U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.12(6); 2020 Jun

Logo of cureus

Social Media Use and Its Connection to Mental Health: A Systematic Review

Fazida karim.

1 Psychology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA

2 Business & Management, University Sultan Zainal Abidin, Terengganu, MYS

Azeezat A Oyewande

3 Family Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA

4 Family Medicine, Lagos State Health Service Commission/Alimosho General Hospital, Lagos, NGA

Lamis F Abdalla

5 Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA

Reem Chaudhry Ehsanullah

Safeera khan.

Social media are responsible for aggravating mental health problems. This systematic study summarizes the effects of social network usage on mental health. Fifty papers were shortlisted from google scholar databases, and after the application of various inclusion and exclusion criteria, 16 papers were chosen and all papers were evaluated for quality. Eight papers were cross-sectional studies, three were longitudinal studies, two were qualitative studies, and others were systematic reviews. Findings were classified into two outcomes of mental health: anxiety and depression. Social media activity such as time spent to have a positive effect on the mental health domain. However, due to the cross-sectional design and methodological limitations of sampling, there are considerable differences. The structure of social media influences on mental health needs to be further analyzed through qualitative research and vertical cohort studies.

Introduction and background

Human beings are social creatures that require the companionship of others to make progress in life. Thus, being socially connected with other people can relieve stress, anxiety, and sadness, but lack of social connection can pose serious risks to mental health [ 1 ].

Social media

Social media has recently become part of people's daily activities; many of them spend hours each day on Messenger, Instagram, Facebook, and other popular social media. Thus, many researchers and scholars study the impact of social media and applications on various aspects of people’s lives [ 2 ]. Moreover, the number of social media users worldwide in 2019 is 3.484 billion, up 9% year-on-year [ 3 - 5 ]. A statistic in Figure  1  shows the gender distribution of social media audiences worldwide as of January 2020, sorted by platform. It was found that only 38% of Twitter users were male but 61% were using Snapchat. In contrast, females were more likely to use LinkedIn and Facebook. There is no denying that social media has now become an important part of many people's lives. Social media has many positive and enjoyable benefits, but it can also lead to mental health problems. Previous research found that age did not have an effect but gender did; females were much more likely to experience mental health than males [ 6 , 7 ].

An external file that holds a picture, illustration, etc.
Object name is cureus-0012-00000008627-i01.jpg

Impact on mental health

Mental health is defined as a state of well-being in which people understand their abilities, solve everyday life problems, work well, and make a significant contribution to the lives of their communities [ 8 ]. There is debated presently going on regarding the benefits and negative impacts of social media on mental health [ 9 , 10 ]. Social networking is a crucial element in protecting our mental health. Both the quantity and quality of social relationships affect mental health, health behavior, physical health, and mortality risk [ 9 ]. The Displaced Behavior Theory may help explain why social media shows a connection with mental health. According to the theory, people who spend more time in sedentary behaviors such as social media use have less time for face-to-face social interaction, both of which have been proven to be protective against mental disorders [ 11 , 12 ]. On the other hand, social theories found how social media use affects mental health by influencing how people view, maintain, and interact with their social network [ 13 ]. A number of studies have been conducted on the impacts of social media, and it has been indicated that the prolonged use of social media platforms such as Facebook may be related to negative signs and symptoms of depression, anxiety, and stress [ 10 - 15 ]. Furthermore, social media can create a lot of pressure to create the stereotype that others want to see and also being as popular as others.

The need for a systematic review

Systematic studies can quantitatively and qualitatively identify, aggregate, and evaluate all accessible data to generate a warm and accurate response to the research questions involved [ 4 ]. In addition, many existing systematic studies related to mental health studies have been conducted worldwide. However, only a limited number of studies are integrated with social media and conducted in the context of social science because the available literature heavily focused on medical science [ 6 ]. Because social media is a relatively new phenomenon, the potential links between their use and mental health have not been widely investigated.

This paper attempt to systematically review all the relevant literature with the aim of filling the gap by examining social media impact on mental health, which is sedentary behavior, which, if in excess, raises the risk of health problems [ 7 , 9 , 12 ]. This study is important because it provides information on the extent of the focus of peer review literature, which can assist the researchers in delivering a prospect with the aim of understanding the future attention related to climate change strategies that require scholarly attention. This study is very useful because it provides information on the extent to which peer review literature can assist researchers in presenting prospects with a view to understanding future concerns related to mental health strategies that require scientific attention. The development of the current systematic review is based on the main research question: how does social media affect mental health?

Research strategy

The research was conducted to identify studies analyzing the role of social media on mental health. Google Scholar was used as our main database to find the relevant articles. Keywords that were used for the search were: (1) “social media”, (2) “mental health”, (3) “social media” AND “mental health”, (4) “social networking” AND “mental health”, and (5) “social networking” OR “social media” AND “mental health” (Table  1 ).

Keyword/Combination of Keyword Database Number of Results
“social media” Google Scholar 877,000
“mental health” Google Scholar 633,000
“social media” AND “mental health” Google Scholar 78,000
“social networking” AND “mental health” Google Scholar 18,600
"social networking "OR "social media" AND "mental health" Google Scholar 17,000

Out of the results in Table  1 , a total of 50 articles relevant to the research question were selected. After applying the inclusion and exclusion criteria, duplicate papers were removed, and, finally, a total of 28 articles were selected for review (Figure  2 ).

An external file that holds a picture, illustration, etc.
Object name is cureus-0012-00000008627-i02.jpg

PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Inclusion and exclusion criteria

Peer-reviewed, full-text research papers from the past five years were included in the review. All selected articles were in English language and any non-peer-reviewed and duplicate papers were excluded from finally selected articles.

Of the 16 selected research papers, there were a research focus on adults, gender, and preadolescents [ 10 - 19 ]. In the design, there were qualitative and quantitative studies [ 15 , 16 ]. There were three systematic reviews and one thematic analysis that explored the better or worse of using social media among adolescents [ 20 - 23 ]. In addition, eight were cross-sectional studies and only three were longitudinal studies [ 24 - 29 ].The meta-analyses included studies published beyond the last five years in this population. Table  2  presents a selection of studies from the review.

IGU, internet gaming disorder; PSMU, problematic social media use

Author Title of Study Method Findings
Berryman et al. [ ] Social Media Use and Mental Health among Young Adults Cross-sectional Social media use was not predictive of impaired mental health functioning.
Coyne et al. [ ] Does Time Spent using Social Media Impact Mental Health?: An Eight Year Longitudinal Study 8-year longitudinal study Increased time spent on social media was not associated with increased mental health issues across development when examined at the individual level.
Escobar-Viera et al. [ ] For Better or for Worse? A Systematic Review of the Evidence on Social Media Use and Depression Among Lesbian, Gay, and Bisexual Minorities Systematic Literature Review Social media provides a space to disclose minority experiences and share ways to cope and get support; constant surveillance of one's social media profile can become a stressor, potentially leading to depression.
O’Reilly et al. [ ] Potential of Social Media in Promoting Mental Health in Adolescents qualitative study Adolescents frequently utilize social media and the internet to seek information about mental health.
O’Reilly [ ] Social Media and Adolescent Mental Health: The Good, the Bad and the Ugly focus groups Much of the negative rhetoric of social media was repeated by mental health practitioners, although there was some acknowledgement of potential benefit.
Feder et al. [ ] Is There an Association Between Social Media Use and Mental Health? The Timing of Confounding Measurement Matters longitudinal Frequent social media use report greater symptoms of psychopathology.
Rasmussen et al. [ ] The Serially Mediated Relationship between Emerging Adults’ Social Media Use and Mental Well-Being Exploratory study Social media use may be a risk factor for mental health struggles among emerging adults and that social media use may be an activity which emerging adults resort to when dealing with difficult emotions.
Keles et al. [ ] A Systematic Review: The Influence of Social Media on Depression, Anxiety and Psychological Distress in Adolescents systematic review Four domains of social media: time spent, activity, investment, and addiction. All domains correlated with depression, anxiety and psychological distress.
Nereim et al. [ ] Social Media and Adolescent Mental Health: Who You Are and What You do Matter Exploratory Passive social media use (reading posts) is more strongly associated with depression than active use (making posts).
Mehmet et al. [ ] Using Digital and Social Media for Health Promotion: A Social Marketing Approach for Addressing Co‐morbid Physical and Mental Health Intervention Social marketing digital media strategy as a health promotion methodology. The paper has provided a framework for implementing and evaluating the effectiveness of digital social media campaigns that can help consumers, carers, clinicians, and service planners address the challenges of rural health service delivery and the tyranny of distance,
Odgers and Jensen [ ] Adolescent Mental Health in the Digital Age: Facts, Fears, and Future Directions Review The review highlights that most research to date has been correlational, has focused on adults versus adolescents, and has generated a mix of often conflicting small positive, negative, and null associations.
Twenge and Martin [ ] Gender Differences in Associations between Digital Media Use and Psychological Well-Being: Evidence from Three Large Datasets Cross-sectional Females were found to be addicted to social media as compared with males.
Fardouly et al. [ ] The Use of Social Media by Australian Preadolescents and its Links with Mental Health Cross-sectional Users of YouTube, Instagram, and Snapchat reported more body image concerns and eating pathology than non-users, but did not differ on depressive symptoms or social anxiety
Wartberg et al. [ ] Internet Gaming Disorder and Problematic Social Media Use in a Representative Sample of German Adolescents: Prevalence Estimates, Comorbid Depressive Symptoms, and Related Psychosocial Aspects Cross-sectional Bivariate logistic regression analyses showed that more depressive symptoms, lower interpersonal trust, and family functioning were statistically significantly associated with both IGD and PSMU.
Neira and Barber [ ] Social Networking Site Use: Linked to Adolescents’ Social Self-Concept, Self-Esteem, and Depressed Mood Cross-sectional Higher investment in social media (e.g. active social media use) predicted adolescents’ depressive symptoms. No relationship was found between the frequency of social media use and depressed mood.

This study has attempted to systematically analyze the existing literature on the effect of social media use on mental health. Although the results of the study were not completely consistent, this review found a general association between social media use and mental health issues. Although there is positive evidence for a link between social media and mental health, the opposite has been reported.

For example, a previous study found no relationship between the amount of time spent on social media and depression or between social media-related activities, such as the number of online friends and the number of “selfies”, and depression [ 29 ]. Similarly, Neira and Barber found that while higher investment in social media (e.g. active social media use) predicted adolescents’ depressive symptoms, no relationship was found between the frequency of social media use and depressed mood [ 28 ].

In the 16 studies, anxiety and depression were the most commonly measured outcome. The prominent risk factors for anxiety and depression emerging from this study comprised time spent, activity, and addiction to social media. In today's world, anxiety is one of the basic mental health problems. People liked and commented on their uploaded photos and videos. In today's age, everyone is immune to the social media context. Some teens experience anxiety from social media related to fear of loss, which causes teens to try to respond and check all their friends' messages and messages on a regular basis.

On the contrary, depression is one of the unintended significances of unnecessary use of social media. In detail, depression is limited not only to Facebooks but also to other social networking sites, which causes psychological problems. A new study found that individuals who are involved in social media, games, texts, mobile phones, etc. are more likely to experience depression.

The previous study found a 70% increase in self-reported depressive symptoms among the group using social media. The other social media influence that causes depression is sexual fun [ 12 ]. The intimacy fun happens when social media promotes putting on a facade that highlights the fun and excitement but does not tell us much about where we are struggling in our daily lives at a deeper level [ 28 ]. Another study revealed that depression and time spent on Facebook by adolescents are positively correlated [ 22 ]. More importantly, symptoms of major depression have been found among the individuals who spent most of their time in online activities and performing image management on social networking sites [ 14 ].

Another study assessed gender differences in associations between social media use and mental health. Females were found to be more addicted to social media as compared with males [ 26 ]. Passive activity in social media use such as reading posts is more strongly associated with depression than doing active use like making posts [ 23 ]. Other important findings of this review suggest that other factors such as interpersonal trust and family functioning may have a greater influence on the symptoms of depression than the frequency of social media use [ 28 , 29 ].

Limitation and suggestion

The limitations and suggestions were identified by the evidence involved in the study and review process. Previously, 7 of the 16 studies were cross-sectional and slightly failed to determine the causal relationship between the variables of interest. Given the evidence from cross-sectional studies, it is not possible to conclude that the use of social networks causes mental health problems. Only three longitudinal studies examined the causal relationship between social media and mental health, which is hard to examine if the mental health problem appeared more pronounced in those who use social media more compared with those who use it less or do not use at all [ 19 , 20 , 24 ]. Next, despite the fact that the proposed relationship between social media and mental health is complex, a few studies investigated mediating factors that may contribute or exacerbate this relationship. Further investigations are required to clarify the underlying factors that help examine why social media has a negative impact on some peoples’ mental health, whereas it has no or positive effect on others’ mental health.

Conclusions

Social media is a new study that is rapidly growing and gaining popularity. Thus, there are many unexplored and unexpected constructive answers associated with it. Lately, studies have found that using social media platforms can have a detrimental effect on the psychological health of its users. However, the extent to which the use of social media impacts the public is yet to be determined. This systematic review has found that social media envy can affect the level of anxiety and depression in individuals. In addition, other potential causes of anxiety and depression have been identified, which require further exploration.

The importance of such findings is to facilitate further research on social media and mental health. In addition, the information obtained from this study can be helpful not only to medical professionals but also to social science research. The findings of this study suggest that potential causal factors from social media can be considered when cooperating with patients who have been diagnosed with anxiety or depression. Also, if the results from this study were used to explore more relationships with another construct, this could potentially enhance the findings to reduce anxiety and depression rates and prevent suicide rates from occurring.

The content published in Cureus is the result of clinical experience and/or research by independent individuals or organizations. Cureus is not responsible for the scientific accuracy or reliability of data or conclusions published herein. All content published within Cureus is intended only for educational, research and reference purposes. Additionally, articles published within Cureus should not be deemed a suitable substitute for the advice of a qualified health care professional. Do not disregard or avoid professional medical advice due to content published within Cureus.

The authors have declared that no competing interests exist.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 01 July 2020

The effect of social media on well-being differs from adolescent to adolescent

  • Ine Beyens   ORCID: orcid.org/0000-0001-7023-867X 1 ,
  • J. Loes Pouwels   ORCID: orcid.org/0000-0002-9586-392X 1 ,
  • Irene I. van Driel   ORCID: orcid.org/0000-0002-7810-9677 1 ,
  • Loes Keijsers   ORCID: orcid.org/0000-0001-8580-6000 2 &
  • Patti M. Valkenburg   ORCID: orcid.org/0000-0003-0477-8429 1  

Scientific Reports volume  10 , Article number:  10763 ( 2020 ) Cite this article

124k Accesses

210 Citations

127 Altmetric

Metrics details

  • Human behaviour

The question whether social media use benefits or undermines adolescents’ well-being is an important societal concern. Previous empirical studies have mostly established across-the-board effects among (sub)populations of adolescents. As a result, it is still an open question whether the effects are unique for each individual adolescent. We sampled adolescents’ experiences six times per day for one week to quantify differences in their susceptibility to the effects of social media on their momentary affective well-being. Rigorous analyses of 2,155 real-time assessments showed that the association between social media use and affective well-being differs strongly across adolescents: While 44% did not feel better or worse after passive social media use, 46% felt better, and 10% felt worse. Our results imply that person-specific effects can no longer be ignored in research, as well as in prevention and intervention programs.

Similar content being viewed by others

social media influence research paper

Adults who microdose psychedelics report health related motivations and lower levels of anxiety and depression compared to non-microdosers

social media influence research paper

Determinants of behaviour and their efficacy as targets of behavioural change interventions

social media influence research paper

Misunderstanding the harms of online misinformation

Introduction.

Ever since the introduction of social media, such as Facebook and Instagram, researchers have been studying whether the use of such media may affect adolescents’ well-being. These studies have typically reported mixed findings, yielding either small negative, small positive, or no effects of the time spent using social media on different indicators of well-being, such as life satisfaction and depressive symptoms (for recent reviews, see for example 1 , 2 , 3 , 4 , 5 ). Most of these studies have focused on between-person associations, examining whether adolescents who use social media more (or less) often than their peers experience lower (or higher) levels of well-being than these peers. While such between-person studies are valuable in their own right, several scholars 6 , 7 have recently called for studies that investigate within-person associations to understand whether an increase in an adolescent’s social media use is associated with an increase or decrease in that adolescent’s well-being. The current study aims to respond to this call by investigating associations between social media use and well-being within single adolescents across multiple points in time 8 , 9 , 10 .

Person-specific effects

To our knowledge, four recent studies have investigated within-person associations of social media use with different indicators of adolescent well-being (i.e., life satisfaction, depression), again with mixed results 6 , 11 , 12 , 13 . Orben and colleagues 6 found a small negative reciprocal within-person association between the time spent using social media and life satisfaction. Likewise, Boers and colleagues 12 found a small within-person association between social media use and increased depressive symptoms. Finally, Coyne and colleagues 11 and Jensen and colleagues 13 did not find any evidence for within-person associations between social media use and depression.

Earlier studies that investigated within-person associations of social media use with indicators of well-being have all only reported average effect sizes. However, it is possible, or even plausible, that these average within-person effects may have been small and nonsignificant because they result from sizeable heterogeneity in adolescents’ susceptibility to the effects of social media use on well-being (see 14 , 15 ). After all, an average within-person effect size can be considered an aggregate of numerous individual within-person effect sizes that range from highly positive to highly negative.

Some within-person studies have sought to understand adolescents’ differential susceptibility to the effects of social media by investigating differences between subgroups. For instance, they have investigated the moderating role of sex to compare the effects of social media on boys versus girls 6 , 11 . However, such a group-differential approach, in which potential differences in susceptibility are conceptualized by group-level moderators (e.g., gender, age) does not provide insights into more fine-grained differences at the level of the single individual 16 . After all, while girls and boys each represent a homogenous group in terms of sex, they may each differ on a wide array of other factors.

As such, although worthwhile, the average within-person effects of social media on well-being obtained in previous studies may have been small or non-significant because they are diluted across a highly heterogeneous population (or sub-population) of adolescents 14 , 15 . In line with the proposition of media effects theories that each adolescent may have a unique susceptibility to the effects of social media 17 , a viable explanation for the small and inconsistent findings in earlier studies may be that the effect of social media differs from adolescent to adolescent. The aim of the current study is to investigate this hypothesis and to obtain a better understanding of adolescents’ unique susceptibility to the effects of social media on their affective well-being.

Social media and affective well-being

Within-person studies have provided important insights into the associations of social media use with cognitive well-being (e.g., life satisfaction 6 ), which refers to adolescents’ cognitive judgment of how satisfied they are with their life 18 . However, the associations of social media use with adolescents’ affective well-being (i.e., adolescents’ affective evaluations of their moods and emotions 18 ) are still unknown. In addition, while earlier within-person studies have focused on associations with trait-like conceptualizations of well-being 11 , 12 , 13 , that is, adolescents’ average well-being across specific time periods 18 , there is a lack of studies that focus on well-being as a momentary affective state. Therefore, we extend previous research by examining the association between adolescents’ social media use and their momentary affective well-being. Like earlier experience sampling (ESM) studies among adults 19 , 20 , we measured adolescents’ momentary affective well-being with a single item. Adolescents’ momentary affective well-being was defined as their current feelings of happiness, a commonly used question to measure well-being 21 , 22 , which has high convergent validity, as evidenced by the strong correlations with the presence of positive affect and absence of negative affect.

To assess adolescents’ momentary affective well-being (henceforth referred to as well-being), we conducted a week-long ESM study among 63 middle adolescents ages 14 and 15. Six times a day, adolescents were asked to complete a survey using their own mobile phone, covering 42 assessments per adolescent, assessing their affective well-being and social media use. In total, adolescents completed 2,155 assessments (83.2% average compliance).

We focused on middle adolescence, since this is the period in life characterized by most significant fluctuations in well-being 23 , 24 . Also, in comparison to early and late adolescents, middle adolescents are more sensitive to reactions from peers and have a strong tendency to compare themselves with others on social media and beyond. Because middle adolescents typically use different social media platforms, in a complementary way 25 , 26 , 27 , each adolescent reported on his/her use of the three social media platforms that s/he used most frequently out of the five most popular social media platforms among adolescents: WhatsApp, followed by Instagram, Snapchat, YouTube, and, finally, the chat function of games 28 . In addition to investigating the association between overall social media use and well-being (i.e., the summed use of adolescents’ three most frequently used platforms), we examined the unique associations of the two most popular platforms, WhatsApp and Instagram 28 .

Like previous studies on social media use and well-being, we distinguished between active social media use (i.e., “activities that facilitate direct exchanges with others” 29 ) and passive social media use (i.e., “consuming information without direct exchanges” 29 ). Within-person studies among young adults have shown that passive but not active social media use predicts decreases in well-being 29 . Therefore, we examined the unique associations of adolescents’ overall active and passive social media use with their well-being, as well as active and passive use of Instagram and WhatsApp, specifically. We investigated categorical associations, that is, whether adolescents would feel better or worse if they had actively or passively used social media. And we investigated dose–response associations to understand whether adolescents’ well-being would change as a function of the time they had spent actively or passively using social media.

The hypotheses and the design, sampling and analysis plan were preregistered prior to data collection and are available on the Open Science Framework, along with the code used in the analyses ( https://osf.io/nhks2 ). For details about the design of the study and analysis approach, see Methods.

In more than half of all assessments (68.17%), adolescents had used social media (i.e., one or more of their three favorite social media platforms), either in an active or passive way. Instagram (50.90%) and WhatsApp (53.52%) were used in half of all assessments. Passive use of social media (66.21% of all assessments) was more common than active use (50.86%), both on Instagram (48.48% vs. 20.79%) and WhatsApp (51.25% vs. 40.07%).

Strong positive between-person correlations were found between the duration of active and passive social media use (overall: r  = 0.69, p  < 0.001; Instagram: r  = 0.38, p  < 0.01; WhatsApp: r  = 0.85, p  < 0.001): Adolescents who had spent more time actively using social media than their peers, had also spent more time passively using social media than their peers. Likewise, strong positive within-person correlations were found between the duration of active and passive social media use (overall: r  = 0.63, p  < 0.001; Instagram: r  = 0.37, p  < 0.001; WhatsApp: r  = 0.57, p  < 0.001): The more time an adolescent had spent actively using social media at a certain moment, the more time s/he had also spent passively using social media at that moment.

Table 1 displays the average number of minutes that adolescents had spent using social media in the past hour at each assessment, and the zero-order between- and within-person correlations between the duration of social media use and well-being. At the between-person level, the duration of active and passive social media use was not associated with well-being: Adolescents who had spent more time actively or passively using social media than their peers did not report significantly higher or lower levels of well-being than their peers. At the within-person level, significant but weak positive correlations were found between the duration of active and passive overall social media use and well-being. This indicates that adolescents felt somewhat better at moments when they had spent more time actively or passively using social media (overall), compared to moments when they had spent less time actively or passively using social media. When looking at specific platforms, a positive correlation was only found for passive WhatsApp use, but not for active WhatsApp use, and not for active and passive Instagram use.

Average and person-specific effects

The within-person associations of social media use with well-being and differences in these associations were tested in a series of multilevel models. We ran separate models for overall social media use (i.e., active use and passive use of adolescents’ three favorite social media platforms, see Table 2 ), Instagram use (see Table 3 ), and WhatsApp use (see Table 4 ). In a first step we examined the average categorical associations for each of these three social media uses using fixed effects models (Models 1A, 3A, and 5A) to investigate whether, on average, adolescents would feel better or worse at moments when they had used social media compared to moments when they had not (i.e., categorical predictors: active use versus no active use, and passive use versus no passive use). In a second step, we examined heterogeneity in the within-person categorical associations by adding random slopes to the fixed effects models (Models 1B, 3B, and 5B). Next, we examined the average dose–response associations using fixed effects models (Models 2A, 4A, and 6A), to investigate whether, on average, adolescents would feel better or worse when they had spent more time using social media (i.e., continuous predictors: duration of active use and duration of passive use). Finally, we examined heterogeneity in the within-person dose–response associations by adding random slopes to the fixed effects models (Models 2B, 4B, and 6B).

