Logo

Essay on Conclusion About Technology

Students are often asked to write an essay on Conclusion About Technology in their schools and colleges. And if you’re also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic.

100 Words Essay on Conclusion About Technology

Understanding technology.

Technology is a broad term that refers to tools, machines, and methods used to solve real-world problems. It has transformed our lives in numerous ways.

Benefits of Technology

Technology has made our lives easier. From communication to transportation, everything has become faster and more efficient. It has also revolutionized education and healthcare.

Drawbacks of Technology

In conclusion, technology is a double-edged sword. While it provides numerous benefits, it also poses significant challenges. It’s crucial to use technology wisely to fully enjoy its advantages while minimizing its drawbacks.

250 Words Essay on Conclusion About Technology

The paradox of technology.

Technology has been a double-edged sword, bringing about unprecedented advancements while also posing significant challenges. On one hand, it has revolutionized communication, healthcare, education, and industry, thereby enhancing the quality of life. On the other hand, it has led to a surge in cybercrime, privacy issues, and environmental problems.

The Boon of Technology

The benefits of technology are undeniable. It has made information readily accessible, facilitated global connectivity, and has been a catalyst for innovation. The advent of technology in healthcare has improved diagnostic precision and treatment, leading to increased life expectancy. In education, it has democratized knowledge, making learning more interactive and engaging.

The Bane of Technology

However, the darker side of technology cannot be overlooked. The rise of cybercrime, identity theft, and data breaches is directly linked to technological advancements. Furthermore, technology has been a significant contributor to environmental degradation, with electronic waste and energy consumption being major concerns.

Striking a Balance

The key lies in striking a balance between leveraging technology for growth and mitigating its adverse effects. This requires responsible use and ethical considerations in technology development and implementation. Additionally, stringent regulations and policies are necessary to control cybercrime and ensure data privacy.

In conclusion, technology is a powerful tool that can transform societies, but it also harbors potential risks. Harnessing its benefits while minimizing its pitfalls is the challenge that lies ahead. As we navigate this digital era, it is crucial to foster a culture of responsible technology use and continue exploring sustainable technological solutions.

500 Words Essay on Conclusion About Technology

Introduction.

Technology has become an integral part of our lives, shaping our world in countless ways. It has transformed various sectors such as communication, transportation, education, healthcare, and even our social interactions. While technology’s impact is largely positive, it also has its drawbacks, posing several challenges to society.

The Positive Impact of Technology

In the realm of communication, technology has broken down geographical barriers. The internet, smartphones, and social media platforms have made it possible to connect with people across the globe instantly. This has fostered global collaboration and made the world a global village.

The Negative Impact of Technology

Despite the numerous benefits, technology also has its downsides. It has led to increased screen time, negatively impacting physical health and mental well-being. There’s also the issue of privacy invasion, with personal data often being misused by various entities.

The Role of Ethical Considerations

As technology continues to evolve, ethical considerations become increasingly crucial. There’s a need for responsible use of technology, with policies in place to protect user data and privacy. Additionally, efforts should be made to ensure that technology is accessible to all, reducing the digital divide and promoting social equality.

Sustainable Technology for a Better Future

The future of technology lies in sustainability. As the world grapples with environmental challenges, there’s a growing need for green technology solutions. From renewable energy sources to eco-friendly products, technology has the potential to address environmental issues and promote sustainable living.

If you’re looking for more, here are essays on other interesting topics:

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

National Academies Press: OpenBook

Information Technology and the U.S. Workforce: Where Are We and Where Do We Go from Here? (2017)

Chapter: 7 conclusion, 7 conclusion.

Progress in many of the basic computing and information technologies has been rapid in recent years, and the committee does not expect the pace of change to slow down in the foreseeable future. While some technologies are reaching maturity now, many important technologies have enormous future potential. As more of the world’s information is digitized and more people and things are networked, the economics of the digital, networked economy will become ever more important. This includes the ability to make copies of goods and services at almost zero cost and deliver them anywhere on the planet almost instantaneously. Furthermore, digitization of products, services, processes, and interactions makes it possible to measure and manage work with far more precision. Data-driven decision making and machine learning provide vast opportunities for improving productivity, efficiency, accuracy, and innovation.

The committee expects important innovations to come in the area of artifical intelligence (AI) and robotics. Several decades ago, humans were unable to converse with machines using ordinary speech; now it is done routinely. Machines are learning to effectively translate from one language to another, a task once seen only in science fiction. We are moving from an era where machines were blind, unable to recognize even simple objects, to an era where they can distinguish faces, read street signs, and understand the content of photographs as well as—or better than—humans. They are being put to work reading X-ray and MRI images, advising doctors on potential drug interactions, helping lawyers

sift through documents, and composing simple stories about sports and finance for newspapers. Machines are becoming much better at reasoning and can now defeat the best humans at most games of skill, from checkers and chess to trivia and Go. Machines are learning to drive cars, which could potentially save thousands of lives in the United States and millions worldwide. Bipedal robots are learning to navigate stairs and uneven terrain, while their cheetah-like brethren can outrun even the fastest humans. Many of the technologies with the greatest impact will likely look unlike any human or animal, but will transport shelves of inventory throughout warehouses, assemble basic electronics in factories, fly to disaster zones with medicine, swim beneath the waves to gather data for oceanographers, and haunt computer networks in search of cyberattacks. In fact, many of these exist in some form already, although they are likely to become more widespread and more competent.

While there are undoubtedly important technological breakthroughs to come, it is critical to note that the technologies that exist today and those under active development have important implications for the workforce. They create opportunities for new products, services, organizational processes, and business models as well as opportunities for automating existing tasks, even whole occupations. Many cognitive and physical tasks will be replaced by machines. At the same time, we expect new job opportunities to emerge as increasingly capable combinations of humans and machines attack problems that previously have been intractable.

Advances in IT and automation will present opportunities to boost America’s overall income and wealth, improve health care, shorten the work week, develop new goods and services, and increase product safety and reliability.

These same advances could also lead to growing inequality, decreased job stability, increasing demands on workers to change jobs, and changes in business organization. There are also important implications for other aspects of society, both intended and unintended, not the least of which include potentially profound changes in education, privacy, security, social relationships, and even democracy.

The ultimate effects of these technologies are not predetermined. Rather, like all tools, computing and information technologies can be used in many different ways. The outcomes for the workforce and society at large depend on our choices. Technology can be a powerful tool. What do we want for our future society? How do we decide this?

Potential future technological capabilities and innovations are largely unpredictable, and their implications and interactions are complex. Investing in extensive and effective data gathering, a robust infrastructure for analyzing these data, and multidisciplinary research will enable a deeper

understanding of emerging changes in technology and the workforce. The results of this research will inform the adoption of policies that will help maximize the resilience and prosperity of the institutions, organizations, and individuals in our society.

Recent years have yielded significant advances in computing and communication technologies, with profound impacts on society. Technology is transforming the way we work, play, and interact with others. From these technological capabilities, new industries, organizational forms, and business models are emerging.

Technological advances can create enormous economic and other benefits, but can also lead to significant changes for workers. IT and automation can change the way work is conducted, by augmenting or replacing workers in specific tasks. This can shift the demand for some types of human labor, eliminating some jobs and creating new ones. Information Technology and the U.S. Workforce explores the interactions between technological, economic, and societal trends and identifies possible near-term developments for work. This report emphasizes the need to understand and track these trends and develop strategies to inform, prepare for, and respond to changes in the labor market. It offers evaluations of what is known, notes open questions to be addressed, and identifies promising research pathways moving forward.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Kate Billingsley

introduction

Technology is the application of scientific knowledge for practical purposes, especially in industry. Technology is a tool that can be used to solve real-world problems. The field of Science, Technology, and Society (STS) “seeks to promote cross-disciplinary integration, civic engagement, and critical thinking” of concepts in the worlds of science and technology ( Harvard University, n.d.). As an aspect of everyday life, technology is continuously evolving to ensure that humanity can be productive, efficient, and follow the path of globalization . STS is a concept that encompasses countless fields of study. “Scientists, engineers, and medical professionals swim (as they must) in the details of their technical work: experiments, inventions, treatments and cures. “promotes cross-disciplinary integration, civic engagement, and critical thinking” It’s an intense and necessary focus” ( Stanford University , n.d.). On the opposite side of the spectrum is STS, which “draws attention to the water: the social, political, legal, economic, and cultural environment that shapes research and invention, supports or inhibits it — and is in turn shaped by evolving science and technology” ( Stanford University , n.d.). Technology is a crucial part of life that is constantly developing to fit the changing needs of society and aiding humanity in simplifying the demands of everyday life.

According to Oberdan (2010), science and technology share identical goals. “At first glance, they seem to provide a deep and thorough going division between the two but, as the discussion progresses, it will become clear that there are, indeed, areas of overlap, too” (Oberdan, 25). Philosophers believe that for a claim to be considered knowledge, it must first be justified, like a hypothesis, and true.  Italian astronomer, physicist, and engineer, Galileo Galilei , was incredibly familiar with the obstacles involved with proving something to be a fact or a theory within the scientific world. Galileo was condemned by the Roman Catholic church for his beliefs that contradicted existing church doctrine (Coyne, 2013). Galileo’s discoveries, although denounced by the church were incredibly innovative and progressive for their time, and are still seen as the basis for modern astronomy today. Nearly 300 years later, Galileo was eventually forgiven by the church, and to this day he is seen as one of the most well known and influential astronomers of all time. Many new innovations and ideas often receive push back before becoming revolutionary and universal practices.

INNOVATION IN TECHNOLOGY

Flash forward to modern time where we can see that innovation is happening even more around us. Look no further than what could be considered the culmination of modern technological innovation: the mobile phone. Cell phone technology has developed exponentially since the invention of the first mobile phone in 1973 ( Seward , 2013). Although there was a period for roughly 20 years in which cell phones were seen as unnecessary and somewhat impractical, as society’s needs changed and developed in the late 1990s, there was a large spike in consumer purchases of mobile phones. Now, cell phones are an entity that can be seen virtually anywhere, which is in large part due to their practicality. Cell phones, specifically smartphones such as Apple’s iPhone , have changed the way society uses technology. Smartphone technology has eliminated the need for people to have a separate cell phone, MP3 player, GPS, mobile video gaming systems, and more. Consumers may fail to realize how many aspects of modern technological advancement are involved in the use of their mobile phones. Cell phones use wifi to browse the internet, use google, access social media, and more. Although these technologies are beneficial, they also allow consumers locations to be traced and phone conversations to be recorded. Modern cell phone technologies collect data on consumers, and many people are unsure how this information is being used. Additionally, mobile phones come equipped with virus protection which brings the field of cybersecurity into smartphone usage. The technological advances that have been made in the market for mobile phones have been targeted towards the changing needs of consumers and society. As proven by the rise in cell phones, with advancements in the field of STS comes new unforeseen obstacles and ethical dilemmas.

​Technology is changing the way we live in this world. Innovations in the scientific world are becoming increasingly more advanced to help conserve earth’s resources and aid in the reduction of pollutants . Transportation is a field that has changed greatly in recent years due to modernization in science and technology, as well as an increased awareness of environmental concerns. The transportation industry continues to be a large producer of pollution

Tesla Model 3 Monaco

due to emissions from cars, trains, and other modes of transportation. As a result, cars have changed a great deal in recent years. A frontrunner in creating environmentally friendly luxury cars is Tesla, lead by CEO Elon Musk. Although nearly every brand of car has an electric option that either runs completely gas free, or uses significantly less fuel than standard cars, Tesla has taken this one step further and created a zero emissions vehicle. However, some believe that Tesla has taken their innovations in the transportation market a bit too far, specifically with their release of driverless cars.

“The recent reset of expectations on driverless cars is a leading indicator for other types of AI-enabled systems as well,” says David A. Mindell,  professor of aeronautics and astronautics, and the Dibner Professor of the History of Engineering and Manufacturing at MIT. “These technologies hold great promise, but it takes time to understand the optimal combination of people and machines. And the timing of adoption is crucial for understanding the impact on workers” ( Dizikes , 2019).

As the earth becomes more and more polluted, consumers are seeking to find new ways to cut down on their negative impacts on the earth. Eco-friendly cars are a simple yet effective way in which consumers can cut back on their pollution within their everyday lives.

THE INTERSECTION OF SCIENCE AND TECHNOLOGY

The way in which energy is generated has changed greatly to benefit consumers and the environment. Energy production has followed a rather linear path over time, and is a prime example of how new innovations stem from old technologies. In the early 1800s, the steam engine acted as the main form of creating energy. It wasn’t until the mid-late 1800s that the combustion engine was invented. This invention was beneficial because it was more efficient than its predecessor, and became a form of energy that was streamlined to be used in countless applications. As time has progressed, this linear path of innovation has continued. As new energy creating technologies have emerged, machinery that was once seen as efficient and effective have been phased out. Today, largely due to the increased demand for clean energy sources, the linear path has split and consumers are faced with numerous options for clean, environmentally friendly energy sources. Over time, scientists and engineers have come to realize that these forms of energy pollute and damage the earth. Solar power, a modern form of clean energy, was once seen as an expensive and impractical way of turning the sun’s energy into usable energy. Now, it is common to see newly built homes with solar panels already built in. Since technology develops to fit the needs of society, scientists have worked to improve solar panels to make them cheaper and easier to access. A total of 173,000 terawatts (trillions of watts) of solar energy strikes the Earth continuously, which is more than 10,000 times of the world’s total energy use ( Chandler , 2011). This information may seem staggering, but is crucial in understanding the importance, as well as the large influence that modern forms of energy can have on society.

Technology has become a crucial part of our society. Without technological advancements, so much of our everyday lives would be drastically different. As technology develops, it strives to fulfill the changing needs of society. Technology progresses as society evolves. That being said, progress comes at a price. This price is different for each person, and varies based on how much people value technological and scientific advancements in their own lives. Thomas Parke Hughes’s Networks of Power “compared how electric power systems developed in America, England, and Germany, showing that they required not only electrical but social ‘engineering’ to create the necessary legal frameworks, financing, standards, political support, and organizational designs” ( Stanford University ). In other words, the scientific invention and production of a new technology does not ensure its success. Technology’s success is highly dependent on society’s acceptance or rejection of a product, as well as whether or not any path dependence is involved. Changing technologies benefit consumers in countless aspects of their lives including in the workforce, in communications, in the use of natural resources, and so much more. These innovations across numerous different markets aid society by making it easier to complete certain tasks. Innovation will never end; rather, it will continue to develop at increasing rates as science and technological fields becomes more and more cutting edge.

Chapter Questions

  • True or False: Improvements in science and technology always benefit society
  • Multiple Choice : Technology is: A.   The application of scientific knowledge for practical purposes, especially in industry B.  Tools and machines that may be used to solve real-world problems C.   Something that does not change D.   Both A and B
  • Short Answer: Discuss ways in which technological progression over time is related and how this relationship has led to the creation of new innovation.

Chandler, D. (2011). Shining brightly: Vast amounts of solar energy radiate to the Earth constantly, but tapping that energy cost-effectively remains a challenge.  MIT News. http://news.mit.edu/2011/energy-scale-part3-1026 

Coyne, SJ, G. V. (2013). Science meets biblical exegesis in the Galileo affair.  Zygon® ,  48 (1), 221-229. https://doi-org.libproxy.clemson.edu/10.1111/j.1467-9744.2012.01324.x 

Dizikes, P., & MIT News Office. (2019). MIT report examines how to make technology work for society. http://news.mit.edu/2019/work-future-report-technology-jobs-society-0904

Florez, D., García-Duque, C. E., & Osorio, J. C. (2019). Is technology (still) applied science? Technology in Society.  Technology in Society, 59.   doi: 10.1016/j.techsoc.2019.101193

Groce, J. E., Farrelly, M. A., Jorgensen, B. S., & Cook, C. N. (2019). Using social‐network research to improve outcomes in natural resource management. Conservation biology , 33 (1), 53-65. https://conbio.onlinelibrary.wiley.com/doi/epdf/10.1111/cobi.13127

Harvard University. (n.d.) What is STS? .  http://sts.hks.harvard.edu/about/whatissts.html .

Union of Concerned Scientists. (2018). How Do Battery Electric Cars Work?   https://www.ucsusa.org/clean-vehicles/electric-vehicles/how-do-battery-electric-cars-work .

Oberdan, T. (2010). Science, Technology, and the Texture of Our Lives. Tavenner Publishing Company.

Seward, Z. M. (2013). The First Mobile Phone Call Was Made 40 Years Ago Today . The Atlantic.   https://www.theatlantic.com/technology/archive/2013/04/the-first- mobile-phone-call-was-made-40-years-ago-today/274611/ .

Stanford University. (n.d.). What is the Study of STS? . https://sts.stanford.edu/about/what-study-sts .

Wei, R., & Lo, V.-H. (2006). Staying connected while on the move: Cell phone use and social connectedness. New Media & Society, 8 (1), 53–72. https://doi.org/10.1177/1461444806059870

Winston, B. (2006). Media Technology and Society: A History From the Telegraph to the Internet . London: Routledge.

Images & Videos

“Tesla Model 3 Monaco” is licensed under CC BY-NC-SA 4.0

Building bridges between science and society for a better future. | Nadine Bongaerts | TEDxSaclay

“Tesla Model 3 Monaco”  is licensed under  CC BY-NC-SA 4.0

To the extent possible under law, Kate Billingsley has waived all copyright and related or neighboring rights to Science, Technology, & Society: A Student-Led Exploration , except where otherwise noted.

Share This Book

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

Impacts of digital technologies on education and factors influencing schools' digital capacity and transformation: A literature review

Stella timotheou.

1 CYENS Center of Excellence & Cyprus University of Technology (Cyprus Interaction Lab), Cyprus, CYENS Center of Excellence & Cyprus University of Technology, Nicosia-Limassol, Cyprus

Ourania Miliou

Yiannis dimitriadis.

2 Universidad de Valladolid (UVA), Spain, Valladolid, Spain

Sara Villagrá Sobrino

Nikoleta giannoutsou, romina cachia.

3 JRC - Joint Research Centre of the European Commission, Seville, Spain

Alejandra Martínez Monés

Andri ioannou, associated data.

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Digital technologies have brought changes to the nature and scope of education and led education systems worldwide to adopt strategies and policies for ICT integration. The latter brought about issues regarding the quality of teaching and learning with ICTs, especially concerning the understanding, adaptation, and design of the education systems in accordance with current technological trends. These issues were emphasized during the recent COVID-19 pandemic that accelerated the use of digital technologies in education, generating questions regarding digitalization in schools. Specifically, many schools demonstrated a lack of experience and low digital capacity, which resulted in widening gaps, inequalities, and learning losses. Such results have engendered the need for schools to learn and build upon the experience to enhance their digital capacity and preparedness, increase their digitalization levels, and achieve a successful digital transformation. Given that the integration of digital technologies is a complex and continuous process that impacts different actors within the school ecosystem, there is a need to show how these impacts are interconnected and identify the factors that can encourage an effective and efficient change in the school environments. For this purpose, we conducted a non-systematic literature review. The results of the literature review were organized thematically based on the evidence presented about the impact of digital technology on education and the factors that affect the schools’ digital capacity and digital transformation. The findings suggest that ICT integration in schools impacts more than just students’ performance; it affects several other school-related aspects and stakeholders, too. Furthermore, various factors affect the impact of digital technologies on education. These factors are interconnected and play a vital role in the digital transformation process. The study results shed light on how ICTs can positively contribute to the digital transformation of schools and which factors should be considered for schools to achieve effective and efficient change.

Introduction

Digital technologies have brought changes to the nature and scope of education. Versatile and disruptive technological innovations, such as smart devices, the Internet of Things (IoT), artificial intelligence (AI), augmented reality (AR) and virtual reality (VR), blockchain, and software applications have opened up new opportunities for advancing teaching and learning (Gaol & Prasolova-Førland, 2021 ; OECD, 2021 ). Hence, in recent years, education systems worldwide have increased their investment in the integration of information and communication technology (ICT) (Fernández-Gutiérrez et al., 2020 ; Lawrence & Tar, 2018 ) and prioritized their educational agendas to adapt strategies or policies around ICT integration (European Commission, 2019 ). The latter brought about issues regarding the quality of teaching and learning with ICTs (Bates, 2015 ), especially concerning the understanding, adaptation, and design of education systems in accordance with current technological trends (Balyer & Öz, 2018 ). Studies have shown that despite the investment made in the integration of technology in schools, the results have not been promising, and the intended outcomes have not yet been achieved (Delgado et al., 2015 ; Lawrence & Tar, 2018 ). These issues were exacerbated during the COVID-19 pandemic, which forced teaching across education levels to move online (Daniel, 2020 ). Online teaching accelerated the use of digital technologies generating questions regarding the process, the nature, the extent, and the effectiveness of digitalization in schools (Cachia et al., 2021 ; König et al., 2020 ). Specifically, many schools demonstrated a lack of experience and low digital capacity, which resulted in widening gaps, inequalities, and learning losses (Blaskó et al., 2021 ; Di Pietro et al, 2020 ). Such results have engendered the need for schools to learn and build upon the experience in order to enhance their digital capacity (European Commission, 2020 ) and increase their digitalization levels (Costa et al., 2021 ). Digitalization offers possibilities for fundamental improvement in schools (OECD, 2021 ; Rott & Marouane, 2018 ) and touches many aspects of a school’s development (Delcker & Ifenthaler, 2021 ) . However, it is a complex process that requires large-scale transformative changes beyond the technical aspects of technology and infrastructure (Pettersson, 2021 ). Namely, digitalization refers to “ a series of deep and coordinated culture, workforce, and technology shifts and operating models ” (Brooks & McCormack, 2020 , p. 3) that brings cultural, organizational, and operational change through the integration of digital technologies (JISC, 2020 ). A successful digital transformation requires that schools increase their digital capacity levels, establishing the necessary “ culture, policies, infrastructure as well as digital competence of students and staff to support the effective integration of technology in teaching and learning practices ” (Costa et al, 2021 , p.163).

Given that the integration of digital technologies is a complex and continuous process that impacts different actors within the school ecosystem (Eng, 2005 ), there is a need to show how the different elements of the impact are interconnected and to identify the factors that can encourage an effective and efficient change in the school environment. To address the issues outlined above, we formulated the following research questions:

a) What is the impact of digital technologies on education?

b) Which factors might affect a school’s digital capacity and transformation?

In the present investigation, we conducted a non-systematic literature review of publications pertaining to the impact of digital technologies on education and the factors that affect a school’s digital capacity and transformation. The results of the literature review were organized thematically based on the evidence presented about the impact of digital technology on education and the factors which affect the schools’ digital capacity and digital transformation.

