U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Public Health

Environmental and Health Impacts of Air Pollution: A Review

Ioannis manisalidis.

1 Delphis S.A., Kifisia, Greece

2 Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece

Elisavet Stavropoulou

3 Centre Hospitalier Universitaire Vaudois (CHUV), Service de Médicine Interne, Lausanne, Switzerland

Agathangelos Stavropoulos

4 School of Social and Political Sciences, University of Glasgow, Glasgow, United Kingdom

Eugenia Bezirtzoglou

One of our era's greatest scourges is air pollution, on account not only of its impact on climate change but also its impact on public and individual health due to increasing morbidity and mortality. There are many pollutants that are major factors in disease in humans. Among them, Particulate Matter (PM), particles of variable but very small diameter, penetrate the respiratory system via inhalation, causing respiratory and cardiovascular diseases, reproductive and central nervous system dysfunctions, and cancer. Despite the fact that ozone in the stratosphere plays a protective role against ultraviolet irradiation, it is harmful when in high concentration at ground level, also affecting the respiratory and cardiovascular system. Furthermore, nitrogen oxide, sulfur dioxide, Volatile Organic Compounds (VOCs), dioxins, and polycyclic aromatic hydrocarbons (PAHs) are all considered air pollutants that are harmful to humans. Carbon monoxide can even provoke direct poisoning when breathed in at high levels. Heavy metals such as lead, when absorbed into the human body, can lead to direct poisoning or chronic intoxication, depending on exposure. Diseases occurring from the aforementioned substances include principally respiratory problems such as Chronic Obstructive Pulmonary Disease (COPD), asthma, bronchiolitis, and also lung cancer, cardiovascular events, central nervous system dysfunctions, and cutaneous diseases. Last but not least, climate change resulting from environmental pollution affects the geographical distribution of many infectious diseases, as do natural disasters. The only way to tackle this problem is through public awareness coupled with a multidisciplinary approach by scientific experts; national and international organizations must address the emergence of this threat and propose sustainable solutions.

Approach to the Problem

The interactions between humans and their physical surroundings have been extensively studied, as multiple human activities influence the environment. The environment is a coupling of the biotic (living organisms and microorganisms) and the abiotic (hydrosphere, lithosphere, and atmosphere).

Pollution is defined as the introduction into the environment of substances harmful to humans and other living organisms. Pollutants are harmful solids, liquids, or gases produced in higher than usual concentrations that reduce the quality of our environment.

Human activities have an adverse effect on the environment by polluting the water we drink, the air we breathe, and the soil in which plants grow. Although the industrial revolution was a great success in terms of technology, society, and the provision of multiple services, it also introduced the production of huge quantities of pollutants emitted into the air that are harmful to human health. Without any doubt, the global environmental pollution is considered an international public health issue with multiple facets. Social, economic, and legislative concerns and lifestyle habits are related to this major problem. Clearly, urbanization and industrialization are reaching unprecedented and upsetting proportions worldwide in our era. Anthropogenic air pollution is one of the biggest public health hazards worldwide, given that it accounts for about 9 million deaths per year ( 1 ).

Without a doubt, all of the aforementioned are closely associated with climate change, and in the event of danger, the consequences can be severe for mankind ( 2 ). Climate changes and the effects of global planetary warming seriously affect multiple ecosystems, causing problems such as food safety issues, ice and iceberg melting, animal extinction, and damage to plants ( 3 , 4 ).

Air pollution has various health effects. The health of susceptible and sensitive individuals can be impacted even on low air pollution days. Short-term exposure to air pollutants is closely related to COPD (Chronic Obstructive Pulmonary Disease), cough, shortness of breath, wheezing, asthma, respiratory disease, and high rates of hospitalization (a measurement of morbidity).

The long-term effects associated with air pollution are chronic asthma, pulmonary insufficiency, cardiovascular diseases, and cardiovascular mortality. According to a Swedish cohort study, diabetes seems to be induced after long-term air pollution exposure ( 5 ). Moreover, air pollution seems to have various malign health effects in early human life, such as respiratory, cardiovascular, mental, and perinatal disorders ( 3 ), leading to infant mortality or chronic disease in adult age ( 6 ).

National reports have mentioned the increased risk of morbidity and mortality ( 1 ). These studies were conducted in many places around the world and show a correlation between daily ranges of particulate matter (PM) concentration and daily mortality. Climate shifts and global planetary warming ( 3 ) could aggravate the situation. Besides, increased hospitalization (an index of morbidity) has been registered among the elderly and susceptible individuals for specific reasons. Fine and ultrafine particulate matter seems to be associated with more serious illnesses ( 6 ), as it can invade the deepest parts of the airways and more easily reach the bloodstream.

Air pollution mainly affects those living in large urban areas, where road emissions contribute the most to the degradation of air quality. There is also a danger of industrial accidents, where the spread of a toxic fog can be fatal to the populations of the surrounding areas. The dispersion of pollutants is determined by many parameters, most notably atmospheric stability and wind ( 6 ).

In developing countries ( 7 ), the problem is more serious due to overpopulation and uncontrolled urbanization along with the development of industrialization. This leads to poor air quality, especially in countries with social disparities and a lack of information on sustainable management of the environment. The use of fuels such as wood fuel or solid fuel for domestic needs due to low incomes exposes people to bad-quality, polluted air at home. It is of note that three billion people around the world are using the above sources of energy for their daily heating and cooking needs ( 8 ). In developing countries, the women of the household seem to carry the highest risk for disease development due to their longer duration exposure to the indoor air pollution ( 8 , 9 ). Due to its fast industrial development and overpopulation, China is one of the Asian countries confronting serious air pollution problems ( 10 , 11 ). The lung cancer mortality observed in China is associated with fine particles ( 12 ). As stated already, long-term exposure is associated with deleterious effects on the cardiovascular system ( 3 , 5 ). However, it is interesting to note that cardiovascular diseases have mostly been observed in developed and high-income countries rather than in the developing low-income countries exposed highly to air pollution ( 13 ). Extreme air pollution is recorded in India, where the air quality reaches hazardous levels. New Delhi is one of the more polluted cities in India. Flights in and out of New Delhi International Airport are often canceled due to the reduced visibility associated with air pollution. Pollution is occurring both in urban and rural areas in India due to the fast industrialization, urbanization, and rise in use of motorcycle transportation. Nevertheless, biomass combustion associated with heating and cooking needs and practices is a major source of household air pollution in India and in Nepal ( 14 , 15 ). There is spatial heterogeneity in India, as areas with diverse climatological conditions and population and education levels generate different indoor air qualities, with higher PM 2.5 observed in North Indian states (557–601 μg/m 3 ) compared to the Southern States (183–214 μg/m 3 ) ( 16 , 17 ). The cold climate of the North Indian areas may be the main reason for this, as longer periods at home and more heating are necessary compared to in the tropical climate of Southern India. Household air pollution in India is associated with major health effects, especially in women and young children, who stay indoors for longer periods. Chronic obstructive respiratory disease (CORD) and lung cancer are mostly observed in women, while acute lower respiratory disease is seen in young children under 5 years of age ( 18 ).

Accumulation of air pollution, especially sulfur dioxide and smoke, reaching 1,500 mg/m3, resulted in an increase in the number of deaths (4,000 deaths) in December 1952 in London and in 1963 in New York City (400 deaths) ( 19 ). An association of pollution with mortality was reported on the basis of monitoring of outdoor pollution in six US metropolitan cities ( 20 ). In every case, it seems that mortality was closely related to the levels of fine, inhalable, and sulfate particles more than with the levels of total particulate pollution, aerosol acidity, sulfur dioxide, or nitrogen dioxide ( 20 ).

Furthermore, extremely high levels of pollution are reported in Mexico City and Rio de Janeiro, followed by Milan, Ankara, Melbourne, Tokyo, and Moscow ( 19 ).

Based on the magnitude of the public health impact, it is certain that different kinds of interventions should be taken into account. Success and effectiveness in controlling air pollution, specifically at the local level, have been reported. Adequate technological means are applied considering the source and the nature of the emission as well as its impact on health and the environment. The importance of point sources and non-point sources of air pollution control is reported by Schwela and Köth-Jahr ( 21 ). Without a doubt, a detailed emission inventory must record all sources in a given area. Beyond considering the above sources and their nature, topography and meteorology should also be considered, as stated previously. Assessment of the control policies and methods is often extrapolated from the local to the regional and then to the global scale. Air pollution may be dispersed and transported from one region to another area located far away. Air pollution management means the reduction to acceptable levels or possible elimination of air pollutants whose presence in the air affects our health or the environmental ecosystem. Private and governmental entities and authorities implement actions to ensure the air quality ( 22 ). Air quality standards and guidelines were adopted for the different pollutants by the WHO and EPA as a tool for the management of air quality ( 1 , 23 ). These standards have to be compared to the emissions inventory standards by causal analysis and dispersion modeling in order to reveal the problematic areas ( 24 ). Inventories are generally based on a combination of direct measurements and emissions modeling ( 24 ).

As an example, we state here the control measures at the source through the use of catalytic converters in cars. These are devices that turn the pollutants and toxic gases produced from combustion engines into less-toxic pollutants by catalysis through redox reactions ( 25 ). In Greece, the use of private cars was restricted by tracking their license plates in order to reduce traffic congestion during rush hour ( 25 ).

Concerning industrial emissions, collectors and closed systems can keep the air pollution to the minimal standards imposed by legislation ( 26 ).

Current strategies to improve air quality require an estimation of the economic value of the benefits gained from proposed programs. These proposed programs by public authorities, and directives are issued with guidelines to be respected.

In Europe, air quality limit values AQLVs (Air Quality Limit Values) are issued for setting off planning claims ( 27 ). In the USA, the NAAQS (National Ambient Air Quality Standards) establish the national air quality limit values ( 27 ). While both standards and directives are based on different mechanisms, significant success has been achieved in the reduction of overall emissions and associated health and environmental effects ( 27 ). The European Directive identifies geographical areas of risk exposure as monitoring/assessment zones to record the emission sources and levels of air pollution ( 27 ), whereas the USA establishes global geographical air quality criteria according to the severity of their air quality problem and records all sources of the pollutants and their precursors ( 27 ).

In this vein, funds have been financing, directly or indirectly, projects related to air quality along with the technical infrastructure to maintain good air quality. These plans focus on an inventory of databases from air quality environmental planning awareness campaigns. Moreover, pollution measures of air emissions may be taken for vehicles, machines, and industries in urban areas.

Technological innovation can only be successful if it is able to meet the needs of society. In this sense, technology must reflect the decision-making practices and procedures of those involved in risk assessment and evaluation and act as a facilitator in providing information and assessments to enable decision makers to make the best decisions possible. Summarizing the aforementioned in order to design an effective air quality control strategy, several aspects must be considered: environmental factors and ambient air quality conditions, engineering factors and air pollutant characteristics, and finally, economic operating costs for technological improvement and administrative and legal costs. Considering the economic factor, competitiveness through neoliberal concepts is offering a solution to environmental problems ( 22 ).

The development of environmental governance, along with technological progress, has initiated the deployment of a dialogue. Environmental politics has created objections and points of opposition between different political parties, scientists, media, and governmental and non-governmental organizations ( 22 ). Radical environmental activism actions and movements have been created ( 22 ). The rise of the new information and communication technologies (ICTs) are many times examined as to whether and in which way they have influenced means of communication and social movements such as activism ( 28 ). Since the 1990s, the term “digital activism” has been used increasingly and in many different disciplines ( 29 ). Nowadays, multiple digital technologies can be used to produce a digital activism outcome on environmental issues. More specifically, devices with online capabilities such as computers or mobile phones are being used as a way to pursue change in political and social affairs ( 30 ).

