Nursing Inq. 2020;27(1): e12308.

Durojaiye A, Ryan R, Doody O. Student nurse education and preparation for palliative care: a scoping review. PLoS ONE. 2023. https://doi.org/10.1371/journal.pone.0286678 .

McMechan C, Bruce A, Beuthin R. Canadian nursing students’ experiences with medical assistance in dying | Les expériences d’étudiantes en sciences infirmières au regard de l’aide médicale à mourir. Qual Adv Nurs Educ - Avancées en Formation Infirmière. 2019;5(1). https://doi.org/10.17483/2368-6669.1179 .

Adler M, Ziglio E. Gazing into the oracle. The Delphi method and its application to social policy and public health. London: Jessica Kingsley Publishers; 1996

Keeney S, Hasson F, McKenna H. Consulting the oracle: ten lessons from using the Delphi technique in nursing research. J Adv Nurs. 2006;53(2):205–12.

Keeney S, Hasson F, McKenna H. The Delphi technique in nursing and health research. 1st ed. City: Wiley; 2011.

Willis GB. Cognitive interviewing: a tool for improving questionnaire design. 1st ed. Thousand Oaks, Calif: Sage; 2005. ISBN: 9780761928041

Lamb C, Evans M, Babenko-Mould Y, Wong CA, Kirkwood EW. Conscience, conscientious objection, and nursing: a concept analysis. Nurs Ethics. 2017;26(1):37–49.

Lamb C, Evans M, Babenko-Mould Y, Wong CA, Kirkwood K. Nurses’ use of conscientious objection and the implications of conscience. J Adv Nurs. 2018;75(3):594–602.

de Vaus D. Surveys in social research. 6th ed. Abingdon, Oxon: Routledge; 2014.

Boateng GO, Neilands TB, Frongillo EA, Melgar-Quiñonez HR, Young SL. Best practices for developing and validating scales for health, social, and behavioral research: A primer. Front Public Health. 2018;6:149. https://doi.org/10.3389/fpubh.2018.00149 .

Puchta C, Potter J. Focus group practice. 1st ed. London: Sage; 2004.

Book   Google Scholar  

Streiner DL, Norman GR, Cairney J. Health measurement scales: a practical guide to their development and use. 5th ed. Oxford: Oxford University Press; 2015.

Hsieh H-F, Shannon SE. Three approaches to qualitative content analysis. Qual Health Res. 2005;15(9):1277–88.

Adesina O, DeBellis A, Zannettino L. Third-year Australian nursing students’ attitudes, experiences, knowledge, and education concerning end-of-life care. Int J of Palliative Nurs. 2014;20(8):395–401.

Bator EX, Philpott B, Costa AP. This moral coil: a cross-sectional survey of Canadian medical student attitudes toward medical assistance in dying. BMC Med Ethics. 2017;18(1):58.

Beuthin R, Bruce A, Scaia M. Medical assistance in dying (MAiD): Canadian nurses’ experiences. Nurs Forum. 2018;53(4):511–20.

Brown J, Goodridge D, Thorpe L, Crizzle A. What is right for me, is not necessarily right for you: the endogenous factors influencing nonparticipation in medical assistance in dying. Qual Health Res. 2021;31(10):1786–1800.

Falconer J, Couture F, Demir KK, Lang M, Shefman Z, Woo M. Perceptions and intentions toward medical assistance in dying among Canadian medical students. BMC Med Ethics. 2019;20(1):22.

Green G, Reicher S, Herman M, Raspaolo A, Spero T, Blau A. Attitudes toward euthanasia—dual view: Nursing students and nurses. Death Stud. 2022;46(1):124–31.

Hosseinzadeh K, Rafiei H. Nursing student attitudes toward euthanasia: a cross-sectional study. Nurs Ethics. 2019;26(2):496–503.

Ozcelik H, Tekir O, Samancioglu S, Fadiloglu C, Ozkara E. Nursing students’ approaches toward euthanasia. Omega (Westport). 2014;69(1):93–103.

Canning SE, Drew C. Canadian nursing students’ understanding, and comfort levels related to medical assistance in dying. Qual Adv Nurs Educ - Avancées en Formation Infirmière. 2022;8(2). https://doi.org/10.17483/2368-6669.1326 .