Overall social media use.

The model with the categorical predictors (see Table 2 ; Model 1A) showed that, on average, there was no association between overall use and well-being: Adolescents’ well-being did not increase or decrease at moments when they had used social media, either in a passive or active way. However, evidence was found that the association of passive (but not active) social media use with well-being differed from adolescent to adolescent (Model 1B), with effect sizes ranging from − 0.24 to 0.68. For 44.26% of the adolescents the association was non-existent to small (− 0.10 <  r  < 0.10). However, for 45.90% of the adolescents there was a weak (0.10 <  r  < 0.20; 8.20%), moderate (0.20 <  r  < 0.30; 22.95%) or even strong positive ( r  ≥ 0.30; 14.75%) association between overall passive social media use and well-being, and for almost one in ten (9.84%) adolescents there was a weak (− 0.20 <  r  < − 0.10; 6.56%) or moderate negative (− 0.30 <  r  < − 0.20; 3.28%) association.

The model with continuous predictors (Model 2A) showed that, on average, there was a significant dose–response association for active use. At moments when adolescents had used social media, the time they spent actively (but not passively) using social media was positively associated with well-being: Adolescents felt better at moments when they had spent more time sending messages, posting, or sharing something on social media. The associations of the time spent actively and passively using social media with well-being did not differ across adolescents (Model 2B).

Instagram use

As shown in Model 3A in Table 3 , on average, there was a significant categorical association between passive (but not active) Instagram use and well-being: Adolescents experienced an increase in well-being at moments when they had passively used Instagram (i.e., viewing posts/stories of others). Adolescents did not experience an increase or decrease in well-being when they had actively used Instagram. The associations of passive and active Instagram use with well-being did not differ across adolescents (Model 3B).

On average, no significant dose–response association was found for Instagram use (Model 4A): At moments when adolescents had used Instagram, the time adolescents spent using Instagram (either actively or passively) was not associated with their well-being. However, evidence was found that the association of the time spent passively using Instagram differed from adolescent to adolescent (Model 4B), with effect sizes ranging from − 0.48 to 0.27. For most adolescents (73.91%) the association was non-existent to small (− 0.10 <  r  < 0.10), but for almost one in five adolescents (17.39%) there was a weak (0.10 <  r  < 0.20; 10.87%) or moderate (0.20 <  r  < 0.30; 6.52%) positive association, and for almost one in ten adolescents (8.70%) there was a weak (− 0.20 <  r  < − 0.10; 2.17%), moderate (− 0.30 <  r  < − 0.20; 4.35%), or strong ( r  ≤ − 0.30; 2.17%) negative association. Figure  1 illustrates these differences in the dose–response associations.

figure 1

The dose–response association between passive Instagram use (in minutes per hour) and affective well-being for each individual adolescent (n = 46). Red lines represent significant negative within-person associations, green lines represent significant positive within-person associations, and gray lines represent non-significant within-person associations. A graph was created for each participant who had completed at least 10 assessments. A total of 13 participants were excluded because they had completed less than 10 assessments of passive Instagram use. In addition, one participant was excluded because no graph could be computed, since this participant's passive Instagram use was constant across assessments.

WhatsApp use

As shown in Model 5A in Table 4 , just as for Instagram, we found that, on average, there was a significant categorical association between passive (but not active) WhatsApp use and well-being: Adolescents reported that they felt better at moments when they had passively used WhatsApp (i.e., read WhatsApp messages). For active WhatsApp use, no significant association was found. Also, in line with the results for Instagram use, no differences were found regarding the associations of active and passive WhatsApp use (Model 5B).

In addition, a significant dose–response association was found for passive (but not active) use (Model 6A). At moments when adolescents had used WhatsApp, we found that, on average, the time adolescents spent passively using WhatsApp was positively associated with well-being: Adolescents felt better at moments when they had spent more time reading WhatsApp messages. The time spent actively using WhatsApp was not associated with well-being. No differences were found in the dose–response associations of active and passive WhatsApp use (Model 6B).

This preregistered study investigated adolescents’ unique susceptibility to the effects of social media. We found that the associations of passive (but not active) social media use with well-being differed substantially from adolescent to adolescent, with effect sizes ranging from moderately negative (− 0.24) to strongly positive (0.68). While 44.26% of adolescents did not feel better or worse if they had passively used social media, 45.90% felt better, and a small group felt worse (9.84%). In addition, for Instagram the majority of adolescents (73.91%) did not feel better or worse when they had spent more time viewing post or stories of others, whereas some felt better (17.39%), and others (8.70%) felt worse.

These findings have important implications for social media effects research, and media effects research more generally. For decades, researchers have argued that people differ in their susceptibility to the effects of media 17 , leading to numerous investigations of such differential susceptibility. These investigations have typically focused on moderators, based on variables such as sex, age, or personality. Yet, over the years, studies have shown that such moderators appear to have little power to explain how individuals differ in their susceptibility to media effects, probably because a group-differential approach does not account for the possibility that media users may differ across a range of factors, that are not captured by only one (or a few) investigated moderator variables.

By providing insights into each individual’s unique susceptibility, the findings of this study provide an explanation as to why, up until now, most media effects research has only found small effects. We found that the majority of adolescents do not experience any short-term changes in well-being related to their social media use. And if they do experience any changes, these are more often positive than negative. Because only small subsets of adolescents experience small to moderate changes in well-being, the true effects of social media reported in previous studies have probably been diluted across heterogeneous samples of individuals that differ in their susceptibility to media effects (also see 30 ). Several scholars have noted that overall effect sizes may mask more subtle individual differences 14 , 15 , which may explain why previous studies have typically reported small or no effects of social media on well-being or indicators of well-being 6 , 11 , 12 , 13 . The current study seems to confirm this assumption, by showing that while the overall effect sizes are small at best, the person-specific effect sizes vary considerably, from tiny and small to moderate and strong.

As called upon by other scholars 5 , 31 , we disentangled the associations of active and passive use of social media. Research among young adults found that passive (but not active) social media use is associated with lower levels of affective well-being 29 . In line with these findings, the current study shows that active and passive use yielded different associations with adolescents’ affective well-being. Interestingly though, in contrast to previous findings among adults, our study showed that, on average, passive use of Instagram and WhatsApp seemed to enhance rather than decrease adolescents’ well-being. This discrepancy in findings may be attributed to the fact that different mechanisms might be involved. Verduyn and colleagues 29 found that passive use of Facebook undermines adults’ well-being by enhancing envy, which may also explain the decreases in well-being found in our study among a small group of adolescents. Yet, adolescents who felt better by passively using Instagram and WhatsApp, might have felt so because they experienced enjoyment. After all, adolescents often seek positive content on social media, such as humorous posts or memes 32 . Also, research has shown that adolescents mainly receive positive feedback on social media 33 . Hence, their passive Instagram and WhatsApp use may involve the reading of positive feedback, which may explain the increases in well-being.

Overall, the time spent passively using WhatsApp improved adolescents’ well-being. This did not differ from adolescent to adolescent. However, the associations of the time spent passively using Instagram with well-being did differ from adolescent to adolescent. This discrepancy suggests that not all social media uses yield person-specific effects on well-being. A possible explanation may be that adolescents’ responses to WhatsApp are more homogenous than those to Instagram. WhatsApp is a more private platform, which is mostly used for one-to-one communication with friends and acquaintances 26 . Instagram, in contrast, is a more public platform, which allows its users to follow a diverse set of people, ranging from best friends to singers, actors, and influencers 28 , and to engage in intimate communication as well as self-presentation and social comparison. Such diverse uses could lead to more varied, or even opposing responses, such as envy versus inspiration.

Limitations and directions for future research

The current study extends our understanding of differential susceptibility to media effects, by revealing that the effect of social media use on well-being differs from adolescent to adolescent. The findings confirm our assumption that among the great majority of adolescents, social media use is unrelated to well-being, but that among a small subset, social media use is either related to decreases or increases in well-being. It must be noted, however, that participants in this study felt relatively happy, overall. Studies with more vulnerable samples, consisting of clinical samples or youth with lower social-emotional well-being may elicit different patterns of effects 27 . Also, the current study focused on affective well-being, operationalized as happiness. It is plausible that social media use relates differently with other types of well-being, such as cognitive well-being. An important next step is to identify which adolescents are particularly susceptible to experience declines in well-being. It is conceivable, for instance, that the few adolescents who feel worse when they use social media are the ones who receive negative feedback on social media 33 .

In addition, future ESM studies into the effects of social media should attempt to include one or more follow-up measures to improve our knowledge of the longer-term influence of social media use on affective well-being. While a week-long ESM is very common and applied in most earlier ESM studies 34 , a week is only a snapshot of adolescent development. Research is needed that investigates whether the associations of social media use with adolescents’ momentary affective well-being may cumulate into long-lasting consequences. Such investigations could help clarify whether adolescents who feel bad in the short term would experience more negative consequences in the long term, and whether adolescents who feel better would be more resistant to developing long-term negative consequences. And while most adolescents do not seem to experience any short-term increases or decreases in well-being, more research is needed to investigate whether these adolescents may experience a longer-term impact of social media.

While the use of different platforms may be differently associated with well-being, different types of use may also yield different effects. Although the current study distinguished between active and passive use of social media, future research should further differentiate between different activities. For instance, because passive use entails many different activities, from reading private messages (e.g., WhatsApp messages, direct messages on Instagram) to browsing a public feed (e.g., scrolling through posts on Instagram), research is needed that explores the unique effects of passive public use and passive private use. Research that seeks to explore the nuances in adolescents’ susceptibility as well as the nuances in their social media use may truly improve our understanding of the effects of social media use.

Participants

Participants were recruited via a secondary school in the south of the Netherlands. Our preregistered sampling plan set a target sample size of 100 adolescents. We invited adolescents from six classrooms to participate in the study. The final sample consisted of 63 adolescents (i.e., 42% consent rate, which is comparable to other ESM studies among adolescents; see, for instance 35 , 36 ). Informed consent was obtained from all participants and their parents. On average, participants were 15 years old ( M  = 15.12 years, SD  = 0.51) and 54% were girls. All participants self-identified as Dutch, and 41.3% were enrolled in the prevocational secondary education track, 25.4% in the intermediate general secondary education track, and 33.3% in the academic preparatory education track.

The study was approved by the Ethics Review Board of the Faculty of Social and Behavioral Sciences at the University of Amsterdam and was performed in accordance with the guidelines formulated by the Ethics Review Board. The study consisted of two phases: A baseline survey and a personalized week-long experience sampling (ESM) study. In phase 1, researchers visited the school during school hours. Researchers informed the participants of the objective and procedure of the study and assured them that their responses would be treated confidentially. Participants were asked to sign the consent form. Next, participants completed a 15-min baseline survey. The baseline survey included questions about demographics and assessed which social media each adolescent used most frequently, allowing to personalize the social media questions presented during the ESM study in phase 2. After completing the baseline survey, participants were provided detailed instructions about phase 2.

In phase 2, which took place two and a half weeks after the baseline survey, a 7-day ESM study was conducted, following the guidelines for ESM studies provided by van Roekel and colleagues 34 . Aiming for at least 30 assessments per participant and based on an average compliance rate of 70 to 80% reported in earlier ESM studies among adolescents 34 , we asked each participant to complete a total of 42 ESM surveys (i.e., six 2-min surveys per day). Participants completed the surveys using their own mobile phone, on which the ESM software application Ethica Data was installed during the instruction session with the researchers (phase 1). Each 2-min survey consisted of 22 questions, which assessed adolescents’ well-being and social media use. Two open-ended questions were added to the final survey of the day, which asked about adolescents’ most pleasant and most unpleasant events of the day.

The ESM sampling scheme was semi-random, to allow for randomization and avoid structural patterns in well-being, while taking into account that adolescents were not allowed to use their phone during school time. The Ethica Data app was programmed to generate six beep notifications per day at random time points within a fixed time interval that was tailored to the school’s schedule: before school time (1 beep), during school breaks (2 beeps), and after school time (3 beeps). During the weekend, the beeps were generated during the morning (1 beep), afternoon (3 beeps), and evening (2 beeps). To maximize compliance, a 30-min time window was provided to complete each survey. This time window was extended to one hour for the first survey (morning) and two hours for the final survey (evening) to account for travel time to school and time spent on evening activities. The average compliance rate was 83.2%. A total of 2,155 ESM assessments were collected: Participants completed an average of 34.83 surveys ( SD  = 4.91) on a total of 42 surveys, which is high compared to previous ESM studies among adolescents 34 .

The questions of the ESM study were personalized based on the responses to the baseline survey. During the ESM study, each participant reported on his/her use of three different social media platforms: WhatsApp and either Instagram, Snapchat, YouTube, and/or the chat function of games (i.e., the most popular social media platforms among adolescents 28 ). Questions about Instagram and WhatsApp use were only included if the participant had indicated in the baseline survey that s/he used these platforms at least once a week. If a participant had indicated that s/he used Instagram or WhatsApp (or both) less than once a week, s/he was asked to report on the use of Snapchat, YouTube, or the chat function of games, depending on what platform s/he used at least once a week. In addition to Instagram and WhatsApp, questions were asked about a third platform, that was selected based on how frequently the participant used Snapchat, YouTube, or the chat function of games (i.e., at least once a week). This resulted in five different combinations of three platforms: Instagram, WhatsApp, and Snapchat (47 participants); Instagram, WhatsApp, and YouTube (11 participants); Instagram, WhatsApp, and chatting via games (2 participants); WhatsApp, Snapchat, and YouTube (1 participant); and WhatsApp, YouTube, and chatting via games (2 participants).

Frequency of social media use

In the baseline survey, participants were asked to indicate how often they used and checked Instagram, WhatsApp, Snapchat, YouTube, and the chat function of games, using response options ranging from 1 ( never ) to 7 ( more than 12 times per day ). These platforms are the five most popular platforms among Dutch 14- and 15-year-olds 28 . Participants’ responses were used to select the three social media platforms that were assessed in the personalized ESM study.

Duration of social media use

In the ESM study, duration of active and passive social media use was measured by asking participants how much time in the past hour they had spent actively and passively using each of the three platforms that were included in the personalized ESM surveys. Response options ranged from 0 to 60 min , with 5-min intervals. To measure active Instagram use, participants indicated how much time in the past hour they had spent (a) “posting on your feed or sharing something in your story on Instagram” and (b) “sending direct messages/chatting on Instagram.” These two items were summed to create the variable duration of active Instagram use. Sum scores exceeding 60 min (only 0.52% of all assessments) were recoded to 60 min. To measure duration of passive Instagram use, participants indicated how much time in the past hour they had spent “viewing posts/stories of others on Instagram.” To measure the use of WhatsApp, Snapchat, YouTube and game-based chatting, we asked participants how much time they had spent “sending WhatsApp messages” (active use) and “reading WhatsApp messages” (passive use); “sending snaps/messages or sharing something in your story on Snapchat” (active use) and “viewing snaps/stories/messages from others on Snapchat” (passive use); “posting YouTube clips” (active use) and “watching YouTube clips” (passive use); “sending messages via the chat function of a game/games” (active use) and “reading messages via the chat function of a game/games” (passive use). Duration of active and passive overall social media use were created by summing the responses across the three social media platforms for active and passive use, respectively. Sum scores exceeding 60 min (2.13% of all assessments for active overall use; 2.90% for passive overall use) were recoded to 60 min. The duration variables were used to investigate whether the time spent actively or passively using social media was associated with well-being (dose–response associations).

Use/no use of social media

Based on the duration variables, we created six dummy variables, one for active and one for passive overall social media use, one for active and one for passive Instagram use, and one for active and one for passive WhatsApp use (0 =  no active use and 1 =  active use , and 0 =  no passive use and 1 =  passive use , respectively). These dummy variables were used to investigate whether the use of social media, irrespective of the duration of use, was associated with well-being (categorical associations).

Consistent with previous ESM studies 19 , 20 , we measured affective well-being using one item, asking “How happy do you feel right now?” at each assessment. Adolescents indicated their response to the question using a 7-point scale ranging from 1 ( not at all ) to 7 ( completely ), with 4 ( a little ) as the midpoint. Convergent validity of this item was established in a separate pilot ESM study among 30 adolescents conducted by the research team of the fourth author: The affective well-being item was strongly correlated with the presence of positive affect and absence of negative affect (assessed by a 10-item positive and negative affect schedule for children; PANAS-C) at both the between-person (positive affect: r  = 0.88, p < 0.001; negative affect: r  = − 0.62, p < 0.001) and within-person level (positive affect: r  = 0.74, p < 0.001; negative affect: r  = − 0.58, p < 0.001).

Statistical analyses

Before conducting the analyses, several validation checks were performed (see 34 ). First, we aimed to only include participants in the analyses who had completed more than 33% of all ESM assessments (i.e., at least 14 assessments). Next, we screened participants’ responses to the open questions for unserious responses (e.g., gross comments, jokes). And finally, we inspected time series plots for patterns in answering tendencies. Since all participants completed more than 33% of all ESM assessments, and no inappropriate responses or low-quality data patterns were detected, all participants were included in the analyses.

Following our preregistered analysis plan, we tested the proposed associations in a series of multilevel models. Before doing so, we tested the homoscedasticity and linearity assumptions for multilevel analyses 37 . Inspection of standardized residual plots indicated that the data met these assumptions (plots are available on OSF at  https://osf.io/nhks2 ). We specified separate models for overall social media use, use of Instagram, and use of WhatsApp. To investigate to what extent adolescents’ well-being would vary depending on whether they had actively or passively used social media/Instagram/WhatsApp or not during the past hour (categorical associations), we tested models including the dummy variables as predictors (active use versus no active use, and passive use versus no passive use; models 1, 3, and 5). To investigate whether, at moments when adolescents had used social media/Instagram/WhatsApp during the past hour, their well-being would vary depending on the duration of social media/Instagram/WhatsApp use (dose–response associations), we tested models including the duration variables as predictors (duration of active use and duration of passive use; models 2, 4, and 6). In order to avoid negative skew in the duration variables, we only included assessments during which adolescents had used social media in the past hour (overall, Instagram, or WhatsApp, respectively), either actively or passively. All models included well-being as outcome variable. Since multilevel analyses allow to include all available data for each individual, no missing data were imputed and no data points were excluded.

We used a model building approach that involved three steps. In the first step, we estimated an intercept-only model to assess the relative amount of between- and within-person variance in affective well-being. We estimated a three-level model in which repeated momentary assessments (level 1) were nested within adolescents (level 2), who, in turn, were nested within classrooms (level 3). However, because the between-classroom variance in affective well-being was small (i.e., 0.4% of the variance was explained by differences between classes), we proceeded with estimating two-level (instead of three-level) models, with repeated momentary assessments (level 1) nested within adolescents (level 2).

In the second step, we assessed the within-person associations of well-being with (a) overall active and passive social media use (i.e., the total of the three platforms), (b) active and passive use of Instagram, and (c) active and passive use of WhatsApp, by adding fixed effects to the model (Models 1A-6A). To facilitate the interpretation of the associations and control for the effects of time, a covariate was added that controlled for the n th assessment of the study week (instead of the n th assessment of the day, as preregistered). This so-called detrending is helpful to interpret within-person associations as correlated fluctuations beyond other changes in social media use and well-being 38 . In order to obtain within-person estimates, we person-mean centered all predictors 38 . Significance of the fixed effects was determined using the Wald test.

In the third and final step, we assessed heterogeneity in the within-person associations by adding random slopes to the models (Models 1B-6B). Significance of the random slopes was determined by comparing the fit of the fixed effects model with the fit of the random effects model, by performing the Satorra-Bentler scaled chi-square test 39 and by comparing the Bayesian information criterion (BIC 40 ) and Akaike information criterion (AIC 41 ) of the models. When the random effects model had a significantly better fit than the fixed effects model (i.e., pointing at significant heterogeneity), variance components were inspected to investigate whether heterogeneity existed in the association of either active or passive use. Next, when evidence was found for significant heterogeneity, we computed person-specific effect sizes, based on the random effect models, to investigate what percentages of adolescents experienced better well-being, worse well-being, and no changes in well-being. In line with Keijsers and colleagues 42 we only included participants who had completed at least 10 assessments. In addition, for the dose–response associations, we constructed graphical representations of the person-specific slopes, based on the person-specific effect sizes, using the xyplot function from the lattice package in R 43 .

Three improvements were made to our original preregistered plan. First, rather than estimating the models with multilevel modelling in R 43 , we ran the preregistered models in Mplus 44 . Mplus provides standardized estimates for the fixed effects models, which offers insight into the effect sizes. This allowed us to compare the relative strength of the associations of passive versus active use with well-being. Second, instead of using the maximum likelihood estimator, we used the maximum likelihood estimator with robust standard errors (MLR), which are robust to non-normality. Sensitivity tests, uploaded on OSF ( https://osf.io/nhks2 ), indicated that the results were almost identical across the two software packages and estimation approaches. Third, to improve the interpretation of the results and make the scales of the duration measures of social media use and well-being more comparable, we transformed the social media duration scores (0 to 60 min) into scales running from 0 to 6, so that an increase of 1 unit reflects 10 min of social media use. The model estimates were unaffected by this transformation.

Reporting summary

Further information on the research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The dataset generated and analysed during the current study is available in Figshare 45 . The preregistration of the design, sampling and analysis plan, and the analysis scripts used to analyse the data for this paper are available online on the Open Science Framework website ( https://osf.io/nhks2 ).

Best, P., Manktelow, R. & Taylor, B. Online communication, social media and adolescent wellbeing: A systematic narrative review. Child Youth Serv. Rev. 41 , 27–36. https://doi.org/10.1016/j.childyouth.2014.03.001 (2014).

Article   Google Scholar  

James, C. et al. Digital life and youth well-being, social connectedness, empathy, and narcissism. Pediatrics 140 , S71–S75. https://doi.org/10.1542/peds.2016-1758F (2017).

Article   PubMed   Google Scholar  

McCrae, N., Gettings, S. & Purssell, E. Social media and depressive symptoms in childhood and adolescence: A systematic review. Adolesc. Res. Rev. 2 , 315–330. https://doi.org/10.1007/s40894-017-0053-4 (2017).

Sarmiento, I. G. et al. How does social media use relate to adolescents’ internalizing symptoms? Conclusions from a systematic narrative review. Adolesc Res Rev , 1–24, doi:10.1007/s40894-018-0095-2 (2018).

Orben, A. Teenagers, screens and social media: A narrative review of reviews and key studies. Soc. Psychiatry Psychiatr. Epidemiol. https://doi.org/10.1007/s00127-019-01825-4 (2020).

Orben, A., Dienlin, T. & Przybylski, A. K. Social media’s enduring effect on adolescent life satisfaction. Proc. Natl. Acad. Sci. USA 116 , 10226–10228. https://doi.org/10.1073/pnas.1902058116 (2019).

Article   CAS   PubMed   Google Scholar  

Whitlock, J. & Masur, P. K. Disentangling the association of screen time with developmental outcomes and well-being: Problems, challenges, and opportunities. JAMA https://doi.org/10.1001/jamapediatrics.2019.3191 (2019).

Hamaker, E. L. In Handbook of Research Methods for Studying Daily Life (eds Mehl, M. R. & Conner, T. S.) 43–61 (Guilford Press, New York, 2012).

Schmiedek, F. & Dirk, J. In The Encyclopedia of Adulthood and Aging (ed. Krauss Whitbourne, S.) 1–6 (Wiley, 2015).

Keijsers, L. & van Roekel, E. In Reframing Adolescent Research (eds Hendry, L. B. & Kloep, M.) (Routledge, 2018).

Coyne, S. M., Rogers, A. A., Zurcher, J. D., Stockdale, L. & Booth, M. Does time spent using social media impact mental health? An eight year longitudinal study. Comput. Hum. Behav. 104 , 106160. https://doi.org/10.1016/j.chb.2019.106160 (2020).

