• Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

110 Engineering Research Topics For Engineering Students!

engineering topics

Getting engineering topics for research or presentation is not an easy task. The reason is that the field of engineering is vast. Engineers seek to use scientific principles in the design and building of machines, structures, bridges, tunnels, etc.

Engineering as a discipline has a broad range of specialized fields such as chemical engineering, civil engineering, biomedical engineering, computer engineering, mechanical engineering, software engineering, and lots more! In all, engineering seeks to apply mathematics or science to solving problems.

110 Engineering Topic Ideas in Different Areas

Genetic engineering topics, mechanical engineering research topics, electrical engineering research topics, software engineering research topics, computer engineering research topics, biomedical engineering research topics, civil engineering topics, chemical engineering research topics, controversial engineering topics, aerospace engineering topics, industrial engineering topics, environmental engineering topics for research.

We understand how difficult and tiring it could be to get engineering research topics; hence this article contains a total of 110 interesting engineering topics covering all aspects of engineering. Ready to explore? Let’s begin right away!

Genetic engineering is the direct manipulation of the gene of an organism using biotechnology. Many controversies are surrounding this engineering field because of the fantastic potential feats it could achieve. Here are some genetic engineering topics that encompass essential areas of this field.

  • Can the human personality be altered through genetic engineering?
  • Genetic engineering: hope for children with intellectual disabilities?
  • Genetic engineering: the problems and perspectives.
  • Genetic engineering and the possibility of human cloning.
  • Genetic Engineering
  • The side effects of altering human personality
  • Immortalizing humans through genetic engineering
  • Addressing human deficiencies through genetic engineering

Mechanical engineering deals with the design and manufacture of physical or automated systems. These systems include power and energy systems, engines, compressors, kinematic chains, robotics, etc. Here are some impressive mechanical engineering topics that double as mechanical engineering thesis topics too.

  • A study of the compressed air technology used in cars.
  • The design of a motorized automatic wheelchair that can serve as a bed.
  • The why and how of designing stronger and lighter automobiles.
  • The design of an electronic-assisted hydraulic braking system.
  • Basics of Electronics Engineering
  • AC and DC motors and operations
  • Design and implementation of wind energy
  • Power lines and electricity distribution
  • Electromagnetic field and its applications
  • Generators and electric motors

Electrical engineering is a trendy and well-sought field that deals with the design and manufacture of different electrical and electronic systems. Electrical engineering encompasses power and electronics. The basic principle of digital technology and electricity are all given birth to in this field. From your lighting to computers and phones, everything runs based on electricity. Although finding topics in electrical engineering could be difficult, we have carefully selected four electrical engineering topics to give you a great head start in your research! or write research paper for me

  • A study on how temperature affects photovoltaic energy conversion.
  • The impact of solar charging stations on the power system.
  • Direct current power transmission and multiphase power transmission
  • Analysis of the power quality of the micro grid-connected power grid.
  • Solar power and inverters
  • Alternator and electric magnetic induction
  • AC to DC converters
  • Operational amplifiers and their circuits.

Software engineering deals with the application of engineering approaches systematically to develop software. This discipline overlaps with computer science and management science and is also a part of overall systems engineering. Here are some software engineering topics for your research!

  • The borderline between hardware and software in cloud computing.
  • Essential computer languages of the future.
  • Latest tendencies in augmented reality and virtual reality.
  • How algorithms improve test automation.
  • Essentials for designing a functional software
  • Software designing and cyber security
  • 5 computer languages that will stand the test of time.
  • Getting software design right
  • Effects of malware on software operation.

Computer engineering integrates essential knowledge from the subfields of computer science, software engineering, and electronic engineering to develop computer hardware and software. Computer engineering applies various concepts to build complex structural models. Besides, we have completed researches in the information technology field and prepare great  it thesis topics for you. Here are some computer engineering topics to help you with your research.

  • Biotechnology, medicine, and computer engineering.
  • Programs for computer-aided design (cad) of drug models.
  • More effective coding and information protection for multinational companies.
  • Why we will need greater ram in modern-day computers.
  • Analysis and computer-aided structure design
  • Pre-stressed concrete structures and variations
  • General computer analysis of structures
  • Machine foundation and structural design
  • Storage and industrial structures.

Biomedical engineering applies principles and design concepts from engineering to medicine and biology for diagnostic or therapeutic healthcare purposes. Here are some suggested biomedical engineering topics to carry out research on!

  • A study on how robots are changing health care.
  • Can human organs be replaced with implantable biomedical devices?
  • The advancement of brain implants.
  • The advancement of cell and tissue engineering for organ replacement.
  • Is planting human organs in machines safe?
  • Is it possible to plant biomedical devices insensitive to human organs?
  • How can biomedicine enhance the functioning of the human brain?
  • The pros and cons of organ replacement.

Civil engineering deals with the construction, design, and implementation of these designs into the physical space. It is also responsible for the preservation and maintenance of these constructions. Civil engineering spans projects like roads, buildings, bridges, airports, and sewage construction. Here are some civil engineering topics for your research!

  • Designing buildings and structures that withstand the impact of seismic waves.
  • Active noise control for buildings in very noisy places.
  • The intricacies of designing a blast-resistant building.
  • A compatible study of the effect of replacing cement with silica fume and fly ash.
  • Comparative study on fiber-reinforced concrete and other methods of concrete reinforcement.
  • Advanced construction techniques
  • Concrete repair and Structural Strengthening
  • Advanced earthquake resistant techniques
  • Hazardous waste management
  • Carbon fiber use in construction
  • Structural dynamics and seismic site characterization
  • Urban construction and design techniques

Chemical engineering transverses the operation and study of chemical compounds and their production. It also deals with the economic methods involved in converting raw chemicals to usable finished compounds. Chemical engineering applies subjects from various fields such as physics, chemistry, biology, and mathematics. It utilizes technology to carry out large-scale chemical processes. Here are some chemical engineering topics for you!

  • Capable wastewater treatment processes and technology.
  • Enhanced oil recovery with the aid of microorganisms.
  • Designing nanoparticle drug delivery systems for cancer chemotherapy.
  • Efficient extraction of hydrogen from the biomass.
  • Separation processes and thermodynamics
  • Heat, mass, and temperature
  • Industrial chemistry
  • Water splitting for hydrogen production
  • Mining and minerals
  • Hydrocarbon processes and compounds
  • Microfluidics and Nanofluidics.

Not everyone agrees on the same thing. Here are some engineering ethics topics and controversial engineering topics you can explore.

  • Are organic foods better than genetically modified foods?
  • Should genetically modified foods be used to solve hunger crises?
  • Self-driving cars: pros and cons.
  • Is mechanical reproduction ethical?
  • If robots and computers take over tasks, what will humans do?
  • Are electric cars really worth it?
  • Should human genetics be altered?
  • Will artificial intelligence replace humans in reality?

Aerospace engineering deals with the design, formation, and maintenance of aircraft, spacecraft, etc. It studies flight safety, fuel consumption, etc. Here are some aerospace engineering topics for you.

  • How the design of planes can help them weather the storms more efficiently.
  • Current techniques on flight plan optimization.
  • Methods of optimizing commercial aircraft trajectory
  • Application of artificial intelligence to capacity-demand.
  • Desalination of water
  • Designing safe planes
  • Mapping a new airline route
  • Understanding the structural design of planes.

Petroleum engineering encompasses everything hydrocarbon. It is the engineering field related to the activities, methods, processes, and adoptions taken to manufacture hydrocarbons. Hydrocarbon examples include natural gas and crude oil which can be processed to more refined forms to give new petrochemical products.

