What is The Null Hypothesis & When Do You Reject The Null Hypothesis

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A null hypothesis is a statistical concept suggesting no significant difference or relationship between measured variables. It’s the default assumption unless empirical evidence proves otherwise.

The null hypothesis states no relationship exists between the two variables being studied (i.e., one variable does not affect the other).

The null hypothesis is the statement that a researcher or an investigator wants to disprove.

Testing the null hypothesis can tell you whether your results are due to the effects of manipulating ​ the dependent variable or due to random chance. 

How to Write a Null Hypothesis

Null hypotheses (H0) start as research questions that the investigator rephrases as statements indicating no effect or relationship between the independent and dependent variables.

It is a default position that your research aims to challenge or confirm.

For example, if studying the impact of exercise on weight loss, your null hypothesis might be:

There is no significant difference in weight loss between individuals who exercise daily and those who do not.

Examples of Null Hypotheses

Research QuestionNull Hypothesis
Do teenagers use cell phones more than adults?Teenagers and adults use cell phones the same amount.
Do tomato plants exhibit a higher rate of growth when planted in compost rather than in soil?Tomato plants show no difference in growth rates when planted in compost rather than soil.
Does daily meditation decrease the incidence of depression?Daily meditation does not decrease the incidence of depression.
Does daily exercise increase test performance?There is no relationship between daily exercise time and test performance.
Does the new vaccine prevent infections?The vaccine does not affect the infection rate.
Does flossing your teeth affect the number of cavities?Flossing your teeth has no effect on the number of cavities.

When Do We Reject The Null Hypothesis? 

We reject the null hypothesis when the data provide strong enough evidence to conclude that it is likely incorrect. This often occurs when the p-value (probability of observing the data given the null hypothesis is true) is below a predetermined significance level.

If the collected data does not meet the expectation of the null hypothesis, a researcher can conclude that the data lacks sufficient evidence to back up the null hypothesis, and thus the null hypothesis is rejected. 

Rejecting the null hypothesis means that a relationship does exist between a set of variables and the effect is statistically significant ( p > 0.05).

If the data collected from the random sample is not statistically significance , then the null hypothesis will be accepted, and the researchers can conclude that there is no relationship between the variables. 

You need to perform a statistical test on your data in order to evaluate how consistent it is with the null hypothesis. A p-value is one statistical measurement used to validate a hypothesis against observed data.

Calculating the p-value is a critical part of null-hypothesis significance testing because it quantifies how strongly the sample data contradicts the null hypothesis.

The level of statistical significance is often expressed as a  p  -value between 0 and 1. The smaller the p-value, the stronger the evidence that you should reject the null hypothesis.

Probability and statistical significance in ab testing. Statistical significance in a b experiments

Usually, a researcher uses a confidence level of 95% or 99% (p-value of 0.05 or 0.01) as general guidelines to decide if you should reject or keep the null.

When your p-value is less than or equal to your significance level, you reject the null hypothesis.

In other words, smaller p-values are taken as stronger evidence against the null hypothesis. Conversely, when the p-value is greater than your significance level, you fail to reject the null hypothesis.

In this case, the sample data provides insufficient data to conclude that the effect exists in the population.

Because you can never know with complete certainty whether there is an effect in the population, your inferences about a population will sometimes be incorrect.

When you incorrectly reject the null hypothesis, it’s called a type I error. When you incorrectly fail to reject it, it’s called a type II error.

Why Do We Never Accept The Null Hypothesis?

The reason we do not say “accept the null” is because we are always assuming the null hypothesis is true and then conducting a study to see if there is evidence against it. And, even if we don’t find evidence against it, a null hypothesis is not accepted.

A lack of evidence only means that you haven’t proven that something exists. It does not prove that something doesn’t exist. 

It is risky to conclude that the null hypothesis is true merely because we did not find evidence to reject it. It is always possible that researchers elsewhere have disproved the null hypothesis, so we cannot accept it as true, but instead, we state that we failed to reject the null. 

One can either reject the null hypothesis, or fail to reject it, but can never accept it.

Why Do We Use The Null Hypothesis?

We can never prove with 100% certainty that a hypothesis is true; We can only collect evidence that supports a theory. However, testing a hypothesis can set the stage for rejecting or accepting this hypothesis within a certain confidence level.

The null hypothesis is useful because it can tell us whether the results of our study are due to random chance or the manipulation of a variable (with a certain level of confidence).

A null hypothesis is rejected if the measured data is significantly unlikely to have occurred and a null hypothesis is accepted if the observed outcome is consistent with the position held by the null hypothesis.

Rejecting the null hypothesis sets the stage for further experimentation to see if a relationship between two variables exists. 

Hypothesis testing is a critical part of the scientific method as it helps decide whether the results of a research study support a particular theory about a given population. Hypothesis testing is a systematic way of backing up researchers’ predictions with statistical analysis.

It helps provide sufficient statistical evidence that either favors or rejects a certain hypothesis about the population parameter. 

Purpose of a Null Hypothesis 

  • The primary purpose of the null hypothesis is to disprove an assumption. 
  • Whether rejected or accepted, the null hypothesis can help further progress a theory in many scientific cases.
  • A null hypothesis can be used to ascertain how consistent the outcomes of multiple studies are.

Do you always need both a Null Hypothesis and an Alternative Hypothesis?

The null (H0) and alternative (Ha or H1) hypotheses are two competing claims that describe the effect of the independent variable on the dependent variable. They are mutually exclusive, which means that only one of the two hypotheses can be true. 

While the null hypothesis states that there is no effect in the population, an alternative hypothesis states that there is statistical significance between two variables. 

The goal of hypothesis testing is to make inferences about a population based on a sample. In order to undertake hypothesis testing, you must express your research hypothesis as a null and alternative hypothesis. Both hypotheses are required to cover every possible outcome of the study. 

What is the difference between a null hypothesis and an alternative hypothesis?

The alternative hypothesis is the complement to the null hypothesis. The null hypothesis states that there is no effect or no relationship between variables, while the alternative hypothesis claims that there is an effect or relationship in the population.

It is the claim that you expect or hope will be true. The null hypothesis and the alternative hypothesis are always mutually exclusive, meaning that only one can be true at a time.

What are some problems with the null hypothesis?

One major problem with the null hypothesis is that researchers typically will assume that accepting the null is a failure of the experiment. However, accepting or rejecting any hypothesis is a positive result. Even if the null is not refuted, the researchers will still learn something new.

Why can a null hypothesis not be accepted?

We can either reject or fail to reject a null hypothesis, but never accept it. If your test fails to detect an effect, this is not proof that the effect doesn’t exist. It just means that your sample did not have enough evidence to conclude that it exists.

We can’t accept a null hypothesis because a lack of evidence does not prove something that does not exist. Instead, we fail to reject it.

Failing to reject the null indicates that the sample did not provide sufficient enough evidence to conclude that an effect exists.

If the p-value is greater than the significance level, then you fail to reject the null hypothesis.

Is a null hypothesis directional or non-directional?

A hypothesis test can either contain an alternative directional hypothesis or a non-directional alternative hypothesis. A directional hypothesis is one that contains the less than (“<“) or greater than (“>”) sign.

A nondirectional hypothesis contains the not equal sign (“≠”).  However, a null hypothesis is neither directional nor non-directional.

A null hypothesis is a prediction that there will be no change, relationship, or difference between two variables.

The directional hypothesis or nondirectional hypothesis would then be considered alternative hypotheses to the null hypothesis.

Gill, J. (1999). The insignificance of null hypothesis significance testing.  Political research quarterly ,  52 (3), 647-674.

Krueger, J. (2001). Null hypothesis significance testing: On the survival of a flawed method.  American Psychologist ,  56 (1), 16.

Masson, M. E. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing.  Behavior research methods ,  43 , 679-690.

Nickerson, R. S. (2000). Null hypothesis significance testing: a review of an old and continuing controversy.  Psychological methods ,  5 (2), 241.

Rozeboom, W. W. (1960). The fallacy of the null-hypothesis significance test.  Psychological bulletin ,  57 (5), 416.

Print Friendly, PDF & Email

conclusion null hypothesis

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

6a.1 - introduction to hypothesis testing, basic terms section  .

The first step in hypothesis testing is to set up two competing hypotheses. The hypotheses are the most important aspect. If the hypotheses are incorrect, your conclusion will also be incorrect.

The two hypotheses are named the null hypothesis and the alternative hypothesis.

The goal of hypothesis testing is to see if there is enough evidence against the null hypothesis. In other words, to see if there is enough evidence to reject the null hypothesis. If there is not enough evidence, then we fail to reject the null hypothesis.

Consider the following example where we set up these hypotheses.

Example 6-1 Section  

A man, Mr. Orangejuice, goes to trial and is tried for the murder of his ex-wife. He is either guilty or innocent. Set up the null and alternative hypotheses for this example.

Putting this in a hypothesis testing framework, the hypotheses being tested are:

  • The man is guilty
  • The man is innocent

Let's set up the null and alternative hypotheses.

\(H_0\colon \) Mr. Orangejuice is innocent

\(H_a\colon \) Mr. Orangejuice is guilty

Remember that we assume the null hypothesis is true and try to see if we have evidence against the null. Therefore, it makes sense in this example to assume the man is innocent and test to see if there is evidence that he is guilty.

The Logic of Hypothesis Testing Section  

We want to know the answer to a research question. We determine our null and alternative hypotheses. Now it is time to make a decision.

The decision is either going to be...

  • reject the null hypothesis or...
  • fail to reject the null hypothesis.

Consider the following table. The table shows the decision/conclusion of the hypothesis test and the unknown "reality", or truth. We do not know if the null is true or if it is false. If the null is false and we reject it, then we made the correct decision. If the null hypothesis is true and we fail to reject it, then we made the correct decision.

Decision Reality
\(H_0\) is true \(H_0\) is false
Reject \(H_0\), (conclude \(H_a\))   Correct decision
Fail to reject \(H_0\) Correct decision  

So what happens when we do not make the correct decision?

When doing hypothesis testing, two types of mistakes may be made and we call them Type I error and Type II error. If we reject the null hypothesis when it is true, then we made a type I error. If the null hypothesis is false and we failed to reject it, we made another error called a Type II error.

Decision Reality
\(H_0\) is true \(H_0\) is false
Reject \(H_0\), (conclude \(H_a\)) Type I error Correct decision
Fail to reject \(H_0\) Correct decision Type II error

Types of errors

The “reality”, or truth, about the null hypothesis is unknown and therefore we do not know if we have made the correct decision or if we committed an error. We can, however, define the likelihood of these events.

\(\alpha\) and \(\beta\) are probabilities of committing an error so we want these values to be low. However, we cannot decrease both. As \(\alpha\) decreases, \(\beta\) increases.

Example 6-1 Cont'd... Section  

A man, Mr. Orangejuice, goes to trial and is tried for the murder of his ex-wife. He is either guilty or not guilty. We found before that...

  • \( H_0\colon \) Mr. Orangejuice is innocent
  • \( H_a\colon \) Mr. Orangejuice is guilty

Interpret Type I error, \(\alpha \), Type II error, \(\beta \).

As you can see here, the Type I error (putting an innocent man in jail) is the more serious error. Ethically, it is more serious to put an innocent man in jail than to let a guilty man go free. So to minimize the probability of a type I error we would choose a smaller significance level.

Try it! Section  

An inspector has to choose between certifying a building as safe or saying that the building is not safe. There are two hypotheses:

  • Building is safe
  • Building is not safe

Set up the null and alternative hypotheses. Interpret Type I and Type II error.

\( H_0\colon\) Building is not safe vs \(H_a\colon \) Building is safe

Decision Reality
\(H_0\) is true \(H_0\) is false
Reject \(H_0\), (conclude  \(H_a\)) Reject "building is not safe" when it is not safe (Type I Error) Correct decision
Fail to reject  \(H_0\) Correct decision Failing to reject 'building not is safe' when it is safe (Type II Error)

Power and \(\beta \) are complements of each other. Therefore, they have an inverse relationship, i.e. as one increases, the other decreases.

How to Write Hypothesis Test Conclusions (With Examples)

A   hypothesis test is used to test whether or not some hypothesis about a population parameter is true.

