Qualitative vs Quantitative Research Methods & Data Analysis

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

The main difference between quantitative and qualitative research is the type of data they collect and analyze.

Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language.
  • Quantitative research collects numerical data and analyzes it using statistical methods. The aim is to produce objective, empirical data that can be measured and expressed numerically. Quantitative research is often used to test hypotheses, identify patterns, and make predictions.
  • Qualitative research gathers non-numerical data (words, images, sounds) to explore subjective experiences and attitudes, often via observation and interviews. It aims to produce detailed descriptions and uncover new insights about the studied phenomenon.

On This Page:

What Is Qualitative Research?

Qualitative research is the process of collecting, analyzing, and interpreting non-numerical data, such as language. Qualitative research can be used to understand how an individual subjectively perceives and gives meaning to their social reality.

Qualitative data is non-numerical data, such as text, video, photographs, or audio recordings. This type of data can be collected using diary accounts or in-depth interviews and analyzed using grounded theory or thematic analysis.

Qualitative research is multimethod in focus, involving an interpretive, naturalistic approach to its subject matter. This means that qualitative researchers study things in their natural settings, attempting to make sense of, or interpret, phenomena in terms of the meanings people bring to them. Denzin and Lincoln (1994, p. 2)

Interest in qualitative data came about as the result of the dissatisfaction of some psychologists (e.g., Carl Rogers) with the scientific study of psychologists such as behaviorists (e.g., Skinner ).

Since psychologists study people, the traditional approach to science is not seen as an appropriate way of carrying out research since it fails to capture the totality of human experience and the essence of being human.  Exploring participants’ experiences is known as a phenomenological approach (re: Humanism ).

Qualitative research is primarily concerned with meaning, subjectivity, and lived experience. The goal is to understand the quality and texture of people’s experiences, how they make sense of them, and the implications for their lives.

Qualitative research aims to understand the social reality of individuals, groups, and cultures as nearly as possible as participants feel or live it. Thus, people and groups are studied in their natural setting.

Some examples of qualitative research questions are provided, such as what an experience feels like, how people talk about something, how they make sense of an experience, and how events unfold for people.

Research following a qualitative approach is exploratory and seeks to explain ‘how’ and ‘why’ a particular phenomenon, or behavior, operates as it does in a particular context. It can be used to generate hypotheses and theories from the data.

Qualitative Methods

There are different types of qualitative research methods, including diary accounts, in-depth interviews , documents, focus groups , case study research , and ethnography .

The results of qualitative methods provide a deep understanding of how people perceive their social realities and in consequence, how they act within the social world.

The researcher has several methods for collecting empirical materials, ranging from the interview to direct observation, to the analysis of artifacts, documents, and cultural records, to the use of visual materials or personal experience. Denzin and Lincoln (1994, p. 14)

Here are some examples of qualitative data:

Interview transcripts : Verbatim records of what participants said during an interview or focus group. They allow researchers to identify common themes and patterns, and draw conclusions based on the data. Interview transcripts can also be useful in providing direct quotes and examples to support research findings.

Observations : The researcher typically takes detailed notes on what they observe, including any contextual information, nonverbal cues, or other relevant details. The resulting observational data can be analyzed to gain insights into social phenomena, such as human behavior, social interactions, and cultural practices.

Unstructured interviews : generate qualitative data through the use of open questions.  This allows the respondent to talk in some depth, choosing their own words.  This helps the researcher develop a real sense of a person’s understanding of a situation.

Diaries or journals : Written accounts of personal experiences or reflections.

Notice that qualitative data could be much more than just words or text. Photographs, videos, sound recordings, and so on, can be considered qualitative data. Visual data can be used to understand behaviors, environments, and social interactions.

Qualitative Data Analysis

Qualitative research is endlessly creative and interpretive. The researcher does not just leave the field with mountains of empirical data and then easily write up his or her findings.

Qualitative interpretations are constructed, and various techniques can be used to make sense of the data, such as content analysis, grounded theory (Glaser & Strauss, 1967), thematic analysis (Braun & Clarke, 2006), or discourse analysis .

For example, thematic analysis is a qualitative approach that involves identifying implicit or explicit ideas within the data. Themes will often emerge once the data has been coded .

RESEARCH THEMATICANALYSISMETHOD

Key Features

  • Events can be understood adequately only if they are seen in context. Therefore, a qualitative researcher immerses her/himself in the field, in natural surroundings. The contexts of inquiry are not contrived; they are natural. Nothing is predefined or taken for granted.
  • Qualitative researchers want those who are studied to speak for themselves, to provide their perspectives in words and other actions. Therefore, qualitative research is an interactive process in which the persons studied teach the researcher about their lives.
  • The qualitative researcher is an integral part of the data; without the active participation of the researcher, no data exists.
  • The study’s design evolves during the research and can be adjusted or changed as it progresses. For the qualitative researcher, there is no single reality. It is subjective and exists only in reference to the observer.
  • The theory is data-driven and emerges as part of the research process, evolving from the data as they are collected.

Limitations of Qualitative Research

  • Because of the time and costs involved, qualitative designs do not generally draw samples from large-scale data sets.
  • The problem of adequate validity or reliability is a major criticism. Because of the subjective nature of qualitative data and its origin in single contexts, it is difficult to apply conventional standards of reliability and validity. For example, because of the central role played by the researcher in the generation of data, it is not possible to replicate qualitative studies.
  • Also, contexts, situations, events, conditions, and interactions cannot be replicated to any extent, nor can generalizations be made to a wider context than the one studied with confidence.
  • The time required for data collection, analysis, and interpretation is lengthy. Analysis of qualitative data is difficult, and expert knowledge of an area is necessary to interpret qualitative data. Great care must be taken when doing so, for example, looking for mental illness symptoms.

Advantages of Qualitative Research

  • Because of close researcher involvement, the researcher gains an insider’s view of the field. This allows the researcher to find issues that are often missed (such as subtleties and complexities) by the scientific, more positivistic inquiries.
  • Qualitative descriptions can be important in suggesting possible relationships, causes, effects, and dynamic processes.
  • Qualitative analysis allows for ambiguities/contradictions in the data, which reflect social reality (Denscombe, 2010).
  • Qualitative research uses a descriptive, narrative style; this research might be of particular benefit to the practitioner as she or he could turn to qualitative reports to examine forms of knowledge that might otherwise be unavailable, thereby gaining new insight.

What Is Quantitative Research?

Quantitative research involves the process of objectively collecting and analyzing numerical data to describe, predict, or control variables of interest.

The goals of quantitative research are to test causal relationships between variables , make predictions, and generalize results to wider populations.

Quantitative researchers aim to establish general laws of behavior and phenomenon across different settings/contexts. Research is used to test a theory and ultimately support or reject it.

Quantitative Methods

Experiments typically yield quantitative data, as they are concerned with measuring things.  However, other research methods, such as controlled observations and questionnaires , can produce both quantitative information.

For example, a rating scale or closed questions on a questionnaire would generate quantitative data as these produce either numerical data or data that can be put into categories (e.g., “yes,” “no” answers).

Experimental methods limit how research participants react to and express appropriate social behavior.

Findings are, therefore, likely to be context-bound and simply a reflection of the assumptions that the researcher brings to the investigation.

There are numerous examples of quantitative data in psychological research, including mental health. Here are a few examples:

Another example is the Experience in Close Relationships Scale (ECR), a self-report questionnaire widely used to assess adult attachment styles .

The ECR provides quantitative data that can be used to assess attachment styles and predict relationship outcomes.

Neuroimaging data : Neuroimaging techniques, such as MRI and fMRI, provide quantitative data on brain structure and function.

This data can be analyzed to identify brain regions involved in specific mental processes or disorders.

For example, the Beck Depression Inventory (BDI) is a clinician-administered questionnaire widely used to assess the severity of depressive symptoms in individuals.

The BDI consists of 21 questions, each scored on a scale of 0 to 3, with higher scores indicating more severe depressive symptoms. 

Quantitative Data Analysis

Statistics help us turn quantitative data into useful information to help with decision-making. We can use statistics to summarize our data, describing patterns, relationships, and connections. Statistics can be descriptive or inferential.

Descriptive statistics help us to summarize our data. In contrast, inferential statistics are used to identify statistically significant differences between groups of data (such as intervention and control groups in a randomized control study).

  • Quantitative researchers try to control extraneous variables by conducting their studies in the lab.
  • The research aims for objectivity (i.e., without bias) and is separated from the data.
  • The design of the study is determined before it begins.
  • For the quantitative researcher, the reality is objective , exists separately from the researcher, and can be seen by anyone.
  • Research is used to test a theory and ultimately support or reject it.

Limitations of Quantitative Research

  • Context : Quantitative experiments do not take place in natural settings. In addition, they do not allow participants to explain their choices or the meaning of the questions they may have for those participants (Carr, 1994).
  • Researcher expertise : Poor knowledge of the application of statistical analysis may negatively affect analysis and subsequent interpretation (Black, 1999).
  • Variability of data quantity : Large sample sizes are needed for more accurate analysis. Small-scale quantitative studies may be less reliable because of the low quantity of data (Denscombe, 2010). This also affects the ability to generalize study findings to wider populations.
  • Confirmation bias : The researcher might miss observing phenomena because of focus on theory or hypothesis testing rather than on the theory of hypothesis generation.