In the present paper, we focus on the sources of environmental pollution in relation to public health and propose some solutions and interventions that may be of interest to environmental legislators and decision makers.

Sources of Exposure

It is known that the majority of environmental pollutants are emitted through large-scale human activities such as the use of industrial machinery, power-producing stations, combustion engines, and cars. Because these activities are performed at such a large scale, they are by far the major contributors to air pollution, with cars estimated to be responsible for approximately 80% of today's pollution ( 31 ). Some other human activities are also influencing our environment to a lesser extent, such as field cultivation techniques, gas stations, fuel tanks heaters, and cleaning procedures ( 32 ), as well as several natural sources, such as volcanic and soil eruptions and forest fires.

The classification of air pollutants is based mainly on the sources producing pollution. Therefore, it is worth mentioning the four main sources, following the classification system: Major sources, Area sources, Mobile sources, and Natural sources.

Major sources include the emission of pollutants from power stations, refineries, and petrochemicals, the chemical and fertilizer industries, metallurgical and other industrial plants, and, finally, municipal incineration.

Indoor area sources include domestic cleaning activities, dry cleaners, printing shops, and petrol stations.

Mobile sources include automobiles, cars, railways, airways, and other types of vehicles.

Finally, natural sources include, as stated previously, physical disasters ( 33 ) such as forest fire, volcanic erosion, dust storms, and agricultural burning.

However, many classification systems have been proposed. Another type of classification is a grouping according to the recipient of the pollution, as follows:

Air pollution is determined as the presence of pollutants in the air in large quantities for long periods. Air pollutants are dispersed particles, hydrocarbons, CO, CO 2 , NO, NO 2 , SO 3 , etc.

Water pollution is organic and inorganic charge and biological charge ( 10 ) at high levels that affect the water quality ( 34 , 35 ).

Soil pollution occurs through the release of chemicals or the disposal of wastes, such as heavy metals, hydrocarbons, and pesticides.

Air pollution can influence the quality of soil and water bodies by polluting precipitation, falling into water and soil environments ( 34 , 36 ). Notably, the chemistry of the soil can be amended due to acid precipitation by affecting plants, cultures, and water quality ( 37 ). Moreover, movement of heavy metals is favored by soil acidity, and metals are so then moving into the watery environment. It is known that heavy metals such as aluminum are noxious to wildlife and fishes. Soil quality seems to be of importance, as soils with low calcium carbonate levels are at increased jeopardy from acid rain. Over and above rain, snow and particulate matter drip into watery ' bodies ( 36 , 38 ).

Lastly, pollution is classified following type of origin:

Radioactive and nuclear pollution , releasing radioactive and nuclear pollutants into water, air, and soil during nuclear explosions and accidents, from nuclear weapons, and through handling or disposal of radioactive sewage.

Radioactive materials can contaminate surface water bodies and, being noxious to the environment, plants, animals, and humans. It is known that several radioactive substances such as radium and uranium concentrate in the bones and can cause cancers ( 38 , 39 ).

Noise pollution is produced by machines, vehicles, traffic noises, and musical installations that are harmful to our hearing.

The World Health Organization introduced the term DALYs. The DALYs for a disease or health condition is defined as the sum of the Years of Life Lost (YLL) due to premature mortality in the population and the Years Lost due to Disability (YLD) for people living with the health condition or its consequences ( 39 ). In Europe, air pollution is the main cause of disability-adjusted life years lost (DALYs), followed by noise pollution. The potential relationships of noise and air pollution with health have been studied ( 40 ). The study found that DALYs related to noise were more important than those related to air pollution, as the effects of environmental noise on cardiovascular disease were independent of air pollution ( 40 ). Environmental noise should be counted as an independent public health risk ( 40 ).

Environmental pollution occurs when changes in the physical, chemical, or biological constituents of the environment (air masses, temperature, climate, etc.) are produced.

Pollutants harm our environment either by increasing levels above normal or by introducing harmful toxic substances. Primary pollutants are directly produced from the above sources, and secondary pollutants are emitted as by-products of the primary ones. Pollutants can be biodegradable or non-biodegradable and of natural origin or anthropogenic, as stated previously. Moreover, their origin can be a unique source (point-source) or dispersed sources.

Pollutants have differences in physical and chemical properties, explaining the discrepancy in their capacity for producing toxic effects. As an example, we state here that aerosol compounds ( 41 – 43 ) have a greater toxicity than gaseous compounds due to their tiny size (solid or liquid) in the atmosphere; they have a greater penetration capacity. Gaseous compounds are eliminated more easily by our respiratory system ( 41 ). These particles are able to damage lungs and can even enter the bloodstream ( 41 ), leading to the premature deaths of millions of people yearly. Moreover, the aerosol acidity ([H+]) seems to considerably enhance the production of secondary organic aerosols (SOA), but this last aspect is not supported by other scientific teams ( 38 ).

Climate and Pollution

Air pollution and climate change are closely related. Climate is the other side of the same coin that reduces the quality of our Earth ( 44 ). Pollutants such as black carbon, methane, tropospheric ozone, and aerosols affect the amount of incoming sunlight. As a result, the temperature of the Earth is increasing, resulting in the melting of ice, icebergs, and glaciers.

In this vein, climatic changes will affect the incidence and prevalence of both residual and imported infections in Europe. Climate and weather affect the duration, timing, and intensity of outbreaks strongly and change the map of infectious diseases in the globe ( 45 ). Mosquito-transmitted parasitic or viral diseases are extremely climate-sensitive, as warming firstly shortens the pathogen incubation period and secondly shifts the geographic map of the vector. Similarly, water-warming following climate changes leads to a high incidence of waterborne infections. Recently, in Europe, eradicated diseases seem to be emerging due to the migration of population, for example, cholera, poliomyelitis, tick-borne encephalitis, and malaria ( 46 ).

The spread of epidemics is associated with natural climate disasters and storms, which seem to occur more frequently nowadays ( 47 ). Malnutrition and disequilibration of the immune system are also associated with the emerging infections affecting public health ( 48 ).

The Chikungunya virus “took the airplane” from the Indian Ocean to Europe, as outbreaks of the disease were registered in Italy ( 49 ) as well as autochthonous cases in France ( 50 ).

An increase in cryptosporidiosis in the United Kingdom and in the Czech Republic seems to have occurred following flooding ( 36 , 51 ).

As stated previously, aerosols compounds are tiny in size and considerably affect the climate. They are able to dissipate sunlight (the albedo phenomenon) by dispersing a quarter of the sun's rays back to space and have cooled the global temperature over the last 30 years ( 52 ).

Air Pollutants

The World Health Organization (WHO) reports on six major air pollutants, namely particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Air pollution can have a disastrous effect on all components of the environment, including groundwater, soil, and air. Additionally, it poses a serious threat to living organisms. In this vein, our interest is mainly to focus on these pollutants, as they are related to more extensive and severe problems in human health and environmental impact. Acid rain, global warming, the greenhouse effect, and climate changes have an important ecological impact on air pollution ( 53 ).

Particulate Matter (PM) and Health

Studies have shown a relationship between particulate matter (PM) and adverse health effects, focusing on either short-term (acute) or long-term (chronic) PM exposure.

Particulate matter (PM) is usually formed in the atmosphere as a result of chemical reactions between the different pollutants. The penetration of particles is closely dependent on their size ( 53 ). Particulate Matter (PM) was defined as a term for particles by the United States Environmental Protection Agency ( 54 ). Particulate matter (PM) pollution includes particles with diameters of 10 micrometers (μm) or smaller, called PM 10 , and extremely fine particles with diameters that are generally 2.5 micrometers (μm) and smaller.

Particulate matter contains tiny liquid or solid droplets that can be inhaled and cause serious health effects ( 55 ). Particles <10 μm in diameter (PM 10 ) after inhalation can invade the lungs and even reach the bloodstream. Fine particles, PM 2.5 , pose a greater risk to health ( 6 , 56 ) ( Table 1 ).

Penetrability according to particle size.

Multiple epidemiological studies have been performed on the health effects of PM. A positive relation was shown between both short-term and long-term exposures of PM 2.5 and acute nasopharyngitis ( 56 ). In addition, long-term exposure to PM for years was found to be related to cardiovascular diseases and infant mortality.

Those studies depend on PM 2.5 monitors and are restricted in terms of study area or city area due to a lack of spatially resolved daily PM 2.5 concentration data and, in this way, are not representative of the entire population. Following a recent epidemiological study by the Department of Environmental Health at Harvard School of Public Health (Boston, MA) ( 57 ), it was reported that, as PM 2.5 concentrations vary spatially, an exposure error (Berkson error) seems to be produced, and the relative magnitudes of the short- and long-term effects are not yet completely elucidated. The team developed a PM 2.5 exposure model based on remote sensing data for assessing short- and long-term human exposures ( 57 ). This model permits spatial resolution in short-term effects plus the assessment of long-term effects in the whole population.

Moreover, respiratory diseases and affection of the immune system are registered as long-term chronic effects ( 58 ). It is worth noting that people with asthma, pneumonia, diabetes, and respiratory and cardiovascular diseases are especially susceptible and vulnerable to the effects of PM. PM 2.5 , followed by PM 10 , are strongly associated with diverse respiratory system diseases ( 59 ), as their size permits them to pierce interior spaces ( 60 ). The particles produce toxic effects according to their chemical and physical properties. The components of PM 10 and PM 2.5 can be organic (polycyclic aromatic hydrocarbons, dioxins, benzene, 1-3 butadiene) or inorganic (carbon, chlorides, nitrates, sulfates, metals) in nature ( 55 ).

Particulate Matter (PM) is divided into four main categories according to type and size ( 61 ) ( Table 2 ).

Types and sizes of particulate Matter (PM).

Gas contaminants include PM in aerial masses.

Particulate contaminants include contaminants such as smog, soot, tobacco smoke, oil smoke, fly ash, and cement dust.

Biological Contaminants are microorganisms (bacteria, viruses, fungi, mold, and bacterial spores), cat allergens, house dust and allergens, and pollen.

Types of Dust include suspended atmospheric dust, settling dust, and heavy dust.

Finally, another fact is that the half-lives of PM 10 and PM 2.5 particles in the atmosphere is extended due to their tiny dimensions; this permits their long-lasting suspension in the atmosphere and even their transfer and spread to distant destinations where people and the environment may be exposed to the same magnitude of pollution ( 53 ). They are able to change the nutrient balance in watery ecosystems, damage forests and crops, and acidify water bodies.

As stated, PM 2.5 , due to their tiny size, are causing more serious health effects. These aforementioned fine particles are the main cause of the “haze” formation in different metropolitan areas ( 12 , 13 , 61 ).

Ozone Impact in the Atmosphere

Ozone (O 3 ) is a gas formed from oxygen under high voltage electric discharge ( 62 ). It is a strong oxidant, 52% stronger than chlorine. It arises in the stratosphere, but it could also arise following chain reactions of photochemical smog in the troposphere ( 63 ).

Ozone can travel to distant areas from its initial source, moving with air masses ( 64 ). It is surprising that ozone levels over cities are low in contrast to the increased amounts occuring in urban areas, which could become harmful for cultures, forests, and vegetation ( 65 ) as it is reducing carbon assimilation ( 66 ). Ozone reduces growth and yield ( 47 , 48 ) and affects the plant microflora due to its antimicrobial capacity ( 67 , 68 ). In this regard, ozone acts upon other natural ecosystems, with microflora ( 69 , 70 ) and animal species changing their species composition ( 71 ). Ozone increases DNA damage in epidermal keratinocytes and leads to impaired cellular function ( 72 ).

Ground-level ozone (GLO) is generated through a chemical reaction between oxides of nitrogen and VOCs emitted from natural sources and/or following anthropogenic activities.