Methodology

The non-systematic literature review presented herein covers the main theories and research published over the past 17 years on the topic. It is based on meta-analyses and review papers found in scholarly, peer-reviewed content databases and other key studies and reports related to the concepts studied (e.g., digitalization, digital capacity) from professional and international bodies (e.g., the OECD). We searched the Scopus database, which indexes various online journals in the education sector with an international scope, to collect peer-reviewed academic papers. Furthermore, we used an all-inclusive Google Scholar search to include relevant key terms or to include studies found in the reference list of the peer-reviewed papers, and other key studies and reports related to the concepts studied by professional and international bodies. Lastly, we gathered sources from the Publications Office of the European Union ( https://op.europa.eu/en/home ); namely, documents that refer to policies related to digital transformation in education.

Regarding search terms, we first searched resources on the impact of digital technologies on education by performing the following search queries: “impact” OR “effects” AND “digital technologies” AND “education”, “impact” OR “effects” AND “ICT” AND “education”. We further refined our results by adding the terms “meta-analysis” and “review” or by adjusting the search options based on the features of each database to avoid collecting individual studies that would provide limited contributions to a particular domain. We relied on meta-analyses and review studies as these consider the findings of multiple studies to offer a more comprehensive view of the research in a given area (Schuele & Justice, 2006 ). Specifically, meta-analysis studies provided quantitative evidence based on statistically verifiable results regarding the impact of educational interventions that integrate digital technologies in school classrooms (Higgins et al., 2012 ; Tolani-Brown et al., 2011 ).

However, quantitative data does not offer explanations for the challenges or difficulties experienced during ICT integration in learning and teaching (Tolani-Brown et al., 2011 ). To fill this gap, we analyzed literature reviews and gathered in-depth qualitative evidence of the benefits and implications of technology integration in schools. In the analysis presented herein, we also included policy documents and reports from professional and international bodies and governmental reports, which offered useful explanations of the key concepts of this study and provided recent evidence on digital capacity and transformation in education along with policy recommendations. The inclusion and exclusion criteria that were considered in this study are presented in Table ​ Table1 1 .

Inclusion and exclusion criteria for the selection of resources on the impact of digital technologies on education

Inclusion criteriaExclusion criteria

• Published in 2005 or later

• Review and meta-analysis studies

• Formal education K-12

• Peer-reviewed articles

• Articles in English

• Reports from professional/international bodies

• Governmental reports

• Book chapters

• Ph.D. dissertations and theses

• Conference poster papers

• Conference papers without proceedings

• Resources on higher education

• Resources on pre-school education

• Individual studies

To ensure a reliable extraction of information from each study and assist the research synthesis we selected the study characteristics of interest (impact) and constructed coding forms. First, an overview of the synthesis was provided by the principal investigator who described the processes of coding, data entry, and data management. The coders followed the same set of instructions but worked independently. To ensure a common understanding of the process between coders, a sample of ten studies was tested. The results were compared, and the discrepancies were identified and resolved. Additionally, to ensure an efficient coding process, all coders participated in group meetings to discuss additions, deletions, and modifications (Stock, 1994 ). Due to the methodological diversity of the studied documents we began to synthesize the literature review findings based on similar study designs. Specifically, most of the meta-analysis studies were grouped in one category due to the quantitative nature of the measured impact. These studies tended to refer to student achievement (Hattie et al., 2014 ). Then, we organized the themes of the qualitative studies in several impact categories. Lastly, we synthesized both review and meta-analysis data across the categories. In order to establish a collective understanding of the concept of impact, we referred to a previous impact study by Balanskat ( 2009 ) which investigated the impact of technology in primary schools. In this context, the impact had a more specific ICT-related meaning and was described as “ a significant influence or effect of ICT on the measured or perceived quality of (parts of) education ” (Balanskat, 2009 , p. 9). In the study presented herein, the main impacts are in relation to learning and learners, teaching, and teachers, as well as other key stakeholders who are directly or indirectly connected to the school unit.

The study’s results identified multiple dimensions of the impact of digital technologies on students’ knowledge, skills, and attitudes; on equality, inclusion, and social integration; on teachers’ professional and teaching practices; and on other school-related aspects and stakeholders. The data analysis indicated various factors that might affect the schools’ digital capacity and transformation, such as digital competencies, the teachers’ personal characteristics and professional development, as well as the school’s leadership and management, administration, infrastructure, etc. The impacts and factors found in the literature review are presented below.

Impacts of digital technologies on students’ knowledge, skills, attitudes, and emotions

The impact of ICT use on students’ knowledge, skills, and attitudes has been investigated early in the literature. Eng ( 2005 ) found a small positive effect between ICT use and students' learning. Specifically, the author reported that access to computer-assisted instruction (CAI) programs in simulation or tutorial modes—used to supplement rather than substitute instruction – could enhance student learning. The author reported studies showing that teachers acknowledged the benefits of ICT on pupils with special educational needs; however, the impact of ICT on students' attainment was unclear. Balanskat et al. ( 2006 ) found a statistically significant positive association between ICT use and higher student achievement in primary and secondary education. The authors also reported improvements in the performance of low-achieving pupils. The use of ICT resulted in further positive gains for students, namely increased attention, engagement, motivation, communication and process skills, teamwork, and gains related to their behaviour towards learning. Evidence from qualitative studies showed that teachers, students, and parents recognized the positive impact of ICT on students' learning regardless of their competence level (strong/weak students). Punie et al. ( 2006 ) documented studies that showed positive results of ICT-based learning for supporting low-achieving pupils and young people with complex lives outside the education system. Liao et al. ( 2007 ) reported moderate positive effects of computer application instruction (CAI, computer simulations, and web-based learning) over traditional instruction on primary school student's achievement. Similarly, Tamim et al. ( 2011 ) reported small to moderate positive effects between the use of computer technology (CAI, ICT, simulations, computer-based instruction, digital and hypermedia) and student achievement in formal face-to-face classrooms compared to classrooms that did not use technology. Jewitt et al., ( 2011 ) found that the use of learning platforms (LPs) (virtual learning environments, management information systems, communication technologies, and information- and resource-sharing technologies) in schools allowed primary and secondary students to access a wider variety of quality learning resources, engage in independent and personalized learning, and conduct self- and peer-review; LPs also provide opportunities for teacher assessment and feedback. Similar findings were reported by Fu ( 2013 ), who documented a list of benefits and opportunities of ICT use. According to the author, the use of ICTs helps students access digital information and course content effectively and efficiently, supports student-centered and self-directed learning, as well as the development of a creative learning environment where more opportunities for critical thinking skills are offered, and promotes collaborative learning in a distance-learning environment. Higgins et al. ( 2012 ) found consistent but small positive associations between the use of technology and learning outcomes of school-age learners (5–18-year-olds) in studies linking the provision and use of technology with attainment. Additionally, Chauhan ( 2017 ) reported a medium positive effect of technology on the learning effectiveness of primary school students compared to students who followed traditional learning instruction.

The rise of mobile technologies and hardware devices instigated investigations into their impact on teaching and learning. Sung et al. ( 2016 ) reported a moderate effect on students' performance from the use of mobile devices in the classroom compared to the use of desktop computers or the non-use of mobile devices. Schmid et al. ( 2014 ) reported medium–low to low positive effects of technology integration (e.g., CAI, ICTs) in the classroom on students' achievement and attitude compared to not using technology or using technology to varying degrees. Tamim et al. ( 2015 ) found a low statistically significant effect of the use of tablets and other smart devices in educational contexts on students' achievement outcomes. The authors suggested that tablets offered additional advantages to students; namely, they reported improvements in students’ notetaking, organizational and communication skills, and creativity. Zheng et al. ( 2016 ) reported a small positive effect of one-to-one laptop programs on students’ academic achievement across subject areas. Additional reported benefits included student-centered, individualized, and project-based learning enhanced learner engagement and enthusiasm. Additionally, the authors found that students using one-to-one laptop programs tended to use technology more frequently than in non-laptop classrooms, and as a result, they developed a range of skills (e.g., information skills, media skills, technology skills, organizational skills). Haßler et al. ( 2016 ) found that most interventions that included the use of tablets across the curriculum reported positive learning outcomes. However, from 23 studies, five reported no differences, and two reported a negative effect on students' learning outcomes. Similar results were indicated by Kalati and Kim ( 2022 ) who investigated the effect of touchscreen technologies on young students’ learning. Specifically, from 53 studies, 34 advocated positive effects of touchscreen devices on children’s learning, 17 obtained mixed findings and two studies reported negative effects.

More recently, approaches that refer to the impact of gamification with the use of digital technologies on teaching and learning were also explored. A review by Pan et al. ( 2022 ) that examined the role of learning games in fostering mathematics education in K-12 settings, reported that gameplay improved students’ performance. Integration of digital games in teaching was also found as a promising pedagogical practice in STEM education that could lead to increased learning gains (Martinez et al., 2022 ; Wang et al., 2022 ). However, although Talan et al. ( 2020 ) reported a medium effect of the use of educational games (both digital and non-digital) on academic achievement, the effect of non-digital games was higher.

Over the last two years, the effects of more advanced technologies on teaching and learning were also investigated. Garzón and Acevedo ( 2019 ) found that AR applications had a medium effect on students' learning outcomes compared to traditional lectures. Similarly, Garzón et al. ( 2020 ) showed that AR had a medium impact on students' learning gains. VR applications integrated into various subjects were also found to have a moderate effect on students’ learning compared to control conditions (traditional classes, e.g., lectures, textbooks, and multimedia use, e.g., images, videos, animation, CAI) (Chen et al., 2022b ). Villena-Taranilla et al. ( 2022 ) noted the moderate effect of VR technologies on students’ learning when these were applied in STEM disciplines. In the same meta-analysis, Villena-Taranilla et al. ( 2022 ) highlighted the role of immersive VR, since its effect on students’ learning was greater (at a high level) across educational levels (K-6) compared to semi-immersive and non-immersive integrations. In another meta-analysis study, the effect size of the immersive VR was small and significantly differentiated across educational levels (Coban et al., 2022 ). The impact of AI on education was investigated by Su and Yang ( 2022 ) and Su et al. ( 2022 ), who showed that this technology significantly improved students’ understanding of AI computer science and machine learning concepts.

It is worth noting that the vast majority of studies referred to learning gains in specific subjects. Specifically, several studies examined the impact of digital technologies on students’ literacy skills and reported positive effects on language learning (Balanskat et al., 2006 ; Grgurović et al., 2013 ; Friedel et al., 2013 ; Zheng et al., 2016 ; Chen et al., 2022b ; Savva et al., 2022 ). Also, several studies documented positive effects on specific language learning areas, namely foreign language learning (Kao, 2014 ), writing (Higgins et al., 2012 ; Wen & Walters, 2022 ; Zheng et al., 2016 ), as well as reading and comprehension (Cheung & Slavin, 2011 ; Liao et al., 2007 ; Schwabe et al., 2022 ). ICTs were also found to have a positive impact on students' performance in STEM (science, technology, engineering, and mathematics) disciplines (Arztmann et al., 2022 ; Bado, 2022 ; Villena-Taranilla et al., 2022 ; Wang et al., 2022 ). Specifically, a number of studies reported positive impacts on students’ achievement in mathematics (Balanskat et al., 2006 ; Hillmayr et al., 2020 ; Li & Ma, 2010 ; Pan et al., 2022 ; Ran et al., 2022 ; Verschaffel et al., 2019 ; Zheng et al., 2016 ). Furthermore, studies documented positive effects of ICTs on science learning (Balanskat et al., 2006 ; Liao et al., 2007 ; Zheng et al., 2016 ; Hillmayr et al., 2020 ; Kalemkuş & Kalemkuş, 2022 ; Lei et al., 2022a ). Çelik ( 2022 ) also noted that computer simulations can help students understand learning concepts related to science. Furthermore, some studies documented that the use of ICTs had a positive impact on students’ achievement in other subjects, such as geography, history, music, and arts (Chauhan, 2017 ; Condie & Munro, 2007 ), and design and technology (Balanskat et al., 2006 ).

More specific positive learning gains were reported in a number of skills, e.g., problem-solving skills and pattern exploration skills (Higgins et al., 2012 ), metacognitive learning outcomes (Verschaffel et al., 2019 ), literacy skills, computational thinking skills, emotion control skills, and collaborative inquiry skills (Lu et al., 2022 ; Su & Yang, 2022 ; Su et al., 2022 ). Additionally, several investigations have reported benefits from the use of ICT on students’ creativity (Fielding & Murcia, 2022 ; Liu et al., 2022 ; Quah & Ng, 2022 ). Lastly, digital technologies were also found to be beneficial for enhancing students’ lifelong learning skills (Haleem et al., 2022 ).

Apart from gaining knowledge and skills, studies also reported improvement in motivation and interest in mathematics (Higgins et. al., 2019 ; Fadda et al., 2022 ) and increased positive achievement emotions towards several subjects during interventions using educational games (Lei et al., 2022a ). Chen et al. ( 2022a ) also reported a small but positive effect of digital health approaches in bullying and cyberbullying interventions with K-12 students, demonstrating that technology-based approaches can help reduce bullying and related consequences by providing emotional support, empowerment, and change of attitude. In their meta-review study, Su et al. ( 2022 ) also documented that AI technologies effectively strengthened students’ attitudes towards learning. In another meta-analysis, Arztmann et al. ( 2022 ) reported positive effects of digital games on motivation and behaviour towards STEM subjects.

Impacts of digital technologies on equality, inclusion and social integration

Although most of the reviewed studies focused on the impact of ICTs on students’ knowledge, skills, and attitudes, reports were also made on other aspects in the school context, such as equality, inclusion, and social integration. Condie and Munro ( 2007 ) documented research interventions investigating how ICT can support pupils with additional or special educational needs. While those interventions were relatively small scale and mostly based on qualitative data, their findings indicated that the use of ICTs enabled the development of communication, participation, and self-esteem. A recent meta-analysis (Baragash et al., 2022 ) with 119 participants with different disabilities, reported a significant overall effect size of AR on their functional skills acquisition. Koh’s meta-analysis ( 2022 ) also revealed that students with intellectual and developmental disabilities improved their competence and performance when they used digital games in the lessons.

Istenic Starcic and Bagon ( 2014 ) found that the role of ICT in inclusion and the design of pedagogical and technological interventions was not sufficiently explored in educational interventions with people with special needs; however, some benefits of ICT use were found in students’ social integration. The issue of gender and technology use was mentioned in a small number of studies. Zheng et al. ( 2016 ) reported a statistically significant positive interaction between one-to-one laptop programs and gender. Specifically, the results showed that girls and boys alike benefitted from the laptop program, but the effect on girls’ achievement was smaller than that on boys’. Along the same lines, Arztmann et al. ( 2022 ) reported no difference in the impact of game-based learning between boys and girls, arguing that boys and girls equally benefited from game-based interventions in STEM domains. However, results from a systematic review by Cussó-Calabuig et al. ( 2018 ) found limited and low-quality evidence on the effects of intensive use of computers on gender differences in computer anxiety, self-efficacy, and self-confidence. Based on their view, intensive use of computers can reduce gender differences in some areas and not in others, depending on contextual and implementation factors.

Impacts of digital technologies on teachers’ professional and teaching practices

Various research studies have explored the impact of ICT on teachers’ instructional practices and student assessment. Friedel et al. ( 2013 ) found that the use of mobile devices by students enabled teachers to successfully deliver content (e.g., mobile serious games), provide scaffolding, and facilitate synchronous collaborative learning. The integration of digital games in teaching and learning activities also gave teachers the opportunity to study and apply various pedagogical practices (Bado, 2022 ). Specifically, Bado ( 2022 ) found that teachers who implemented instructional activities in three stages (pre-game, game, and post-game) maximized students’ learning outcomes and engagement. For instance, during the pre-game stage, teachers focused on lectures and gameplay training, at the game stage teachers provided scaffolding on content, addressed technical issues, and managed the classroom activities. During the post-game stage, teachers organized activities for debriefing to ensure that the gameplay had indeed enhanced students’ learning outcomes.

Furthermore, ICT can increase efficiency in lesson planning and preparation by offering possibilities for a more collaborative approach among teachers. The sharing of curriculum plans and the analysis of students’ data led to clearer target settings and improvements in reporting to parents (Balanskat et al., 2006 ).

Additionally, the use and application of digital technologies in teaching and learning were found to enhance teachers’ digital competence. Balanskat et al. ( 2006 ) documented studies that revealed that the use of digital technologies in education had a positive effect on teachers’ basic ICT skills. The greatest impact was found on teachers with enough experience in integrating ICTs in their teaching and/or who had recently participated in development courses for the pedagogical use of technologies in teaching. Punie et al. ( 2006 ) reported that the provision of fully equipped multimedia portable computers and the development of online teacher communities had positive impacts on teachers’ confidence and competence in the use of ICTs.

Moreover, online assessment via ICTs benefits instruction. In particular, online assessments support the digitalization of students’ work and related logistics, allow teachers to gather immediate feedback and readjust to new objectives, and support the improvement of the technical quality of tests by providing more accurate results. Additionally, the capabilities of ICTs (e.g., interactive media, simulations) create new potential methods of testing specific skills, such as problem-solving and problem-processing skills, meta-cognitive skills, creativity and communication skills, and the ability to work productively in groups (Punie et al., 2006 ).

Impacts of digital technologies on other school-related aspects and stakeholders

There is evidence that the effective use of ICTs and the data transmission offered by broadband connections help improve administration (Balanskat et al., 2006 ). Specifically, ICTs have been found to provide better management systems to schools that have data gathering procedures in place. Condie and Munro ( 2007 ) reported impacts from the use of ICTs in schools in the following areas: attendance monitoring, assessment records, reporting to parents, financial management, creation of repositories for learning resources, and sharing of information amongst staff. Such data can be used strategically for self-evaluation and monitoring purposes which in turn can result in school improvements. Additionally, they reported that online access to other people with similar roles helped to reduce headteachers’ isolation by offering them opportunities to share insights into the use of ICT in learning and teaching and how it could be used to support school improvement. Furthermore, ICTs provided more efficient and successful examination management procedures, namely less time-consuming reporting processes compared to paper-based examinations and smooth communications between schools and examination authorities through electronic data exchange (Punie et al., 2006 ).

Zheng et al. ( 2016 ) reported that the use of ICTs improved home-school relationships. Additionally, Escueta et al. ( 2017 ) reported several ICT programs that had improved the flow of information from the school to parents. Particularly, they documented that the use of ICTs (learning management systems, emails, dedicated websites, mobile phones) allowed for personalized and customized information exchange between schools and parents, such as attendance records, upcoming class assignments, school events, and students’ grades, which generated positive results on students’ learning outcomes and attainment. Such information exchange between schools and families prompted parents to encourage their children to put more effort into their schoolwork.

The above findings suggest that the impact of ICT integration in schools goes beyond students’ performance in school subjects. Specifically, it affects a number of school-related aspects, such as equality and social integration, professional and teaching practices, and diverse stakeholders. In Table ​ Table2, 2 , we summarize the different impacts of digital technologies on school stakeholders based on the literature review, while in Table ​ Table3 3 we organized the tools/platforms and practices/policies addressed in the meta-analyses, literature reviews, EU reports, and international bodies included in the manuscript.

The impact of digital technologies on schools’ stakeholders based on the literature review

ImpactsReferences
Students
  Knowledge, skills, attitudes, and emotions
    • Learning gains from the use of ICTs across the curriculumEng, ; Balanskat et al., ; Liao et al., ; Tamim et al., ; Higgins et al., ; Chauhan, ; Sung et al., ; Schmid et al., ; Tamim et al., ; Zheng et al., ; Haßler et al., ; Kalati & Kim, ; Martinez et al., ; Talan et al., ; Panet al., ; Garzón & Acevedo, ; Garzón et al., ; Villena-Taranilla, et al., ; Coban et al.,
    • Positive learning gains from the use of ICTs in specific school subjects (e.g., mathematics, literacy, language, science)Arztmann et al., ; Villena-Taranilla, et al., ; Chen et al., ; Balanskat et al., ; Grgurović, et al., ; Friedel et al., ; Zheng et al., ; Savva et al., ; Kao, ; Higgins et al., ; Wen & Walters, ; Liao et al., ; Cheung & Slavin, ; Schwabe et al., ; Li & Ma, ; Verschaffel et al., ; Ran et al., ; Liao et al., ; Hillmayr et al., ; Kalemkuş & Kalemkuş, ; Lei et al., ; Condie & Munro, ; Chauhan, ; Bado, ; Wang et al., ; Pan et al.,
    • Positive learning gains for special needs students and low-achieving studentsEng, ; Balanskat et al., ; Punie et al., ; Koh,
    • Oportunities to develop a range of skills (e.g., subject-related skills, communication skills, negotiation skills, emotion control skills, organizational skills, critical thinking skills, creativity, metacognitive skills, life, and career skills)Balanskat et al., ; Fu, ; Tamim et al., ; Zheng et al., ; Higgins et al., ; Verschaffel et al., ; Su & Yang, ; Su et al., ; Lu et al., ; Liu et al., ; Quah & Ng, ; Fielding & Murcia, ; Tang et al., ; Haleem et al.,
    • Oportunities to develop digital skills (e.g., information skills, media skills, ICT skills)Zheng et al., ; Su & Yang, ; Lu et al., ; Su et al.,
    • Positive attitudes and behaviours towards ICTs, positive emotions (e.g., increased interest, motivation, attention, engagement, confidence, reduced anxiety, positive achievement emotions, reduction in bullying and cyberbullying)Balanskat et al., ; Schmid et al., ; Zheng et al., ; Fadda et al., ; Higgins et al., ; Chen et al., ; Lei et al., ; Arztmann et al., ; Su et al.,
  Learning experience
    • Enhance access to resourcesJewitt et al., ; Fu,
    • Opportunities to experience various learning practices (e.g., active learning, learner-centred learning, independent and personalized learning, collaborative learning, self-directed learning, self- and peer-review)Jewitt et al., ; Fu,
    • Improved access to teacher assessment and feedbackJewitt et al.,
Equality, inclusion, and social integration
    • Improved communication, functional skills, participation, self-esteem, and engagement of special needs studentsCondie & Munro, ; Baragash et al., ; Koh,
    • Enhanced social interaction for students in general and for students with learning difficultiesIstenic Starcic & Bagon,
    • Benefits for both girls and boysZheng et al., ; Arztmann et al.,
Teachers
  Professional practice
    • Development of digital competenceBalanskat et al.,
    • Positive attitudes and behaviours towards ICTs (e.g., increased confidence)Punie et al., ,
    • Formalized collaborative planning between teachersBalanskat et al.,
    • Improved reporting to parentsBalanskat et al.,
Teaching practice
    • Efficiency in lesson planning and preparationBalanskat et al.,
    • Facilitate assessment through the provision of immediate feedbackPunie et al.,
    • Improvements in the technical quality of testsPunie et al.,
    • New methods of testing specific skills (e.g., problem-solving skills, meta-cognitive skills)Punie et al.,
    • Successful content delivery and lessonsFriedel et al.,
    • Application of different instructional practices (e.g., scaffolding, synchronous collaborative learning, online learning, blended learning, hybrid learning)Friedel et al., ; Bado, ; Kazu & Yalçin, ; Ulum,
Administrators
  Data-based decision-making
    • Improved data-gathering processesBalanskat et al.,
    • Support monitoring and evaluation processes (e.g., attendance monitoring, financial management, assessment records)Condie & Munro,
Organizational processes
    • Access to learning resources via the creation of repositoriesCondie & Munro,
    • Information sharing between school staffCondie & Munro,
    • Smooth communications with external authorities (e.g., examination results)Punie et al.,
    • Efficient and successful examination management proceduresPunie et al.,
  Home-school communication
    • Support reporting to parentsCondie & Munro,
    • Improved flow of communication between the school and parents (e.g., customized and personalized communications)Escueta et al.,
School leaders
  Professional practice
    • Reduced headteacher isolationCondie & Munro,
    • Improved access to insights about practices for school improvementCondie & Munro,
Parents
  Home-school relationships
    • Improved home-school relationshipsZheng et al.,
    • Increased parental involvement in children’s school lifeEscueta et al.,