Boers, E., Afzali, M. H., Newton, N. & Conrod, P. Association of screen time and depression in adolescence. JAMA 173 , 853–859. https://doi.org/10.1001/jamapediatrics.2019.1759 (2019).

Jensen, M., George, M. J., Russell, M. R. & Odgers, C. L. Young adolescents’ digital technology use and mental health symptoms: Little evidence of longitudinal or daily linkages. Clin. Psychol. Sci. https://doi.org/10.1177/2167702619859336 (2019).

Valkenburg, P. M. The limited informativeness of meta-analyses of media effects. Perspect. Psychol. Sci. 10 , 680–682. https://doi.org/10.1177/1745691615592237 (2015).

Pearce, L. J. & Field, A. P. The impact of “scary” TV and film on children’s internalizing emotions: A meta-analysis. Hum. Commun.. Res. 42 , 98–121. https://doi.org/10.1111/hcre.12069 (2016).

Howard, M. C. & Hoffman, M. E. Variable-centered, person-centered, and person-specific approaches. Organ. Res. Methods 21 , 846–876. https://doi.org/10.1177/1094428117744021 (2017).

Valkenburg, P. M. & Peter, J. The differential susceptibility to media effects model. J. Commun. 63 , 221–243. https://doi.org/10.1111/jcom.12024 (2013).

Eid, M. & Diener, E. Global judgments of subjective well-being: Situational variability and long-term stability. Soc. Indic. Res. 65 , 245–277. https://doi.org/10.1023/B:SOCI.0000003801.89195.bc (2004).

Kross, E. et al. Facebook use predicts declines in subjective well-being in young adults. PLoS ONE 8 , e69841. https://doi.org/10.1371/journal.pone.0069841 (2013).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Reissmann, A., Hauser, J., Stollberg, E., Kaunzinger, I. & Lange, K. W. The role of loneliness in emerging adults’ everyday use of facebook—An experience sampling approach. Comput. Hum. Behav. 88 , 47–60. https://doi.org/10.1016/j.chb.2018.06.011 (2018).

Rutledge, R. B., Skandali, N., Dayan, P. & Dolan, R. J. A computational and neural model of momentary subjective well-being. Proc. Natl. Acad. Sci. USA 111 , 12252–12257. https://doi.org/10.1073/pnas.1407535111 (2014).

Article   ADS   CAS   PubMed   Google Scholar  

Tov, W. In Handbook of Well-being (eds Diener, E.D. et al. ) (DEF Publishers, 2018).

Harter, S. The Construction of the Self: Developmental and Sociocultural Foundations (Guilford Press, New York, 2012).

Steinberg, L. Adolescence . Vol. 9 (McGraw-Hill, 2011).

Rideout, V. & Fox, S. Digital Health Practices, Social Media Use, and Mental Well-being Among Teens and Young Adults in the US (HopeLab, San Francisco, 2018).

Google Scholar  

Waterloo, S. F., Baumgartner, S. E., Peter, J. & Valkenburg, P. M. Norms of online expressions of emotion: Comparing Facebook, Twitter, Instagram, and WhatsApp. New Media Soc. 20 , 1813–1831. https://doi.org/10.1177/1461444817707349 (2017).

Article   PubMed   PubMed Central   Google Scholar  

Rideout, V. & Robb, M. B. Social Media, Social Life: Teens Reveal their Experiences (Common Sense Media, San Fransico, 2018).

van Driel, I. I., Pouwels, J. L., Beyens, I., Keijsers, L. & Valkenburg, P. M. 'Posting, Scrolling, Chatting & Snapping': Youth (14–15) and Social Media in 2019 (Center for Research on Children, Adolescents, and the Media (CcaM), Universiteit van Amsterdam, 2019).

Verduyn, P. et al. Passive Facebook usage undermines affective well-being: Experimental and longitudinal evidence. J. Exp. Psychol. 144 , 480–488. https://doi.org/10.1037/xge0000057 (2015).

Valkenburg, P. M. & Peter, J. Five challenges for the future of media-effects research. Int. J. Commun. 7 , 197–215 (2013).

Verduyn, P., Ybarra, O., Résibois, M., Jonides, J. & Kross, E. Do social network sites enhance or undermine subjective well-being? A critical review. Soc. Issues Policy Rev. 11 , 274–302. https://doi.org/10.1111/sipr.12033 (2017).

Radovic, A., Gmelin, T., Stein, B. D. & Miller, E. Depressed adolescents’ positive and negative use of social media. J. Adolesc. 55 , 5–15. https://doi.org/10.1016/j.adolescence.2016.12.002 (2017).

Valkenburg, P. M., Peter, J. & Schouten, A. P. Friend networking sites and their relationship to adolescents’ well-being and social self-esteem. Cyberpsychol. Behav. 9 , 584–590. https://doi.org/10.1089/cpb.2006.9.584 (2006).

van Roekel, E., Keijsers, L. & Chung, J. M. A review of current ambulatory assessment studies in adolescent samples and practical recommendations. J. Res. Adolesc. 29 , 560–577. https://doi.org/10.1111/jora.12471 (2019).

van Roekel, E., Scholte, R. H. J., Engels, R. C. M. E., Goossens, L. & Verhagen, M. Loneliness in the daily lives of adolescents: An experience sampling study examining the effects of social contexts. J. Early Adolesc. 35 , 905–930. https://doi.org/10.1177/0272431614547049 (2015).

Neumann, A., van Lier, P. A. C., Frijns, T., Meeus, W. & Koot, H. M. Emotional dynamics in the development of early adolescent psychopathology: A one-year longitudinal Study. J. Abnorm. Child Psychol. 39 , 657–669. https://doi.org/10.1007/s10802-011-9509-3 (2011).

Hox, J., Moerbeek, M. & van de Schoot, R. Multilevel Analysis: Techniques and Applications 3rd edn. (Routledge, London, 2018).

Wang, L. P. & Maxwell, S. E. On disaggregating between-person and within-person effects with longitudinal data using multilevel models. Psychol. Methods 20 , 63–83. https://doi.org/10.1037/met0000030 (2015).

Satorra, A. & Bentler, P. M. Ensuring positiveness of the scaled difference chi-square test statistic. Psychometrika 75 , 243–248. https://doi.org/10.1007/s11336-009-9135-y (2010).

Article   MathSciNet   PubMed   PubMed Central   MATH   Google Scholar  

Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6 , 461–464. https://doi.org/10.1214/aos/1176344136 (1978).

Article   MathSciNet   MATH   Google Scholar  

Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19 , 716–723. https://doi.org/10.1109/TAC.1974.1100705 (1974).

Article   ADS   MathSciNet   MATH   Google Scholar  

Keijsers, L. et al. What drives developmental change in adolescent disclosure and maternal knowledge? Heterogeneity in within-family processes. Dev. Psychol. 52 , 2057–2070. https://doi.org/10.1037/dev0000220 (2016).

R Core Team R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2017).

Muthén, L. K. & Muthén, B. O. Mplus User’s Guide 8th edn. (Muthén & Muthén, Los Angeles, 2017).

Beyens, I., Pouwels, J. L., van Driel, I. I., Keijsers, L. & Valkenburg, P. M. Dataset belonging to Beyens et al. (2020). The effect of social media on well-being differs from adolescent to adolescent. https://doi.org/10.21942/uva.12497990 (2020).

Download references

Acknowledgements

This study was funded by the NWO Spinoza Prize and the Gravitation grant (NWO Grant 024.001.003; Consortium on Individual Development) awarded to P.M.V. by the Dutch Research Council (NWO). Additional funding was received from the VIDI grant (NWO VIDI Grant 452.17.011) awarded to L.K. by the Dutch Research Council (NWO). The authors would like to thank Savannah Boele (Tilburg University) for providing her pilot ESM results.

Author information

Authors and affiliations.

Amsterdam School of Communication Research, University of Amsterdam, 1001 NG, Amsterdam, The Netherlands

Ine Beyens, J. Loes Pouwels, Irene I. van Driel & Patti M. Valkenburg

Department of Developmental Psychology, Tilburg University, 5000 LE, Tilburg, The Netherlands

Loes Keijsers

You can also search for this author in PubMed   Google Scholar

Contributions

I.B., J.L.P., I.I.v.D., L.K., and P.M.V. designed the study; I.B., J.L.P., and I.I.v.D. collected the data; I.B., J.L.P., and L.K. analyzed the data; and I.B., J.L.P., I.I.v.D., L.K., and P.M.V. contributed to writing and reviewing the manuscript.

Corresponding author

Correspondence to Ine Beyens .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Beyens, I., Pouwels, J.L., van Driel, I.I. et al. The effect of social media on well-being differs from adolescent to adolescent. Sci Rep 10 , 10763 (2020). https://doi.org/10.1038/s41598-020-67727-7

Download citation

Received : 24 January 2020

Accepted : 11 June 2020

Published : 01 July 2020

DOI : https://doi.org/10.1038/s41598-020-67727-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Mechanisms linking social media use to adolescent mental health vulnerability.

  • Adrian Meier
  • Sarah-Jayne Blakemore

Nature Reviews Psychology (2024)

Variation in social media sensitivity across people and contexts

  • Sumer S. Vaid
  • Lara Kroencke
  • Gabriella M. Harari

Scientific Reports (2024)

Social Media and Youth Mental Health: Assessing the Impact Through Current and Novel Digital Phenotyping Methods

  • Elana Perlmutter
  • Bridget Dwyer
  • John Torous

Current Treatment Options in Psychiatry (2024)

Childhood internalizing, externalizing and attention symptoms predict changes in social and nonsocial screen time

  • Katherine Keyes
  • Ava Hamilton
  • Noah Kreski

Social Psychiatry and Psychiatric Epidemiology (2024)

Problematic social media use and psychological symptoms in adolescents

  • Ramin Mojtabai

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

social media influence research paper

ORIGINAL RESEARCH article

Effects of social media use on psychological well-being: a mediated model.

\nDragana Ostic&#x;

  • 1 School of Finance and Economics, Jiangsu University, Zhenjiang, China
  • 2 Research Unit of Governance, Competitiveness, and Public Policies (GOVCOPP), Center for Economics and Finance (cef.up), School of Economics and Management, University of Porto, Porto, Portugal
  • 3 Department of Business Administration, Sukkur Institute of Business Administration (IBA) University, Sukkur, Pakistan
  • 4 CETYS Universidad, Tijuana, Mexico
  • 5 Department of Business Administration, Al-Quds University, Jerusalem, Israel
  • 6 Business School, Shandong University, Weihai, China

The growth in social media use has given rise to concerns about the impacts it may have on users' psychological well-being. This paper's main objective is to shed light on the effect of social media use on psychological well-being. Building on contributions from various fields in the literature, it provides a more comprehensive study of the phenomenon by considering a set of mediators, including social capital types (i.e., bonding social capital and bridging social capital), social isolation, and smartphone addiction. The paper includes a quantitative study of 940 social media users from Mexico, using structural equation modeling (SEM) to test the proposed hypotheses. The findings point to an overall positive indirect impact of social media usage on psychological well-being, mainly due to the positive effect of bonding and bridging social capital. The empirical model's explanatory power is 45.1%. This paper provides empirical evidence and robust statistical analysis that demonstrates both positive and negative effects coexist, helping to reconcile the inconsistencies found so far in the literature.

Introduction

The use of social media has grown substantially in recent years ( Leong et al., 2019 ; Kemp, 2020 ). Social media refers to “the websites and online tools that facilitate interactions between users by providing them opportunities to share information, opinions, and interest” ( Swar and Hameed, 2017 , p. 141). Individuals use social media for many reasons, including entertainment, communication, and searching for information. Notably, adolescents and young adults are spending an increasing amount of time on online networking sites, e-games, texting, and other social media ( Twenge and Campbell, 2019 ). In fact, some authors (e.g., Dhir et al., 2018 ; Tateno et al., 2019 ) have suggested that social media has altered the forms of group interaction and its users' individual and collective behavior around the world.

Consequently, there are increased concerns regarding the possible negative impacts associated with social media usage addiction ( Swar and Hameed, 2017 ; Kircaburun et al., 2020 ), particularly on psychological well-being ( Chotpitayasunondh and Douglas, 2016 ; Jiao et al., 2017 ; Choi and Noh, 2019 ; Chatterjee, 2020 ). Smartphones sometimes distract their users from relationships and social interaction ( Chotpitayasunondh and Douglas, 2016 ; Li et al., 2020a ), and several authors have stressed that the excessive use of social media may lead to smartphone addiction ( Swar and Hameed, 2017 ; Leong et al., 2019 ), primarily because of the fear of missing out ( Reer et al., 2019 ; Roberts and David, 2020 ). Social media usage has been associated with anxiety, loneliness, and depression ( Dhir et al., 2018 ; Reer et al., 2019 ), social isolation ( Van Den Eijnden et al., 2016 ; Whaite et al., 2018 ), and “phubbing,” which refers to the extent to which an individual uses, or is distracted by, their smartphone during face-to-face communication with others ( Chotpitayasunondh and Douglas, 2016 ; Jiao et al., 2017 ; Choi and Noh, 2019 ; Chatterjee, 2020 ).

However, social media use also contributes to building a sense of connectedness with relevant others ( Twenge and Campbell, 2019 ), which may reduce social isolation. Indeed, social media provides several ways to interact both with close ties, such as family, friends, and relatives, and weak ties, including coworkers, acquaintances, and strangers ( Chen and Li, 2017 ), and plays a key role among people of all ages as they exploit their sense of belonging in different communities ( Roberts and David, 2020 ). Consequently, despite the fears regarding the possible negative impacts of social media usage on well-being, there is also an increasing number of studies highlighting social media as a new communication channel ( Twenge and Campbell, 2019 ; Barbosa et al., 2020 ), stressing that it can play a crucial role in developing one's presence, identity, and reputation, thus facilitating social interaction, forming and maintaining relationships, and sharing ideas ( Carlson et al., 2016 ), which consequently may be significantly correlated to social support ( Chen and Li, 2017 ; Holliman et al., 2021 ). Interestingly, recent studies (e.g., David et al., 2018 ; Bano et al., 2019 ; Barbosa et al., 2020 ) have suggested that the impact of smartphone usage on psychological well-being depends on the time spent on each type of application and the activities that users engage in.

Hence, the literature provides contradictory cues regarding the impacts of social media on users' well-being, highlighting both the possible negative impacts and the social enhancement it can potentially provide. In line with views on the need to further investigate social media usage ( Karikari et al., 2017 ), particularly regarding its societal implications ( Jiao et al., 2017 ), this paper argues that there is an urgent need to further understand the impact of the time spent on social media on users' psychological well-being, namely by considering other variables that mediate and further explain this effect.

One of the relevant perspectives worth considering is that provided by social capital theory, which is adopted in this paper. Social capital theory has previously been used to study how social media usage affects psychological well-being (e.g., Bano et al., 2019 ). However, extant literature has so far presented only partial models of associations that, although statistically acceptable and contributing to the understanding of the scope of social networks, do not provide as comprehensive a vision of the phenomenon as that proposed within this paper. Furthermore, the contradictory views, suggesting both negative (e.g., Chotpitayasunondh and Douglas, 2016 ; Van Den Eijnden et al., 2016 ; Jiao et al., 2017 ; Whaite et al., 2018 ; Choi and Noh, 2019 ; Chatterjee, 2020 ) and positive impacts ( Carlson et al., 2016 ; Chen and Li, 2017 ; Twenge and Campbell, 2019 ) of social media on psychological well-being, have not been adequately explored.

Given this research gap, this paper's main objective is to shed light on the effect of social media use on psychological well-being. As explained in detail in the next section, this paper explores the mediating effect of bonding and bridging social capital. To provide a broad view of the phenomenon, it also considers several variables highlighted in the literature as affecting the relationship between social media usage and psychological well-being, namely smartphone addiction, social isolation, and phubbing. The paper utilizes a quantitative study conducted in Mexico, comprising 940 social media users, and uses structural equation modeling (SEM) to test a set of research hypotheses.

This article provides several contributions. First, it adds to existing literature regarding the effect of social media use on psychological well-being and explores the contradictory indications provided by different approaches. Second, it proposes a conceptual model that integrates complementary perspectives on the direct and indirect effects of social media use. Third, it offers empirical evidence and robust statistical analysis that demonstrates that both positive and negative effects coexist, helping resolve the inconsistencies found so far in the literature. Finally, this paper provides insights on how to help reduce the potential negative effects of social media use, as it demonstrates that, through bridging and bonding social capital, social media usage positively impacts psychological well-being. Overall, the article offers valuable insights for academics, practitioners, and society in general.

The remainder of this paper is organized as follows. Section Literature Review presents a literature review focusing on the factors that explain the impact of social media usage on psychological well-being. Based on the literature review, a set of hypotheses are defined, resulting in the proposed conceptual model, which includes both the direct and indirect effects of social media usage on psychological well-being. Section Research Methodology explains the methodological procedures of the research, followed by the presentation and discussion of the study's results in section Results. Section Discussion is dedicated to the conclusions and includes implications, limitations, and suggestions for future research.

Literature Review

Putnam (1995 , p. 664–665) defined social capital as “features of social life – networks, norms, and trust – that enable participants to act together more effectively to pursue shared objectives.” Li and Chen (2014 , p. 117) further explained that social capital encompasses “resources embedded in one's social network, which can be assessed and used for instrumental or expressive returns such as mutual support, reciprocity, and cooperation.”

Putnam (1995 , 2000) conceptualized social capital as comprising two dimensions, bridging and bonding, considering the different norms and networks in which they occur. Bridging social capital refers to the inclusive nature of social interaction and occurs when individuals from different origins establish connections through social networks. Hence, bridging social capital is typically provided by heterogeneous weak ties ( Li and Chen, 2014 ). This dimension widens individual social horizons and perspectives and provides extended access to resources and information. Bonding social capital refers to the social and emotional support each individual receives from his or her social networks, particularly from close ties (e.g., family and friends).

Overall, social capital is expected to be positively associated with psychological well-being ( Bano et al., 2019 ). Indeed, Williams (2006) stressed that interaction generates affective connections, resulting in positive impacts, such as emotional support. The following sub-sections use the lens of social capital theory to explore further the relationship between the use of social media and psychological well-being.

Social Media Use, Social Capital, and Psychological Well-Being

The effects of social media usage on social capital have gained increasing scholarly attention, and recent studies have highlighted a positive relationship between social media use and social capital ( Brown and Michinov, 2019 ; Tefertiller et al., 2020 ). Li and Chen (2014) hypothesized that the intensity of Facebook use by Chinese international students in the United States was positively related to social capital forms. A longitudinal survey based on the quota sampling approach illustrated the positive effects of social media use on the two social capital dimensions ( Chen and Li, 2017 ). Abbas and Mesch (2018) argued that, as Facebook usage increases, it will also increase users' social capital. Karikari et al. (2017) also found positive effects of social media use on social capital. Similarly, Pang (2018) studied Chinese students residing in Germany and found positive effects of social networking sites' use on social capital, which, in turn, was positively associated with psychological well-being. Bano et al. (2019) analyzed the 266 students' data and found positive effects of WhatsApp use on social capital forms and the positive effect of social capital on psychological well-being, emphasizing the role of social integration in mediating this positive effect.

Kim and Kim (2017) stressed the importance of having a heterogeneous network of contacts, which ultimately enhances the potential social capital. Overall, the manifest and social relations between people from close social circles (bonding social capital) and from distant social circles (bridging social capital) are strengthened when they promote communication, social support, and the sharing of interests, knowledge, and skills, which are shared with other members. This is linked to positive effects on interactions, such as acceptance, trust, and reciprocity, which are related to the individuals' health and psychological well-being ( Bekalu et al., 2019 ), including when social media helps to maintain social capital between social circles that exist outside of virtual communities ( Ellison et al., 2007 ).

Grounded on the above literature, this study proposes the following hypotheses:

H1a: Social media use is positively associated with bonding social capital.

H1b: Bonding social capital is positively associated with psychological well-being.

H2a: Social media use is positively associated with bridging social capital.

H2b: Bridging social capital is positively associated with psychological well-being.

Social Media Use, Social Isolation, and Psychological Well-Being

Social isolation is defined as “a deficit of personal relationships or being excluded from social networks” ( Choi and Noh, 2019 , p. 4). The state that occurs when an individual lacks true engagement with others, a sense of social belonging, and a satisfying relationship is related to increased mortality and morbidity ( Primack et al., 2017 ). Those who experience social isolation are deprived of social relationships and lack contact with others or involvement in social activities ( Schinka et al., 2012 ). Social media usage has been associated with anxiety, loneliness, and depression ( Dhir et al., 2018 ; Reer et al., 2019 ), and social isolation ( Van Den Eijnden et al., 2016 ; Whaite et al., 2018 ). However, some recent studies have argued that social media use decreases social isolation ( Primack et al., 2017 ; Meshi et al., 2020 ). Indeed, the increased use of social media platforms such as Facebook, WhatsApp, Instagram, and Twitter, among others, may provide opportunities for decreasing social isolation. For instance, the improved interpersonal connectivity achieved via videos and images on social media helps users evidence intimacy, attenuating social isolation ( Whaite et al., 2018 ).

Chappell and Badger (1989) stated that social isolation leads to decreased psychological well-being, while Choi and Noh (2019) concluded that greater social isolation is linked to increased suicide risk. Schinka et al. (2012) further argued that, when individuals experience social isolation from siblings, friends, family, or society, their psychological well-being tends to decrease. Thus, based on the literature cited above, this study proposes the following hypotheses:

H3a: Social media use is significantly associated with social isolation.

H3b: Social isolation is negatively associated with psychological well-being.

Social Media Use, Smartphone Addiction, Phubbing, and Psychological Well-Being

Smartphone addiction refers to “an individuals' excessive use of a smartphone and its negative effects on his/her life as a result of his/her inability to control his behavior” ( Gökçearslan et al., 2018 , p. 48). Regardless of its form, smartphone addiction results in social, medical, and psychological harm to people by limiting their ability to make their own choices ( Chotpitayasunondh and Douglas, 2016 ). The rapid advancement of information and communication technologies has led to the concept of social media, e-games, and also to smartphone addiction ( Chatterjee, 2020 ). The excessive use of smartphones for social media use, entertainment (watching videos, listening to music), and playing e-games is more common amongst people addicted to smartphones ( Jeong et al., 2016 ). In fact, previous studies have evidenced the relationship between social use and smartphone addiction ( Salehan and Negahban, 2013 ; Jeong et al., 2016 ; Swar and Hameed, 2017 ). In line with this, the following hypotheses are proposed:

H4a: Social media use is positively associated with smartphone addiction.

H4b: Smartphone addiction is negatively associated with psychological well-being.

While smartphones are bringing individuals closer, they are also, to some extent, pulling people apart ( Tonacci et al., 2019 ). For instance, they can lead to individuals ignoring others with whom they have close ties or physical interactions; this situation normally occurs due to extreme smartphone use (i.e., at the dinner table, in meetings, at get-togethers and parties, and in other daily activities). This act of ignoring others is called phubbing and is considered a common phenomenon in communication activities ( Guazzini et al., 2019 ; Chatterjee, 2020 ). Phubbing is also referred to as an act of snubbing others ( Chatterjee, 2020 ). This term was initially used in May 2012 by an Australian advertising agency to describe the “growing phenomenon of individuals ignoring their families and friends who were called phubbee (a person who is a recipients of phubbing behavior) victim of phubber (a person who start phubbing her or his companion)” ( Chotpitayasunondh and Douglas, 2018 ). Smartphone addiction has been found to be a determinant of phubbing ( Kim et al., 2018 ). Other recent studies have also evidenced the association between smartphones and phubbing ( Chotpitayasunondh and Douglas, 2016 ; Guazzini et al., 2019 ; Tonacci et al., 2019 ; Chatterjee, 2020 ). Vallespín et al. (2017 ) argued that phubbing behavior has a negative influence on psychological well-being and satisfaction. Furthermore, smartphone addiction is considered responsible for the development of new technologies. It may also negatively influence individual's psychological proximity ( Chatterjee, 2020 ). Therefore, based on the above discussion and calls for the association between phubbing and psychological well-being to be further explored, this study proposes the following hypotheses:

H5: Smartphone addiction is positively associated with phubbing.