To perform a hypothesis test in the real world, researchers obtain a random sample from the population and perform a hypothesis test on the sample data, using a null and alternative hypothesis:

  • Null Hypothesis (H 0 ): The sample data occurs purely from chance.
  • Alternative Hypothesis (H A ): The sample data is influenced by some non-random cause.

If the p-value of the hypothesis test is less than some significance level (e.g. α = .05), then we reject the null hypothesis .

Otherwise, if the p-value is not less than some significance level then we fail to reject the null hypothesis .

When writing the conclusion of a hypothesis test, we typically include:

  • Whether we reject or fail to reject the null hypothesis.
  • The significance level.
  • A short explanation in the context of the hypothesis test.

For example, we would write:

We reject the null hypothesis at the 5% significance level.   There is sufficient evidence to support the claim that…

Or, we would write:

We fail to reject the null hypothesis at the 5% significance level.   There is not sufficient evidence to support the claim that…

The following examples show how to write a hypothesis test conclusion in both scenarios.

Example 1: Reject the Null Hypothesis Conclusion

Suppose a biologist believes that a certain fertilizer will cause plants to grow more during a one-month period than they normally do, which is currently 20 inches. To test this, she applies the fertilizer to each of the plants in her laboratory for one month.

She then performs a hypothesis test at a 5% significance level using the following hypotheses:

  • H 0 : μ = 20 inches (the fertilizer will have no effect on the mean plant growth)
  • H A : μ > 20 inches (the fertilizer will cause mean plant growth to increase)

Suppose the p-value of the test turns out to be 0.002.

Here is how she would report the results of the hypothesis test:

We reject the null hypothesis at the 5% significance level.   There is sufficient evidence to support the claim that this particular fertilizer causes plants to grow more during a one-month period than they normally do.

Example 2: Fail to Reject the Null Hypothesis Conclusion

Suppose the manager of a manufacturing plant wants to test whether or not some new method changes the number of defective widgets produced per month, which is currently 250. To test this, he measures the mean number of defective widgets produced before and after using the new method for one month.

He performs a hypothesis test at a 10% significance level using the following hypotheses:

  • H 0 : μ after = μ before (the mean number of defective widgets is the same before and after using the new method)
  • H A : μ after ≠ μ before (the mean number of defective widgets produced is different before and after using the new method)

Suppose the p-value of the test turns out to be 0.27.

Here is how he would report the results of the hypothesis test:

We fail to reject the null hypothesis at the 10% significance level.   There is not sufficient evidence to support the claim that the new method leads to a change in the number of defective widgets produced per month.

Additional Resources

The following tutorials provide additional information about hypothesis testing:

Introduction to Hypothesis Testing 4 Examples of Hypothesis Testing in Real Life How to Write a Null Hypothesis

10 Examples of Using Probability in Real Life

Mongodb: how to find document by id, related posts, how to normalize data between -1 and 1, vba: how to check if string contains another..., how to interpret f-values in a two-way anova, how to create a vector of ones in..., how to determine if a probability distribution is..., what is a symmetric histogram (definition & examples), how to find the mode of a histogram..., how to find quartiles in even and odd..., how to calculate sxy in statistics (with example), how to calculate expected value of x^3.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

conclusion null hypothesis

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved September 27, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

9.1 Null and Alternative Hypotheses

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 , the — null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

H a —, the alternative hypothesis: a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are reject H 0 if the sample information favors the alternative hypothesis or do not reject H 0 or decline to reject H 0 if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in H 0 and H a :

equal (=) not equal (≠) greater than (>) less than (<)
greater than or equal to (≥) less than (<)
less than or equal to (≤) more than (>)

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example 9.1

H 0 : No more than 30 percent of the registered voters in Santa Clara County voted in the primary election. p ≤ 30 H a : More than 30 percent of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25 percent. State the null and alternative hypotheses.

Example 9.2

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are the following: H 0 : μ = 2.0 H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 66
  • H a : μ __ 66

Example 9.3

We want to test if college students take fewer than five years to graduate from college, on the average. The null and alternative hypotheses are the following: H 0 : μ ≥ 5 H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 45
  • H a : μ __ 45

Example 9.4

An article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third of the students pass. The same article stated that 6.6 percent of U.S. students take advanced placement exams and 4.4 percent pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6 percent. State the null and alternative hypotheses. H 0 : p ≤ 0.066 H a : p > 0.066

On a state driver’s test, about 40 percent pass the test on the first try. We want to test if more than 40 percent pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : p __ 0.40
  • H a : p __ 0.40

Collaborative Exercise

Bring to class a newspaper, some news magazines, and some internet articles. In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-statistics . Changes were made to the original material, including updates to art, structure, and other content updates.

Access for free at https://openstax.org/books/statistics/pages/1-introduction
  • Authors: Barbara Illowsky, Susan Dean
  • Publisher/website: OpenStax
  • Book title: Statistics
  • Publication date: Mar 27, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/statistics/pages/1-introduction
  • Section URL: https://openstax.org/books/statistics/pages/9-1-null-and-alternative-hypotheses

© Apr 16, 2024 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Null Hypothesis Definition and Examples

PM Images / Getty Images

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

In a scientific experiment, the null hypothesis is the proposition that there is no effect or no relationship between phenomena or populations. If the null hypothesis is true, any observed difference in phenomena or populations would be due to sampling error (random chance) or experimental error. The null hypothesis is useful because it can be tested and found to be false, which then implies that there is a relationship between the observed data. It may be easier to think of it as a nullifiable hypothesis or one that the researcher seeks to nullify. The null hypothesis is also known as the H 0, or no-difference hypothesis.

The alternate hypothesis, H A or H 1 , proposes that observations are influenced by a non-random factor. In an experiment, the alternate hypothesis suggests that the experimental or independent variable has an effect on the dependent variable .

How to State a Null Hypothesis

There are two ways to state a null hypothesis. One is to state it as a declarative sentence, and the other is to present it as a mathematical statement.

For example, say a researcher suspects that exercise is correlated to weight loss, assuming diet remains unchanged. The average length of time to achieve a certain amount of weight loss is six weeks when a person works out five times a week. The researcher wants to test whether weight loss takes longer to occur if the number of workouts is reduced to three times a week.

The first step to writing the null hypothesis is to find the (alternate) hypothesis. In a word problem like this, you're looking for what you expect to be the outcome of the experiment. In this case, the hypothesis is "I expect weight loss to take longer than six weeks."

This can be written mathematically as: H 1 : μ > 6

In this example, μ is the average.

Now, the null hypothesis is what you expect if this hypothesis does not happen. In this case, if weight loss isn't achieved in greater than six weeks, then it must occur at a time equal to or less than six weeks. This can be written mathematically as:

H 0 : μ ≤ 6

The other way to state the null hypothesis is to make no assumption about the outcome of the experiment. In this case, the null hypothesis is simply that the treatment or change will have no effect on the outcome of the experiment. For this example, it would be that reducing the number of workouts would not affect the time needed to achieve weight loss:

H 0 : μ = 6

Null Hypothesis Examples

"Hyperactivity is unrelated to eating sugar " is an example of a null hypothesis. If the hypothesis is tested and found to be false, using statistics, then a connection between hyperactivity and sugar ingestion may be indicated. A significance test is the most common statistical test used to establish confidence in a null hypothesis.

Another example of a null hypothesis is "Plant growth rate is unaffected by the presence of cadmium in the soil ." A researcher could test the hypothesis by measuring the growth rate of plants grown in a medium lacking cadmium, compared with the growth rate of plants grown in mediums containing different amounts of cadmium. Disproving the null hypothesis would set the groundwork for further research into the effects of different concentrations of the element in soil.

Why Test a Null Hypothesis?

You may be wondering why you would want to test a hypothesis just to find it false. Why not just test an alternate hypothesis and find it true? The short answer is that it is part of the scientific method. In science, propositions are not explicitly "proven." Rather, science uses math to determine the probability that a statement is true or false. It turns out it's much easier to disprove a hypothesis than to positively prove one. Also, while the null hypothesis may be simply stated, there's a good chance the alternate hypothesis is incorrect.

For example, if your null hypothesis is that plant growth is unaffected by duration of sunlight, you could state the alternate hypothesis in several different ways. Some of these statements might be incorrect. You could say plants are harmed by more than 12 hours of sunlight or that plants need at least three hours of sunlight, etc. There are clear exceptions to those alternate hypotheses, so if you test the wrong plants, you could reach the wrong conclusion. The null hypothesis is a general statement that can be used to develop an alternate hypothesis, which may or may not be correct.

  • Kelvin Temperature Scale Definition
  • Independent Variable Definition and Examples
  • Theory Definition in Science
  • Hypothesis Definition (Science)
  • de Broglie Equation Definition
  • Law of Combining Volumes Definition
  • Chemical Definition
  • Pure Substance Definition in Chemistry
  • Acid Definition and Examples
  • Extensive Property Definition (Chemistry)
  • Radiation Definition and Examples
  • Valence Definition in Chemistry
  • Atomic Solid Definition
  • Weak Base Definition and Examples
  • Oxidation Definition and Example in Chemistry
  • Definition of Binary Compound

Have a thesis expert improve your writing

Check your thesis for plagiarism in 10 minutes, generate your apa citations for free.

  • Knowledge Base
  • Null and Alternative Hypotheses | Definitions & Examples

Null and Alternative Hypotheses | Definitions & Examples

Published on 5 October 2022 by Shaun Turney . Revised on 6 December 2022.

The null and alternative hypotheses are two competing claims that researchers weigh evidence for and against using a statistical test :

  • Null hypothesis (H 0 ): There’s no effect in the population .
  • Alternative hypothesis (H A ): There’s an effect in the population.

The effect is usually the effect of the independent variable on the dependent variable .

Table of contents

Answering your research question with hypotheses, what is a null hypothesis, what is an alternative hypothesis, differences between null and alternative hypotheses, how to write null and alternative hypotheses, frequently asked questions about null and alternative hypotheses.

The null and alternative hypotheses offer competing answers to your research question . When the research question asks “Does the independent variable affect the dependent variable?”, the null hypothesis (H 0 ) answers “No, there’s no effect in the population.” On the other hand, the alternative hypothesis (H A ) answers “Yes, there is an effect in the population.”

The null and alternative are always claims about the population. That’s because the goal of hypothesis testing is to make inferences about a population based on a sample . Often, we infer whether there’s an effect in the population by looking at differences between groups or relationships between variables in the sample.

You can use a statistical test to decide whether the evidence favors the null or alternative hypothesis. Each type of statistical test comes with a specific way of phrasing the null and alternative hypothesis. However, the hypotheses can also be phrased in a general way that applies to any test.

The null hypothesis is the claim that there’s no effect in the population.

If the sample provides enough evidence against the claim that there’s no effect in the population ( p ≤ α), then we can reject the null hypothesis . Otherwise, we fail to reject the null hypothesis.

Although “fail to reject” may sound awkward, it’s the only wording that statisticians accept. Be careful not to say you “prove” or “accept” the null hypothesis.

Null hypotheses often include phrases such as “no effect”, “no difference”, or “no relationship”. When written in mathematical terms, they always include an equality (usually =, but sometimes ≥ or ≤).

Examples of null hypotheses

The table below gives examples of research questions and null hypotheses. There’s always more than one way to answer a research question, but these null hypotheses can help you get started.

( )
Does tooth flossing affect the number of cavities? Tooth flossing has on the number of cavities. test:

The mean number of cavities per person does not differ between the flossing group (µ ) and the non-flossing group (µ ) in the population; µ = µ .

Does the amount of text highlighted in the textbook affect exam scores? The amount of text highlighted in the textbook has on exam scores. :

There is no relationship between the amount of text highlighted and exam scores in the population; β = 0.

Does daily meditation decrease the incidence of depression? Daily meditation the incidence of depression.* test:

The proportion of people with depression in the daily-meditation group ( ) is greater than or equal to the no-meditation group ( ) in the population; ≥ .

*Note that some researchers prefer to always write the null hypothesis in terms of “no effect” and “=”. It would be fine to say that daily meditation has no effect on the incidence of depression and p 1 = p 2 .

The alternative hypothesis (H A ) is the other answer to your research question . It claims that there’s an effect in the population.

Often, your alternative hypothesis is the same as your research hypothesis. In other words, it’s the claim that you expect or hope will be true.

The alternative hypothesis is the complement to the null hypothesis. Null and alternative hypotheses are exhaustive, meaning that together they cover every possible outcome. They are also mutually exclusive, meaning that only one can be true at a time.