Tools/platforms and practices/policies addressed in the meta-analyses, literature reviews, EU reports, and international bodies included in the manuscript

Technologies/tools/practices/policiesReferences
ICT general – various types of technologies

Eng, (review)

Moran et al., (meta-analysis)

Balanskat et al., (report)

Punie et al., (review)

Fu, (review)

Higgins et al., (report)

Chauhan, (meta-analysis)

Schmid et al., (meta-analysis)

Grgurović et al., (meta-analysis)

Higgins et al., (meta-analysis)

Wen & Walters, (meta-analysis)

Cheung & Slavin, (meta-analysis)

Li & Ma, (meta-analysis)

Hillmayr et al., (meta-analysis)

Verschaffel et al., (systematic review)

Ran et al., (meta-analysis)

Fielding & Murcia, (systematic review)

Tang et al., (review)

Haleem et al., (review)

Condie & Munro, (review)

Underwood, (review)

Istenic Starcic & Bagon, (review)

Cussó-Calabuig et al., (systematic review)

Escueta et al. ( ) (review)

Archer et al., (meta-analysis)

Lee et al., (meta-analysis)

Delgado et al., (review)

Di Pietro et al., (report)

Practices/policies on schools’ digital transformation

Bingimlas, (review)

Hardman, (review)

Hattie, (synthesis of multiple meta-analysis)

Trucano, (book-Knowledge maps)

Ređep, (policy study)

Conrads et al, (report)

European Commission, (EU report)

Elkordy & Lovinelli, (book chapter)

Eurydice, (EU report)

Vuorikari et al., (JRC paper)

Sellar, (review)

European Commission, (EU report)

OECD, (international paper)

Computer-assisted instruction, computer simulations, activeboards, and web-based learning

Liao et al., (meta-analysis)

Tamim et al., (meta-analysis)

Çelik, (review)

Moran et al., (meta-analysis)

Eng, (review)

Learning platforms (LPs) (virtual learning environments, management information systems, communication technologies and information and resource sharing technologies)Jewitt et al., (report)
Mobile devices—touch screens (smart devices, tablets, laptops)

Sung et al., (meta-analysis and research synthesis)

Tamim et al., (meta-analysis)

Tamim et al., (systematic review and meta-analysis)

Zheng et al., (meta-analysis and research synthesis)

Haßler et al., (review)

Kalati & Kim, (systematic review)

Friedel et al., (meta-analysis and review)

Chen et al., (meta-analysis)

Schwabe et al., (meta-analysis)

Punie et al., (review)

Digital games (various types e.g., adventure, serious; various domains e.g., history, science)

Wang et al., (meta-analysis)

Arztmann et al., (meta-analysis)

Martinez et al., (systematic review)

Talan et al., (meta-analysis)

Pan et al., (systematic review)

Chen et al., (meta-analysis)

Kao, (meta-analysis)

Fadda et al., (meta-analysis)

Lu et al., (meta-analysis)

Lei et al., (meta-analysis)

Koh, (meta-analysis)

Bado, (review)

Augmented reality (AR)

Garzón & Acevedo, (meta-analysis)

Garzón et al., (meta-analysis and research synthesis)

Kalemkuş & Kalemkuş, (meta-analysis)

Baragash et al., (meta-analysis)

Virtual reality (VR)

Immersive virtual reality (IVR)

Villena-Taranilla et al., (meta-analysis)

Chen et al., (meta-analysis)

Coban et al., (meta-analysis)

Artificial intelligence (AI) and robotics

Su & Yang, (review)

Su et al., (meta review)

Online learning/elearning

Ulum, (meta-analysis)

Cheok & Wong, (review)

Blended learningGrgurović et al., (meta-analysis)
Synchronous parallel participationFriedel et al., (meta-analysis and review)
Electronic books/digital storytelling

Savva et al., (meta-analysis)

Quah & Ng, (systematic review)

Multimedia technologyLiu et al., (meta-analysis)
Hybrid learningKazu & Yalçin, (meta-analysis)

Additionally, based on the results of the literature review, there are many types of digital technologies with different affordances (see, for example, studies on VR vs Immersive VR), which evolve over time (e.g. starting from CAIs in 2005 to Augmented and Virtual reality 2020). Furthermore, these technologies are linked to different pedagogies and policy initiatives, which are critical factors in the study of impact. Table ​ Table3 3 summarizes the different tools and practices that have been used to examine the impact of digital technologies on education since 2005 based on the review results.

Factors that affect the integration of digital technologies

Although the analysis of the literature review demonstrated different impacts of the use of digital technology on education, several authors highlighted the importance of various factors, besides the technology itself, that affect this impact. For example, Liao et al. ( 2007 ) suggested that future studies should carefully investigate which factors contribute to positive outcomes by clarifying the exact relationship between computer applications and learning. Additionally, Haßler et al., ( 2016 ) suggested that the neutral findings regarding the impact of tablets on students learning outcomes in some of the studies included in their review should encourage educators, school leaders, and school officials to further investigate the potential of such devices in teaching and learning. Several other researchers suggested that a number of variables play a significant role in the impact of ICTs on students’ learning that could be attributed to the school context, teaching practices and professional development, the curriculum, and learners’ characteristics (Underwood, 2009 ; Tamim et al., 2011 ; Higgins et al., 2012 ; Archer et al., 2014 ; Sung et al., 2016 ; Haßler et al., 2016 ; Chauhan, 2017 ; Lee et al., 2020 ; Tang et al., 2022 ).

Digital competencies

One of the most common challenges reported in studies that utilized digital tools in the classroom was the lack of students’ skills on how to use them. Fu ( 2013 ) found that students’ lack of technical skills is a barrier to the effective use of ICT in the classroom. Tamim et al. ( 2015 ) reported that students faced challenges when using tablets and smart mobile devices, associated with the technical issues or expertise needed for their use and the distracting nature of the devices and highlighted the need for teachers’ professional development. Higgins et al. ( 2012 ) reported that skills training about the use of digital technologies is essential for learners to fully exploit the benefits of instruction.

Delgado et al. ( 2015 ), meanwhile, reported studies that showed a strong positive association between teachers’ computer skills and students’ use of computers. Teachers’ lack of ICT skills and familiarization with technologies can become a constraint to the effective use of technology in the classroom (Balanskat et al., 2006 ; Delgado et al., 2015 ).

It is worth noting that the way teachers are introduced to ICTs affects the impact of digital technologies on education. Previous studies have shown that teachers may avoid using digital technologies due to limited digital skills (Balanskat, 2006 ), or they prefer applying “safe” technologies, namely technologies that their own teachers used and with which they are familiar (Condie & Munro, 2007 ). In this regard, the provision of digital skills training and exposure to new digital tools might encourage teachers to apply various technologies in their lessons (Condie & Munro, 2007 ). Apart from digital competence, technical support in the school setting has also been shown to affect teachers’ use of technology in their classrooms (Delgado et al., 2015 ). Ferrari et al. ( 2011 ) found that while teachers’ use of ICT is high, 75% stated that they needed more institutional support and a shift in the mindset of educational actors to achieve more innovative teaching practices. The provision of support can reduce time and effort as well as cognitive constraints, which could cause limited ICT integration in the school lessons by teachers (Escueta et al., 2017 ).

Teachers’ personal characteristics, training approaches, and professional development

Teachers’ personal characteristics and professional development affect the impact of digital technologies on education. Specifically, Cheok and Wong ( 2015 ) found that teachers’ personal characteristics (e.g., anxiety, self-efficacy) are associated with their satisfaction and engagement with technology. Bingimlas ( 2009 ) reported that lack of confidence, resistance to change, and negative attitudes in using new technologies in teaching are significant determinants of teachers’ levels of engagement in ICT. The same author reported that the provision of technical support, motivation support (e.g., awards, sufficient time for planning), and training on how technologies can benefit teaching and learning can eliminate the above barriers to ICT integration. Archer et al. ( 2014 ) found that comfort levels in using technology are an important predictor of technology integration and argued that it is essential to provide teachers with appropriate training and ongoing support until they are comfortable with using ICTs in the classroom. Hillmayr et al. ( 2020 ) documented that training teachers on ICT had an important effecton students’ learning.

According to Balanskat et al. ( 2006 ), the impact of ICTs on students’ learning is highly dependent on the teachers’ capacity to efficiently exploit their application for pedagogical purposes. Results obtained from the Teaching and Learning International Survey (TALIS) (OECD, 2021 ) revealed that although schools are open to innovative practices and have the capacity to adopt them, only 39% of teachers in the European Union reported that they are well or very well prepared to use digital technologies for teaching. Li and Ma ( 2010 ) and Hardman ( 2019 ) showed that the positive effect of technology on students’ achievement depends on the pedagogical practices used by teachers. Schmid et al. ( 2014 ) reported that learning was best supported when students were engaged in active, meaningful activities with the use of technological tools that provided cognitive support. Tamim et al. ( 2015 ) compared two different pedagogical uses of tablets and found a significant moderate effect when the devices were used in a student-centered context and approach rather than within teacher-led environments. Similarly, Garzón and Acevedo ( 2019 ) and Garzón et al. ( 2020 ) reported that the positive results from the integration of AR applications could be attributed to the existence of different variables which could influence AR interventions (e.g., pedagogical approach, learning environment, and duration of the intervention). Additionally, Garzón et al. ( 2020 ) suggested that the pedagogical resources that teachers used to complement their lectures and the pedagogical approaches they applied were crucial to the effective integration of AR on students’ learning gains. Garzón and Acevedo ( 2019 ) also emphasized that the success of a technology-enhanced intervention is based on both the technology per se and its characteristics and on the pedagogical strategies teachers choose to implement. For instance, their results indicated that the collaborative learning approach had the highest impact on students’ learning gains among other approaches (e.g., inquiry-based learning, situated learning, or project-based learning). Ran et al. ( 2022 ) also found that the use of technology to design collaborative and communicative environments showed the largest moderator effects among the other approaches.

Hattie ( 2008 ) reported that the effective use of computers is associated with training teachers in using computers as a teaching and learning tool. Zheng et al. ( 2016 ) noted that in addition to the strategies teachers adopt in teaching, ongoing professional development is also vital in ensuring the success of technology implementation programs. Sung et al. ( 2016 ) found that research on the use of mobile devices to support learning tends to report that the insufficient preparation of teachers is a major obstacle in implementing effective mobile learning programs in schools. Friedel et al. ( 2013 ) found that providing training and support to teachers increased the positive impact of the interventions on students’ learning gains. Trucano ( 2005 ) argued that positive impacts occur when digital technologies are used to enhance teachers’ existing pedagogical philosophies. Higgins et al. ( 2012 ) found that the types of technologies used and how they are used could also affect students’ learning. The authors suggested that training and professional development of teachers that focuses on the effective pedagogical use of technology to support teaching and learning is an important component of successful instructional approaches (Higgins et al., 2012 ). Archer et al. ( 2014 ) found that studies that reported ICT interventions during which teachers received training and support had moderate positive effects on students’ learning outcomes, which were significantly higher than studies where little or no detail about training and support was mentioned. Fu ( 2013 ) reported that the lack of teachers’ knowledge and skills on the technical and instructional aspects of ICT use in the classroom, in-service training, pedagogy support, technical and financial support, as well as the lack of teachers’ motivation and encouragement to integrate ICT on their teaching were significant barriers to the integration of ICT in education.

School leadership and management

Management and leadership are important cornerstones in the digital transformation process (Pihir et al., 2018 ). Zheng et al. ( 2016 ) documented leadership among the factors positively affecting the successful implementation of technology integration in schools. Strong leadership, strategic planning, and systematic integration of digital technologies are prerequisites for the digital transformation of education systems (Ređep, 2021 ). Management and leadership play a significant role in formulating policies that are translated into practice and ensure that developments in ICT become embedded into the life of the school and in the experiences of staff and pupils (Condie & Munro, 2007 ). Policy support and leadership must include the provision of an overall vision for the use of digital technologies in education, guidance for students and parents, logistical support, as well as teacher training (Conrads et al., 2017 ). Unless there is a commitment throughout the school, with accountability for progress at key points, it is unlikely for ICT integration to be sustained or become part of the culture (Condie & Munro, 2007 ). To achieve this, principals need to adopt and promote a whole-institution strategy and build a strong mutual support system that enables the school’s technological maturity (European Commission, 2019 ). In this context, school culture plays an essential role in shaping the mindsets and beliefs of school actors towards successful technology integration. Condie and Munro ( 2007 ) emphasized the importance of the principal’s enthusiasm and work as a source of inspiration for the school staff and the students to cultivate a culture of innovation and establish sustainable digital change. Specifically, school leaders need to create conditions in which the school staff is empowered to experiment and take risks with technology (Elkordy & Lovinelli, 2020 ).

In order for leaders to achieve the above, it is important to develop capacities for learning and leading, advocating professional learning, and creating support systems and structures (European Commission, 2019 ). Digital technology integration in education systems can be challenging and leadership needs guidance to achieve it. Such guidance can be introduced through the adoption of new methods and techniques in strategic planning for the integration of digital technologies (Ređep, 2021 ). Even though the role of leaders is vital, the relevant training offered to them has so far been inadequate. Specifically, only a third of the education systems in Europe have put in place national strategies that explicitly refer to the training of school principals (European Commission, 2019 , p. 16).

Connectivity, infrastructure, and government and other support

The effective integration of digital technologies across levels of education presupposes the development of infrastructure, the provision of digital content, and the selection of proper resources (Voogt et al., 2013 ). Particularly, a high-quality broadband connection in the school increases the quality and quantity of educational activities. There is evidence that ICT increases and formalizes cooperative planning between teachers and cooperation with managers, which in turn has a positive impact on teaching practices (Balanskat et al., 2006 ). Additionally, ICT resources, including software and hardware, increase the likelihood of teachers integrating technology into the curriculum to enhance their teaching practices (Delgado et al., 2015 ). For example, Zheng et al. ( 2016 ) found that the use of one-on-one laptop programs resulted in positive changes in teaching and learning, which would not have been accomplished without the infrastructure and technical support provided to teachers. Delgado et al. ( 2015 ) reported that limited access to technology (insufficient computers, peripherals, and software) and lack of technical support are important barriers to ICT integration. Access to infrastructure refers not only to the availability of technology in a school but also to the provision of a proper amount and the right types of technology in locations where teachers and students can use them. Effective technical support is a central element of the whole-school strategy for ICT (Underwood, 2009 ). Bingimlas ( 2009 ) reported that lack of technical support in the classroom and whole-school resources (e.g., failing to connect to the Internet, printers not printing, malfunctioning computers, and working on old computers) are significant barriers that discourage the use of ICT by teachers. Moreover, poor quality and inadequate hardware maintenance, and unsuitable educational software may discourage teachers from using ICTs (Balanskat et al., 2006 ; Bingimlas, 2009 ).

Government support can also impact the integration of ICTs in teaching. Specifically, Balanskat et al. ( 2006 ) reported that government interventions and training programs increased teachers’ enthusiasm and positive attitudes towards ICT and led to the routine use of embedded ICT.

Lastly, another important factor affecting digital transformation is the development and quality assurance of digital learning resources. Such resources can be support textbooks and related materials or resources that focus on specific subjects or parts of the curriculum. Policies on the provision of digital learning resources are essential for schools and can be achieved through various actions. For example, some countries are financing web portals that become repositories, enabling teachers to share resources or create their own. Additionally, they may offer e-learning opportunities or other services linked to digital education. In other cases, specific agencies of projects have also been set up to develop digital resources (Eurydice, 2019 ).

Administration and digital data management

The digital transformation of schools involves organizational improvements at the level of internal workflows, communication between the different stakeholders, and potential for collaboration. Vuorikari et al. ( 2020 ) presented evidence that digital technologies supported the automation of administrative practices in schools and reduced the administration’s workload. There is evidence that digital data affects the production of knowledge about schools and has the power to transform how schooling takes place. Specifically, Sellar ( 2015 ) reported that data infrastructure in education is developing due to the demand for “ information about student outcomes, teacher quality, school performance, and adult skills, associated with policy efforts to increase human capital and productivity practices ” (p. 771). In this regard, practices, such as datafication which refers to the “ translation of information about all kinds of things and processes into quantified formats” have become essential for decision-making based on accountability reports about the school’s quality. The data could be turned into deep insights about education or training incorporating ICTs. For example, measuring students’ online engagement with the learning material and drawing meaningful conclusions can allow teachers to improve their educational interventions (Vuorikari et al., 2020 ).

Students’ socioeconomic background and family support

Research show that the active engagement of parents in the school and their support for the school’s work can make a difference to their children’s attitudes towards learning and, as a result, their achievement (Hattie, 2008 ). In recent years, digital technologies have been used for more effective communication between school and family (Escueta et al., 2017 ). The European Commission ( 2020 ) presented data from a Eurostat survey regarding the use of computers by students during the pandemic. The data showed that younger pupils needed additional support and guidance from parents and the challenges were greater for families in which parents had lower levels of education and little to no digital skills.

In this regard, the socio-economic background of the learners and their socio-cultural environment also affect educational achievements (Punie et al., 2006 ). Trucano documented that the use of computers at home positively influenced students’ confidence and resulted in more frequent use at school, compared to students who had no home access (Trucano, 2005 ). In this sense, the socio-economic background affects the access to computers at home (OECD, 2015 ) which in turn influences the experience of ICT, an important factor for school achievement (Punie et al., 2006 ; Underwood, 2009 ). Furthermore, parents from different socio-economic backgrounds may have different abilities and availability to support their children in their learning process (Di Pietro et al., 2020 ).

Schools’ socioeconomic context and emergency situations

The socio-economic context of the school is closely related to a school’s digital transformation. For example, schools in disadvantaged, rural, or deprived areas are likely to lack the digital capacity and infrastructure required to adapt to the use of digital technologies during emergency periods, such as the COVID-19 pandemic (Di Pietro et al., 2020 ). Data collected from school principals confirmed that in several countries, there is a rural/urban divide in connectivity (OECD, 2015 ).

Emergency periods also affect the digitalization of schools. The COVID-19 pandemic led to the closure of schools and forced them to seek appropriate and connective ways to keep working on the curriculum (Di Pietro et al., 2020 ). The sudden large-scale shift to distance and online teaching and learning also presented challenges around quality and equity in education, such as the risk of increased inequalities in learning, digital, and social, as well as teachers facing difficulties coping with this demanding situation (European Commission, 2020 ).

Looking at the findings of the above studies, we can conclude that the impact of digital technologies on education is influenced by various actors and touches many aspects of the school ecosystem. Figure  1 summarizes the factors affecting the digital technologies’ impact on school stakeholders based on the findings from the literature review.

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11431_Fig1_HTML.jpg

Factors that affect the impact of ICTs on education

The findings revealed that the use of digital technologies in education affects a variety of actors within a school’s ecosystem. First, we observed that as technologies evolve, so does the interest of the research community to apply them to school settings. Figure  2 summarizes the trends identified in current research around the impact of digital technologies on schools’ digital capacity and transformation as found in the present study. Starting as early as 2005, when computers, simulations, and interactive boards were the most commonly applied tools in school interventions (e.g., Eng, 2005 ; Liao et al., 2007 ; Moran et al., 2008 ; Tamim et al., 2011 ), moving towards the use of learning platforms (Jewitt et al., 2011 ), then to the use of mobile devices and digital games (e.g., Tamim et al., 2015 ; Sung et al., 2016 ; Talan et al., 2020 ), as well as e-books (e.g., Savva et al., 2022 ), to the more recent advanced technologies, such as AR and VR applications (e.g., Garzón & Acevedo, 2019 ; Garzón et al., 2020 ; Kalemkuş & Kalemkuş, 2022 ), or robotics and AI (e.g., Su & Yang, 2022 ; Su et al., 2022 ). As this evolution shows, digital technologies are a concept in flux with different affordances and characteristics. Additionally, from an instructional perspective, there has been a growing interest in different modes and models of content delivery such as online, blended, and hybrid modes (e.g., Cheok & Wong, 2015 ; Kazu & Yalçin, 2022 ; Ulum, 2022 ). This is an indication that the value of technologies to support teaching and learning as well as other school-related practices is increasingly recognized by the research and school community. The impact results from the literature review indicate that ICT integration on students’ learning outcomes has effects that are small (Coban et al., 2022 ; Eng, 2005 ; Higgins et al., 2012 ; Schmid et al., 2014 ; Tamim et al., 2015 ; Zheng et al., 2016 ) to moderate (Garzón & Acevedo, 2019 ; Garzón et al., 2020 ; Liao et al., 2007 ; Sung et al., 2016 ; Talan et al., 2020 ; Wen & Walters, 2022 ). That said, a number of recent studies have reported high effect sizes (e.g., Kazu & Yalçin, 2022 ).

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11431_Fig2_HTML.jpg

Current work and trends in the study of the impact of digital technologies on schools’ digital capacity

Based on these findings, several authors have suggested that the impact of technology on education depends on several variables and not on the technology per se (Tamim et al., 2011 ; Higgins et al., 2012 ; Archer et al., 2014 ; Sung et al., 2016 ; Haßler et al., 2016 ; Chauhan, 2017 ; Lee et al., 2020 ; Lei et al., 2022a ). While the impact of ICTs on student achievement has been thoroughly investigated by researchers, other aspects related to school life that are also affected by ICTs, such as equality, inclusion, and social integration have received less attention. Further analysis of the literature review has revealed a greater investment in ICT interventions to support learning and teaching in the core subjects of literacy and STEM disciplines, especially mathematics, and science. These were the most common subjects studied in the reviewed papers often drawing on national testing results, while studies that investigated other subject areas, such as social studies, were limited (Chauhan, 2017 ; Condie & Munro, 2007 ). As such, research is still lacking impact studies that focus on the effects of ICTs on a range of curriculum subjects.