Edo-Gual M, Tomás-Sábado J, Bardallo-Porras D, Monforte-Royo C. The impact of death and dying on nursing students: an explanatory model. J Clin Nurs. 2014;23(23–24):3501–12.

Freeman LA, Pfaff KA, Kopchek L, Liebman J. Investigating palliative care nurse attitudes towards medical assistance in dying: an exploratory cross-sectional study. J Adv Nurs. 2020;76(2):535–45.

Brown J, Goodridge D, Thorpe L, Crizzle A. “I am okay with it, but I am not going to do it:” the exogenous factors influencing non-participation in medical assistance in dying. Qual Health Res. 2021;31(12):2274–89.

Dimoula M, Kotronoulas G, Katsaragakis S, Christou M, Sgourou S, Patiraki E. Undergraduate nursing students’ knowledge about palliative care and attitudes towards end-of-life care: A three-cohort, cross-sectional survey. Nurs Educ Today. 2019;74:7–14.

Matchim Y, Raetong P. Thai nursing students’ experiences of caring for patients at the end of life: a phenomenological study. Int J Palliative Nurs. 2018;24(5):220–9.

Canadian Institute for Health Research. Sex and gender in health research [Internet]. Ottawa: CIHR; 2021 [cited 2023 Oct 23]. Available from: https://cihr-irsc.gc.ca/e/50833.html .

Canadian Nurses’ Association. Nursing statistics. Ottawa: CNA; 2023 [cited 2023 Oct 23]. Available from: https://www.cna-aiic.ca/en/nursing/regulated-nursing-in-canada/nursing-statistics .

Krumpal I. Determinants of social desirability bias in sensitive surveys: a literature review. Qual Quant. 2013;47(4):2025–47. https://doi.org/10.1007/s11135-011-9640-9 .

Ferri P, Di Lorenzo R, Stifani S, Morotti E, Vagnini M, Jiménez Herrera MF, et al. Nursing student attitudes toward dying patient care: a European multicenter cross-sectional study. Acta Bio Medica Atenei Parmensis. 2021;92(S2): e2021018.

PubMed   PubMed Central   Google Scholar  

Beuthin R, Bruce A. Medical assistance in dying (MAiD): Ten things leaders need to know. Nurs Leadership. 2018;31(4):74–81.

Thiele T, Dunsford J. Nurse leaders’ role in medical assistance in dying: a relational ethics approach. Nurs Ethics. 2019;26(4):993–9.

Download references

Acknowledgements

We would like to acknowledge the faculty and students who generously contributed their time to this work.

JS received a student traineeship through the Principal Research Chairs program at the University of British Columbia Okanagan.

Author information

Authors and affiliations.

School of Health and Human Services, Selkirk College, Castlegar, BC, Canada

Jocelyn Schroeder & Barbara Pesut

School of Nursing, University of British Columbia Okanagan, Kelowna, BC, Canada

Barbara Pesut, Lise Olsen, Nelly D. Oelke & Helen Sharp

You can also search for this author in PubMed   Google Scholar

Contributions

JS made substantial contributions to the conception of the work; data acquisition, analysis, and interpretation; and drafting and substantively revising the work. JS has approved the submitted version and agreed to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature. BP made substantial contributions to the conception of the work; data acquisition, analysis, and interpretation; and drafting and substantively revising the work. BP has approved the submitted version and agreed to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature. LO made substantial contributions to the conception of the work; data acquisition, analysis, and interpretation; and substantively revising the work. LO has approved the submitted version and agreed to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature. NDO made substantial contributions to the conception of the work; data acquisition, analysis, and interpretation; and substantively revising the work. NDO has approved the submitted version and agreed to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature. HS made substantial contributions to drafting and substantively revising the work. HS has approved the submitted version and agreed to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature.

Authors’ information

JS conducted this study as part of their graduate requirements in the School of Nursing, University of British Columbia Okanagan.

Corresponding author

Correspondence to Barbara Pesut .

Ethics declarations

Ethics approval and consent to participate.

The research was approved by the Selkirk College Research Ethics Board (REB) ID # 2021–011 and the University of British Columbia Behavioral Research Ethics Board ID # H21-01181.

All participants provided written and informed consent through approved consent processes. Research was conducted in accordance with the Declaration of Helsinki.

Consent for publication

Not applicable.