  • The effect of 3d printing on manufacturing processes.
  • How to make designs that fit resources and budget constraints.
  • The simulation and practice of emergency evacuation.
  • Workers ergonomics in industrial design.
  • Heat transfer process and material science
  • Drilling engineering and well formation
  • Material and energy flow computing
  • Well log analysis and testing
  • Natural gas research and industrial management

Manufacturing engineering is integral for the creation of materials and various tools. It has to do with the design, implementation, construction, and development of all the processes involved in product and material manufacture. Some useful production engineering topics are:

  • Harnessing freshwater as a source of energy
  • The design and development of carbon index measurement systems.
  • Process improvement techniques for the identification and removal of waste in industries.
  • An extensive study of biomedical waste management.
  • Optimization of transportation cost in raw material management
  • Improvement of facility layout using systematic planning
  • Facilities planning and design
  • Functional analysis and material modeling
  • Product design and marketing
  • Principles of metal formation and design.

So here we are! 110 engineering research paper topics in all major fields of engineering! Choose the ones you like best and feel free to contact our thesis writers for help. It’s time to save humanity!

Leave a Reply Cancel reply

logo

150+ Best Engineering Research Topics for Students To Consider

Table of Contents

Engineering is a wide field of study that is divided into various branches such as Civil, Electrical, Mechanical, Electronics, Chemical, etc. Basically, each branch has thousands of engineering research topics to focus on. Hence, when you are asked to prepare an engineering research paper or dissertation for your final year assignments, you might experience difficulties with identifying a perfect topic. But hereafter, you need not worry about topic selection because to make the topic selection process easier for you, here we have suggested some tips for choosing a good engineering research topic. Additionally, we have also shared a list of the best 150+ engineering research paper topics on various specializations. Continue reading this blog to get exclusive ideas for engineering research paper writing.

Engineering Research Paper Topic Selection Tips

When it comes to research in the field of engineering, identifying the best engineering research topic is the first step. So, during that process, in order to identify the right topic, consider the following tips.

  • Choose a topic from the research area matching your interest.
  • Give preference to a topic that has a large scope to conduct research activities.
  • Pick a topic that has several reference materials and evidence supporting your analysis.
  • Avoid choosing an already or frequently discussed topic. If the topic is popular, discuss it from a different perspective.
  • Never choose a larger topic that is tough to complete before the deadline.
  • Finalize the topic only if it satisfies your academic requirements.

Engineering Research Topics

List of the Best Engineering Research Topics

Are you searching for the top engineering project ideas? Would you have to complete your academic paper on the best engineering research topic? If yes, then take a look below. Here, we have suggested a few interesting engineering topics in various disciplines that you can consider for your research or dissertation.

Top Engineering Research Topics

Mechanical Engineering Research Topics

  • How does the study of robotics benefit from a mechanical engineering background?
  • How can a new composite substitute reduce costs in large heat exchangers?
  • Which will become the predominant energy technology this century?
  • Why structural analysis is considered the foundation of mechanical engineering?
  • Why is cast iron used in the engines of large ships?
  • What is the finite element approach and why is it essential?
  • Why is the flow of fluids important in mechanical engineering?
  • What impact does mechanical engineering have in the medical field?
  • How do sports incorporate mechanical engineering theories?
  • What is the process of thermal heat transfer in machines?
  • How can solar panels reduce energy costs in developing countries?
  • In what ways is mechanical engineering at the forefront of the field?
  • How do various elements interact differently with energy?
  • How can companies improve manufacturing through new mechanical theories?

Additional Research Paper Topics on Mechanical Engineering

  • Power generation: Extremely low emission technology.
  •   Rail and wheel wear during the presence of third-body materials.
  •  Studying the impact of athletic shoe properties on running performance and injuries
  • Evaluating teeth decay using patient-specific tools
  •   Nanotechnology.
  • Describe the newly developed methods and applications in Vibration Systems
  • Perspective or general Commentaries on the methods and protocols relevant to the research relating to Vibration Systems
  • Software-related technology for Visibility of end-to-end operations for employee and management efficiencies
  • What should be the best strategies to apply in the planning for consumer demand and responsiveness using data analytics
  • Analysis of the monitoring of manufacturing processes using IOT/AI
  • Critical analysis of the advancing digital manufacturing with artificial intelligence (AI) and machine learning (ML) Data Analytics
  • Pyrolysis and Oxidation for Production and Consumption of Strongly Oxygenated Hydrocarbons as Chemical Energy Carriers: Explain
  • Explore the most effective strategies for fatigue-fracture and failure prevention of automotive engines and the importance of such prevention
  • Explore the turbomachinery performance and stability enhancement by means of end-wall flow modification
  • Production optimization, engine performance, and tribological characteristics of biofuels and their blends in internal combustion engines as alternative fuels: Explain

Civil Engineering Research Topics

  • The use of sustainable materials for construction: design and delivery methods.
  • State-of-the-art practice for recycling in the construction industry.
  • In-depth research on the wastewater treatment process
  • Building Information Modelling in the construction industry
  • Research to study the impact of sustainability concepts on organizational growth and development.
  • The use of warm-mix asphalt in road construction
  • Development of sustainable homes making use of renewable energy sources.
  • The role of environmental assessment tools in sustainable construction
  • Research to study the properties of concrete to achieve sustainability.
  • A high-level review of the barriers and drivers for sustainable buildings in developing countries
  • Sustainable technologies for the building construction industry
  • Research regarding micromechanics of granular materials.
  • Research to set up remote sensing applications to assist in the development of sustainable construction techniques.
  • Key factors and risk factors associated with the construction of high-rise buildings.
  • Use of a single-phase bridge rectifier
  • Hydraulic Engineering: A Brief Overview
  • Application of GIS techniques for planetary and space exploration
  •   Reengineering the manufacturing systems for the future.
  • Production Planning and Control.
  •   Project Management.
  •   Quality Control and Management.
  •   Reliability and Maintenance Engineering.

Environmental Engineering Research Paper Topics

  • Design and development of a system for measuring the carbon index of energy-intensive companies.
  • Improving processes to reduce kWh usage.
  • How can water conductivity probes help determine water quality and how can water be reused?
  • A study of compressor operations on a forging site and mapping operations to identify and remove energy waste.
  • A project to set up ways to measure natural gas flow ultrasonically and identify waste areas.
  • Developing a compact device to measure energy use for a household.
  • What are carbon credits and how can organizations generate them?
  • Production of biogas is from organic coral waste.
  • Analyzing the impact of the aviation industry on the environment and the potential ways to reduce it.
  • How can voltage reduction devices help organizations achieve efficiency in electricity usage?
  • What technologies exist to minimize the waste caused by offshore drilling?
  • Identify the ways by which efficient control systems using information systems can be introduced to study the energy usage in a machining factory.
  • The process mapping techniques to identify bottlenecks for the supply chain industry.
  • Process improvement techniques to identify and remove waste in the automotive industry.
  • In what ways do green buildings improve the quality of life?
  • Discussion on the need to develop green cities to ensure environmental sustainability
  • Process of carbon dioxide sequestration, separation, and utilization
  • Development of facilities for wastewater treatment

Environmental Engineering Research Topics

Read more topics: Outstanding Environmental Science Topics for You to Consider

Electrical Engineering Research Topics

  • Research to study transformer losses and reduce energy loss.
  • How does an ultra-low-power integrated circuit work?
  • Setting up a control system to monitor the process usage of compressors.
  • Integration of smart metering pulsed outputs with wireless area networks and access to real-time data.
  • What are the problems of using semiconductor topology?
  • Developing effective strategies and methodical systems for paying as-you-go charging for electric vehicles.
  • A detailed review and investigation into the key issues and challenges facing rechargeable lithium batteries.
  • Trends and challenges in electric vehicles technologies
  • Research to investigate, develop and introduce schemes to ensure efficient energy consumption by electrical machines.
  • What is meant by regenerative braking?
  • Smart charging of electric vehicles on the motorway
  • Research to study metering techniques to control and improve efficiency.
  • Develop a scheme to normalize compressor output to kWh.
  • Research to introduce smart metering concepts to ensure efficient use of electricity.
  • What is the most accurate method of forecasting electric loads?
  • Fundamentals of Nanoelectronics
  • Use of DC-to-DC converter in DC (Direct Current) power grid
  • Development of Microgrid Integration

Electronics and Communications Engineering Research Topics

  • Developing the embedded communication system for the national grid to optimize energy usage.
  • Improvement of inter-symbol interference in optical communications.
  • Defining the boundaries of electrical signals for current electronics systems.
  • The limitation of fiber optic communication systems and the possibility of improving their efficiency.
  • Gaussian pulse analysis and the improvement of this pulse to reduce errors.
  • A study of the various forms of errors and the development of an equalization technique to reduce the error rates in data.
  • Realizing the potential of RFID in the improvement of the supply chain.
  • Design of high-speed communication circuits that effectively cut down signal noise.
  • Radiation in integrated circuits and electronic devices.
  • Spectral sensing research for water monitoring applications and frontier science and technology for chemical, biological, and radiological defense.