Ozone uptake usually occurs by inhalation. Ozone affects the upper layers of the skin and the tear ducts ( 73 ). A study of short-term exposure of mice to high levels of ozone showed malondialdehyde formation in the upper skin (epidermis) but also depletion in vitamins C and E. It is likely that ozone levels are not interfering with the skin barrier function and integrity to predispose to skin disease ( 74 ).

Due to the low water-solubility of ozone, inhaled ozone has the capacity to penetrate deeply into the lungs ( 75 ).

Toxic effects induced by ozone are registered in urban areas all over the world, causing biochemical, morphologic, functional, and immunological disorders ( 76 ).

The European project (APHEA2) focuses on the acute effects of ambient ozone concentrations on mortality ( 77 ). Daily ozone concentrations compared to the daily number of deaths were reported from different European cities for a 3-year period. During the warm period of the year, an observed increase in ozone concentration was associated with an increase in the daily number of deaths (0.33%), in the number of respiratory deaths (1.13%), and in the number of cardiovascular deaths (0.45%). No effect was observed during wintertime.

Carbon Monoxide (CO)

Carbon monoxide is produced by fossil fuel when combustion is incomplete. The symptoms of poisoning due to inhaling carbon monoxide include headache, dizziness, weakness, nausea, vomiting, and, finally, loss of consciousness.

The affinity of carbon monoxide to hemoglobin is much greater than that of oxygen. In this vein, serious poisoning may occur in people exposed to high levels of carbon monoxide for a long period of time. Due to the loss of oxygen as a result of the competitive binding of carbon monoxide, hypoxia, ischemia, and cardiovascular disease are observed.

Carbon monoxide affects the greenhouses gases that are tightly connected to global warming and climate. This should lead to an increase in soil and water temperatures, and extreme weather conditions or storms may occur ( 68 ).

However, in laboratory and field experiments, it has been seen to produce increased plant growth ( 78 ).

Nitrogen Oxide (NO 2 )

Nitrogen oxide is a traffic-related pollutant, as it is emitted from automobile motor engines ( 79 , 80 ). It is an irritant of the respiratory system as it penetrates deep in the lung, inducing respiratory diseases, coughing, wheezing, dyspnea, bronchospasm, and even pulmonary edema when inhaled at high levels. It seems that concentrations over 0.2 ppm produce these adverse effects in humans, while concentrations higher than 2.0 ppm affect T-lymphocytes, particularly the CD8+ cells and NK cells that produce our immune response ( 81 ).It is reported that long-term exposure to high levels of nitrogen dioxide can be responsible for chronic lung disease. Long-term exposure to NO 2 can impair the sense of smell ( 81 ).

However, systems other than respiratory ones can be involved, as symptoms such as eye, throat, and nose irritation have been registered ( 81 ).

High levels of nitrogen dioxide are deleterious to crops and vegetation, as they have been observed to reduce crop yield and plant growth efficiency. Moreover, NO 2 can reduce visibility and discolor fabrics ( 81 ).

Sulfur Dioxide (SO 2 )

Sulfur dioxide is a harmful gas that is emitted mainly from fossil fuel consumption or industrial activities. The annual standard for SO 2 is 0.03 ppm ( 82 ). It affects human, animal, and plant life. Susceptible people as those with lung disease, old people, and children, who present a higher risk of damage. The major health problems associated with sulfur dioxide emissions in industrialized areas are respiratory irritation, bronchitis, mucus production, and bronchospasm, as it is a sensory irritant and penetrates deep into the lung converted into bisulfite and interacting with sensory receptors, causing bronchoconstriction. Moreover, skin redness, damage to the eyes (lacrimation and corneal opacity) and mucous membranes, and worsening of pre-existing cardiovascular disease have been observed ( 81 ).

Environmental adverse effects, such as acidification of soil and acid rain, seem to be associated with sulfur dioxide emissions ( 83 ).

Lead is a heavy metal used in different industrial plants and emitted from some petrol motor engines, batteries, radiators, waste incinerators, and waste waters ( 84 ).

Moreover, major sources of lead pollution in the air are metals, ore, and piston-engine aircraft. Lead poisoning is a threat to public health due to its deleterious effects upon humans, animals, and the environment, especially in the developing countries.

Exposure to lead can occur through inhalation, ingestion, and dermal absorption. Trans- placental transport of lead was also reported, as lead passes through the placenta unencumbered ( 85 ). The younger the fetus is, the more harmful the toxic effects. Lead toxicity affects the fetal nervous system; edema or swelling of the brain is observed ( 86 ). Lead, when inhaled, accumulates in the blood, soft tissue, liver, lung, bones, and cardiovascular, nervous, and reproductive systems. Moreover, loss of concentration and memory, as well as muscle and joint pain, were observed in adults ( 85 , 86 ).

Children and newborns ( 87 ) are extremely susceptible even to minimal doses of lead, as it is a neurotoxicant and causes learning disabilities, impairment of memory, hyperactivity, and even mental retardation.

Elevated amounts of lead in the environment are harmful to plants and crop growth. Neurological effects are observed in vertebrates and animals in association with high lead levels ( 88 ).

Polycyclic Aromatic Hydrocarbons(PAHs)

The distribution of PAHs is ubiquitous in the environment, as the atmosphere is the most important means of their dispersal. They are found in coal and in tar sediments. Moreover, they are generated through incomplete combustion of organic matter as in the cases of forest fires, incineration, and engines ( 89 ). PAH compounds, such as benzopyrene, acenaphthylene, anthracene, and fluoranthene are recognized as toxic, mutagenic, and carcinogenic substances. They are an important risk factor for lung cancer ( 89 ).

Volatile Organic Compounds(VOCs)

Volatile organic compounds (VOCs), such as toluene, benzene, ethylbenzene, and xylene ( 90 ), have been found to be associated with cancer in humans ( 91 ). The use of new products and materials has actually resulted in increased concentrations of VOCs. VOCs pollute indoor air ( 90 ) and may have adverse effects on human health ( 91 ). Short-term and long-term adverse effects on human health are observed. VOCs are responsible for indoor air smells. Short-term exposure is found to cause irritation of eyes, nose, throat, and mucosal membranes, while those of long duration exposure include toxic reactions ( 92 ). Predictable assessment of the toxic effects of complex VOC mixtures is difficult to estimate, as these pollutants can have synergic, antagonistic, or indifferent effects ( 91 , 93 ).

Dioxins originate from industrial processes but also come from natural processes, such as forest fires and volcanic eruptions. They accumulate in foods such as meat and dairy products, fish and shellfish, and especially in the fatty tissue of animals ( 94 ).

Short-period exhibition to high dioxin concentrations may result in dark spots and lesions on the skin ( 94 ). Long-term exposure to dioxins can cause developmental problems, impairment of the immune, endocrine and nervous systems, reproductive infertility, and cancer ( 94 ).

Without any doubt, fossil fuel consumption is responsible for a sizeable part of air contamination. This contamination may be anthropogenic, as in agricultural and industrial processes or transportation, while contamination from natural sources is also possible. Interestingly, it is of note that the air quality standards established through the European Air Quality Directive are somewhat looser than the WHO guidelines, which are stricter ( 95 ).

Effect of Air Pollution on Health

The most common air pollutants are ground-level ozone and Particulates Matter (PM). Air pollution is distinguished into two main types:

Outdoor pollution is the ambient air pollution.

Indoor pollution is the pollution generated by household combustion of fuels.

People exposed to high concentrations of air pollutants experience disease symptoms and states of greater and lesser seriousness. These effects are grouped into short- and long-term effects affecting health.

Susceptible populations that need to be aware of health protection measures include old people, children, and people with diabetes and predisposing heart or lung disease, especially asthma.

As extensively stated previously, according to a recent epidemiological study from Harvard School of Public Health, the relative magnitudes of the short- and long-term effects have not been completely clarified ( 57 ) due to the different epidemiological methodologies and to the exposure errors. New models are proposed for assessing short- and long-term human exposure data more successfully ( 57 ). Thus, in the present section, we report the more common short- and long-term health effects but also general concerns for both types of effects, as these effects are often dependent on environmental conditions, dose, and individual susceptibility.

Short-term effects are temporary and range from simple discomfort, such as irritation of the eyes, nose, skin, throat, wheezing, coughing and chest tightness, and breathing difficulties, to more serious states, such as asthma, pneumonia, bronchitis, and lung and heart problems. Short-term exposure to air pollution can also cause headaches, nausea, and dizziness.

These problems can be aggravated by extended long-term exposure to the pollutants, which is harmful to the neurological, reproductive, and respiratory systems and causes cancer and even, rarely, deaths.

The long-term effects are chronic, lasting for years or the whole life and can even lead to death. Furthermore, the toxicity of several air pollutants may also induce a variety of cancers in the long term ( 96 ).

As stated already, respiratory disorders are closely associated with the inhalation of air pollutants. These pollutants will invade through the airways and will accumulate at the cells. Damage to target cells should be related to the pollutant component involved and its source and dose. Health effects are also closely dependent on country, area, season, and time. An extended exposure duration to the pollutant should incline to long-term health effects in relation also to the above factors.

Particulate Matter (PMs), dust, benzene, and O 3 cause serious damage to the respiratory system ( 97 ). Moreover, there is a supplementary risk in case of existing respiratory disease such as asthma ( 98 ). Long-term effects are more frequent in people with a predisposing disease state. When the trachea is contaminated by pollutants, voice alterations may be remarked after acute exposure. Chronic obstructive pulmonary disease (COPD) may be induced following air pollution, increasing morbidity and mortality ( 99 ). Long-term effects from traffic, industrial air pollution, and combustion of fuels are the major factors for COPD risk ( 99 ).

Multiple cardiovascular effects have been observed after exposure to air pollutants ( 100 ). Changes occurred in blood cells after long-term exposure may affect cardiac functionality. Coronary arteriosclerosis was reported following long-term exposure to traffic emissions ( 101 ), while short-term exposure is related to hypertension, stroke, myocardial infracts, and heart insufficiency. Ventricle hypertrophy is reported to occur in humans after long-time exposure to nitrogen oxide (NO 2 ) ( 102 , 103 ).

Neurological effects have been observed in adults and children after extended-term exposure to air pollutants.

Psychological complications, autism, retinopathy, fetal growth, and low birth weight seem to be related to long-term air pollution ( 83 ). The etiologic agent of the neurodegenerative diseases (Alzheimer's and Parkinson's) is not yet known, although it is believed that extended exposure to air pollution seems to be a factor. Specifically, pesticides and metals are cited as etiological factors, together with diet. The mechanisms in the development of neurodegenerative disease include oxidative stress, protein aggregation, inflammation, and mitochondrial impairment in neurons ( 104 ) ( Figure 1 ).

An external file that holds a picture, illustration, etc.
Object name is fpubh-08-00014-g0001.jpg

Impact of air pollutants on the brain.

Brain inflammation was observed in dogs living in a highly polluted area in Mexico for a long period ( 105 ). In human adults, markers of systemic inflammation (IL-6 and fibrinogen) were found to be increased as an immediate response to PNC on the IL-6 level, possibly leading to the production of acute-phase proteins ( 106 ). The progression of atherosclerosis and oxidative stress seem to be the mechanisms involved in the neurological disturbances caused by long-term air pollution. Inflammation comes secondary to the oxidative stress and seems to be involved in the impairment of developmental maturation, affecting multiple organs ( 105 , 107 ). Similarly, other factors seem to be involved in the developmental maturation, which define the vulnerability to long-term air pollution. These include birthweight, maternal smoking, genetic background and socioeconomic environment, as well as education level.