Competing interests

The authors declare they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary material 1., supplementary material 2., supplementary material 3., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Schroeder, J., Pesut, B., Olsen, L. et al. Developing a survey to measure nursing students’ knowledge, attitudes and beliefs, influences, and willingness to be involved in Medical Assistance in Dying (MAiD): a mixed method modified e-Delphi study. BMC Nurs 23 , 326 (2024). https://doi.org/10.1186/s12912-024-01984-z

Download citation

Received : 24 October 2023

Accepted : 28 April 2024

Published : 14 May 2024

DOI : https://doi.org/10.1186/s12912-024-01984-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Medical assistance in dying (MAiD)
  • End of life care
  • Student nurses
  • Nursing education

BMC Nursing

ISSN: 1472-6955

example of case study in medicine

example of case study in medicine

Study provides blueprint for hybrid-virtual home visit model to support patients who do not live close to a hospital

I n a new study, a team developed and successfully tested a hybrid-virtual home visit model that provides care to veterans who do not live close to a VA health care facility. The work is published in the Journal of General Internal Medicine .

U.S. Department of Veteran Affairs (VA), Regenstrief Institute, and Indiana University School of Medicine research scientists Dawn Bravata, M.D., and Teresa Damush, Ph.D., helped lead the team.

The results from the study demonstrate the feasibility of implementing a hybrid-virtual home visit model to care for high-risk, community-dwelling older persons. Two clinical cases illustrated how this model cared for patients who might not otherwise have received timely health care.

The researchers suggest a widespread deployment of hybrid-virtual home visit model programs will be required to support the veteran population as they age in place.

"We were able to successfully convert an in-person home visit, conducted by nurse practitioners and social workers, to a hybrid-virtual model where we had a telehealth technician in the patient's home working virtually with the nurse practitioner and social worker to provide care," said Dr. Bravata, a co-principal investigator and senior author of the study.

"Having the telehealth technician drive to patients' homes allowed the nurse practitioners and social workers to telework, which gave them more time to provide patient care."

The hybrid-virtual model, known as TeleGRACE, is an extension of the established Geriatric Resources for Assessment and Care of Elders (VA-GRACE) program. VA-GRACE is a multidisciplinary care model which provides comprehensive home-based geriatric evaluation and management for older veterans residing within a 20-mile drive radius from the Indianapolis VA facility.

TeleGRACE expands access to VA-GRACE services by enrolling patients living within a 60-mile radius. TeleGRACE provides all of the same services as VA-GRACE, except it's a hybrid-virtual home visit instead of the in-person home visit. The VA has been seeking to expand access to evidence-based practices supporting community-dwelling older persons like the VA-GRACE program.

Case examples

The first case examination followed a patient scheduled for a TeleGRACE enrollment visit after being discharged from a VA in-patient admission. Before the visit, the patient sought care for a leg wound in a non-VA emergency department closer to home. Working remotely, the nurse practitioner identified that the patient needed additional follow-up care for the wound.

The nurse practitioner used pictures of the wound taken by the telehealth technician and sent them to the VA wound care service. The wound care team reviewed the pictures, determined the appropriate care, collaborated with the VA-GRACE social worker to order home-health wound care, and sent wound care supplies to the patient's home, all during the single TeleGRACE visit.

"The patient would typically have had to go through a couple of clinic visits to receive the right care if it weren't for the TeleGRACE visit. The telehealth technician provided the patient with the wound care they needed in one visit," said Dr. Bravata.

In the second case, during a TeleGRACE enrollment visit, a patient who had been discharged from a VA inpatient stay 13 days prior became unwell. The telehealth technician obtained vital signs with the nurse practitioner participating remotely.

The patient was then taken to the emergency department and admitted to the hospital for a 5-day stay. The patient told the emergency department staff and inpatient teams that the TeleGRACE program saved his life.

The researchers described the challenges encountered during the pre-implementation phase and the solutions they developed during program development.

"Previous studies have identified that geriatric patients have difficulty connecting with virtual health care. The TeleGRACE program overcomes many of these issues," said Dr. Bravata.

"For example, consider patients with visual or hearing impairment or perhaps mild cognitive impairment—it's helpful to have the telehealth technician physically in the homes troubleshooting equipment and providing assistance."