H6: Phubbing is negatively associated with psychological well-being.

Indirect Relationship Between Social Media Use and Psychological Well-Being

Beyond the direct hypotheses proposed above, this study investigates the indirect effects of social media use on psychological well-being mediated by social capital forms, social isolation, and phubbing. As described above, most prior studies have focused on the direct influence of social media use on social capital forms, social isolation, smartphone addiction, and phubbing, as well as the direct impact of social capital forms, social isolation, smartphone addiction, and phubbing on psychological well-being. Very few studies, however, have focused on and evidenced the mediating role of social capital forms, social isolation, smartphone addiction, and phubbing derived from social media use in improving psychological well-being ( Chen and Li, 2017 ; Pang, 2018 ; Bano et al., 2019 ; Choi and Noh, 2019 ). Moreover, little is known about smartphone addiction's mediating role between social media use and psychological well-being. Therefore, this study aims to fill this gap in the existing literature by investigating the mediation of social capital forms, social isolation, and smartphone addiction. Further, examining the mediating influence will contribute to a more comprehensive understanding of social media use on psychological well-being via the mediating associations of smartphone addiction and psychological factors. Therefore, based on the above, we propose the following hypotheses (the conceptual model is presented in Figure 1 ):

H7: (a) Bonding social capital; (b) bridging social capital; (c) social isolation; and (d) smartphone addiction mediate the relationship between social media use and psychological well-being.

www.frontiersin.org

Figure 1 . Conceptual model.

Research Methodology

Sample procedure and online survey.

This study randomly selected students from universities in Mexico. We chose University students for the following reasons. First, students are considered the most appropriate sample for e-commerce studies, particularly in the social media context ( Oghazi et al., 2018 ; Shi et al., 2018 ). Second, University students are considered to be frequent users and addicted to smartphones ( Mou et al., 2017 ; Stouthuysen et al., 2018 ). Third, this study ensured that respondents were experienced, well-educated, and possessed sufficient knowledge of the drawbacks of social media and the extreme use of smartphones. A total sample size of 940 University students was ultimately achieved from the 1,500 students contacted, using a convenience random sampling approach, due both to the COVID-19 pandemic and budget and time constraints. Additionally, in order to test the model, a quantitative empirical study was conducted, using an online survey method to collect data. This study used a web-based survey distributed via social media platforms for two reasons: the COVID-19 pandemic; and to reach a large number of respondents ( Qalati et al., 2021 ). Furthermore, online surveys are considered a powerful and authenticated tool for new research ( Fan et al., 2021 ), while also representing a fast, simple, and less costly approach to collecting data ( Dutot and Bergeron, 2016 ).

Data Collection Procedures and Respondent's Information

Data were collected by disseminating a link to the survey by e-mail and social network sites. Before presenting the closed-ended questionnaire, respondents were assured that their participation would remain voluntary, confidential, and anonymous. Data collection occurred from July 2020 to December 2020 (during the pandemic). It should be noted that, because data were collected during the pandemic, this may have had an influence on the results of the study. The reason for choosing a six-month lag time was to mitigate common method bias (CMB) ( Li et al., 2020b ). In the present study, 1,500 students were contacted via University e-mail and social applications (Facebook, WhatsApp, and Instagram). We sent a reminder every month for 6 months (a total of six reminders), resulting in 940 valid responses. Thus, 940 (62.6% response rate) responses were used for hypotheses testing.

Table 1 reveals that, of the 940 participants, three-quarters were female (76.4%, n = 719) and nearly one-quarter (23.6%, n = 221) were male. Nearly half of the participants (48.8%, n = 459) were aged between 26 and 35 years, followed by 36 to 35 years (21.9%, n = 206), <26 (20.3%, n = 191), and over 45 (8.9%, n = 84). Approximately two-thirds (65%, n = 611) had a bachelor's degree or above, while one-third had up to 12 years of education. Regarding the daily frequency of using the Internet, nearly half (48.6%, n = 457) of the respondents reported between 5 and 8 h a day, and over one-quarter (27.2%) 9–12 h a day. Regarding the social media platforms used, over 38.5 and 39.6% reported Facebook and WhatsApp, respectively. Of the 940 respondents, only 22.1% reported Instagram (12.8%) and Twitter (9.2%). It should be noted, however, that the sample is predominantly female and well-educated.

www.frontiersin.org

Table 1 . Respondents' characteristics.

Measurement Items

The study used five-point Likert scales (1 = “strongly disagree;” 5 = “strongly agree”) to record responses.

Social Media Use

Social media use was assessed using four items adapted from Karikari et al. (2017) . Sample items include “Social media is part of my everyday activity,” “Social media has become part of my daily life,” “I would be sorry if social media shut down,” and “I feel out of touch, when I have not logged onto social media for a while.” The adapted items had robust reliability and validity (CA = 783, CR = 0.857, AVE = 0.600).

Social Capital

Social capital was measured using a total of eight items, representing bonding social capital (four items) and bridging social capital (four items) adapted from Chan (2015) . Sample construct items include: bonging social capital (“I am willing to spend time to support general community activities,” “I interact with people who are quite different from me”) and bridging social capital (“My social media community is a good place to be,” “Interacting with people on social media makes me want to try new things”). The adapted items had robust reliability and validity [bonding social capital (CA = 0.785, CR = 0.861, AVE = 0.608) and bridging social capital (CA = 0.834, CR = 0.883, AVE = 0.601)].

Social Isolation

Social isolation was assessed using three items from Choi and Noh (2019) . Sample items include “I do not have anyone to play with,” “I feel alone from people,” and “I have no one I can trust.” This adapted scale had substantial reliability and validity (CA = 0.890, CR = 0.928, AVE = 0.811).

Smartphone Addiction

Smartphone addiction was assessed using five items taken from Salehan and Negahban (2013) . Sample items include “I am always preoccupied with my mobile,” “Using my mobile phone keeps me relaxed,” and “I am not able to control myself from frequent use of mobile phones.” Again, these adapted items showed substantial reliability and validity (CA = 903, CR = 0.928, AVE = 0.809).

Phubbing was assessed using four items from Chotpitayasunondh and Douglas (2018) . Sample items include: “I have conflicts with others because I am using my phone” and “I would rather pay attention to my phone than talk to others.” This construct also demonstrated significant reliability and validity (CA = 770, CR = 0.894, AVE = 0.809).

Psychological Well-Being

Psychological well-being was assessed using five items from Jiao et al. (2017) . Sample items include “I lead a purposeful and meaningful life with the help of others,” “My social relationships are supportive and rewarding in social media,” and “I am engaged and interested in my daily on social media.” This study evidenced that this adapted scale had substantial reliability and validity (CA = 0.886, CR = 0.917, AVE = 0.688).

Data Analysis

Based on the complexity of the association between the proposed construct and the widespread use and acceptance of SmartPLS 3.0 in several fields ( Hair et al., 2019 ), we utilized SEM, using SmartPLS 3.0, to examine the relationships between constructs. Structural equation modeling is a multivariate statistical analysis technique that is used to investigate relationships. Further, it is a combination of factor and multivariate regression analysis, and is employed to explore the relationship between observed and latent constructs.

SmartPLS 3.0 “is a more comprehensive software program with an intuitive graphical user interface to run partial least square SEM analysis, certainly has had a massive impact” ( Sarstedt and Cheah, 2019 ). According to Ringle et al. (2015) , this commercial software offers a wide range of algorithmic and modeling options, improved usability, and user-friendly and professional support. Furthermore, Sarstedt and Cheah (2019) suggested that structural equation models enable the specification of complex interrelationships between observed and latent constructs. Hair et al. (2019) argued that, in recent years, the number of articles published using partial least squares SEM has increased significantly in contrast to covariance-based SEM. In addition, partial least squares SEM using SmartPLS is more appealing for several scholars as it enables them to predict more complex models with several variables, indicator constructs, and structural paths, instead of imposing distributional assumptions on the data ( Hair et al., 2019 ). Therefore, this study utilized the partial least squares SEM approach using SmartPLS 3.0.

Common Method Bias (CMB) Test

This study used the Kaiser–Meyer–Olkin (KMO) test to measure the sampling adequacy and ensure data suitability. The KMO test result was 0.874, which is greater than an acceptable threshold of 0.50 ( Ali Qalati et al., 2021 ; Shrestha, 2021 ), and hence considered suitable for explanatory factor analysis. Moreover, Bartlett's test results demonstrated a significance level of 0.001, which is considered good as it is below the accepted threshold of 0.05.

The term CMB is associated with Campbell and Fiske (1959) , who highlighted the importance of CMB and identified that a portion of variance in the research may be due to the methods employed. It occurs when all scales of the study are measured at the same time using a single questionnaire survey ( Podsakoff and Organ, 1986 ); subsequently, estimates of the relationship among the variables might be distorted by the impacts of CMB. It is considered a serious issue that has a potential to “jeopardize” the validity of the study findings ( Tehseen et al., 2017 ). There are several reasons for CMB: (1) it mainly occurs due to response “tendencies that raters can apply uniformity across the measures;” and (2) it also occurs due to similarities in the wording and structure of the survey items that produce similar results ( Jordan and Troth, 2019 ). Harman's single factor test and a full collinearity approach were employed to ensure that the data was free from CMB ( Tehseen et al., 2017 ; Jordan and Troth, 2019 ; Ali Qalati et al., 2021 ). Harman's single factor test showed a single factor explained only 22.8% of the total variance, which is far below the 50.0% acceptable threshold ( Podsakoff et al., 2003 ).

Additionally, the variance inflation factor (VIF) was used, which is a measure of the amount of multicollinearity in a set of multiple regression constructs and also considered a way of detecting CMB ( Hair et al., 2019 ). Hair et al. (2019) suggested that the acceptable threshold for the VIF is 3.0; as the computed VIFs for the present study ranged from 1.189 to 1.626, CMB is not a key concern (see Table 2 ). Bagozzi et al. (1991) suggested a correlation-matrix procedure to detect CMB. Common method bias is evident if correlation among the principle constructs is >0.9 ( Tehseen et al., 2020 ); however, no values >0.9 were found in this study (see section Assessment of Measurement Model). This study used a two-step approach to evaluate the measurement model and the structural model.

www.frontiersin.org

Table 2 . Common method bias (full collinearity VIF).

Assessment of Measurement Model

Before conducting the SEM analysis, the measurement model was assessed to examine individual item reliability, internal consistency, and convergent and discriminant validity. Table 3 exhibits the values of outer loading used to measure an individual item's reliability ( Hair et al., 2012 ). Hair et al. (2017) proposed that the value for each outer loading should be ≥0.7; following this principle, two items of phubbing (PHUB3—I get irritated if others ask me to get off my phone and talk to them; PHUB4—I use my phone even though I know it irritated others) were removed from the analysis Hair et al. (2019) . According to Nunnally (1978) , Cronbach's alpha values should exceed 0.7. The threshold values of constructs in this study ranged from 0.77 to 0.903. Regarding internal consistency, Bagozzi and Yi (1988) suggested that composite reliability (CR) should be ≥0.7. The coefficient value for CR in this study was between 0.857 and 0.928. Regarding convergent validity, Fornell and Larcker (1981) suggested that the average variance extracted (AVE) should be ≥0.5. Average variance extracted values in this study were between 0.60 and 0.811. Finally, regarding discriminant validity, according to Fornell and Larcker (1981) , the square root of the AVE for each construct should exceed the inter-correlations of the construct with other model constructs. That was the case in this study, as shown in Table 4 .

www.frontiersin.org

Table 3 . Study measures, factor loading, and the constructs' reliability and convergent validity.

www.frontiersin.org

Table 4 . Discriminant validity and correlation.

Hence, by analyzing the results of the measurement model, it can be concluded that the data are adequate for structural equation estimation.

Assessment of the Structural Model

This study used the PLS algorithm and a bootstrapping technique with 5,000 bootstraps as proposed by Hair et al. (2019) to generate the path coefficient values and their level of significance. The coefficient of determination ( R 2 ) is an important measure to assess the structural model and its explanatory power ( Henseler et al., 2009 ; Hair et al., 2019 ). Table 5 and Figure 2 reveal that the R 2 value in the present study was 0.451 for psychological well-being, which means that 45.1% of changes in psychological well-being occurred due to social media use, social capital forms (i.e., bonding and bridging), social isolation, smartphone addiction, and phubbing. Cohen (1998) proposed that R 2 values of 0.60, 0.33, and 0.19 are considered substantial, moderate, and weak. Following Cohen's (1998) threshold values, this research demonstrates a moderate predicting power for psychological well-being among Mexican respondents ( Table 6 ).

www.frontiersin.org

Table 5 . Summary of path coefficients and hypothesis testing.

www.frontiersin.org

Figure 2 . Structural model.

www.frontiersin.org

Table 6 . Strength of the model (Predictive relevance, coefficient of determination, and model fit indices).

Apart from the R 2 measure, the present study also used cross-validated redundancy measures, or effect sizes ( q 2 ), to assess the proposed model and validate the results ( Ringle et al., 2012 ). Hair et al. (2019) suggested that a model exhibiting an effect size q 2 > 0 has predictive relevance ( Table 6 ). This study's results evidenced that it has a 0.15 <0.29 <0.35 (medium) predictive relevance, as 0.02, 0.15, and 0.35 are considered small, medium, and large, respectively ( Cohen, 1998 ). Regarding the goodness-of-fit indices, Hair et al. (2019) suggested the standardized root mean square residual (SRMR) to evaluate the goodness of fit. Standardized root mean square is an absolute measure of fit: a value of zero indicates perfect fit and a value <0.08 is considered good fit ( Hair et al., 2019 ). This study exhibits an adequate model fitness level with an SRMR value of 0.063 ( Table 6 ).

Table 5 reveals that all hypotheses of the study were accepted base on the criterion ( p -value < 0.05). H1a (β = 0.332, t = 10.283, p = 0.001) was confirmed, with the second most robust positive and significant relationship (between social media use and bonding social capital). In addition, this study evidenced a positive and significant relationship between bonding social capital and psychological well-being (β = 0.127, t = 4.077, p = 0.001); therefore, H1b was accepted. Regarding social media use and bridging social capital, the present study found the most robust positive and significant impact (β = 0.439, t = 15.543, p = 0.001); therefore, H2a was accepted. The study also evidenced a positive and significant association between bridging social capital and psychological well-being (β = 0.561, t = 20.953, p = 0.001); thus, H2b was accepted. The present study evidenced a significant effect of social media use on social isolation (β = 0.145, t = 4.985, p = 0.001); thus, H3a was accepted. In addition, this study accepted H3b (β = −0.051, t = 2.01, p = 0.044). Furthermore, this study evidenced a positive and significant effect of social media use on smartphone addiction (β = 0.223, t = 6.241, p = 0.001); therefore, H4a was accepted. Furthermore, the present study found that smartphone addiction has a negative significant influence on psychological well-being (β = −0.068, t = 2.387, p = 0.017); therefore, H4b was accepted. Regarding the relationship between smartphone addiction and phubbing, this study found a positive and significant effect of smartphone addiction on phubbing (β = 0.244, t = 7.555, p = 0.001); therefore, H5 was accepted. Furthermore, the present research evidenced a positive and significant influence of phubbing on psychological well-being (β = 0.137, t = 4.938, p = 0.001); therefore, H6 was accepted. Finally, the study provides interesting findings on the indirect effect of social media use on psychological well-being ( t -value > 1.96 and p -value < 0.05); therefore, H7a–d were accepted.

Furthermore, to test the mediating analysis, Preacher and Hayes's (2008) approach was used. The key characteristic of an indirect relationship is that it involves a third construct, which plays a mediating role in the relationship between the independent and dependent constructs. Logically, the effect of A (independent construct) on C (the dependent construct) is mediated by B (a third variable). Preacher and Hayes (2008) suggested the following: B is a construct acting as a mediator if A significantly influences B, A significantly accounts for variability in C, B significantly influences C when controlling for A, and the influence of A on C decreases significantly when B is added simultaneously with A as a predictor of C. According to Matthews et al. (2018) , if the indirect effect is significant while the direct insignificant, full mediation has occurred, while if both direct and indirect effects are substantial, partial mediation has occurred. This study evidenced that there is partial mediation in the proposed construct ( Table 5 ). Following Preacher and Hayes (2008) this study evidenced that there is partial mediation in the proposed construct, because the relationship between independent variable (social media use) and dependent variable (psychological well-being) is significant ( p -value < 0.05) and indirect effect among them after introducing mediator (bonding social capital, bridging social capital, social isolation, and smartphone addiction) is also significant ( p -value < 0.05), therefore it is evidenced that when there is a significant effect both direct and indirect it's called partial mediation.

The present study reveals that the social and psychological impacts of social media use among University students is becoming more complex as there is continuing advancement in technology, offering a range of affordable interaction opportunities. Based on the 940 valid responses collected, all the hypotheses were accepted ( p < 0.05).

H1a finding suggests that social media use is a significant influencing factor of bonding social capital. This implies that, during a pandemic, social media use enables students to continue their close relationships with family members, friends, and those with whom they have close ties. This finding is in line with prior work of Chan (2015) and Ellison et al. (2007) , who evidenced that social bonding capital is predicted by Facebook use and having a mobile phone. H1b findings suggest that, when individuals believe that social communication can help overcome obstacles to interaction and encourage more virtual self-disclosure, social media use can improve trust and promote the establishment of social associations, thereby enhancing well-being. These findings are in line with those of Gong et al. (2021) , who also witnessed the significant effect of bonding social capital on immigrants' psychological well-being, subsequently calling for the further evidence to confirm the proposed relationship.

The findings of the present study related to H2a suggest that students are more likely to use social media platforms to receive more emotional support, increase their ability to mobilize others, and to build social networks, which leads to social belongingness. Furthermore, the findings suggest that social media platforms enable students to accumulate and maintain bridging social capital; further, online classes can benefit students who feel shy when participating in offline classes. This study supports the previous findings of Chan (2015) and Karikari et al. (2017) . Notably, the present study is not limited to a single social networking platform, taking instead a holistic view of social media. The H2b findings are consistent with those of Bano et al. (2019) , who also confirmed the link between bonding social capital and psychological well-being among University students using WhatsApp as social media platform, as well as those of Chen and Li (2017) .

The H3a findings suggest that, during the COVID-19 pandemic when most people around the world have had limited offline or face-to-face interaction and have used social media to connect with families, friends, and social communities, they have often been unable to connect with them. This is due to many individuals avoiding using social media because of fake news, financial constraints, and a lack of trust in social media; thus, the lack both of offline and online interaction, coupled with negative experiences on social media use, enhances the level of social isolation ( Hajek and König, 2021 ). These findings are consistent with those of Adnan and Anwar (2020) . The H3b suggests that higher levels of social isolation have a negative impact on psychological well-being. These result indicating that, consistent with Choi and Noh (2019) , social isolation is negatively and significantly related to psychological well-being.

The H4a results suggests that substantial use of social media use leads to an increase in smartphone addiction. These findings are in line with those of Jeong et al. (2016) , who stated that the excessive use of smartphones for social media, entertainment (watching videos, listening to music), and playing e-games was more likely to lead to smartphone addiction. These findings also confirm the previous work of Jeong et al. (2016) , Salehan and Negahban (2013) , and Swar and Hameed (2017) . The H4b results revealed that a single unit increase in smartphone addiction results in a 6.8% decrease in psychological well-being. These findings are in line with those of Tangmunkongvorakul et al. (2019) , who showed that students with higher levels of smartphone addiction had lower psychological well-being scores. These findings also support those of Shoukat (2019) , who showed that smartphone addiction inversely influences individuals' mental health.

This suggests that the greater the smartphone addiction, the greater the phubbing. The H5 findings are in line with those of Chatterjee (2020) , Chotpitayasunondh and Douglas (2016) , Guazzini et al. (2019) , and Tonacci et al. (2019) , who also evidenced a significant impact of smartphone addiction and phubbing. Similarly, Chotpitayasunondh and Douglas (2018) corroborated that smartphone addiction is the main predictor of phubbing behavior. However, these findings are inconsistent with those of Vallespín et al. (2017 ), who found a negative influence of phubbing.

The H6 results suggests that phubbing is one of the significant predictors of psychological well-being. Furthermore, these findings suggest that, when phubbers use a cellphone during interaction with someone, especially during the current pandemic, and they are connected with many family members, friends, and relatives; therefore, this kind of action gives them more satisfaction, which simultaneously results in increased relaxation and decreased depression ( Chotpitayasunondh and Douglas, 2018 ). These findings support those of Davey et al. (2018) , who evidenced that phubbing has a significant influence on adolescents and social health students in India.

The findings showed a significant and positive effect of social media use on psychological well-being both through bridging and bonding social capital. However, a significant and negative effect of social media use on psychological well-being through smartphone addiction and through social isolation was also found. Hence, this study provides evidence that could shed light on the contradictory contributions in the literature suggesting both positive (e.g., Chen and Li, 2017 ; Twenge and Campbell, 2019 ; Roberts and David, 2020 ) and negative (e.g., Chotpitayasunondh and Douglas, 2016 ; Jiao et al., 2017 ; Choi and Noh, 2019 ; Chatterjee, 2020 ) effects of social media use on psychological well-being. This study concludes that the overall impact is positive, despite some degree of negative indirect impact.

Theoretical Contributions

This study's findings contribute to the current literature, both by providing empirical evidence for the relationships suggested by extant literature and by demonstrating the relevance of adopting a more complex approach that considers, in particular, the indirect effect of social media on psychological well-being. As such, this study constitutes a basis for future research ( Van Den Eijnden et al., 2016 ; Whaite et al., 2018 ) aiming to understand the impacts of social media use and to find ways to reduce its possible negative impacts.

In line with Kim and Kim (2017) , who stressed the importance of heterogeneous social networks in improving social capital, this paper suggests that, to positively impact psychological well-being, social media usage should be associated both with strong and weak ties, as both are important in building social capital, and hence associated with its bonding and bridging facets. Interestingly, though, bridging capital was shown as having the greatest impact on psychological well-being. Thus, the importance of wider social horizons, the inclusion in different groups, and establishing new connections ( Putnam, 1995 , 2000 ) with heterogeneous weak ties ( Li and Chen, 2014 ) are highlighted in this paper.

Practical Contributions

These findings are significant for practitioners, particularly those interested in dealing with the possible negative impacts of social media use on psychological well-being. Although social media use is associated with factors that negatively impact psychological well-being, particularly smartphone addiction and social isolation, these negative impacts can be lessened if the connections with both strong and weak ties are facilitated and featured by social media. Indeed, social media platforms offer several features, from facilitating communication with family, friends, and acquaintances, to identifying and offering access to other people with shared interests. However, it is important to access heterogeneous weak ties ( Li and Chen, 2014 ) so that social media offers access to wider sources of information and new resources, hence enhancing bridging social capital.

Limitations and Directions for Future Studies

This study is not without limitations. For example, this study used a convenience sampling approach to reach to a large number of respondents. Further, this study was conducted in Mexico only, limiting the generalizability of the results; future research should therefore use a cross-cultural approach to investigate the impacts of social media use on psychological well-being and the mediating role of proposed constructs (e.g., bonding and bridging social capital, social isolation, and smartphone addiction). The sample distribution may also be regarded as a limitation of the study because respondents were mainly well-educated and female. Moreover, although Internet channels represent a particularly suitable way to approach social media users, the fact that this study adopted an online survey does not guarantee a representative sample of the population. Hence, extrapolating the results requires caution, and study replication is recommended, particularly with social media users from other countries and cultures. The present study was conducted in the context of mainly University students, primarily well-educated females, via an online survey on in Mexico; therefore, the findings represent a snapshot at a particular time. Notably, however, the effect of social media use is increasing due to COVID-19 around the globe and is volatile over time.