Advantages of Quantitative Research

  • Scientific objectivity : Quantitative data can be interpreted with statistical analysis, and since statistics are based on the principles of mathematics, the quantitative approach is viewed as scientifically objective and rational (Carr, 1994; Denscombe, 2010).
  • Useful for testing and validating already constructed theories.
  • Rapid analysis : Sophisticated software removes much of the need for prolonged data analysis, especially with large volumes of data involved (Antonius, 2003).
  • Replication : Quantitative data is based on measured values and can be checked by others because numerical data is less open to ambiguities of interpretation.
  • Hypotheses can also be tested because of statistical analysis (Antonius, 2003).

Antonius, R. (2003). Interpreting quantitative data with SPSS . Sage.

Black, T. R. (1999). Doing quantitative research in the social sciences: An integrated approach to research design, measurement and statistics . Sage.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology . Qualitative Research in Psychology , 3, 77–101.

Carr, L. T. (1994). The strengths and weaknesses of quantitative and qualitative research : what method for nursing? Journal of advanced nursing, 20(4) , 716-721.

Denscombe, M. (2010). The Good Research Guide: for small-scale social research. McGraw Hill.

Denzin, N., & Lincoln. Y. (1994). Handbook of Qualitative Research. Thousand Oaks, CA, US: Sage Publications Inc.

Glaser, B. G., Strauss, A. L., & Strutzel, E. (1968). The discovery of grounded theory; strategies for qualitative research. Nursing research, 17(4) , 364.

Minichiello, V. (1990). In-Depth Interviewing: Researching People. Longman Cheshire.

Punch, K. (1998). Introduction to Social Research: Quantitative and Qualitative Approaches. London: Sage

Further Information

  • Mixed methods research
  • Designing qualitative research
  • Methods of data collection and analysis
  • Introduction to quantitative and qualitative research
  • Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?
  • Qualitative research in health care: Analysing qualitative data
  • Qualitative data analysis: the framework approach
  • Using the framework method for the analysis of
  • Qualitative data in multi-disciplinary health research
  • Content Analysis
  • Grounded Theory
  • Thematic Analysis

Print Friendly, PDF & Email

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

examples of quantitative vs qualitative research

Home Market Research

Qualitative vs Quantitative Research: Differences and Examples

Qualitative vs Quantitative Research

Understanding the differences between qualitative vs quantitative research is essential when conducting a research project, as both methods underpin the two key approaches in conducting a study.

In recent blogs, we elaborately discussed quantitative and qualitative research methods b ut what is the difference between the two? Which one is the best? Let’s find out.

Qualitative Research In a nutshell

Qualitative research is a research methodology where “quality” or opinion based research is conducted to derive research conclusions. This type of research is often conversational in nature rather than being quantifiable through empirical research and measurements.

Qualitative research: Methods & Characteristics

1. Conversation : A conversation takes place between the researcher and the respondent. This can be in the form of focus groups , in-depth interviews using telephonic / video / face-to-face conversations.

However, with the rise of online platforms, a bulk of steps in qualitative research involves creating and maintaining online community portals for a more quantifiable and recordable qualitative study.

LEARN ABOUT: Qualitative Interview

2. Conclusions : Research conclusions are subjective in nature when conducting qualitative research. The researcher may derive conclusions based on in-depth analysis of respondent attitude, reason behind responses and understanding of psychological motivations.

Choosing the right software can be tough. Whether you’re a researcher, business leader, or marketer, check out the top 10 qualitative data analysis software for analyzing qualitative data.

Quantitative Research In a nutshell

Quantitative research is a research methodology which uses questions and questionnaires to gather quantifiable data and perform statistical analysis to derive meaningful research conclusions.

Quantitative research: Methods & Characteristics

1. Questions : Quantitative research method uses surveys and polls to gather information on a given subject. There are a variety of question types used based on a nature of the research study.

For Example: If you want to conduct a customer satisfaction quantitative research, the Net Promoter Score is one of the critically acclaimed survey questions for this purpose.

2. Distribution : Quantitative research uses email surveys as the primary mode of gathering responses to questions. Alternatively, technology has given rise to offline distribution methods for relatively remote locations using offline mobile data capture apps. For social sciences and psychological quantitative research, social media surveys are also used to gather data.

3. Statistical Analysis : Quantitative research uses a wide range of data analysis techniques such as Conjoint Analysis , Cross Tabulation and Trend Analysis .

Qualitative vs Quantitative Research

Now let’s compare the qualitative and quantitative research methods in different aspects so that you can choose the right one in your next investigation.:

1. Objective and flow of research

Quantitative research is used in data-oriented research where the objective of research design is to derive “measurable empirical evidence” based on fixed and pre-determined questions. The flow of research, is therefore, decided before the research is conducted.

Where as, qualitative research is used where the objective is research is to keep probing the respondents based on previous answers under the complete discretion of the interviewer. The flow of research is not determined and the researcher / interviewer has the liberty to frame and ask new questions.

2. Respondent sample size

Respondents or sample of a particular panel is much larger for quantitative research such that enough verifiable information is gather to reach a conclusion without opinion bias. In large scale quantitative research, sample size can be in thousands.

Where as, qualitative research inherently uses less sample size because a large sample size makes it difficult of the research to probe respondents. For instance, a typical political focus group study evaluating election candidates involves no more than 5-10 panelists.

3. Information gathering

Quantitative research uses information gathering methods that can be quantified and processed for statistical analysis techniques. Simply put – quantitative research is heavily dependent on “numbers”, data and stats.

LEARN ABOUT: Research Process Steps

Where as, qualitative research uses conversational methods to gather relevant information on a given subject.

4. Post-research response analysis and conclusions

Quantitative research uses a variety of statistical analysis methods to derive quantifiable research conclusions. These are based on mathematical processes applied on the gather data.

Where as, qualitative researc h depends on the interviewer to derive research conclusions based on qualitative conversations held with the respondents. This conclusion is effectively subjective in nature. This is why quantitative research recordings are often reviewed by senior researchers before the final research conclusion is drawn.

Differences between qualitative vs quantitative research

Differences between Qualitative vs quantitative

We hope that this information helps you choose your next research method and achieve your goals.

If you want to carry out any qualitative or qualitative research questions , ask about the tools that QuestionPro has available to help you with the qualitative data collection of the data you need. We have functions for all types of research!.

MORE LIKE THIS

slack integration employee surveys

Maximize Employee Feedback with QuestionPro Workforce’s Slack Integration

Nov 6, 2024

2024 Presidential election Poll - Harris vs Trump

2024 Presidential Election Polls: Harris vs. Trump

Nov 5, 2024

examples of quantitative vs qualitative research

Your First Question Should Be Anything But, “Is The Car Okay?” — Tuesday CX Thoughts

questionpro-vs-qualtrics

QuestionPro vs. Qualtrics: Who Offers the Best 360-Degree Feedback Platform for Your Needs?

Nov 4, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Qualitative vs Quantitative Research | Examples & Methods

Qualitative vs Quantitative Research | Examples & Methods

Published on 4 April 2022 by Raimo Streefkerk . Revised on 8 May 2023.

When collecting and analysing data, quantitative research deals with numbers and statistics, while qualitative research  deals with words and meanings. Both are important for gaining different kinds of knowledge.

Common quantitative methods include experiments, observations recorded as numbers, and surveys with closed-ended questions. Qualitative research Qualitative research is expressed in words . It is used to understand concepts, thoughts or experiences. This type of research enables you to gather in-depth insights on topics that are not well understood.

Table of contents

The differences between quantitative and qualitative research, data collection methods, when to use qualitative vs quantitative research, how to analyse qualitative and quantitative data, frequently asked questions about qualitative and quantitative research.

Quantitative and qualitative research use different research methods to collect and analyse data, and they allow you to answer different kinds of research questions.

Qualitative vs quantitative research

Prevent plagiarism, run a free check.

Quantitative and qualitative data can be collected using various methods. It is important to use a data collection method that will help answer your research question(s).

Many data collection methods can be either qualitative or quantitative. For example, in surveys, observations or case studies , your data can be represented as numbers (e.g. using rating scales or counting frequencies) or as words (e.g. with open-ended questions or descriptions of what you observe).

However, some methods are more commonly used in one type or the other.

Quantitative data collection methods

  • Surveys :  List of closed or multiple choice questions that is distributed to a sample (online, in person, or over the phone).
  • Experiments : Situation in which variables are controlled and manipulated to establish cause-and-effect relationships.
  • Observations: Observing subjects in a natural environment where variables can’t be controlled.

Qualitative data collection methods

  • Interviews : Asking open-ended questions verbally to respondents.
  • Focus groups: Discussion among a group of people about a topic to gather opinions that can be used for further research.
  • Ethnography : Participating in a community or organisation for an extended period of time to closely observe culture and behavior.
  • Literature review : Survey of published works by other authors.

A rule of thumb for deciding whether to use qualitative or quantitative data is:

  • Use quantitative research if you want to confirm or test something (a theory or hypothesis)
  • Use qualitative research if you want to understand something (concepts, thoughts, experiences)

For most research topics you can choose a qualitative, quantitative or mixed methods approach . Which type you choose depends on, among other things, whether you’re taking an inductive vs deductive research approach ; your research question(s) ; whether you’re doing experimental , correlational , or descriptive research ; and practical considerations such as time, money, availability of data, and access to respondents.

Quantitative research approach

You survey 300 students at your university and ask them questions such as: ‘on a scale from 1-5, how satisfied are your with your professors?’

You can perform statistical analysis on the data and draw conclusions such as: ‘on average students rated their professors 4.4’.

Qualitative research approach

You conduct in-depth interviews with 15 students and ask them open-ended questions such as: ‘How satisfied are you with your studies?’, ‘What is the most positive aspect of your study program?’ and ‘What can be done to improve the study program?’