However, diet, starting from breast-feeding, is another determinant factor. Diet is the main source of antioxidants, which play a key role in our protection against air pollutants ( 108 ). Antioxidants are free radical scavengers and limit the interaction of free radicals in the brain ( 108 ). Similarly, genetic background may result in a differential susceptibility toward the oxidative stress pathway ( 60 ). For example, antioxidant supplementation with vitamins C and E appears to modulate the effect of ozone in asthmatic children homozygous for the GSTM1 null allele ( 61 ). Inflammatory cytokines released in the periphery (e.g., respiratory epithelia) upregulate the innate immune Toll-like receptor 2. Such activation and the subsequent events leading to neurodegeneration have recently been observed in lung lavage in mice exposed to ambient Los Angeles (CA, USA) particulate matter ( 61 ). In children, neurodevelopmental morbidities were observed after lead exposure. These children developed aggressive and delinquent behavior, reduced intelligence, learning difficulties, and hyperactivity ( 109 ). No level of lead exposure seems to be “safe,” and the scientific community has asked the Centers for Disease Control and Prevention (CDC) to reduce the current screening guideline of 10 μg/dl ( 109 ).

It is important to state that impact on the immune system, causing dysfunction and neuroinflammation ( 104 ), is related to poor air quality. Yet, increases in serum levels of immunoglobulins (IgA, IgM) and the complement component C3 are observed ( 106 ). Another issue is that antigen presentation is affected by air pollutants, as there is an upregulation of costimulatory molecules such as CD80 and CD86 on macrophages ( 110 ).

As is known, skin is our shield against ultraviolet radiation (UVR) and other pollutants, as it is the most exterior layer of our body. Traffic-related pollutants, such as PAHs, VOCs, oxides, and PM, may cause pigmented spots on our skin ( 111 ). On the one hand, as already stated, when pollutants penetrate through the skin or are inhaled, damage to the organs is observed, as some of these pollutants are mutagenic and carcinogenic, and, specifically, they affect the liver and lung. On the other hand, air pollutants (and those in the troposphere) reduce the adverse effects of ultraviolet radiation UVR in polluted urban areas ( 111 ). Air pollutants absorbed by the human skin may contribute to skin aging, psoriasis, acne, urticaria, eczema, and atopic dermatitis ( 111 ), usually caused by exposure to oxides and photochemical smoke ( 111 ). Exposure to PM and cigarette smoking act as skin-aging agents, causing spots, dyschromia, and wrinkles. Lastly, pollutants have been associated with skin cancer ( 111 ).

Higher morbidity is reported to fetuses and children when exposed to the above dangers. Impairment in fetal growth, low birth weight, and autism have been reported ( 112 ).

Another exterior organ that may be affected is the eye. Contamination usually comes from suspended pollutants and may result in asymptomatic eye outcomes, irritation ( 112 ), retinopathy, or dry eye syndrome ( 113 , 114 ).

Environmental Impact of Air Pollution

Air pollution is harming not only human health but also the environment ( 115 ) in which we live. The most important environmental effects are as follows.

Acid rain is wet (rain, fog, snow) or dry (particulates and gas) precipitation containing toxic amounts of nitric and sulfuric acids. They are able to acidify the water and soil environments, damage trees and plantations, and even damage buildings and outdoor sculptures, constructions, and statues.

Haze is produced when fine particles are dispersed in the air and reduce the transparency of the atmosphere. It is caused by gas emissions in the air coming from industrial facilities, power plants, automobiles, and trucks.

Ozone , as discussed previously, occurs both at ground level and in the upper level (stratosphere) of the Earth's atmosphere. Stratospheric ozone is protecting us from the Sun's harmful ultraviolet (UV) rays. In contrast, ground-level ozone is harmful to human health and is a pollutant. Unfortunately, stratospheric ozone is gradually damaged by ozone-depleting substances (i.e., chemicals, pesticides, and aerosols). If this protecting stratospheric ozone layer is thinned, then UV radiation can reach our Earth, with harmful effects for human life (skin cancer) ( 116 ) and crops ( 117 ). In plants, ozone penetrates through the stomata, inducing them to close, which blocks CO 2 transfer and induces a reduction in photosynthesis ( 118 ).

Global climate change is an important issue that concerns mankind. As is known, the “greenhouse effect” keeps the Earth's temperature stable. Unhappily, anthropogenic activities have destroyed this protecting temperature effect by producing large amounts of greenhouse gases, and global warming is mounting, with harmful effects on human health, animals, forests, wildlife, agriculture, and the water environment. A report states that global warming is adding to the health risks of poor people ( 119 ).

People living in poorly constructed buildings in warm-climate countries are at high risk for heat-related health problems as temperatures mount ( 119 ).

Wildlife is burdened by toxic pollutants coming from the air, soil, or the water ecosystem and, in this way, animals can develop health problems when exposed to high levels of pollutants. Reproductive failure and birth effects have been reported.

Eutrophication is occurring when elevated concentrations of nutrients (especially nitrogen) stimulate the blooming of aquatic algae, which can cause a disequilibration in the diversity of fish and their deaths.

Without a doubt, there is a critical concentration of pollution that an ecosystem can tolerate without being destroyed, which is associated with the ecosystem's capacity to neutralize acidity. The Canada Acid Rain Program established this load at 20 kg/ha/yr ( 120 ).

Hence, air pollution has deleterious effects on both soil and water ( 121 ). Concerning PM as an air pollutant, its impact on crop yield and food productivity has been reported. Its impact on watery bodies is associated with the survival of living organisms and fishes and their productivity potential ( 121 ).

An impairment in photosynthetic rhythm and metabolism is observed in plants exposed to the effects of ozone ( 121 ).

Sulfur and nitrogen oxides are involved in the formation of acid rain and are harmful to plants and marine organisms.

Last but not least, as mentioned above, the toxicity associated with lead and other metals is the main threat to our ecosystems (air, water, and soil) and living creatures ( 121 ).

In 2018, during the first WHO Global Conference on Air Pollution and Health, the WHO's General Director, Dr. Tedros Adhanom Ghebreyesus, called air pollution a “silent public health emergency” and “the new tobacco” ( 122 ).

Undoubtedly, children are particularly vulnerable to air pollution, especially during their development. Air pollution has adverse effects on our lives in many different respects.

Diseases associated with air pollution have not only an important economic impact but also a societal impact due to absences from productive work and school.

Despite the difficulty of eradicating the problem of anthropogenic environmental pollution, a successful solution could be envisaged as a tight collaboration of authorities, bodies, and doctors to regularize the situation. Governments should spread sufficient information and educate people and should involve professionals in these issues so as to control the emergence of the problem successfully.

Technologies to reduce air pollution at the source must be established and should be used in all industries and power plants. The Kyoto Protocol of 1997 set as a major target the reduction of GHG emissions to below 5% by 2012 ( 123 ). This was followed by the Copenhagen summit, 2009 ( 124 ), and then the Durban summit of 2011 ( 125 ), where it was decided to keep to the same line of action. The Kyoto protocol and the subsequent ones were ratified by many countries. Among the pioneers who adopted this important protocol for the world's environmental and climate “health” was China ( 3 ). As is known, China is a fast-developing economy and its GDP (Gross Domestic Product) is expected to be very high by 2050, which is defined as the year of dissolution of the protocol for the decrease in gas emissions.

A more recent international agreement of crucial importance for climate change is the Paris Agreement of 2015, issued by the UNFCCC (United Nations Climate Change Committee). This latest agreement was ratified by a plethora of UN (United Nations) countries as well as the countries of the European Union ( 126 ). In this vein, parties should promote actions and measures to enhance numerous aspects around the subject. Boosting education, training, public awareness, and public participation are some of the relevant actions for maximizing the opportunities to achieve the targets and goals on the crucial matter of climate change and environmental pollution ( 126 ). Without any doubt, technological improvements makes our world easier and it seems difficult to reduce the harmful impact caused by gas emissions, we could limit its use by seeking reliable approaches.

Synopsizing, a global prevention policy should be designed in order to combat anthropogenic air pollution as a complement to the correct handling of the adverse health effects associated with air pollution. Sustainable development practices should be applied, together with information coming from research in order to handle the problem effectively.

At this point, international cooperation in terms of research, development, administration policy, monitoring, and politics is vital for effective pollution control. Legislation concerning air pollution must be aligned and updated, and policy makers should propose the design of a powerful tool of environmental and health protection. As a result, the main proposal of this essay is that we should focus on fostering local structures to promote experience and practice and extrapolate these to the international level through developing effective policies for sustainable management of ecosystems.

Author Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Conflict of Interest

IM is employed by the company Delphis S.A. The remaining authors declare that the present review paper was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Environmental Pollution Control

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Pollution is the introduction of harmful materials into the environment. These harmful materials are called pollutants.

Biology, Ecology, Health, Earth Science, Geography

Loading ...

Pollution is the introduction of harmful materials into the environment . These harmful materials are called pollutants . Pollutants can be natural, such as volcanic ash . They can also be created by human activity, such as trash or runoff produced by factories. Pollutants damage the quality of air, water, and land. Many things that are useful to people produce pollution. Cars spew pollutants from their exhaust pipes. Burning coal to create electricity pollutes the air. Industries and homes generate garbage and sewage that can pollute the land and water. Pesticides —chemical poisons used to kill weeds and insects— seep into waterways and harm wildlife . All living things—from one-celled microbes to blue whales—depend on Earth ’s supply of air and water. When these resources are polluted, all forms of life are threatened. Pollution is a global problem. Although urban areas are usually more polluted than the countryside, pollution can spread to remote places where no people live. For example, pesticides and other chemicals have been found in the Antarctic ice sheet . In the middle of the northern Pacific Ocean, a huge collection of microscopic plastic particles forms what is known as the Great Pacific Garbage Patch . Air and water currents carry pollution. Ocean currents and migrating fish carry marine pollutants far and wide. Winds can pick up radioactive material accidentally released from a nuclear reactor and scatter it around the world. Smoke from a factory in one country drifts into another country. In the past, visitors to Big Bend National Park in the U.S. state of Texas could see 290 kilometers (180 miles) across the vast landscape . Now, coal-burning power plants in Texas and the neighboring state of Chihuahua, Mexico have spewed so much pollution into the air that visitors to Big Bend can sometimes see only 50 kilometers (30 miles). The three major types of pollution are air pollution , water pollution , and land pollution . Air Pollution Sometimes, air pollution is visible . A person can see dark smoke pour from the exhaust pipes of large trucks or factories, for example. More often, however, air pollution is invisible . Polluted air can be dangerous, even if the pollutants are invisible. It can make people’s eyes burn and make them have difficulty breathing. It can also increase the risk of lung cancer . Sometimes, air pollution kills quickly. In 1984, an accident at a pesticide plant in Bhopal, India, released a deadly gas into the air. At least 8,000 people died within days. Hundreds of thou sands more were permanently injured. Natural disasters can also cause air pollution to increase quickly. When volcanoes erupt , they eject volcanic ash and gases into the atmosphere . Volcanic ash can discolor the sky for months. After the eruption of the Indonesian volcano of Krakatoa in 1883, ash darkened the sky around the world. The dimmer sky caused fewer crops to be harvested as far away as Europe and North America. For years, meteorologists tracked what was known as the “equatorial smoke stream .” In fact, this smoke stream was a jet stream , a wind high in Earth’s atmosphere that Krakatoa’s air pollution made visible. Volcanic gases , such as sulfur dioxide , can kill nearby residents and make the soil infertile for years. Mount Vesuvius, a volcano in Italy, famously erupted in 79, killing hundreds of residents of the nearby towns of Pompeii and Herculaneum. Most victims of Vesuvius were not killed by lava or landslides caused by the eruption. They were choked, or asphyxiated , by deadly volcanic gases. In 1986, a toxic cloud developed over Lake Nyos, Cameroon. Lake Nyos sits in the crater of a volcano. Though the volcano did not erupt, it did eject volcanic gases into the lake. The heated gases passed through the water of the lake and collected as a cloud that descended the slopes of the volcano and into nearby valleys . As the toxic cloud moved across the landscape, it killed birds and other organisms in their natural habitat . This air pollution also killed thousands of cattle and as many as 1,700 people. Most air pollution is not natural, however. It comes from burning fossil fuels —coal, oil , and natural gas . When gasoline is burned to power cars and trucks, it produces carbon monoxide , a colorless, odorless gas. The gas is harmful in high concentrations , or amounts. City traffic produces highly concentrated carbon monoxide. Cars and factories produce other common pollutants, including nitrogen oxide , sulfur dioxide, and hydrocarbons . These chemicals react with sunlight to produce smog , a thick fog or haze of air pollution. The smog is so thick in Linfen, China, that people can seldom see the sun. Smog can be brown or grayish blue, depending on which pollutants are in it. Smog makes breathing difficult, especially for children and older adults. Some cities that suffer from extreme smog issue air pollution warnings. The government of Hong Kong, for example, will warn people not to go outside or engage in strenuous physical activity (such as running or swimming) when smog is very thick.