Alternative hypotheses often include phrases such as “an effect”, “a difference”, or “a relationship”. When alternative hypotheses are written in mathematical terms, they always include an inequality (usually ≠, but sometimes > or <). As with null hypotheses, there are many acceptable ways to phrase an alternative hypothesis.

Examples of alternative hypotheses

The table below gives examples of research questions and alternative hypotheses to help you get started with formulating your own.

Does tooth flossing affect the number of cavities? Tooth flossing has an on the number of cavities. test:

The mean number of cavities per person differs between the flossing group (µ ) and the non-flossing group (µ ) in the population; µ ≠ µ .

Does the amount of text highlighted in a textbook affect exam scores? The amount of text highlighted in the textbook has an on exam scores. :

There is a relationship between the amount of text highlighted and exam scores in the population; β ≠ 0.

Does daily meditation decrease the incidence of depression? Daily meditation the incidence of depression. test:

The proportion of people with depression in the daily-meditation group ( ) is less than the no-meditation group ( ) in the population; < .

Null and alternative hypotheses are similar in some ways:

  • They’re both answers to the research question
  • They both make claims about the population
  • They’re both evaluated by statistical tests.

However, there are important differences between the two types of hypotheses, summarized in the following table.

A claim that there is in the population. A claim that there is in the population.

Equality symbol (=, ≥, or ≤) Inequality symbol (≠, <, or >)
Rejected Supported
Failed to reject Not supported

To help you write your hypotheses, you can use the template sentences below. If you know which statistical test you’re going to use, you can use the test-specific template sentences. Otherwise, you can use the general template sentences.

The only thing you need to know to use these general template sentences are your dependent and independent variables. To write your research question, null hypothesis, and alternative hypothesis, fill in the following sentences with your variables:

Does independent variable affect dependent variable ?

  • Null hypothesis (H 0 ): Independent variable does not affect dependent variable .
  • Alternative hypothesis (H A ): Independent variable affects dependent variable .

Test-specific

Once you know the statistical test you’ll be using, you can write your hypotheses in a more precise and mathematical way specific to the test you chose. The table below provides template sentences for common statistical tests.

( )
test 

with two groups

The mean dependent variable does not differ between group 1 (µ ) and group 2 (µ ) in the population; µ = µ . The mean dependent variable differs between group 1 (µ ) and group 2 (µ ) in the population; µ ≠ µ .
with three groups The mean dependent variable does not differ between group 1 (µ ), group 2 (µ ), and group 3 (µ ) in the population; µ = µ = µ . The mean dependent variable of group 1 (µ ), group 2 (µ ), and group 3 (µ ) are not all equal in the population.
There is no correlation between independent variable and dependent variable in the population; ρ = 0. There is a correlation between independent variable and dependent variable in the population; ρ ≠ 0.
There is no relationship between independent variable and dependent variable in the population; β = 0. There is a relationship between independent variable and dependent variable in the population; β ≠ 0.
Two-proportions test The dependent variable expressed as a proportion does not differ between group 1 ( ) and group 2 ( ) in the population; = . The dependent variable expressed as a proportion differs between group 1 ( ) and group 2 ( ) in the population; ≠ .

Note: The template sentences above assume that you’re performing one-tailed tests . One-tailed tests are appropriate for most studies.

The null hypothesis is often abbreviated as H 0 . When the null hypothesis is written using mathematical symbols, it always includes an equality symbol (usually =, but sometimes ≥ or ≤).

The alternative hypothesis is often abbreviated as H a or H 1 . When the alternative hypothesis is written using mathematical symbols, it always includes an inequality symbol (usually ≠, but sometimes < or >).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Turney, S. (2022, December 06). Null and Alternative Hypotheses | Definitions & Examples. Scribbr. Retrieved 27 September 2024, from https://www.scribbr.co.uk/stats/null-and-alternative-hypothesis/

Is this article helpful?

Shaun Turney

Shaun Turney

Other students also liked, levels of measurement: nominal, ordinal, interval, ratio, the standard normal distribution | calculator, examples & uses, types of variables in research | definitions & examples.

conclusion null hypothesis

A Beginner's Guide to Hypothesis Testing: Key Concepts and Applications

  • September 27, 2024

Hypothesis Testing

In our everyday lives, we often encounter statements and claims that we can't instantly verify. 

Have you ever questioned how to determine which statements are factual or validate them with certainty? 

Fortunately, there's a systematic way to find answers: Hypothesis Testing.

Hypothesis Testing is a fundamental concept in analytics and statistics, yet it remains a mystery to many. This method helps us understand and validate data and supports decision-making in various fields. 

Are you curious about how it works and why it's so crucial? 

Let's understand the hypothesis testing basics and explore its applications together.

What is hypothesis testing in statistics?

Hypothesis evaluation is a statistical method used to determine whether there is enough evidence in a sample of data to support a particular assumption. 

A statistical hypothesis test generally involves calculating a test statistic. The decision is then made by either comparing the test statistic to a crucial value or assessing the p-value derived from the test statistic.

The P-value in Hypothesis Testing

P-value helps determine whether to accept or reject the null hypothesis (H₀) during hypothesis testing.

Two types of errors in this process are:

  • Type I error (α):

This happens when the null hypothesis is incorrectly rejected, meaning we think there's an effect or difference when there isn't.

It is denoted by α (significance level).

  • Type II error (β)

This occurs when the null hypothesis gets incorrectly accepted, meaning we fail to detect an effect or difference that exists.

It is denoted by β (power level).

  • Type I error: Rejecting something that's true.
  • Type II error: Accepting something that's false.

Here's a simplified breakdown of the key components of hypothesis testing :

  • Null Hypothesis (H₀): The default assumption that there's no significant effect or difference
  • Alternative Hypothesis (H₁): The statement that challenges the null hypothesis, suggesting a significant effect
  • P-Value : This tells you how likely it is that your results happened by chance. 
  • Significance Level (α): Typically set at 0.05, this is the threshold used to conclude whether to reject the null hypothesis.

This process is often used in financial analysis to test the effectiveness of trading strategies, assess portfolio performance, or predict market trends.

Statistical Hypothesis Testing for Beginners: A Step-by-Step Guide

Applying hypothesis testing in finance requires a clear understanding of the steps involved. 

Here's a practical approach for beginners:

STEP 1: Define the Hypothesis

Start by formulating your null and alternative hypotheses. For example, you might hypothesise that a certain stock's returns outperform the market average.

STEP 2: Collect Data

Gather relevant financial data from reliable sources, ensuring that your sample size is appropriate to draw meaningful conclusions.

STEP 3: Choose the Right Test

Select a one-tailed or two-tailed test depending on the data type and your hypothesis. Two-tailed tests are commonly used for financial analysis to assess whether a parameter differs in either direction.

STEP 4: Calculate the Test Statistic

Use statistical software or a financial calculator to compute your test statistic and compare it to the critical value.

STEP 5: Interpret the Results

Based on the p-value, decide whether to reject or fail to reject the null hypothesis. If the p-value is below the significance level, it indicates that the null hypothesis is unlikely, and you may accept the alternative hypothesis.

Here's a quick reference table to help with your decisions:

Test Type Null HypothesisAlternative HypothesisUse Case in Finance
 No effect or no gainA positive or negative impactTesting a specific directional claim about stock returns
No differenceAny significant differenceComparing performance between two portfolios

  Real-Life Applications of Hypothesis Testing in Finance

The concept of hypothesis testing basics might sound theoretical, but its real-world applications are vast in the financial sector. 

Here's how professionals use it:

  • Investment Portfolio Performance : Analysts often use statistical hypothesis testing for beginners to determine whether one investment portfolio performs better than another.
  • Risk Assessment: Statistical testing helps evaluate market risk by testing assumptions about asset price movements and volatility.
  • Forecasting Market Trends : Predicting future market trends using past data can be tricky, but research testing allows professionals to make more informed predictions by validating their assumptions.

Common Pitfalls to Avoid in Hypothesis Testing

Even seasoned professionals sometimes need to correct their theory testing analysis.

Here are some common mistakes you'll want to avoid:

Misinterpreting P-Values

A common misunderstanding is that a low p-value proves that the alternative hypothesis is correct. It just means there's strong evidence against the null hypothesis.

Ignoring Sample Size

Small sample sizes can also lead to misleading results, so ensuring that your data set is large enough to provide reliable insights is crucial.

Overfitting the Model

This happens when you tailor your hypothesis too closely to the sample data, resulting in a model that only holds up under different conditions.

By being aware of these pitfalls, you'll be better positioned to conduct accurate hypothesis tests in any financial scenario.

Lead The World of Finance with Imarticus Learning

Mastering hypothesis testing is crucial for making informed financial decisions and validating assumptions. Consider the exceptional CFA course at Imarticus Learning as you enhance your analytical skills.

Achieve a prestigious qualification in investment management and thrive in a competitive industry. Imarticus, a leading learning partner approved by the CFA Institute, offers the best CFA course . Benefit from Comprehensive Learning with top-tier materials from Kaplan Schweser, including books, study notes, and mock exams. 

Ready to elevate your finance career? 

Enrol now and unlock your potential with Imarticus Learning!

Q: What is hypothesis testing in finance?

A: This is a statistical method used in finance to validate assumptions or hypotheses about financial data, such as testing the performance of investment strategies.

Q: What are the types of hypothesis testing?

A: The two primary types are one-tailed and two-tailed tests. You can use one-tailed tests to assess a specific direction of effect, while you can use two-tailed tests to determine if there is any significant difference, regardless of the direction.

Q: What is a p-value in hypothesis testing?

A: A p-value indicates the probability that your observed results occurred by chance. A lower p-value suggests stronger evidence against the null hypothesis.

Q: Why is sample size important in hypothesis testing?

A: A larger sample size increases the reliability of results, reducing the risk of errors and providing more accurate conclusions in hypothesis testing.

Share This Post

Subscribe to our newsletter, get updates and learn from the best, more to explore.

Your Ultimate Guide to Becoming a Chartered Financial Analyst

Your Ultimate Guide to Becoming a Chartered Financial Analyst

Your ultimate guide to acca exam dates: stay ahead of the curve, our programs.

conclusion null hypothesis

Certified Investment Banking Operations Professional

conclusion null hypothesis

Chief Financial Officer Programme

GSLP CFO

Global Senior Leadership Programme Specialisation: Chief Finance Officer

conclusion null hypothesis

Advanced Management Programme In Financial Services And Capital Markets

Fintech Course

Senior Leadership Programme In Fintech

conclusion null hypothesis

Chartered Financial Analyst (CFA)

conclusion null hypothesis

Certified Management Accountant

conclusion null hypothesis

Certified Public Accountant

Do you want to boost your career, drop us a message and keep in touch.

conclusion null hypothesis

Keep In Touch

SPSS tutorials website header logo

Null Hypothesis – Simple Introduction

A null hypothesis is a precise statement about a population that we try to reject with sample data. We don't usually believe our null hypothesis (or H 0 ) to be true. However, we need some exact statement as a starting point for statistical significance testing.

The Null Hypothesis is the Starting Point for Statistical Significance Testing

Null Hypothesis Examples

Often -but not always- the null hypothesis states there is no association or difference between variables or subpopulations. Like so, some typical null hypotheses are:

  • the correlation between frustration and aggression is zero ( correlation analysis );
  • the average income for men is similar to that for women ( independent samples t-test );
  • Nationality is (perfectly) unrelated to music preference ( chi-square independence test );
  • the average population income was equal over 2012 through 2016 ( repeated measures ANOVA ).
  • Dutch, German, French and British people have identical average body weigths .the average body weight is equal for D

“Null” Does Not Mean “Zero”

A common misunderstanding is that “null” implies “zero”. This is often but not always the case. For example, a null hypothesis may also state that the correlation between frustration and aggression is 0.5. No zero involved here and -although somewhat unusual- perfectly valid. The “null” in “null hypothesis” derives from “nullify” 5 : the null hypothesis is the statement that we're trying to refute, regardless whether it does (not) specify a zero effect.

Null Hypothesis Testing -How Does It Work?