Two of the proposed hypotheses of this study, namely the expected negative impacts of social media use on social isolation and of phubbing on psychological well-being, should be further explored. One possible approach is to consider the type of connections (i.e., weak and strong ties) to explain further the impact of social media usage on social isolation. Apparently, the prevalence of weak ties, although facilitating bridging social capital, may have an adverse impact in terms of social isolation. Regarding phubbing, the fact that the findings point to a possible positive impact on psychological well-being should be carefully addressed, specifically by psychology theorists and scholars, in order to identify factors that may help further understand this phenomenon. Other suggestions for future research include using mixed-method approaches, as qualitative studies could help further validate the results and provide complementary perspectives on the relationships between the considered variables.

Data Availability Statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics Statement

The studies involving human participants were reviewed and approved by Jiangsu University. The patients/participants provided their written informed consent to participate in this study.

Author Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

This study is supported by the National Statistics Research Project of China (2016LY96).

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Abbas, R., and Mesch, G. (2018). Do rich teens get richer? Facebook use and the link between offline and online social capital among Palestinian youth in Israel. Inf. Commun. Soc. 21, 63–79. doi: 10.1080/1369118X.2016.1261168

CrossRef Full Text | Google Scholar

Adnan, M., and Anwar, K. (2020). Online learning amid the COVID-19 pandemic: students' perspectives. J. Pedagog. Sociol. Psychol. 2, 45–51. doi: 10.33902/JPSP.2020261309

PubMed Abstract | CrossRef Full Text | Google Scholar

Ali Qalati, S., Li, W., Ahmed, N., Ali Mirani, M., and Khan, A. (2021). Examining the factors affecting SME performance: the mediating role of social media adoption. Sustainability 13:75. doi: 10.3390/su13010075

Bagozzi, R. P., and Yi, Y. (1988). On the evaluation of structural equation models. J. Acad. Mark. Sci. 16, 74–94. doi: 10.1007/BF02723327

Bagozzi, R. P., Yi, Y., and Phillips, L. W. (1991). Assessing construct validity in organizational research. Admin. Sci. Q. 36, 421–458. doi: 10.2307/2393203

Bano, S., Cisheng, W., Khan, A. N., and Khan, N. A. (2019). WhatsApp use and student's psychological well-being: role of social capital and social integration. Child. Youth Serv. Rev. 103, 200–208. doi: 10.1016/j.childyouth.2019.06.002

Barbosa, B., Chkoniya, V., Simoes, D., Filipe, S., and Santos, C. A. (2020). Always connected: generation Y smartphone use and social capital. Rev. Ibérica Sist. Tecnol. Inf. E 35, 152–166.

Google Scholar

Bekalu, M. A., McCloud, R. F., and Viswanath, K. (2019). Association of social media use with social well-being, positive mental health, and self-rated health: disentangling routine use from emotional connection to use. Health Educ. Behav. 46(2 Suppl), 69S−80S. doi: 10.1177/1090198119863768

Brown, G., and Michinov, N. (2019). Measuring latent ties on Facebook: a novel approach to studying their prevalence and relationship with bridging social capital. Technol. Soc. 59:101176. doi: 10.1016/j.techsoc.2019.101176

Campbell, D. T., and Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychol. Bull. 56, 81–105. doi: 10.1037/h0046016

Carlson, J. R., Zivnuska, S., Harris, R. B., Harris, K. J., and Carlson, D. S. (2016). Social media use in the workplace: a study of dual effects. J. Org. End User Comput. 28, 15–31. doi: 10.4018/JOEUC.2016010102

Chan, M. (2015). Mobile phones and the good life: examining the relationships among mobile use, social capital and subjective well-being. New Media Soc. 17, 96–113. doi: 10.1177/1461444813516836

Chappell, N. L., and Badger, M. (1989). Social isolation and well-being. J. Gerontol. 44, S169–S176. doi: 10.1093/geronj/44.5.s169

Chatterjee, S. (2020). Antecedents of phubbing: from technological and psychological perspectives. J. Syst. Inf. Technol. 22, 161–118. doi: 10.1108/JSIT-05-2019-0089

Chen, H.-T., and Li, X. (2017). The contribution of mobile social media to social capital and psychological well-being: examining the role of communicative use, friending and self-disclosure. Comput. Hum. Behav. 75, 958–965. doi: 10.1016/j.chb.2017.06.011

Choi, D.-H., and Noh, G.-Y. (2019). The influence of social media use on attitude toward suicide through psychological well-being, social isolation, and social support. Inf. Commun. Soc. 23, 1–17. doi: 10.1080/1369118X.2019.1574860

Chotpitayasunondh, V., and Douglas, K. M. (2016). How “phubbing” becomes the norm: the antecedents and consequences of snubbing via smartphone. Comput. Hum. Behav. 63, 9–18. doi: 10.1016/j.chb.2016.05.018

Chotpitayasunondh, V., and Douglas, K. M. (2018). The effects of “phubbing” on social interaction. J. Appl. Soc. Psychol. 48, 304–316. doi: 10.1111/jasp.12506

Cohen, J. (1998). Statistical Power Analysis for the Behavioural Sciences . Hillsdale, NJ: Lawrence Erlbaum Associates.

Davey, S., Davey, A., Raghav, S. K., Singh, J. V., Singh, N., Blachnio, A., et al. (2018). Predictors and consequences of “phubbing” among adolescents and youth in India: an impact evaluation study. J. Fam. Community Med. 25, 35–42. doi: 10.4103/jfcm.JFCM_71_17

David, M. E., Roberts, J. A., and Christenson, B. (2018). Too much of a good thing: investigating the association between actual smartphone use and individual well-being. Int. J. Hum. Comput. Interact. 34, 265–275. doi: 10.1080/10447318.2017.1349250

Dhir, A., Yossatorn, Y., Kaur, P., and Chen, S. (2018). Online social media fatigue and psychological wellbeing—a study of compulsive use, fear of missing out, fatigue, anxiety and depression. Int. J. Inf. Manag. 40, 141–152. doi: 10.1016/j.ijinfomgt.2018.01.012

Dutot, V., and Bergeron, F. (2016). From strategic orientation to social media orientation: improving SMEs' performance on social media. J. Small Bus. Enterp. Dev. 23, 1165–1190. doi: 10.1108/JSBED-11-2015-0160

Ellison, N. B., Steinfield, C., and Lampe, C. (2007). The benefits of Facebook “friends:” Social capital and college students' use of online social network sites. J. Comput. Mediat. Commun. 12, 1143–1168. doi: 10.1111/j.1083-6101.2007.00367.x

Fan, M., Huang, Y., Qalati, S. A., Shah, S. M. M., Ostic, D., and Pu, Z. (2021). Effects of information overload, communication overload, and inequality on digital distrust: a cyber-violence behavior mechanism. Front. Psychol. 12:643981. doi: 10.3389/fpsyg.2021.643981

Fornell, C., and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. J. Market. Res. 18, 39–50. doi: 10.1177/002224378101800104

Gökçearslan, S., Uluyol, Ç., and Sahin, S. (2018). Smartphone addiction, cyberloafing, stress and social support among University students: a path analysis. Child. Youth Serv. Rev. 91, 47–54. doi: 10.1016/j.childyouth.2018.05.036

Gong, S., Xu, P., and Wang, S. (2021). Social capital and psychological well-being of Chinese immigrants in Japan. Int. J. Environ. Res. Public Health 18:547. doi: 10.3390/ijerph18020547

Guazzini, A., Duradoni, M., Capelli, A., and Meringolo, P. (2019). An explorative model to assess individuals' phubbing risk. Fut. Internet 11:21. doi: 10.3390/fi11010021

Hair, J. F., Risher, J. J., Sarstedt, M., and Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 31, 2–24. doi: 10.1108/EBR-11-2018-0203

Hair, J. F., Sarstedt, M., Pieper, T. M., and Ringle, C. M. (2012). The use of partial least squares structural equation modeling in strategic management research: a review of past practices and recommendations for future applications. Long Range Plann. 45, 320–340. doi: 10.1016/j.lrp.2012.09.008

Hair, J. F., Sarstedt, M., Ringle, C. M., and Gudergan, S. P. (2017). Advanced Issues in Partial Least Squares Structural Equation Modeling. Thousand Oaks, CA: Sage.

Hajek, A., and König, H.-H. (2021). Social isolation and loneliness of older adults in times of the CoViD-19 pandemic: can use of online social media sites and video chats assist in mitigating social isolation and loneliness? Gerontology 67, 121–123. doi: 10.1159/000512793

Henseler, J., Ringle, C. M., and Sinkovics, R. R. (2009). “The use of partial least squares path modeling in international marketing,” in New Challenges to International Marketing , Vol. 20, eds R.R. Sinkovics and P.N. Ghauri (Bigley: Emerald), 277–319.

Holliman, A. J., Waldeck, D., Jay, B., Murphy, S., Atkinson, E., Collie, R. J., et al. (2021). Adaptability and social support: examining links with psychological wellbeing among UK students and non-students. Fron. Psychol. 12:636520. doi: 10.3389/fpsyg.2021.636520

Jeong, S.-H., Kim, H., Yum, J.-Y., and Hwang, Y. (2016). What type of content are smartphone users addicted to? SNS vs. games. Comput. Hum. Behav. 54, 10–17. doi: 10.1016/j.chb.2015.07.035

Jiao, Y., Jo, M.-S., and Sarigöllü, E. (2017). Social value and content value in social media: two paths to psychological well-being. J. Org. Comput. Electr. Commer. 27, 3–24. doi: 10.1080/10919392.2016.1264762

Jordan, P. J., and Troth, A. C. (2019). Common method bias in applied settings: the dilemma of researching in organizations. Austr. J. Manag. 45, 3–14. doi: 10.1177/0312896219871976

Karikari, S., Osei-Frimpong, K., and Owusu-Frimpong, N. (2017). Evaluating individual level antecedents and consequences of social media use in Ghana. Technol. Forecast. Soc. Change 123, 68–79. doi: 10.1016/j.techfore.2017.06.023

Kemp, S. (January 30, 2020). Digital 2020: 3.8 billion people use social media. We Are Social . Available online at: https://wearesocial.com/blog/2020/01/digital-2020-3-8-billion-people-use-social-media .

Kim, B., and Kim, Y. (2017). College students' social media use and communication network heterogeneity: implications for social capital and subjective well-being. Comput. Hum. Behav. 73, 620–628. doi: 10.1016/j.chb.2017.03.033

Kim, K., Milne, G. R., and Bahl, S. (2018). Smart phone addiction and mindfulness: an intergenerational comparison. Int. J. Pharmaceut. Healthcare Market. 12, 25–43. doi: 10.1108/IJPHM-08-2016-0044

Kircaburun, K., Alhabash, S., Tosuntaş, S. B., and Griffiths, M. D. (2020). Uses and gratifications of problematic social media use among University students: a simultaneous examination of the big five of personality traits, social media platforms, and social media use motives. Int. J. Mental Health Addict. 18, 525–547. doi: 10.1007/s11469-018-9940-6

Leong, L.-Y., Hew, T.-S., Ooi, K.-B., Lee, V.-H., and Hew, J.-J. (2019). A hybrid SEM-neural network analysis of social media addiction. Expert Syst. Appl. 133, 296–316. doi: 10.1016/j.eswa.2019.05.024

Li, L., Griffiths, M. D., Mei, S., and Niu, Z. (2020a). Fear of missing out and smartphone addiction mediates the relationship between positive and negative affect and sleep quality among Chinese University students. Front. Psychiatr. 11:877. doi: 10.3389/fpsyt.2020.00877

Li, W., Qalati, S. A., Khan, M. A. S., Kwabena, G. Y., Erusalkina, D., and Anwar, F. (2020b). Value co-creation and growth of social enterprises in developing countries: moderating role of environmental dynamics. Entrep. Res. J. 2020:20190359. doi: 10.1515/erj-2019-0359

Li, X., and Chen, W. (2014). Facebook or Renren? A comparative study of social networking site use and social capital among Chinese international students in the United States. Comput. Hum. Behav . 35, 116–123. doi: 10.1016/j.chb.2014.02.012

Matthews, L., Hair, J. F., and Matthews, R. (2018). PLS-SEM: the holy grail for advanced analysis. Mark. Manag. J. 28, 1–13.

Meshi, D., Cotten, S. R., and Bender, A. R. (2020). Problematic social media use and perceived social isolation in older adults: a cross-sectional study. Gerontology 66, 160–168. doi: 10.1159/000502577

Mou, J., Shin, D.-H., and Cohen, J. (2017). Understanding trust and perceived usefulness in the consumer acceptance of an e-service: a longitudinal investigation. Behav. Inf. Technol. 36, 125–139. doi: 10.1080/0144929X.2016.1203024

Nunnally, J. (1978). Psychometric Methods . New York, NY: McGraw-Hill.

Oghazi, P., Karlsson, S., Hellström, D., and Hjort, K. (2018). Online purchase return policy leniency and purchase decision: mediating role of consumer trust. J. Retail. Consumer Serv. 41, 190–200.

Pang, H. (2018). Exploring the beneficial effects of social networking site use on Chinese students' perceptions of social capital and psychological well-being in Germany. Int. J. Intercult. Relat. 67, 1–11. doi: 10.1016/j.ijintrel.2018.08.002

Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., and Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. J. Appl. Psychol. 88, 879–903. doi: 10.1037/0021-9010.88.5.879

Podsakoff, P. M., and Organ, D. W. (1986). Self-reports in organizational research: problems and prospects. J. Manag. 12, 531–544. doi: 10.1177/014920638601200408

Preacher, K. J., and Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res. Methods 40, 879–891. doi: 10.3758/brm.40.3.879

Primack, B. A., Shensa, A., Sidani, J. E., Whaite, E. O., yi Lin, L., Rosen, D., et al. (2017). Social media use and perceived social isolation among young adults in the US. Am. J. Prev. Med. 53, 1–8. doi: 10.1016/j.amepre.2017.01.010

Putnam, R. D. (1995). Tuning in, tuning out: the strange disappearance of social capital in America. Polit. Sci. Polit. 28, 664–684. doi: 10.2307/420517

Putnam, R. D. (2000). Bowling Alone: The Collapse and Revival of American Community . New York, NY: Simon and Schuster.

Qalati, S. A., Ostic, D., Fan, M., Dakhan, S. A., Vela, E. G., Zufar, Z., et al. (2021). The general public knowledge, attitude, and practices regarding COVID-19 during the lockdown in Asian developing countries. Int. Q. Commun. Health Educ. 2021:272684X211004945. doi: 10.1177/0272684X211004945

Reer, F., Tang, W. Y., and Quandt, T. (2019). Psychosocial well-being and social media engagement: the mediating roles of social comparison orientation and fear of missing out. New Media Soc. 21, 1486–1505. doi: 10.1177/1461444818823719

Ringle, C., Wende, S., and Becker, J. (2015). SmartPLS 3 [software] . Bönningstedt: SmartPLS.

Ringle, C. M., Sarstedt, M., and Straub, D. (2012). A critical look at the use of PLS-SEM in “MIS Quarterly.” MIS Q . 36, iii–xiv. doi: 10.2307/41410402

Roberts, J. A., and David, M. E. (2020). The social media party: fear of missing out (FoMO), social media intensity, connection, and well-being. Int. J. Hum. Comput. Interact. 36, 386–392. doi: 10.1080/10447318.2019.1646517

Salehan, M., and Negahban, A. (2013). Social networking on smartphones: when mobile phones become addictive. Comput. Hum. Behav. 29, 2632–2639. doi: 10.1016/j.chb.2013.07.003

Sarstedt, M., and Cheah, J.-H. (2019). Partial least squares structural equation modeling using SmartPLS: a software review. J. Mark. Anal. 7, 196–202. doi: 10.1057/s41270-019-00058-3

Schinka, K. C., VanDulmen, M. H., Bossarte, R., and Swahn, M. (2012). Association between loneliness and suicidality during middle childhood and adolescence: longitudinal effects and the role of demographic characteristics. J. Psychol. Interdiscipl. Appl. 146, 105–118. doi: 10.1080/00223980.2011.584084

Shi, S., Mu, R., Lin, L., Chen, Y., Kou, G., and Chen, X.-J. (2018). The impact of perceived online service quality on swift guanxi. Internet Res. 28, 432–455. doi: 10.1108/IntR-12-2016-0389

Shoukat, S. (2019). Cell phone addiction and psychological and physiological health in adolescents. EXCLI J. 18, 47–50. doi: 10.17179/excli2018-2006

Shrestha, N. (2021). Factor analysis as a tool for survey analysis. Am. J. Appl. Math. Stat. 9, 4–11. doi: 10.12691/ajams-9-1-2

Stouthuysen, K., Teunis, I., Reusen, E., and Slabbinck, H. (2018). Initial trust and intentions to buy: The effect of vendor-specific guarantees, customer reviews and the role of online shopping experience. Electr. Commer. Res. Appl. 27, 23–38. doi: 10.1016/j.elerap.2017.11.002

Swar, B., and Hameed, T. (2017). “Fear of missing out, social media engagement, smartphone addiction and distraction: moderating role of self-help mobile apps-based interventions in the youth ,” Paper presented at the 10th International Conference on Health Informatics (Porto).

Tangmunkongvorakul, A., Musumari, P. M., Thongpibul, K., Srithanaviboonchai, K., Techasrivichien, T., Suguimoto, S. P., et al. (2019). Association of excessive smartphone use with psychological well-being among University students in Chiang Mai, Thailand. PLoS ONE 14:e0210294. doi: 10.1371/journal.pone.0210294

Tateno, M., Teo, A. R., Ukai, W., Kanazawa, J., Katsuki, R., Kubo, H., et al. (2019). Internet addiction, smartphone addiction, and hikikomori trait in Japanese young adult: social isolation and social network. Front. Psychiatry 10:455. doi: 10.3389/fpsyt.2019.00455

Tefertiller, A. C., Maxwell, L. C., and Morris, D. L. (2020). Social media goes to the movies: fear of missing out, social capital, and social motivations of cinema attendance. Mass Commun. Soc. 23, 378–399. doi: 10.1080/15205436.2019.1653468

Tehseen, S., Qureshi, Z. H., Johara, F., and Ramayah, T. (2020). Assessing dimensions of entrepreneurial competencies: a type II (reflective-formative) measurement approach using PLS-SEM. J. Sustain. Sci. Manage. 15, 108–145.

Tehseen, S., Ramayah, T., and Sajilan, S. (2017). Testing and controlling for common method variance: a review of available methods. J. Manag. Sci. 4, 146–165. doi: 10.20547/jms.2014.1704202

Tonacci, A., Billeci, L., Sansone, F., Masci, A., Pala, A. P., Domenici, C., et al. (2019). An innovative, unobtrusive approach to investigate smartphone interaction in nonaddicted subjects based on wearable sensors: a pilot study. Medicina (Kaunas) 55:37. doi: 10.3390/medicina55020037

Twenge, J. M., and Campbell, W. K. (2019). Media use is linked to lower psychological well-being: evidence from three datasets. Psychiatr. Q. 90, 311–331. doi: 10.1007/s11126-019-09630-7

Vallespín, M., Molinillo, S., and Muñoz-Leiva, F. (2017). Segmentation and explanation of smartphone use for travel planning based on socio-demographic and behavioral variables. Ind. Manag. Data Syst. 117, 605–619. doi: 10.1108/IMDS-03-2016-0089

Van Den Eijnden, R. J., Lemmens, J. S., and Valkenburg, P. M. (2016). The social media disorder scale. Comput. Hum. Behav. 61, 478–487. doi: 10.1016/j.chb.2016.03.038

Whaite, E. O., Shensa, A., Sidani, J. E., Colditz, J. B., and Primack, B. A. (2018). Social media use, personality characteristics, and social isolation among young adults in the United States. Pers. Indiv. Differ. 124, 45–50. doi: 10.1016/j.paid.2017.10.030

Williams, D. (2006). On and off the'net: scales for social capital in an online era. J. Comput. Mediat. Commun. 11, 593–628. doi: 10.1016/j.1083-6101.2006.00029.x

Keywords: smartphone addiction, social isolation, bonding social capital, bridging social capital, phubbing, social media use

Citation: Ostic D, Qalati SA, Barbosa B, Shah SMM, Galvan Vela E, Herzallah AM and Liu F (2021) Effects of Social Media Use on Psychological Well-Being: A Mediated Model. Front. Psychol. 12:678766. doi: 10.3389/fpsyg.2021.678766

Received: 10 March 2021; Accepted: 25 May 2021; Published: 21 June 2021.

Reviewed by:

Copyright © 2021 Ostic, Qalati, Barbosa, Shah, Galvan Vela, Herzallah and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Sikandar Ali Qalati, sidqalati@gmail.com ; 5103180243@stmail.ujs.edu.cn ; Esthela Galvan Vela, esthela.galvan@cetys.mx

† ORCID: Dragana Ostic orcid.org/0000-0002-0469-1342 Sikandar Ali Qalati orcid.org/0000-0001-7235-6098 Belem Barbosa orcid.org/0000-0002-4057-360X Esthela Galvan Vela orcid.org/0000-0002-8778-3989 Feng Liu orcid.org/0000-0001-9367-049X

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Loading metrics

Open Access

Peer-reviewed

Research Article

Functional connectivity changes in the brain of adolescents with internet addiction: A systematic literature review of imaging studies

Roles Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Validation, Visualization, Writing – original draft, Writing – review & editing

Affiliation Child and Adolescent Mental Health, Department of Brain Sciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom

Roles Conceptualization, Supervision, Validation, Writing – review & editing

* E-mail: [email protected]

Affiliation Behavioural Brain Sciences Unit, Population Policy Practice Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom

ORCID logo

  • Max L. Y. Chang, 
  • Irene O. Lee

PLOS

  • Published: June 4, 2024
  • https://doi.org/10.1371/journal.pmen.0000022
  • Peer Review
  • Reader Comments

Fig 1

Internet usage has seen a stark global rise over the last few decades, particularly among adolescents and young people, who have also been diagnosed increasingly with internet addiction (IA). IA impacts several neural networks that influence an adolescent’s behaviour and development. This article issued a literature review on the resting-state and task-based functional magnetic resonance imaging (fMRI) studies to inspect the consequences of IA on the functional connectivity (FC) in the adolescent brain and its subsequent effects on their behaviour and development. A systematic search was conducted from two databases, PubMed and PsycINFO, to select eligible articles according to the inclusion and exclusion criteria. Eligibility criteria was especially stringent regarding the adolescent age range (10–19) and formal diagnosis of IA. Bias and quality of individual studies were evaluated. The fMRI results from 12 articles demonstrated that the effects of IA were seen throughout multiple neural networks: a mix of increases/decreases in FC in the default mode network; an overall decrease in FC in the executive control network; and no clear increase or decrease in FC within the salience network and reward pathway. The FC changes led to addictive behaviour and tendencies in adolescents. The subsequent behavioural changes are associated with the mechanisms relating to the areas of cognitive control, reward valuation, motor coordination, and the developing adolescent brain. Our results presented the FC alterations in numerous brain regions of adolescents with IA leading to the behavioural and developmental changes. Research on this topic had a low frequency with adolescent samples and were primarily produced in Asian countries. Future research studies of comparing results from Western adolescent samples provide more insight on therapeutic intervention.

Citation: Chang MLY, Lee IO (2024) Functional connectivity changes in the brain of adolescents with internet addiction: A systematic literature review of imaging studies. PLOS Ment Health 1(1): e0000022. https://doi.org/10.1371/journal.pmen.0000022

Editor: Kizito Omona, Uganda Martyrs University, UGANDA

Received: December 29, 2023; Accepted: March 18, 2024; Published: June 4, 2024

Copyright: © 2024 Chang, Lee. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are within the paper and its Supporting information files.

Funding: The authors received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.