To implement the hybrid-virtual care model, five program domains required attention and problem-solving:

  • Telehealth connectivity and equipment
  • Virtual physical examination
  • Protocols and procedures
  • Staff training
  • Team integration

More information: Cathy C. Schubert et al, Expanding Access to Comprehensive Geriatric Evaluation via Telehealth: Development of Hybrid-Virtual Home Visits, Journal of General Internal Medicine (2024). DOI: 10.1007/s11606-023-08460-5

Provided by Regenstrief Institute

Challenges encountered and solutions developed during the iterative construction of the hybrid-virtual home visits. Credit: Journal of General Internal Medicine (2024). DOI: 10.1007/s11606-023-08460-5

medRxiv

Impact of the use of cannabis as a medicine in pregnancy, on the unborn child: a systematic review and meta-analysis protocol

  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Info/History
  • Preview PDF

Introduction: The use of cannabis for medicinal purposes is on the rise. As more people place their trust in the safety of prescribed alternative plant-based medicine and find it easily accessible, there is a growing concern that pregnant women may be increasingly using cannabis for medicinal purposes to manage their pregnancy symptoms and other health conditions. The aim of this review is to investigate the use of cannabis for medicinal purposes during pregnancy, describe the characteristics of the demographic population, and to measure the impact on the unborn child and up to twelve months postpartum. Methods and analyses: Research on pregnant women who use cannabis for medicinal purposes only and infants up to one year after birth who experienced in utero exposure to cannabis for medicinal purposes will be included in this review. Reviews, randomised controlled trials, case control, cross-sectional and cohort studies, that have been peer reviewed and published between 1996 and April 2024 as a primary research paper that investigates prenatal use of cannabis for medicinal purposes on foetal, perinatal, and neonatal outcomes, will be selected for review. Excluding cover editorials, letters, commentaries, protocols, conference papers and book chapters. Effects of illicit drugs use, alcohol misuse and nicotine exposure on neonate outcome will be controlled by excluding studies reporting on the concomitant use of such substances with cannabis for medicinal purposes during pregnancy. All titles and abstracts will be reviewed independently and in duplicate by at least two researchers. Records will be excluded based on title and abstract screening as well as publication type. Where initial disagreement exists between reviewers regarding the inclusion of a study, team members will review disputed articles status until consensus is gained. Selected studies will then be assessed by at least two independent researchers for risk bias assessment using validated tools. Data will be extracted and analysed following a systematic review and meta-analysis methodology. The statistical analysis will combine three or more outcomes that are reported in a consistent manner. The systematic review and meta-analysis will follow the PRISMA guidelines to facilitate transparent reporting [1].

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study did not receive any funding.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The study will use ONLY openly available human data from studies published in biomedical and scientific journals.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Data Availability

All data produced in the present work are contained in the manuscript.

View the discussion thread.

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Reddit logo

Citation Manager Formats

  • EndNote (tagged)
  • EndNote 8 (xml)
  • RefWorks Tagged
  • Ref Manager
  • Tweet Widget
  • Facebook Like
  • Google Plus One
  • Addiction Medicine (323)
  • Allergy and Immunology (627)
  • Anesthesia (163)
  • Cardiovascular Medicine (2367)
  • Dentistry and Oral Medicine (288)
  • Dermatology (206)
  • Emergency Medicine (379)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (835)
  • Epidemiology (11765)
  • Forensic Medicine (10)
  • Gastroenterology (702)
  • Genetic and Genomic Medicine (3731)
  • Geriatric Medicine (348)
  • Health Economics (633)
  • Health Informatics (2392)
  • Health Policy (929)
  • Health Systems and Quality Improvement (896)
  • Hematology (340)
  • HIV/AIDS (780)
  • Infectious Diseases (except HIV/AIDS) (13303)
  • Intensive Care and Critical Care Medicine (767)
  • Medical Education (365)
  • Medical Ethics (104)
  • Nephrology (398)
  • Neurology (3493)
  • Nursing (198)
  • Nutrition (523)
  • Obstetrics and Gynecology (673)
  • Occupational and Environmental Health (662)
  • Oncology (1819)
  • Ophthalmology (535)
  • Orthopedics (218)
  • Otolaryngology (287)
  • Pain Medicine (232)
  • Palliative Medicine (66)
  • Pathology (446)
  • Pediatrics (1032)
  • Pharmacology and Therapeutics (426)
  • Primary Care Research (420)
  • Psychiatry and Clinical Psychology (3172)
  • Public and Global Health (6135)
  • Radiology and Imaging (1279)
  • Rehabilitation Medicine and Physical Therapy (746)
  • Respiratory Medicine (825)
  • Rheumatology (379)
  • Sexual and Reproductive Health (372)
  • Sports Medicine (322)
  • Surgery (401)
  • Toxicology (50)
  • Transplantation (172)
  • Urology (145)

Artificial intelligence  is being used in healthcare for everything from answering patient questions to assisting with surgeries and developing new pharmaceuticals.