Based on the answers you get you can ask follow-up questions to clarify things. You transcribe all interviews using transcription software and try to find commonalities and patterns.

Mixed methods approach

You conduct interviews to find out how satisfied students are with their studies. Through open-ended questions you learn things you never thought about before and gain new insights. Later, you use a survey to test these insights on a larger scale.

It’s also possible to start with a survey to find out the overall trends, followed by interviews to better understand the reasons behind the trends.

Qualitative or quantitative data by itself can’t prove or demonstrate anything, but has to be analysed to show its meaning in relation to the research questions. The method of analysis differs for each type of data.

Analysing quantitative data

Quantitative data is based on numbers. Simple maths or more advanced statistical analysis is used to discover commonalities or patterns in the data. The results are often reported in graphs and tables.

Applications such as Excel, SPSS, or R can be used to calculate things like:

  • Average scores
  • The number of times a particular answer was given
  • The correlation or causation between two or more variables
  • The reliability and validity of the results

Analysing qualitative data

Qualitative data is more difficult to analyse than quantitative data. It consists of text, images or videos instead of numbers.

Some common approaches to analysing qualitative data include:

  • Qualitative content analysis : Tracking the occurrence, position and meaning of words or phrases
  • Thematic analysis : Closely examining the data to identify the main themes and patterns
  • Discourse analysis : Studying how communication works in social contexts

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organise your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Streefkerk, R. (2023, May 08). Qualitative vs Quantitative Research | Examples & Methods. Scribbr. Retrieved 18 November 2024, from https://www.scribbr.co.uk/research-methods/quantitative-qualitative-research/

Is this article helpful?

Raimo Streefkerk

Raimo Streefkerk

Qualitative vs. Quantitative Research: Comparing the Methods and Strategies for Education Research

A woman sits at a library table with stacks of books and a laptop.

No matter the field of study, all research can be divided into two distinct methodologies: qualitative and quantitative research. Both methodologies offer education researchers important insights.

Education research assesses problems in policy, practices, and curriculum design, and it helps administrators identify solutions. Researchers can conduct small-scale studies to learn more about topics related to instruction or larger-scale ones to gain insight into school systems and investigate how to improve student outcomes.

Education research often relies on the quantitative methodology. Quantitative research in education provides numerical data that can prove or disprove a theory, and administrators can easily share the number-based results with other schools and districts. And while the research may speak to a relatively small sample size, educators and researchers can scale the results from quantifiable data to predict outcomes in larger student populations and groups.

Qualitative vs. Quantitative Research in Education: Definitions

Although there are many overlaps in the objectives of qualitative and quantitative research in education, researchers must understand the fundamental functions of each methodology in order to design and carry out an impactful research study. In addition, they must understand the differences that set qualitative and quantitative research apart in order to determine which methodology is better suited to specific education research topics.

Generate Hypotheses with Qualitative Research

Qualitative research focuses on thoughts, concepts, or experiences. The data collected often comes in narrative form and concentrates on unearthing insights that can lead to testable hypotheses. Educators use qualitative research in a study’s exploratory stages to uncover patterns or new angles.

Form Strong Conclusions with Quantitative Research

Quantitative research in education and other fields of inquiry is expressed in numbers and measurements. This type of research aims to find data to confirm or test a hypothesis.

Differences in Data Collection Methods

Keeping in mind the main distinction in qualitative vs. quantitative research—gathering descriptive information as opposed to numerical data—it stands to reason that there are different ways to acquire data for each research methodology. While certain approaches do overlap, the way researchers apply these collection techniques depends on their goal.

Interviews, for example, are common in both modes of research. An interview with students that features open-ended questions intended to reveal ideas and beliefs around attendance will provide qualitative data. This data may reveal a problem among students, such as a lack of access to transportation, that schools can help address.

An interview can also include questions posed to receive numerical answers. A case in point: how many days a week do students have trouble getting to school, and of those days, how often is a transportation-related issue the cause? In this example, qualitative and quantitative methodologies can lead to similar conclusions, but the research will differ in intent, design, and form.

Taking a look at behavioral observation, another common method used for both qualitative and quantitative research, qualitative data may consider a variety of factors, such as facial expressions, verbal responses, and body language.

On the other hand, a quantitative approach will create a coding scheme for certain predetermined behaviors and observe these in a quantifiable manner.

Qualitative Research Methods

  • Case Studies : Researchers conduct in-depth investigations into an individual, group, event, or community, typically gathering data through observation and interviews.
  • Focus Groups : A moderator (or researcher) guides conversation around a specific topic among a group of participants.
  • Ethnography : Researchers interact with and observe a specific societal or ethnic group in their real-life environment.
  • Interviews : Researchers ask participants questions to learn about their perspectives on a particular subject.

Quantitative Research Methods

  • Questionnaires and Surveys : Participants receive a list of questions, either closed-ended or multiple choice, which are directed around a particular topic.
  • Experiments : Researchers control and test variables to demonstrate cause-and-effect relationships.
  • Observations : Researchers look at quantifiable patterns and behavior.
  • Structured Interviews : Using a predetermined structure, researchers ask participants a fixed set of questions to acquire numerical data.

Choosing a Research Strategy

When choosing which research strategy to employ for a project or study, a number of considerations apply. One key piece of information to help determine whether to use a qualitative vs. quantitative research method is which phase of development the study is in.

For example, if a project is in its early stages and requires more research to find a testable hypothesis, qualitative research methods might prove most helpful. On the other hand, if the research team has already established a hypothesis or theory, quantitative research methods will provide data that can validate the theory or refine it for further testing.

It’s also important to understand a project’s research goals. For instance, do researchers aim to produce findings that reveal how to best encourage student engagement in math? Or is the goal to determine how many students are passing geometry? These two scenarios require distinct sets of data, which will determine the best methodology to employ.

In some situations, studies will benefit from a mixed-methods approach. Using the goals in the above example, one set of data could find the percentage of students passing geometry, which would be quantitative. The research team could also lead a focus group with the students achieving success to discuss which techniques and teaching practices they find most helpful, which would produce qualitative data.

Learn How to Put Education Research into Action

Those with an interest in learning how to harness research to develop innovative ideas to improve education systems may want to consider pursuing a doctoral degree. American University’s School of Education online offers a Doctor of Education (EdD) in Education Policy and Leadership that prepares future educators, school administrators, and other education professionals to become leaders who effect positive changes in schools. Courses such as Applied Research Methods I: Enacting Critical Research provides students with the techniques and research skills needed to begin conducting research exploring new ways to enhance education. Learn more about American’ University’s EdD in Education Policy and Leadership .

What’s the Difference Between Educational Equity and Equality?

EdD vs. PhD in Education: Requirements, Career Outlook, and Salary

Top Education Technology Jobs for Doctorate in Education Graduates

American University, EdD in Education Policy and Leadership

Edutopia, “2019 Education Research Highlights”

Formplus, “Qualitative vs. Quantitative Data: 15 Key Differences and Similarities”

iMotion, “Qualitative vs. Quantitative Research: What Is What?”

Scribbr, “Qualitative vs. Quantitative Research”

Simply Psychology, “What’s the Difference Between Quantitative and Qualitative Research?”

Typeform, “A Simple Guide to Qualitative and Quantitative Research”

Request Information

Chatbot avatar

AU Program Helper

This AI chatbot provides automated responses, which may not always be accurate. By continuing with this conversation, you agree that the contents of this chat session may be transcribed and retained. You also consent that this chat session and your interactions, including cookie usage, are subject to our  privacy policy .

Way With Words

The 10 Key Differences Between Qualitative and Quantitative Research Methods

Sep 5, 2023 | Research FAQs

Understanding the Distinctions Between Qualitative and Quantitative Research Methods

In the realm of academic exploration and enquiry, research methods serve as the foundation upon which new knowledge is built. Among the multitude of methodologies available to researchers, two primary approaches stand out: qualitative and quantitative research methods. These distinct paradigms guide scholars in their quest for understanding, yet they diverge significantly in their techniques, purposes, and outcomes. In this short guide, we delve into the intricacies of qualitative and quantitative research methods, shedding light on their defining characteristics, applications, advantages, and limitations.

#1 The Essence of Qualitative and Quantitative Research

Qualitative research encompasses an in-depth exploration of the subjective aspects of a phenomenon, often employing methods such as interviews, focus groups, and content analysis. In contrast, quantitative research employs numerical data and statistical analyses to quantify relationships, relying on surveys, experiments, and secondary data analysis.

Qualitative research serves as a gateway to delving deeply into the intricacies of human experiences and behaviours. This approach involves immersing oneself in the subjective aspects of a phenomenon, allowing researchers to uncover hidden nuances that quantitative methods might overlook.

qualitative and quantitative research data

By employing methods such as in-depth interviews, focus groups, and content analysis, qualitative researchers venture into the rich tapestry of individual perspectives, motivations, and emotions. These methods provide a canvas upon which the complex interplay of human thought and emotion can be carefully unravelled.

On the other hand, quantitative research takes a step back to capture the broader picture through numbers and measurable relationships. This method is particularly suited for researchers seeking to quantify patterns, trends, and correlations that are prevalent across a larger population.

By employing numerical data and statistical analyses, such as surveys, experiments, and secondary data analysis, quantitative research unveils the statistical underpinnings that shape our world. This approach enables researchers to make generalisations and predictions based on empirical evidence, offering insights that transcend individual experiences.