I want to know if happiness is related to wealth among Dutch people. One approach to find this out is to formulate a null hypothesis. Since “related to” is not precise, we choose the opposite statement as our null hypothesis: the correlation between wealth and happiness is zero among all Dutch people. We'll now try to refute this hypothesis in order to demonstrate that happiness and wealth are related all right. Now, we can't reasonably ask all 17,142,066 Dutch people how happy they generally feel.

Null Hypothesis - Population Counter

So we'll ask a sample (say, 100 people) about their wealth and their happiness. The correlation between happiness and wealth turns out to be 0.25 in our sample. Now we've one problem: sample outcomes tend to differ somewhat from population outcomes. So if the correlation really is zero in our population, we may find a non zero correlation in our sample. To illustrate this important point, take a look at the scatterplot below. It visualizes a zero correlation between happiness and wealth for an entire population of N = 200.

Null Hypothesis - Population Scatterplot

Now we draw a random sample of N = 20 from this population (the red dots in our previous scatterplot). Even though our population correlation is zero, we found a staggering 0.82 correlation in our sample . The figure below illustrates this by omitting all non sampled units from our previous scatterplot.

Null Hypothesis - Sample Scatterplot

This raises the question how we can ever say anything about our population if we only have a tiny sample from it. The basic answer: we can rarely say anything with 100% certainty. However, we can say a lot with 99%, 95% or 90% certainty.

Probability

So how does that work? Well, basically, some sample outcomes are highly unlikely given our null hypothesis . Like so, the figure below shows the probabilities for different sample correlations (N = 100) if the population correlation really is zero.

Null Hypothesis - Sampling Distribution for Correlation

A computer will readily compute these probabilities. However, doing so requires a sample size (100 in our case) and a presumed population correlation ρ (0 in our case). So that's why we need a null hypothesis . If we look at this sampling distribution carefully, we see that sample correlations around 0 are most likely: there's a 0.68 probability of finding a correlation between -0.1 and 0.1. What does that mean? Well, remember that probabilities can be seen as relative frequencies. So imagine we'd draw 1,000 samples instead of the one we have. This would result in 1,000 correlation coefficients and some 680 of those -a relative frequency of 0.68- would be in the range -0.1 to 0.1. Likewise, there's a 0.95 (or 95%) probability of finding a sample correlation between -0.2 and 0.2.

We found a sample correlation of 0.25. How likely is that if the population correlation is zero? The answer is known as the p-value (short for probability value): A p-value is the probability of finding some sample outcome or a more extreme one if the null hypothesis is true. Given our 0.25 correlation, “more extreme” usually means larger than 0.25 or smaller than -0.25. We can't tell from our graph but the underlying table tells us that p ≈ 0.012 . If the null hypothesis is true, there's a 1.2% probability of finding our sample correlation.

Conclusion?

If our population correlation really is zero, then we can find a sample correlation of 0.25 in a sample of N = 100. The probability of this happening is only 0.012 so it's very unlikely . A reasonable conclusion is that our population correlation wasn't zero after all. Conclusion: we reject the null hypothesis . Given our sample outcome, we no longer believe that happiness and wealth are unrelated. However, we still can't state this with certainty.

Null Hypothesis - Limitations

Thus far, we only concluded that the population correlation is probably not zero . That's the only conclusion from our null hypothesis approach and it's not really that interesting. What we really want to know is the population correlation. Our sample correlation of 0.25 seems a reasonable estimate. We call such a single number a point estimate . Now, a new sample may come up with a different correlation. An interesting question is how much our sample correlations would fluctuate over samples if we'd draw many of them. The figure below shows precisely that, assuming our sample size of N = 100 and our (point) estimate of 0.25 for the population correlation.

Null Hypothesis - Sampling Distribution Under Alternative Hypothesis

Confidence Intervals

Our sample outcome suggests that some 95% of many samples should come up with a correlation between 0.06 and 0.43. This range is known as a confidence interval . Although not precisely correct, it's most easily thought of as the bandwidth that's likely to enclose the population correlation . One thing to note is that the confidence interval is quite wide. It almost contains a zero correlation, exactly the null hypothesis we rejected earlier. Another thing to note is that our sampling distribution and confidence interval are slightly asymmetrical. They are symmetrical for most other statistics (such as means or beta coefficients ) but not correlations.

  • Agresti, A. & Franklin, C. (2014). Statistics. The Art & Science of Learning from Data. Essex: Pearson Education Limited.
  • Cohen, J (1988). Statistical Power Analysis for the Social Sciences (2nd. Edition) . Hillsdale, New Jersey, Lawrence Erlbaum Associates.
  • Field, A. (2013). Discovering Statistics with IBM SPSS Newbury Park, CA: Sage.
  • Howell, D.C. (2002). Statistical Methods for Psychology (5th ed.). Pacific Grove CA: Duxbury.
  • Van den Brink, W.P. & Koele, P. (2002). Statistiek, deel 3 [Statistics, part 3]. Amsterdam: Boom.

Tell us what you think!

This tutorial has 17 comments:.

conclusion null hypothesis

By John Xie on February 28th, 2023

“stop using the term ‘statistically significant’ entirely and moving to a world beyond ‘p < 0.05’”

“…, no p-value can reveal the plausibility, presence, truth, or importance of an association or effect.

Therefore, a label of statistical significance does not mean or imply that an association or effect is highly probable, real, true, or important. Nor does a label of statistical nonsignificance lead to the association or effect being improbable, absent, false, or unimportant.

Yet the dichotomization into ‘significant’ and ‘not significant’ is taken as an imprimatur of authority on these characteristics.” “To be clear, the problem is not that of having only two labels. Results should not be trichotomized, or indeed categorized into any number of groups, based on arbitrary p-value thresholds.

Similarly, we need to stop using confidence intervals as another means of dichotomizing (based, on whether a null value falls within the interval). And, to preclude a reappearance of this problem elsewhere, we must not begin arbitrarily categorizing other statistical measures (such as Bayes factors).”

Quotation from: Ronald L. Wasserstein, Allen L. Schirm & Nicole A. Lazar, Moving to a World Beyond “p<0.05”, The American Statistician(2019), Vol. 73, No. S1, 1-19: Editorial.

conclusion null hypothesis

By Ruben Geert van den Berg on February 28th, 2023

Yes, partly agreed.

However, most students are still forced to apply null hypothesis testing so why not try to explain to them how it works?

An associated problem is that "significant" has a normal language meaning. Most people seem to confuse "statistically significant" with "real-world significant", which is unfortunate.

By the way, this same point applies to other terms such as "normally distributed". A normal distribution for dice rolls is not a normal but a uniform distribution ;-)

Keep up the good work!

SPSS tutorials

  • Math Article

Null Hypothesis

Class Registration Banner

In mathematics, Statistics deals with the study of research and surveys on the numerical data. For taking surveys, we have to define the hypothesis. Generally, there are two types of hypothesis. One is a null hypothesis, and another is an alternative hypothesis .

In probability and statistics, the null hypothesis is a comprehensive statement or default status that there is zero happening or nothing happening. For example, there is no connection among groups or no association between two measured events. It is generally assumed here that the hypothesis is true until any other proof has been brought into the light to deny the hypothesis. Let us learn more here with definition, symbol, principle, types and example, in this article.

Table of contents:

  • Comparison with Alternative Hypothesis

Null Hypothesis Definition

The null hypothesis is a kind of hypothesis which explains the population parameter whose purpose is to test the validity of the given experimental data. This hypothesis is either rejected or not rejected based on the viability of the given population or sample . In other words, the null hypothesis is a hypothesis in which the sample observations results from the chance. It is said to be a statement in which the surveyors wants to examine the data. It is denoted by H 0 .

Null Hypothesis Symbol

In statistics, the null hypothesis is usually denoted by letter H with subscript ‘0’ (zero), such that H 0 . It is pronounced as H-null or H-zero or H-nought. At the same time, the alternative hypothesis expresses the observations determined by the non-random cause. It is represented by H 1 or H a .

Null Hypothesis Principle

The principle followed for null hypothesis testing is, collecting the data and determining the chances of a given set of data during the study on some random sample, assuming that the null hypothesis is true. In case if the given data does not face the expected null hypothesis, then the outcome will be quite weaker, and they conclude by saying that the given set of data does not provide strong evidence against the null hypothesis because of insufficient evidence. Finally, the researchers tend to reject that.

Null Hypothesis Formula

Here, the hypothesis test formulas are given below for reference.

The formula for the null hypothesis is:

H 0 :  p = p 0

The formula for the alternative hypothesis is:

H a = p >p 0 , < p 0 ≠ p 0

The formula for the test static is:

Remember that,  p 0  is the null hypothesis and p – hat is the sample proportion.

Also, read:

Types of Null Hypothesis

There are different types of hypothesis. They are:

Simple Hypothesis

It completely specifies the population distribution. In this method, the sampling distribution is the function of the sample size.

Composite Hypothesis

The composite hypothesis is one that does not completely specify the population distribution.

Exact Hypothesis

Exact hypothesis defines the exact value of the parameter. For example μ= 50

Inexact Hypothesis

This type of hypothesis does not define the exact value of the parameter. But it denotes a specific range or interval. For example 45< μ <60

Null Hypothesis Rejection

Sometimes the null hypothesis is rejected too. If this hypothesis is rejected means, that research could be invalid. Many researchers will neglect this hypothesis as it is merely opposite to the alternate hypothesis. It is a better practice to create a hypothesis and test it. The goal of researchers is not to reject the hypothesis. But it is evident that a perfect statistical model is always associated with the failure to reject the null hypothesis.

How do you Find the Null Hypothesis?

The null hypothesis says there is no correlation between the measured event (the dependent variable) and the independent variable. We don’t have to believe that the null hypothesis is true to test it. On the contrast, you will possibly assume that there is a connection between a set of variables ( dependent and independent).

When is Null Hypothesis Rejected?

The null hypothesis is rejected using the P-value approach. If the P-value is less than or equal to the α, there should be a rejection of the null hypothesis in favour of the alternate hypothesis. In case, if P-value is greater than α, the null hypothesis is not rejected.

Null Hypothesis and Alternative Hypothesis

Now, let us discuss the difference between the null hypothesis and the alternative hypothesis.

1

The null hypothesis is a statement. There exists no relation between two variables

Alternative hypothesis a statement, there exists some relationship between two measured phenomenon

2

Denoted by H

Denoted by H

3

The observations of this hypothesis are the result of chance

The observations of this hypothesis are the result of real effect

4

The mathematical formulation of the null hypothesis is an equal sign

The mathematical formulation alternative hypothesis is an inequality sign such as greater than, less than, etc.

Null Hypothesis Examples

Here, some of the examples of the null hypothesis are given below. Go through the below ones to understand the concept of the null hypothesis in a better way.

If a medicine reduces the risk of cardiac stroke, then the null hypothesis should be “the medicine does not reduce the chance of cardiac stroke”. This testing can be performed by the administration of a drug to a certain group of people in a controlled way. If the survey shows that there is a significant change in the people, then the hypothesis is rejected.

Few more examples are:

1). Are there is 100% chance of getting affected by dengue?

Ans: There could be chances of getting affected by dengue but not 100%.

2). Do teenagers are using mobile phones more than grown-ups to access the internet?

Ans: Age has no limit on using mobile phones to access the internet.

3). Does having apple daily will not cause fever?

Ans: Having apple daily does not assure of not having fever, but increases the immunity to fight against such diseases.

4). Do the children more good in doing mathematical calculations than grown-ups?

Ans: Age has no effect on Mathematical skills.

In many common applications, the choice of the null hypothesis is not automated, but the testing and calculations may be automated. Also, the choice of the null hypothesis is completely based on previous experiences and inconsistent advice. The choice can be more complicated and based on the variety of applications and the diversity of the objectives. 

The main limitation for the choice of the null hypothesis is that the hypothesis suggested by the data is based on the reasoning which proves nothing. It means that if some hypothesis provides a summary of the data set, then there would be no value in the testing of the hypothesis on the particular set of data. 

Frequently Asked Questions on Null Hypothesis

What is meant by the null hypothesis.

In Statistics, a null hypothesis is a type of hypothesis which explains the population parameter whose purpose is to test the validity of the given experimental data.

What are the benefits of hypothesis testing?

Hypothesis testing is defined as a form of inferential statistics, which allows making conclusions from the entire population based on the sample representative.

When a null hypothesis is accepted and rejected?