According to  Statista , the artificial intelligence (AI) healthcare market, which is valued at $11 billion in 2021, is projected to be worth $187 billion in 2030. That massive increase means we will likely continue to see considerable changes in how medical providers, hospitals, pharmaceutical and biotechnology companies, and others in the healthcare industry operate.

Better  machine learning (ML)  algorithms, more access to data, cheaper hardware, and the availability of 5G have contributed to the increasing application of AI in the healthcare industry, accelerating the pace of change. AI and ML technologies can sift through enormous volumes of health data—from health records and clinical studies to genetic information—and analyze it much faster than humans.

Healthcare organizations are using AI to improve the efficiency of all kinds of processes, from back-office tasks to patient care. The following are some examples of how AI might be used to benefit staff and patients:

  • Administrative workflow:  Healthcare workers spend a lot of time doing paperwork and other administrative tasks. AI and automation can help perform many of those mundane tasks, freeing up employee time for other activities and giving them more face-to-face time with patients. For example, generative AI can help clinicians with note-taking and content summarization that can help keep medical records as thoroughly as possible. AI might also help with accurate coding and sharing of information between departments and billing.
  • Virtual nursing assistants:  One study found that  64% of patients  are comfortable with the use of AI for around-the-clock access to answers that support nurses provide. AI virtual nurse assistants—which are AI-powered chatbots, apps, or other interfaces—can be used to help answer questions about medications, forward reports to doctors or surgeons and help patients schedule a visit with a physician. These sorts of routine tasks can help take work off the hands of clinical staff, who can then spend more time directly on patient care, where human judgment and interaction matter most.
  • Dosage error reduction:  AI can be used to help identify errors in how a patient self-administers medication. One example comes from a study in  Nature Medicine , which found that up to 70% of patients don’t take insulin as prescribed. An AI-powered tool that sits in the patient’s background (much like a wifi router) might be used to flag errors in how the patient administers an insulin pen or inhaler.
  • Less invasive surgeries:  AI-enabled robots might be used to work around sensitive organs and tissues to help reduce blood loss, infection risk and post-surgery pain.
  • Fraud prevention:  Fraud in the healthcare industry is enormous, at $380 billion/year, and raises the cost of consumers’ medical premiums and out-of-pocket expenses. Implementing AI can help recognize unusual or suspicious patterns in insurance claims, such as billing for costly services or procedures that are not performed, unbundling (which is billing for the individual steps of a procedure as though they were separate procedures), and performing unnecessary tests to take advantage of insurance payments.

A recent study found that  83% of patients  report poor communication as the worst part of their experience, demonstrating a strong need for clearer communication between patients and providers. AI technologies like  natural language processing  (NLP), predictive analytics, and  speech recognition  might help healthcare providers have more effective communication with patients. AI might, for instance, deliver more specific information about a patient’s treatment options, allowing the healthcare provider to have more meaningful conversations with the patient for shared decision-making.

According to  Harvard’s School of Public Health , although it’s early days for this use, using AI to make diagnoses may reduce treatment costs by up to 50% and improve health outcomes by 40%.

One use case example is out of the  University of Hawaii , where a research team found that deploying  deep learning  AI technology can improve breast cancer risk prediction. More research is needed, but the lead researcher pointed out that an AI algorithm can be trained on a much larger set of images than a radiologist—as many as a million or more radiology images. Also, that algorithm can be replicated at no cost except for hardware.

An  MIT group  developed an ML algorithm to determine when a human expert is needed. In some instances, such as identifying cardiomegaly in chest X-rays, they found that a hybrid human-AI model produced the best results.

Another  published study  found that AI recognized skin cancer better than experienced doctors.  US, German and French researchers used deep learning on more than 100,000 images to identify skin cancer. Comparing the results of AI to those of 58 international dermatologists, they found AI did better.

As health and fitness monitors become more popular and more people use apps that track and analyze details about their health. They can share these real-time data sets with their doctors to monitor health issues and provide alerts in case of problems.