#2 Philosophical Underpinnings

Qualitative research leans on interpretivism, emphasising the significance of context and multiple realities. It seeks to understand the social construction of reality and values subjective experiences. Quantitative research aligns with positivism, striving for objectivity and universal truths through observable and measurable phenomena.

In the philosophical realm, qualitative research embraces interpretivism, a perspective that acknowledges the role of context, culture, and individual perspectives in shaping reality. This approach recognises that reality is not an absolute, objective construct, but rather a fluid and dynamic interplay of various viewpoints. By diving into the subjective experiences of participants, qualitative research seeks to grasp the layers of meaning and significance that contribute to the complexity of human existence.

On the opposite end, quantitative research aligns with positivism, a perspective that seeks to uncover universal truths through systematic observation and measurement. Positivism operates under the premise that the world is governed by laws that can be objectively studied and measured. By focusing on observable and measurable phenomena, quantitative research strives to achieve objectivity and reliability. This alignment with positivism allows researchers to create a standardised framework for understanding reality, facilitating the comparison of findings across different studies and contexts.

#3 Data Collection Techniques

Qualitative research employs flexible, open-ended data collection techniques that allow researchers to explore unexpected avenues. These methods provide rich insights into complex social phenomena but may lack generalisability. Quantitative research relies on structured data collection, often through standardised surveys, ensuring replicable results and enabling statistical comparisons.

The heart of qualitative research lies in its adaptable and flexible data collection techniques. These methods are designed to accommodate the dynamic and unpredictable nature of human experiences. Qualitative researchers often engage in open-ended interviews, allowing participants to express themselves freely and reveal insights that might have remained concealed within closed-ended survey questions. Additionally, techniques such as focus groups and content analysis provide avenues for exploring collective perspectives and themes that emerge organically.

In the realm of quantitative research, structured data collection takes centre stage. Standardised surveys, carefully designed to measure specific variables, ensure consistency and comparability among responses. This approach allows researchers to collect a vast amount of data efficiently and quantitatively analyse patterns and trends. However, the structured nature of quantitative data collection may inadvertently limit the scope of responses, potentially overlooking nuances that qualitative methods excel at capturing.

#4 Sample Selection and Size

Qualitative research often employs purposive sampling to select participants with specific characteristics, ensuring a deep understanding of their experiences. In contrast, quantitative research emphasises random or stratified sampling to achieve representative samples, enhancing the potential for generalisability.

Qualitative research takes a targeted approach to sample selection through purposive sampling. By deliberately selecting participants who possess specific characteristics or experiences, researchers ensure a deep and comprehensive understanding of the phenomenon under investigation. 

qualitative and quantitative research survey

This strategy is particularly beneficial when exploring complex, niche topics, as it enables researchers to capture the depth and diversity of perspectives within a smaller sample.

Conversely, quantitative research emphasises the importance of representative samples achieved through random or stratified sampling. This approach is rooted in the desire to generalise findings to a larger population. By selecting participants at random or based on specific criteria, quantitative researchers aim to minimise bias and increase the likelihood that their results are applicable beyond the study’s immediate context. This enables researchers to draw broader conclusions that transcend the boundaries of the sample studied.

#5 Analysis Process

Qualitative data analysis involves coding and thematic analysis to identify patterns and themes within textual or visual data. This approach requires researchers to immerse themselves in the data, fostering a nuanced understanding of the subject. Quantitative data analysis employs statistical techniques to analyse numerical data, allowing researchers to identify correlations, trends, and significant differences.

Qualitative data analysis is an art that requires researchers to immerse themselves in the data, navigating the intricate web of narratives, themes, and emotions. Through techniques such as coding and thematic analysis, researchers identify recurring patterns, extract meaningful insights, and construct a coherent narrative that captures the essence of participants’ experiences. This approach demands patience, creativity, and a willingness to let the data guide the analysis process.

In the realm of quantitative analysis, numbers take centre stage. Statistical techniques allow researchers to explore relationships, test hypotheses, and identify patterns within numerical data. From correlation coefficients to regression analyses, these tools enable researchers to uncover the statistical significance of their findings and make data-driven interpretations. Unlike qualitative analysis, quantitative analysis relies on predefined variables and measurements, guiding researchers toward predetermined outcomes.

#6 Validity and Reliability

Qualitative research focuses on ensuring validity through techniques such as triangulation, member checking, and prolonged engagement. While reliability in the traditional sense may be harder to achieve due to the subjective nature of the data, qualitative research prioritises credibility and transferability. Quantitative research emphasises reliability and internal validity, striving to minimise bias and produce consistent results.

Qualitative research prioritises validity through a multi-faceted approach that seeks to ensure the accuracy and credibility of findings. 

qualitative and quantitative research techniques

Techniques such as triangulation, which involves using multiple sources of data to confirm patterns, enhance the trustworthiness of qualitative results. Member checking, where participants review and validate the researcher’s interpretations, adds another layer of credibility. While achieving traditional reliability in the quantitative sense can be challenging due to the dynamic nature of qualitative data, qualitative research places a premium on establishing transferability and credibility.

Quantitative research, on the other hand, emphasises reliability and internal validity. Researchers employing quantitative methods seek to minimise the potential for bias and error by using standardised procedures and measures. This ensures that the study’s findings can be replicated consistently, contributing to the overall body of knowledge. Statistical techniques are often used to assess the reliability of measurements, and the careful design of experiments and surveys aims to control extraneous variables that could impact the internal validity of the study.

#7 Real-World Applications

Qualitative research is well-suited for exploring complex social phenomena, such as understanding the lived experiences of marginalised communities or analysing the intricacies of interpersonal relationships. Quantitative research finds its strength in empirical studies that require measurement and statistical analysis, such as clinical trials, market research, and opinion polls.

Qualitative research finds its stride in exploring the depths of complex social phenomena that cannot be easily quantified. It is ideally suited for gaining insights into the lived experiences of marginalised communities, understanding the nuances of cultural practices, or unravelling the intricacies of interpersonal relationships. Qualitative research provides a platform for amplifying voices that might otherwise remain unheard and uncovers the underlying emotional landscapes that shape human behaviour.

On the other hand, quantitative research’s strengths lie in empirical studies that demand numerical data and objective measurement. It thrives in scenarios where statistical analyses are essential for drawing conclusions. For instance, in clinical trials, quantitative research enables researchers to assess the effectiveness of treatments by analysing measurable outcomes. In market research, it quantifies consumer preferences and behaviours, guiding businesses in making data-driven decisions. In political opinion polls, quantitative research captures the pulse of public sentiment through quantifiable data.

#8 Complementary Roles

In certain cases, qualitative and quantitative research methods can complement each other, offering a more comprehensive view of a phenomenon. For instance, a mixed-methods approach could involve conducting qualitative interviews to gain insights and then designing a quantitative survey to validate findings on a larger scale.

The boundary between qualitative and quantitative research is not rigid; instead, they can be seen as complementary puzzle pieces. In some cases, combining these methods through a mixed-methods approach can offer a more holistic understanding of a phenomenon.

Imagine a study aiming to explore a social issue. Qualitative interviews might unveil the underlying narratives and emotions surrounding the issue, while a subsequent quantitative survey could provide statistical evidence to validate the qualitative findings on a larger scale. This harmonious combination bridges the gap between depth and breadth, offering a comprehensive perspective.

#9 Ethical Considerations

Qualitative research places strong emphasis on ethical considerations due to its potential for revealing sensitive personal experiences. Researchers must ensure informed consent, confidentiality, and emotional well-being of participants. In quantitative research, ethical considerations often revolve around issues of privacy and data protection, particularly in the era of big data.

In the realm of qualitative research, ethical considerations are paramount due to the potential for revealing personal, sensitive experiences

qualitative and quantitative research interview

Researchers must navigate the delicate balance between seeking knowledge and ensuring the well-being of participants. Informed consent becomes crucial, as participants need to understand the purpose and potential outcomes of the study before they share their experiences. Confidentiality and anonymity are essential to protect participants’ identities and privacy. Researchers must also be mindful of the potential emotional impact on participants and offer resources for support.

In quantitative research, ethical considerations often revolve around issues of privacy, data protection, and informed consent in the era of big data. With vast amounts of digital information available, researchers must ensure that participants’ data is anonymised and secured to prevent unauthorised access. The challenge lies in balancing the need for data-driven insights with the responsibility of safeguarding individuals’ information. Researchers are called upon to uphold ethical standards while harnessing the power of quantitative methods.

#10 Evolving Landscape

The landscape of research methods is not static. Qualitative and quantitative research approaches continue to evolve as researchers explore innovative techniques. For instance, advancements in technology have led to the emergence of digital qualitative research methodologies, while big data analytics have expanded the horizons of quantitative research.

The landscape of research methods is far from static; it is continually evolving as researchers innovate and adapt to new challenges. Qualitative and quantitative research approaches are no exception. Technological advancements have given rise to digital qualitative research methodologies, allowing researchers to explore online communities and virtual spaces. The integration of multimedia, such as videos and images, has expanded the horizons of qualitative data analysis, enabling researchers to capture and analyse multi-modal forms of communication.

Similarly, the quantitative realm has been reshaped by the explosion of big data. With unprecedented access to massive datasets, researchers can explore patterns and trends that were previously beyond reach. Big data analytics have given rise to novel insights in fields such as healthcare, finance, and social sciences. Machine learning and artificial intelligence are transforming the way quantitative research is conducted, enabling researchers to make predictions and uncover hidden patterns with remarkable accuracy.