The null hypothesis is either accepted or rejected in terms of the given data. If P-value is less than α, then the null hypothesis is rejected in favor of the alternative hypothesis, and if the P-value is greater than α, then the null hypothesis is accepted in favor of the alternative hypothesis.

Why is the null hypothesis important?

The importance of the null hypothesis is that it provides an approximate description of the phenomena of the given data. It allows the investigators to directly test the relational statement in a research study.

How to accept or reject the null hypothesis in the chi-square test?

If the result of the chi-square test is bigger than the critical value in the table, then the data does not fit the model, which represents the rejection of the null hypothesis.

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Maths related queries and study materials

Your result is as below

Request OTP on Voice Call

MATHS Related Links

conclusion null hypothesis

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Failing to Reject the Null Hypothesis

By Jim Frost 69 Comments

Failing to reject the null hypothesis is an odd way to state that the results of your hypothesis test are not statistically significant. Why the peculiar phrasing? “Fail to reject” sounds like one of those double negatives that writing classes taught you to avoid. What does it mean exactly? There’s an excellent reason for the odd wording!

In this post, learn what it means when you fail to reject the null hypothesis and why that’s the correct wording. While accepting the null hypothesis sounds more straightforward, it is not statistically correct!

Before proceeding, let’s recap some necessary information. In all statistical hypothesis tests, you have the following two hypotheses:

  • The null hypothesis states that there is no effect or relationship between the variables.
  • The alternative hypothesis states the effect or relationship exists.

We assume that the null hypothesis is correct until we have enough evidence to suggest otherwise.

After you perform a hypothesis test, there are only two possible outcomes.

drawing of blind justice.

  • When your p-value is greater than your significance level, you fail to reject the null hypothesis. Your results are not significant. You’ll learn more about interpreting this outcome later in this post.

Related posts : Hypothesis Testing Overview and The Null Hypothesis

Why Don’t Statisticians Accept the Null Hypothesis?

To understand why we don’t accept the null, consider the fact that you can’t prove a negative. A lack of evidence only means that you haven’t proven that something exists. It does not prove that something doesn’t exist. It might exist, but your study missed it. That’s a huge difference and it is the reason for the convoluted wording. Let’s look at several analogies.

Species Presumed to be Extinct

Photograph of an Australian Tree Lobster.

Lack of proof doesn’t represent proof that something doesn’t exist!

Criminal Trials

Photograph of a gavel with law books.

Perhaps the prosecutor conducted a shoddy investigation and missed clues? Or, the defendant successfully covered his tracks? Consequently, the verdict in these cases is “not guilty.” That judgment doesn’t say the defendant is proven innocent, just that there wasn’t enough evidence to move the jury from the default assumption of innocence.

Hypothesis Tests

The Greek sympol of alpha, which represents the significance level.

The hypothesis test assesses the evidence in your sample. If your test fails to detect an effect, it’s not proof that the effect doesn’t exist. It just means your sample contained an insufficient amount of evidence to conclude that it exists. Like the species that were presumed extinct, or the prosecutor who missed clues, the effect might exist in the overall population but not in your particular sample. Consequently, the test results fail to reject the null hypothesis, which is analogous to a “not guilty” verdict in a trial. There just wasn’t enough evidence to move the hypothesis test from the default position that the null is true.

The critical point across these analogies is that a lack of evidence does not prove something does not exist—just that you didn’t find it in your specific investigation. Hence, you never accept the null hypothesis.

Related post : The Significance Level as an Evidentiary Standard

What Does Fail to Reject the Null Hypothesis Mean?

Accepting the null hypothesis would indicate that you’ve proven an effect doesn’t exist. As you’ve seen, that’s not the case at all. You can’t prove a negative! Instead, the strength of your evidence falls short of being able to reject the null. Consequently, we fail to reject it.

Failing to reject the null indicates that our sample did not provide sufficient evidence to conclude that the effect exists. However, at the same time, that lack of evidence doesn’t prove that the effect does not exist. Capturing all that information leads to the convoluted wording!

What are the possible implications of failing to reject the null hypothesis? Let’s work through them.

First, it is possible that the effect truly doesn’t exist in the population, which is why your hypothesis test didn’t detect it in the sample. Makes sense, right? While that is one possibility, it doesn’t end there.

Another possibility is that the effect exists in the population, but the test didn’t detect it for a variety of reasons. These reasons include the following:

  • The sample size was too small to detect the effect.
  • The variability in the data was too high. The effect exists, but the noise in your data swamped the signal (effect).
  • By chance, you collected a fluky sample. When dealing with random samples, chance always plays a role in the results. The luck of the draw might have caused your sample not to reflect an effect that exists in the population.

Notice how studies that collect a small amount of data or low-quality data are likely to miss an effect that exists? These studies had inadequate statistical power to detect the effect. We certainly don’t want to take results from low-quality studies as proof that something doesn’t exist!

However, failing to detect an effect does not necessarily mean a study is low-quality. Random chance in the sampling process can work against even the best research projects!

If you’re learning about hypothesis testing and like the approach I use in my blog, check out my eBook!

Cover image of my Hypothesis Testing: An Intuitive Guide ebook.

Share this:

conclusion null hypothesis

Reader Interactions

' src=

May 8, 2024 at 9:08 am

Thank you very much for explaining the topic. It brings clarity and makes statistics very simple and interesting. Its helping me in the field of Medical Research.

' src=

February 26, 2024 at 7:54 pm

Hi Jim, My question is that can I reverse Null hyposthesis and start with Null: µ1 ≠ µ2 ? Then, if I can reject Null, I will end up with µ1=µ2 for mean comparison and this what I am looking for. But isn’t this cheating?

' src=

February 26, 2024 at 11:41 pm

That can be done but it requires you to revamp the entire test. Keep in mind that the reason you normally start out with the null equating to no relationship is because the researchers typically want to prove that a relationship or effect exists. This format forces the researchers to collect a substantial amount of high quality data to have a chance at demonstrating that an effect exists. If they collect a small sample and/or poor quality (e.g., noisy or imprecise), then the results default back to the null stating that no effect exists. So, they have to collect good data and work hard to get findings that suggest the effect exists.

There are tests that flip it around as you suggest where the null states that a relationship does exist. For example, researchers perform an equivalency test when they want to show that there is no difference. That the groups are equal. The test is designed such that it requires a good sample size and high quality data to have a chance at proving equivalency. If they have a small sample size and/or poor quality data, the results default back to the groups being unequal, which is not what they want to show.

So, choose the null hypothesis and corresponding analysis based on what you hope to find. Choose the null hypothesis that forces you to work hard to reject it and get the results that you want. It forces you to collect better evidence to make your case and the results default back to what you don’t want if you do a poor job.

I hope that makes sense!

' src=

October 13, 2023 at 5:10 am

Really appreciate how you have been able to explain something difficult in very simple terms. Also covering why you can’t accept a null hypothesis – something which I think is frequently missed. Thank you, Jim.

' src=

February 22, 2022 at 11:18 am

Hi Jim, I really appreciate your blog, making difficult things sound simple is a great gift.

I have a doubt about the p-value. You said there are two options when it comes to hypothesis tests results . Reject or failing to reject the null, depending on the p-value and your significant level.

But… a P-value of 0,001 means a stronger evidence than a P-value of 0,01? ( both with a significant level of 5%. Or It doesn`t matter, and just every p-Value under your significant level means the same burden of evidence against the null?

I hope I made my point clear. Thanks a lot for your time.

February 23, 2022 at 9:06 pm

There are different schools of thought about this question. The traditional approach is clear cut. Your results are statistically significance when your p-value is less than or equal to your significance level. When the p-value is greater than the significance level, your results are not significant.

However, as you point out, lower p-values indicate stronger evidence against the null hypothesis. I write about this aspect of p-values in several articles, interpreting p-values (near the end) and p-values and reproducibility .

Personally, I consider both aspects. P-values near 0.05 provide weak evidence. Consequently, I’d be willing to say that p-values less than or equal to 0.05 are statistically significant, but when they’re near 0.05, I’d consider it as a preliminary result that requires more research. However, if the p-value is less 0.01, or even better 0.001, then that’s much stronger evidence and I’ll give those results more weight in my evaluation.

If you read those two articles, I think you’ll see what I mean.

' src=

January 1, 2022 at 6:00 pm

HI, I have a quick question that you may be able to help me with. I am using SPSS and carrying out a Mann W U Test it says to retain the null hypothesis. The hypothesis is that males are faster than women at completing a task. So is that saying that they are or are not

January 1, 2022 at 8:17 pm

In that case, your sample data provides insufficient evidence to conclude that males are faster. The results do not prove that males and females are the same speed. You just don’t have enough evidence to say males are faster. In this post, I cover the reasons why you can’t prove the null is true.

' src=

November 23, 2021 at 5:36 pm

What if I have to prove in my hypothesis that there shouldn’t be any affect of treatment on patients? Can I say that if my null hypothesis is accepted i have got my results (no effect)? I am confused what to do in this situation. As for null hypothesis we always have to write it with some type of equality. What if I want my result to be what i have stated in null hypothesis i.e. no effect? How to write statements in this case? I am using non parametric test, Mann whitney u test

November 27, 2021 at 4:56 pm

You need to perform an equivalence test, which is a special type of procedure when you want to prove that the results are equal. The problem with a regular hypothesis test is that when you fail to reject the null, you’re not proving that they the outcomes are equal. You can fail to reject the null thanks to a small sample size, noisy data, or a small effect size even when the outcomes are truly different at the population level. An equivalence test sets things up so you need strong evidence to really show that two outcomes are equal.

Unfortunately, I don’t have any content for equivalence testing at this point, but you can read an article about it at Wikipedia: Equivalence Test .

' src=

August 13, 2021 at 9:41 pm

Great explanation and great analogies! Thanks.

' src=

August 11, 2021 at 2:02 am

I got problems with analysis. I did wound healing experiments with drugs treatment (total 9 groups). When I do the 2-way ANOVA in excel, I got the significant results in sample (Drug Treatment) and columns (Day, Timeline) . But I did not get the significantly results in interactions. Can I still reject the null hypothesis and continue the post-hoc test?

Thank you very much.

' src=

June 13, 2021 at 4:51 am

Hi Jim, There are so many books covering maths/programming related to statistics/DS, but may be hardly any book to develop an intuitive understanding. Thanks to you for filling up that gap. After statistics, hypothesis-testing, regression, will it be possible for you to write such books on more topics in DS such as trees, deep-learning etc.

I recently started with reading your book on hypothesis testing (just finished the first chapter). I have a question w.r.t the fuel cost example (from first chapter), where a random sample of 25 families (with sample mean 330.6) is taken. To do the hypothesis testing here, we are taking a sampling distribution with a mean of 260. Then based on the p-value and significance level, we find whether to reject or accept the null hypothesis. The entire decision (to accept or reject the null hypothesis) is based on the sampling distribution about which i have the following questions : a) we are assuming that the sampling distribution is normally distributed. what if it has some other distribution, how can we find that ? b) We have assumed that the sampling distribution is normally distributed and then further assumed that its mean is 260 (as required for the hypothesis testing). But we need the standard deviation as well to define the normal distribution, can you please let me know how do we find the standard deviation for the sampling distribution ? Thanks.

' src=

April 24, 2021 at 2:25 pm

Maybe its the idea of “Innocent until proven guilty”? Your Null assume the person is not guilty, and your alternative assumes the person is guilty, only when you have enough evidence (finding statistical significance P0.05 you have failed to reject null hypothesis, null stands,implying the person is not guilty. Or, the person remain innocent.. Correct me if you think it’s wrong but this is the way I interpreted.

April 25, 2021 at 5:10 pm

I used the courtroom/trial analogy within this post. Read that for more details. I’d agree with your general take on the issue except when you have enough evidence you actually reject the null, which in the trial means the defendant is found guilty.

' src=

April 17, 2021 at 6:10 am

Can regression analysis be done using 5 companies variables for predicting working capital management and profitability positive/negative relationship?

Also, does null hypothesis rejecting means whatsoever is stated in null hypothesis that is false proved through regression analysis?

I have very less knowledge about regression analysis. Please help me, Sir. As I have my project report due on next week. Thanks in advance!

April 18, 2021 at 10:48 pm

Hi Ahmed, yes, regression analysis can be used for the scenario you describe as long as you have the required data.