Computer and Software Engineering Research Topics

  • How do businesses benefit from the use of data mining technologies?
  • What are the risks of implementing radio-controlled home locks?
  • To what extent should humans interact with computer technologies?
  • Are financial trading systems operating over the web putting clients at risk?
  • What challenges do organizations face with supply chain traceability?
  • Do chatbot technologies negatively impact customer service?
  • What does the future of computer engineering look like?
  • What are the major concepts of software engineering?
  • Are fingerprint-based money machines safe to use?
  • What are the biggest challenges of using different programming languages?
  • The role of risk management in information technology systems of organizations.
  • In what ways does MOOD enhancement help software reliability?
  • Are fingerprint-based voting systems the way of the future?
  • How can one use an AES algorithm for the encryption of images?
  • How can biological techniques be applied to software fault detection?

Read more: Creative Capstone Project Ideas For Students

Network and Cybersecurity Engineering Research Topics

  • Write about Cybersecurity and malware connection.
  • How to detect mobile phone hacking.
  • Discuss Network intrusion detection and remedies.
  • How to improve network security using attack graph models.
  • Explain Modern virus encryption technology.
  • Investigate the importance of algorithm encryption.
  • Discuss the role of a firewall in securing networks.
  • Write about the global cybersecurity strategy.
  • Discuss the Privacy and security issues in chatbots.
  • Write about Cloud security engineering specifics

Industrial Engineering Research Paper Topics

  • The application of lean or Six Sigma in hospitals and services-related industries.
  • The use of operation research techniques to reduce cost or improve efficiency.
  • Advanced manufacturing techniques like additive manufacturing.
  • Innovation as a Complex Adaptive System.
  • CAD-based optimization in any manufacturing environment.
  • Gap analysis in any manufacturing firm.
  • The impact of 3D printing in the manufacturing sector.
  • Simulating a real-life manufacturing environment into simulating software
  • The rise of design and its use in the developing world.
  • Building a network-based methodology to model supply chain systems.
  • Risk optimization With P-order comic constraint
  • Technology and its impact on mass customization
  • How project management becomes more complex with disparate teams and outsourced functions?
  • Scheduling problem for health care patients.

Biomedical Engineering Research Ideas

  • How does the use of medical imaging help patients with higher risks?
  • How can rehabilitation techniques be used to improve a patient’s quality of life?
  • In what ways can biomaterials be used to deliver medications more efficiently?
  • What impact does medical virtual reality have on a patient’s care?
  • What advancements have been made in the field of neural technology?
  • How does nanotechnology pave the way for further advancements in this field?
  • What is computational biology and how does it impact our lives?
  • How accurate are early diagnosis systems in detecting heart diseases?
  • What does the future hold for technology-fueled medications?
  • What are the guiding principles of biomedical engineering research?

Read more: Top Biology Research Topics for Academic Writing

Chemical Engineering Research Topics

  • How can epoxy resins withstand the force generated by a firing gun?
  • The use of software affected design aspects in chemical engineering.
  • What challenges are there for biochemical engineering to support health?
  • The advancements of plastic technology in the last half-century.
  • How can chemical technologies be used to diagnose diseases?
  • What are the most efficient pathways to the development of biofuels?
  • How can charcoal particles be used to filter water in developing countries?
  • Increased production of pharmacy drugs in many countries.
  • How do complex fluids and polymers create more sustainable machinery?

Miscellaneous Engineering Research Ideas

  • Sensing and controlling the intensity of light in LEDs.
  • Design and development of a pressure sensor for a solar thermal panel.
  • Development of microsensors to measure oil flow rate in tanks.
  • How can organizations achieve success by reducing bottlenecks in the supply chain?
  • Research to identify efficient logistics operations within a supply chain.
  • Developing frameworks for sustainable assessments taking into account eco-engineering measures.
  • Research to identify process improvement plans to support business strategies.
  • What can engineers do to address the problems with climate change?
  • The impact of training on knowledge performance index within the supply chain industry.
  • Research to introduce efficiency within information systems and support the timely transfer of knowledge and information.

Out of the 150+ engineering research paper topics and ideas suggested in this blog, choose any topic that is convenient for you to conduct research and write about. In case, you have not yet identified a good topic for your engineering research paper, reach out to us immediately.

engineering research ideas

Related Post

Spell for Students and Adults

110 Hard Words to Spell for Students and Adults

Avoid Passive Voice

Learn How to Avoid Passive Voice in 3 Simple Steps

Greek Mythology Essay Topic

117 Best Greek Mythology Essay Topics For Students

About author.

' src=

Jacob Smith

I am an Academic Writer and have affection to share my knowledge through posts’. I do not feel tiredness while research and analyzing the things. Sometime, I write down hundred of research topics as per the students requirements. I want to share solution oriented content to the students.

Leave a Reply Cancel reply

You must be logged in to post a comment.

  • Featured Posts

140 Unique Geology Research Topics to Focus On

200+ outstanding world history topics and ideas 2023, 190 excellent ap research topics and ideas, 150+ trending group discussion topics and ideas, 170 funny speech topics to blow the minds of audience, who invented exams learn the history of examination, how to focus on reading 15 effective tips for better concentration, what is a rhetorical analysis essay and how to write it, primary school teacher in australia- eligibility, job role, career options, and salary, 4 steps to build a flawless business letter format, get help instantly.

Raise Your Grades with Assignment Help Pro

  • Interesting
  • Scholarships
  • UGC-CARE Journals

Top 50 Emerging Research Topics in Mechanical Engineering

Explore the forefront of innovation in mechanical engineering

Dr. Sowndarya Somasundaram

Mechanical engineering is a constantly evolving field that shapes our world, from the micro-scale of nanotechnology to the macro-scale of heavy machinery. With technological advancements and societal demands driving innovation, numerous emerging research topics are gaining traction in the domain of mechanical engineering. These areas encompass a wide array of disciplines, promising groundbreaking developments and solutions to complex challenges. Here, iLovePhD presents you a list of the top 50 emerging research topics in the field of Mechanical Engineering.

Explore the forefront of innovation in mechanical engineering with our curated list of the Top 50 Emerging Research Topics. From 3D printing to AI-driven robotics, delve into the latest trends shaping the future of this dynamic field

1. Additive Manufacturing and 3D Printing

Multi-Material 3D Printing: Explore techniques for printing with multiple materials in a single process to create complex, multi-functional parts.

In-Situ Monitoring and Control: Develop methods for real-time monitoring and control of the printing process to ensure quality and accuracy.

Bio-printing : Investigate the potential of 3D printing in the field of tissue engineering and regenerative medicine.

Sustainable Materials for Printing : Research new eco-friendly materials and recycling methods for additive manufacturing.