Key Takeaways

  • Qualitative research delves into subjective experiences, while quantitative research focuses on numerical data and statistical analysis.
  • Qualitative methods emphasise context and multiple realities, while quantitative methods strive for objectivity and universal truths.
  • Qualitative research employs open-ended data collection and inductive analysis, while quantitative research relies on structured data collection and deductive analysis.
  • Qualitative research seeks rich insights from small, purposive samples, while quantitative research aims for generalisability through representative samples.
  • Both paradigms prioritise validity and reliability, but their definitions and techniques differ.
  • Qualitative research excels in exploring complex social phenomena, while quantitative research shines in empirical studies and statistical analyses.
  • A mixed-methods approach combines qualitative and quantitative research methods for a comprehensive understanding of a subject.

 In the dynamic world of academic research, the choice between qualitative and quantitative research methods is pivotal. The philosophical underpinnings, data collection techniques, analysis processes, and ethical considerations of each paradigm significantly influence the outcomes and applications of a study. As you embark on your research journey, consider the intricacies and strengths of each approach, allowing your research question to guide you toward the method best suited to uncovering the insights you seek.

As you delve deeper into the world of research, remember that these methodologies are not rigid categories but rather dynamic tools that can be adapted and blended to suit the needs of your study. The distinction between qualitative and quantitative research is not about one being superior to the other, but rather about recognising their distinct purposes and leveraging their unique strengths to contribute to the body of knowledge in your field.

Useful Resources

  • Way With Words – Professional academic research transcription services.
  • American Educational Research Association – A resource hub for educational research methodologies.
  • Qualitative Research in Psychology – A journal exploring innovative qualitative research approaches.
  • Quantitative Research Methods – An in-depth guide to various quantitative research methods.
  • SAGE Research Methods – A comprehensive platform providing access to various research methods and resources.

Engagement Questions

  • How might your research question influence your choice between qualitative and quantitative methods?
  • Can you think of scenarios where combining qualitative and quantitative methods would enhance the validity of your study?
  • In what ways do ethical considerations differ between qualitative and quantitative research, and how would you address them in your own study?

Qualitative vs Quantitative Research: When to Use Each

qualitative vs quantitative user research

User research is crucial for understanding the needs, preferences, and behaviours of your users. By directly engaging with and observing real users, you gain invaluable insights that can inform the design and development of your product or service.

There are two main approaches to conducting user research: qualitative and quantitative.

This article will provide an overview of qualitative vs quantitative research. I’ll define what each method is, walk through example scenarios of when you might use one versus the other, highlight the benefits of each, and offer guidelines on when qualitative or quantitative user research is most appropriate.

With a foundational understanding of these two complementary research approaches, you’ll be equipped to choose the right user research method(s) for gaining the insights you need.

Let’s get started.

Table of Contents

What is user research.

User research is the study of target users and their needs, goals, and behaviours. It provides critical insights that inform the design and development of products, services, and experiences.

The goal of user research is to understand users’ motivations and thought processes so that solutions can be crafted to meaningfully address their pain points and desires. Researchers utilize various qualitative and quantitative techniques to uncover users’ attitudes, perceptions, and needs.

The findings from user research drive design decisions, product strategy, and business objectives. By grounding designs in real user data, teams can create solutions that delight users by meeting their needs. User research provides a profound understanding of the problem space so that products resonate with users’ mental models and workflows.

Qualitative User Research

Qualitative user research is a set of exploratory research techniques focused on developing a deep understanding of why and how people behave, think, feel, and make decisions. 

It typically involves open-ended observations, interviews, and analysis based on small sample sizes. 

The goal is to uncover insights into human motivations, attitudes and needs through immersive and conversational research methods. 

Rather than focusing on quantitative metrics or measurements, qualitative user research aims to understand the nuanced human context surrounding products, services, and experiences.

Key characteristics of qualitative research include:

Asking open-ended questions – 

Qualitative research utilizes flexible, open-ended questions that allow users to provide thoughtful and descriptive responses. Questions focus on the “why” and “how” behind bbehaviours not just surface-level preferences. For example, researchers may ask “Can you walk me through how you accomplished that task?” rather than “Did you find that task easy or difficult?”. Open questions lead to deeper psychological insights.

Small but focused sample sizes – 

Qualitative studies recruit a smaller number of users, but they represent the target audience segment. For example, rather than 500 broadly targeted surveys, qualitative research may study 8-12 users who match the persona. Smaller samples enable more time spent discovering each user’s nuanced perspectives.

Naturalistic observations – 

Qualitative research observes users interacting in real environments, like their homes or workplaces. This naturalistic approach reveals authentic behaviours versus what people say. Researchers can shadow users and see real-world contexts.

Immersive techniques – 

Qualitative research utilizes ethnography-inspired techniques. Researchers embed themselves alongside users to empathize with their worldview. In-depth interviews, diary studies, and field visits all facilitate first-hand experience of the user’s journey – Through open and natural dialogue, qualitative research uncovers emotional and social insights difficult to extract via surveys or analytics. The human-to-human approach highlights feelings, relationships, and unarticulated needs.

Common Qualitative Research Methods

1. one-on-one interviews.

A researcher conducting one on one interviews

Conducting a one-on-one user interview involves an in-depth, conversational session between the researcher and a single user representative of the target audience. The interviewer guides the discussion using flexible, open-ended questions to elicit deep insights into the user’s perspectives, bebehavioursand needs.

One-on-one interviews shine when:

  • Granular insights are needed from individuals based on their distinct circumstances and backgrounds.
  • Understanding nuanced personal contexts, thought processes, pain points and emotions is critical.
  • Users may be more forthcoming when peaking alone versus groups.
  • The order and wording of questions benefit from real-time adaptation to the dialogue flow.
  • Non-verbal cues and body language provide additional context to verbal answers.

Effective one-on-one interview tips include:

  • Establishing rapport helps the user open up honestly. Avoid an interrogation vibe.
  • Adapt questions based on responses, probing for richer details. Don’t just stick to a rigid script.
  • Remain neutral and avoid leading questions that influence the user’s answers.
  • Listen fully not just for what’s said but also what’s unspoken. Note emotions and inconsistencies.
  • Thank the user for generously providing their time and perspectives. They feel valued.

One-on-one engagement allows deep discovery of individual motivations and contexts. It requires planning, active listening, and interpreting both verbal and non-verbal cues.

2. Focus Groups

a focus group interview

A focus group brings together 6-12 users from the target audience for a moderated, interactive discussion focused on a product, service, or topic. Participants share perspectives and build on each other’s ideas in a conversational setting.

Focus groups are advantageous when:

  • Real-time user interaction and feedback on concepts is desired.
  • Sparking new ideas across users with different attitudes and behaviors is the goal.
  • Observing how users influence each other reveals social dynamics and norms.
  • A wider range of feedback is needed in the time available versus 1-on-1 interviews.

Tips for productive focus groups include:

  • Recruit users who offer diverse perspectives but fit the target audience.
  • Use a skilled, neutral moderator to facilitate constructive discussion and keep it on track.
  • Explain ground rules upfront so all participants engage respectfully.
  • Guide the flow from general to specific questions, leaving time for open discussion.
  • Change up activities and stimuli (images, prototype demos) to sustain energy.
  • Send recordings for further analysis of responses, interactions, and nonverbal behaviors.

3. User Diaries

User documenting in their user diaries

User diaries involve having target audience members self-document and reflect on their experiences related to a product or service over time in an ongoing journal. Diary studies provide rich, longitudinal insights from the user’s perspective.

Diary studies are advantageous when:

  • Capturing detailed, nuanced accounts of user journeys, motivations, pain points, and perceptions in a real-world context is needed.
  • Users are geographically dispersed making direct observations or interviews impractical.
  • Revealing changes over time rather than one-off interactions is the research goal.
  • Users can clearly articulate their experiences through written or multimedia diaries.

Tips for productive diary studies include:

  • Provide clear instructions and templates detailing what details to capture in diary entries over the study duration. Offer tools like written journals, audio recorders, or online forms.
  • Set reasonable time commitments per day/week and study length based on depth required and user willingness.
  • Check-in throughout the process to maintain participation, answer questions, and fix issues.
  • Incentivize participation by compensating users for time spent journaling.
  • Regularly review entries to identify compelling patterns and follow up for more context.
  • Analyze entries to uncover key themes, insights, and opportunities related to the research aims.

Well-designed diary studies generate rich qualitative data by tapping into users’ direct experiences in their own words over time.

4. Ethnographic Studies

This involves immersing in users’ real-world environments to observe behaviors, understand contexts, and uncover unarticulated needs. Researchers embed directly in the user experience.

Ethnographies excel when:

  • Deep insight into “unsaid” user behaviors, motivations, and pain points is needed.
  • Directly observing users interacting in real environments provides more authenticity than interviews.
  • Longer-term immersion reveals ingrained habits, rituals, and relationships.
  • Users cannot fully or accurately articulate their own behaviors and motivations.

Tips for effective ethnographies:

  • Clearly define the cultural/environmental scope for observations. Get necessary access.
  • Utilize fly-on-the-wall observation techniques to avoid disrupting natural behaviors.
  • Take comprehensive notes on user activities, interactions, tools, and environmental factors.
  • Look for patterns in activities, conversations, rituals, artifacts, and relationships.
  • Balance active observation with informal interview discussions to add context.
  • Keep the human perspective; focus on empathy not just data gathering.

5. User Testing

User testing

User testing involves directly observing representative users interact with a product or prototype to identify usability issues and collect feedback. Participants work through realistic scenarios while researchers analyze successes, pain points, emotions, and verbal commentary.