Introduction

The behavioural addiction brought on by excessive internet use has become a rising source of concern [ 1 ] since the last decade. According to clinical studies, individuals with Internet Addiction (IA) or Internet Gaming Disorder (IGD) may have a range of biopsychosocial effects and is classified as an impulse-control disorder owing to its resemblance to pathological gambling and substance addiction [ 2 , 3 ]. IA has been defined by researchers as a person’s inability to resist the urge to use the internet, which has negative effects on their psychological well-being as well as their social, academic, and professional lives [ 4 ]. The symptoms can have serious physical and interpersonal repercussions and are linked to mood modification, salience, tolerance, impulsivity, and conflict [ 5 ]. In severe circumstances, people may experience severe pain in their bodies or health issues like carpal tunnel syndrome, dry eyes, irregular eating and disrupted sleep [ 6 ]. Additionally, IA is significantly linked to comorbidities with other psychiatric disorders [ 7 ].

Stevens et al (2021) reviewed 53 studies including 17 countries and reported the global prevalence of IA was 3.05% [ 8 ]. Asian countries had a higher prevalence (5.1%) than European countries (2.7%) [ 8 ]. Strikingly, adolescents and young adults had a global IGD prevalence rate of 9.9% which matches previous literature that reported historically higher prevalence among adolescent populations compared to adults [ 8 , 9 ]. Over 80% of adolescent population in the UK, the USA, and Asia have direct access to the internet [ 10 ]. Children and adolescents frequently spend more time on media (possibly 7 hours and 22 minutes per day) than at school or sleeping [ 11 ]. Developing nations have also shown a sharp rise in teenage internet usage despite having lower internet penetration rates [ 10 ]. Concerns regarding the possible harms that overt internet use could do to adolescents and their development have arisen because of this surge, especially the significant impacts by the COVID-19 pandemic [ 12 ]. The growing prevalence and neurocognitive consequences of IA among adolescents makes this population a vital area of study [ 13 ].

Adolescence is a crucial developmental stage during which people go through significant changes in their biology, cognition, and personalities [ 14 ]. Adolescents’ emotional-behavioural functioning is hyperactivated, which creates risk of psychopathological vulnerability [ 15 ]. In accordance with clinical study results [ 16 ], this emotional hyperactivity is supported by a high level of neuronal plasticity. This plasticity enables teenagers to adapt to the numerous physical and emotional changes that occur during puberty as well as develop communication techniques and gain independence [ 16 ]. However, the strong neuronal plasticity is also associated with risk-taking and sensation seeking [ 17 ] which may lead to IA.

Despite the fact that the precise neuronal mechanisms underlying IA are still largely unclear, functional magnetic resonance imaging (fMRI) method has been used by scientists as an important framework to examine the neuropathological changes occurring in IA, particularly in the form of functional connectivity (FC) [ 18 ]. fMRI research study has shown that IA alters both the functional and structural makeup of the brain [ 3 ].

We hypothesise that IA has widespread neurological alteration effects rather than being limited to a few specific brain regions. Further hypothesis holds that according to these alterations of FC between the brain regions or certain neural networks, adolescents with IA would experience behavioural changes. An investigation of these domains could be useful for creating better procedures and standards as well as minimising the negative effects of overt internet use. This literature review aims to summarise and analyse the evidence of various imaging studies that have investigated the effects of IA on the FC in adolescents. This will be addressed through two research questions:

  • How does internet addiction affect the functional connectivity in the adolescent brain?
  • How is adolescent behaviour and development impacted by functional connectivity changes due to internet addiction?

The review protocol was conducted in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (see S1 Checklist ).

Search strategy and selection process

A systematic search was conducted up until April 2023 from two sources of database, PubMed and PsycINFO, using a range of terms relevant to the title and research questions (see full list of search terms in S1 Appendix ). All the searched articles can be accessed in the S1 Data . The eligible articles were selected according to the inclusion and exclusion criteria. Inclusion criteria used for the present review were: (i) participants in the studies with clinical diagnosis of IA; (ii) participants between the ages of 10 and 19; (iii) imaging research investigations; (iv) works published between January 2013 and April 2023; (v) written in English language; (vi) peer-reviewed papers and (vii) full text. The numbers of articles excluded due to not meeting the inclusion criteria are shown in Fig 1 . Each study’s title and abstract were screened for eligibility.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pmen.0000022.g001

Quality appraisal

Full texts of all potentially relevant studies were then retrieved and further appraised for eligibility. Furthermore, articles were critically appraised based on the GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) framework to evaluate the individual study for both quality and bias. The subsequent quality levels were then appraised to each article and listed as either low, moderate, or high.

Data collection process

Data that satisfied the inclusion requirements was entered into an excel sheet for data extraction and further selection. An article’s author, publication year, country, age range, participant sample size, sex, area of interest, measures, outcome and article quality were all included in the data extraction spreadsheet. Studies looking at FC, for instance, were grouped, while studies looking at FC in specific area were further divided into sub-groups.

Data synthesis and analysis

Articles were classified according to their location in the brain as well as the network or pathway they were a part of to create a coherent narrative between the selected studies. Conclusions concerning various research trends relevant to particular groupings were drawn from these groupings and subgroupings. To maintain the offered information in a prominent manner, these assertions were entered into the data extraction excel spreadsheet.

With the search performed on the selected databases, 238 articles in total were identified (see Fig 1 ). 15 duplicated articles were eliminated, and another 6 items were removed for various other reasons. Title and abstract screening eliminated 184 articles because they were not in English (number of article, n, = 7), did not include imaging components (n = 47), had adult participants (n = 53), did not have a clinical diagnosis of IA (n = 19), did not address FC in the brain (n = 20), and were published outside the desired timeframe (n = 38). A further 21 papers were eliminated for failing to meet inclusion requirements after the remaining 33 articles underwent full-text eligibility screening. A total of 12 papers were deemed eligible for this review analysis.

Characteristics of the included studies, as depicted in the data extraction sheet in Table 1 provide information of the author(s), publication year, sample size, study location, age range, gender, area of interest, outcome, measures used and quality appraisal. Most of the studies in this review utilised resting state functional magnetic resonance imaging techniques (n = 7), with several studies demonstrating task-based fMRI procedures (n = 3), and the remaining studies utilising whole-brain imaging measures (n = 2). The studies were all conducted in Asiatic countries, specifically coming from China (8), Korea (3), and Indonesia (1). Sample sizes ranged from 12 to 31 participants with most of the imaging studies having comparable sample sizes. Majority of the studies included a mix of male and female participants (n = 8) with several studies having a male only participant pool (n = 3). All except one of the mixed gender studies had a majority male participant pool. One study did not disclose their data on the gender demographics of their experiment. Study years ranged from 2013–2022, with 2 studies in 2013, 3 studies in 2014, 3 studies in 2015, 1 study in 2017, 1 study in 2020, 1 study in 2021, and 1 study in 2022.

thumbnail

https://doi.org/10.1371/journal.pmen.0000022.t001

(1) How does internet addiction affect the functional connectivity in the adolescent brain?

The included studies were organised according to the brain region or network that they were observing. The specific networks affected by IA were the default mode network, executive control system, salience network and reward pathway. These networks are vital components of adolescent behaviour and development [ 31 ]. The studies in each section were then grouped into subsections according to their specific brain regions within their network.

Default mode network (DMN)/reward network.

Out of the 12 studies, 3 have specifically studied the default mode network (DMN), and 3 observed whole-brain FC that partially included components of the DMN. The effect of IA on the various centres of the DMN was not unilaterally the same. The findings illustrate a complex mix of increases and decreases in FC depending on the specific region in the DMN (see Table 2 and Fig 2 ). The alteration of FC in posterior cingulate cortex (PCC) in the DMN was the most frequently reported area in adolescents with IA, which involved in attentional processes [ 32 ], but Lee et al. (2020) additionally found alterations of FC in other brain regions, such as anterior insula cortex, a node in the DMN that controls the integration of motivational and cognitive processes [ 20 ].

thumbnail

https://doi.org/10.1371/journal.pmen.0000022.g002

thumbnail

The overall changes of functional connectivity in the brain network including default mode network (DMN), executive control network (ECN), salience network (SN) and reward network. IA = Internet Addiction, FC = Functional Connectivity.

https://doi.org/10.1371/journal.pmen.0000022.t002

Ding et al. (2013) revealed altered FC in the cerebellum, the middle temporal gyrus, and the medial prefrontal cortex (mPFC) [ 22 ]. They found that the bilateral inferior parietal lobule, left superior parietal lobule, and right inferior temporal gyrus had decreased FC, while the bilateral posterior lobe of the cerebellum and the medial temporal gyrus had increased FC [ 22 ]. The right middle temporal gyrus was found to have 111 cluster voxels (t = 3.52, p<0.05) and the right inferior parietal lobule was found to have 324 cluster voxels (t = -4.07, p<0.05) with an extent threshold of 54 voxels (figures above this threshold are deemed significant) [ 22 ]. Additionally, there was a negative correlation, with 95 cluster voxels (p<0.05) between the FC of the left superior parietal lobule and the PCC with the Chen Internet Addiction Scores (CIAS) which are used to determine the severity of IA [ 22 ]. On the other hand, in regions of the reward system, connection with the PCC was positively connected with CIAS scores [ 22 ]. The most significant was the right praecuneus with 219 cluster voxels (p<0.05) [ 22 ]. Wang et al. (2017) also discovered that adolescents with IA had 33% less FC in the left inferior parietal lobule and 20% less FC in the dorsal mPFC [ 24 ]. A potential connection between the effects of substance use and overt internet use is revealed by the generally decreased FC in these areas of the DMN of teenagers with drug addiction and IA [ 35 ].

The putamen was one of the main regions of reduced FC in adolescents with IA [ 19 ]. The putamen and the insula-operculum demonstrated significant group differences regarding functional connectivity with a cluster size of 251 and an extent threshold of 250 (Z = 3.40, p<0.05) [ 19 ]. The molecular mechanisms behind addiction disorders have been intimately connected to decreased striatal dopaminergic function [ 19 ], making this function crucial.

Executive Control Network (ECN).

5 studies out of 12 have specifically viewed parts of the executive control network (ECN) and 3 studies observed whole-brain FC. The effects of IA on the ECN’s constituent parts were consistent across all the studies examined for this analysis (see Table 2 and Fig 3 ). The results showed a notable decline in all the ECN’s major centres. Li et al. (2014) used fMRI imaging and a behavioural task to study response inhibition in adolescents with IA [ 25 ] and found decreased activation at the striatum and frontal gyrus, particularly a reduction in FC at inferior frontal gyrus, in the IA group compared to controls [ 25 ]. The inferior frontal gyrus showed a reduction in FC in comparison to the controls with a cluster size of 71 (t = 4.18, p<0.05) [ 25 ]. In addition, the frontal-basal ganglia pathways in the adolescents with IA showed little effective connection between areas and increased degrees of response inhibition [ 25 ].

thumbnail

https://doi.org/10.1371/journal.pmen.0000022.g003

Lin et al. (2015) found that adolescents with IA demonstrated disrupted corticostriatal FC compared to controls [ 33 ]. The corticostriatal circuitry experienced decreased connectivity with the caudate, bilateral anterior cingulate cortex (ACC), as well as the striatum and frontal gyrus [ 33 ]. The inferior ventral striatum showed significantly reduced FC with the subcallosal ACC and caudate head with cluster size of 101 (t = -4.64, p<0.05) [ 33 ]. Decreased FC in the caudate implies dysfunction of the corticostriatal-limbic circuitry involved in cognitive and emotional control [ 36 ]. The decrease in FC in both the striatum and frontal gyrus is related to inhibitory control, a common deficit seen with disruptions with the ECN [ 33 ].

The dorsolateral prefrontal cortex (DLPFC), ACC, and right supplementary motor area (SMA) of the prefrontal cortex were all found to have significantly decreased grey matter volume [ 29 ]. In addition, the DLPFC, insula, temporal cortices, as well as significant subcortical regions like the striatum and thalamus, showed decreased FC [ 29 ]. According to Tremblay (2009), the striatum plays a significant role in the processing of rewards, decision-making, and motivation [ 37 ]. Chen et al. (2020) reported that the IA group demonstrated increased impulsivity as well as decreased reaction inhibition using a Stroop colour-word task [ 26 ]. Furthermore, Chen et al. (2020) observed that the left DLPFC and dorsal striatum experienced a negative connection efficiency value, specifically demonstrating that the dorsal striatum activity suppressed the left DLPFC [ 27 ].

Salience network (SN).

Out of the 12 chosen studies, 3 studies specifically looked at the salience network (SN) and 3 studies have observed whole-brain FC. Relative to the DMN and ECN, the findings on the SN were slightly sparser. Despite this, adolescents with IA demonstrated a moderate decrease in FC, as well as other measures like fibre connectivity and cognitive control, when compared to healthy control (see Table 2 and Fig 4 ).

thumbnail

https://doi.org/10.1371/journal.pmen.0000022.g004

Xing et al. (2014) used both dorsal anterior cingulate cortex (dACC) and insula to test FC changes in the SN of adolescents with IA and found decreased structural connectivity in the SN as well as decreased fractional anisotropy (FA) that correlated to behaviour performance in the Stroop colour word-task [ 21 ]. They examined the dACC and insula to determine whether the SN’s disrupted connectivity may be linked to the SN’s disruption of regulation, which would explain the impaired cognitive control seen in adolescents with IA. However, researchers did not find significant FC differences in the SN when compared to the controls [ 21 ]. These results provided evidence for the structural changes in the interconnectivity within SN in adolescents with IA.

Wang et al. (2017) investigated network interactions between the DMN, ECN, SN and reward pathway in IA subjects [ 24 ] (see Fig 5 ), and found 40% reduction of FC between the DMN and specific regions of the SN, such as the insula, in comparison to the controls (p = 0.008) [ 24 ]. The anterior insula and dACC are two areas that are impacted by this altered FC [ 24 ]. This finding supports the idea that IA has similar neurobiological abnormalities with other addictive illnesses, which is in line with a study that discovered disruptive changes in the SN and DMN’s interaction in cocaine addiction [ 38 ]. The insula has also been linked to the intensity of symptoms and has been implicated in the development of IA [ 39 ].

thumbnail

“+” indicates an increase in behaivour; “-”indicates a decrease in behaviour; solid arrows indicate a direct network interaction; and the dotted arrows indicates a reduction in network interaction. This diagram depicts network interactions juxtaposed with engaging in internet related behaviours. Through the neural interactions, the diagram illustrates how the networks inhibit or amplify internet usage and vice versa. Furthermore, it demonstrates how the SN mediates both the DMN and ECN.

https://doi.org/10.1371/journal.pmen.0000022.g005

(2) How is adolescent behaviour and development impacted by functional connectivity changes due to internet addiction?

The findings that IA individuals demonstrate an overall decrease in FC in the DMN is supported by numerous research [ 24 ]. Drug addict populations also exhibited similar decline in FC in the DMN [ 40 ]. The disruption of attentional orientation and self-referential processing for both substance and behavioural addiction was then hypothesised to be caused by DMN anomalies in FC [ 41 ].

In adolescents with IA, decline of FC in the parietal lobule affects visuospatial task-related behaviour [ 22 ], short-term memory [ 42 ], and the ability of controlling attention or restraining motor responses during response inhibition tests [ 42 ]. Cue-induced gaming cravings are influenced by the DMN [ 43 ]. A visual processing area called the praecuneus links gaming cues to internal information [ 22 ]. A meta-analysis found that the posterior cingulate cortex activity of individuals with IA during cue-reactivity tasks was connected with their gaming time [ 44 ], suggesting that excessive gaming may impair DMN function and that individuals with IA exert more cognitive effort to control it. Findings for the behavioural consequences of FC changes in the DMN illustrate its underlying role in regulating impulsivity, self-monitoring, and cognitive control.

Furthermore, Ding et al. (2013) reported an activation of components of the reward pathway, including areas like the nucleus accumbens, praecuneus, SMA, caudate, and thalamus, in connection to the DMN [ 22 ]. The increased FC of the limbic and reward networks have been confirmed to be a major biomarker for IA [ 45 , 46 ]. The increased reinforcement in these networks increases the strength of reward stimuli and makes it more difficult for other networks, namely the ECN, to down-regulate the increased attention [ 29 ] (See Fig 5 ).

Executive control network (ECN).

The numerous IA-affected components in the ECN have a role in a variety of behaviours that are connected to both response inhibition and emotional regulation [ 47 ]. For instance, brain regions like the striatum, which are linked to impulsivity and the reward system, are heavily involved in the act of playing online games [ 47 ]. Online game play activates the striatum, which suppresses the left DLPFC in ECN [ 48 ]. As a result, people with IA may find it difficult to control their want to play online games [ 48 ]. This system thus causes impulsive and protracted gaming conduct, lack of inhibitory control leading to the continued use of internet in an overt manner despite a variety of negative effects, personal distress, and signs of psychological dependence [ 33 ] (See Fig 5 ).

Wang et al. (2017) report that disruptions in cognitive control networks within the ECN are frequently linked to characteristics of substance addiction [ 24 ]. With samples that were addicted to heroin and cocaine, previous studies discovered abnormal FC in the ECN and the PFC [ 49 ]. Electronic gaming is known to promote striatal dopamine release, similar to drug addiction [ 50 ]. According to Drgonova and Walther (2016), it is hypothesised that dopamine could stimulate the reward system of the striatum in the brain, leading to a loss of impulse control and a failure of prefrontal lobe executive inhibitory control [ 51 ]. In the end, IA’s resemblance to drug use disorders may point to vital biomarkers or underlying mechanisms that explain how cognitive control and impulsive behaviour are related.

A task-related fMRI study found that the decrease in FC between the left DLPFC and dorsal striatum was congruent with an increase in impulsivity in adolescents with IA [ 26 ]. The lack of response inhibition from the ECN results in a loss of control over internet usage and a reduced capacity to display goal-directed behaviour [ 33 ]. Previous studies have linked the alteration of the ECN in IA with higher cue reactivity and impaired ability to self-regulate internet specific stimuli [ 52 ].

Salience network (SN)/ other networks.

Xing et al. (2014) investigated the significance of the SN regarding cognitive control in teenagers with IA [ 21 ]. The SN, which is composed of the ACC and insula, has been demonstrated to control dynamic changes in other networks to modify cognitive performance [ 21 ]. The ACC is engaged in conflict monitoring and cognitive control, according to previous neuroimaging research [ 53 ]. The insula is a region that integrates interoceptive states into conscious feelings [ 54 ]. The results from Xing et al. (2014) showed declines in the SN regarding its structural connectivity and fractional anisotropy, even though they did not observe any appreciable change in FC in the IA participants [ 21 ]. Due to the small sample size, the results may have indicated that FC methods are not sensitive enough to detect the significant functional changes [ 21 ]. However, task performance behaviours associated with impaired cognitive control in adolescents with IA were correlated with these findings [ 21 ]. Our comprehension of the SN’s broader function in IA can be enhanced by this relationship.

Research study supports the idea that different psychological issues are caused by the functional reorganisation of expansive brain networks, such that strong association between SN and DMN may provide neurological underpinnings at the system level for the uncontrollable character of internet-using behaviours [ 24 ]. In the study by Wang et al. (2017), the decreased interconnectivity between the SN and DMN, comprising regions such the DLPFC and the insula, suggests that adolescents with IA may struggle to effectively inhibit DMN activity during internally focused processing, leading to poorly managed desires or preoccupations to use the internet [ 24 ] (See Fig 5 ). Subsequently, this may cause a failure to inhibit DMN activity as well as a restriction of ECN functionality [ 55 ]. As a result, the adolescent experiences an increased salience and sensitivity towards internet addicting cues making it difficult to avoid these triggers [ 56 ].

The primary aim of this review was to present a summary of how internet addiction impacts on the functional connectivity of adolescent brain. Subsequently, the influence of IA on the adolescent brain was compartmentalised into three sections: alterations of FC at various brain regions, specific FC relationships, and behavioural/developmental changes. Overall, the specific effects of IA on the adolescent brain were not completely clear, given the variety of FC changes. However, there were overarching behavioural, network and developmental trends that were supported that provided insight on adolescent development.

The first hypothesis that was held about this question was that IA was widespread and would be regionally similar to substance-use and gambling addiction. After conducting a review of the information in the chosen articles, the hypothesis was predictably supported. The regions of the brain affected by IA are widespread and influence multiple networks, mainly DMN, ECN, SN and reward pathway. In the DMN, there was a complex mix of increases and decreases within the network. However, in the ECN, the alterations of FC were more unilaterally decreased, but the findings of SN and reward pathway were not quite clear. Overall, the FC changes within adolescents with IA are very much network specific and lay a solid foundation from which to understand the subsequent behaviour changes that arise from the disorder.

The second hypothesis placed emphasis on the importance of between network interactions and within network interactions in the continuation of IA and the development of its behavioural symptoms. The results from the findings involving the networks, DMN, SN, ECN and reward system, support this hypothesis (see Fig 5 ). Studies confirm the influence of all these neural networks on reward valuation, impulsivity, salience to stimuli, cue reactivity and other changes that alter behaviour towards the internet use. Many of these changes are connected to the inherent nature of the adolescent brain.

There are multiple explanations that underlie the vulnerability of the adolescent brain towards IA related urges. Several of them have to do with the inherent nature and underlying mechanisms of the adolescent brain. Children’s emotional, social, and cognitive capacities grow exponentially during childhood and adolescence [ 57 ]. Early teenagers go through a process called “social reorientation” that is characterised by heightened sensitivity to social cues and peer connections [ 58 ]. Adolescents’ improvements in their social skills coincide with changes in their brains’ anatomical and functional organisation [ 59 ]. Functional hubs exhibit growing connectivity strength [ 60 ], suggesting increased functional integration during development. During this time, the brain’s functional networks change from an anatomically dominant structure to a scattered architecture [ 60 ].

The adolescent brain is very responsive to synaptic reorganisation and experience cues [ 61 ]. As a result, one of the distinguishing traits of the maturation of adolescent brains is the variation in neural network trajectory [ 62 ]. Important weaknesses of the adolescent brain that may explain the neurobiological change brought on by external stimuli are illustrated by features like the functional gaps between networks and the inadequate segregation of networks [ 62 ].

The implications of these findings towards adolescent behaviour are significant. Although the exact changes and mechanisms are not fully clear, the observed changes in functional connectivity have the capacity of influencing several aspects of adolescent development. For example, functional connectivity has been utilised to investigate attachment styles in adolescents [ 63 ]. It was observed that adolescent attachment styles were negatively associated with caudate-prefrontal connectivity, but positively with the putamen-visual area connectivity [ 63 ]. Both named areas were also influenced by the onset of internet addiction, possibly providing a connection between the two. Another study associated neighbourhood/socioeconomic disadvantage with functional connectivity alterations in the DMN and dorsal attention network [ 64 ]. The study also found multivariate brain behaviour relationships between the altered/disadvantaged functional connectivity and mental health and cognition [ 64 ]. This conclusion supports the notion that the functional connectivity alterations observed in IA are associated with specific adolescent behaviours as well as the fact that functional connectivity can be utilised as a platform onto which to compare various neurologic conditions.

Limitations/strengths

There were several limitations that were related to the conduction of the review as well as the data extracted from the articles. Firstly, the study followed a systematic literature review design when analysing the fMRI studies. The data pulled from these imaging studies were namely qualitative and were subject to bias contrasting the quantitative nature of statistical analysis. Components of the study, such as sample sizes, effect sizes, and demographics were not weighted or controlled. The second limitation brought up by a similar review was the lack of a universal consensus of terminology given IA [ 47 ]. Globally, authors writing about this topic use an array of terminology including online gaming addiction, internet addiction, internet gaming disorder, and problematic internet use. Often, authors use multiple terms interchangeably which makes it difficult to depict the subtle similarities and differences between the terms.