2. Advanced Materials and Nanotechnology

Nanostructured Materials: Study the properties and applications of materials at the nanoscale level for enhanced mechanical, thermal, and electrical properties.

Self-Healing Materials: Explore materials that can repair damage autonomously, extending the lifespan of components.

Graphene-based Technologies: Investigate the potential of graphene in mechanical engineering, including its use in composites, sensors, and energy storage.

Smart Materials: Research materials that can adapt their properties in response to environmental stimuli, such as shape memory alloys.

3. Robotics and Automation

Soft Robotics: Explore the development of robots using soft and flexible materials, enabling safer human-robot interactions and versatile applications.

Collaborative Robots (Cobots ): Investigate the integration of robots that can work alongside humans in various industries, enhancing productivity and safety.

Autonomous Systems: Research algorithms and systems for autonomous navigation and decision-making in robotic applications.

Robot Learning and Adaptability: Explore machine learning and AI techniques to enable robots to learn and adapt to dynamic environments.

4. Energy Systems and Sustainability

Renewable Energy Integration: Study the integration of renewable energy sources into mechanical systems, focusing on efficiency and reliability.

Energy Storage Solutions: Investigate advanced energy storage technologies, such as batteries, supercapacitors, and fuel cells for various applications.

Waste Heat Recovery: Research methods to efficiently capture and utilize waste heat from industrial processes for energy generation.

Sustainable Design and Manufacturing: Explore methodologies for sustainable product design and manufacturing processes to minimize environmental impact.

5. Biomechanics and Bioengineering

Prosthetics and Orthotics: Develop advanced prosthetic devices that mimic natural movement and enhance the quality of life for users.

Biomimicry: Study natural systems to inspire engineering solutions for various applications, such as materials, structures, and robotics.

Tissue Engineering and Regenerative Medicine: Explore methods for creating functional tissues and organs using engineering principles.

Biomechanics of Human Movement: Research the mechanics and dynamics of human movement to optimize sports performance or prevent injuries.

6. Computational Mechanics and Simulation

Multi-scale Modelling: Develop models that span multiple length and time scales to simulate complex mechanical behaviors accurately.

High-Performance Computing in Mechanics: Explore the use of supercomputing and parallel processing for large-scale simulations.

Virtual Prototyping: Develop and validate virtual prototypes to reduce physical testing in product development.

Machine Learning in Simulation: Explore the use of machine learning algorithms to optimize simulations and model complex behaviors.

7. Aerospace Engineering and Aerodynamics

Advanced Aircraft Design: Investigate novel designs that enhance fuel efficiency, reduce emissions, and improve performance.

Hypersonic Flight and Space Travel: Research technologies for hypersonic and space travel, focusing on propulsion and thermal management.

Aerodynamics and Flow Control: Study methods to control airflow for improved efficiency and reduced drag in various applications.

Unmanned Aerial Vehicles (UAVs): Explore applications and technologies for unmanned aerial vehicles, including surveillance, delivery, and agriculture.

8. Autonomous Vehicles and Transportation

Vehicular Automation: Develop systems for autonomous vehicles, focusing on safety, decision-making, and infrastructure integration.

Electric and Hybrid Vehicles: Investigate advanced technologies for electric and hybrid vehicles, including energy management and charging infrastructure.

Smart Traffic Management: Research systems and algorithms for optimizing traffic flow and reducing congestion in urban areas.

Vehicle-to-Everything (V2X) Communication: Explore communication systems for vehicles to interact with each other and with the surrounding infrastructure for enhanced safety and efficiency.

9. Structural Health Monitoring and Maintenance

Sensor Technologies: Develop advanced sensors for real-time monitoring of structural health in buildings, bridges, and infrastructure.

Predictive Maintenance: Implement predictive algorithms to anticipate and prevent failures in mechanical systems before they occur.

Wireless Monitoring Systems: Research wireless and remote monitoring systems for structural health, enabling continuous surveillance.

Robotic Inspection and Repair: Investigate robotic systems for inspection and maintenance of hard-to-reach or hazardous structures.

10. Manufacturing Processes and Industry 4.0

Digital Twin Technology: Develop and implement digital twins for real-time monitoring and optimization of manufacturing processes.

Internet of Things (IoT) in Manufacturing: Explore IoT applications in manufacturing for process optimization and quality control.

Smart Factories: Research the development of interconnected, intelligent factories that optimize production and resource usage.

Cybersecurity in Manufacturing: Investigate robust Cybersecurity measures for safeguarding interconnected manufacturing systems from potential threats.

Top 50 Emerging Research Ideas in Mechanical Engineering

  • Additive Manufacturing and 3D Printing: Exploring novel materials, processes, and applications for 3D printing in manufacturing, aerospace, healthcare, etc.
  • Advanced Composite Materials: Developing lightweight, durable, and high-strength composite materials for various engineering applications.
  • Biomechanics and Bioengineering: Research focusing on understanding human movement, tissue engineering, and biomedical devices.
  • Renewable Energy Systems: Innovations in wind, solar, and hydrokinetic energy, including optimization of energy generation and storage.
  • Smart Materials and Structures: Research on materials that can adapt their properties in response to environmental stimuli.
  • Robotics and Automation: Enhancing automation in manufacturing, including collaborative robots, AI-driven systems, and human-robot interaction.
  • Energy Harvesting and Conversion: Extracting energy from various sources and converting it efficiently for practical use.
  • Micro- and Nano-mechanics: Studying mechanical behavior at the micro and nanoscale for miniaturized devices and systems.
  • Cyber-Physical Systems: Integration of computational algorithms and physical processes to create intelligent systems.
  • Industry 4.0 and Internet of Things (IoT): Utilizing IoT and data analytics in manufacturing for predictive maintenance, quality control, and process optimization.
  • Thermal Management Systems: Developing efficient cooling and heating technologies for electronic devices and power systems.
  • Sustainable Manufacturing and Design: Focus on reducing environmental impact and improving efficiency in manufacturing processes.
  • Artificial Intelligence in Mechanical Systems: Applying AI for design optimization, predictive maintenance, and decision-making in mechanical systems.
  • Adaptive Control Systems: Systems that can autonomously adapt to changing conditions for improved performance.
  • Friction Stir Welding and Processing: Advancements in solid-state joining processes for various materials.
  • Hybrid and Electric Vehicles: Research on improving efficiency, battery technology, and infrastructure for electric vehicles.
  • Aeroelasticity and Flight Dynamics: Understanding the interaction between aerodynamics and structural dynamics for aerospace applications.
  • MEMS/NEMS (Micro/Nano-Electro-Mechanical Systems): Developing tiny mechanical devices and sensors for various applications.
  • Soft Robotics and Bio-inspired Machines: Creating robots and machines with more flexible and adaptive structures.
  • Wearable Technology and Smart Fabrics: Integration of mechanical systems in wearable devices and textiles for various purposes.
  • Human-Machine Interface: Designing intuitive interfaces for better interaction between humans and machines.
  • Precision Engineering and Metrology: Advancements in accurate measurement and manufacturing techniques.
  • Multifunctional Materials: Materials designed to serve multiple purposes or functions in various applications.
  • Ergonomics and Human Factors in Design: Creating products and systems considering human comfort, safety, and usability.
  • Cybersecurity in Mechanical Systems: Protecting interconnected mechanical systems from cyber threats.
  • Supply Chain Optimization in Manufacturing: Applying engineering principles to streamline and improve supply chain logistics.
  • Drones and Unmanned Aerial Vehicles (UAVs): Research on their design, propulsion, autonomy, and applications in various industries.
  • Resilient and Sustainable Infrastructure: Developing infrastructure that can withstand natural disasters and environmental changes.
  • Space Exploration Technologies: Advancements in propulsion, materials, and systems for space missions.
  • Hydrogen Economy and Fuel Cells: Research into hydrogen-based energy systems and fuel cell technology.
  • Tribology and Surface Engineering: Study of friction, wear, and lubrication for various mechanical systems.
  • Digital Twin Technology: Creating virtual models of physical systems for analysis and optimization.
  • Electric Propulsion Systems for Satellites: Improving efficiency and performance of electric propulsion for space applications.
  • Humanitarian Engineering: Using engineering to address societal challenges in resource-constrained areas.
  • Optimization and Design of Exoskeletons: Creating better wearable robotic devices to assist human movement.
  • Nanotechnology in Mechanical Engineering: Utilizing nanomaterials and devices for mechanical applications.
  • Microfluidics and Lab-on-a-Chip Devices: Developing small-scale fluid-handling devices for various purposes.
  • Clean Water Technologies: Engineering solutions for clean water production, treatment, and distribution.
  • Circular Economy and Sustainable Design: Designing products and systems for a circular economic model.
  • Biologically Inspired Design: Drawing inspiration from nature to design more efficient and sustainable systems.
  • Energy-Efficient HVAC Systems: Innovations in heating, ventilation, and air conditioning for energy savings.
  • Advanced Heat Exchangers: Developing more efficient heat transfer systems for various applications.
  • Acoustic Metamaterials and Noise Control: Designing materials and systems to control and manipulate sound.
  • Smart Grid Technology: Integrating advanced technologies into power grids for efficiency and reliability.
  • Renewable Energy Integration in Mechanical Systems: Optimizing the integration of renewable energy sources into various mechanical systems.
  • Smart Cities and Infrastructure: Applying mechanical engineering principles to design and develop sustainable urban systems.
  • Biomimetic Engineering: Mimicking biological systems to develop innovative engineering solutions.
  • Machine Learning for Materials Discovery: Using machine learning to discover new materials with desired properties.
  • Health Monitoring Systems for Structures: Developing systems for real-time monitoring of structural health and integrity.
  • Virtual Reality (VR) and Augmented Reality (AR) in Mechanical Design: Utilizing VR and AR technologies for design, simulation, and maintenance of mechanical systems.