For more about the null hypothesis in relation to regression analysis, read my post about regression coefficients and their p-values . I describe the null hypothesis in it.

' src=

January 26, 2021 at 7:32 pm

With regards to the legal example above. While your explanation makes sense when simplified to this statistical level, from a legal perspective it is not correct. The presumption of innocence means one does not need to be proven innocent. They are innocent. The onus of proof lies with proving they are guilty. So if you can’t prove someones guilt then in fact you must accept the null hypothesis that they are innocent. It’s not a statistical test so a little bit misleading using it an example, although I see why you would.

If it were a statistical test, then we would probably be rather paranoid that everyone is a murderer but they just haven’t been proven to be one yet.

Great article though, a nice simple and thoughtout explanation.

January 26, 2021 at 9:11 pm

It seems like you misread my post. The hypothesis testing/legal analogy is very strong both in making the case and in the result.

In hypothesis testing, the data have to show beyond a reasonable doubt that the alternative hypothesis is true. In a court case, the prosecutor has to present sufficient evidence to show beyond a reasonable doubt that the defendant is guilty.

In terms of the test/case results. When the evidence (data) is insufficient, you fail to reject the null hypothesis but you do not conclude that the data proves the null is true. In a legal case that has insufficient evidence, the jury finds the defendant to be “not guilty” but they do not say that s/he is proven innocent. To your point specifically, it is not accurate to say that “not guilty” is the same as “proven innocent.”

It’s a very strong parallel.

' src=

January 9, 2021 at 11:45 am

Just a question, in my research on hypotheses for an assignment, I am finding it difficult to find an exact definition for a hypothesis itself. I know the defintion, but I’m looking for a citable explanation, any ideas?

January 10, 2021 at 1:37 am

To be clear, do you need to come up with a statistical hypothesis? That’s one where you’ll use a particular statistical hypothesis test. If so, I’ll need to know more about what you’re studying, your variables, and the type of hypothesis test you plan to use.

There are also scientific hypotheses that you’ll state in your proposals, study papers, etc. Those are different from statistical hypotheses (although related). However, those are very study area specific and I don’t cover those types on this blog because this is a statistical blog. But, if it’s a statistical hypothesis for a hypothesis test, then let me know the information I mention above and I can help you out!

' src=

November 7, 2020 at 8:33 am

Hi, good read, I’m kind of a novice here, so I’m trying to write a research paper, and I’m trying to make a hypothesis. however looking at the literature, there are contradicting results.

researcher A found that there is relationship between X and Y

however, researcher B found that there is no relationship between X and Y

therefore, what is the null hypothesis between X and y? do we choose what we assumed to be correct for our study? or is is somehow related to the alternative hypothesis? I’m confused.

thank you very much for the help.

November 8, 2020 at 12:07 am

Hypotheses for a statistical test are different than a researcher’s hypothesis. When you’re constructing the statistical hypothesis, you don’t need to consider what other researchers have found. Instead, you construct them so that the test only produces statistically significant results (rejecting the null) when your data provides strong evidence. I talk about that process in this post.

Typically, researchers are hoping to establish that an effect or relationship exists. Consequently, the null and alternative hypotheses are typically the following:

Null: The effect or relationship doesn’t not exist. Alternative: The effect or relationship does exist.

However, if you’re hoping to prove that there is no effect or no relationship, you then need to flip those hypotheses and use a special test, such as an equivalences test.

So, there’s no need to consider what researchers have found but instead what you’re looking for. In most cases, you are looking for an effect/relationship, so you’d go with the hypotheses as I show them above.

I hope that helps!

' src=

October 22, 2020 at 6:13 pm

Great, deep detailed answer. Appreciated!

' src=

September 16, 2020 at 12:03 pm

Thank you for explaining it too clearly. I have the following situation with a Box Bohnken design of three levels and three factors for multiple responses. F-value for second order model is not significant (failing to reject null hypothesis, p-value > 0.05) but, lack of fit of the model is not significant. What can you suggest me about statistical analysis?

September 17, 2020 at 2:42 am

Are your first order effects significant?

You want the lack of fit to be nonsignificant. If it’s significant, that means the model doesn’t fit the data well. So, you’re good there! 🙂

' src=

September 14, 2020 at 5:18 pm

thank you for all the explicit explanation on the subject.

However, i still got a question about “accepting the null hypothesis”. from textbook, the p-value is the probability that a statistic would take a value that is as extreme as or more extreme than that actually observed.

so, that’s why when p<0.01 we reject the null hypothesis, because it's too rare (p0.05, i can understand that for most cases we cannot accept the null, for example, if p=0.5, it means that the probability to get a statistic from the distribution is 0.5, which is totally random.

But how about when the p is very close to 1, like p=0.95, or p=0.99999999, can’t we say that the probability that the statistic is not from this distribution is less than 0.05, | or in another way, the probability that the statistic is from the distribution is almost 1. can’t we accept the null in such circumstance?

' src=

September 11, 2020 at 12:14 pm

Wow! This is beautifully explained. “Lack of proof doesn’t represent proof that something doesn’t exist!”. This kinda, hit me with such force. Can I then, use the same analogy for many other things in life? LOL! 🙂

H0 = God does not exist; H1 = God does exist; WE fail to reject H0 as there is no evidence.

Thank you sir, this has answered many of my questions, statistically speaking! No pun intended with the above.

September 11, 2020 at 4:58 pm

Hi, LOL, I’m glad it had such meaning for you! I’ll leave the determination about the existence of god up to each person, but in general, yes, I think statistical thinking can be helpful when applied to real life. It is important to realize that lack of proof truly is not proof that something doesn’t exist. But, I also consider other statistical concepts, such as confounders and sampling methodology, to be useful keeping in mind when I’m considering everyday life stuff–even when I’m not statistically analyzing it. Those concepts are generally helpful when trying to figure out what is going on in your life! Are there other alternative explanations? Is what you’re perceiving likely to be biased by something that’s affecting the “data” you can observe? Am I drawing a conclusion based on a large or small sample? How strong is the evidence?

A lot of those concepts are great considerations even when you’re just informally assessing and draw conclusions about things happening in your daily life.

' src=

August 13, 2020 at 12:04 am

Dear Jim, thanks for clarifying. absolutely, now it makes sense. the topic is murky but it is good to have your guidance, and be clear. I have not come across an instructor as clear in explaining as you do. Appreciate your direction. Thanks a lot, Geetanjali

August 15, 2020 at 3:48 pm

Hi Geetanjali,

I’m glad my website is helpful! That makes my day hearing that. Thanks so much for writing!

' src=

August 12, 2020 at 9:37 am

Hi Jim. I am doing data analyis for my masters thesis and my hypothesis testings were insignificant. And I am ok with that. But there is something bothering me. It is the low reliabilities of the 4-Items sub-scales (.55, .68, .75), though the overall alpha is good (.85). I just wonder if it is affecting my hypothesis testings.

' src=

August 11, 2020 at 9:23 pm

Thank you sir for replying, yes sir we it’s a RCT study.. where we did within and between the groups analysis and found p>0.05 in between the groups using Mann Whitney U test. So in such cases if the results comes like this we need to Mention that we failed reject the null hypothesis? Is that correct? Whether it tells that the study is inefficient as we couldn’t accept the alternative hypothesis. Thanks is advance.

August 11, 2020 at 9:43 pm

Hi Saumya, ah, this becomes clearer. When ask statistical questions, please be sure to include all relevant information because the details are extremely important. I didn’t know it was an RCT with a treatment and control group. Yes, given that your p-value is greater than your significance level, you fail to reject the null hypothesis. The results are not significant. The experiment provides insufficient evidence to conclude that the outcome in the treatment group is different than the control group.

By the way, you never accept the alternative hypothesis (or the null). The two options are to either reject the null or fail to reject the null. In your case, you fail to reject the null hypothesis.

I hope this helps!

August 11, 2020 at 9:41 am

Sir, p value is0.05, by which we interpret that both the groups are equally effective. In this case I had to reject the alternative hypothesis/ failed to reject null hypothessis.

August 11, 2020 at 12:37 am

sir, within the group analysis the p value for both the groups is significant (p0.05, by which we interpret that though both the treatments are effective, there in no difference between the efficacy of one over the other.. in other words.. no intervention is superior and both are equally effective.

August 11, 2020 at 2:45 pm

Thanks for the additional details. If I understand correctly, there were separate analyses before that determined each treatment had a statistically significance effect. However, when you compare the two treatments, there difference between them is not statistically significant.

If that’s the case, the interpretation is fairly straightforward. You have evidence that suggests that both treatments are effective. However, you don’t have evidence to conclude that one is better than the other.

August 10, 2020 at 9:26 am

Hi thank you for a wonderful explanation. I have a doubt: My Null hypothesis says: no significant difference between the effect fo A and B treatment Alternative hypothesis: there will be significant difference between the effect of A and B treatment. and my results show that i fail to reject null hypothesis.. Both the treatments were effective, but not significant difference.. how do I interpret this?

August 10, 2020 at 1:32 pm

First, I need to ask you a question. If your p-value is not significant, and so you fail to reject the null, why do you say that the treatment is effective? I can answer you question better after knowing the reason you say that. Thanks!

August 9, 2020 at 9:40 am

Dear Jim, thanks for making stats much more understandable and answering all question so painstakingly. I understand the following on p value and null. If our sample yields a p value of .01, it means that that there is a 1% probability that our kind of sample exists in the population. that is a rare event. So why shouldn’t we accept the HO as the probability of our event was v rare. Pls can you correct me. Thanks, G

August 10, 2020 at 1:53 pm

That’s a great question! They key thing to remember is that p-values are a conditional probability. P-value calculations assume that the null hypothesis is true. So, a p-value of 0.01 indicates that there is a 1% probability of observing your sample results, or more extreme, *IF* the null hypothesis is true.

The kicker is that we don’t whether the null is true or not. But, using this process does limit the likelihood of a false positive to your significance level (alpha). But, we don’t know whether the null is true and you had an unusual sample or whether the null is false. Usually, with a p-value of 0.01, we’d reject the null and conclude it is false.

I hope that answered your question. This topic can be murky and I wasn’t quite clear which part you needed clarification.

' src=

August 4, 2020 at 11:16 pm

Thank you for the wonderful explanation. However, I was just curious to know that what if in a particular test, we get a p-value less than the level of significance, leading to evidence against null hypothesis. Is there any possibility that our interpretation of population effect might be wrong due to randomness of samples? Also, how do we conclude whether the evidence is enough for our alternate hypothesis?

August 4, 2020 at 11:55 pm

Hi Abhilash,

Yes, unfortunately, when you’re working with samples, there’s always the possibility that random chance will cause your sample to not represent the population. For information about these errors, read my post about the types of errors in hypothesis testing .

In hypothesis testing, you determine whether your evidence is strong enough to reject the null. You don’t accept the alternative hypothesis. I cover that in my post about interpreting p-values .

' src=

August 1, 2020 at 3:50 pm

Hi, I am trying to interpret this phenomenon after my research. The null hypothesis states that “The use of combined drugs A and B does not lower blood pressure when compared to if drug A or B is used singularly”

The alternate hypothesis states: The use of combined drugs A and B lower blood pressure compared to if drug A or B is used singularly.

At the end of the study, majority of the people did not actually combine drugs A and B, rather indicated they either used drug A or drug B but not a combination. I am finding it very difficult to explain this outcome more so that it is a descriptive research. Please how do I go about this? Thanks a lot

' src=

June 22, 2020 at 10:01 am

What confuses me is how we set/determine the null hypothesis? For example stating that two sets of data are either no different or have no relationship will give completely different outcomes, so which is correct? Is the null that they are different or the same?

June 22, 2020 at 2:16 pm

Typically, the null states there is no effect/no relationship. That’s true for 99% of hypothesis tests. However, there are some equivalence tests where you are trying to prove that the groups are equal. In that case, the null hypothesis states that groups are not equal.

The null hypothesis is typically what you *don’t* want to find. You have to work hard, design a good experiment, collect good data, and end up with sufficient evidence to favor the alternative hypothesis. Usually in an experiment you want to find an effect. So, usually the null states there is no effect and you have get good evidence to reject that notion.

However, there are a few tests where you actually want to prove something is equal, so you need the null to state that they’re not equal in those cases and then do all the hard work and gather good data to suggest that they are equal. Basically, set up the hypothesis so it takes a good experiment and solid evidence to be able to reject the null and favor the hypothesis that you’re hoping is true.