The qualitative research provided additional information about the impact of digital technologies on education, documenting positive effects and giving more details about implications, recommendations, and future research directions. Specifically, the findings regarding the role of ICTs in supporting learning highlight the importance of teachers’ instructional practice and the learning context in the use of technologies and consequently their impact on instruction (Çelik, 2022 ; Schmid et al., 2014 ; Tamim et al., 2015 ). The review also provided useful insights regarding the various factors that affect the impact of digital technologies on education. These factors are interconnected and play a vital role in the transformation process. Specifically, these factors include a) digital competencies; b) teachers’ personal characteristics and professional development; c) school leadership and management; d) connectivity, infrastructure, and government support; e) administration and data management practices; f) students’ socio-economic background and family support and g) the socioeconomic context of the school and emergency situations. It is worth noting that we observed factors that affect the integration of ICTs in education but may also be affected by it. For example, the frequent use of ICTs and the use of laptops by students for instructional purposes positively affect the development of digital competencies (Zheng et al., 2016 ) and at the same time, the digital competencies affect the use of ICTs (Fu, 2013 ; Higgins et al., 2012 ). As a result, the impact of digital technologies should be explored more as an enabler of desirable and new practices and not merely as a catalyst that improves the output of the education process i.e. namely student attainment.

Conclusions

Digital technologies offer immense potential for fundamental improvement in schools. However, investment in ICT infrastructure and professional development to improve school education are yet to provide fruitful results. Digital transformation is a complex process that requires large-scale transformative changes that presuppose digital capacity and preparedness. To achieve such changes, all actors within the school’s ecosystem need to share a common vision regarding the integration of ICTs in education and work towards achieving this goal. Our literature review, which synthesized quantitative and qualitative data from a list of meta-analyses and review studies, provided useful insights into the impact of ICTs on different school stakeholders and showed that the impact of digital technologies touches upon many different aspects of school life, which are often overlooked when the focus is on student achievement as the final output of education. Furthermore, the concept of digital technologies is a concept in flux as technologies are not only different among them calling for different uses in the educational practice but they also change through time. Additionally, we opened a forum for discussion regarding the factors that affect a school’s digital capacity and transformation. We hope that our study will inform policy, practice, and research and result in a paradigm shift towards more holistic approaches in impact and assessment studies.

Study limitations and future directions

We presented a review of the study of digital technologies' impact on education and factors influencing schools’ digital capacity and transformation. The study results were based on a non-systematic literature review grounded on the acquisition of documentation in specific databases. Future studies should investigate more databases to corroborate and enhance our results. Moreover, search queries could be enhanced with key terms that could provide additional insights about the integration of ICTs in education, such as “policies and strategies for ICT integration in education”. Also, the study drew information from meta-analyses and literature reviews to acquire evidence about the effects of ICT integration in schools. Such evidence was mostly based on the general conclusions of the studies. It is worth mentioning that, we located individual studies which showed different, such as negative or neutral results. Thus, further insights are needed about the impact of ICTs on education and the factors influencing the impact. Furthermore, the nature of the studies included in meta-analyses and reviews is different as they are based on different research methodologies and data gathering processes. For instance, in a meta-analysis, the impact among the studies investigated is measured in a particular way, depending on policy or research targets (e.g., results from national examinations, pre-/post-tests). Meanwhile, in literature reviews, qualitative studies offer additional insights and detail based on self-reports and research opinions on several different aspects and stakeholders who could affect and be affected by ICT integration. As a result, it was challenging to draw causal relationships between so many interrelating variables.

Despite the challenges mentioned above, this study envisaged examining school units as ecosystems that consist of several actors by bringing together several variables from different research epistemologies to provide an understanding of the integration of ICTs. However, the use of other tools and methodologies and models for evaluation of the impact of digital technologies on education could give more detailed data and more accurate results. For instance, self-reflection tools, like SELFIE—developed on the DigCompOrg framework- (Kampylis et al., 2015 ; Bocconi & Lightfoot, 2021 ) can help capture a school’s digital capacity and better assess the impact of ICTs on education. Furthermore, the development of a theory of change could be a good approach for documenting the impact of digital technologies on education. Specifically, theories of change are models used for the evaluation of interventions and their impact; they are developed to describe how interventions will work and give the desired outcomes (Mayne, 2015 ). Theory of change as a methodological approach has also been used by researchers to develop models for evaluation in the field of education (e.g., Aromatario et al., 2019 ; Chapman & Sammons, 2013 ; De Silva et al., 2014 ).

We also propose that future studies aim at similar investigations by applying more holistic approaches for impact assessment that can provide in-depth data about the impact of digital technologies on education. For instance, future studies could focus on different research questions about the technologies that are used during the interventions or the way the implementation takes place (e.g., What methodologies are used for documenting impact? How are experimental studies implemented? How can teachers be taken into account and trained on the technology and its functions? What are the elements of an appropriate and successful implementation? How is the whole intervention designed? On which learning theories is the technology implementation based?).

Future research could also focus on assessing the impact of digital technologies on various other subjects since there is a scarcity of research related to particular subjects, such as geography, history, arts, music, and design and technology. More research should also be done about the impact of ICTs on skills, emotions, and attitudes, and on equality, inclusion, social interaction, and special needs education. There is also a need for more research about the impact of ICTs on administration, management, digitalization, and home-school relationships. Additionally, although new forms of teaching and learning with the use of ICTs (e.g., blended, hybrid, and online learning) have initiated several investigations in mainstream classrooms, only a few studies have measured their impact on students’ learning. Additionally, our review did not document any study about the impact of flipped classrooms on K-12 education. Regarding teaching and learning approaches, it is worth noting that studies referred to STEM or STEAM did not investigate the impact of STEM/STEAM as an interdisciplinary approach to learning but only investigated the impact of ICTs on learning in each domain as a separate subject (science, technology, engineering, arts, mathematics). Hence, we propose future research to also investigate the impact of the STEM/STEAM approach on education. The impact of emerging technologies on education, such as AR, VR, robotics, and AI has also been investigated recently, but more work needs to be done.

Finally, we propose that future studies could focus on the way in which specific factors, e.g., infrastructure and government support, school leadership and management, students’ and teachers’ digital competencies, approaches teachers utilize in the teaching and learning (e.g., blended, online and hybrid learning, flipped classrooms, STEM/STEAM approach, project-based learning, inquiry-based learning), affect the impact of digital technologies on education. We hope that future studies will give detailed insights into the concept of schools’ digital transformation through further investigation of impacts and factors which influence digital capacity and transformation based on the results and the recommendations of the present study.

Acknowledgements

This project has received funding under Grant Agreement No Ref Ares (2021) 339036 7483039 as well as funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No 739578 and the Government of the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital Policy. The UVa co-authors would like also to acknowledge funding from the European Regional Development Fund and the National Research Agency of the Spanish Ministry of Science and Innovation, under project grant PID2020-112584RB-C32.

Data availability statement

Declarations.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Archer K, Savage R, Sanghera-Sidhu S, Wood E, Gottardo A, Chen V. Examining the effectiveness of technology use in classrooms: A tertiary meta-analysis. Computers & Education. 2014; 78 :140–149. doi: 10.1016/j.compedu.2014.06.001. [ CrossRef ] [ Google Scholar ]
  • Aromatario O, Van Hoye A, Vuillemin A, Foucaut AM, Pommier J, Cambon L. Using theory of change to develop an intervention theory for designing and evaluating behavior change SDApps for healthy eating and physical exercise: The OCAPREV theory. BMC Public Health. 2019; 19 (1):1–12. doi: 10.1186/s12889-019-7828-4. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Arztmann, M., Hornstra, L., Jeuring, J., & Kester, L. (2022). Effects of games in STEM education: A meta-analysis on the moderating role of student background characteristics. Studies in Science Education , 1-37. 10.1080/03057267.2022.2057732
  • Bado N. Game-based learning pedagogy: A review of the literature. Interactive Learning Environments. 2022; 30 (5):936–948. doi: 10.1080/10494820.2019.1683587. [ CrossRef ] [ Google Scholar ]
  • Balanskat, A. (2009). Study of the impact of technology in primary schools – Synthesis Report. Empirica and European Schoolnet. Retrieved 30 June 2022 from: https://erte.dge.mec.pt/sites/default/files/Recursos/Estudos/synthesis_report_steps_en.pdf
  • Balanskat, A. (2006). The ICT Impact Report: A review of studies of ICT impact on schools in Europe, European Schoolnet. Retrieved 30 June 2022 from:  https://en.unesco.org/icted/content/ict-impact-report-review-studies-ict-impact-schools-europe
  • Balanskat, A., Blamire, R., & Kefala, S. (2006). The ICT impact report.  European Schoolnet . Retrieved from: http://colccti.colfinder.org/sites/default/files/ict_impact_report_0.pdf
  • Balyer, A., & Öz, Ö. (2018). Academicians’ views on digital transformation in education. International Online Journal of Education and Teaching (IOJET), 5 (4), 809–830. Retrieved 30 June 2022 from  http://iojet.org/index.php/IOJET/article/view/441/295
  • Baragash RS, Al-Samarraie H, Moody L, Zaqout F. Augmented reality and functional skills acquisition among individuals with special needs: A meta-analysis of group design studies. Journal of Special Education Technology. 2022; 37 (1):74–81. doi: 10.1177/0162643420910413. [ CrossRef ] [ Google Scholar ]
  • Bates, A. W. (2015). Teaching in a digital age: Guidelines for designing teaching and learning . Open Educational Resources Collection . 6. Retrieved 30 June 2022 from: https://irl.umsl.edu/oer/6
  • Bingimlas KA. Barriers to the successful integration of ICT in teaching and learning environments: A review of the literature. Eurasia Journal of Mathematics, Science and Technology Education. 2009; 5 (3):235–245. doi: 10.12973/ejmste/75275. [ CrossRef ] [ Google Scholar ]
  • Blaskó Z, Costa PD, Schnepf SV. Learning losses and educational inequalities in Europe: Mapping the potential consequences of the COVID-19 crisis. Journal of European Social Policy. 2022; 32 (4):361–375. doi: 10.1177/09589287221091687. [ CrossRef ] [ Google Scholar ]
  • Bocconi S, Lightfoot M. Scaling up and integrating the selfie tool for schools' digital capacity in education and training systems: Methodology and lessons learnt. European Training Foundation. 2021 doi: 10.2816/907029,JRC123936. [ CrossRef ] [ Google Scholar ]
  • Brooks, D. C., & McCormack, M. (2020). Driving Digital Transformation in Higher Education . Retrieved 30 June 2022 from: https://library.educause.edu/-/media/files/library/2020/6/dx2020.pdf?la=en&hash=28FB8C377B59AFB1855C225BBA8E3CFBB0A271DA
  • Cachia, R., Chaudron, S., Di Gioia, R., Velicu, A., & Vuorikari, R. (2021). Emergency remote schooling during COVID-19, a closer look at European families. Retrieved 30 June 2022 from  https://publications.jrc.ec.europa.eu/repository/handle/JRC125787
  • Çelik B. The effects of computer simulations on students’ science process skills: Literature review. Canadian Journal of Educational and Social Studies. 2022; 2 (1):16–28. doi: 10.53103/cjess.v2i1.17. [ CrossRef ] [ Google Scholar ]
  • Chapman, C., & Sammons, P. (2013). School Self-Evaluation for School Improvement: What Works and Why? . CfBT Education Trust. 60 Queens Road, Reading, RG1 4BS, England.
  • Chauhan S. A meta-analysis of the impact of technology on learning effectiveness of elementary students. Computers & Education. 2017; 105 :14–30. doi: 10.1016/j.compedu.2016.11.005. [ CrossRef ] [ Google Scholar ]
  • Chen, Q., Chan, K. L., Guo, S., Chen, M., Lo, C. K. M., & Ip, P. (2022a). Effectiveness of digital health interventions in reducing bullying and cyberbullying: a meta-analysis. Trauma, Violence, & Abuse , 15248380221082090. 10.1177/15248380221082090 [ PubMed ]
  • Chen B, Wang Y, Wang L. The effects of virtual reality-assisted language learning: A meta-analysis. Sustainability. 2022; 14 (6):3147. doi: 10.3390/su14063147. [ CrossRef ] [ Google Scholar ]
  • Cheok ML, Wong SL. Predictors of e-learning satisfaction in teaching and learning for school teachers: A literature review. International Journal of Instruction. 2015; 8 (1):75–90. doi: 10.12973/iji.2015.816a. [ CrossRef ] [ Google Scholar ]
  • Cheung, A. C., & Slavin, R. E. (2011). The Effectiveness of Education Technology for Enhancing Reading Achievement: A Meta-Analysis. Center for Research and reform in Education .
  • Coban, M., Bolat, Y. I., & Goksu, I. (2022). The potential of immersive virtual reality to enhance learning: A meta-analysis. Educational Research Review , 100452. 10.1016/j.edurev.2022.100452
  • Condie, R., & Munro, R. K. (2007). The impact of ICT in schools-a landscape review. Retrieved 30 June 2022 from: https://oei.org.ar/ibertic/evaluacion/sites/default/files/biblioteca/33_impact_ict_in_schools.pdf
  • Conrads, J., Rasmussen, M., Winters, N., Geniet, A., Langer, L., (2017). Digital Education Policies in Europe and Beyond: Key Design Principles for More Effective Policies. Redecker, C., P. Kampylis, M. Bacigalupo, Y. Punie (ed.), EUR 29000 EN, Publications Office of the European Union, Luxembourg, 10.2760/462941
  • Costa P, Castaño-Muñoz J, Kampylis P. Capturing schools’ digital capacity: Psychometric analyses of the SELFIE self-reflection tool. Computers & Education. 2021; 162 :104080. doi: 10.1016/j.compedu.2020.104080. [ CrossRef ] [ Google Scholar ]
  • Cussó-Calabuig R, Farran XC, Bosch-Capblanch X. Effects of intensive use of computers in secondary school on gender differences in attitudes towards ICT: A systematic review. Education and Information Technologies. 2018; 23 (5):2111–2139. doi: 10.1007/s10639-018-9706-6. [ CrossRef ] [ Google Scholar ]
  • Daniel SJ. Education and the COVID-19 pandemic. Prospects. 2020; 49 (1):91–96. doi: 10.1007/s11125-020-09464-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Delcker J, Ifenthaler D. Teachers’ perspective on school development at German vocational schools during the Covid-19 pandemic. Technology, Pedagogy and Education. 2021; 30 (1):125–139. doi: 10.1080/1475939X.2020.1857826. [ CrossRef ] [ Google Scholar ]
  • Delgado, A., Wardlow, L., O’Malley, K., & McKnight, K. (2015). Educational technology: A review of the integration, resources, and effectiveness of technology in K-12 classrooms. Journal of Information Technology Education Research , 14, 397. Retrieved 30 June 2022 from  http://www.jite.org/documents/Vol14/JITEv14ResearchP397-416Delgado1829.pdf
  • De Silva MJ, Breuer E, Lee L, Asher L, Chowdhary N, Lund C, Patel V. Theory of change: A theory-driven approach to enhance the Medical Research Council's framework for complex interventions. Trials. 2014; 15 (1):1–13. doi: 10.1186/1745-6215-15-267. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Di Pietro G, Biagi F, Costa P, Karpiński Z, Mazza J. The likely impact of COVID-19 on education: Reflections based on the existing literature and recent international datasets. Publications Office of the European Union; 2020. [ Google Scholar ]
  • Elkordy A, Lovinelli J. Competencies, Culture, and Change: A Model for Digital Transformation in K12 Educational Contexts. In: Ifenthaler D, Hofhues S, Egloffstein M, Helbig C, editors. Digital Transformation of Learning Organizations. Springer; 2020. pp. 203–219. [ Google Scholar ]
  • Eng TS. The impact of ICT on learning: A review of research. International Education Journal. 2005; 6 (5):635–650. [ Google Scholar ]
  • European Commission. (2020). Digital Education Action Plan 2021 – 2027. Resetting education and training for the digital age. Retrieved 30 June 2022 from  https://ec.europa.eu/education/sites/default/files/document-library-docs/deap-communication-sept2020_en.pdf
  • European Commission. (2019). 2 nd survey of schools: ICT in education. Objective 1: Benchmark progress in ICT in schools . Retrieved 30 June 2022 from: https://data.europa.eu/euodp/data/storage/f/2019-03-19T084831/FinalreportObjective1-BenchmarkprogressinICTinschools.pdf
  • Eurydice. (2019). Digital Education at School in Europe , Luxembourg: Publications Office of the European Union. Retrieved 30 June 2022 from: https://eacea.ec.europa.eu/national-policies/eurydice/content/digital-education-school-europe_en
  • Escueta, M., Quan, V., Nickow, A. J., & Oreopoulos, P. (2017). Education technology: An evidence-based review. Retrieved 30 June 2022 from  https://ssrn.com/abstract=3031695
  • Fadda D, Pellegrini M, Vivanet G, Zandonella Callegher C. Effects of digital games on student motivation in mathematics: A meta-analysis in K-12. Journal of Computer Assisted Learning. 2022; 38 (1):304–325. doi: 10.1111/jcal.12618. [ CrossRef ] [ Google Scholar ]
  • Fernández-Gutiérrez M, Gimenez G, Calero J. Is the use of ICT in education leading to higher student outcomes? Analysis from the Spanish Autonomous Communities. Computers & Education. 2020; 157 :103969. doi: 10.1016/j.compedu.2020.103969. [ CrossRef ] [ Google Scholar ]
  • Ferrari, A., Cachia, R., & Punie, Y. (2011). Educational change through technology: A challenge for obligatory schooling in Europe. Lecture Notes in Computer Science , 6964 , 97–110. Retrieved 30 June 2022  https://link.springer.com/content/pdf/10.1007/978-3-642-23985-4.pdf
  • Fielding, K., & Murcia, K. (2022). Research linking digital technologies to young children’s creativity: An interpretive framework and systematic review. Issues in Educational Research , 32 (1), 105–125. Retrieved 30 June 2022 from  http://www.iier.org.au/iier32/fielding-abs.html
  • Friedel, H., Bos, B., Lee, K., & Smith, S. (2013). The impact of mobile handheld digital devices on student learning: A literature review with meta-analysis. In Society for Information Technology & Teacher Education International Conference (pp. 3708–3717). Association for the Advancement of Computing in Education (AACE).
  • Fu JS. ICT in education: A critical literature review and its implications. International Journal of Education and Development Using Information and Communication Technology (IJEDICT) 2013; 9 (1):112–125. [ Google Scholar ]
  • Gaol FL, Prasolova-Førland E. Special section editorial: The frontiers of augmented and mixed reality in all levels of education. Education and Information Technologies. 2022; 27 (1):611–623. doi: 10.1007/s10639-021-10746-2. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Garzón J, Acevedo J. Meta-analysis of the impact of Augmented Reality on students’ learning gains. Educational Research Review. 2019; 27 :244–260. doi: 10.1016/j.edurev.2019.04.001. [ CrossRef ] [ Google Scholar ]
  • Garzón, J., Baldiris, S., Gutiérrez, J., & Pavón, J. (2020). How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis. Educational Research Review , 100334. 10.1016/j.edurev.2020.100334
  • Grgurović M, Chapelle CA, Shelley MC. A meta-analysis of effectiveness studies on computer technology-supported language learning. ReCALL. 2013; 25 (2):165–198. doi: 10.1017/S0958344013000013. [ CrossRef ] [ Google Scholar ]
  • Haßler B, Major L, Hennessy S. Tablet use in schools: A critical review of the evidence for learning outcomes. Journal of Computer Assisted Learning. 2016; 32 (2):139–156. doi: 10.1111/jcal.12123. [ CrossRef ] [ Google Scholar ]
  • Haleem A, Javaid M, Qadri MA, Suman R. Understanding the role of digital technologies in education: A review. Sustainable Operations and Computers. 2022; 3 :275–285. doi: 10.1016/j.susoc.2022.05.004. [ CrossRef ] [ Google Scholar ]
  • Hardman J. Towards a pedagogical model of teaching with ICTs for mathematics attainment in primary school: A review of studies 2008–2018. Heliyon. 2019; 5 (5):e01726. doi: 10.1016/j.heliyon.2019.e01726. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hattie J, Rogers HJ, Swaminathan H. The role of meta-analysis in educational research. In: Reid AD, Hart P, Peters MA, editors. A companion to research in education. Springer; 2014. pp. 197–207. [ Google Scholar ]
  • Hattie J. Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge. 2008 doi: 10.4324/9780203887332. [ CrossRef ] [ Google Scholar ]
  • Higgins S, Xiao Z, Katsipataki M. The impact of digital technology on learning: A summary for the education endowment foundation. Education Endowment Foundation and Durham University; 2012. [ Google Scholar ]
  • Higgins, K., Huscroft-D’Angelo, J., & Crawford, L. (2019). Effects of technology in mathematics on achievement, motivation, and attitude: A meta-analysis. Journal of Educational Computing Research , 57(2), 283-319.
  • Hillmayr D, Ziernwald L, Reinhold F, Hofer SI, Reiss KM. The potential of digital tools to enhance mathematics and science learning in secondary schools: A context-specific meta-analysis. Computers & Education. 2020; 153 (1038):97. doi: 10.1016/j.compedu.2020.103897. [ CrossRef ] [ Google Scholar ]
  • Istenic Starcic A, Bagon S. ICT-supported learning for inclusion of people with special needs: Review of seven educational technology journals, 1970–2011. British Journal of Educational Technology. 2014; 45 (2):202–230. doi: 10.1111/bjet.12086. [ CrossRef ] [ Google Scholar ]
  • Jewitt C, Clark W, Hadjithoma-Garstka C. The use of learning platforms to organise learning in English primary and secondary schools. Learning, Media and Technology. 2011; 36 (4):335–348. doi: 10.1080/17439884.2011.621955. [ CrossRef ] [ Google Scholar ]
  • JISC. (2020). What is digital transformation?.  Retrieved 30 June 2022 from: https://www.jisc.ac.uk/guides/digital-strategy-framework-for-university-leaders/what-is-digital-transformation
  • Kalati, A. T., & Kim, M. S. (2022). What is the effect of touchscreen technology on young children’s learning?: A systematic review. Education and Information Technologies , 1-19. 10.1007/s10639-021-10816-5
  • Kalemkuş, J., & Kalemkuş, F. (2022). Effect of the use of augmented reality applications on academic achievement of student in science education: Meta-analysis review. Interactive Learning Environments , 1-18. 10.1080/10494820.2022.2027458
  • Kao C-W. The effects of digital game-based learning task in English as a foreign language contexts: A meta-analysis. Education Journal. 2014; 42 (2):113–141. [ Google Scholar ]
  • Kampylis P, Punie Y, Devine J. Promoting effective digital-age learning - a European framework for digitally competent educational organisations. JRC Technical Reports. 2015 doi: 10.2791/54070. [ CrossRef ] [ Google Scholar ]
  • Kazu IY, Yalçin CK. Investigation of the effectiveness of hybrid learning on academic achievement: A meta-analysis study. International Journal of Progressive Education. 2022; 18 (1):249–265. doi: 10.29329/ijpe.2022.426.14. [ CrossRef ] [ Google Scholar ]
  • Koh C. A qualitative meta-analysis on the use of serious games to support learners with intellectual and developmental disabilities: What we know, what we need to know and what we can do. International Journal of Disability, Development and Education. 2022; 69 (3):919–950. doi: 10.1080/1034912X.2020.1746245. [ CrossRef ] [ Google Scholar ]
  • König J, Jäger-Biela DJ, Glutsch N. Adapting to online teaching during COVID-19 school closure: Teacher education and teacher competence effects among early career teachers in Germany. European Journal of Teacher Education. 2020; 43 (4):608–622. doi: 10.1080/02619768.2020.1809650. [ CrossRef ] [ Google Scholar ]
  • Lawrence JE, Tar UA. Factors that influence teachers’ adoption and integration of ICT in teaching/learning process. Educational Media International. 2018; 55 (1):79–105. doi: 10.1080/09523987.2018.1439712. [ CrossRef ] [ Google Scholar ]
  • Lee, S., Kuo, L. J., Xu, Z., & Hu, X. (2020). The effects of technology-integrated classroom instruction on K-12 English language learners’ literacy development: A meta-analysis. Computer Assisted Language Learning , 1-32. 10.1080/09588221.2020.1774612
  • Lei, H., Chiu, M. M., Wang, D., Wang, C., & Xie, T. (2022a). Effects of game-based learning on students’ achievement in science: a meta-analysis. Journal of Educational Computing Research . 10.1177/07356331211064543
  • Lei H, Wang C, Chiu MM, Chen S. Do educational games affect students' achievement emotions? Evidence from a meta-analysis. Journal of Computer Assisted Learning. 2022; 38 (4):946–959. doi: 10.1111/jcal.12664. [ CrossRef ] [ Google Scholar ]
  • Liao YKC, Chang HW, Chen YW. Effects of computer application on elementary school student's achievement: A meta-analysis of students in Taiwan. Computers in the Schools. 2007; 24 (3–4):43–64. doi: 10.1300/J025v24n03_04. [ CrossRef ] [ Google Scholar ]
  • Li Q, Ma X. A meta-analysis of the effects of computer technology on school students’ mathematics learning. Educational Psychology Review. 2010; 22 (3):215–243. doi: 10.1007/s10648-010-9125-8. [ CrossRef ] [ Google Scholar ]
  • Liu, M., Pang, W., Guo, J., & Zhang, Y. (2022). A meta-analysis of the effect of multimedia technology on creative performance. Education and Information Technologies , 1-28. 10.1007/s10639-022-10981-1
  • Lu Z, Chiu MM, Cui Y, Mao W, Lei H. Effects of game-based learning on students’ computational thinking: A meta-analysis. Journal of Educational Computing Research. 2022 doi: 10.1177/07356331221100740. [ CrossRef ] [ Google Scholar ]
  • Martinez L, Gimenes M, Lambert E. Entertainment video games for academic learning: A systematic review. Journal of Educational Computing Research. 2022 doi: 10.1177/07356331211053848. [ CrossRef ] [ Google Scholar ]
  • Mayne J. Useful theory of change models. Canadian Journal of Program Evaluation. 2015; 30 (2):119–142. doi: 10.3138/cjpe.230. [ CrossRef ] [ Google Scholar ]
  • Moran J, Ferdig RE, Pearson PD, Wardrop J, Blomeyer RL., Jr Technology and reading performance in the middle-school grades: A meta-analysis with recommendations for policy and practice. Journal of Literacy Research. 2008; 40 (1):6–58. doi: 10.1080/10862960802070483. [ CrossRef ] [ Google Scholar ]
  • OECD. (2015). Students, Computers and Learning: Making the Connection . PISA, OECD Publishing, Paris. Retrieved from: 10.1787/9789264239555-en
  • OECD. (2021). OECD Digital Education Outlook 2021: Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots. Retrieved from: https://www.oecd-ilibrary.org/education/oecd-digital-education-outlook-2021_589b283f-en
  • Pan Y, Ke F, Xu X. A systematic review of the role of learning games in fostering mathematics education in K-12 settings. Educational Research Review. 2022; 36 :100448. doi: 10.1016/j.edurev.2022.100448. [ CrossRef ] [ Google Scholar ]
  • Pettersson F. Understanding digitalization and educational change in school by means of activity theory and the levels of learning concept. Education and Information Technologies. 2021; 26 (1):187–204. doi: 10.1007/s10639-020-10239-8. [ CrossRef ] [ Google Scholar ]
  • Pihir, I., Tomičić-Pupek, K., & Furjan, M. T. (2018). Digital transformation insights and trends. In Central European Conference on Information and Intelligent Systems (pp. 141–149). Faculty of Organization and Informatics Varazdin. Retrieved 30 June 2022 from https://www.proquest.com/conference-papers-proceedings/digital-transformation-insights-trends/docview/2125639934/se-2
  • Punie, Y., Zinnbauer, D., & Cabrera, M. (2006). A review of the impact of ICT on learning. Working Paper prepared for DG EAC. Retrieved 30 June 2022 from: http://www.eurosfaire.prd.fr/7pc/doc/1224678677_jrc47246n.pdf
  • Quah CY, Ng KH. A systematic literature review on digital storytelling authoring tool in education: January 2010 to January 2020. International Journal of Human-Computer Interaction. 2022; 38 (9):851–867. doi: 10.1080/10447318.2021.1972608. [ CrossRef ] [ Google Scholar ]
  • Ran H, Kim NJ, Secada WG. A meta-analysis on the effects of technology's functions and roles on students' mathematics achievement in K-12 classrooms. Journal of computer assisted learning. 2022; 38 (1):258–284. doi: 10.1111/jcal.12611. [ CrossRef ] [ Google Scholar ]
  • Ređep, N. B. (2021). Comparative overview of the digital preparedness of education systems in selected CEE countries. Center for Policy Studies. CEU Democracy Institute .
  • Rott, B., & Marouane, C. (2018). Digitalization in schools–organization, collaboration and communication. In Digital Marketplaces Unleashed (pp. 113–124). Springer, Berlin, Heidelberg.
  • Savva M, Higgins S, Beckmann N. Meta-analysis examining the effects of electronic storybooks on language and literacy outcomes for children in grades Pre-K to grade 2. Journal of Computer Assisted Learning. 2022; 38 (2):526–564. doi: 10.1111/jcal.12623. [ CrossRef ] [ Google Scholar ]
  • Schmid RF, Bernard RM, Borokhovski E, Tamim RM, Abrami PC, Surkes MA, Wade CA, Woods J. The effects of technology use in postsecondary education: A meta-analysis of classroom applications. Computers & Education. 2014; 72 :271–291. doi: 10.1016/j.compedu.2013.11.002. [ CrossRef ] [ Google Scholar ]
  • Schuele CM, Justice LM. The importance of effect sizes in the interpretation of research: Primer on research: Part 3. The ASHA Leader. 2006; 11 (10):14–27. doi: 10.1044/leader.FTR4.11102006.14. [ CrossRef ] [ Google Scholar ]
  • Schwabe, A., Lind, F., Kosch, L., & Boomgaarden, H. G. (2022). No negative effects of reading on screen on comprehension of narrative texts compared to print: A meta-analysis. Media Psychology , 1-18. 10.1080/15213269.2022.2070216
  • Sellar S. Data infrastructure: a review of expanding accountability systems and large-scale assessments in education. Discourse: Studies in the Cultural Politics of Education. 2015; 36 (5):765–777. doi: 10.1080/01596306.2014.931117. [ CrossRef ] [ Google Scholar ]
  • Stock WA. Systematic coding for research synthesis. In: Cooper H, Hedges LV, editors. The handbook of research synthesis, 236. Russel Sage; 1994. pp. 125–138. [ Google Scholar ]
  • Su, J., Zhong, Y., & Ng, D. T. K. (2022). A meta-review of literature on educational approaches for teaching AI at the K-12 levels in the Asia-Pacific region. Computers and Education: Artificial Intelligence , 100065. 10.1016/j.caeai.2022.100065
  • Su J, Yang W. Artificial intelligence in early childhood education: A scoping review. Computers and Education: Artificial Intelligence. 2022; 3 :100049. doi: 10.1016/j.caeai.2022.100049. [ CrossRef ] [ Google Scholar ]
  • Sung YT, Chang KE, Liu TC. The effects of integrating mobile devices with teaching and learning on students' learning performance: A meta-analysis and research synthesis. Computers & Education. 2016; 94 :252–275. doi: 10.1016/j.compedu.2015.11.008. [ CrossRef ] [ Google Scholar ]
  • Talan T, Doğan Y, Batdı V. Efficiency of digital and non-digital educational games: A comparative meta-analysis and a meta-thematic analysis. Journal of Research on Technology in Education. 2020; 52 (4):474–514. doi: 10.1080/15391523.2020.1743798. [ CrossRef ] [ Google Scholar ]
  • Tamim, R. M., Bernard, R. M., Borokhovski, E., Abrami, P. C., & Schmid, R. F. (2011). What forty years of research says about the impact of technology on learning: A second-order meta-analysis and validation study. Review of Educational research, 81 (1), 4–28. Retrieved 30 June 2022 from 10.3102/0034654310393361
  • Tamim, R. M., Borokhovski, E., Pickup, D., Bernard, R. M., & El Saadi, L. (2015). Tablets for teaching and learning: A systematic review and meta-analysis. Commonwealth of Learning. Retrieved from: http://oasis.col.org/bitstream/handle/11599/1012/2015_Tamim-et-al_Tablets-for-Teaching-and-Learning.pdf
  • Tang C, Mao S, Xing Z, Naumann S. Improving student creativity through digital technology products: A literature review. Thinking Skills and Creativity. 2022; 44 :101032. doi: 10.1016/j.tsc.2022.101032. [ CrossRef ] [ Google Scholar ]
  • Tolani-Brown, N., McCormac, M., & Zimmermann, R. (2011). An analysis of the research and impact of ICT in education in developing country contexts. In ICTs and sustainable solutions for the digital divide: Theory and perspectives (pp. 218–242). IGI Global.
  • Trucano, M. (2005). Knowledge Maps: ICTs in Education. Washington, DC: info Dev / World Bank. Retrieved 30 June 2022 from  https://files.eric.ed.gov/fulltext/ED496513.pdf
  • Ulum H. The effects of online education on academic success: A meta-analysis study. Education and Information Technologies. 2022; 27 (1):429–450. doi: 10.1007/s10639-021-10740-8. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Underwood, J. D. (2009). The impact of digital technology: A review of the evidence of the impact of digital technologies on formal education. Retrieved 30 June 2022 from: http://dera.ioe.ac.uk/id/eprint/10491
  • Verschaffel, L., Depaepe, F., & Mevarech, Z. (2019). Learning Mathematics in metacognitively oriented ICT-Based learning environments: A systematic review of the literature. Education Research International , 2019 . 10.1155/2019/3402035
  • Villena-Taranilla R, Tirado-Olivares S, Cózar-Gutiérrez R, González-Calero JA. Effects of virtual reality on learning outcomes in K-6 education: A meta-analysis. Educational Research Review. 2022; 35 :100434. doi: 10.1016/j.edurev.2022.100434. [ CrossRef ] [ Google Scholar ]
  • Voogt J, Knezek G, Cox M, Knezek D, ten Brummelhuis A. Under which conditions does ICT have a positive effect on teaching and learning? A call to action. Journal of Computer Assisted Learning. 2013; 29 (1):4–14. doi: 10.1111/j.1365-2729.2011.00453.x. [ CrossRef ] [ Google Scholar ]
  • Vuorikari, R., Punie, Y., & Cabrera, M. (2020). Emerging technologies and the teaching profession: Ethical and pedagogical considerations based on near-future scenarios  (No. JRC120183). Joint Research Centre. Retrieved 30 June 2022 from: https://publications.jrc.ec.europa.eu/repository/handle/JRC120183
  • Wang LH, Chen B, Hwang GJ, Guan JQ, Wang YQ. Effects of digital game-based STEM education on students’ learning achievement: A meta-analysis. International Journal of STEM Education. 2022; 9 (1):1–13. doi: 10.1186/s40594-022-00344-0. [ CrossRef ] [ Google Scholar ]
  • Wen X, Walters SM. The impact of technology on students’ writing performances in elementary classrooms: A meta-analysis. Computers and Education Open. 2022; 3 :100082. doi: 10.1016/j.caeo.2022.100082. [ CrossRef ] [ Google Scholar ]
  • Zheng B, Warschauer M, Lin CH, Chang C. Learning in one-to-one laptop environments: A meta-analysis and research synthesis. Review of Educational Research. 2016; 86 (4):1052–1084. doi: 10.3102/0034654316628645. [ CrossRef ] [ Google Scholar ]