Mechanical engineering is a vast and dynamic field with ongoing technological advancements, and the above list represents a glimpse of the diverse research areas that drive innovation. Researchers and engineers in this field continue to push boundaries, solving complex problems and shaping the future of technology and society through their pioneering work. The evolution and interdisciplinary nature of mechanical engineering ensure that new and exciting research topics will continue to emerge, providing solutions to challenges and opportunities yet to be discovered.

  • Biomechanics
  • CyberPhysical
  • engineering
  • EnvironmentalImpact
  • FiniteElement
  • FluidMechanics
  • HeatExchangers
  • HumanMachine
  • HydrogenFuel
  • MachineLearning
  • Mechatronics
  • Microfluidics
  • nanomaterials
  • Nanotechnology
  • NoiseControl
  • SolarThermal
  • StructuralHealth
  • sustainability
  • Sustainable
  • SustainableEnergy
  • Transportation

Dr. Sowndarya Somasundaram

PhD in India 2024 – Cost, Duration, and Eligibility for Admission

100 connective words for research paper writing, phd supervisors – unsung heroes of doctoral students, most popular, india-canada collaborative industrial r&d grant, call for mobility plus project proposal – india and the czech republic, effective tips on how to read research paper, iitm & birmingham – joint master program, anna’s archive – download research papers for free, fulbright-kalam climate fellowship: fostering us-india collaboration, fulbright specialist program 2024-25, best for you, 24 best free plagiarism checkers in 2024, what is phd, popular posts, how to check scopus indexed journals 2024, how to write a research paper a complete guide, 480 ugc-care list of journals – science – 2024, popular category.

  • POSTDOC 317
  • Interesting 258
  • Journals 234
  • Fellowship 128
  • Research Methodology 102
  • All Scopus Indexed Journals 92

ilovephd_logo

iLovePhD is a research education website to know updated research-related information. It helps researchers to find top journals for publishing research articles and get an easy manual for research tools. The main aim of this website is to help Ph.D. scholars who are working in various domains to get more valuable ideas to carry out their research. Learn the current groundbreaking research activities around the world, love the process of getting a Ph.D.

Contact us: [email protected]

Google News

Copyright © 2024 iLovePhD. All rights reserved

  • Artificial intelligence

engineering research ideas

100 Engineering Research Paper Topics

10 October, 2021

13 minutes read

Author:  Kate Smith

Engineering is one of the most interesting areas of expertise, yet it’s one of the hardest ones to study and write about. The majority of students who pursue this major struggle with writing papers and getting high grades for them. Therefore, we decided to create this guide to help you understand what is expected from you when your instructor assigns engineering topics. Also, you will find out how to choose the right topic, make it understandable and easy to find references to, and write your paper fast. Besides this, we will provide you with the top 100 engineering research topics that you can use for your homework.

Engineering Research Paper Topics

What Is an Engineering Research Paper?

Before we give you ideas on the best engineering topics, let’s find out the definition of an engineering research paper first. This is a substantial academic work that falls into the scope of a certain engineering major and discusses how the theoretical principles of engineering work in practice. Such papers are written by students, scholars, and researchers who either do it as part of their research project or as a final paper to defend an academic degree.

The distinctive features of engineering papers are accuracy, novelty, and practicality since they are written to be applied in the respective field of engineering later, e.g. construction, drug production, electricity supply, software development, etc. Therefore, such papers should contain a practical side that allows to check the credibility of research done by a student or a scholar.

Writing engineering papers is important not only due to their potential application to real-life construction and technology, but also to develop the students’ understanding of how the whole process of invention, production, and usage of a certain technology is done. Thus, by writing a paper on engineering topics, you can understand your future profession better and gain the necessary knowledge of communication with contractors, customers, and colleagues.

A Quick Guide to Choosing the Right Topic

Now that you know what an engineering paper is, it’s time to find out how to choose the best topic for it. Below, you can find effective tips on how to embark on the most interesting and relevant topic for writing:

  • Discover major trends in your future field of expertise. Before you are given any homework assignment or a research paper topic to write, consider checking trends and news that fall into the scope of your major. For instance, if you are going to become a specialist in mechanical engineering, consider reading news and visiting events for automotive, CAD, control, and maintenance engineers to understand how the industry works. Once you start doing it a few times per month, coming up with the best mechanical engineering topics for writing will not be a problem for you;
  • Read the relevant literature. Remember about reading spcialized magazines or online publications from time to time. Doing this will broaden your professional outlook and provide you with interesting insights to study, research, and write about;
  • Understand your interests. What was the reason for choosing engineering as your profession? What position do you want to apply for after graduation? Where do you want to intern before getting a degree? Answering these questions will help you detect the most interesting topics covered by your study program and choose the respective engineering topics for writing essays and papers;
  • Ask your instructor to choose the topic on your own. You can always ask your professor for permission to opt for a topic from the list of topics of mechanical engineering or other disciplines if you want to. If your professor requires you to write on a given topic only, consider the next tip;
  • Reshape the given topic. If you have ideas for improving or modifying the given topic, don’t be afraid to discuss them with your instructor. They will appreciate your creative approach and desire to write an original paper;
  • Create the topic yourself. Finally, if you are given total academic freedom, feel free to formulate your paper topic on your own. To make your brainstorming process more productive, write as many engineering topics as possible. Then, choose a few that you like the most, and edit them. Finally, visit your instructor’s office with a few engineering topics listed for approval of one of them.