' src=

June 5, 2020 at 11:54 am

Thank you for the explanation. I have one question that. If Null hypothesis is failed to reject than is possible to interpret the analysis further?

June 5, 2020 at 7:36 pm

Hi Mottakin,

Typically, if your result is that you fail to reject the null hypothesis there’s not much further interpretation. You don’t want to be in a situation where you’re endlessly trying new things on a quest for obtaining significant results. That’s data mining.

' src=

May 25, 2020 at 7:55 am

I hope all is well. I am enjoying your blog. I am not a statistician, however, I use statistical formulae to provide insight on the direction in which data is going. I have used both the regression analysis and a T-Test. I know that both use a null hypothesis and an alternative hypothesis. Could you please clarity the difference between a regression analysis and a T-Test? Are there conditions where one is a better option than the other?

May 26, 2020 at 9:18 pm

t-Tests compare the means of one or two groups. Regression analysis typically describes the relationships between a set of independent variables and the dependent variables. Interestingly, you can actually use regression analysis to perform a t-test. However, that would be overkill. If you just want to compare the means of one or two groups, use a t-test. Read my post about performing t-tests in Excel to see what they can do. If you have a more complex model than just comparing one or two means, regression might be the way to go. Read my post about when to use regression analysis .

' src=

May 12, 2020 at 5:45 pm

This article is really enlightening but there is still some darkness looming around. I see that low p-values mean strong evidence against null hypothesis and finding such a sample is highly unlikely when null hypothesis is true. So , is it OK to say that when p-value is 0.01 , it was very unlikely to have found such a sample but we still found it and hence finding such a sample has not occurred just by chance which leads towards rejection of null hypothesis.

May 12, 2020 at 11:16 pm

That’s mostly correct. I wouldn’t say, “has not occurred by chance.” So, when you get a very low p-value it does mean that you are unlikely to obtain that sample if the null is true. However, once you obtain that result, you don’t know for sure which of the two occurred:

  • The effect exists in the population.
  • Random chance gave you an unusual sample (i.e., Type I error).

You really don’t know for sure. However, by the decision making results you set about the strength of evidence required to reject the null, you conclude that the effect exists. Just always be aware that it could be a false positive.

That’s all a long way of saying that your sample was unlikely to occur by chance if the null is true.

' src=

April 29, 2020 at 11:59 am

Why do we consult the statistical tables to find out the critical values of our test statistics?

April 30, 2020 at 5:05 pm

Statistical tables started back in the “olden days” when computers didn’t exist. You’d calculate the test statistic value for your sample. Then, you’d look in the appropriate table and using the degrees of freedom for your design and find the critical values for the test statistic. If the value of your test statistics exceeded the critical value, your results were statistically significant.

With powerful and readily available computers, researchers could analyze their data and calculate the p-values and compare them directly to the significance level.

I hope that answers your question!

' src=

April 15, 2020 at 10:12 am

If we are not able to reject the null hypothesis. What could be the solution?

April 16, 2020 at 11:13 pm

Hi Shazzad,

The first thing to recognize is that failing to reject the null hypothesis might not be an error. If the null hypothesis is false, then the correct outcome is failing to reject the null.

However, if the null hypothesis is false and you fail to reject, it is a type II error, or a false negative. Read my post about types of errors in hypothesis tests for more information.

This type of error can occur for a variety of reasons, including the following:

  • Fluky sample. When working with random samples, random error can cause anomalous results purely by chance.
  • Sample is too small. Perhaps the sample was too small, which means the test didn’t have enough statistical power to detect the difference.
  • Problematic data or sampling methodology. There could be a problem with how you collected the data or your sampling methodology.

There are various other possibilities, but those are several common problems.

' src=

April 14, 2020 at 12:19 pm

Thank you so much for this article! I am taking my first Statistics class in college and I have one question about this.

I understand that the default position is that the null is correct, and you explained that (just like a court case), the sample evidence must EXCEED the “evidentiary standard” (which is the significance level) to conclude that an effect/relationship exists. And, if an effect/relationship exists, that means that it’s the alternative hypothesis that “wins” (not sure if that’s the correct way of wording it, but I’m trying to make this as simple as possible in my head!).

But what I don’t understand is that if the P-value is GREATER than the significance value, we fail to reject the null….because shouldn’t a higher P-value, mean that our sample evidence EXCEEDS the evidentiary standard (aka the significance level), and therefore an effect/relationship exists? In my mind it would make more sense to reject the null, because our P-value is higher and therefore we have enough evidence to reject the null.

I hope I worded this in a way that makes sense. Thank you in advance!

April 14, 2020 at 10:42 pm

That’s a great question. The key thing to remember is that higher p-values correspond to weaker evidence against the null hypothesis. A high p-value indicates that your sample is likely (high probability = high p-value) if the null hypothesis is true. Conversely, low p-values represent stronger evidence against the null. You were unlikely (low probability = low p-value) to have collect a sample with the measured characteristics if the null is true.

So, there is negative correlation between p-values and strength of evidence against the null hypothesis. Low p-values indicate stronger evidence. Higher p-value represent weaker evidence.

In a nutshell, you reject the null hypothesis with a low p-value because it indicates your sample data are unusual if the null is true. When it’s unusual enough, you reject the null.

' src=

March 5, 2020 at 11:10 am

There is something I am confused about. If our significance level is .05 and our resulting p-value is .02 (thus the strength of our evidence is strong enough to reject the null hypothesis), do we state that we reject the null hypothesis with 95% confidence or 98% confidence?

My guess is our confidence level is 95% since or alpha was .05. But if the strength of our evidence is 98%, why wouldn’t we use that as our stated confidence in our results?

March 5, 2020 at 4:19 pm

Hi Michael,

You’d state that you can reject the null at a significance level of 5% or conversely at the 95% confidence level. A key reason is to avoid cherry picking your results. In other words, you don’t want to choose the significance level based on your results.

Consequently, set the significance level/confidence level before performing your analysis. Then, use those preset levels to determine statistical significance. I always recommend including the exact p-value when you report on statistical significance. Exact p-values do provide information about the strength of evidence against the null.

' src=

March 5, 2020 at 9:58 am

Thank you for sharing this knowledge , it is very appropriate in explaining some observations in the study of forest biodiversity.

' src=

March 4, 2020 at 2:01 am

Thank you so much. This provides for my research

' src=

March 3, 2020 at 7:28 pm

If one couples this with what they call estimated monetary value of risk in risk management, one can take better decisions.

' src=

March 3, 2020 at 3:12 pm

Thank you for providing this clear insight.

March 3, 2020 at 3:29 am

Nice article Jim. The risk of such failure obviously reduces when a lower significance level is specified.One benefits most by reading this article in conjunction with your other article “Understanding Significance Levels in Statistics”.

' src=

March 3, 2020 at 2:43 am

That’s fine. My question is why doesn’t the numerical value of type 1 error coincide with the significance level in the backdrop that the type 1 error and the significance level are both the same ? I hope you got my question.

March 3, 2020 at 3:30 am

Hi, they are equal. As I indicated, the significance level equals the type I error rate.

March 3, 2020 at 1:27 am

Kindly elighten me on one confusion. We set out our significance level before setting our hypothesis. When we calculate the type 1 error, which happens to be a significance level, the numerical value doesn’t equals (either undermining value comes out or an exceeding value comescout ) our significance level that was preassigned. Why is this so ?

March 3, 2020 at 2:24 am

Hi Ratnadeep,

You’re correct. The significance level (alpha) is the same as the type I error rate. However, you compare the p-value to the significance level. It’s the p-value that can be greater than or less than the significance level.

The significance level is the evidentiary standard. How strong does the evidence in your sample need to be before you can reject the null? The p-value indicates the strength of the evidence that is present in your sample. By comparing the p-value to the significance level, you’re comparing the actual strength of the sample evidence to the evidentiary standard to determine whether your sample evidence is strong enough to conclude that the effect exists in the population.

I write about this in my post about the understanding significance levels . I think that will help answer your questions!

Comments and Questions Cancel reply

  • Search Search Please fill out this field.

What Is a Null Hypothesis?

The alternative hypothesis.

  • Additional Examples
  • Null Hypothesis and Investments

The Bottom Line

  • Corporate Finance
  • Financial Ratios

Null Hypothesis: What Is It, and How Is It Used in Investing?

Adam Hayes, Ph.D., CFA, is a financial writer with 15+ years Wall Street experience as a derivatives trader. Besides his extensive derivative trading expertise, Adam is an expert in economics and behavioral finance. Adam received his master's in economics from The New School for Social Research and his Ph.D. from the University of Wisconsin-Madison in sociology. He is a CFA charterholder as well as holding FINRA Series 7, 55 & 63 licenses. He currently researches and teaches economic sociology and the social studies of finance at the Hebrew University in Jerusalem.

conclusion null hypothesis

Yarilet Perez is an experienced multimedia journalist and fact-checker with a Master of Science in Journalism. She has worked in multiple cities covering breaking news, politics, education, and more. Her expertise is in personal finance and investing, and real estate.

conclusion null hypothesis

A null hypothesis is a type of statistical hypothesis that proposes that no statistical significance exists in a set of given observations. Hypothesis testing is used to assess the credibility of a hypothesis by using sample data. Sometimes referred to simply as the “null,” it is represented as H 0 .

The null hypothesis, also known as “the conjecture,” is used in quantitative analysis to test theories about markets, investing strategies, and economies to decide if an idea is true or false.

Key Takeaways

  • A null hypothesis is a type of conjecture in statistics that proposes that there is no difference between certain characteristics of a population or data-generating process.
  • The alternative hypothesis proposes that there is a difference.
  • Hypothesis testing provides a method to reject a null hypothesis within a certain confidence level.
  • If you can reject the null hypothesis, it provides support for the alternative hypothesis.
  • Null hypothesis testing is the basis of the principle of falsification in science.

Alex Dos Diaz / Investopedia

Understanding a Null Hypothesis

A gambler may be interested in whether a game of chance is fair. If it is, then the expected earnings per play come to zero for both players. If it is not, then the expected earnings are positive for one player and negative for the other.

To test whether the game is fair, the gambler collects earnings data from many repetitions of the game, calculates the average earnings from these data, then tests the null hypothesis that the expected earnings are not different from zero.

If the average earnings from the sample data are sufficiently far from zero, then the gambler will reject the null hypothesis and conclude the alternative hypothesis—namely, that the expected earnings per play are different from zero. If the average earnings from the sample data are near zero, then the gambler will not reject the null hypothesis, concluding instead that the difference between the average from the data and zero is explainable by chance alone.

A null hypothesis can only be rejected, not proven.

The null hypothesis assumes that any kind of difference between the chosen characteristics that you see in a set of data is due to chance. For example, if the expected earnings for the gambling game are truly equal to zero, then any difference between the average earnings in the data and zero is due to chance.

Analysts look to reject   the null hypothesis because doing so is a strong conclusion. This requires evidence in the form of an observed difference that is too large to be explained solely by chance. Failing to reject the null hypothesis—that the results are explainable by chance alone—is a weak conclusion because it allows that while factors other than chance may be at work, they may not be strong enough for the statistical test to detect them.

An important point to note is that we are testing the null hypothesis because there is an element of doubt about its validity. Whatever information that is against the stated null hypothesis is captured in the alternative (alternate) hypothesis (H 1 ).

For the examples below, the alternative hypothesis would be:

  • Students score an average that is not equal to seven.
  • The mean annual return of a mutual fund is not equal to 8% per year.

In other words, the alternative hypothesis is a direct contradiction of the null hypothesis.

Null Hypothesis Examples

Here is a simple example: A school principal claims that students in their school score an average of seven out of 10 in exams. The null hypothesis is that the population mean is not 7.0. To test this null hypothesis, we record marks of, say, 30 students ( sample ) from the entire student population of the school (say, 300) and calculate the mean of that sample.

We can then compare the (calculated) sample mean to the (hypothesized) population mean of 7.0 and attempt to reject the null hypothesis. (The null hypothesis here—that the population mean is not 7.0—cannot be proved using the sample data. It can only be rejected.)