Talk to our experts

1800-120-456-456

  • Technology Essay

ffImage

Essay on Technology

The word "technology" and its uses have immensely changed since the 20th century, and with time, it has continued to evolve ever since. We are living in a world driven by technology. The advancement of technology has played an important role in the development of human civilization, along with cultural changes. Technology provides innovative ways of doing work through various smart and innovative means. 

Electronic appliances, gadgets, faster modes of communication, and transport have added to the comfort factor in our lives. It has helped in improving the productivity of individuals and different business enterprises. Technology has brought a revolution in many operational fields. It has undoubtedly made a very important contribution to the progress that mankind has made over the years.

The Advancement of Technology:

Technology has reduced the effort and time and increased the efficiency of the production requirements in every field. It has made our lives easy, comfortable, healthy, and enjoyable. It has brought a revolution in transport and communication. The advancement of technology, along with science, has helped us to become self-reliant in all spheres of life. With the innovation of a particular technology, it becomes part of society and integral to human lives after a point in time.

Technology is Our Part of Life:

Technology has changed our day-to-day lives. Technology has brought the world closer and better connected. Those days have passed when only the rich could afford such luxuries. Because of the rise of globalisation and liberalisation, all luxuries are now within the reach of the average person. Today, an average middle-class family can afford a mobile phone, a television, a washing machine, a refrigerator, a computer, the Internet, etc. At the touch of a switch, a man can witness any event that is happening in far-off places.  

Benefits of Technology in All Fields: 

We cannot escape technology; it has improved the quality of life and brought about revolutions in various fields of modern-day society, be it communication, transportation, education, healthcare, and many more. Let us learn about it.

Technology in Communication:

With the advent of technology in communication, which includes telephones, fax machines, cellular phones, the Internet, multimedia, and email, communication has become much faster and easier. It has transformed and influenced relationships in many ways. We no longer need to rely on sending physical letters and waiting for several days for a response. Technology has made communication so simple that you can connect with anyone from anywhere by calling them via mobile phone or messaging them using different messaging apps that are easy to download.

Innovation in communication technology has had an immense influence on social life. Human socialising has become easier by using social networking sites, dating, and even matrimonial services available on mobile applications and websites.

Today, the Internet is used for shopping, paying utility bills, credit card bills, admission fees, e-commerce, and online banking. In the world of marketing, many companies are marketing and selling their products and creating brands over the internet. 

In the field of travel, cities, towns, states, and countries are using the web to post detailed tourist and event information. Travellers across the globe can easily find information on tourism, sightseeing, places to stay, weather, maps, timings for events, transportation schedules, and buy tickets to various tourist spots and destinations.

Technology in the Office or Workplace:

Technology has increased efficiency and flexibility in the workspace. Technology has made it easy to work remotely, which has increased the productivity of the employees. External and internal communication has become faster through emails and apps. Automation has saved time, and there is also a reduction in redundancy in tasks. Robots are now being used to manufacture products that consistently deliver the same product without defect until the robot itself fails. Artificial Intelligence and Machine Learning technology are innovations that are being deployed across industries to reap benefits.

Technology has wiped out the manual way of storing files. Now files are stored in the cloud, which can be accessed at any time and from anywhere. With technology, companies can make quick decisions, act faster towards solutions, and remain adaptable. Technology has optimised the usage of resources and connected businesses worldwide. For example, if the customer is based in America, he can have the services delivered from India. They can communicate with each other in an instant. Every company uses business technology like virtual meeting tools, corporate social networks, tablets, and smart customer relationship management applications that accelerate the fast movement of data and information.

Technology in Education:

Technology is making the education industry improve over time. With technology, students and parents have a variety of learning tools at their fingertips. Teachers can coordinate with classrooms across the world and share their ideas and resources online. Students can get immediate access to an abundance of good information on the Internet. Teachers and students can access plenty of resources available on the web and utilise them for their project work, research, etc. Online learning has changed our perception of education. 

The COVID-19 pandemic brought a paradigm shift using technology where school-going kids continued their studies from home and schools facilitated imparting education by their teachers online from home. Students have learned and used 21st-century skills and tools, like virtual classrooms, AR (Augmented Reality), robots, etc. All these have increased communication and collaboration significantly. 

Technology in Banking:

Technology and banking are now inseparable. Technology has boosted digital transformation in how the banking industry works and has vastly improved banking services for their customers across the globe.

Technology has made banking operations very sophisticated and has reduced errors to almost nil, which were somewhat prevalent with manual human activities. Banks are adopting Artificial Intelligence (AI) to increase their efficiency and profits. With the emergence of Internet banking, self-service tools have replaced the traditional methods of banking. 

You can now access your money, handle transactions like paying bills, money transfers, and online purchases from merchants, and monitor your bank statements anytime and from anywhere in the world. Technology has made banking more secure and safe. You do not need to carry cash in your pocket or wallet; the payments can be made digitally using e-wallets. Mobile banking, banking apps, and cybersecurity are changing the face of the banking industry.

Manufacturing and Production Industry Automation:

At present, manufacturing industries are using all the latest technologies, ranging from big data analytics to artificial intelligence. Big data, ARVR (Augmented Reality and Virtual Reality), and IoT (Internet of Things) are the biggest manufacturing industry players. Automation has increased the level of productivity in various fields. It has reduced labour costs, increased efficiency, and reduced the cost of production.

For example, 3D printing is used to design and develop prototypes in the automobile industry. Repetitive work is being done easily with the help of robots without any waste of time. This has also reduced the cost of the products. 

Technology in the Healthcare Industry:

Technological advancements in the healthcare industry have not only improved our personal quality of life and longevity; they have also improved the lives of many medical professionals and students who are training to become medical experts. It has allowed much faster access to the medical records of each patient. 

The Internet has drastically transformed patients' and doctors’ relationships. Everyone can stay up to date on the latest medical discoveries, share treatment information, and offer one another support when dealing with medical issues. Modern technology has allowed us to contact doctors from the comfort of our homes. There are many sites and apps through which we can contact doctors and get medical help. 

Breakthrough innovations in surgery, artificial organs, brain implants, and networked sensors are examples of transformative developments in the healthcare industry. Hospitals use different tools and applications to perform their administrative tasks, using digital marketing to promote their services.

Technology in Agriculture:

Today, farmers work very differently than they would have decades ago. Data analytics and robotics have built a productive food system. Digital innovations are being used for plant breeding and harvesting equipment. Software and mobile devices are helping farmers harvest better. With various data and information available to farmers, they can make better-informed decisions, for example, tracking the amount of carbon stored in soil and helping with climate change.

Disadvantages of Technology:

People have become dependent on various gadgets and machines, resulting in a lack of physical activity and tempting people to lead an increasingly sedentary lifestyle. Even though technology has increased the productivity of individuals, organisations, and the nation, it has not increased the efficiency of machines. Machines cannot plan and think beyond the instructions that are fed into their system. Technology alone is not enough for progress and prosperity. Management is required, and management is a human act. Technology is largely dependent on human intervention. 

Computers and smartphones have led to an increase in social isolation. Young children are spending more time surfing the internet, playing games, and ignoring their real lives. Usage of technology is also resulting in job losses and distracting students from learning. Technology has been a reason for the production of weapons of destruction.

Dependency on technology is also increasing privacy concerns and cyber crimes, giving way to hackers.

arrow-right

FAQs on Technology Essay

1. What is technology?

Technology refers to innovative ways of doing work through various smart means. The advancement of technology has played an important role in the development of human civilization. It has helped in improving the productivity of individuals and businesses.

2. How has technology changed the face of banking?

Technology has made banking operations very sophisticated. With the emergence of Internet banking, self-service tools have replaced the traditional methods of banking. You can now access your money, handle transactions, and monitor your bank statements anytime and from anywhere in the world. Technology has made banking more secure and safe.

3. How has technology brought a revolution in the medical field?

Patients and doctors keep each other up to date on the most recent medical discoveries, share treatment information, and offer each other support when dealing with medical issues. It has allowed much faster access to the medical records of each patient. Modern technology has allowed us to contact doctors from the comfort of our homes. There are many websites and mobile apps through which we can contact doctors and get medical help.

4. Are we dependent on technology?

Yes, today, we are becoming increasingly dependent on technology. Computers, smartphones, and modern technology have helped humanity achieve success and progress. However, in hindsight, people need to continuously build a healthy lifestyle, sorting out personal problems that arise due to technological advancements in different aspects of human life.

Feb 13, 2023

200-500 Word Example Essays about Technology

Got an essay assignment about technology check out these examples to inspire you.

Technology is a rapidly evolving field that has completely changed the way we live, work, and interact with one another. Technology has profoundly impacted our daily lives, from how we communicate with friends and family to how we access information and complete tasks. As a result, it's no surprise that technology is a popular topic for students writing essays.

But writing a technology essay can be challenging, especially for those needing more time or help with writer's block. This is where Jenni.ai comes in. Jenni.ai is an innovative AI tool explicitly designed for students who need help writing essays. With Jenni.ai, students can quickly and easily generate essays on various topics, including technology.

This blog post aims to provide readers with various example essays on technology, all generated by Jenni.ai. These essays will be a valuable resource for students looking for inspiration or guidance as they work on their essays. By reading through these example essays, students can better understand how technology can be approached and discussed in an essay.

Moreover, by signing up for a free trial with Jenni.ai, students can take advantage of this innovative tool and receive even more support as they work on their essays. Jenni.ai is designed to help students write essays faster and more efficiently, so they can focus on what truly matters – learning and growing as a student. Whether you're a student who is struggling with writer's block or simply looking for a convenient way to generate essays on a wide range of topics, Jenni.ai is the perfect solution.