AI solutions—such as big data applications, machine learning algorithms and deep learning algorithms—might also be used to help humans analyze large data sets to help clinical and other decision-making. AI might also be used to help detect and track infectious diseases, such as COVID-19, tuberculosis, and malaria.

One benefit the use of AI brings to health systems is making gathering and sharing information easier. AI can help providers keep track of patient data more efficiently.

One example is diabetes. According to the  Centers for Disease Control and Prevention , 10% of the US population has diabetes. Patients can now use wearable and other monitoring devices that provide feedback about their glucose levels to themselves and their medical team. AI can help providers gather that information, store, and analyze it, and provide data-driven insights from vast numbers of people. Using this information can help healthcare professionals determine how to better treat and manage diseases.

Organizations are also starting to use AI to help improve drug safety. The company SELTA SQUARE, for example, is  innovating the pharmacovigilance (PV) process , a legally mandated discipline for detecting and reporting adverse effects from drugs, then assessing, understanding, and preventing those effects. PV demands significant effort and diligence from pharma producers because it’s performed from the clinical trials phase all the way through the drug’s lifetime availability. Selta Square uses a combination of AI and automation to make the PV process faster and more accurate, which helps make medicines safer for people worldwide.

Sometimes, AI might reduce the need to test potential drug compounds physically, which is an enormous cost-savings.  High-fidelity molecular simulations  can run on computers without incurring the high costs of traditional discovery methods.

AI also has the potential to help humans predict toxicity, bioactivity, and other characteristics of molecules or create previously unknown drug molecules from scratch.

As AI becomes more important in healthcare delivery and more AI medical applications are developed, ethical, and regulatory governance must be established. Issues that raise concern include the possibility of bias, lack of transparency, privacy concerns regarding data used for training AI models, and safety and liability issues.

“AI governance is necessary, especially for clinical applications of the technology,” said Laura Craft, VP Analyst at  Gartner . “However, because new AI techniques are largely new territory for most [health delivery organizations], there is a lack of common rules, processes, and guidelines for eager entrepreneurs to follow as they design their pilots.”

The World Health Organization (WHO) spent 18 months deliberating with leading experts in ethics, digital technology, law, and human rights and various Ministries of Health members to produce a report that is called  Ethics & Governance of Artificial Intelligence for Health . This report identifies ethical challenges to using AI in healthcare, identifies risks, and outlines six  consensus principles  to ensure AI works for the public’s benefit:

  • Protecting autonomy
  • Promoting human safety and well-being
  • Ensuring transparency
  • Fostering accountability
  • Ensuring equity
  • Promoting tools that are responsive and sustainable

The WHO report also provides recommendations that ensure governing AI for healthcare both maximizes the technology’s promise and holds healthcare workers accountable and responsive to the communities and people they work with.

AI provides opportunities to help reduce human error, assist medical professionals and staff, and provide patient services 24/7. As AI tools continue to develop, there is potential to use AI even more in reading medical images, X-rays and scans, diagnosing medical problems and creating treatment plans.

AI applications continue to help streamline various tasks, from answering phones to analyzing population health trends (and likely, applications yet to be considered). For instance, future AI tools may automate or augment more of the work of clinicians and staff members. That will free up humans to spend more time on more effective and compassionate face-to-face professional care.

When patients need help, they don’t want to (or can’t) wait on hold. Healthcare facilities’ resources are finite, so help isn’t always available instantaneously or 24/7—and even slight delays can create frustration and feelings of isolation or cause certain conditions to worsen.

IBM® watsonx Assistant™ AI healthcare chatbots  can help providers do two things: keep their time focused where it needs to be and empower patients who call in to get quick answers to simple questions.

IBM watsonx Assistant  is built on deep learning, machine learning and natural language processing (NLP) models to understand questions, search for the best answers and complete transactions by using conversational AI.

Get email updates about AI advancements, strategies, how-tos, expert perspective and more.

See IBM watsonx Assistant in action and request a demo

Get our newsletters and topic updates that deliver the latest thought leadership and insights on emerging trends.