When air pollutants such as nitrogen oxide and sulfur dioxide mix with moisture, they change into acids . They then fall back to earth as acid rain . Wind often carries acid rain far from the pollution source. Pollutants produced by factories and power plants in Spain can fall as acid rain in Norway. Acid rain can kill all the trees in a forest . It can also devastate lakes, streams, and other waterways. When lakes become acidic, fish can’t survive . In Sweden, acid rain created thousands of “ dead lakes ,” where fish no longer live. Acid rain also wears away marble and other kinds of stone . It has erased the words on gravestones and damaged many historic buildings and monuments . The Taj Mahal , in Agra, India, was once gleaming white. Years of exposure to acid rain has left it pale. Governments have tried to prevent acid rain by limiting the amount of pollutants released into the air. In Europe and North America, they have had some success, but acid rain remains a major problem in the developing world , especially Asia. Greenhouse gases are another source of air pollution. Greenhouse gases such as carbon dioxide and methane occur naturally in the atmosphere. In fact, they are necessary for life on Earth. They absorb sunlight reflected from Earth, preventing it from escaping into space. By trapping heat in the atmosphere, they keep Earth warm enough for people to live. This is called the greenhouse effect . But human activities such as burning fossil fuels and destroying forests have increased the amount of greenhouse gases in the atmosphere. This has increased the greenhouse effect, and average temperatures across the globe are rising. The decade that began in the year 2000 was the warmest on record. This increase in worldwide average temperatures, caused in part by human activity, is called global warming . Global warming is causing ice sheets and glaciers to melt. The melting ice is causing sea levels to rise at a rate of two millimeters (0.09 inches) per year. The rising seas will eventually flood low-lying coastal regions . Entire nations, such as the islands of Maldives, are threatened by this climate change . Global warming also contributes to the phenomenon of ocean acidification . Ocean acidification is the process of ocean waters absorbing more carbon dioxide from the atmosphere. Fewer organisms can survive in warmer, less salty waters. The ocean food web is threatened as plants and animals such as coral fail to adapt to more acidic oceans. Scientists have predicted that global warming will cause an increase in severe storms . It will also cause more droughts in some regions and more flooding in others. The change in average temperatures is already shrinking some habitats, the regions where plants and animals naturally live. Polar bears hunt seals from sea ice in the Arctic. The melting ice is forcing polar bears to travel farther to find food , and their numbers are shrinking. People and governments can respond quickly and effectively to reduce air pollution. Chemicals called chlorofluorocarbons (CFCs) are a dangerous form of air pollution that governments worked to reduce in the 1980s and 1990s. CFCs are found in gases that cool refrigerators, in foam products, and in aerosol cans . CFCs damage the ozone layer , a region in Earth’s upper atmosphere. The ozone layer protects Earth by absorbing much of the sun’s harmful ultraviolet radiation . When people are exposed to more ultraviolet radiation, they are more likely to develop skin cancer, eye diseases, and other illnesses. In the 1980s, scientists noticed that the ozone layer over Antarctica was thinning. This is often called the “ ozone hole .” No one lives permanently in Antarctica. But Australia, the home of more than 22 million people, lies at the edge of the hole. In the 1990s, the Australian government began an effort to warn people of the dangers of too much sun. Many countries, including the United States, now severely limit the production of CFCs. Water Pollution Some polluted water looks muddy, smells bad, and has garbage floating in it. Some polluted water looks clean, but is filled with harmful chemicals you can’t see or smell. Polluted water is unsafe for drinking and swimming. Some people who drink polluted water are exposed to hazardous chemicals that may make them sick years later. Others consume bacteria and other tiny aquatic organisms that cause disease. The United Nations estimates that 4,000 children die every day from drinking dirty water. Sometimes, polluted water harms people indirectly. They get sick because the fish that live in polluted water are unsafe to eat. They have too many pollutants in their flesh. There are some natural sources of water pollution. Oil and natural gas, for example, can leak into oceans and lakes from natural underground sources. These sites are called petroleum seeps . The world’s largest petroleum seep is the Coal Oil Point Seep, off the coast of the U.S. state of California. The Coal Oil Point Seep releases so much oil that tar balls wash up on nearby beaches . Tar balls are small, sticky pieces of pollution that eventually decompose in the ocean.

Human activity also contributes to water pollution. Chemicals and oils from factories are sometimes dumped or seep into waterways. These chemicals are called runoff. Chemicals in runoff can create a toxic environment for aquatic life. Runoff can also help create a fertile environment for cyanobacteria , also called blue-green algae . Cyanobacteria reproduce rapidly, creating a harmful algal bloom (HAB) . Harmful algal blooms prevent organisms such as plants and fish from living in the ocean. They are associated with “ dead zones ” in the world’s lakes and rivers, places where little life exists below surface water. Mining and drilling can also contribute to water pollution. Acid mine drainage (AMD) is a major contributor to pollution of rivers and streams near coal mines . Acid helps miners remove coal from the surrounding rocks . The acid is washed into streams and rivers, where it reacts with rocks and sand. It releases chemical sulfur from the rocks and sand, creating a river rich in sulfuric acid . Sulfuric acid is toxic to plants, fish, and other aquatic organisms. Sulfuric acid is also toxic to people, making rivers polluted by AMD dangerous sources of water for drinking and hygiene . Oil spills are another source of water pollution. In April 2010, the Deepwater Horizon oil rig exploded in the Gulf of Mexico, causing oil to gush from the ocean floor. In the following months, hundreds of millions of gallons of oil spewed into the gulf waters. The spill produced large plumes of oil under the sea and an oil slick on the surface as large as 24,000 square kilometers (9,100 square miles). The oil slick coated wetlands in the U.S. states of Louisiana and Mississippi, killing marsh plants and aquatic organisms such as crabs and fish. Birds, such as pelicans , became coated in oil and were unable to fly or access food. More than two million animals died as a result of the Deepwater Horizon oil spill. Buried chemical waste can also pollute water supplies. For many years, people disposed of chemical wastes carelessly, not realizing its dangers. In the 1970s, people living in the Love Canal area in Niagara Falls, New York, suffered from extremely high rates of cancer and birth defects . It was discovered that a chemical waste dump had poisoned the area’s water. In 1978, 800 families living in Love Canal had to a bandon their homes. If not disposed of properly, radioactive waste from nuclear power plants can escape into the environment. Radioactive waste can harm living things and pollute the water. Sewage that has not been properly treated is a common source of water pollution. Many cities around the world have poor sewage systems and sewage treatment plants. Delhi, the capital of India, is home to more than 21 million people. More than half the sewage and other waste produced in the city are dumped into the Yamuna River. This pollution makes the river dangerous to use as a source of water for drinking or hygiene. It also reduces the river’s fishery , resulting in less food for the local community. A major source of water pollution is fertilizer used in agriculture . Fertilizer is material added to soil to make plants grow larger and faster. Fertilizers usually contain large amounts of the elements nitrogen and phosphorus , which help plants grow. Rainwater washes fertilizer into streams and lakes. There, the nitrogen and phosphorus cause cyanobacteria to form harmful algal blooms. Rain washes other pollutants into streams and lakes. It picks up animal waste from cattle ranches. Cars drip oil onto the street, and rain carries it into storm drains , which lead to waterways such as rivers and seas. Rain sometimes washes chemical pesticides off of plants and into streams. Pesticides can also seep into groundwater , the water beneath the surface of the Earth. Heat can pollute water. Power plants, for example, produce a huge amount of heat. Power plants are often located on rivers so they can use the water as a coolant . Cool water circulates through the plant, absorbing heat. The heated water is then returned to the river. Aquatic creatures are sensitive to changes in temperature. Some fish, for example, can only live in cold water. Warmer river temperatures prevent fish eggs from hatching. Warmer river water also contributes to harmful algal blooms. Another type of water pollution is simple garbage. The Citarum River in Indonesia, for example, has so much garbage floating in it that you cannot see the water. Floating trash makes the river difficult to fish in. Aquatic animals such as fish and turtles mistake trash, such as plastic bags, for food. Plastic bags and twine can kill many ocean creatures. Chemical pollutants in trash can also pollute the water, making it toxic for fish and people who use the river as a source of drinking water. The fish that are caught in a polluted river often have high levels of chemical toxins in their flesh. People absorb these toxins as they eat the fish. Garbage also fouls the ocean. Many plastic bottles and other pieces of trash are thrown overboard from boats. The wind blows trash out to sea. Ocean currents carry plastics and other floating trash to certain places on the globe, where it cannot escape. The largest of these areas, called the Great Pacific Garbage Patch, is in a remote part of the Pacific Ocean. According to some estimates, this garbage patch is the size of Texas. The trash is a threat to fish and seabirds, which mistake the plastic for food. Many of the plastics are covered with chemical pollutants. Land Pollution Many of the same pollutants that foul the water also harm the land. Mining sometimes leaves the soil contaminated with dangerous chemicals. Pesticides and fertilizers from agricultural fields are blown by the wind. They can harm plants, animals, and sometimes people. Some fruits and vegetables absorb the pesticides that help them grow. When people consume the fruits and vegetables, the pesticides enter their bodies. Some pesticides can cause cancer and other diseases. A pesticide called DDT (dichlorodiphenyltrichloroethane) was once commonly used to kill insects, especially mosquitoes. In many parts of the world, mosquitoes carry a disease called malaria , which kills a million people every year. Swiss chemist Paul Hermann Muller was awarded the Nobel Prize for his understanding of how DDT can control insects and other pests. DDT is responsible for reducing malaria in places such as Taiwan and Sri Lanka. In 1962, American biologist Rachel Carson wrote a book called Silent Spring , which discussed the dangers of DDT. She argued that it could contribute to cancer in humans. She also explained how it was destroying bird eggs, which caused the number of bald eagles, brown pelicans, and ospreys to drop. In 1972, the United States banned the use of DDT. Many other countries also banned it. But DDT didn’t disappear entirely. Today, many governments support the use of DDT because it remains the most effective way to combat malaria. Trash is another form of land pollution. Around the world, paper, cans, glass jars, plastic products, and junked cars and appliances mar the landscape. Litter makes it difficult for plants and other producers in the food web to create nutrients . Animals can die if they mistakenly eat plastic. Garbage often contains dangerous pollutants such as oils, chemicals, and ink. These pollutants can leech into the soil and harm plants, animals, and people. Inefficient garbage collection systems contribute to land pollution. Often, the garbage is picked up and brought to a dump, or landfill . Garbage is buried in landfills. Sometimes, communities produce so much garbage that their landfills are filling up. They are running out of places to dump their trash. A massive landfill near Quezon City, Philippines, was the site of a land pollution tragedy in 2000. Hundreds of people lived on the slopes of the Quezon City landfill. These people made their living from recycling and selling items found in the landfill. However, the landfill was not secure. Heavy rains caused a trash landslide, killing 218 people. Sometimes, landfills are not completely sealed off from the land around them. Pollutants from the landfill leak into the earth in which they are buried. Plants that grow in the earth may be contaminated, and the herbivores that eat the plants also become contaminated. So do the predators that consume the herbivores. This process, where a chemical builds up in each level of the food web, is called bioaccumulation . Pollutants leaked from landfills also leak into local groundwater supplies. There, the aquatic food web (from microscopic algae to fish to predators such as sharks or eagles) can suffer from bioaccumulation of toxic chemicals. Some communities do not have adequate garbage collection systems, and trash lines the side of roads. In other places, garbage washes up on beaches. Kamilo Beach, in the U.S. state of Hawai'i, is littered with plastic bags and bottles carried in by the tide . The trash is dangerous to ocean life and reduces economic activity in the area. Tourism is Hawai'i’s largest industry . Polluted beaches discourage tourists from investing in the area’s hotels, restaurants, and recreational activities. Some cities incinerate , or burn, their garbage. Incinerating trash gets rid of it, but it can release dangerous heavy metals and chemicals into the air. So while trash incinerators can help with the problem of land pollution, they sometimes add to the problem of air pollution. Reducing Pollution Around the world, people and governments are making efforts to combat pollution. Recycling, for instance, is becoming more common. In recycling, trash is processed so its useful materials can be used again. Glass, aluminum cans, and many types of plastic can be melted and reused . Paper can be broken down and turned into new paper. Recycling reduces the amount of garbage that ends up in landfills, incinerators, and waterways. Austria and Switzerland have the highest recycling rates. These nations recycle between 50 and 60 percent of their garbage. The United States recycles about 30 percent of its garbage. Governments can combat pollution by passing laws that limit the amount and types of chemicals factories and agribusinesses are allowed to use. The smoke from coal-burning power plants can be filtered. People and businesses that illegally dump pollutants into the land, water, and air can be fined for millions of dollars. Some government programs, such as the Superfund program in the United States, can force polluters to clean up the sites they polluted. International agreements can also reduce pollution. The Kyoto Protocol , a United Nations agreement to limit the emission of greenhouse gases, has been signed by 191 countries. The United States, the world’s second-largest producer of greenhouse gases, did not sign the agreement. Other countries, such as China, the world’s largest producer of greenhouse gases, have not met their goals. Still, many gains have been made. In 1969, the Cuyahoga River, in the U.S. state of Ohio, was so clogged with oil and trash that it caught on fire. The fire helped spur the Clean Water Act of 1972. This law limited what pollutants could be released into water and set standards for how clean water should be. Today, the Cuyahoga River is much cleaner. Fish have returned to regions of the river where they once could not survive. But even as some rivers are becoming cleaner, others are becoming more polluted. As countries around the world become wealthier, some forms of pollution increase. Countries with growing economies usually need more power plants, which produce more pollutants. Reducing pollution requires environmental, political, and economic leadership. Developed nations must work to reduce and recycle their materials, while developing nations must work to strengthen their economies without destroying the environment. Developed and developing countries must work together toward the common goal of protecting the environment for future use.