User testing shines when:

  • Feedback is needed on whether designs meet user expectations and needs.
  • Identifying issues in workflows, navigation, learnability, and comprehension is important.
  • Directly observing user behavior provides more reliable insights than what they self-report.
  • Testing with iterations is built into the product development process.

Tips for effective user testing:

  • Develop realistic usage scenarios and test scripts tailored to key research questions. Avoid bias.
  • Recruit users matching target demographics and familiarity with the product domain.
  • Set up comfortable testing spaces and moderation that put users at ease.
  • Record sessions to capture insights from body language, tones, facial expressions etc.
  • Analyze results for trends and outliers in behaviors, problems, emotions. Focus on learning.
  • Iterate on solutions based on insights. Retest with new users to validate improvements.

6. Think-Aloud-Protocol

The think-aloud protocol method asks users to continuously verbalize their thoughts, feelings, and opinions while completing tasks with a product or prototype. Researchers observe and listen as users express in-the-moment reactions.

Think-aloud testing is ideal when:

  • Understanding users’ in-the-moment decision making process and emotional responses is invaluable.
  • Insights into points of confusion, frustration, delight can rapidly inform design iterations.
  • Users can competently complete tasks while articulating their thinking concurrently.
  • Limited time is available compared to extensive ethnographies or diary studies.

Effective think-aloud tips include:

  • Provide clear instructions to share thoughts continuously throughout the session. Reassure users.
  • Use open-ended prompts like “Tell me what you’re thinking” to encourage articulation without leading.
  • Avoid interfering with the user’s process so their commentary feels natural.
  • Have users complete realistic, task-based scenarios representative of the product experience.
  • Capture direct quotes and time stamp compelling reactions to inform development priorities.

Think-aloud testing efficiently provides a window into users’ in-the-moment perceptions and decision making during hands-on product experiences

Applications Of Qualitative Research

Early product development stages:.

Qualitative user research is invaluable in the early ideation and discovery phases of product development when the problem space is still being explored.

Methods like interviews, ethnographies, and diary studies help researchers deeply understand user needs even before product ideas exist. Qualitative data informs initial user personas, journeys, and use cases so product concepts address real user problems.

Early qualitative insights ensure the end solution resonates with user contexts, attitudes, behaviors and motivations. This upfront user-centricity pays dividends across the entire product lifecycle.

Understanding user needs:

Qualitative techniques directly engage with end users to reveal not just what they do, but why they do it. Immersive interviews unveil users’ unstated needs because researchers can ask follow-up questions on the spot.

Observational studies capture nuanced behaviors that users themselves may not consciously realize or find important to mention. The qualitative emphasis on unlocking the “why” behind user actions is crucial for identifying needs that statistics alone miss. The human-centered discoveries spark innovation opportunities.

Problem identification:

The flexible and exploratory nature of qualitative research allows people to openly share the frustrations, anxieties, and pain points they experience.

Their candid words and emotions convey the meaning behind problems far better than numbers alone. For example, ethnographies and diaries may reveal users’ biggest problems stem not from one specific functionality issue but from misaligned workflows overall.

Qualitative techniques dig into the impacts of problems. The human perspectives guide better solutions.

Understanding context of use:

Well-designed qualitative studies meet users in their natural environments and daily lives. This enables researchers to observe how products and services integrate within existing ecosystems, habits, relationships, and workflows.

Key contextual insights are revealed that surveys alone could miss. For example, home interviews may show a smart speaker’s role in family dynamics. Contextual understanding ensures products fit seamlessly into users’ worlds.

Benefits Of Qualitative Research

Gaining deep insights:.

Qualitative techniques like long-form interviews, think-aloud protocol, and diary studies uncover not just surface-level behaviors and preferences, but the deeper meaning, motivations and emotions behind users’ actions.

Asking probing open-ended questions during in-depth conversations reveals nuanced perspectives on needs, thought processes, pain points, and ecosystems.

Immersive ethnographic observation also provides a holistic view of ingrained user habits and contexts. The richness of these qualitative findings informs truly human-centered innovation opportunities in a way quantitative data alone cannot.

Understanding user emotions:

Qualitative research effectively captures the wide range of emotional aspects of the user experience. Through ethnographic observation, researchers directly see moments of delight during usability testing or frustration while completing a task.

Diary studies provide outlets for users to express perceptions in their own words over time.

In interviews, asking follow-up questions on reactions and feelings provides more color than rating scales. This emotional intelligence helps designers move beyond functional requirements to empathetically address felt needs like enjoyment, trust, accomplishment, and belonging.

Exploring new ideas:

The flexible, conversational nature of qualitative research facilitates creative ideation.

Interactive sessions like focus groups or participatory design workshops allow people to organically share, build on, and iterate on ideas together.

Moderators can probe concepts through clarifying, non-leading questions to draw out nuance and have participants riff on each other’s thoughts. This process efficiently fosters new directions and uncovers latent needs that traditional surveys may never have identified.

Uncovering underlying reasons:

Asking “why” is fundamental to qualitative inquiry. Researchers go beyond documenting surface patterns to uncover the deeper motivations, contextual influences, ingrained habits, and thought processes driving user behaviours.

Observations combined with follow-up interviews provide well-rounded explanations for why people act as they do. For example, apparent routines may be based on social norms versus personal preferences. Qualitative findings explain behavior in a way quantitative data alone often cannot.

Facilitating empathy:

Approaches like ethnography facilitate stepping into the user’s shoes to immerse in their worldview.

Two-way dialogue through long-form interviews allows candid exchange as fellow humans, not detached research subjects. Insights derived from conversations and observations in real-world contexts inspire greater empathy among researchers for users’ needs, frustrations, delights, and realities. Teams feel connected to the people they aim to understand and serve.

Quantitative User Research

Quantitative research seeks to quantify user behaviors, preferences, and attitudes through numerical and statistical analysis. It emphasizes objective measurements and large sample sizes to uncover insights that can be generalized to the broader population.

Key characteristics of quantitative research include:

Structured methodology: 

Quantitative studies utilize highly structured data collection methods like surveys, structured user observation, and user metrics tracking. Surveys rely on closed-ended questions with predefined response options. Observation uses systematic checklists to tally predefined behaviors. This standardization allows mathematical analysis across all participants.

Numerical and statistical analysis: 

The numerical data gathered through quantitative research is analyzed using statistics, aggregates, regressions, and predictive modeling to draw conclusions. Researchers can analyze response frequencies, statistical relationships between variables, segmentation analyses, and predictive models based on the quantitative data.

Large representative samples: 

Quantitative research prioritizes large sample sizes that aim to be representative of the target population. For surveys, sufficient sample sizes are determined using power analyses to ensure findings are generalizable. Some common samples can be in the hundreds to thousands. This is in contrast to smaller qualitative samples aimed at diving deep into individual experiences.

Rating scales: 

Surveys and questionnaires rely heavily on numerical rating scales to quantify subjective attributes like satisfaction, ease-of-use, urgency, importance etc. Respondents rank options or choose numbers that correspond to stances. This assigns discrete values for comparison and statistical testing.

Objectivity : 

Quantitative research focuses on uncovering factual, observable and measurable truths about user behaviors, needs or perceptions. There is less emphasis on gathering subjective viewpoints, contexts, and detailed narratives which are hallmarks of qualitative research. The goal is objective, generalizable insights.

Common Quantitative Research Methods

1. online surveys.

Online survey example

Online surveys involve asking a sample of users to respond to a standardized set of questions delivered through web forms or email. Surveys gather self-reported data on attitudes, preferences, needs and behaviors that can be statistically analyzed.

Online surveys are ideal when:

  • A large sample size is needed to gain representative insights from a population.
  • Standardized, quantitative data on usages, perceptions, features etc. is desired.
  • Users have the literacy level to understand and thoughtfully complete surveys.
  • Stakeholders want quantitative metrics, benchmarks and models based on user data.

Effective online survey tips:

  • Limit survey length and design clear, focused questions to maintain engagement.
  • Structure questions and response options to enable statistical analysis for trends and relationships.
  • Use rating scales to quantify subjective attributes like satisfaction, urgency, importance etc.
  • Write simple, unambiguous statements users can assess consistently. Avoid leading or loaded language.
  • Test surveys before deployment to refine questions and ensure technical functionality.
  • Analyze results with statistics and visualizations to glean actionable, user-centered insights.

2. Usability Benchmarking

Usability benchmarking involves assessing a product’s ease-of-use against quantified performance standards and metrics. Researchers conduct structured usability tests to gather performance data that is compared to benchmarks.

Usability benchmarking is ideal when:

  • Quantitative goals exist for critical usability metrics like task completion rate, errors, time-on-task, perceived ease-of-use.
  • Comparing usability data to other products, previous versions, or industry standards is desired.
  • There is a focus on improving usability measured through standardized objectives versus qualitative insights.

Effective usability benchmarking tips:

  • Identify key usage tasks and scenarios that align to business goals to standardize testing.
  • Leverage established usability metrics like System Usability Scale (SUS) to enable benchmarking.
  • Conduct structured tests with representative users on targeted tasks.
  • Analyze metrics using statistical methods to surface enhancements tied to benchmarks.
  • Set incremental usability goals and continue testing post-launch to drive improvements.

3. Analytics

Google Analytics Dashboard

Analytics involves collecting and analyzing usage data from products to uncover patterns, metrics, and insights about real customer behaviors. Sources like web analytics, app metrics, and usage logs are common.

Analytics excel when:

  • Objective data on how customers are actually using a product is needed to optimize features and workflows.
  • Large volumes of real customer usage data are available for analysis.
  • Revealing segments based on behavioral differences can inform personalized experiences.
  • Improving key performance indicators and quantifying impact is a priority.