Here are examples of engineering paper topics to choose from. Consider picking those topics that are already covered by your study program.

engineering research paper topics

20 Mechanical Engineering Research Topics

  • The mechanical engineering background role in the study of robotics.
  • The role of structural analysis in mechanical engineering.
  • Improvement in manufacturing via implementation of new mechanical theories.
  • A parabolic solar cooker: design and performance evaluation.
  • Kaplan hydraulic turbines: design and analysis of performance.
  • The development of pedal-powered water pumping machines.
  • The design and development of a low-cost biomass briquette machine.
  • The development of a fire-tube steam boiler for laboratories.
  • The design and development of a pedal powered washing machine for low-income communities.
  • How to design a night vision camera for a mobile surveillance robot?
  • The usage of the Internet of Things for an irrigation monitoring and control system.
  • How to design a performance appraisal system for an industrial plant?
  • The development of a road pothole detection robot: methods and challenges.
  • Advanced engineering materials: Key to Millennium Development Goals in Third-World Countries.
  • The detailed evaluation of natural gas potentials in the economic development of North European countries.
  • How to process activated Carbon from agricultural waste?
  • Case study: energy consumption and demand in Bayside High School, Queens, NY.
  • The role of mechanical engineering in modern medicine.
  • The reduction of energy costs through the usage of solar panels: the solution for developing countries.
  • What is the global effect of gas flaring?

20 Biomedical Engineering Research Topics

Before choosing any topic on the list, be sure to check whether it falls in the scope of your subject. The following biomedical engineering topics are intended for college as well as Master’s students:

  • How to measure the blood glucose level based on blood resistivity?
  • How to design a programmed Oxygen delivery system?
  • The design of a central medical waste recycling plant: pros and cons.
  • The real-time heart sounds recognition tool development: the breakthrough in treating heart conditions.
  • How to develop a management program for a clinical engineering department?
  • The expert system design for diagnosing pulmonary tuberculosis.
  • Artificial neural networks usage in diagnosing breast cancer.
  • Prediction of kidney failure: how to realize it with artificial neural networks?
  • Using gold nanoparticles in designing a detector for vaccine containers.
  • Statistical methods in heartbeat rate variability analysis.
  • How to develop a model to inspect medical devices in health facilities?
  • The challenges of implementation of a non-invasive malaria detection system.
  • The development of an inspection protocol for imported medical devices: problems and solutions.
  • The role of nanotechnologies in biomedical engineering.
  • The modern neural technology: the current advancements and the potential of the field.
  • Medical virtual reality and its potential effectiveness for treating patients.
  • The impact of computational biology on our lives.
  • Technology-fueled medications: is there any future for them?
  • The usage of early diagnosis systems in treating heart illnesses.
  • How can nanotechnologies be used in creating cancer vaccines?

20 Electrical Engineering Research Topics

  • Quantifying the cost of an unplanned outage at Astoria East Energy – CC1 and CC2 Power Station.
  • How to design and produce an electronic siren?
  • The impact of scientific changes of the 19th century on modern engineering.
  • How to implement solar technologies in the life of modern cities?
  • The ways to save energy costs through setting up automated systems.
  • How can city authorities improve on energy distribution?
  • The usage of semiconductor topology: peculiarities and challenges.
  • The design and development of an automated street lighting system.
  • Developing battery charging control for the system of wind energy generation.
  • Th comparative analysis of the most effective ways of testing power systems.
  • Storing power in ion batteries: challenges, peculiarities, and potential.
  • Measuring the most accurate ways to forecast electric loads for cities.
  • Globalization and energy distribution: challenges and prospects for developing countries.
  • Kenya Electricity Industry: Current Problems and Solutions.
  • The renewable energy potentials in African countries.
  • The ways of using the Internet of Things in developing modern electricity industries.
  • Sustainable future and alternative sources of power: evaluation and predictions.
  • The evaluation of modern US hybrid distributed energy systems performance.
  • Modeling of core loss in an induction machine.
  • Design and development of the monitoring system for a robotic arm.

The electrical engineering topics presented above can be used for Bachelor’s and Master’s projects; however, consider narrowing down the topic you choose if you have written similar papers before.

20 Topics on Civil Engineering

  • Fire risk assessment of Atlanta construction companies.
  • How to create models for predicting the compressive strength of concrete?
  • The usage of concrete alternatives as a way to cut expenditures for cities.
  • Natural disasters prevention: the steps for rural communities.
  • The biggest infrastructure challenges for Nigeria and their solutions.
  • The distribution of water to dry areas in Cape Verde.
  • The impact of civil engineering on the life level in the 20th century.
  • The role of road planning in building sustainable city life.
  • The ancient building principles in modern civil engineering: the importance of past experience.
  • Developing smart housings as a way to build a sustainable city.
  • How to measure sustainability in the context of urban water management in North Asia?
  • The ways to manage the outcomes of the volcano eruption in modern cities.
  • The impact of stress and anxiety on the productivity of construction workers in Latin America.
  • Analytical investigation of using concrete alternatives in Oregon, USA.
  • The analysis of the effective methods of geometric design of highways.
  • Water resources management in Burkina Faso.
  • Legal rules for the development of infrastructure in Mexico.
  • The green concrete research: potentials and challenges.
  • The new water governance solutions for Eastern European countries.
  • The importance of dewatering in construction work.

20 Software Engineering Topics

  • Evaluating strategies for optimizing password management against hacker attacks.
  • Data mining ways for industrial safety improvement in Nevada, USA.
  • The relevance of automatic speech recognition for the development of a lock door security system.
  • The application of artificial neural networks for diagnosing human eye diseases.
  • Development of an Android app with an anti-theft car tracking system.
  • The design and development of a smart traffic control system for metropolises.
  • The implementation of an automated parking lot system.
  • The challenges for data security in online trading systems.
  • The pros and cons of using chatbot technologies for ensuring customer satisfaction.
  • Does society need to rethink the extent to which we interact with computer technologies?
  • The pros and cons of using different programming languages in the context of changing working places.
  • The ways for a user to evaluate the quality of a mobile app.
  • The improvement of databases in the last twenty years.
  • How to improve the weather forecasting systems with modern software?
  • The evaluation and improvement of Argentina railway tracking systems.
  • The design of a low-cost health monitoring system for hospitals.
  • Using the latest software advancements for teaching primary school students.
  • The methods of increasing online security in university campuses’ online networks.
  • User strategies for optimization of electronic books memory capacity.
  • Development of a secure contact payment system for Chad cities.

Now that you are familiar with the most up-to-date engineering topics, we suggest that you choose at least three for your next assignment. Don’t forget to contact your instructor to reach agreement on the topic you like the most, and start working on it according to our tips at the beginning of this guide. Remember: every topic from our list can be elaborated according to your discipline and year of study.

Feel free to buy essay online with our professional essay writer service.

A life lesson in Romeo and Juliet taught by death

A life lesson in Romeo and Juliet taught by death

Due to human nature, we draw conclusions only when life gives us a lesson since the experience of others is not so effective and powerful. Therefore, when analyzing and sorting out common problems we face, we may trace a parallel with well-known book characters or real historical figures. Moreover, we often compare our situations with […]

Ethical Research Paper Topics

Ethical Research Paper Topics

Writing a research paper on ethics is not an easy task, especially if you do not possess excellent writing skills and do not like to contemplate controversial questions. But an ethics course is obligatory in all higher education institutions, and students have to look for a way out and be creative. When you find an […]

Art Research Paper Topics

Art Research Paper Topics

Students obtaining degrees in fine art and art & design programs most commonly need to write a paper on art topics. However, this subject is becoming more popular in educational institutions for expanding students’ horizons. Thus, both groups of receivers of education: those who are into arts and those who only get acquainted with art […]

Engineering (Basic)

  • Getting Started
  • Where to Find ...
  • Academic Integrity
  • Formulating questions w/PICO

Researching an Engineering Topic, Part 1: Introduction

Researching an engineering topic, part 2: pick a good topic, researching an engineering topic, part 3: build a strong foundation, researching an engineering topic, part 4: know where to look, researching an engineering topic, part 5: search strategies, get organized - it saves time, style manuals and citation guides.