IMAGES

  1. (PDF) A Case Study of Personalized Medicine

    example of case study in medicine

  2. Medical Case Study Template

    example of case study in medicine

  3. Medical Case Study

    example of case study in medicine

  4. Write An Effective Case Study On A Patient In Just 4 Easy Steps

    example of case study in medicine

  5. case study template medical

    example of case study in medicine

  6. 🐈 Medical case study sample. 19 medical case study examples. 2022-11-15

    example of case study in medicine

VIDEO

  1. Family case study

  2. Case Study 4: Headache and Joint Pain

  3. Shouldice Hospital Management (abridged) Case Solution

  4. Triz Case Study

  5. How to Approach Long case in clinical exam

  6. Preparation for long cases in clinical medicine

COMMENTS

  1. Case Study: 33-Year-Old Female Presents with Chronic SOB and Cough

    History of Present Illness: A 33-year-old white female presents after admission to the general medical/surgical hospital ward with a chief complaint of shortness of breath on exertion. She reports that she was seen for similar symptoms previously at her primary care physician's office six months ago. At that time, she was diagnosed with acute bronchitis and treated with bronchodilators ...

  2. Case 24-2020: A 44-Year-Old Woman with Chest Pain, Dyspnea, and Shock

    A 44-year-old woman presented with cough, dyspnea, and chest pain. On examination, she had tachycardia and hypotension. Evaluation revealed SARS-CoV-2 RNA in a nasopharyngeal swab, as well as eleva...

  3. Case 19-2020: A 74-Year-Old Man with Acute Respiratory Failure and

    On examination, the patient appeared to be in respiratory distress. The temperature was 35.9°C, the pulse 98 beats per minute, the blood pressure 129/58 mm Hg, the respiratory rate 24 breaths per ...

  4. Case 22-2020: A 62-Year-Old Woman with Early Breast Cancer during the

    Communication is at the core of the medical profession, and effective and empathic communication can have a positive effect on a patient's quality of life, satisfaction with care, and medical ...

  5. Writing a case report in 10 steps

    First steps. Begin by sitting down with your medical team to discuss the interesting aspects of the case and the learning points to highlight. Ideally, a registrar or middle grade will mentor you and give you guidance. Another junior doctor or medical student may also be keen to be involved. Allocate jobs to split the workload, set a deadline ...

  6. Case Studies

    A 53 year old man presents to clinic with swelling of his hands and a uric acid of 12. 15. A 58-year-old woman presents to clinic with difficulty walking. 16. A 49-year-old woman is seen with an abnormal Nerve Conduction Study. 17. A 55-year-old woman is seen because of her right knee is "giving out". 18.

  7. Health Case Studies

    Some of the case studies, for example the heart failure study, show clinical data before and after drug treatments so the students can get a feel for mechanism in physiological action. ... This text contains 8 medical case studies that reflect best practices at the time of publication. The text identifies 5 overarching learning objectives ...

  8. Homepage

    A journal publishing case reports in all medical disciplines, including general medicine, drug interaction and adverse reactions. The largest online collection of medical case reports. Validation period: 5/15/2024, 7:30:43 PM - 5/16/2024, 1:30:43 AM

  9. How to write a medical case report

    Writing a case report is an excellent way of documenting these findings for the wider medical community—sharing new knowledge that will lead to better and safer patient care. For many medical students and junior doctors, a case report may be their first attempt at medical writing. A published case report will look impressive on your ...

  10. PDF 2. THE CASE REPORT AND EVIDENCE BASED MEDICINE Box 2: Case Reports

    Some examples of famous case reports/series over the past 150 years are illustrated in the boxes below. Box 3: Case report & first rabies vaccine ... Figure 1: Hierarchy of Medical Studies in Evidence Based Medicine Case reports/series are placed low on the evidence pyramid because they consider individual patients

  11. Case Studies

    Contact your system administrator for a resolution. Brought to you by Merck & Co, Inc., Rahway, NJ, USA (known as MSD outside the US and Canada) — dedicated to using leading-edge science to save and improve lives around the world. Learn more about the MSD Manuals and our commitment to Global Medical Knowledge.

  12. How to present patient cases

    Presenting patient cases is a key part of everyday clinical practice. A well delivered presentation has the potential to facilitate patient care and improve efficiency on ward rounds, as well as a means of teaching and assessing clinical competence.1 The purpose of a case presentation is to communicate your diagnostic reasoning to the listener, so that he or she has a clear picture of the ...