How Long Does It Last? Different materials decompose at different rates. How long does it take for these common types of trash to break down?

  • Paper: 2-4 weeks
  • Orange peel: 6 months
  • Milk carton: 5 years
  • Plastic bag: 15 years
  • Tin can: 100 years
  • Plastic bottle: 450 years
  • Glass bottle: 500 years
  • Styrofoam: Never

Indoor Air Pollution The air inside your house can be polluted. Air and carpet cleaners, insect sprays, and cigarettes are all sources of indoor air pollution.

Light Pollution Light pollution is the excess amount of light in the night sky. Light pollution, also called photopollution, is almost always found in urban areas. Light pollution can disrupt ecosystems by confusing the distinction between night and day. Nocturnal animals, those that are active at night, may venture out during the day, while diurnal animals, which are active during daylight hours, may remain active well into the night. Feeding and sleep patterns may be confused. Light pollution also indicates an excess use of energy. The dark-sky movement is a campaign by people to reduce light pollution. This would reduce energy use, allow ecosystems to function more normally, and allow scientists and stargazers to observe the atmosphere.

Noise Pollution Noise pollution is the constant presence of loud, disruptive noises in an area. Usually, noise pollution is caused by construction or nearby transportation facilities, such as airports. Noise pollution is unpleasant, and can be dangerous. Some songbirds, such as robins, are unable to communicate or find food in the presence of heavy noise pollution. The sound waves produced by some noise pollutants can disrupt the sonar used by marine animals to communicate or locate food.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Illustrators

Educator reviewer, last updated.

March 6, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

  • Share full article

Advertisement

Supported by

Environmental Changes Are Fueling Human, Animal and Plant Diseases, Study Finds

Biodiversity loss, global warming, pollution and the spread of invasive species are making infectious diseases more dangerous to organisms around the world.

A white-footed mouse perched in a hole in a tree.

By Emily Anthes

Several large-scale, human-driven changes to the planet — including climate change, the loss of biodiversity and the spread of invasive species — are making infectious diseases more dangerous to people, animals and plants, according to a new study.

Scientists have documented these effects before in more targeted studies that have focused on specific diseases and ecosystems. For instance, they have found that a warming climate may be helping malaria expand in Africa and that a decline in wildlife diversity may be boosting Lyme disease cases in North America.

But the new research, a meta-analysis of nearly 1,000 previous studies, suggests that these patterns are relatively consistent around the globe and across the tree of life.

“It’s a big step forward in the science,” said Colin Carlson, a biologist at Georgetown University, who was not an author of the new analysis. “This paper is one of the strongest pieces of evidence that I think has been published that shows how important it is health systems start getting ready to exist in a world with climate change, with biodiversity loss.”

In what is likely to come as a more surprising finding, the researchers also found that urbanization decreased the risk of infectious disease.

The new analysis, which was published in Nature on Wednesday, focused on five “global change drivers” that are altering ecosystems across the planet: biodiversity change, climate change, chemical pollution, the introduction of nonnative species and habitat loss or change.

The researchers compiled data from scientific papers that examined how at least one of these factors affected various infectious-disease outcomes, such as severity or prevalence. The final data set included nearly 3,000 observations on disease risks for humans, animals and plants on every continent except for Antarctica.

The researchers found that, across the board, four of the five trends they studied — biodiversity change, the introduction of new species, climate change and chemical pollution — tended to increase disease risk.

“It means that we’re likely picking up general biological patterns,” said Jason Rohr, an infectious disease ecologist at the University of Notre Dame and senior author of the study. “It suggests that there are similar sorts of mechanisms and processes that are likely occurring in plants, animals and humans.”

The loss of biodiversity played an especially large role in driving up disease risk, the researchers found. Many scientists have posited that biodiversity can protect against disease through a phenomenon known as the dilution effect.

The theory holds that parasites and pathogens, which rely on having abundant hosts in order to survive, will evolve to favor species that are common, rather than those that are rare, Dr. Rohr said. And as biodiversity declines, rare species tend to disappear first. “That means that the species that remain are the competent ones, the ones that are really good at transmitting disease,” he said.

Lyme disease is one oft-cited example. White-footed mice, which are the primary reservoir for the disease, have become more dominant on the landscape, as other rarer mammals have disappeared, Dr. Rohr said. That shift may partly explain why Lyme disease rates have risen in the United States. (The extent to which the dilution effect contributes to Lyme disease risk has been the subject of debate, and other factors, including climate change, are likely to be at play as well.)

Other environmental changes could amplify disease risks in a wide variety of ways. For instance, introduced species can bring new pathogens with them, and chemical pollution can stress organisms’ immune systems. Climate change can alter animal movements and habitats, bringing new species into contact and allowing them to swap pathogens .

Notably, the fifth global environmental change that the researchers studied — habitat loss or change — appeared to reduce disease risk. At first glance, the findings might appear to be at odds with previous studies, which have shown that deforestation can increase the risk of diseases ranging from malaria to Ebola. But the overall trend toward reduced risk was driven by one specific type of habitat change: increasing urbanization.

The reason may be that urban areas often have better sanitation and public health infrastructure than rural ones — or simply because there are fewer plants and animals to serve as disease hosts in urban areas. The lack of plant and animal life is “not a good thing,” Dr. Carlson said. “And it also doesn’t mean that the animals that are in the cities are healthier.”

And the new study does not negate the idea that forest loss can fuel disease; instead, deforestation increases risk in some circumstances and reduces it in others, Dr. Rohr said.

Indeed, although this kind of meta-analysis is valuable for revealing broad patterns, it can obscure some of the nuances and exceptions that are important for managing specific diseases and ecosystems, Dr. Carlson noted.

Moreover, most of the studies included in the analysis examined just a single global change drive. But, in the real world, organisms are contending with many of these stressors simultaneously. “The next step is to better understand the connections among them,” Dr. Rohr said.

Emily Anthes is a science reporter, writing primarily about animal health and science. She also covered the coronavirus pandemic. More about Emily Anthes

Explore the Animal Kingdom

A selection of quirky, intriguing and surprising discoveries about animal life..

Scientists say they have found an “alphabet” in the songs of sperm whales , raising the possibility that the animals are communicating in a complex language.

Indigenous rangers in Australia’s Western Desert got a rare close-up with the northern marsupial mole , which is tiny, light-colored and blind, and almost never comes to the surface.

For the first time, scientists observed a primate in the wild treating a wound  with a plant that has medicinal properties.

A new study resets the timing for the emergence of bioluminescence back to millions  of years earlier than previously thought.

Scientists are making computer models to better understand how cicadas  emerge collectively after more than a decade underground .

Talk to our experts

1800-120-456-456

  • Environmental Pollution Essay

ffImage

Essay on Environmental Pollution

The environment is the surrounding of an organism. The environment in which an organism lives is made up of various components like air, water, land, etc. These components are found in fixed proportions to create a harmonious balance in the environment for the organism to live in. Any kind of undesirable and unwanted change in the proportions of these components can be termed as pollution. This issue is increasing with every passing year. It is an issue that creates economic, physical, and social troubles. The environmental problem that is worsening with each day needs to be addressed so that its harmful effects on humans as well as the planet can be discarded.

Causes of Environmental Pollution 

With the rise of the industries and the migration of people from villages to cities in search of employment, there has been a regular increase in the problem of proper housing and unhygienic living conditions. These reasons have given rise to factors that cause pollution. 

Environmental pollution is of five basic types namely, Air, Water, Soil, and Noise pollution. 

Air Pollution: Air pollution is a major issue in today’s world. The smoke pouring out of factory chimneys and automobiles pollute the air that we breathe in. Gases like carbon dioxide, carbon monoxide, and sulphur dioxide are emitted with this smoke which mixes with air and causes great harm to the human body, flora, and fauna. The dry-farm waste, dry grass, leaves, and coal used as domestic fuels in our villages also produce harmful gases. Acid rain occurs due to an excess of sulphur dioxide in the air.

The Main Sources of Air Pollution are as Follows:  

Automobile pollution 

Industrial air pollution 

Burning garbage 

Brick kilns 

Indoor air pollution 

Decomposed animals and plants 

Radioactive elements

Water Pollution: Water pollution is one of the most serious environmental issues. The waste products from the growing industries and sewage water are not treated properly before disposing of the wastewater into the rivers and other water bodies, thus leading to water pollution. Agricultural processes with excess fertilizers and pesticides also pollute the water bodies. 

The Main Sources of Water Pollution as Follows:  

Marine commerce. 