  • How to Find Facts, Formulas & Data
  • Articles (Journals & Magazines)
  • Encyclopedias and Dictionaries
  • Advanced Guides

The ASU Library purchases access to the types of information that your instructors want you to use and what you'll be expected to use when you become a professional engineer.    To find this information you'll need to know where to look and what to look for.    Here's how to do it ...

  • Pick a Good Topic
  • Build a Strong Foundation
  • Know Where to Look
  • Using the PICO method

Has your instructor given you the option to pick your own research topic?  

A good topic: 

  • Is interesting.  The more you enjoy the topic, the more pleasant the work will be; you may find that it's not really work at all.  
  • If whole books have been written about the topic, it's too broad for a short paper or talk; narrow the scope by looking for a specific issue within that topic.  Instead of writing about bridges in general, how about writing on "bridge failures in the United States"?   
  • On the other hand, if very little has been published on the topic, it's too narrow; try broadening the topic by taking a step (or two) back.  So, instead of studying "suspension bridge failures in Phoenix", what about "bridge failures in Arizona"?    
  • Is something on which you can do an analysis and make a recommendation. Writing a paper or giving a talk is more than just paraphrasing what you found when researching your topic.  You'll need to draw conclusions that are supported by your research.   If your paper is about the Interstate-35 bridge collapse in Minnesota, don't just give a timeline of what happened.  You should address such issues as what has been learned and what still needs to be studied.   

Having trouble coming up with a good topic?  Try these engineering sites to get ideas:

  • Grand Challenges for Engineering
  • WTOP Radio Archives
  • Science Daily
  • Discovery News: Tech & Gadgets

The books and and journal articles you'll be using in college are written for people who are already knowledgeable about the subject.  Just as every structure needs a good foundation, you'll need to learn the basics about a topic so you'll be able to understand what your research finds. 

You can get an introduction to just about any engineering concept via encylopedias and handbooks ;  use these to read about your topic before you start your research. For example, if your topic is about bridges, do you know what the different types of bridges are?  What forces are at play in each type? What materials are typically used in each?  

In addition,  dictionaries  can be used to determine what a technical term means.  Whether in print or online, always have a technical dictionary for the field you're researching on-hand to help you decifer what you're reading.

As an undergraduate, you'll use primarily two types of resources:

  • Books  for a broad treatment of a topic, and
  • Journal Articles  for an in-depth treatment of a specific aspect of a topic.

Use the "Books" and "Journal Articles" links above to discover what library resources will help you find appropriate books and journal articles for your topic.

Most research at this level will require that you use more than one resource as each resource will cover different parts of the literature.  (Even Google can't find everything.)  Also, you may find that you have to try several times before you find the best combination of words for searching that resource.  What words you use for searching and how you ask the computer to combine them will directly affect your results, so it pays to use different word combinations and strategies. 

So how do you know what are the best words for your search?  

  • Start with the words you use to describe the topic  
  • Look for other terminology the authors are using in their titles and abstracts (summaries) to describe the same topic.  
  • If available, look in the left or right columns on the results screen for subject faceting (sometimes called "refine options")  to see what wording is appearing most frequently.  
  • After you have found other terminology for your topic, redo your search using these new words; you'll retrieve more books/articles that are on your topic.  
  • Some people find the PICO method helpful in formulating search strategies.

Keep in mind that literature research is a not a linear process; it's not "search, read, write, turn it in".  It's more "search, read, refocus, search again ..." as many times as is necessary before you can write your paper. It may take two or three cycles of "search, read, refine" before you have what you need to write. 

If your paper or talk is relatively short and only requires a few supporting pieces of documentation, you can probably keep your book and journal articles citations written down on paper.  Be sure to keep complete "citations" for everything you read - check those citations before you return the book to the library or before you leave the photocopy/printer with your article.  

For books a complete citation includes the:

  • book title,
  • publisher of the book, 
  • place where the publisher is headquartered, and
  • date of publication.
  • If you will be citing only portions of the book, be sure to keep track of the page numbers.

For journal articles a complete citation includes the:

  • author(s) of the article,
  • title of the article,
  • title of the journal,
  • volume number,
  • issue number,
  • pages the article appeared on, and
  • Some citations styles, such as APA, are now requiring the DOI (digital object identifier) of the article; DOIs are found on the online versions and look something like this:
  • doi:10.1016/j.espr.2011.08.016
  • doi/10.1063/1.3457141

Both style manuals and citation guides explain how to format bibliographies; a bibliography is the list of books and journal articles you cited in your paper or talk.  Your instructor will tell you in what style or format s/he wants your bibliography.   In college, the two most popular styles are MLA (Modern Language Association) and APA (American Psychological Association) with the later style being preferred for many areas of engineering.   

For more information about MLA and APA styles, see the libguide Citation Styles .

If your instructor specifies a different style, see the Advanced Guide for that engineering area to find links to guides for that format.

  • << Previous: Formulating questions w/PICO
  • Next: How to Find Facts, Formulas & Data >>
  • Last updated: Jan 2, 2024 8:27 AM
  • URL: https://libguides.asu.edu/engineering

Arizona State University Library

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Repeatedly ranked #1 in innovation (ASU ahead of MIT and Stanford), sustainability (ASU ahead of Stanford and UC Berkeley), and global impact (ASU ahead of MIT and Penn State)

  • MSE Strategic Plan 2023
  • Undergraduate Programs
  • Graduate Programs

Research Topics

  • Research Groups
  • Research Videos
  • Research Professionals
  • Graduate Students
  • MSE Advisory Council
  • Awards and Honors
  • Position Openings in MSE
  • Collaborative Facilities Across Campus
  • Alumni Spotlights
  • Distinguished Alumni Award
  • Class Photos
  • Giving Opportunities
  • Recruit Students
  • MSE Newsletters
  • Experience and Employment
  • Graduate Services and Activities
  • Forms & Checklists
  • Identity, Health, Wellness
  • Graduate TAs for Current Semester

The field of Materials Science & Engineering is evolving dramatically as we enter the 21st Century. What began as the study of metals and ceramics in the 1960s has broadened in recent years to include semiconductors and soft materials. With this evolution and broadening of the discipline, current research projects span multiple materials classes and build on expertise in many different fields. As a result, current research in Materials Science and Engineering is increasingly defined by materials systems rather than materials classes.

At Cornell, the Department of Materials Science & Engineering (MS&E) has adopted this new systems-based vision of the field by defining four strategic areas which are considered to be critical for today’s emerging research. The four strategic research areas are Energy Production and Storage, Electronics and Photonics, Bioinspired Materials and Systems, and Green Technologies.

Materials Science & Engineering is an exciting and vibrant interdisciplinary research field. Cornell MS&E draws upon its world-class faculty, innovative researchers, state-of-the-art facilities and highly collaborative research environment to respond to challenging technological and societal demands both in the present and the future.

Energy Production

Energy Production and Storage

Energy research will prove to be the most prosperous growth area for the department, the College and the University. The inevitability of an energy crisis and global climate change has intensified efforts in alternative energy research around the world. The excitement building around this sector is reminiscent of the early years of the information technology revolution. Among the many possible sources of alternative energy, the following areas are particularly aligned with the current materials research at Cornell as they play to our existing strengths:  photocatalysis, photovoltaics, thermoelectrics, phononics, batteries  and  supercapacitors .