Effective analytics tips:

  • Identify key questions and metrics aligned to business goals to focus analysis. Common metrics are conversions, engagement, retention etc.
  • Leverage tools like Google Analytics to collect event and behavioral data at scale.
  • Analyze trends, run statistical tests, and build models to surface insights from noise.
  • Make insights actionable by tying to opportunities like improving at-risk customer retention.
  • Continuously analyze data over time and across updates to optimize ongoing enhancements.

Applications of Quantitative Research

Validating hypotheses:.

Quantitative studies provide statistically robust methods to validate assumptions and confirm hypotheses related to user behaviors or preferences.

After initial qualitative research like interviews raise theories about user needs or pain points, quantitative experiments can verify if those hypotheses hold true at a larger scale.

For example, A/B testing can validate if a new checkout flow improves conversion rates as hypothesized based on earlier usability studies. Statistical validation boosts confidence that recommended changes will have the expected impact on business goals.

Generalizing findings:

The large, representative sample sizes and standardized methodologies in quantitative studies allow findings to be generalized to the full target population with known confidence intervals.

Proper sampling methods ensure data reflects the intended audience demographics, attitudes, and behaviours.

If certain usability benchmarks hold true across hundreds of participants, they are assumed to apply to similar users across that segment. This enables product improvements to be made for broad groups based on generalizable data.

Tracking granular changes:

Quantitative data enables even subtle changes over time, iterative tweaks, or segmented differences to be precisely tracked using consistent metrics.

Longitudinal surveys can pinpoint if customer satisfaction trends upward or downward month-to-month based on new features.

Web analytics continuously monitor click-through rates over years to optimize paths. Controlled A/B tests discern the isolated impact of iterative enhancements. The reliability of quantitative metrics ensures changes are spotted quickly.

Quantifying problem severity:

Statistical analysis in quantitative research can accurately define the frequency and severity of user problems.

For example, an eye-tracking study might uncover 60% of users miss a key navigation element. Surveys can determine what percentage of customers are highly frustrated by unclear documentation.

Quantifying the scope and business impact of issues in this way allows product teams to confidently prioritize the problems with greatest value to solve first.

Benefits of Quantitative Research

Quantifying user behaviours:.

Quantitative methods like analytics, surveys, and usability metrics capture concrete, observable data on how users interact with products.

Usage metrics quantify engagement levels, conversion rates, task completion times, feature adoption, and more. The numerical data enables statistical analysis to uncover trends, model outcomes, and optimize products based on revealed behaviours versus subjective hunches. Quantification also facilitates benchmarking and goal-setting.

Validating hypotheses rigorously:

Quantitative experiments like A/B tests and controlled usability studies allow assumptions and theories about user behaviors to be validated with statistical rigour.

Significant results provide confidence that patterns are real and not due to chance alone. Teams can test hypotheses raised in past qualitative research to prevent high-risk decisions based on false premises. Statistical validation lends credibility to recommended changes expected to impact key metrics.

Precisely tracking granular trends:

The consistent, standardized metrics in quantitative studies powerfully track usage trends over time, across releases, and between user segments. For example, longitudinal surveys can monitor how satisfaction ratings shift month-to-month based on new features.

Web analytics uncover how click-through rates trend up or down over years as needs evolve. Controlled tests isolate the impact of each iteration. Quantitative data spots subtle changes.

Informed decision-making:

Quantitative data provides concrete, measurable evidence of user behaviours, needs, and pain points for informed decision-making.

Metrics on usage, conversions, completion rates, satisfaction, and more enable teams to identify and prioritize issues based on representative data versus hunches. Leaders can justify decisions using statistical significance, projected optimization gains, and benchmark comparisons.

Mitigating biases:

The focus on objective, observable metrics can reduce biases that may inadvertently influence qualitative findings.

Proper sampling methods, significance testing, and controlled experiments also minimize distortions from individual perspectives. While no research is assumption-free, quantitative techniques substantially limit bias through rigorous design and large sample sizes.

Comparing Qualitative and Quantitative User Research

Here is a comparison of qualitative and quantitative user research in a table format:

When to Use Each Method

When to use qualitative research:.

  • Early in the product development lifecycle during the fuzzy front-end stages. Open-ended qualitative research is critical for discovering user needs, pain points, and behaviors when the problems are unclear. Qualitative data provides the rich contextual insights required to guide initial solution ideation and design before quantifying anything. Methods like in-depth interviews and contextual inquiries reveal pain points that pure quantitative data often overlooks.
  • When research questions are ambiguous, expansive, or nuanced at the start. Qualitative methods can flexibly follow where the data leads to uncover unexpected themes. The fluid approach adapts to capture unforeseen insights, especially on subjective topics like emotions and motivations that require deep probing. Qualitative approaches excel at understanding complex “why” and “how” aspects behind behaviors.
  • If seeking highly vivid, detailed narratives of user motivations, ecosystems, thought processes, and needs. Qualitative data maintains all the situational nuance and color intact, not condensed statistically. User stories and perspectives come through with empathy and emotion versus sterile numbers. This level of detail informs truly human-centered solutions.
  • During discovery of new market opportunities, expanding into new segments, or exploringnew capabilities with many unknowns. Flexible qualitative digging uncovers fresh territories before attempting to quantify anything. Fuzzy front-end exploration is suited to qualitative exploration.

When to use quantitative research:

  • To validate assumptions, theories, and qualitative insights at scale using statistical rigor. Quantitative data provides the confidence that patterns seen are significant and not just anecdotal findings. Surveys, controlled experiments, and metrics test hypotheses raised during qualitative discovery. The statistics offer credibility.
  • If research questions aim to precisely quantify target audience behaviors, attitudes, and preferences. Quantitative methods objectively measure “what” users do without room for fuzzy interpretation. The numerical data acts as a precise compass for decision-making.
  • When clear metrics and benchmarks are required to set optimization goals, compare design solutions, and tightly track progress. Quantitative data delivers concrete KPIs to orient teams and chart enhancement impact.
  • To isolate the precise impact of changes over time or between design solutions by tracking standardized metrics. Controlled A/B tests discern what improvements unequivocally moved key metrics versus speculation.

Frequently Asked Questions (FAQs)

1. What is the main difference between qualitative and quantitative user research?

The main difference is that qualitative research aims to uncover the “why” behind user behaviors through subjective, non-numerical data like interviews and observations. Quantitative research focuses on quantifying the “what” through objective, numerical data like metrics and statistics.

2. Can qualitative and quantitative user research be used together?

Absolutely. Many researchers use a mixed methods approach that combines both qualitative and quantitative techniques to get comprehensive insights. Qualitative research can uncover problems to quantify, while quantitative testing can validate qualitative theories.

3. How do I choose between qualitative and quantitative user research?

Choose based on your current product stage, questions, timeline, and resources. Qualitative research is best for exploratory discovery, while quantitative confirms hypotheses. Use qualitative first, then quantitative or a mix of both.

4. What are some common tools for conducting qualitative and quantitative user research?

Qualitative tools include interviews, focus groups, surveys, user testing and more. Quantitative tools include web analytics, App store metrics, usability metrics, controlled experiments and surveys.

5. What are the limitations of qualitative and quantitative user research?

Qualitative findings are not statistically representative. Quantitative data lacks rich behavioral details. Using both offsets the weaknesses.

  • A/B Testing
  • Company News
  • Conversion Rate Optimisation
  • CRO Tools and Resources
  • Experimentation Articles
  • Google Analytics
  • Personalization
  • Usability Testing
  • User Research
  • The Ultimate Guide To Integrating Voice of the Customer into CRO
  • Scaling User Research For Enterprise CRO
  • Understanding the Core Concepts of CRO Personalization
  • Dynamic Content Personalization: Tips and Best Practices
  • The Impact of AB Testing on User Retention
  • Open-Ended Questions - A Complete Guide
  • The Role of Prototyping in Effective User Testing
  • Explore vs Exploit: Finding the Balance in CRO
  • The 7Ps Of Marketing
  • UX Design vs SEO: Balancing User Experience and Search Visibility
  • The surprising truth about Amazon and Booking.com's culture of experimentation
  • Top 19 Best CRO Books (recommended by experts)
  • A Guide To The Ten Usability Heuristics
  • Post-Launch User Testing: Continuous Improvement Strategies

examples of quantitative vs qualitative research

Is your CRO programme delivering the impact you hoped for ?

Benchmark your CRO now for immediate, free report packed with ACTIONABLE insights you and your team can implement today to increase conversion.

Takes only two minutes

If your CRO programme is not delivering the highest ROI of all of your marketing spend, then we should talk.

Before you go...

Why Amazon does ‘Experimentation’ not ‘CRO’ and why you should too

“The world’s leading companies are using experimentation to generate better results for the whole business.

Download our latest ebook to discover how businesses have made the shift from CRO to experimentation and how you can too.

Join the next one!

Be the first to know about future events with top speakers from the CRO industry.

examples of quantitative vs qualitative research

hidden-image

Quantitative vs. Qualitative Research Design: Understanding the Differences

examples of quantitative vs qualitative research

As a future professional in the social and education landscape, research design is one of the most critical strategies that you will master to identify challenges, ask questions and form data-driven solutions to address problems specific to your industry. 

Many approaches to research design exist, and not all work in every circumstance. While all data-focused research methods are valid in their own right, certain research design methods are more appropriate for specific study objectives.

Unlock our resource to learn more about jump starting a career in research design — Research Design and Data Analysis for the Social Good .