The Impact of Technology on Society and Culture

Introduction:.

Technology has become an integral part of our daily lives and has dramatically impacted how we interact, communicate, and carry out various activities. Technological advancements have brought positive and negative changes to society and culture. In this article, we will explore the impact of technology on society and culture and how it has influenced different aspects of our lives.

Positive impact on communication:

Technology has dramatically improved communication and made it easier for people to connect from anywhere in the world. Social media platforms, instant messaging, and video conferencing have brought people closer, bridging geographical distances and cultural differences. This has made it easier for people to share information, exchange ideas, and collaborate on projects.

Positive impact on education:

Students and instructors now have access to a multitude of knowledge and resources because of the effect of technology on education . Students may now study at their speed and from any location thanks to online learning platforms, educational applications, and digital textbooks.

Negative impact on critical thinking and creativity:

Technological advancements have resulted in a reduction in critical thinking and creativity. With so much information at our fingertips, individuals have become more passive in their learning, relying on the internet for solutions rather than logic and inventiveness. As a result, independent thinking and problem-solving abilities have declined.

Positive impact on entertainment:

Technology has transformed how we access and consume entertainment. People may now access a wide range of entertainment alternatives from the comfort of their own homes thanks to streaming services, gaming platforms, and online content makers. The entertainment business has entered a new age of creativity and invention as a result of this.

Negative impact on attention span:

However, the continual bombardment of information and technological stimulation has also reduced attention span and the capacity to focus. People are easily distracted and need help focusing on a single activity for a long time. This has hampered productivity and the ability to accomplish duties.

The Ethics of Artificial Intelligence And Machine Learning

The development of artificial intelligence (AI) and machine learning (ML) technologies has been one of the most significant technological developments of the past several decades. These cutting-edge technologies have the potential to alter several sectors of society, including commerce, industry, healthcare, and entertainment. 

As with any new and quickly advancing technology, AI and ML ethics must be carefully studied. The usage of these technologies presents significant concerns around privacy, accountability, and command. As the use of AI and ML grows more ubiquitous, we must assess their possible influence on society and investigate the ethical issues that must be taken into account as these technologies continue to develop.

What are Artificial Intelligence and Machine Learning?

Artificial Intelligence is the simulation of human intelligence in machines designed to think and act like humans. Machine learning is a subfield of AI that enables computers to learn from data and improve their performance over time without being explicitly programmed.

The impact of AI and ML on Society

The use of AI and ML in various industries, such as healthcare, finance, and retail, has brought many benefits. For example, AI-powered medical diagnosis systems can identify diseases faster and more accurately than human doctors. However, there are also concerns about job displacement and the potential for AI to perpetuate societal biases.

The Ethical Considerations of AI and ML

A. Bias in AI algorithms

One of the critical ethical concerns about AI and ML is the potential for algorithms to perpetuate existing biases. This can occur if the data used to train these algorithms reflects the preferences of the people who created it. As a result, AI systems can perpetuate these biases and discriminate against certain groups of people.

B. Responsibility for AI-generated decisions

Another ethical concern is the responsibility for decisions made by AI systems. For example, who is responsible for the damage if a self-driving car causes an accident? The manufacturer of the vehicle, the software developer, or the AI algorithm itself?

C. The potential for misuse of AI and ML

AI and ML can also be used for malicious purposes, such as cyberattacks and misinformation. The need for more regulation and oversight in developing and using these technologies makes it difficult to prevent misuse.

The developments in AI and ML have given numerous benefits to humanity, but they also present significant ethical concerns that must be addressed. We must assess the repercussions of new technologies on society, implement methods to limit the associated dangers, and guarantee that they are utilized for the greater good. As AI and ML continue to play an ever-increasing role in our daily lives, we must engage in an open and frank discussion regarding their ethics.

The Future of Work And Automation

Rapid technological breakthroughs in recent years have brought about considerable changes in our way of life and work. Concerns regarding the influence of artificial intelligence and machine learning on the future of work and employment have increased alongside the development of these technologies. This article will examine the possible advantages and disadvantages of automation and its influence on the labor market, employees, and the economy.

The Advantages of Automation

Automation in the workplace offers various benefits, including higher efficiency and production, fewer mistakes, and enhanced precision. Automated processes may accomplish repetitive jobs quickly and precisely, allowing employees to concentrate on more complex and creative activities. Additionally, automation may save organizations money since it removes the need to pay for labor and minimizes the danger of workplace accidents.

The Potential Disadvantages of Automation

However, automation has significant disadvantages, including job loss and income stagnation. As robots and computers replace human labor in particular industries, there is a danger that many workers may lose their jobs, resulting in higher unemployment and more significant economic disparity. Moreover, if automation is not adequately regulated and managed, it might lead to stagnant wages and a deterioration in employees' standard of life.

The Future of Work and Automation

Despite these difficulties, automation will likely influence how labor is done. As a result, firms, employees, and governments must take early measures to solve possible issues and reap the rewards of automation. This might entail funding worker retraining programs, enhancing education and skill development, and implementing regulations that support equality and justice at work.

IV. The Need for Ethical Considerations

We must consider the ethical ramifications of automation and its effects on society as technology develops. The impact on employees and their rights, possible hazards to privacy and security, and the duty of corporations and governments to ensure that automation is utilized responsibly and ethically are all factors to be taken into account.

Conclusion:

To summarise, the future of employment and automation will most certainly be defined by a complex interaction of technological advances, economic trends, and cultural ideals. All stakeholders must work together to handle the problems and possibilities presented by automation and ensure that technology is employed to benefit society as a whole.

The Role of Technology in Education

Introduction.

Nearly every part of our lives has been transformed by technology, and education is no different. Today's students have greater access to knowledge, opportunities, and resources than ever before, and technology is becoming a more significant part of their educational experience. Technology is transforming how we think about education and creating new opportunities for learners of all ages, from online courses and virtual classrooms to instructional applications and augmented reality.

Technology's Benefits for Education

The capacity to tailor learning is one of technology's most significant benefits in education. Students may customize their education to meet their unique needs and interests since they can access online information and tools. 

For instance, people can enroll in online classes on topics they are interested in, get tailored feedback on their work, and engage in virtual discussions with peers and subject matter experts worldwide. As a result, pupils are better able to acquire and develop the abilities and information necessary for success.

Challenges and Concerns

Despite the numerous advantages of technology in education, there are also obstacles and considerations to consider. One issue is the growing reliance on technology and the possibility that pupils would become overly dependent on it. This might result in a lack of critical thinking and problem-solving abilities, as students may become passive learners who only follow instructions and rely on technology to complete their assignments.

Another obstacle is the digital divide between those who have access to technology and those who do not. This division can exacerbate the achievement gap between pupils and produce uneven educational and professional growth chances. To reduce these consequences, all students must have access to the technology and resources necessary for success.

In conclusion, technology is rapidly becoming an integral part of the classroom experience and has the potential to alter the way we learn radically. 

Technology can help students flourish and realize their full potential by giving them access to individualized instruction, tools, and opportunities. While the benefits of technology in the classroom are undeniable, it's crucial to be mindful of the risks and take precautions to guarantee that all kids have access to the tools they need to thrive.

The Influence of Technology On Personal Relationships And Communication 

Technological advancements have profoundly altered how individuals connect and exchange information. It has changed the world in many ways in only a few decades. Because of the rise of the internet and various social media sites, maintaining relationships with people from all walks of life is now simpler than ever. 

However, concerns about how these developments may affect interpersonal connections and dialogue are inevitable in an era of rapid technological growth. In this piece, we'll discuss how the prevalence of digital media has altered our interpersonal connections and the language we use to express ourselves.

Direct Effect on Direct Interaction:

The disruption of face-to-face communication is a particularly stark example of how technology has impacted human connections. The quality of interpersonal connections has suffered due to people's growing preference for digital over human communication. Technology has been demonstrated to reduce the usage of nonverbal signs such as facial expressions, tone of voice, and other indicators of emotional investment in the connection.

Positive Impact on Long-Distance Relationships:

Yet there are positives to be found as well. Long-distance relationships have also benefited from technological advancements. The development of technologies such as video conferencing, instant messaging, and social media has made it possible for individuals to keep in touch with distant loved ones. It has become simpler for individuals to stay in touch and feel connected despite geographical distance.

The Effects of Social Media on Personal Connections:

The widespread use of social media has had far-reaching consequences, especially on the quality of interpersonal interactions. Social media has positive and harmful effects on relationships since it allows people to keep in touch and share life's milestones.

Unfortunately, social media has made it all too easy to compare oneself to others, which may lead to emotions of jealousy and a general decline in confidence. Furthermore, social media might cause people to have inflated expectations of themselves and their relationships.

A Personal Perspective on the Intersection of Technology and Romance

Technological advancements have also altered physical touch and closeness. Virtual reality and other technologies have allowed people to feel physical contact and familiarity in a digital setting. This might be a promising breakthrough, but it has some potential downsides. 

Experts are concerned that people's growing dependence on technology for intimacy may lead to less time spent communicating face-to-face and less emphasis on physical contact, both of which are important for maintaining good relationships.

In conclusion, technological advancements have significantly affected the quality of interpersonal connections and the exchange of information. Even though technology has made it simpler to maintain personal relationships, it has chilled interpersonal interactions between people. 

Keeping tabs on how technology is changing our lives and making adjustments as necessary is essential as we move forward. Boundaries and prioritizing in-person conversation and physical touch in close relationships may help reduce the harm it causes.

The Security and Privacy Implications of Increased Technology Use and Data Collection

The fast development of technology over the past few decades has made its way into every aspect of our life. Technology has improved many facets of our life, from communication to commerce. However, significant privacy and security problems have emerged due to the broad adoption of technology. In this essay, we'll look at how the widespread use of technological solutions and the subsequent explosion in collected data affects our right to privacy and security.

Data Mining and Privacy Concerns

Risk of Cyber Attacks and Data Loss

The Widespread Use of Encryption and Other Safety Mechanisms

The Privacy and Security of the Future in a Globalized Information Age

Obtaining and Using Individual Information

The acquisition and use of private information is a significant cause for privacy alarm in the digital age. Data about their customers' online habits, interests, and personal information is a valuable commodity for many internet firms. Besides tailored advertising, this information may be used for other, less desirable things like identity theft or cyber assaults.

Moreover, many individuals need to be made aware of what data is being gathered from them or how it is being utilized because of the lack of transparency around gathering personal information. Privacy and data security have become increasingly contentious as a result.

Data breaches and other forms of cyber-attack pose a severe risk.

The risk of cyber assaults and data breaches is another big issue of worry. More people are using more devices, which means more opportunities for cybercriminals to steal private information like credit card numbers and other identifying data. This may cause monetary damages and harm one's reputation or identity.

Many high-profile data breaches have occurred in recent years, exposing the personal information of millions of individuals and raising serious concerns about the safety of this information. Companies and governments have responded to this problem by adopting new security methods like encryption and multi-factor authentication.

Many businesses now use encryption and other security measures to protect themselves from cybercriminals and data thieves. Encryption keeps sensitive information hidden by encoding it so that only those possessing the corresponding key can decipher it. This prevents private information like bank account numbers or social security numbers from falling into the wrong hands.

Firewalls, virus scanners, and two-factor authentication are all additional security precautions that may be used with encryption. While these safeguards do much to stave against cyber assaults, they are not entirely impregnable, and data breaches are still possible.

The Future of Privacy and Security in a Technologically Advanced World

There's little doubt that concerns about privacy and security will persist even as technology improves. There must be strict safeguards to secure people's private information as more and more of it is transferred and kept digitally. To achieve this goal, it may be necessary to implement novel technologies and heightened levels of protection and to revise the rules and regulations regulating the collection and storage of private information.

Individuals and businesses are understandably concerned about the security and privacy consequences of widespread technological use and data collecting. There are numerous obstacles to overcome in a society where technology plays an increasingly important role, from acquiring and using personal data to the risk of cyber-attacks and data breaches. Companies and governments must keep spending money on security measures and working to educate people about the significance of privacy and security if personal data is to remain safe.

In conclusion, technology has profoundly impacted virtually every aspect of our lives, including society and culture, ethics, work, education, personal relationships, and security and privacy. The rise of artificial intelligence and machine learning has presented new ethical considerations, while automation is transforming the future of work. 

In education, technology has revolutionized the way we learn and access information. At the same time, our dependence on technology has brought new challenges in terms of personal relationships, communication, security, and privacy.

Jenni.ai is an AI tool that can help students write essays easily and quickly. Whether you're looking, for example, for essays on any of these topics or are seeking assistance in writing your essay, Jenni.ai offers a convenient solution. Sign up for a free trial today and experience the benefits of AI-powered writing assistance for yourself.

Start Writing With Jenni Today

Sign up for a free Jenni AI account today. Unlock your research potential and experience the difference for yourself. Your journey to academic excellence starts here.

Essay on the Positive and Negative Effects of Technology

How it works

The advent and evolution of technology have brought about profound changes in society, impacting almost every aspect of modern life. While technology has yielded numerous benefits, it has also introduced several challenges and concerns. This essay explores both the positive and negative effects of technology on various facets of human life.

On the positive side, technology has revolutionized communication, making it easier, faster, and more efficient. With the advent of the internet, social media, and mobile communication, people can connect with others across the globe instantly.

This has facilitated not just personal communication but also broadened the scope for global business and educational opportunities. Additionally, technology has significantly advanced healthcare, leading to improved diagnostics, treatments, and increased life expectancy. The accessibility of information and digital resources has also enhanced education and learning processes, making knowledge more accessible to a wider audience.

Another positive impact of technology is seen in the realm of productivity and efficiency. Automation and digital tools have streamlined various processes in industries, reducing manual labor and enhancing precision. This has led to increased productivity and innovation, contributing to economic growth and development. Moreover, technology has played a critical role in advancing research and development across various fields, leading to groundbreaking discoveries and innovations.

However, the negative effects of technology are equally significant. One of the primary concerns is the impact on mental health and well-being. The overuse of digital devices and social media has been linked to issues like anxiety, depression, and social isolation, especially among younger populations. Additionally, the digital divide and access to technology remain significant challenges, leading to disparities in information access and technological benefits.

Another downside of technology is the threat to privacy and security. With the increasing amount of personal data being shared online, individuals are more susceptible to privacy breaches, identity theft, and cybercrimes. Furthermore, the reliance on technology has led to concerns over job displacement due to automation, raising questions about the future of work and employment stability.

Environmental concerns are also associated with technology. The production and disposal of electronic devices contribute to environmental degradation and e-waste, posing challenges for sustainable development. Additionally, the energy consumption required to power digital infrastructures has implications for global energy resources and climate change.

In conclusion, technology has a dual impact on society, offering numerous benefits in terms of communication, healthcare, education, and productivity, while also presenting challenges related to mental health, privacy, job security, and environmental sustainability. Balancing these positive and negative aspects is crucial for harnessing the potential of technology in a way that benefits society as a whole.

owl

Cite this page

Essay On The Positive And Negative Effects Of Technology. (2023, Nov 14). Retrieved from https://papersowl.com/examples/essay-on-the-positive-and-negative-effects-of-technology/

"Essay On The Positive And Negative Effects Of Technology." PapersOwl.com , 14 Nov 2023, https://papersowl.com/examples/essay-on-the-positive-and-negative-effects-of-technology/

PapersOwl.com. (2023). Essay On The Positive And Negative Effects Of Technology . [Online]. Available at: https://papersowl.com/examples/essay-on-the-positive-and-negative-effects-of-technology/ [Accessed: 23 Aug. 2024]

"Essay On The Positive And Negative Effects Of Technology." PapersOwl.com, Nov 14, 2023. Accessed August 23, 2024. https://papersowl.com/examples/essay-on-the-positive-and-negative-effects-of-technology/

"Essay On The Positive And Negative Effects Of Technology," PapersOwl.com , 14-Nov-2023. [Online]. Available: https://papersowl.com/examples/essay-on-the-positive-and-negative-effects-of-technology/. [Accessed: 23-Aug-2024]

PapersOwl.com. (2023). Essay On The Positive And Negative Effects Of Technology . [Online]. Available at: https://papersowl.com/examples/essay-on-the-positive-and-negative-effects-of-technology/ [Accessed: 23-Aug-2024]

Don't let plagiarism ruin your grade

Hire a writer to get a unique paper crafted to your needs.

owl

Our writers will help you fix any mistakes and get an A+!

Please check your inbox.

You can order an original essay written according to your instructions.

Trusted by over 1 million students worldwide

1. Tell Us Your Requirements

2. Pick your perfect writer

3. Get Your Paper and Pay

Hi! I'm Amy, your personal assistant!

Don't know where to start? Give me your paper requirements and I connect you to an academic expert.

short deadlines

100% Plagiarism-Free

Certified writers

Automated Essay Scoring and Revising Based on Open-Source Large Language Models

New citation alert added.

This alert has been successfully added and will be sent to:

You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below.

New Citation Alert!

Please log in to your account

Information & Contributors

Bibliometrics & citations, view options, recommendations, automatic essay scoring: design and implementation of automatic amharic essay scoring system using latent semantic analysis, a ranked-based learning approach to automated essay scoring.

Automated essay scoring is the computer techniques and algorithms that evaluate and score essays automatically. Compared with human rater, automated essay scoring has the advantage of fairness, less human resource cost and timely feedback. In previous ...

Automated Essay Scoring via Example-Based Learning

Automated essay scoring (AES) is the task of assigning grades to essays. It can be applied for quality assessment as well as pricing on User Generated Content. Previous works mainly consider using the prompt information for scoring. However, some ...

Information

Published in.

IEEE Computer Society Press

Washington, DC, United States

Publication History

  • Research-article

Contributors

Other metrics, bibliometrics, article metrics.

  • 0 Total Citations
  • 0 Total Downloads
  • Downloads (Last 12 months) 0
  • Downloads (Last 6 weeks) 0

View options

Login options.

Check if you have access through your login credentials or your institution to get full access on this article.

Full Access

Share this publication link.

Copying failed.

Share on social media

Affiliations, export citations.

  • Please download or close your previous search result export first before starting a new bulk export. Preview is not available. By clicking download, a status dialog will open to start the export process. The process may take a few minutes but once it finishes a file will be downloadable from your browser. You may continue to browse the DL while the export process is in progress. Download
  • Download citation
  • Copy citation

We are preparing your search results for download ...

We will inform you here when the file is ready.

Your file of search results citations is now ready.

Your search export query has expired. Please try again.

Essay on Technology – A Boon or Bane for Students

500+ words essay on technology for students.

In this essay on technology, we are going to discuss what technology is, what are its uses, and also what technology can do? First of all, technology refers to the use of technical and scientific knowledge to create, monitor, and design machinery. Also, technology helps in making other goods that aid mankind.

Essay on Technology – A Boon or Bane?

Experts are debating on this topic for years. Also, the technology covered a long way to make human life easier but the negative aspect of it can’t be ignored. Over the years technological advancement has caused a severe rise in pollution . Also, pollution has become a major cause of many health issues. Besides, it has cut off people from society rather than connecting them. Above all, it has taken away many jobs from the workers class.

Essay on technology

Familiarity between Technology and Science

As they are completely different fields but they are interdependent on each other. Also, it is due to science contribution we can create new innovation and build new technological tools. Apart from that, the research conducted in laboratories contributes a lot to the development of technologies. On the other hand, technology extends the agenda of science.

Vital Part of our Life

Regularly evolving technology has become an important part of our lives. Also, newer technologies are taking the market by storm and the people are getting used to them in no time. Above all, technological advancement has led to the growth and development of nations.

Negative Aspect of Technology

Although technology is a good thing, everything has two sides. Technology also has two sides one is good and the other is bad. Here are some negative aspects of technology that we are going to discuss.

Get the huge list of more than 500 Essay Topics and Ideas

With new technology the industrialization increases which give birth to many pollutions like air, water, soil, and noise. Also, they cause many health-related issues in animals, birds, and human beings.

Exhaustion of Natural Resources

New technology requires new resources for which the balance is disturbed. Eventually, this will lead to over-exploitation of natural resources which ultimately disturbs the balance of nature.

Unemployment

A single machine can replace many workers. Also, machines can do work at a constant pace for several hours or days without stopping. Due to this, many workers lost their job which ultimately increases unemployment .

Types of Technology

Generally, we judge technology on the same scale but in reality, technology is divided into various types. This includes information technology, industrial technology , architectural technology, creative technology and many more. Let’s discuss these technologies in brief.

Industrial Technology

This technology organizes engineering and manufacturing technology for the manufacturing of machines. Also, this makes the production process easier and convenient.

Creative Technology

This process includes art, advertising, and product design which are made with the help of software. Also, it comprises of 3D printers , virtual reality, computer graphics, and other wearable technologies.

Information Technology

This technology involves the use of telecommunication and computer to send, receive and store information. Internet is the best example of Information technology.

conclusion of digital technology essay

FAQs on Essay on Technology

Q.1 What is Information technology?

A –  It is a form of technology that uses telecommunication and computer systems for study. Also, they send, retrieve, and store data.

Q.2 Is technology harmful to humans?

 A – No, technology is not harmful to human beings until it is used properly. But, misuses of technology can be harmful and deadly.

Download Toppr – Best Learning App for Class 5 to 12

Toppr provides free study materials, last 10 years of question papers, 1000+ hours of video lectures, live 24/7 doubts solving, and much more for FREE! Download Toppr app for Android and iOS or signup for free.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

Student Essays

Essay on digital technology

4 Creative Essays on Digital Technology [ Importance & Benefits ]

Digital technology is the driving force in current socio economic development. It has assumed the tremendous importance in our daily life. The Following Essay on Digital Technology has been written to highlight the importance and benefits of digital technology in our daily lives and how the students can take benefit from digital technology

Essay on Digital Technology | Importance, Usages & Benefits of Digital Technology in Life

Digital technology refers at innovation in every field of our life. The technology has brought drastic changes in the way we used to live our life. There are various benefits of digital technology which has made our life easier and more comfortable than ever before.

Essay on digital technology

There are endless advantages of using digital technology in our life. Firstly, with the help of internet, we can easily connect with people from all over the world. This has helped us to build strong relationships with people who are far away from us. Secondly, digital technology has enabled us to access information anytime and anywhere. We can now easily get the information we need without having to go through any trouble.

>>>> Read Also:   “ Paragraph on Television ”

Thirdly, digital technology has made it possible for us to do many tasks conveniently and quickly. For example, we can now shop for our favourite products online without having to go out. Lastly, digital technology has helped us to stay connected with the latest news and trends happening all over the world. We can now easily get information about any topic we are interested in.