Industrial effluents joining seas and oceans. 

Dumping of radioactive substances into seawater. 

Sewage is disposed of into the sea by rivers. 

Offshore oil rigs. 

Recreational activities. 

Agricultural pollutants are disposed of into the water bodies.

  

Soil or Land Pollution: Soil pollution or land pollution results from the deposition of solid waste, accumulation of biodegradable material, deposition of chemicals with poisonous chemical compositions, etc on the open land. Waste materials such as plastics, polythene, and bottles, cause land pollution and render the soil infertile. Moreover, the dumping of dead bodies of animals adds to this issue. Soil pollution causes several diseases in man and animals like Cholera, Dysentery, Typhoid, etc.

The Main Causes of Soil Pollution are as Follows:  

Industrial waste 

Urban commercial and domestic waste 

Chemical fertilizers 

Biomedical waste 

Noise Pollution: With an increasing population, urbanization, and industrialization, noise pollution is becoming a serious form of pollution affecting human life, health, and comfort in daily life. Horns of vehicles, loudspeakers, music systems, and industrial activities contribute to noise pollution. 

The Main Sources of Noise Pollution as Follows:  

The machines in the factories and industries produce whistling sounds, crushing noise, and thundering sounds. 

Loudspeakers, horns of vehicles. 

Blasting of rocks and earth, drilling tube wells, ventilation fans, and heavy earth-moving machinery at construction sites.

How Pollution Harms Health and Environment

The lives of people and other creatures are affected by environmental pollution, both directly and indirectly. For centuries, these living organisms have coexisted with humans on the planet. 

1. Effect on the Environment

Smog is formed when carbon and dust particles bind together in the air, causing respiratory problems, haze, and smoke. These are created by the combustion of fossil fuels in industrial and manufacturing facilities and vehicle combustion of carbon fumes. 

Furthermore, these factors impact the immune systems of birds, making them carriers of viruses and diseases. It also has an impact on the body's system and organs. 

2.  Land, Soil, and Food Effects 

The degradation of human organic and chemical waste harms the land and soil. It also releases chemicals into the land and water. Pesticides, fertilisers, soil erosion, and crop residues are the main causes of land and soil pollution. 

3. Effects on water 

Water is easily contaminated by any pollutant, whether it be human waste or factory chemical discharge. We also use this water for crop irrigation and drinking. They, too, get polluted as a result of infection. Furthermore, an animal dies as a result of drinking the same tainted water. 

Furthermore, approximately 80% of land-based pollutants such as chemical, industrial, and agricultural waste wind up in water bodies. 

Furthermore, because these water basins eventually link to the sea, they contaminate the sea's biodiversity indirectly. 

4. Food Reaction

Crops and agricultural produce become poisonous as a result of contaminated soil and water. These crops are laced with chemical components from the start of their lives until harvest when they reach a mass level. Due to this, tainted food has an impact on our health and organs. 

5. Climate Change Impact 

Climate change is also a source of pollution in the environment. It also has an impact on the ecosystem's physical and biological components. 

Ozone depletion, greenhouse gas emissions, and global warming are all examples of environmental pollution. Because these water basins eventually link to the sea, they contaminate the sea's biodiversity indirectly. Furthermore, their consequences may be fatal for future generations. The unpredictably cold and hot climate impacts the earth’s natural system. 

Furthermore, earthquakes, starvation, smog, carbon particles, shallow rain or snow, thunderstorms, volcanic eruptions, and avalanches are all caused by climate change, caused entirely by environmental pollution.

How to Minimise Environmental Pollution? 

To minimise this issue, some preventive measures need to be taken. 

Principle of 3R’s: To save the environment, use the principle of 3 R’s; Reuse, Reduce and Recycle. 

Reuse products again and again. Instead of throwing away things after one use, find a way to use them again.  Reduce the generation of waste products.  

Recycle: Paper, plastics, glass, and electronic items can be processed into new products while using fewer natural resources and lesser energy. 

To prevent and control air pollution, better-designed equipment, and smokeless fuels should be used in homes and industries. More and more trees should be planted to balance the ecosystem and control greenhouse effects. 

Noise pollution can be minimised by better design and proper maintenance of vehicles. Industrial noise can be reduced by soundproofing equipment like generators, etc.  

To control soil pollution, we must stop the usage of plastic. Sewage should be treated properly before using it as fertilizers and as landfills. Encourage organic farming as this process involves the use of biological materials and avoiding synthetic substances to maintain soil fertility and ecological balance. 

Several measures can be adopted to control water pollution. Some of them are water consumption and usage that can be minimized by altering the techniques involved. Water should be reused with treatment. 

The melting icebergs in Antarctica resulted in rising sea levels due to the world's environmental pollution, which had become a serious problem due to global warming, which had become a significant concern. Rising carbon pollution poses a risk for causing natural disasters such as earthquakes, cyclones, and other natural disasters. 

The Hiroshima-Nagasaki and Chernobyl disasters in Russia have irreversibly harmed humanity. Different countries around the world are responding to these calamities in the most effective way possible. 

Different countries around the world are responding to these calamities in the most effective way possible. More public awareness campaigns are being established to educate people about the hazards of pollution and the importance of protecting our environment. Greener lifestyles are becoming more popular; for example, energy-efficient lighting, new climate-friendly autos, and the usage of wind and solar power are just a few examples. 

Governments emphasise the need to plant more trees, minimise the use of plastics, improve natural waste recovery, and reduce pesticide use. This ecological way of living has helped humanity save other creatures from extinction while making the Earth a greener and safer ecology. 

 Conclusion

It is the responsibility of every individual to save our planet from these environmental contamination agents. If preventive measures are not taken then our future generation will have to face major repercussions. The government is also taking steps to create public awareness. Every individual should be involved in helping to reduce and control pollution.

arrow-right

FAQs on Environmental Pollution Essay

1. What do you understand by ‘Environmental Pollution’?  

Environmental pollution is the contamination of the environment and surroundings like air, water, soil by the discharge of harmful substances.

2. What preventive measures should be taken to save our environment?

Some of the preventive measures that should be taken to save our environment are discussed below. 

We can save our environment by adopting the concept of carpooling and promoting public transport to save fuel. Smoking bars are public policies, including criminal laws and occupational safety and health regulations that prohibit tobacco smoking in workplaces and other public places.  

The use of Fossil fuels should be restricted because it causes major environmental issues like global warming.  

Encourage organic farming to maintain the fertility of the soil.

3.  What are the main sources of soil pollution?

The main sources of soil pollution as follows:

Industrial waste

Urban commercial and domestic waste

Chemical fertilizers

Biomedical waste

4. What is organic farming?

 It is a farming method that involves growing and nurturing crops without the use of synthetic fertilizers and pesticides.

New Content Item

Volume 31, Issue 9

Innovations in textile wastewater management: a review of zero liquid discharge technology.

  • Ashok Pundir
  • Mohindra Singh Thakur
  • Manoj Kumar

research papers on environmental pollution

Removal of nitric oxide in bioreactors: a review on the pathways, governing factors and mathematical modelling

  • Roumi Bhattacharya

research papers on environmental pollution

Reviewing the interdecadal dynamics of micropollutants in the Tanzanian coastal zone from 2002 to 2022

  • Harieth Hellar-Kihampa

research papers on environmental pollution

The soil-microbe-plant resistome: A focus on the source-pathway-receptor continuum

  • Kumbirai Musiyiwa
  • Tinoziva T. Simbanegavi
  • Willis Gwenzi

research papers on environmental pollution

Adsorption of contaminants by nanomaterials synthesized by green and conventional routes: a critical review

  • Natália Gabriele Camparotto
  • Tauany de Figueiredo Neves
  • Patrícia Prediger

research papers on environmental pollution

Recent advances in transesterification for sustainable biodiesel production, challenges, and prospects: a comprehensive review

  • Sabah Mohamed Farouk
  • Aghareed M. Tayeb
  • Randa M. Osman

research papers on environmental pollution

Advancements in textile dye removal: a critical review of layered double hydroxides and clay minerals as efficient adsorbents

  • Giphin George
  • Anu Mary Ealias
  • Manickam Puratchiveeran Saravanakumar

research papers on environmental pollution

Energy retrofitting strategies for existing buildings in Malaysia: A systematic review and bibliometric analysis

  • Muhammad Tarique Lakhiar
  • Shalini Sanmargaraja
  • Anselm Dass Mathalamuthu

research papers on environmental pollution

PFAS: exploration of neurotoxicity and environmental impact

  • Mrunal Nannaware
  • Neelaambhigai Mayilswamy
  • Balasubramanian Kandasubramanian

research papers on environmental pollution

Modelling selenium behavior in aquatic systems: a review of status, challenges, and opportunities

  • Yanping Wang
  • William A. Maher

research papers on environmental pollution

Elucidating the link between thyroid cancer and mercury exposure: a review and meta-analysis

  • Alyssa M. Webster
  • Dylan Pinion
  • Emad Kandil

research papers on environmental pollution

Removal of pharmaceutical contaminants from hospital wastewater using constructed wetlands: a review

  • Zeba Ali Mumtaj
  • Abdul Rahman Khan
  • Saimah Khan

research papers on environmental pollution

Potential of ionic liquids as emerging green solvent for the pretreatment of lignocellulosic biomass

  • Siddharth Swami
  • Surindra Suthar
  • Vineet Singh Sikarwar

research papers on environmental pollution

Let us take a walk to the sustainable tourism practices: a qualitative study through the lens of tourism experts

  • Vilte Auruskeviciene
  • Rajeev Verma

research papers on environmental pollution

Redefining green consumerism: a diminutive approach to market segmentation for sustainability

  • Shalini Reddy Naini
  • Ravinder Reddy Mekapothula
  • Sridhar Manohar

Deciphering the influencing mechanism of hydraulic retention time on purification performance of a mixotrophic system from the perspective of reaction kinetics

  • Sicheng Yuan
  • Qingbo Zhong
  • Shiyang Zhang

research papers on environmental pollution

Water quality and microecosystem of water tanks in karst mountainous area, Southwest China

  • Qigang Wang
  • Guanghui Jiang

research papers on environmental pollution

From source to house: unraveling the seasonal effect of water distribution system on drinking water quality of poultry farms under Egyptian environmental condition

  • Mohammed Abdelhameed Kamal
  • Rashed A. Alhotan
  • Ahmed Ali Saleh

research papers on environmental pollution

The impact of clean energy demonstration province policies on carbon intensity in Chinese counties based on the multi-phase PSM-DID method

  • Cunjing Liu

research papers on environmental pollution

Effect of brackish water irrigation on cadmium migration in a soil–maize system

  • Yingjun Hao
  • Jun’an Zhang
  • Xiwang Tang

research papers on environmental pollution

Selection of tropical trees and shrubs for urban greening in coal mine complex: a case study of Singrauli, Madhya Pradesh

  • Mala Kumari
  • Tanushree Bhattacharya

research papers on environmental pollution

Study on function evolution and coupling coordination degree of “Three Lives Space” in the upper reaches of Yangtze River in China

  • Chuanhao Wen

research papers on environmental pollution

Green synthesis of ZnO nanoparticles from ball moss ( Tillandsia recurvata ) extracts: characterization and evaluation of their photocatalytic activity

  • Nayeli Fabiola Ibarra-Cervantes
  • Edgar Vázquez-Núñez
  • Rigoberto Castro-Beltrán

research papers on environmental pollution

Impact of green finance on industrial structure upgrading: implications for environmental sustainability in Chinese regions

Diversity, composition, metabolic characteristics, and assembly process of the microbial community in sewer system at the early stage.