Take another example: The annual return of a particular  mutual fund  is claimed to be 8%. Assume that the mutual fund has been in existence for 20 years. The null hypothesis is that the mean return is not 8% for the mutual fund. We take a random sample of annual returns of the mutual fund for, say, five years (sample) and calculate the sample mean. We then compare the (calculated) sample mean to the (claimed) population mean (8%) to test the null hypothesis.

For the above examples, null hypotheses are:

  • Example A: Students in the school don’t score an average of seven out of 10 in exams.
  • Example B: The mean annual return of the mutual fund is not 8% per year.

For the purposes of determining whether to reject the null hypothesis (abbreviated H0), said hypothesis is assumed, for the sake of argument, to be true. Then the likely range of possible values of the calculated statistic (e.g., the average score on 30 students’ tests) is determined under this presumption (e.g., the range of plausible averages might range from 6.2 to 7.8 if the population mean is 7.0).

If the sample average is outside of this range, the null hypothesis is rejected. Otherwise, the difference is said to be “explainable by chance alone,” being within the range that is determined by chance alone.

Traditional null hypothesis testing, consisting of a comparative statistical test for two competing theories, was suggested by Ronald Fisher in 1925.

How Null Hypothesis Testing Is Used in Investments

As an example related to financial markets, assume Alice sees that her investment strategy produces higher average returns than simply buying and holding a stock . The null hypothesis states that there is no difference between the two average returns, and Alice is inclined to believe this until she can conclude contradictory results.

Refuting the null hypothesis would require showing statistical significance, which can be found by a variety of tests. The alternative hypothesis would state that the investment strategy has a higher average return than a traditional buy-and-hold strategy.

One tool that can determine the statistical significance of the results is the p-value. A p-value represents the probability that a difference as large or larger than the observed difference between the two average returns could occur solely by chance.

A p-value that is less than or equal to 0.05 often indicates whether there is evidence against the null hypothesis. If Alice conducts one of these tests, such as a test using the normal model, resulting in a significant difference between her returns and the buy-and-hold returns (the p-value is less than or equal to 0.05), she can then reject the null hypothesis and conclude the alternative hypothesis.

How Is the Null Hypothesis Identified?

The analyst or researcher establishes a null hypothesis based on the research question or problem they are trying to answer. Depending on the question, the null may be identified differently. For example, if the question is simply whether an effect exists (e.g., does X influence Y?), the null hypothesis could be H 0 : X = 0. If the question is instead, is X the same as Y, the H 0 would be X = Y. If it is that the effect of X on Y is positive, H 0 would be X > 0. If the resulting analysis shows an effect that is statistically significantly different from zero, the null can be rejected.

How Is Null Hypothesis Used in Finance?

In finance , a null hypothesis is used in quantitative analysis. It tests the premise of an investing strategy, the markets, or an economy to determine if it is true or false.

For instance, an analyst may want to see if two stocks, ABC and XYZ, are closely correlated. The null hypothesis would be ABC ≠ XYZ.

How Are Statistical Hypotheses Tested?

Statistical hypotheses are tested in a four-step process . The first is for the analyst to state the two hypotheses so that only one can be right. The second is to formulate an analysis plan, which outlines how the data will be evaluated. The third is to carry out the plan and physically analyze the sample data. The fourth and final step is to analyze the results and either reject the null hypothesis or claim that the observed differences are explainable by chance alone.

What Is an Alternative Hypothesis?

An alternative hypothesis is a direct contradiction of a null hypothesis. This means that if one of the two hypotheses is true, the other is false.

A null hypothesis states there is no difference between groups or relationship between variables. It is a type of statistical hypothesis and proposes that no statistical significance exists in a set of given observations. “Null” means nothing.

The null hypothesis is used in quantitative analysis to test theories about economies, investing strategies, and markets to decide if an idea is true or false. Hypothesis testing assesses the credibility of a hypothesis by using sample data. It is represented as H 0 and is sometimes simply known as “the null.”

Correction—July 23, 2024:  This article was corrected to state accurate examples of null hypothesis in the Null Hypothesis Examples section.

National Library of Medicine. " Current Controversies: Null Hypotheses in Statistical Testing ."

conclusion null hypothesis

  • Terms of Service
  • Editorial Policy
  • Privacy Policy

IMAGES

  1. 15 Null Hypothesis Examples (2024)

    conclusion null hypothesis

  2. PPT

    conclusion null hypothesis

  3. PPT

    conclusion null hypothesis

  4. PPT

    conclusion null hypothesis

  5. Null Hypothesis

    conclusion null hypothesis

  6. 100+ Null Hypothesis in Statistics Examples, How to Write, Tips

    conclusion null hypothesis

VIDEO

  1. Hypothesis Testing: the null and alternative hypotheses

  2. Math 14 8.2.31-T Identify the null hypothesis, alternative hypothesis, test statistic

  3. Null Hypothesis ll शून्य परिकल्पना by Dr Vivek Maheshwari

  4. Math 14 8.2.26-T Identify the null hypothesis, alternative hypothesis, test statistic

  5. Hypothsis Testing in Statistics Part 2 Steps to Solving a Problem

  6. Review of Hypothesis Testing Part 5: t test

COMMENTS

  1. How to Write Hypothesis Test Conclusions (With Examples)

    When writing the conclusion of a hypothesis test, we typically include: Whether we reject or fail to reject the null hypothesis. The significance level. A short explanation in the context of the hypothesis test. For example, we would write: We reject the null hypothesis at the 5% significance level.

  2. Null Hypothesis: Definition, Rejecting & Examples

    When your sample contains sufficient evidence, you can reject the null and conclude that the effect is statistically significant. Statisticians often denote the null hypothesis as H 0 or H A.. Null Hypothesis H 0: No effect exists in the population.; Alternative Hypothesis H A: The effect exists in the population.; In every study or experiment, researchers assess an effect or relationship.

  3. How to Write a Null Hypothesis (5 Examples)

    H 0 (Null Hypothesis): Population parameter =, ≤, ≥ some value. H A (Alternative Hypothesis): Population parameter <, >, ≠ some value. Note that the null hypothesis always contains the equal sign. We interpret the hypotheses as follows: Null hypothesis: The sample data provides no evidence to support some claim being made by an individual.

  4. Null & Alternative Hypotheses

    The null hypothesis (H0) answers "No, there's no effect in the population.". The alternative hypothesis (Ha) answers "Yes, there is an effect in the population.". The null and alternative are always claims about the population. That's because the goal of hypothesis testing is to make inferences about a population based on a sample.

  5. Null hypothesis

    The null hypothesis and the alternative hypothesis are types of conjectures used in statistical tests to make statistical inferences, which are formal methods of reaching conclusions and separating scientific claims from statistical noise.. The statement being tested in a test of statistical significance is called the null hypothesis. The test of significance is designed to assess the strength ...

  6. What Is The Null Hypothesis & When To Reject It

    A null hypothesis is a statistical concept suggesting no significant difference or relationship between measured variables. It's the default assumption unless empirical evidence proves otherwise. The null hypothesis states no relationship exists between the two variables being studied (i.e., one variable does not affect the other).

  7. 6a.1

    The first step in hypothesis testing is to set up two competing hypotheses. The hypotheses are the most important aspect. If the hypotheses are incorrect, your conclusion will also be incorrect. The two hypotheses are named the null hypothesis and the alternative hypothesis. The null hypothesis is typically denoted as H 0.

  8. How to Write Hypothesis Test Conclusions (With Examples)

    A hypothesis test is used to test whether or not some hypothesis about a population parameter is true.. To perform a hypothesis test in the real world, researchers obtain a random sample from the population and perform a hypothesis test on the sample data, using a null and alternative hypothesis:. Null Hypothesis (H 0): The sample data occurs purely from chance.

  9. Hypothesis Testing

    There are 5 main steps in hypothesis testing: State your research hypothesis as a null hypothesis and alternate hypothesis (H o) and (H a or H 1). Collect data in a way designed to test the hypothesis. Perform an appropriate statistical test. Decide whether to reject or fail to reject your null hypothesis. Present the findings in your results ...

  10. 9.1 Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. H 0, the —null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

  11. 9.1: Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. \(H_0\): The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

  12. 8.1: The null and alternative hypotheses

    The Null hypothesis \(\left(H_{O}\right)\) is a statement about the comparisons, e.g., between a sample statistic and the population, or between two treatment groups. The former is referred to as a one-tailed test whereas the latter is called a two-tailed test. The null hypothesis is typically "no statistical difference" between the ...

  13. How to Formulate a Null Hypothesis (With Examples)

    To distinguish it from other hypotheses, the null hypothesis is written as H 0 (which is read as "H-nought," "H-null," or "H-zero"). A significance test is used to determine the likelihood that the results supporting the null hypothesis are not due to chance. A confidence level of 95% or 99% is common. Keep in mind, even if the confidence level is high, there is still a small chance the ...

  14. Null Hypothesis Definition and Examples

    Null Hypothesis Examples. "Hyperactivity is unrelated to eating sugar " is an example of a null hypothesis. If the hypothesis is tested and found to be false, using statistics, then a connection between hyperactivity and sugar ingestion may be indicated. A significance test is the most common statistical test used to establish confidence in a ...

  15. Null and Alternative Hypotheses

    The null and alternative hypotheses are two competing claims that researchers weigh evidence for and against using a statistical test: Null hypothesis (H0): There's no effect in the population. Alternative hypothesis (HA): There's an effect in the population. The effect is usually the effect of the independent variable on the dependent ...

  16. Using P-values to make conclusions (article)

    Course: AP®︎/College Statistics > Unit 10. Lesson 3: The idea of significance tests. Idea behind hypothesis testing. Examples of null and alternative hypotheses. Writing null and alternative hypotheses. P-values and significance tests. Comparing P-values to different significance levels. Estimating a P-value from a simulation.

  17. A Beginner's Guide to Hypothesis Testing: Key Concepts and Applications

    Alternative Hypothesis (H₁): The statement that challenges the null hypothesis, suggesting a significant effect; P-Value: This tells you how likely it is that your results happened by chance. Significance Level (α): Typically set at 0.05, this is the threshold used to conclude whether to reject the null hypothesis.

  18. Null Hypothesis

    Null Hypothesis - Limitations. Thus far, we only concluded that the population correlation is probably not zero. That's the only conclusion from our null hypothesis approach and it's not really that interesting. What we really want to know is the population correlation. Our sample correlation of 0.25 seems a reasonable estimate.

  19. Understanding the Null Hypothesis for Linear Regression

    x: The value of the predictor variable. Simple linear regression uses the following null and alternative hypotheses: H0: β1 = 0. HA: β1 ≠ 0. The null hypothesis states that the coefficient β1 is equal to zero. In other words, there is no statistically significant relationship between the predictor variable, x, and the response variable, y.

  20. How to State the Conclusion about a Hypothesis Test

    The best way to state the conclusion is to include the significance level of the test and a bit about the claim itself. For example, if the claim was the alternative that the mean score on a test was greater than 85, and your decision was to Reject then Null, then you could conclude: " At the 5% significance level, there is sufficient ...

  21. Null Hypothesis

    The null hypothesis is a kind of hypothesis which explains the population parameter whose purpose is to test the validity of the given experimental data. ... Hypothesis testing is defined as a form of inferential statistics, which allows making conclusions from the entire population based on the sample representative. Q3 .

  22. When Do You Reject the Null Hypothesis? (3 Examples)

    A hypothesis test is a formal statistical test we use to reject or fail to reject a statistical hypothesis. We always use the following steps to perform a hypothesis test: Step 1: State the null and alternative hypotheses. The null hypothesis, denoted as H0, is the hypothesis that the sample data occurs purely from chance.

  23. Interpreting Null Results

    Null hypothesis significance testing do not allow for conclusions about the likelihood that the null hypothesis is true, only whether it is unlikely that null is true. Use of confidence intervals around parameters such as the differences between means and effect sizes allows for conclusions about how far the population parameter could ...

  24. Failing to Reject the Null Hypothesis

    Typically, the null states there is no effect/no relationship. That's true for 99% of hypothesis tests. However, there are some equivalence tests where you are trying to prove that the groups are equal. In that case, the null hypothesis states that groups are not equal. The null hypothesis is typically what you *don't* want to find.

  25. Null Hypothesis: What Is It, and How Is It Used in Investing?

    In finance, a null hypothesis is used in quantitative analysis. It tests the premise of an investing strategy, the markets, or an economy to determine if it is true or false. For instance, an ...