Benefits of Digital Technology for Students

There are many ways in which students can take benefits from digital technology of today. Firstly, internet has made it possible for students to access information about any topic they are interested in. They can now easily get information about any subject they are studying without having to go through any trouble.

Secondly, digital technology has enabled students to connect with people from all over the world. This has helped them to build strong relationships with people who are far away from them. Thirdly, digital technology has made it possible for students to do many tasks conveniently and quickly. For example, they can now shop for their favourite products online without having to go out. Lastly, digital technology has helped students to stay connected with

Thus, it is evident that digital technology has brought many benefits in our life. We can enjoy a better and more comfortable life with the help of digital technology.

Short Essay on Digital Technology:

Digital technology has revolutionized the world we live in today. It has transformed how we communicate, work, and access information. From smartphones to computers, digital technology is an integral part of our daily lives.

One of the biggest advantages of digital technology is its ability to connect people from different parts of the world. With just a few clicks, we can now communicate with someone on the other side of the planet. This has made it easier for businesses to expand globally and for individuals to stay connected with their loved ones no matter where they are.

Another major impact of digital technology is seen in the workplace. With the rise of automation and artificial intelligence, many tasks that were previously done by humans can now be done more efficiently by machines. This has led to increased productivity and streamlined processes in various industries.

However, with the increasing reliance on digital technology, there are also concerns about its potential negative effects. One of the biggest challenges is cybersecurity. As more and more data is being stored online and shared through digital platforms, it has become crucial to protect this sensitive information from cyber attacks.

Moreover, there are also concerns about the impact of digital technology on our physical health. With the rise of sedentary lifestyles due to excessive screen time, people are facing various health issues such as obesity and eye strain.

On a positive note, digital technology has also opened up new opportunities for education and learning. With online courses and educational platforms, individuals can now access knowledge and resources from anywhere in the world. This has made education more accessible and has also allowed for personalized learning.

In conclusion, digital technology has transformed our world in many ways. It has brought people closer, increased efficiency in various industries, and opened up new opportunities. However, it is important to use digital technology responsibly and address its potential negative effects to ensure a better future for generations to come.

We must embrace the benefits of digital technology while being mindful of its implications on our society and planet as a whole. So, let’s continue to harness the power of digital technology for positive change and progress. Let’s keep innovating and adapting to make the most out of this technological revolution.

Paragraph on Digital Technology:

Digital technology has transformed the way we live and work in ways that were unimaginable just a few decades ago. From our personal lives to businesses, digital technology has become an integral part of our daily routines.

In the past, communication was limited to physical letters or face-to-face interactions. Today, with the advancements in digital technology, we can instantly connect with people from all over the world through various platforms such as email, social media, and messaging apps. This has made communication faster, easier and more efficient than ever before.

Another area where digital technology has greatly impacted our lives is entertainment. With the rise of streaming services like Netflix, Hulu, and Amazon Prime Video, we no longer have to wait for a specific time slot on TV to watch our favorite shows or movies. We now have access to a vast library of content at our fingertips, giving us the freedom to watch what we want, when we want.

Digital technology has also revolutionized the way we do business. With the rise of e-commerce platforms like Amazon and eBay, buying and selling goods and services has become more convenient than ever before. This has not only made shopping easier for consumers but has also opened up new opportunities for businesses to reach a global market.

With the advent of social media platforms like Facebook, Instagram, and Twitter, businesses can now directly connect with their target audience and create personalized marketing strategies. This allows for more effective and targeted advertising, resulting in better customer engagement and increased sales.

Moreover, digital technology has significantly improved our access to information. With just a few clicks, we can access a wealth of knowledge and resources on the internet, making it easier for us to learn and stay informed about various topics.

In addition to its impact on communication, entertainment, business, and education, digital technology has also transformed the way we manage our daily tasks. From online banking and bill payments to grocery shopping and virtual meetings, almost every aspect of our lives can now be managed through digital platforms.

However, with all these benefits come some challenges as well. The over-reliance on digital technology has led to concerns about privacy and security. As more personal data is shared online, there is a risk of identity theft and cyber attacks. It is crucial for individuals and organizations to prioritize cybersecurity and take necessary precautions to protect sensitive information.

In conclusion, digital technology has undoubtedly made our lives easier and more efficient in many ways. Its impact on communication, entertainment, business, education, and daily tasks is undeniable.

Argumentative Essay on Digital Technology:

Over the years, digital technology has revolutionized our everyday lives. From communication to education and entertainment, technology has made its way into every aspect of modern living. While many argue that digital technology has brought about numerous benefits, others believe it is having a negative impact on society. In this essay, we will explore both sides of the argument and discuss the effects of digital technology on our society.

Positive Impacts

One of the major benefits of digital technology is its ability to connect people from all around the world. Through social media networks like Facebook, Twitter, and Instagram, individuals can stay in touch with friends and family regardless of their location.

This has greatly improved communication between loved ones and allows people to share their experiences with each other. Moreover, digital technology has also made it possible for businesses to expand their reach and connect with a global audience, resulting in increased opportunities and economic growth.

In addition to this, digital technology has greatly enhanced access to information and education. With the rise of e-learning platforms and online resources, individuals can now easily educate themselves on various subjects without having to physically attend a traditional classroom.

This has not only made education more accessible but also more affordable for many people. Furthermore, digital technology has also improved healthcare services through tele-medicine, making it easier for patients in remote areas to receive medical advice and treatment from qualified professionals.

Negative Impacts

Despite its benefits, digital technology has also brought about some negative effects on society. One of the biggest concerns is the impact it has on our social interactions. With the rise of social media, many people are spending more time on their devices and less time interacting face-to-face with others. This can lead to feelings of isolation and loneliness, especially among younger generations who have grown up in a digital world.

Moreover, there is also growing concern about the effects of excessive screen time on children’s development. Studies have shown that prolonged use of digital devices can negatively impact cognitive abilities, attention span, and social skills in young children.

In addition, the constant exposure to unrealistic beauty standards and curated lives on social media can also have a negative impact on individuals’ self-esteem and mental health.

In conclusion, while digital technology has greatly improved our lives in many ways, it also has its drawbacks. It is important for us to recognize and address the negative impacts it may have on our society, especially when it comes to social interactions and mental health.

>>> Related Post:  “ Essay on Smart Phone  “

As we continue to embrace digital technology, we must also be mindful of finding a balance between its benefits and limitations in order to create a healthier and more connected society.

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Data Center Frontier

  • Trends Summit

White Papers

  • Continuing Education
  • Sustainability

Exploring Liquid Cooling and Digital Twin Technology in Today's Data Centers

Source: Cadence

The need for efficient data centers continues to grow as the world becomes increasingly digitalized. While heat has always been a significant challenge for data centers, liquid cooling and digital twins offer remarkable solutions to continue delivering energy efficiency in a world with changing IT technology.

Liquid Cooling: The Future of Modern Cooling Systems

Data centers contain powerful components that generate a lot of heat. The traditional remedy has been air cooling, but this method often struggles to keep up with growing heat densities in servers and racks. On the other hand, liquid cooling, which uses fluid substances like water-based coolants to absorb heat, shows great promise.

Water, for instance, can hold about 4.2 times more heat per kilogram than air and can store around 3,500 times more energy per volume. This ensures that even tiny amounts can be pumped around high-powered components to remove heat efficiently.

Liquid cooling boosts power densities that can be cooled, effectively recovering heat while consuming less energy than air cooling. It’s a vital solution for avoiding overheating and performance issues, and it’s particularly effective for high-density server racks when loads exceed around 20kW per rack.

Braving the Challenges of Direct-to-Chip Liquid Cooling and Immersion Cooling in Data Centers

There are fundamentally two approaches to liquid cooling: direct-to-chip cooling, where liquid is directed to cold plates on the hot components (such as CPUs, GPUs, and memory), and immersion cooling, where the whole IT system is immersed in liquid.

Although liquid cooling presents a host of benefits, it also has challenges. Electrical risks, though much reduced thanks to dripless quick connectors and negative pressure systems, are still a primary concern for operators.

In addition, integrating liquid cooling in data centers that already use air cooling can be tricky. Both systems must operate well together to ensure efficiency, which usually involves coordinating complex logistics and significant investments.

Immersion cooling adds extra complications, but it offers the potential of even more of the heat being captured by the fluid than with direct-to-chip liquid cooling. Concerns about material compatibility and the impact of increasing power demands on natural flow effectiveness need to be addressed.

Modern Data Centers Need Digital Twins

Digital twins—virtual models of data centers—can help designers and operators plan to cool their facilities optimally. With this technology, they can evaluate options and validate the best proposals through simulations that predict the facility outcomes.

Operators can evaluate the advantages and disadvantages of different cooling strategies and test multiple deployment scenarios. When connected to environmental monitoring systems and similar technologies, digital twins evolve alongside their physical counterparts, enabling continuous identification of improvement opportunities.

They can evaluate the impact of new hardware or denser servers on the cooling system, helping to prevent issues such as slow IT performance and lost capacity. When powered by a physics-based simulation engine, a digital twin can simulate cooling and airflow, showing how these factors fluctuate with each deployment.

Given the dynamic nature of data centers, understanding how equipment responds to new setups is crucial for effectively meeting growing demands and budgeting. Digital twins enable teams to explore numerous scenarios, maximizing capacity while minimizing risks, which is vital for energy efficiency and reducing carbon footprints.

Implementing Liquid Cooling Using Digital Twin Technology

Liquid cooling has the potential to revolutionize modern data centers. By effectively handling heat through direct-to-chip and immersion cooling, data centers can achieve high efficiency and reliability.

Introducing digital twins into the mix further aids decision-making, enabling operators to tailor cooling strategies to their needs. Digital twins empower stakeholders to evaluate all options, predict outcomes, and make informed decisions to prepare their data centers for future changes, such as deploying previously unconsidered higher power densities associated with AI without incurring risks.

While there are hurdles to clear, advancements in technology and practices are creating a pathway for broader adoption. As the demand for data processing continues to soar, the role of liquid cooling and digital twins becomes increasingly crucial in maintaining performance and sustainability in the ever-evolving field of data centers.

conclusion of digital technology essay

Mark Seymour

Mark Seymour is a Distinguished Engineer at Cadence , where he leverages his entrepreneurial and technical expertise of 30+ years in the field to develop its products and services. Previously, he co-founded and served as Chief Technology Officer at Future Facilities, driving its growth and innovation before its acquisition.

Cadence is a pivotal leader in electronic systems design, building upon more than 30 years of computational software expertise. The company applies its underlying Intelligent System Design strategy to deliver software, hardware, and IP that turn design concepts into reality. Cadence acquired Future Facilities in 2022 for its expert 6SigmaDCX and 6SigmaET simulation software suites to expand its electronics product portfolio and facilitate energy efficiency and performance optimization for the data center industry through digital twin technology – now Cadence Reality DC .

Continue Reading

conclusion of digital technology essay

Unlocking the Power of Liquid Cooling: Separating Hype from Reality

conclusion of digital technology essay

Leveraging Digital Twin Technology for Sustainable Data Center Performance

Sponsored recommendations.

conclusion of digital technology essay

NECA Manual of Labor Rates Chart

conclusion of digital technology essay

Electrical Conduit Cost Savings: A Must-Have Guide for Engineers & Contractors

conclusion of digital technology essay

Prefabricated Conduit Duct Banks Enable Smooth and Safe Electrical Installation for a Data Center

conclusion of digital technology essay

3 Strategies to Future-Proof the Sustainability of Your Data Center

Voices of the industry.

Source: Nadir Keklik/Shutterstock.com

The Importance of Liquid Cooling to the Open Compute Project (OCP)

Latest in sponsored.

conclusion of digital technology essay

Liquid Cooling: A Sustainable Revolution in Data Center Efficiency

conclusion of digital technology essay

New Strategies in Design to Meet the Demands of AI Data Centers

conclusion of digital technology essay

Podcast: The Dynamics of Exascale Data Centers

Get the full report

Content & Digital Media Infrastructure

conclusion of digital technology essay

Investing in Edge Computing: It’s Still Early, Investors Say

conclusion of digital technology essay

Vapor IO’s Edge Data Centers Power a Network of Drones

conclusion of digital technology essay

Roundtable: Will 5G Accelerate the Data Center Sector?

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards

NIST Releases First 3 Finalized Post-Quantum Encryption Standards

  • NIST has released a final set of encryption tools designed to withstand the attack of a quantum computer.
  • These post-quantum encryption standards secure a wide range of electronic information, from confidential email messages to e-commerce transactions that propel the modern economy.
  • NIST is encouraging computer system administrators to begin transitioning to the new standards as soon as possible.

Collage illustration of servers, laptops and phones is divided into left "Old Encryption Standards" and right "New Encryption Standards."

GAITHERSBURG, Md. — The U.S. Department of Commerce’s National Institute of Standards and Technology (NIST) has finalized its principal set of encryption algorithms designed to withstand cyberattacks from a quantum computer. 

Researchers around the world are racing to build quantum computers that would operate in radically different ways from ordinary computers and could break the current encryption that provides security and privacy for just about everything we do online.  The algorithms announced today are specified in the first completed standards from NIST’s  post-quantum cryptography (PQC) standardization project , and are ready for immediate use.

The three new standards are built for the future. Quantum computing technology is developing rapidly, and some experts predict that a device with the capability to break current encryption methods could appear  within a decade , threatening the security and privacy of individuals, organizations and entire nations. 

Want to learn more about post-quantum cryptography? Check out our explainer.  

“The advancement of quantum computing plays an essential role in reaffirming America’s status as a global technological powerhouse and driving the future of our economic security,” said Deputy Secretary of Commerce Don Graves.   “Commerce bureaus are doing their part to ensure U.S. competitiveness in quantum, including the National Institute of Standards and Technology, which is at the forefront of this whole-of-government effort. NIST is providing invaluable expertise to develop innovative solutions to our quantum challenges, including security measures like post-quantum cryptography that organizations can start to implement to secure our post-quantum future. As this decade-long endeavor continues, we look forward to continuing Commerce’s legacy of leadership in this vital space.”

The standards — containing the encryption algorithms’ computer code, instructions for how to implement them, and their intended uses — are  the result of an eight-year effort managed by NIST, which has a long history of developing encryption. The agency has rallied the world’s cryptography experts to conceive, submit and then evaluate cryptographic algorithms that could resist the assault of quantum computers. The nascent technology could revolutionize fields from weather forecasting to fundamental physics to drug design, but it carries threats as well. 

“Quantum computing technology could become a force for solving many of society’s most intractable problems, and the new standards represent NIST’s commitment to ensuring it will not simultaneously disrupt our security,” said Under Secretary of Commerce for Standards and Technology and NIST Director Laurie E. Locascio . “These finalized standards are the capstone of NIST’s efforts to safeguard our confidential electronic information.”

The Journey Toward Quantum Resistant Algorithms: NIST's Initiative

Encryption carries a heavy load in modern digitized society. It protects countless electronic secrets, such as the contents of email messages, medical records and photo libraries, as well as information vital to national security. Encrypted data can be sent across public computer networks because it is unreadable to all but its sender and intended recipient. 

Encryption tools rely on complex math problems that conventional computers find difficult or impossible to solve. A sufficiently capable quantum computer, though, would be able to sift through a vast number of potential solutions to these problems very quickly, thereby defeating current encryption. The algorithms NIST has standardized are based on different math problems that would stymie both conventional and quantum computers.

“These finalized standards include instructions for incorporating them into products and encryption systems,” said NIST mathematician Dustin Moody, who heads the PQC standardization project. “We encourage system administrators to start integrating them into their systems immediately, because full integration will take time.”

Moody said that these standards are the primary tools for general encryption and protecting digital signatures. 

NIST also continues to evaluate two other sets of algorithms that could one day serve as backup standards. 

One of these sets consists of three algorithms designed for general encryption but based on a different type of math problem than the general-purpose algorithm in the finalized standards. NIST plans to announce its selection of one or two of these algorithms by the end of 2024.

The second set includes a larger group of algorithms designed for digital signatures.  In order to accommodate any ideas that cryptographers may have had since the initial 2016 call for submissions , NIST asked the public for additional algorithms in 2022 and has begun a process of evaluating them. In the near future, NIST expects to announce about 15 algorithms from this group that will proceed to the next round of testing, evaluation and analysis. 

While analysis of these two additional sets of algorithms will continue, Moody said that any subsequent PQC standards will function as backups to the three that NIST announced today. 

“There is no need to wait for future standards,” he said. “Go ahead and start using these three. We need to be prepared in case of an attack that defeats the algorithms in these three standards, and we will continue working on backup plans to keep our data safe. But for most applications, these new standards are the main event.” 

More Details on the New Standards

Encryption uses math to protect sensitive electronic information, including secure websites and emails. Widely used  public-key encryption systems , which rely on math problems that computers find intractable, ensure that these websites and messages are inaccessible to unwelcome third parties. Before making the selections, NIST considered not only the security of the algorithms’ underlying math, but also the best applications for them. 

The new standards are designed for two essential tasks for which encryption is typically used: general encryption, used to protect information exchanged across a public network; and digital signatures, used for identity authentication. NIST  announced its selection of four algorithms — CRYSTALS-Kyber, CRYSTALS-Dilithium, Sphincs+ and FALCON — slated for standardization in 2022 and  released draft versions of three of these standards in 2023. The fourth draft standard based on FALCON is planned for late 2024.  

While there have been no substantive changes made to the standards since the draft versions, NIST has changed the algorithms’ names to specify the versions that appear in the three finalized standards, which are: 

  • Federal Information Processing Standard (FIPS) 203 , intended as the primary standard for general encryption. Among its advantages are comparatively small encryption keys that two parties can exchange easily, as well as its speed of operation. The standard is based on the  CRYSTALS-Kyber algorithm, which has been renamed ML-KEM, short for Module-Lattice-Based Key-Encapsulation Mechanism.
  • FIPS 204 , intended as the primary standard for protecting digital signatures. The standard uses the  CRYSTALS-Dilithium algorithm, which has been renamed ML-DSA, short for Module-Lattice-Based Digital Signature Algorithm.
  • FIPS 205 , also designed for digital signatures. The standard employs the  Sphincs+ algorithm, which has been renamed SLH-DSA, short for Stateless Hash-Based Digital Signature Algorithm. The standard is based on a different math approach than ML-DSA, and it is intended as a backup method in case ML-DSA proves vulnerable.

Similarly, when the draft FIPS 206 standard built around FALCON is released, the algorithm will be dubbed FN-DSA, short for FFT (fast-Fourier transform) over NTRU-Lattice-Based Digital Signature Algorithm. 

More From Forbes

How enterprises can optimize communications with hlr lookup technology.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

Gegham Azatyan, cofounded Dexatel in 2015, innovating in CPaaS and omnichannel solutions for secure business growth.

The exponential growth of accessible personal data in recent decades has increased the importance of accurate data gathering and validation for business owners. Given the widespread use of this technology, businesses must manage this information effectively to prevent fraud and reach the right people.

No business owner wants to waste time, resources and energy when validating these data points. One way to guide your efforts in connecting with your target audience is by implementing an advanced Home Location Register (HLR) lookup service . Based on my experience as a service provider, let's look at how you can use this option effectively to optimize your company's communication strategies.

The Impact Of Accurate Phone Number Validation

Enterprises managing large volumes of communication can benefit from an accurate phone number database in multiple ways. With an HLR lookup service, you can validate phone numbers in real time and receive accurate information on number portability. This access to real-time data can improve delivery rates, reduce costs associated with undelivered messages and allow for better audience segmentation and personalized messaging based on verified user data.

A lookup service can also enhance the accuracy of engagement metrics, which can help in assessing the effectiveness of messages. By analyzing open and response patterns, businesses can gain valuable insights into user behavior and preferences, allowing them to refine messaging strategies. Not to mention routine verification supports data hygiene by keeping contact information current and accurate, preventing marketing efforts from being wasted on incorrect or outdated data.

Will Beyoncé Perform At DNC’s Final Night? Conflicting Reports After TMZ Says She’ll Appear.

Will beyoncé perform at dnc tonight here’s what we know as rumors swirl., trump denies project 2025 links in response to harris’ dnc speech: ‘i have absolutely nothing to do with’ it.

Additionally, this service can result in increased security and compliance. HLR lookups can identify and prevent fraud by verifying the validity of phone numbers and detecting anomalies, such as numbers linked to suspicious activities or duplicate registrations. Ensuring that contact numbers are valid and up to date helps companies adhere to regulations that require accurate and legitimate data in order to avoid potential fines or legal issues.

Features Of An Enterprise-Level HLR Lookup Service

When looking for an HLR lookup service provider, there are a few features that can help you determine if the provider is right for your company.

1. Tech Stack Adaptability

When choosing your service provider, make sure it is compatible with your tech stack to facilitate a seamless integration process and maximize the benefits of the service. A high-quality HLR lookup service should support multiple programming languages and application programming interfaces (APIs), such as a comprehensive RESTful API that is language-agnostic. This means that any system capable of making HTTP requests, including applications written in Java, Python, Node.js, Ruby, PHP or even shell scripting with cUrl, can interact with the service seamlessly. This allows enterprises to integrate the HLR lookup service into their existing systems, regardless of their technology stack.

For example, a company using a Ruby on Rails application can integrate HLR lookup functionality by making simple HTTP requests to the carrier lookup’s API endpoints. This approach leverages Ruby's built-in HTTP libraries without needing a specific SDK. It goes to show the service’s adaptability across different programming environments.

2. Scalability

For large enterprises that operate on a global scale, handling high volumes of requests is a daily challenge. In these situations, your HLR lookup service should be designed to be highly scalable. This way, no matter the volume of phone numbers that need to be validated, the service can handle the load without compromising on performance.

To guarantee an HLR lookup service is scalable for large enterprises, evaluate its performance metrics for response time and throughput and conduct load testing to identify bottlenecks. Check for elastic scaling capabilities to handle varying demand and review service level agreements (SLAs) for uptime and support guarantees. Then, assess the infrastructure for cloud-based solutions and load balancing and that redundancy and failover mechanisms are in place. You should also review historical performance data and customer support quality to confirm the service can manage high volumes effectively.

3. Real-Time Data

Keeping pace with business demands requires access to real-time data. Your HLR lookup service should provide you with up-to-date information on number portability and validity, which can help you make informed decisions quickly and increase the accuracy of message targeting.

4. Airtight Security Measures

Data privacy and protection are fundamental concerns for any enterprise. Look for an HLR lookup service with strong security measures so that sensitive information is always protected. From encryption to secure data storage, these services should prioritize the security of your data.

When it comes to assessing whether an HLR lookup service is secure, check that it uses strong encryption protocols like TLS for data in transit and AES for data at rest. Ensure secure data storage practices and compliance with relevant regulations and certifications. Review access control measures for robust authentication and authorization, and then confirm that the service undergoes regular security audits and has a solid incident response plan. Finally, examine the service’s data handling and privacy policies so they meet your security standards.