Reviewing the explicit limitations in each of the included studies, two major limitations were brought up in many of the articles. One was relating to the cross-sectional nature of the included studies. Due to the inherent qualities of a cross-sectional study, the studies did not provide clear evidence that IA played a causal role towards the development of the adolescent brain. While several biopsychosocial factors mediate these interactions, task-based measures that combine executive functions with imaging results reinforce the assumed connection between the two that is utilised by the papers studying IA. Another limitation regarded the small sample size of the included studies, which averaged to around 20 participants. The small sample size can influence the generalisation of the results as well as the effectiveness of statistical analyses. Ultimately, both included study specific limitations illustrate the need for future studies to clarify the causal relationship between the alterations of FC and the development of IA.

Another vital limitation was the limited number of studies applying imaging techniques for investigations on IA in adolescents were a uniformly Far East collection of studies. The reason for this was because the studies included in this review were the only fMRI studies that were found that adhered to the strict adolescent age restriction. The adolescent age range given by the WHO (10–19 years old) [ 65 ] was strictly followed. It is important to note that a multitude of studies found in the initial search utilised an older adolescent demographic that was slightly higher than the WHO age range and had a mean age that was outside of the limitations. As a result, the results of this review are biased and based on the 12 studies that met the inclusion and exclusion criteria.

Regarding the global nature of the research, although the journals that the studies were published in were all established western journals, the collection of studies were found to all originate from Asian countries, namely China and Korea. Subsequently, it pulls into question if the results and measures from these studies are generalisable towards a western population. As stated previously, Asian countries have a higher prevalence of IA, which may be the reasoning to why the majority of studies are from there [ 8 ]. However, in an additional search including other age groups, it was found that a high majority of all FC studies on IA were done in Asian countries. Interestingly, western papers studying fMRI FC were primarily focused on gambling and substance-use addiction disorders. The western papers on IA were less focused on fMRI FC but more on other components of IA such as sleep, game-genre, and other non-imaging related factors. This demonstrated an overall lack of western fMRI studies on IA. It is important to note that both western and eastern fMRI studies on IA presented an overall lack on children and adolescents in general.

Despite the several limitations, this review provided a clear reflection on the state of the data. The strengths of the review include the strict inclusion/exclusion criteria that filtered through studies and only included ones that contained a purely adolescent sample. As a result, the information presented in this review was specific to the review’s aims. Given the sparse nature of adolescent specific fMRI studies on the FC changes in IA, this review successfully provided a much-needed niche representation of adolescent specific results. Furthermore, the review provided a thorough functional explanation of the DMN, ECN, SN and reward pathway making it accessible to readers new to the topic.

Future directions and implications

Through the search process of the review, there were more imaging studies focused on older adolescence and adulthood. Furthermore, finding a review that covered a strictly adolescent population, focused on FC changes, and was specifically depicting IA, was proven difficult. Many related reviews, such as Tereshchenko and Kasparov (2019), looked at risk factors related to the biopsychosocial model, but did not tackle specific alterations in specific structural or functional changes in the brain [ 66 ]. Weinstein (2017) found similar structural and functional results as well as the role IA has in altering response inhibition and reward valuation in adolescents with IA [ 47 ]. Overall, the accumulated findings only paint an emerging pattern which aligns with similar substance-use and gambling disorders. Future studies require more specificity in depicting the interactions between neural networks, as well as more literature on adolescent and comorbid populations. One future field of interest is the incorporation of more task-based fMRI data. Advances in resting-state fMRI methods have yet to be reflected or confirmed in task-based fMRI methods [ 62 ]. Due to the fact that network connectivity is shaped by different tasks, it is critical to confirm that the findings of the resting state fMRI studies also apply to the task based ones [ 62 ]. Subsequently, work in this area will confirm if intrinsic connectivity networks function in resting state will function similarly during goal directed behaviour [ 62 ]. An elevated focus on adolescent populations as well as task-based fMRI methodology will help uncover to what extent adolescent network connectivity maturation facilitates behavioural and cognitive development [ 62 ].

A treatment implication is the potential usage of bupropion for the treatment of IA. Bupropion has been previously used to treat patients with gambling disorder and has been effective in decreasing overall gambling behaviour as well as money spent while gambling [ 67 ]. Bae et al. (2018) found a decrease in clinical symptoms of IA in line with a 12-week bupropion treatment [ 31 ]. The study found that bupropion altered the FC of both the DMN and ECN which in turn decreased impulsivity and attentional deficits for the individuals with IA [ 31 ]. Interventions like bupropion illustrate the importance of understanding the fundamental mechanisms that underlie disorders like IA.

The goal for this review was to summarise the current literature on functional connectivity changes in adolescents with internet addiction. The findings answered the primary research questions that were directed at FC alterations within several networks of the adolescent brain and how that influenced their behaviour and development. Overall, the research demonstrated several wide-ranging effects that influenced the DMN, SN, ECN, and reward centres. Additionally, the findings gave ground to important details such as the maturation of the adolescent brain, the high prevalence of Asian originated studies, and the importance of task-based studies in this field. The process of making this review allowed for a thorough understanding IA and adolescent brain interactions.

Given the influx of technology and media in the lives and education of children and adolescents, an increase in prevalence and focus on internet related behavioural changes is imperative towards future children/adolescent mental health. Events such as COVID-19 act to expose the consequences of extended internet usage on the development and lifestyle of specifically young people. While it is important for parents and older generations to be wary of these changes, it is important for them to develop a base understanding of the issue and not dismiss it as an all-bad or all-good scenario. Future research on IA will aim to better understand the causal relationship between IA and psychological symptoms that coincide with it. The current literature regarding functional connectivity changes in adolescents is limited and requires future studies to test with larger sample sizes, comorbid populations, and populations outside Far East Asia.

This review aimed to demonstrate the inner workings of how IA alters the connection between the primary behavioural networks in the adolescent brain. Predictably, the present answers merely paint an unfinished picture that does not necessarily depict internet usage as overwhelmingly positive or negative. Alternatively, the research points towards emerging patterns that can direct individuals on the consequences of certain variables or risk factors. A clearer depiction of the mechanisms of IA would allow physicians to screen and treat the onset of IA more effectively. Clinically, this could be in the form of more streamlined and accurate sessions of CBT or family therapy, targeting key symptoms of IA. Alternatively clinicians could potentially prescribe treatment such as bupropion to target FC in certain regions of the brain. Furthermore, parental education on IA is another possible avenue of prevention from a public health standpoint. Parents who are aware of the early signs and onset of IA will more effectively handle screen time, impulsivity, and minimize the risk factors surrounding IA.

Additionally, an increased attention towards internet related fMRI research is needed in the West, as mentioned previously. Despite cultural differences, Western countries may hold similarities to the eastern countries with a high prevalence of IA, like China and Korea, regarding the implications of the internet and IA. The increasing influence of the internet on the world may contribute to an overall increase in the global prevalence of IA. Nonetheless, the high saturation of eastern studies in this field should be replicated with a Western sample to determine if the same FC alterations occur. A growing interest in internet related research and education within the West will hopefully lead to the knowledge of healthier internet habits and coping strategies among parents with children and adolescents. Furthermore, IA research has the potential to become a crucial proxy for which to study adolescent brain maturation and development.

Supporting information

S1 checklist. prisma checklist..

https://doi.org/10.1371/journal.pmen.0000022.s001

S1 Appendix. Search strategies with all the terms.

https://doi.org/10.1371/journal.pmen.0000022.s002

S1 Data. Article screening records with details of categorized content.

https://doi.org/10.1371/journal.pmen.0000022.s003

Acknowledgments

The authors thank https://www.stockio.com/free-clipart/brain-01 (with attribution to Stockio.com); and https://www.rawpixel.com/image/6442258/png-sticker-vintage for the free images used to create Figs 2 – 4 .

  • View Article
  • PubMed/NCBI
  • Google Scholar
  • 2. Association AP. Diagnostic and statistical manual of mental disorders: DSM-5. 5 ed. Washington, D.C.: American Psychiatric Publishing; 2013.
  • 10. Stats IW. World Internet Users Statistics and World Population Stats 2013 [ http://www.internetworldstats.com/stats.htm .
  • 11. Rideout VJR M. B. The common sense census: media use by tweens and teens. San Francisco, CA: Common Sense Media; 2019.
  • 37. Tremblay L. The Ventral Striatum. Handbook of Reward and Decision Making: Academic Press; 2009.
  • 57. Bhana A. Middle childhood and pre-adolescence. Promoting mental health in scarce-resource contexts: emerging evidence and practice. Cape Town: HSRC Press; 2010. p. 124–42.
  • 65. Organization WH. Adolescent Health 2023 [ https://www.who.int/health-topics/adolescent-health#tab=tab_1 .

American Psychological Association Logo

Potential risks of content, features, and functions: The science of how social media affects youth

tween girl looking at tablet computer

Almost a year after APA issued its health advisory on social media use in adolescence , society continues to wrestle with ways to maximize the benefits of these platforms while protecting youth from the potential harms associated with them. 1

By early 2024, few meaningful changes to social media platforms had been enacted by industry, and no federal policies had been adopted. There remains a need for social media companies to make fundamental changes to their platforms.

Psychological science continues to reveal benefits from social media use , as well as risks and opportunities that certain content, features, and functions present to young social media users. The science discussed below highlights the need to enact new, responsible safety standards to mitigate harm. 2

Download in PDF format (267KB)

Related content

  • APA report calls on social media companies to take responsibility to protect youth
  • How much is too much social media use?

Elaboration of science on social media content, features, and functions

Platforms built for adults are not inherently suitable for youth. i Youth require special protection due to areas of competence or vulnerability as they progress through the childhood, teenage, and late adolescent years. ii This is especially true for youth experiencing psychological, physical, intellectual, mental health, or other developmental challenges; chronological age is not directly associated with social media readiness . iii

Hypersensitivity to social feedback

Brain development starting at ages 10–13 (i.e., the outset of puberty) until approximately the mid-twenties is linked with hypersensitivity to social feedback/stimuli. iv In other words, youth become especially invested in behaviors that will help them get personalized feedback, praise, or attention from peers.

  • AI-recommended content has the potential to be especially influential and hard to resist within this age range. v It is critical that AI-recommended content be designed to prioritize youth safety and welfare over engagement. This suggests potentially restricting the use of personalized recommendations using youth data, design features that may prioritize content evoking extreme emotions, or content that may depict illegal or harmful behavior.
  • Likes and follower counts activate neural regions that trigger repetitive behavior, and thus may exert greater influence on youths’ attitudes and behavior than among adults. vi Youth are especially sensitive to both positive social feedback and rejection from others. Using these metrics to maintain platform engagement capitalizes on youths’ vulnerabilities and likely leads to problematic use.
  • The use of youth data for tailored ad content similarly is influential for youth who are biologically predisposed toward peer influence at this stage and sensitive to personalized content. vii

social media influence research paper

Need for relationship skill building

Adolescence is a critical period for the development of more complex relationship skills, characterized by the ability to form emotionally intimate relationships. viii The adolescent years should provide opportunities to practice these skills through one-on-one or small group interactions.

  • The focus on metrics of followers, likes, and views focuses adolescents’ attention on unilateral, depersonalized interactions and may discourage them from building healthier and psychologically beneficial relationship skills. ix

Susceptibility to harmful content

Adolescence is a period of heightened susceptibility to peer influence, impressionability, and sensitivity to social rejection. x Harmful content, including cyberhate, the depiction of illegal behavior, and encouragement to engage in self-harm (e.g., cutting or eating-disordered behavior) is associated with increased mental health difficulties among both the targets and witnesses of such content. xi

  • The absence of clear and transparent processes for addressing reports of harmful content makes it harder for youth to feel protected or able to get help in the face of harmful content.

Underdeveloped impulse control

Youths’ developing cortical system (particularly in the brain’s inhibitory control network) makes them less capable of resisting impulses or stopping themselves from behavior that may lead to temporary benefit despite negative longer-term consequences. xii This can lead to adolescents making decisions based on short-term gain, lower appreciation of long-term risks, and interference with focus on tasks that require concentration.

  • Infinite scroll is particularly risky for youth since their ability to monitor and stop engagement on social media is more limited than among adults. xiii This contributes to youths’ difficulty disengaging from social media and may contribute to high rates of youth reporting symptoms of clinical dependency on social media. xiv
  • The lack of time limits on social media use similarly is challenging for youth, particularly during the school day or at times when they should be doing homework. xv
  • Push notifications capitalize on youths’ sensitivity to distraction. Task-shifting is a higher order cognitive ability not fully developed until early adulthood and may interfere with youths’ focus during class time and when they should be doing homework. xvi
  • The use and retention of youths’ data without appropriate parental consent, and/or child assent in developmentally appropriate language, capitalizes on youths’ relatively poor appreciation for long-term consequences of their actions, permanence of online content, or their ability to weigh the risks of their engagement on social media. xvii

Reliance on sleep for healthy brain development

Other than the first year of life, puberty is the most important period of brain growth and reorganization in our lifetimes. xviii Sleep is essential for healthy brain development and mental health in adolescence. xix Sleep delay or disruptions have significant negative effects on youths’ attention, behavior, mood, safety, and academic performance.

  • A lack of limits on the time of day when youth can use social media has been cited as the predominant reason why adolescents are getting less than the recommended amount of sleep, with significant implications for brain and mental health. xx

social media influence research paper

Vulnerability to malicious actors

Youth are easily deceived by predators and other malicious actors who may attempt to interact with them on social media channels. xxi

  • Connection and direct messaging with adult strangers places youth at risk of identity theft and potentially dangerous interactions, including sexploitation.

Need for parental/caregiver partnership

Research indicates that youth benefit from parental support to guide them toward safe decisions and to help them understand and appropriately respond to complex social interactions. xxii Granting parents oversight of youths’ accounts should be offered in balance with adolescents’ needs for autonomy, privacy, and independence. However, it should be easier for parents to partner with youth online in a manner that fits their family’s needs.

  • The absence of transparent and easy-to-use parental/caregiver tools increases parents’ or guardians’ difficulty in supporting youths’ experience on social media. xxiii

Health advisory on social media use in adolescence

Related topics

  • Social media and the internet
  • Mental health

Recommended Reading

Cover of Kid Confident Book 3

Science Spotlight

Get the most relevant news and information for psychological scientists delivered to your inbox every two weeks

Welcome! Thank you for subscribing.

Six Things Psychologists are Talking About

The APA Monitor on Psychology ® sister e-newsletter offers fresh articles on psychology trends, new research, and more.

A path forward based on science

Change is needed soon. Solutions should reflect a greater understanding of the science in at least three ways.

First, youth vary considerably in how they use social media. Some uses may promote healthy development and others may create harm. As noted in the APA health advisory , using social media is not inherently beneficial or harmful to young people. The effects of social media depend not only on what teens can do and see online, but teens’ pre-existing strengths or vulnerabilities, and the contexts in which they grow up.

Second, science has highlighted biological and psychological abilities/vulnerabilities that interact with the content, functions, and features built into social media platforms, and it is these aspects of youths’ social media experience that must be addressed to attenuate risks. xxiv Social media use, functionality, and permissions/consenting should be tailored to youths’ developmental capabilities. Design features created for adults may not be appropriate for children.

Third, youth are adept at working around age restrictions. Substantial data reveal a remarkable number of children aged 12 years and younger routinely using social media, indicating that current policies and practices to restrict use to older youth are not working. xxv

Policies will not protect youth unless technology companies are required to reduce the risks embedded within the platforms themselves.

As policymakers at every level assess their approach to this complex issue, it is important to note the limitations of frequently proposed policies, which are often misreported and fall far short of comprehensive safety solutions that will achieve meaningful change.

Restricting downloads

Restricting application downloads at the device level does not fully restrict youths’ access and will not meaningfully improve the safety of social media platforms. Allowing platforms to delegate responsibility to app stores does not address the vulnerabilities and harms built into the platforms.

social media influence research paper

Requiring age restrictions

Focusing only on age restrictions does not improve the platforms or address the biological and psychological vulnerabilities that persist past age 18. While age restriction proposals could offer some benefits if effectively and equitably implemented, they do not represent comprehensive improvements to social media platforms, for at least four reasons:

  • Creating a bright line age limit ignores individual differences in adolescents’ maturity and competency
  • These proposals fail to mitigate the harms for those above the age limit and can lead to a perception that social media is safe for adolescents above the threshold age, though neurological changes continue until age 25
  • Completely limiting access to social media may disadvantage those who are experiencing psychological benefits from social media platforms, such as community support and access to science-based resources, which particularly impact those in marginalized populations
  • The process of age-verification requires more thoughtful consideration to ensure that the storage of official identification documents does not systematically exclude subsets of youth, create risks for leaks, or circumvent the ability of young people to maintain anonymity on social platforms.

Use of parental controls

Granting parents and caregivers greater access to their children’s social media accounts will not address risks embedded within platforms themselves. More robust and easy-to-use parental controls would help some younger age groups, but as a sole strategy, this approach ignores the complexities of adolescent development, the importance of childhood autonomy and privacy, and disparities in time or resources available for monitoring across communities. xxvi

[Related: Keeping teens safe on social media: What parents should know to protect their kids ]

Some parents might be technologically ill-equipped, lack the time or documentation to complete requirements, or simply be unavailable to complete these requirements. Disenfranchising some young people from these platforms creates inequities. xxvii

social media influence research paper

Speaking of Psychology

Subscribe to APA’s audio podcast series highlighting some of the most important and relevant psychological research being conducted today.

Subscribe to Speaking of Psychology and download via:

Listen to podcast on iTunes

1 These recommendations enact policies and resolutions approved by the APA Council of Representatives including the APA Resolution on Child and Adolescent Mental and Behavioral Health and the APA Resolution on Dismantling Systemic Racism in contexts including social media. These are not professional practice guidelines but are intended to provide information based on psychological science.

2 This report seeks to elaborate on extant psychological science findings, which may be particularly relevant in the creation of policy solutions that protect young people, and to inform the development of social media safety standards.

Recommendations from APA’s health advisory on social media use in adolescence

  • Youth using social media should be encouraged to use functions that create opportunities for social support, online companionship, and emotional intimacy that can promote healthy socialization.
  • Social media use, functionality, and permissions/consenting should be tailored to youths’ developmental capabilities; designs created for adults may not be appropriate for children.
  • In early adolescence (i.e., typically 10–14 years), adult monitoring (i.e., ongoing review, discussion, and coaching around social media content) is advised for most youths’ social media use; autonomy may increase gradually as kids age and if they gain digital literacy skills. However, monitoring should be balanced with youths’ appropriate needs for privacy.
  • To reduce the risks of psychological harm, adolescents’ exposure to content on social media that depicts illegal or psychologically maladaptive behavior, including content that instructs or encourages youth to engage in health-risk behaviors, such as self-harm (e.g., cutting, suicide), harm to others, or those that encourage eating-disordered behavior (e.g., restrictive eating, purging, excessive exercise) should be minimized, reported, and removed; moreover, technology should not drive users to this content.
  • To minimize psychological harm, adolescents’ exposure to “cyberhate” including online discrimination, prejudice, hate, or cyberbullying especially directed toward a marginalized group (e.g., racial, ethnic, gender, sexual, religious, ability status), or toward an individual because of their identity or allyship with a marginalized group should be minimized.
  • Adolescents should be routinely screened for signs of “problematic social media use” that can impair their ability to engage in daily roles and routines, and may present risk for more serious psychological harms over time.
  • The use of social media should be limited so as to not interfere with adolescents’ sleep and physical activity.
  • Adolescents should limit use of social media for social comparison, particularly around beauty- or appearance-related content.
  • Adolescents’ social media use should be preceded by training in social media literacy to ensure that users have developed psychologically-informed competencies and skills that will maximize the chances for balanced, safe, and meaningful social media use.
  • Substantial resources should be provided for continued scientific examination of the positive and negative effects of social media on adolescent development.

Acknowledgments

We wish to acknowledge the outstanding contributions to this report made by the following individuals:

Expert advisory panel

Mary Ann McCabe, PhD, ABPP, member-at-large, Board of Directors, American Psychological Association; associate clinical professor of pediatrics, The George Washington University School of Medicine and Health Sciences

Mitchell J. Prinstein, PhD, ABPP, chief science officer, American Psychological Association; John Van Seters Distinguished Professor of Psychology and Neuroscience, University of North Carolina at Chapel Hill

Mary K. Alvord, PhD, founder, Alvord, Baker & Associates; board president, Resilience Across Borders; adjunct associate professor of psychiatry and behavioral sciences, The George Washington University School of Medicine and Health Sciences

Dawn T. Bounds, PhD, PMHNP-BC, FAAN, assistant professor, Sue & Bill Gross School of Nursing, University of California, Irvine

Linda Charmaraman, PhD, senior research scientist, Wellesley Centers for Women, Wellesley College

Sophia Choukas-Bradley, PhD, assistant professor, Department of Psychology, University of Pittsburgh

Dorothy L. Espelage, PhD, William C. Friday Distinguished Professor of Education, University of North Carolina at Chapel Hill

Joshua A. Goodman, PhD, assistant professor, Department of Psychology, Southern Oregon University

Jessica L. Hamilton, PhD, assistant professor, Department of Psychology, Rutgers University

Brendesha M. Tynes, PhD, Dean’s Professor of Educational Equity, University of Southern California

L. Monique Ward, PhD, professor, Department of Psychology (Developmental), University of Michigan

Lucía Magis-Weinberg, MD, PhD, assistant professor, Department of Psychology, University of Washington

We also wish to acknowledge the contributions to this report made by Katherine B. McGuire, chief advocacy officer, and Corbin Evans, JD, senior director of congressional and federal relations, American Psychological Association.