  • Yiming Yuan
  • Guangyi Zhang
  • Fuming Wang

research papers on environmental pollution

Exploring asymmetric influence of R&D expenditures on CO 2 emissions in China: evidence from nonlinear ARDL model

  • Javed Iqbal

research papers on environmental pollution

Measurement and spatiotemporal characteristics of China’s green finance

  • Xiaobing Huang

research papers on environmental pollution

Driving factors analysis of spatial–temporal evolution of vegetation ecosystem in rocky desertification restoration area of Guizhou Province, China

research papers on environmental pollution

Copper toxicity on Eisenia fetida in a vineyard soil: a combined study with standard tests, genotoxicity assessment and gut metagenomic analysis

  • Enrica Marini
  • Arianna De Bernardi
  • Costantino Vischetti

research papers on environmental pollution

Field application of hydroxyapatite and humic acid for remediation of metal-contaminated alkaline soil

  • Ram Proshad
  • Zhuanjun Zhao

research papers on environmental pollution

The effect of crystal structure of MnO 2 electrode on DMAC removal: degradation performance, mechanism, and application evaluation

  • Jiachao Yao

research papers on environmental pollution

Decoration of viscose fibers with silver nanoparticle-based titanium-organic framework for use in environmental applications

  • Mohamed Rehan
  • Ahmed S. Montaser
  • Reda M. Abdelhameed

research papers on environmental pollution

Naturally weathered polypropylene microplastic from environment and its toxic behaviour in Artemia salina

  • Subramanian Kanimozhi
  • Ramasubbu Seenivasan
  • Natarajan Chandrasekaran

research papers on environmental pollution

Study of the influence of pore structure on the radon emission characteristics of terrestrial sedimentary shales after high temperature action

research papers on environmental pollution

Assessment of an effective quantitative model with multi-criteria decision-making method for sustainable campus

  • Merve Dilman Gokkaya

research papers on environmental pollution

Sustainable synthesis of magnetic Sargassum siliquastrum activated carbon loaded with NiS nanorods for adsorption of 2,4-D herbicide

  • Ibrahem M. A. Hasan
  • Fawzy H. Assaf
  • Ahmed R. Tawfik

research papers on environmental pollution

Effect of HKUST-1 metal–organic framework in root and shoot systems, as well as seed germination

  • Sandra Loera-Serna
  • Hiram I. Beltrán
  • Fabián Fernández-Luqueño

research papers on environmental pollution

Rare earth element behaviors of groundwater in overlying aquifers under the influence of coal mining in northern Ordos Basin, China

  • Fengxia Liu
  • Guangcai Wang

research papers on environmental pollution

Enhancing microbiologically influenced corrosion protection of carbon steels with silanized epoxy-biocide hybrid coatings

  • Anandkumar Balakrishnan
  • Sudharsan Govindaraj
  • John Philip

research papers on environmental pollution

Microplastics drive community dynamics of periphytic protozoan fauna in marine environments

  • Qiaoling Wang
  • Henglong Xu

research papers on environmental pollution

An integrated approach based on HFE-D, GIS techniques, GQI SWI , and statistical analysis for the assessment of potential seawater intrusion: coastal multilayered aquifer of Ghaemshahr-Juybar (Mazandaran, Iran)

  • Tahereh Azari
  • Mahmoud Mohammad Rezapour Tabari

research papers on environmental pollution

Unraveling the environmental Kuznets curve: interplay between \(CO_2\) emissions, economic development, and energy consumption

  • Mohsin Rasheed
  • Jianhua Liu

research papers on environmental pollution

Economic and life cycle cost analysis of building-integrated photovoltaic system for composite climatic conditions

  • Digvijay Singh
  • Rubina Chaudhary
  • Seeniappan Kaliappan

research papers on environmental pollution

Enhancement of sulfide removal and sulfur recovery in piggery wastewater via lighting-anaerobic digestion with bioaugmentation of phototrophic green sulfur bacteria

  • Kridsana Jirasansawat
  • Wilai Chiemchaisri
  • Chart Chiemchaisri

research papers on environmental pollution

Optimal bidding strategy of a wind power producer in Chinese spot market considering green certificate trading

research papers on environmental pollution

Comparison of photoinduced and electrochemically induced degradation of venlafaxine

  • Melanie Voigt
  • Jean-Michel Dluziak
  • Martin Jaeger

research papers on environmental pollution

Monitoring network optimization and impact of fish farming upon water quality in the Três Marias Hydroelectric Reservoir, Brazil

  • Maria Clara V M Starling
  • Cristiano Christofaro
  • Camila C Amorim

research papers on environmental pollution

Linkages between ICT diffusion, renewable energy consumption, and carbon emissions: a comparative analysis of SAARC, MENA, and OECD countries

  • Md Nafizur Rahman
  • Jannatul Ferdaous

Improvement of ferrioxalate assisted Fenton and photo-Fenton processes for paracetamol degradation by hydrogen peroxide dosage

  • Bárbara N. Giménez
  • Leandro O. Conte
  • Agustina V. Schenone

research papers on environmental pollution

Differences in the response of Chlorella pyrenoidosa to three antidepressants and their mixtures in different light–dark start cycles

  • Guiyun Hong

research papers on environmental pollution

  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. (PDF) Some current challenges in research on air pollution and health

    research papers on environmental pollution

  2. (DOC) Research Proposal on Water Pollution.docx

    research papers on environmental pollution

  3. Air Pollution Essay

    research papers on environmental pollution

  4. Environmental Pollution Essay for Students and Children in English

    research papers on environmental pollution

  5. 👍 Research paper ocean pollution. Research Paper on Water Pollution

    research papers on environmental pollution

  6. 💄 Air pollution research topics. Air pollution. 2022-10-12

    research papers on environmental pollution

VIDEO

  1. Study finds link between air pollution and depression

  2. Environmental Acts, Rules & Policies in India & Rajasthan I Environmental Legislation I RSPCB I CPCB

  3. L-08 BASICS OF ENERGY AND ENVIRONMENT || ESE PRELIMS PAPER 1

  4. Environmental Acts I EPA 1986 I Air Act 1981 I Water Act 1974 I RSPCB JSO & JEE I CPCB

  5. Essay on Environmental Pollution

COMMENTS

  1. Environmental Pollution

    Environmental Pollution is an international peer-reviewed journal that publishes high quality research papers and review articles about all aspects of environmental pollution and its effects on ecosystems and human health. The journal welcomes high-quality process-oriented and hypothesis-based submissions that report results from original and novel research and contribute new knowledge to help ...

  2. Environmental Pollution and its Effects on Human Health

    The deleterious effects of pollution manifest in elevated rates of cancer, cardiovascular disease, respiratory ailments, mental disorders, and diarrhea. Each year, approximately 7 million ...

  3. Environmental and Health Impacts of Air Pollution: A Review

    Environmental pollution occurs when changes in the physical, chemical, or biological constituents of the environment (air masses, temperature, climate, etc.) are produced. Pollutants harm our environment either by increasing levels above normal or by introducing harmful toxic substances. Primary pollutants are directly produced from the above ...

  4. Urban and air pollution: a multi-city study of long-term ...

    Most air pollution research has focused on assessing the urban landscape effects of pollutants in megacities, little is known about their associations in small- to mid-sized cities. Considering ...

  5. Clean air for a sustainable world

    Air pollution kills around 6.7 million people per year mainly through respiratory and cardiovascular diseases 1, and has significant impacts on mental health. The main pollutants are sourced from ...

  6. Environmental Science and Pollution Research

    Issue 9 February 2022. Pollution Prevention and Sustainability (pp. 12387-12461) / Water Environment and Recent Advances in Pollution Control Technologies (pp. 12462-12553) / Environmental Resilience in the Pandemic Year 2020 (pp. 12554-12719) / Research in Environmental Governance and Innovation (pp. 12720-12910) Issue 8 February 2022.

  7. Articles

    Binhua Zhao. Research Article 15 May 2024. 1. 2. …. 891. Next. Environmental Science and Pollution Research (ESPR) serves the international community in all broad areas of environmental science and related subjects with ...

  8. Environmental Science and Pollution Research

    Volume 29, Issue 9. February 2022. Pollution Prevention and Sustainability (pp. 12387-12461) / Water Environment and Recent Advances in Pollution Control Technologies (pp. 12462-12553) / Environmental Resilience in the Pandemic Year 2020 (pp. 12554-12719) / Research in Environmental Governance and Innovation (pp. 12720-12910) 107 articles in ...

  9. Plastic Pollution: A Perspective on Matters Arising: Challenges and

    Plastic pollution is a persistent challenge worldwide with the first reports evidencing its impact on the living and nonliving components of the environment dating back more than half a century. The rising concerns regarding the immediate and long-term consequences of plastic matter entrainment into foods and water cannot be overemphasized in light of our pursuit of sustainability (in terms of ...

  10. Environmental Pollution Causes and Consequences: A Study

    The „environmental crisis‟ is caused due to environment and ecological changes as a result of. developmental process of the 'economic and technological man" of the present century. In fact if ...

  11. Environmental impacts of air pollution and its abatement by plant

    Air pollution is one of the major global environmental issues urgently needed attention for its control through sustainable approaches. The release of air pollutants from various anthropogenic and ...

  12. Home

    Environmental Science and Pollution Research (ESPR) serves the international community in all broad areas of environmental science and related subjects with emphasis on chemical compounds. Covers all areas of Environmental Science and related subjects. Publishes on the natural sciences, but also includes the impacts of legislation, regulation ...

  13. Environmental sciences

    Forestry social science is failing the needs of the people who need it most. Rich nations' fixation on forests as climate offsets has resulted in the needs of those who live in or make a living ...

  14. Environmental Pollution Control

    As we know, environmental pollution has become one of the most debated issues of contemporaneity and one of the first order for the management of the company. Man and the environment are inseparable entities, the existence of man being dependent environmental factors, and environmental factors (air, water, soil) can be modified, following their use by humans. Thus it appears pollution, an ...

  15. Water environment and recent advances in pollution control ...

    This special issue (SI) of Environmental Science and Pollution Research (ESPR) entitled "Water Environment and Recent Advances in Pollution Control Technologies" collected the best papers that were formally presented at "The 6 th International Conference on Water Resource and Environment (WRE2020)" from August 23rd to 26th, 2020. The WRE2020 conference was a great success with 137 ...

  16. Pollution

    Pollution is the introduction of harmful materials into the environment. These harmful materials are called pollutants. Pollutants can be natural, such as volcanic ash. They can also be created by human activity, such as trash or runoff produced by factories. Pollutants damage the quality of air, water, and land.

  17. Environmental Changes Are Fueling Human, Animal and Plant Diseases

    Biodiversity loss, global warming, pollution and the spread of invasive species are making infectious diseases more dangerous to organisms around the world. By Emily Anthes Several large-scale ...

  18. Environmental Pollution Essay for Students in English

    Essay on Environmental Pollution. The environment is the surrounding of an organism. The environment in which an organism lives is made up of various components like air, water, land, etc. These components are found in fixed proportions to create a harmonious balance in the environment for the organism to live in.

  19. Unlocking the path to environmental sustainability ...

    The study aims to gauge the impact of economic policy uncertainty, ICT, and environmental tax on environmental sustainability, which is measured by carbon emission and ecological footprint in a panel of 22 nations from 1997 to 2021. The present study has implemented the advanced panel data estimation techniques, including continuously updated fully modified (CUP-FM) and continuously updated ...

  20. Environmental Science and Pollution Research

    An integrated approach based on HFE-D, GIS techniques, GQISWI, and statistical analysis for the assessment of potential seawater intrusion: coastal multilayered aquifer of Ghaemshahr-Juybar (Mazandaran, Iran) Tahereh Azari. Mahmoud Mohammad Rezapour Tabari. Research Article 20 January 2024 Pages: 13335 - 13371.