  13. Case Studies in Academic Medicine : Academic Medicine

    Case Studies in Academic Medicine. Kanter, Steven L. MD. Academic Medicine: April 2010 - Volume 85 - Issue 4 - p 567. doi: 10.1097/ACM.0b013e3181d953f3. Free. Metrics. Everyone who works in a medical school or teaching hospital has heard someone say, "Don't make too much of that article. It's not a real study, just a case study.".

  14. Writing a Medical Case Study: From Inspiration to Publication

    A case study report is an academic publication describing an unusual or unique case. Academic medical journals publish case study reports to inform and educate other medical practitioners. Case study reports might also prompt additional scholarly research on the medical condition or treatment plan discussed in the report.

  15. Learning together for better health using an evidence-based Learning

    In developed nations, it has been estimated that 60% of care provided aligns with the evidence base, 30% is low value and 10% is potentially harmful [].In some areas, clinical advances have been rapid and research and evidence have paved the way for dramatic improvement in outcomes, mandating rapid implementation of evidence into healthcare (e.g. polio and COVID-19 vaccines).

  16. Case 7-2021: A 19-Year-Old Man with Shock, Multiple Organ Failure, and

    Dr. Pavan K. Bendapudi: I was involved in the care of this patient and am aware of the diagnosis in this case. The patient presented with skin mottling and a rapidly progressive reticular rash ...

  17. Case Studies

    Case Studies. EDTA-Induced Pseudothrombocytopenia up to 9 Months after Initial COVID-19 Infection Associated with Persistent Anti-SARS-CoV-2 IgM/IgG Seropositivity. A Novel Mutation of the Membrane Metallo-Endopeptidase Gene Related to Late-Onset Hereditary Polyneuropathy: Case Report and Review of the Literature.

  18. Case Studies

    CASE STUDIES. This page offers a collection of interesting cases from the Penn Department of Pathology and Laboratory Medicine that are available to download as PDFs. To view specific case studies by organ system or subspecialty, use the filter checkboxes in the left sidebar.

  19. Medical Student Case Studies

    General Diagnostic Case Studies. Arteriovenous Fistula Secondary to Trauma. Chylothorax, Cellulitis, Gas Gangrene. Ectopic ACTH-Secreting Tumor. Epiphrenic Diverticula. Incidental Mediastinal Hilar Lymphadenopathy. Liver Metastasis. Neurocystercircosis. Pneumoperitoneum.

  20. AHRQ Seeks Examples of Impact for Development of Impact Case Studies

    Since 2004, the agency has developed more than 400 Impact Case Studies that illustrate AHRQ's contributions to healthcare improvement. Available online and searchable via an interactive map , the Impact Case Studies help to tell the story of how AHRQ-funded research findings, data and tools have made an impact on the lives of millions of ...

  21. Articles

    A xanthoma is a rare bone condition consisting of a predominant collection of lipid-rich, foamy histiocytes. The central xanthoma of the jaws is a unique benign tumor. A. Georgiev, S. Genova, P. Uchikov, Krasimir Kraev, M. Kraeva, D. Chakarov and A. Uchikov. Journal of Medical Case Reports 2024 18 :225.

  22. Developing a survey to measure nursing students' knowledge, attitudes

    However, an analysis of themes across qualitative and quantitative studies of physicians, medical students, nurses, and nursing students provided sufficient data to develop a preliminary set of items suitable for adaptation to a population of nursing students. ... For example, the mature minor case study yielded a comment: "This whole ...

  23. Case Challenges

    A 65-year-old woman with depression presented with worsening neuropsychiatric symptoms, weight loss, unsteady gait, recurrent falls, and progression of weakness on the left side for several months ...

  24. Case examples

    In a new study, a team developed and successfully tested a hybrid-virtual home visit model that provides care to veterans who do not live close to a VA health care facility. The work is published ...

  25. Impact of the use of cannabis as a medicine in pregnancy, on the unborn

    Reviews, randomised controlled trials, case control, cross-sectional and cohort studies, that have been peer reviewed and published between 1996 and April 2024 as a primary research paper that investigates prenatal use of cannabis for medicinal purposes on foetal, perinatal, and neonatal outcomes, will be selected for review.

  26. The Benefits of AI in Healthcare

    One example comes from a study in Nature Medicine, which found that up to 70% of patients don't take insulin as prescribed. An AI-powered tool that sits in the patient's background (much like a wifi router) might be used to flag errors in how the patient administers an insulin pen or inhaler. ... One use case example is out of the ...