We will discuss the differences between quantitative (numerical and statistics-focused) and qualitative (non-numerical and human-focused) research design methods so that you can determine which approach is most strategic given your specific area of graduate-level study. 

Understanding Social Phenomena: Qualitative Research Design

Qualitative research focuses on understanding a phenomenon based on human experience and individual perception. It is a non-numerical methodology relying on interpreting a process or result. Qualitative research also paves the way for uncovering other hypotheses related to social phenomena. 

In its most basic form, qualitative research is exploratory in nature and seeks to understand the subjective experience of individuals based on social reality.

Qualitative data is…

  • often used in fields related to education, sociology and anthropology; 
  • designed to arrive at conclusions regarding social phenomena; 
  • focused on data-gathering techniques like interviews, focus groups or case studies; 
  • dedicated to perpetuating a flexible, adaptive approach to data gathering;
  • known to lead professionals to deeper insights within the overall research study.

You want to use qualitative data research design if:

  • you work in a field concerned with enhancing humankind through the lens of social change;
  • your research focuses on understanding complex social trends and individual perceptions of those trends;
  • you have interests related to human development and interpersonal relationships.

Examples of Qualitative Research Design in Education

Here are just a few examples of how qualitative research design methods can impact education:

Example 1: Former educators participate in in-depth interviews to help determine why a specific school is experiencing a higher-than-average turnover rate compared to other schools in the region. These interviews help determine the types of resources that will make a difference in teacher retention. 

Example 2: Focus group discussions occur to understand the challenges that neurodivergent students experience in the classroom daily. These discussions prepare administrators, staff, teachers and parents to understand the kinds of support that will augment and improve student outcomes.

Example 3: Case studies examine the impacts of a new education policy that limits the number of teacher aids required in a special needs classroom. These findings help policymakers determine whether the new policy affects the learning outcomes of a particular class of students.

Interpreting the Numbers: Quantitative Research Design

Quantitative research tests hypotheses and measures connections between variables. It relies on insights derived from numbers — countable, measurable and statistically sound data. Quantitative research is a strategic research design used when basing critical decisions on statistical conclusions and quantifiable data.

Quantitative research provides numerical-backed quantifiable data that may approve or discount a theory or hypothesis.

Quantitative data is…

  • often used in fields related to education, data analysis and healthcare; 
  • designed to arrive at numerical, statistical conclusions based on objective facts;
  • focused on data-gathering techniques like experiments, surveys or observations;
  • dedicated to using mathematical principles to arrive at conclusions;
  • known to lead professionals to indisputable observations within the overall research study.

You want to use quantitative data research design if:

  • you work in a field concerned with analyzing data to inform decisions;
  • your research focuses on studying relationships between variables to form data-driven conclusions;
  • you have interests related to mathematics, statistical analysis and data science.

Examples of Quantitative Research Design in Education

Here are just a few examples of how quantitative research design methods may impact education:

Example 1: Researchers compile data to understand the connection between class sizes and standardized test scores. Researchers can determine if and what the relationship is between smaller, intimate class sizes and higher test scores for grade-school children using statistical and data analysis.

Example 2: Professionals conduct an experiment in which a group of high school students must complete a certain number of community service hours before graduation. Researchers compare those students to another group of students who did not complete service hours — using statistical analysis to determine if the requirement increased college acceptance rates.

Example 3: Teachers take a survey to examine an education policy that restricts the number of extracurricular activities offered at a particular academic institution. The findings help better understand the far-reaching impacts of extracurricular opportunities on academic performance.

Making the Most of Research Design Methods for Good: Vanderbilt University’s Peabody College

Vanderbilt University's Peabody College of Education and Human Development offers a variety of respected, nationally-recognized graduate programs designed with future agents of social change in mind. We foster a culture of excellence and compassion and guide you to become the best you can be — both in the classroom and beyond.

At Peabody College, you will experience

  • an inclusive, welcoming community of like-minded professionals;
  • the guidance of expert faculty with real-world industry experience;
  • opportunities for valuable, hands-on learning experiences,
  • the option of specializing depending on your specific area of interest.

Explore our monthly publication — Ideas in Action — for an inside look at how Peabody College translates discoveries into action.

Please click below to explore a few of the graduate degrees offered at Peabody College:

  • Child Studies M.Ed. — a rigorous Master of Education degree that prepares students to examine the developmental, learning and social issues concerning children and that allows students to choose from one of two tracks (the Clinical and Developmental Research Track or the Applied Professional Track).
  • Cognitive Psychology in Context M.S. — an impactful Master of Science program that emphasizes research design and statistical analysis to understand cognitive processes and real-world applications best, making it perfect for those interested in pursuing doctoral studies in cognitive science.
  • Education Policy M.P.P — an analysis-focused Master of Public Policy program designed for future leaders in education policy and practice, allowing students to specialize in either K-12 Education Policy, Higher Education Policy or Quantitative Methods in Education Policy. 
  • Quantitative Methods M.Ed. — a data-driven Master of Education degree that teaches the theory and application of quantitative analysis in behavioral, social and educational sciences.

Connect with the Community of Professionals Seeking to Enhance Humankind at Peabody College

At Peabody College, we equip you with the marketable, transferable skills needed to secure a valuable career in education and beyond. You will emerge from the graduate program of your choice ready to enhance humankind in more meaningful ways than you could have imagined.

If you want to develop the sought-after skills needed to be a force for change in the social and educational spaces, you are in the right place .

We invite you to request more information ; we will connect you with an admissions professional who can answer all your questions about choosing one of these transformative graduate degrees at Peabody College. You may also take this opportunity to review our admissions requirements and start your online application today. 

A young boy is sitting at a table with his parents.

Subscribe to the Blog

← All Posts

Media Inquiries

615-322-6397 Email

Latest Stories

3 reasons why teachers should earn an m.ed. degree, 7 quantitative data careers in education that can make a difference, the rewarding outcomes of being a special education teacher, keep reading.

Three children are drawing on a cardboard box with markers in a classroom setting.

Explore Stories by Topic

  • M.Ed. Degrees
  • Research Design
  • Teaching for Impact

IMAGES

  1. Qualitative vs Quantitative Research: What's the Difference?

    examples of quantitative vs qualitative research

  2. Qualitative Vs. Quantitative Research

    examples of quantitative vs qualitative research

  3. Quantitative vs. Qualitative Research

    examples of quantitative vs qualitative research

  4. Quantitative and Qualitative research: Everything You Need to Know

    examples of quantitative vs qualitative research

  5. Qualitative vs. Quantitative Research

    examples of quantitative vs qualitative research

  6. Qualitative vs Quantitative Research: Differences and Examples

    examples of quantitative vs qualitative research

COMMENTS

  1. Qualitative vs. Quantitative Research

    When to use qualitative vs. quantitative research. A rule of thumb for deciding whether to use qualitative or quantitative data is: Use quantitative research if you want to confirm or test something (a theory or hypothesis) Use qualitative research if you want to understand something (concepts, thoughts, experiences)

  2. Qualitative vs Quantitative Research: What's the Difference?

    The main difference between quantitative and qualitative research is the type of data they collect and analyze. Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language. ... Some examples of qualitative research ...

  3. Qualitative vs Quantitative Research: Differences and Examples

    3. Statistical Analysis: Quantitative research uses a wide range of data analysis techniques such as Conjoint Analysis, Cross Tabulation and Trend Analysis. Qualitative vs Quantitative Research. Now let's compare the qualitative and quantitative research methods in different aspects so that you can choose the right one in your next ...

  4. Qualitative vs. Quantitative Research: What's the Difference?

    Quantitative research is often focused on answering the questions of "what" or "how" in regards to a phenomenon, correlation or behavior. Benefits and Limitations of Qualitative vs. Quantitative Research. Another difference between qualitative and quantitative research lies in their advantages and limitations.

  5. Qualitative vs Quantitative Research

    Qualitative vs Quantitative Research | Examples & Methods. Published on 4 April 2022 by Raimo Streefkerk.Revised on 8 May 2023. When collecting and analysing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings. Both are important for gaining different kinds of knowledge.

  6. Qualitative vs. Quantitative Research: Comparing the Methods and

    In this example, qualitative and quantitative methodologies can lead to similar conclusions, but the research will differ in intent, design, and form. Taking a look at behavioral observation, another common method used for both qualitative and quantitative research, qualitative data may consider a variety of factors, such as facial expressions ...

  7. What Is Qualitative vs. Quantitative Study?

    Keep reading to learn more about the difference between qualitative vs quantitative research, including what research techniques they involve, how they approach the task of data analysis, and some strengths — and limitations — of each approach. ... The following section will cover some examples of qualitative research methods for comparison ...

  8. 10 Key Differences of Qualitative and Quantitative Research

    Qualitative research encompasses an in-depth exploration of the subjective aspects of a phenomenon, often employing methods such as interviews, focus groups, and content analysis. In contrast, quantitative research employs numerical data and statistical analyses to quantify relationships, relying on surveys, experiments, and secondary data ...

  9. Qualitative vs Quantitative Research: When to Use Each

    This article will provide an overview of qualitative vs quantitative research. I'll define what each method is, walk through example scenarios of when you might use one versus the other, highlight the benefits of each, and offer guidelines on when qualitative or quantitative user research is most appropriate.

  10. Quantitative vs. Qualitative Research Design: Understanding the Differences

    Examples of Qualitative Research Design in Education. Here are just a few examples of how qualitative research design methods can impact education: Example 1: Former educators participate in in-depth interviews to help determine why a specific school is experiencing a higher-than-average turnover rate compared to other schools in the region ...