Selected references

i Maza, M. T., Fox, K. A., Kwon, S. J., Flannery, J. E., Lindquist, K. A., Prinstein, M. J., & Telzer, E. H. (2023). Association of habitual checking behaviors on social media with longitudinal functional brain development. JAMA Pediatrics , 177 (2), 160–167; Prinstein, M. J., Nesi, J., & Telzer, E. H. (2020). Commentary: An updated agenda for the study of digital media use and adolescent development—Future directions following Odgers & Jensen (2020). Journal of Child Psychology and Psychiatry , 61 (3), 349–352. https://doi.org/10.1111/jcpp.13219

ii Nesi, J., Choukas-Bradley, S., & Prinstein, M. J. (2018). Transformation of adolescent peer relations in the social media context: Part 1—A theoretical framework and application to dyadic peer relationships. Clinical Child and Family Psychology Review , 21 (3), 267–294. https://doi.org/10.1007/s10567-018-0261-x

iii Valkenburg, P. M., & Peter, J. (2013). The differential susceptibility to media effects model. Journal of Communication , 63 (2), 221–243. https://doi.org/10.1111/jcom.12024

iv Fareri, D. S., Martin, L. N., & Delgado, M. R. (2008). Reward-related processing in the human brain: Developmental considerations. Development and Psychopathology , 20 (4), 1191–1211; Somerville, L. H., & Casey, B. J. (2010). Developmental neurobiology of cognitive control and motivational systems. Current Opinion in Neurobiology , 20 (2), 236–241. https://doi.org/10.1016/j.conb.2010.01.006

v Shin, D. (2020). How do users interact with algorithm recommender systems? The interaction of users, algorithms, and performance. Computers in Human Behavior , 109 , 106344. https://doi.org/10.1016/j.chb.2020.106344

vi Sherman, L. E., Payton, A. A., Hernandez, L. M., Greenfield, P. M., & Dapretto, M. (2016). The power of the Like in adolescence: Effects of peer influence on neural and behavioral responses to social media. Psychological Science , 27 (7), 1027–1035. https://doi.org/10.1177/0956797616645673

vii Albert, D., Chein, J., & Steinberg, L. (2013). The teenage brain: Peer influences on adolescent decision making. Current Directions in Psychological Science , 22 (2), 114–120. https://doi.org/10.1177/0963721412471347

viii Armstrong-Carter, E., & Telzer, E. H. (2021). Advancing measurement and research on youths’ prosocial behavior in the digital age. Child Development Perspectives , 15 (1), 31–36. https://doi.org/10.1111/cdep.12396 ; Newcomb, A. F., & Bagwell, C. L. (1995). Children’s friendship relations: A meta-analytic review. Psychological Bulletin , 117 (2), 306.

ix Nesi, J., & Prinstein, M. J. (2019). In search of likes: Longitudinal associations between adolescents’ digital status seeking and health-risk behaviors. Journal of Clinical Child & Adolescent Psychology , 48 (5), 740–748. https://doi.org/10.1080/15374416.2018.1437733 ; Rotondi, V., Stanca, L., & Tomasuolo, M. (2017). Connecting alone: Smartphone use, quality of social interactions and well-being. Journal of Economic Psychology , 63 , 17–26. https://doi.org/10.1016/j.joep.2017.09.001

x Sherman, L. E., Payton, A. A., Hernandez, L. M., Greenfield, P. M., & Dapretto, M. (2016). The power of the Like in adolescence: Effects of peer influence on neural and behavioral responses to social media. Psychological Science , 27 (7), 1027–1035. https://doi.org/10.1177/0956797616645673

xi Susi, K., Glover-Ford, F., Stewart, A., Knowles Bevis, R., & Hawton, K. (2023). Research review: Viewing self-harm images on the internet and social media platforms: Systematic review of the impact and associated psychological mechanisms. Journal of Child Psychology and Psychiatry , 64 (8), 1115–1139.

xii Hartley, C. A., & Somerville, L. H. (2015). The neuroscience of adolescent decision-making. Current Opinion in Behavioral Sciences , 5 , 108–115. https://doi.org/10.1016/j.cobeha.2015.09.004

xiii Atherton, O. E., Lawson, K. M., & Robins, R. W. (2020). The development of effortful control from late childhood to young adulthood. Journal of Personality and Social Psychology , 119 (2), 417–456. https://doi.org/10.1037/pspp0000283

xiv Boer, M., Stevens, G. W., Finkenauer, C., & Van den Eijnden, R. J. (2022). The course of problematic social media use in young adolescents: A latent class growth analysis. Child Development , 93 (2), e168–e187.

xv Hall, A. C. G., Lineweaver, T. T., Hogan, E. E., & O’Brien, S. W. (2020). On or off task: The negative influence of laptops on neighboring students’ learning depends on how they are used. Computers & Education , 153 , 103901. https://doi.org/10.1016/j.compedu.2020.103901 ; Sana, F., Weston, T., & Cepeda, N. J. (2013). Laptop multitasking hinders classroom learning for both users and nearby peers. Computers & Education , 62 , 24–31. https://doi.org/10.1016/j.compedu.2012.10.003

xvi von Bastian, C. C., & Druey, M. D. (2017). Shifting between mental sets: An individual differences approach to commonalities and differences of task switching components. Journal of Experimental Psychology: General , 146 (9), 1266–1285. https://doi.org/10.1037/xge0000333

xvii Andrews, J. C., Walker, K. L., & Kees, J. (2020). Children and online privacy protection: Empowerment from cognitive defense strategies. Journal of Public Policy & Marketing , 39 (2), 205–219. https://doi.org/10.1177/0743915619883638 ; Romer D. (2010). Adolescent risk taking, impulsivity, and brain development: Implications for prevention. Developmental Psychobiology , 52 (3), 263–276. https://doi.org/10.1002/dev.20442

xviii Orben, A., Przybylski, A. K., Blakemore, S.-J., Kievit, R. A. (2022). Windows of developmental sensitivity to social media. Nature Communications , 13 (1649). https://doi.org/10.1038/s41467-022-29296-3

xix Paruthi, S., Brooks, L. J., D’Ambrosio, C., Hall, W. A., Kotagal, S., Lloyd, R. M., Malow, B. A., Maski, K., Nichols, C., Quan, S. F., Rosen, C. L., Troester, M. M., & Wise, M. S. (2016). Recommended amount of sleep for pediatric populations: A consensus statement of the American Academy of Sleep Medicine. Journal of Clinical Sleep Medicine , 12 (6), 785–786. https://doi.org/10.5664/jcsm.5866

xx Perrault, A. A., Bayer, L., Peuvrier, M., Afyouni, A., Ghisletta, P., Brockmann, C., Spiridon, M., Hulo Vesely, S., Haller, D. M., Pichon, S., Perrig, S., Schwartz, S., & Sterpenich, V. (2019). Reducing the use of screen electronic devices in the evening is associated with improved sleep and daytime vigilance in adolescents. Sleep , 42 (9), zsz125. https://doi.org/10.1093/sleep/zsz125 ; Telzer, E. H., Goldenberg, D., Fuligni, A. J., Lieberman, M. D., & Gálvan, A. (2015). Sleep variability in adolescence is associated with altered brain development. Developmental Cognitive Neuroscience , 14, 16–22. https://doi.org/10.1016/j.dcn.2015.05.007

xxi Livingstone, S., & Smith, P. K. (2014). Annual research review: Harms experienced by child users of online and mobile technologies: The nature, prevalence and management of sexual and aggressive risks in the digital age. Journal of Child Psychology and Psychiatry , 55 (6), 635–654. https://doi.org/10.1111/jcpp.12197 ; Wolak, J., Finkelhor, D., Mitchell, K. J., & Ybarra, M. L. (2008). Online “predators” and their victims: Myths, realities, and implications for prevention and treatment. American Psychologist , 63 (2), 111–128. https://doi.org/10.1037/0003-066X.63.2.111

xxii Wachs, S., Costello, M., Wright, M. F., Flora, K., Daskalou, V., Maziridou, E., Kwon, Y., Na, E.-Y., Sittichai, R., Biswal, R., Singh, R., Almendros, C., Gámez-Guadix, M., Görzig, A., & Hong, J. S. (2021). “DNT LET ’EM H8 U!”: Applying the routine activity framework to understand cyberhate victimization among adolescents across eight countries. Computers & Education , 160 , Article 104026. https://doi.org/10.1016/j.compedu.2020.104026 ; Padilla-Walker, L. M., Stockdale, L. A., & McLean, R. D. (2020). Associations between parental media monitoring, media use, and internalizing symptoms during adolescence. Psychology of Popular Media , 9 (4), 481. https://doi.org/10.1037/ppm0000256

xxiii Dietvorst, E., Hiemstra, M., Hillegers, M. H. J., & Keijsers, L. (2018). Adolescent perceptions of parental privacy invasion and adolescent secrecy: An illustration of Simpson’s paradox. Child Development , 89 (6), 2081–2090. https://doi.org/10.1111/cdev.13002 ; Auxier, B. (2020, July 28). Parenting Children in the Age of Screens. Pew Research Center: Internet, Science & Tech; Pew Research Center. https://www.pewresearch.org/internet/2020/07/28/parenting-children-in-the-age-of-screens/

xxiv National Academies of Sciences, Engineering, and Medicine. (2024). Social media and adolescent health . The National Academies Press. https://doi.org/10.17226/27396

xxv Charmaraman, L., Lynch, A. D., Richer, A. M., & Zhai, E. (2022). Examining early adolescent positive and negative social technology behaviors and well-being during the Covid -19 pandemic. Technology, Mind, and Behavior , 3 (1), Feb 17 2022. https://doi.org/10.1037/tmb0000062

xxvi Dietvorst, E., Hiemstra, M., Hillegers, M.H.J., & Keijsers, L. (2018). Adolescent perceptions of parental privacy invasion and adolescent secrecy: An illustration of Simpson’s paradox. Child Development , 89 (6), 2081–2090. https://doi.org/10.1111/cdev.13002

xxvii Charmaraman, L., Lynch, A. D., Richer, A. M., & Zhai, E. (2022). Examining early adolescent positive and negative social technology behaviors and well-being during the Covid -19 pandemic. Technology, Mind, and Behavior , 3 (1), Feb 17 2022. https://doi.org/10.1037/tmb0000062

The Influence of Social Media Marketing Activity on Purchase Intention in the Beer Sector: Case of SuperBock's Instagram

  • Conference paper
  • First Online: 04 June 2024
  • Cite this conference paper

social media influence research paper

  • Ana Lima   ORCID: orcid.org/0000-0001-7804-8010 7 ,
  • Sandrina Teixeira   ORCID: orcid.org/0000-0002-5859-0002 8 &
  • Marco Cruz 7  

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 386))

Included in the following conference series:

  • International Conference on Marketing and Technologies

Over the last decade, social media has transformed the way brands interact with their audiences, forcing them to establish a digital presence based on consumer preferences and, at the same time, building a relationship with them. This study focuses on the influence that Instagram has on purchase intentions in the largest beer brand in Portugal, “SuperBock,” which also has a high level of engagement among its audience on the platform. Previous studies have shown that Social Media Marketing Activities (SMMA) were based on the dimension’s entertainment, interaction, fad, customization, announcement, e-Wom intensity, e-Wom skirt, and e-Wom content (Kim and Ko in J. Bus. Res. 65:1480–1486, 2012). A quantitative methodology was followed using an online questionnaire. The sample was non-probabilistic, for convenience, consisting of 202 individuals. The results obtained show that all SMMA on SuperBock's Instagram positively influences the purchasing intention of its consumers, with the “advertising” dimension having a greater positive impact on respondents, followed by the “emotional value of e-Wom” dimensions. and “e-Wom intensity.” Simultaneously, the dimensions of e-Wom also influence consumers’ purchase intention. The results confirm that SuperBock Instagram SMMA had a positive influence on consumer purchase intentions, with the advertising dimension having the most significant impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Kim, A.J., Ko, E.: Do social media marketing activities enhance customer equity? An empirical study of luxury fashion brand. J. Bus. Res. 65 (10), 1480–1486 (2012). https://doi.org/10.1016/j.jbusres.2011.10.014

Article   Google Scholar  

We Are Social.: Digital 2022: Portugal. DataReportal—Global digital insights (2022). https://datareportal.com/reports/digital-2022-portugal

Mercadal, T.: Beer. In Salem Press Encyclopedia, Salem Press (2022)

Google Scholar  

Cervejeiros de Portugal.: Brewers in Portugal (2021). https://www.cervejeirosdeportugal.pt/wp-content/uploads/2020/10/Guia_CERVEJEIROS_EM_PORTUGAL.pdf

Bi̇lgi̇n, Y.: The effect of social media marketing activities on brand awareness, brand image and brand loyalty. Bus. Manage. Stud. Int. J. 6 (1), (2018) Art. 1. https://doi.org/10.15295/bmij.v6i1.229

Mersey, R.D., Malthouse, E.C., Calder, B.J.: Engagement with online media. J. Media Bus. Stud. 7 (2), 39–56 (2010). https://doi.org/10.1080/16522354.2010.11073506

Hanna, R., Rohm, A., Crittenden, V.L.: We’re all connected: the power of the social media ecosystem. Bus. Horiz. 54 (3), 265–273 (2011). https://doi.org/10.1016/j.bushor.2011.01.007

Ebrahim, R.S.: The role of trust in understanding the impact of social media marketing on brand equity and brand loyalty. J. Relat. Mark. 19 (4), 287–308 (2020). https://doi.org/10.1080/15332667.2019.1705742

Park, C.-I., Namkung, Y.: The effects of instagram marketing activities on customer-based brand equity in the coffee industry. Sustainability 14 (3), (2022). Art. 3. https://doi.org/10.3390/su14031657

Godey, B., Manthiou, A., Pederzoli, D., Rokka, J., Aiello, G., Donvito, R., Singh, R.: Social media marketing efforts of luxury brands: Influence on brand equity and consumer behavior | Elsevier Enhanced Reader (2016). https://doi.org/10.1016/j.jbusres.2016.04.181

Seo, J.-E., Park, J.-W.: A study on the effects of social media marketing activities on brand equity and customer response in the airline industry | Elsevier Enhanced Reader (2018). https://doi.org/10.1016/j.jairtraman.2017.09.014

Karl.: 180+ Social Media Marketing Stats You Can't Ignore (2022). https://www.dreamgrow.com/21-social-media-marketing-statistics/ . Accessed on: 20 June 2022

Facebook.: How instagram boosts brands and drives sales (2019). https://www.facebook.com/business/news/insights/how-instagram-boosts-brands-and-drives-sales . Accessed on 22 June 2022

Hennig-Thurau, T., Gwinner, K., Walsh, G, Gremler, D.D.: Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the Internet? J. Interact. Mark. 18 (1), 38–52 (2004). https://doi.org/10.1002/dir.10073

Kotler, P., Kartajaya, H., Setiawan, I.: Marketing 4.0: moving from traditional to digital. Actual Editora (2017).

Smith, T.: The social media revolution. Int. J. Mark. Res. 51 (4), 559–561 (2009). https://doi.org/10.2501/S1470785309200773

Goyette, I., Ricard, L., Bergeron, J., Marticotte, F.: E-WOM Scale: Word-of-mouth measurement scale for e-services context. Can. J. Adm. Sci. Revue Can. Des Sci. de l’Administration 27 (1), 5–23 (2010). https://doi.org/10.1002/cjas.129

Rezvani, S., Javadian Dehkordi, G., Sabbir Rahman, M., Fouladivanda, F., Habibi, M., Eghtebasi, S.: A conceptual study on the country of origin effect on consumer purchase intention. Asian Soc. Sci. 8 (12), p205 (2012). https://doi.org/10.5539/ass.v8n12p205

Doh, S.-J., Hwang, J.-S.: How consumers evaluate eWOM (electronic word-of-mouth) messages. Cyberpsychol. Behav. 12 (2), 193–197 (2009). https://doi.org/10.1089/cpb.2008.0109

Khadim, R.A., Hanan, M.A., Arshad, A., Saleem, N.: Revisiting antecedents of brand loyalty: impact of perceived social media communication with brand trust and brand equity as mediators. Acad. Strateg. Manag. J. 17 (1), 1–162 (2018)

Chahal, H., Rani, A.: How trust moderates social media engagement and brand equity. J. Res. Interact. Mark. 11 (3), 312–335 (2017). https://doi.org/10.1108/JRIM-10-2016-0104

Mangold, W.G., Faulds, D.J.: Social media: the new hybrid element of the promotion mix. Bus. Horiz. 52 (4), 357–365 (2009). https://doi.org/10.1016/j.bushor.2009.03.002

Hajli, M.N.: The role of social support on relationship quality and social commerce. Technol. Forecast. Soc. Chang. 87 , 17–27 (2014). https://doi.org/10.1016/j.techfore.2014.05.012

Saunders, M., Lewis, P., Thornhill, A.: Research Methods for Business Students (4th ed.). Pearson Education Limited (2007).

Fortin, M.: Fondements et Étapes du Processus de Recherche (2nd ed.). Gaetan Morin Cheneliere Education (2009)

Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E.: Multivariate Data Analysis: Pearson New International Edition: Vol. Seventh edition. Pearson (2014)

Robson, C.: Real World Research (2nd Edition) (2nd ed.). Blackwell Publishing (2022)

Download references

Author information

Authors and affiliations.

CEOS.PP, ISCAP, Polytechnic of Porto, 4465-004, Porto, Portugal

Ana Lima & Marco Cruz

ISCAP, Polytechnic of Porto, 4465-004, Porto, Portugal

Sandrina Teixeira

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Ana Lima .

Editor information

Editors and affiliations.

University of Maia—UMAIA, Maia, Portugal

José Luís Reis

University College Prague, Praha, Czech Republic

Jiří Zelený

Technical University of Košice, Košice, Slovakia

Beáta Gavurová

José Paulo Marques dos Santos

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper.

Lima, A., Teixeira, S., Cruz, M. (2024). The Influence of Social Media Marketing Activity on Purchase Intention in the Beer Sector: Case of SuperBock's Instagram. In: Reis, J.L., Zelený, J., Gavurová, B., Santos, J.P.M.d. (eds) Marketing and Smart Technologies. ICMarkTech 2023. Smart Innovation, Systems and Technologies, vol 386. Springer, Singapore. https://doi.org/10.1007/978-981-97-1552-7_22

Download citation

DOI : https://doi.org/10.1007/978-981-97-1552-7_22

Published : 04 June 2024

Publisher Name : Springer, Singapore

Print ISBN : 978-981-97-1551-0

Online ISBN : 978-981-97-1552-7

eBook Packages : Engineering Engineering (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. Influence of Social Media On Teenagers

    social media influence research paper

  2. Research Paper on Social Media

    social media influence research paper

  3. Rearch paper on social media influence

    social media influence research paper

  4. (PDF) A Research Paper on Social media: An Innovative Educational Tool

    social media influence research paper

  5. (PDF) Impact of social media on academic: A quantitative study

    social media influence research paper

  6. (PDF) EFFECTS OF SOCIAL MEDIA ON YOUTH

    social media influence research paper

VIDEO

  1. Social media influence in 30 second #socialmedia

  2. Social Media Influence & its Effects

  3. Social media Marketing influence #socialmediamarketing

  4. The Impact of social media on the academic performance of social science students at UWI T&T

  5. Does Social Media Influence Our Culture Financially?

  6. How does social media influence purchasing decisions

COMMENTS

  1. Social Media Use and Its Connection to Mental Health: A Systematic Review

    Social media are responsible for aggravating mental health problems. This systematic study summarizes the effects of social network usage on mental health. Fifty papers were shortlisted from google scholar databases, and after the application of various inclusion and exclusion criteria, 16 papers were chosen and all papers were evaluated for ...

  2. The evolution of social media influence

    This article focuses on studying the social media influence on an individual through systematic literature review ( Brereton et al., 2007) with respect to TCCM approach (Theory, Context, Characteristics and Methodology). Adopting a framework or lens in literature reviews help in bringing objectivity to the analysis.

  3. Meta‐analysis of social media influencer impact: Key antecedents and

    1 INTRODUCTION. Social media influencers are individuals who have built up a large following on social media and are able to influence their audience's attitudes and behaviors (Hudders et al., 2021).They have become the subject of much scholarly research due to the powerful impact they have on consumer behavior, from influencing purchase decisions to changing societal norms (IZEA Insights, 2022).

  4. The effect of social media on well-being differs from ...

    However, evidence was found that the association of passive (but not active) social media use with well-being differed from adolescent to adolescent (Model 1B), with effect sizes ranging from − ...

  5. A systematic review: the influence of social media on depression

    Social media. The term 'social media' refers to the various internet-based networks that enable users to interact with others, verbally and visually (Carr & Hayes, Citation 2015).According to the Pew Research Centre (Citation 2015), at least 92% of teenagers are active on social media.Lenhart, Smith, Anderson, Duggan, and Perrin (Citation 2015) identified the 13-17 age group as ...

  6. Social media and adolescent psychosocial development: a systematic

    Adolescents are noted to increasingly utilise social media for communication, and therefore, social media is where much of their psychosocial development takes place. ... A systematic review: The influence of social media on depression, anxiety and psychological distress in adolescents. International Journal of Adolescence and Youth, 25(1), 79 ...

  7. Frontiers

    These findings support those of Davey et al. (2018), who evidenced that phubbing has a significant influence on adolescents and social health students in India. The findings showed a significant and positive effect of social media use on psychological well-being both through bridging and bonding social capital.

  8. Social media use and its impact on adolescent mental health: An

    Introduction. The past years have witnessed a staggering increase in empirical studies into the effects of social media use (SMU) on adolescents' mental health (e.g. [1∗∗, 2∗, 3]), defined as the absence of mental illness and the presence of well-being [4].This rapid increase may be due to at least two reasons.

  9. Social Media and Emotional Well-being: Pursuit of Happiness or Pleasure

    Social media platforms carry a unique ability to connect users, leading to increased emotional well-being. Social connectivity reaps an array of emotions in the form of happiness and pleasure. Among all the social media platforms, Facebook is a well-known communication medium and has become an everyday fabric for society.

  10. (PDF) The Effect of Social Media on Society

    Also, the determinant coefficient is 0.2304, which implies social media activeness has a 23% influence on the students' vocabulary mastery, leaving the other 77% to other factors. Having ...

  11. The effect of social media influencers' on teenagers Behavior: an

    Social media influencers' distinctive features "Informational social influence" is a concept that has been used in literature by Deutsch & Gerard, 1955), and defined as the change in behavior or opinions that happened when people (consumers) are conformed to other people (influencers) because they believe that they have precise and true information (e.g. Djafarova & Rushworth, 2017, Alotaibi ...

  12. Association of Social Media Use With Social Well-Being, Positive Mental

    Social media use is an ever-increasing phenomenon of the 21st century. In the United States, about 7 of 10 individuals use social media to connect with others, receive news content, share information, and entertain themselves (Pew Research Center, 2018).According to a recent study, young individuals pervasively use social media for a variety of reasons including entertainment, identity ...

  13. Social influence research in consumer behavior: What we learned and

    From 2003 and 2014, it increased by double digits every year, publishing an average of 40 papers. Surprisingly, 1188 of 1800 publications on social influence were published in just the last eight years, from 2015 to 2022, with 148.5 articles produced per year on average. ... Social influence via social network media (SNM) sites affect consumers ...

  14. Social Media Use and Its Impact on Relationships and Emotions

    effects of social media use on emotions. Seo, Park, Kim, and Park, (2016) found that a person. who had developed a dependency to their cell phone experienced decreased attention and. increased depression which led to a negative impact on their social relationships with their.

  15. Social media influencer marketing: foundations, trends, and ways

    The increasing use and effectiveness of social media influencers in marketing have intrigued both academic scholars and industry professionals. To shed light on the foundations and trends of this contemporary phenomenon, this study undertakes a systematic literature review using a bibliometric-content analysis to map the extant literature where consumer behavior, social media, and influencer ...

  16. Advances in Social Media Research: Past, Present and Future

    Social media comprises communication websites that facilitate relationship forming between users from diverse backgrounds, resulting in a rich social structure. User generated content encourages inquiry and decision-making. Given the relevance of social media to various stakeholders, it has received significant attention from researchers of various fields, including information systems. There ...

  17. How social media use is related to student engagement and creativity

    2.1. Student use of social media. The tradition of social media in all walks of life has been increased rapidly in the recent years (Anser et al. Citation 2020; Rauniar et al. Citation 2014).Past researches revealed that social media is getting popular among students, and recent researchers have noted the considerable influence of social media utilisation in academia (Friesen and Lowe Citation ...

  18. The effects of social media usage on attention, motivation, and

    The influence of social media usage on academic success remains largely unknown as evidenced by the mixed results of this study and research. Therefore, students should be mindful of the potential impact high social media use could have on their overall academic success and learning skills. Educators should also be mindful of the impact social ...

  19. (PDF) Social Media Influencers

    Abstract. Social media influencers represent a highly visible subset of digital content creators defined by their substantial following, distinctive brand persona, and patterned relationship with ...

  20. Functional connectivity changes in the brain of adolescents with

    Internet usage has seen a stark global rise over the last few decades, particularly among adolescents and young people, who have also been diagnosed increasingly with internet addiction (IA). IA impacts several neural networks that influence an adolescent's behaviour and development. This article issued a literature review on the resting-state and task-based functional magnetic resonance ...

  21. Social Media: Influences and Impacts on Culture

    2.1 Social Media Influences Human Behavior. The internet is shaping the users' culture, whereas social media has strongly influenced our shopping pattern, relationships, and education. This can alter the behaviours, beliefs, and even the basic health of people [ 6 ]. Social media affects lifestyles especially in fashion.

  22. Potential risks of content, features, and functions: The science of how

    Almost a year after APA issued its health advisory on social media use in adolescence, society continues to wrestle with ways to maximize the benefits of these platforms while protecting youth from the potential harms associated with them. 1. By early 2024, few meaningful changes to social media platforms had been enacted by industry, and no federal policies had been adopted.

  23. The Influence of Social Media Marketing Activity on Purchase ...

    2.1 Social Media Marketing Activity. The rise of technology and social networks in recent years has forced brands to build a digital presence in these same media. These have created new forms of communication between brands and users, allowing them to develop a feeling of closeness [5, 6].Social networks have created new forms of communication for entrepreneurs and brands at very low cost and ...