As the volume of personal data continues to grow, the need for accurate validation is becoming increasingly important. Not only do you have to reach the right people, but you also need to safeguard against fraud and inefficiencies. Investing in an HLR lookup service can help streamline your communications, reduce costs from undelivered messages, and boost campaign effectiveness. When choosing a service partner, prioritize scalability, real-time data capabilities and strong security measures to meet your current business needs while preparing for future challenges.

Forbes Business Council is the foremost growth and networking organization for business owners and leaders. Do I qualify?

Gegham Azatyan

  • Editorial Standards
  • Reprints & Permissions

Impact of Technology on Business Essay

  • To find inspiration for your paper and overcome writer’s block
  • As a source of information (ensure proper referencing)
  • As a template for you assignment

Past impact

Future impact, works cited.

If you’re wondering how digital technology changes society in the area of business, this essay will help you figure it out. You’ll consider its positive and negative impacts on global organizations and the overall environment.

Technology has had a transformative effect on businesses, which, so far, has been revolutionary. Organizations, both small and large, use technologies such as the World Wide Web (WWW), computers, websites, Artificial Intelligence (AI), servers and even personal digital devices to make their work easier. These tools can give them the invaluable competitive advantage that all businesses strive to achieve.

Future technology will indubitably revolutionize business once again. It has grown to become an inseparable part of any company. So that you see all the real and possible impacts of technology on business, this essay will analyze how electronics and other machinery have already affected the field and are expected to affect it in the future.

One aspect of technology that has been harnessed well for use in businesses is Artificial Intelligence (AI). For the last ten years, virtually all businesses have had their processes automated though the use of AI in Management Information Systems (MIS). This automation function is also found in various computer applications that are used by contemporary businesses. Examples of the latter include word-processing software, spreadsheets etc.

The aforementioned automation features in programs and software have enabled businesses to achieve goals that were difficult to achieve before the advent of technology. For instance, automation has enabled businesses to avoid errors, process more information and achieve efficiency in their processes (Vitez 1).

In addition to the automation function, technology has revolutionized communication in businesses. In today’s business world, Information Communication Technologies (ICTs) are common. The use of the WWW has introduced easy means of communication that include texting, use of “apps” in personal digital devices, use of interactive websites, etc.

These features of ICTs have eased communication within businesses, communication with various stakeholders and communication with customers. The latter is perhaps the most important for businesses.

This is because it gives businesses a chance to advertise their products and services in a cost-effective way, identify target markets, compare the popularity of their products with the popularity of other competing products in the market and receive customer feedback about their products and services (Vitez 1). Generally, all these communication opportunities give a business a chance to expand its market, which will lead to more profitability for the business.

For instance, instead of concentrating in the local markets, businesses use retail websites to reach national, regional and international markets. Business organizations have also developed websites in which their customers and various stakeholders can access the information they require. This has led to reduced communication costs for businesses.

The communication aspect of technology has also enabled businesses to utilize the local and international business environment by outsourcing their functions. This has helped businesses in concentrating on their core business leading to reduced costs, more productivity and more profitability in the long run. The most common functions that organizations choose to outsource include customer service and technical support (McGrath 2), which are obviously support services for business organizations.

Another way in which technology has revolutionized business in the past is in records management. In the past, documents and records were kept in cabinets and drawers. In contemporary businesses however, businesses use computer storage hardware such as hard disks, flash disks, Compact Disks (CDs), memory cards, Digital Video Disks (DVDs), etc.

The use of internet by businesses has also made it easier to transfer stored information from one department to another, or even to an external entity like a customer or even a supplier (McGrath 1).

The future of business technology will indubitably involve service-oriented systems designed to serve a decentralized business organization. This is because many businesses will be decentralized with an aim of increasing “collaboration across the enterprise with partners and customers” (“The future of business technology”, par. 5). This will especially be the case due to the convenience brought about by ICTs.

It is now possible to work from home or from a remote location using tablets, smart phones, Personal Digital Assistants (PDAs), etc. To exemplify the paradigm shift to service-oriented organizations, Information Technology (IT) providers will have to operate according to client needs as opposed to the conventional identification of a technological idea and the subsequent fitting of problems to the idea (“The future of business technology”, par. 5).

Another technological advancement that is likely to be harnessed for more opportunities in businesses particularly those dealing with medical issues is the combination of Computed Tomography (CT) with holography to solve health problems that have been a nightmare to the human race for a long time.

The use of CT together with holography gives an opportunity to construct internal organs in computers in order to perform pre-surgical evaluations to determine how a surgery can be successfully carried out. This will be resourceful for businesses dealing with health provision. The idea of holography can also be combined with Artificial Intelligence to create virtual humans who will be useful in performing risky functions like operating machinery or even being involved in war activities (Enzer 1).

Due to the increase in networked personal devices, there is a possibility of developing sensor networks that will use Artificial Intelligence to give sensitive information. For instance, the network could allow queries to know if a person is asleep, if a person is travelling at a high speed on a highway or even to establish if it is an appropriate time to make a video call to a certain person (Enzer 1).

If the current technological efforts succeed, it will be possible for a car to listen to conversations. This feature, combined with existent networking features, will make it easy for an organization to monitor its cars and know when they are being misused (Blum 1). In addition to this, machines may be able to communicate to humans in words and in writing in the future. This will ease operations in the manufacturing industry (Blum 1).

Future technology will come with knowledge demands for business managers. Managers in the Information Technology field will have to fully understand how they can integrate the ideas of Artificial Intelligence in new systems and mainstream Artificial Intelligence in technological inventions and innovations. In the medical field, managers will have to fully understand the applications of CT and how best they can use the information produced by applications and devices.

As evidenced in the discussion above, technology has had a revolutionary effect on businesses. In fact, technology can be considered as part and parcel of business operations. It is therefore expected that future technologies will have a more transformative effect on businesses than past technologies. Future managers will also have to acquaint themselves with future technology so that they do not lose their relevance in the market.

Blum, Jonathan. 10 Tech Trends Defining the Future of Small Business 2012 . Web.

Enzer, Georgina. Cisco predicts future technologies 2012 . Web.

McGrath, Jane. How has technology changed the way we conduct business? 2012 . Web.

The future of business technology 2011 . Web.

Vitez, Osmond. The Impact of Technological Change on Business Activity , 2012 . Web.

  • Strategies for Entering New Markets
  • Aggregate Planning
  • Electricity and Magnetism: The Interrelationship
  • Effects of Automation on Business and Employment
  • Properly Managed Disk Resources
  • Change Management Models
  • Hospitality Management: Aramark and NAMA
  • Memorandum to the Board of Directors
  • Making Money on Music: The Company That Has to Stay Afloat
  • Principles & Concept of Total Quality Management Essay
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2018, June 19). Impact of Technology on Business Essay. https://ivypanda.com/essays/impact-of-technology-on-business/

"Impact of Technology on Business Essay." IvyPanda , 19 June 2018, ivypanda.com/essays/impact-of-technology-on-business/.

IvyPanda . (2018) 'Impact of Technology on Business Essay'. 19 June.

IvyPanda . 2018. "Impact of Technology on Business Essay." June 19, 2018. https://ivypanda.com/essays/impact-of-technology-on-business/.

1. IvyPanda . "Impact of Technology on Business Essay." June 19, 2018. https://ivypanda.com/essays/impact-of-technology-on-business/.

Bibliography

IvyPanda . "Impact of Technology on Business Essay." June 19, 2018. https://ivypanda.com/essays/impact-of-technology-on-business/.

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Sustainability
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

MIT study explains why laws are written in an incomprehensible style

Press contact :.

Stack of legal papers and gavel

Previous image Next image

Legal documents are notoriously difficult to understand, even for lawyers. This raises the question: Why are these documents written in a style that makes them so impenetrable?

MIT cognitive scientists believe they have uncovered the answer to that question. Just as “magic spells” use special rhymes and archaic terms to signal their power, the convoluted language of legalese acts to convey a sense of authority, they conclude.

In a study appearing this week in the journal of the Proceedings of the National Academy of Sciences , the researchers found that even non-lawyers use this type of language when asked to write laws.

“People seem to understand that there’s an implicit rule that this is how laws should sound, and they write them that way,” says Edward Gibson, an MIT professor of brain and cognitive sciences and the senior author of the study.

Eric Martinez PhD ’24 is the lead author of the study. Francis Mollica, a lecturer at the University of Melbourne, is also an author of the paper .

Casting a legal spell

Gibson’s research group has been studying the unique characteristics of legalese since 2020, when Martinez came to MIT after earning a law degree from Harvard Law School. In a 2022 study , Gibson, Martinez, and Mollica analyzed legal contracts totaling about 3.5 million words, comparing them with other types of writing, including movie scripts, newspaper articles, and academic papers.

That analysis revealed that legal documents frequently have long definitions inserted in the middle of sentences — a feature known as “center-embedding.” Linguists have previously found that this kind of structure can make text much more difficult to understand.

“Legalese somehow has developed this tendency to put structures inside other structures, in a way which is not typical of human languages,” Gibson says.

In a follow-up study published in 2023, the researchers found that legalese also makes documents more difficult for lawyers to understand. Lawyers tended to prefer plain English versions of documents, and they rated those versions to be just as enforceable as traditional legal documents.

“Lawyers also find legalese to be unwieldy and complicated,” Gibson says. “Lawyers don’t like it, laypeople don’t like it, so the point of this current paper was to try and figure out why they write documents this way.”

The researchers had a couple of hypotheses for why legalese is so prevalent. One was the “copy and edit hypothesis,” which suggests that legal documents begin with a simple premise, and then additional information and definitions are inserted into already existing sentences, creating complex center-embedded clauses.

“We thought it was plausible that what happens is you start with an initial draft that’s simple, and then later you think of all these other conditions that you want to include. And the idea is that once you’ve started, it’s much easier to center-embed that into the existing provision,” says Martinez, who is now a fellow and instructor at the University of Chicago Law School.

However, the findings ended up pointing toward a different hypothesis, the so-called “magic spell hypothesis.” Just as magic spells are written with a distinctive style that sets them apart from everyday language, the convoluted style of legal language appears to signal a special kind of authority, the researchers say.

“In English culture, if you want to write something that’s a magic spell, people know that the way to do that is you put a lot of old-fashioned rhymes in there. We think maybe center-embedding is signaling legalese in the same way,” Gibson says.

In this study, the researchers asked about 200 non-lawyers (native speakers of English living in the United States, who were recruited through a crowdsourcing site called Prolific), to write two types of texts. In the first task, people were told to write laws prohibiting crimes such as drunk driving, burglary, arson, and drug trafficking. In the second task, they were asked to write stories about those crimes.

To test the copy and edit hypothesis, half of the participants were asked to add additional information after they wrote their initial law or story. The researchers found that all of the subjects wrote laws with center-embedded clauses, regardless of whether they wrote the law all at once or were told to write a draft and then add to it later. And, when they wrote stories related to those laws, they wrote in much plainer English, regardless of whether they had to add information later.

“When writing laws, they did a lot of center-embedding regardless of whether or not they had to edit it or write it from scratch. And in that narrative text, they did not use center-embedding in either case,” Martinez says.

In another set of experiments, about 80 participants were asked to write laws, as well as descriptions that would explain those laws to visitors from another country. In these experiments, participants again used center-embedding for their laws, but not for the descriptions of those laws.

The origins of legalese

Gibson’s lab is now investigating the origins of center-embedding in legal documents. Early American laws were based on British law, so the researchers plan to analyze British laws to see if they feature the same kind of grammatical construction. And going back much farther, they plan to analyze whether center-embedding is found in the Hammurabi Code, the earliest known set of laws, which dates to around 1750 BC.

“There may be just a stylistic way of writing from back then, and if it was seen as successful, people would use that style in other languages,” Gibson says. “I would guess that it’s an accidental property of how the laws were written the first time, but we don’t know that yet.”

The researchers hope that their work, which has identified specific aspects of legal language that make it more difficult to understand, will motivate lawmakers to try to make laws more comprehensible. Efforts to write legal documents in plainer language date to at least the 1970s, when President Richard Nixon declared that federal regulations should be written in “layman’s terms.” However, legal language has changed very little since that time.

“We have learned only very recently what it is that makes legal language so complicated, and therefore I am optimistic about being able to change it,” Gibson says. 

Share this news article on:

Related links.

  • Eric Martinez
  • Department of Brain and Cognitive Sciences

Related Topics

  • Communications
  • Literature, languages and writing
  • Brain and cognitive sciences

Related Articles

Two multi-colored talk bubbles. The right bubble fills more of the screen than the left.

How “blue” and “green” appeared in a language that didn’t have words for them

A magnifying glass on top of a law document; it warps the text. A large wavey “?” icon is in the magnifying glass.

Even lawyers don’t like legalese

legal document with question mark graphic

Objection: No one can understand what you’re saying

Previous item Next item

More MIT News

Quantum computer

Toward a code-breaking quantum computer

Read full story →

Amulya Aluru poses with her bicycle in front of the columns of MIT's Building 10

Uphill battles: Across the country in 75 days

Aneal Krishnan, William Cruz, Alexander Edwards, and David LoBosco pose in front of a desk with a backlit “IQT” logo. Cruz and Edwards wear military cadet uniforms.

3 Questions: From the bench to the battlefield

Duane Boning headshot

Duane Boning named vice provost for international activities

Aerial shot of MIT’s Great Dome and campus

Q&A: Undergraduate admissions in the wake of the 2023 Supreme Court ruling

A large glowing stem cell, with clocks and empty plates in background.

Study reveals the benefits and downside of fasting

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

IMAGES

  1. Benefit of Technology in Classroom Free Essay Example

    conclusion of digital technology essay

  2. Essay On Technology & Its Impacts

    conclusion of digital technology essay

  3. ロジェクト you / LIFE〜La conclusion et L’ouverture〜(初回生産限定盤/3CD+2DVD) [CD] ぐるぐる王国 PayPayモール店

    conclusion of digital technology essay

  4. Essay on Conclusion About Technology

    conclusion of digital technology essay

  5. Effect of Electronic Gadgets to Students Studying Habits Essay Example

    conclusion of digital technology essay

  6. Technology essay conclusion examples

    conclusion of digital technology essay

COMMENTS

  1. Essay conclusion

    Spend Less Time on Research and Copywriting. Get More Writing Done. Thousands of 5-Star Reviews From Marketers And Content Professionals

  2. Essay on Digital Technology

    In conclusion, digital technology, while presenting certain challenges, offers immense potential to reshape our world. As we navigate this digital age, it is incumbent upon us to harness this potential responsibly, ensuring that the benefits of digital technology are accessible to all. 500 Words Essay on Digital Technology

  3. Essay on Conclusion About Technology

    As we navigate this digital era, it is crucial to foster a culture of responsible technology use and continue exploring sustainable technological solutions. 500 Words Essay on Conclusion About Technology Introduction. Technology has become an integral part of our lives, shaping our world in countless ways. It has transformed various sectors ...

  4. 6 Conclusions and Recommendations

    Page 199. 6 — Conclusions and Recommendations. Three technological trends—the ubiquity of information in digital form, the widespread use of computer networks, and the rapid proliferation of the World Wide Web—have profound implications for the way intellectual property (IP) is created, distributed, and accessed by virtually every sector of society.

  5. The Internet Revolution and Digital Future Technology Essay

    Digital Revolution refers to the change in technology that has been going on in the last 40 years, from analog technology and mechanical technology to digital technology. It has been characterized by rapid developments in information technology. Get a custom essay on The Internet Revolution and Digital Future Technology Essay. 184 writers online.

  6. The Digital Divide Essay: the Challenge of Technology and Equity

    Get a custom essay on The Digital Divide. Over the course of the past few decades, there has been a remarkable rise in the use of computers and the internet. Sahay asserts that the ability of computing technologies to traverse geographical and social barriers has resulted in the creation of a closer knit global community (36). In addition to ...

  7. 7 Conclusion

    Read chapter 7 Conclusion: Recent years have yielded significant advances in computing and communication technologies, with profound impacts on society. ... As more of the world's information is digitized and more people and things are networked, the economics of the digital, networked economy will become ever more important. ... Information ...

  8. How Is Technology Changing the World, and How Should the World Change

    This growing complexity makes it more difficult than ever—and more imperative than ever—for scholars to probe how technological advancements are altering life around the world in both positive and negative ways and what social, political, and legal tools are needed to help shape the development and design of technology in beneficial directions.

  9. Understanding the role of digital technologies in education: A review

    Conclusion. Digital technology in the classroom refers to various software and gadgets meant to help students with particular accessibility needs. The most effective way to reduce the number of repetitive, time-consuming duties a teacher undertake is to use technology in the classroom. Educational technology applications may save a lot of time ...

  10. Conclusion

    Technology is a tool that can be used to solve real-world problems. The field of Science, Technology, and Society (STS) "seeks to promote cross-disciplinary integration, civic engagement, and critical thinking" of concepts in the worlds of science and technology ( Harvard University, n.d.). As an aspect of everyday life, technology is ...

  11. Argumentative Essay on Technology

    Cybersecurity: Investigate the importance of safeguarding data and personal information in the digital realm. The Essay Structure | Argumentative Essay on Technology. To present your arguments effectively, you must follow a well-structured essay format. Here's a classic structure that works for most argumentative essays: 1. Introduction

  12. Conclusion: A Digital World

    Conclusion: A Digital World. Conclusion. A Digital World. Digital modeling changes technical practices and develops scientific knowledge: the many testimonies of researchers and engineers gathered in this volume provide an eloquent illustration of this. While the physical sciences, and mechanics in particular, were among the first to resort to ...

  13. Impacts of digital technologies on education and factors influencing

    Introduction. Digital technologies have brought changes to the nature and scope of education. Versatile and disruptive technological innovations, such as smart devices, the Internet of Things (IoT), artificial intelligence (AI), augmented reality (AR) and virtual reality (VR), blockchain, and software applications have opened up new opportunities for advancing teaching and learning (Gaol ...

  14. Technology Essay for Students in English

    Essay on Technology. The word "technology" and its uses have immensely changed since the 20th century, and with time, it has continued to evolve ever since. We are living in a world driven by technology. The advancement of technology has played an important role in the development of human civilization, along with cultural changes.

  15. The Impact Of Digital Technology Media Essay

    In conclusion Digital technology and its increasing prevalence have impacted human life radically in the last few decades. From the advent of the digital society, spawned by the invention of the computer and ENIAC, one of the first digital computers in 1946, to the present day, digital technology and computing have worked their way into more ...

  16. 200-500 Word Example Essays about Technology

    Direct Effect on Direct Interaction: The disruption of face-to-face communication is a particularly stark example of how technology has impacted human connections. The quality of interpersonal connections has suffered due to people's growing preference for digital over human communication.

  17. Digital Technology in Modern Society

    This essay focuses on the impact of digital technology on our culture with special emphasis on how youths have been affected by various aspects of digital technology. To achieve this objective, views from three authors have been considered through comparative analysis. These authors are: Charles McGrath, Lakshmi Chaundhry and Will Wright.

  18. The importance of digital technology in life

    Each kind of task, be it a regular task or a job specific task requires digital proficiency or literacy. Digital literacy can be defined as "the ability to use digital technology, communications tools, and or networks to access, manage, integrate, evaluate, and create information in order to function in a knowledge society" (Lemke, 2003).

  19. Essay on the Positive and Negative Effects of Technology

    The advent and evolution of technology have brought about profound changes in society, impacting almost every aspect of modern life. While technology has yielded numerous benefits, it has also introduced several challenges and concerns. This essay explores both the positive and negative effects of technology on various facets of human life.

  20. Automated Essay Scoring and Revising Based on ...

    Manually scoring and revising student essays has long been a time-consuming task for educators. ... "ChatGPT and generative AI technology: A mixed bag of concerns and new opportunities," Comput. Sch. ... A. C. Sari, and D. Suhartono, "Automated English digital essay grader using machine learning," in Proc. IEEE Int. Conf. Eng., Technol ...

  21. Essay on Technology

    FAQs on Essay on Technology. Q.1 What is Information technology? A - It is a form of technology that uses telecommunication and computer systems for study. Also, they send, retrieve, and store data. Q.2 Is technology harmful to humans? A - No, technology is not harmful to human beings until it is used properly.

  22. Essay On Digital Technology

    Essay On Digital Media. 1037 Words 5 Pages. Digital Media is any media that is enclosed in a machine and is a readable format. Anybody can create digital media, it can be viewed, shared changed and preserved by anyone on computers. Examples of digital media include; mobile phones, compact discs, digital video, digital television, e-book ...

  23. How Does Technology Affect Our Daily Lives? Essay

    Technology enables teachers to serve the academic needs of different students. In addition, it enhances learning because the problem of distance is eradicated, and students can contact their teachers easily (Barnett, 1997, p.76). Technology plays a significant role in changing how teachers teach.

  24. 4 Creative Essays on Digital Technology [ Importance & Benefits ]

    The Following Essay on Digital Technology has been written to highlight the importance and benefits of digital technology in our daily lives and how the students can take benefit from digital technology. ... In conclusion, digital technology has transformed our world in many ways. It has brought people closer, increased efficiency in various ...

  25. Exploring Liquid Cooling and Digital Twin Technology in Today's Data

    While there are hurdles to clear, advancements in technology and practices are creating a pathway for broader adoption. As the demand for data processing continues to soar, the role of liquid cooling and digital twins becomes increasingly crucial in maintaining performance and sustainability in the ever-evolving field of data centers.

  26. NIST Releases First 3 Finalized Post-Quantum Encryption Standards

    GAITHERSBURG, Md. — The U.S. Department of Commerce's National Institute of Standards and Technology (NIST) has finalized its principal set of encryption algorithms designed to withstand cyberattacks from a quantum computer.. Researchers around the world are racing to build quantum computers that would operate in radically different ways from ordinary computers and could break the current ...

  27. How Enterprises Can Optimize Communications With HLR Lookup Technology

    Given the widespread use of this technology, businesses must manage this information effectively to prevent fraud and reach the right people. No business owner wants to waste time, resources and ...

  28. Impact of Technology on Business Essay

    Conclusion. As evidenced in the discussion above, technology has had a revolutionary effect on businesses. In fact, technology can be considered as part and parcel of business operations. It is therefore expected that future technologies will have a more transformative effect on businesses than past technologies.

  29. MIT study explains why laws are written in an incomprehensible style

    Massachusetts Institute of Technology. ... .5 million words, comparing them with other types of writing, including movie scripts, newspaper articles, and academic papers. That analysis revealed that legal documents frequently have long definitions inserted in the middle of sentences — a feature known as "center-embedding." Linguists have ...