Relevant Research Areas: 

  • Energy Systems
  • Advanced Materials Processing
  • Materials Synthesis and Processing
  • Nanotechnology
  • Nonlinear Dynamics
  • Polymers and Soft Matter
  • Semiconductor Physics and Devices

Electronics & Photonics

Electronics & Photonics

The use of semiconductor devices and circuits will continue to play a major role in modern life. Therefore electronics and photonics are considered premier growth areas. As feature sizes decrease, incremental research based on current methods and materials is unlikely to enable Moore's Law to continue. New materials and processing techniques are needed. Advances in nanoscale fabrication have led to recent advances in this field. We have targeted the following areas: oxide semiconductors, 3D integration, materials beyond silicon, high K and low K dielectrics, plasmonics, spintronics, and multiferroics.

  • Computational Mechanics
  • Computational Solid Mechanics
  • Condensed Matter and Material Science
  • Surface Science

Bioinspired Materials and Systems

Bioinspired Materials and Systems

Scientists and engineers are increasingly turning to nature for inspiration. The solutions arrived at by natural selection are often a good starting point in the search for answers to scientific and technical problems. Designing and building bioinspired devices or systems can tell us more about the original animal or plant model. The following areas are particularly aligned with the current materials research at Cornell:  bioinspired composites, engineered protein films for adhesion, lubrication and sensing applications , molecular tools for in-vitro and in-vivo imaging (C-Dots, FRET), as well as biomaterials for tissue engineering and drug delivery.

  • Biomedical Engineering
  • Biomechanics and Mechanobiology
  • Biomedical Imaging and Instrumentation
  • Biotechnology
  • Drug Delivery and Nanomedicine
  • Mechanics of Biological Materials
  • Nanobio Applications

Green Technologies

Green Technologies

The 21st century has been called the "century of the environment." Neither governments nor individual citizens can any longer assume that social challenges such as pollution, dwindling natural resources and climate change can be set aside for future generations. Strategies for clean and sustainable communities need to be established now, community by community. A dawning era of creativity and innovation in "green technology" (also known as "clean technology") is bringing the promise of a healthier planet (as well as the prospect of growing businesses) that can sustain its health.  We have targeted green composites and new systems for CO2 capture and conversion as areas of future growth .

  • How It Works
  • PhD thesis writing
  • Master thesis writing
  • Bachelor thesis writing
  • Dissertation writing service
  • Dissertation abstract writing
  • Thesis proposal writing
  • Thesis editing service
  • Thesis proofreading service
  • Thesis formatting service
  • Coursework writing service
  • Research paper writing service
  • Architecture thesis writing
  • Computer science thesis writing
  • Engineering thesis writing
  • History thesis writing
  • MBA thesis writing
  • Nursing dissertation writing
  • Psychology dissertation writing
  • Sociology thesis writing
  • Statistics dissertation writing
  • Buy dissertation online
  • Write my dissertation
  • Cheap thesis
  • Cheap dissertation
  • Custom dissertation
  • Dissertation help
  • Pay for thesis
  • Pay for dissertation
  • Senior thesis
  • Write my thesis

211 Interesting Engineering Research Paper Topics

Engineering Research Paper Topics

The world of engineering is replete with experimentation and discoveries; it’s only a matter of understanding what is required and knowing where to look. Sometimes, college students are at a loss on how to choose the right research topic for their projects, especially when it comes to their area of specialty. This is normal in most cases.

If you’re in university and you’re so confused about how to choose a suitable engineering topic for research papers to work on, then you’re in luck. This entire guide is dedicated to offering you expert quality and professional research paper writing services and writing tips you can’t get anywhere else online.

Genetic Engineering Research Paper Topics

This refers to the process of deliberately altering the genetic composition of an organism. Nowadays, the leaps in genetic engineering have benefited several important aspects, including stem cell research.

Through genetic engineering, several diseases and predisposing factors have been discovered and written out or edited. The fact that such technologies exist, gives enough motivation for many to want to carry out further research on the topic.

Below are some relevant topics for further research that students can use in the field of genetic engineering.

  • The possibility of recovering and the DNA of extinct animals in the restocking of said species.
  • Existing genetic theories and explanations which support or disprove certain aspects of human behavior.
  • The viability of cloning organisms.
  • The existing relationship between genetic factors and acne susceptibility of individuals.
  • Genetic explanations and theories supporting or disproving social animal behavior.
  • The connection between coronary heart disease and genetic interference.
  • Genetic research and how they have influenced the environment.
  • How close are we to cloning humans?
  • The relationship between genetic factors and allergic reactions.
  • Can congenital deformities be passed down from mother to child?
  • Genetic explanation for similarities in personalities of twins raised apart.
  • Genetic explanation for differences in personalities of twins raised apart.
  • Who funds genetic research?
  • Factors that contribute to inbreeding depression.
  • Genetic explanation of genetic variations in the distribution of organisms of the same species.
  • Current strides in genetic engineering.
  • Genetic engineering: moral or immoral?
  • When does genetic engineering cross the line?
  • Who defines right and wrong in genetics?
  • The future of genetic coding and editing.

Industrial Engineering Research Paper Topics

This branch of engineering is one that deals specifically in making complex systems, organizations, structures, etc. more efficient by developing and improving upon the pre-existing systems. In industrial engineering, the goal is the improvement and application of researched, factual upgrades to systems when dealing with individuals, finance, information, etc. in order to produce optimized results and functions.

Industrial engineering seeks to improve the methods employed by companies in the implementation of processes in the manufacture and operations of projects.

Research in industrial engineering will help broaden your knowledge of how things are and how they should be to function more efficiently and effectively. To help you get started, here are some research topics you can consider taking a closer look at.

  • Mining and discovery of data.
  • The designing, structuring, and execution of experiments.
  • Strategies employed in manufacturing.
  • Single-objective optimization.
  • Poly-objective optimization
  • Managing a supply chain.
  • Analytical approach to the management of data.
  • Experimental designing.
  • Analysis of variance.
  • Interaction of dependent and independent variables in our reality.
  • The algorithm of differential evolution.
  • Artificial neural networks and their application.
  • Planning and design concepts in the building of structures.
  • Layouts and designs of structures.
  • Systems and analyses of handling industrial materials.
  • Artificial intelligence.
  • The influence of computers on driving.
  • Application of ergonomics in the world of engineering today.
  • The rise of automation in modern industries.

Research Paper Topics Related To Civil Engineering

One simple way to define civil engineering is that it’s basically all that we can see that has been built around us. It simply refers to an expert branch or discipline of engineering that focuses on making viable, practical arrangements with the plan, development, and maintenance of the physical, visible structures around us.

Civil engineering focuses on specific areas of structural building and maintenance, including public works like streets, waterways, dams, air terminals, sewerage frameworks, pipelines, primary segments of structures, rail routes, and so on.

Civil engineers imagine, plan, create, administer, work, develop and keep up basic interactions and frameworks in the general population and private area, including the roads, structures, airport terminals, burrows, dams, extensions, and frameworks for water supply and sewage treatment.

Below are some more topics you might be interested in, which will help as a student to answer some research paper projects and assignments.

  • Automation of the operation of machines in industries.
  • Designing, building, and engineering sturdy structures.
  • Designing long-lasting buildings and systems.
  • Materials for innovation.
  • Systems employed to help in the detection and management of natural disasters.
  • Elimination and mitigation of industrial and structural hazards.
  • Analyses of risks and reliability of computational alerts.
  • Informatics and its application.
  • Simulations in engineering.
  • Land surveying.
  • Designing, engineering, and construction of roads.
  • Designing, engineering, and construction of buildings.
  • Engineering and transportation.
  • Geotechnical and its application in everyday life.
  • Engineering: its contribution and effects on the environment.
  • The impact of engineering on the structure and interaction of microorganisms in the soil.
  • Analyzing and designing residential and industrial structures.
  • The integration of various designs into construction plans.
  • The role of civil engineering in the control of environmental pollution.

Research Paper Topics Software Engineering

Software engineering is a branch of engineering that deals with the systemic application of analyses and research findings to the creation and management of software.

In software engineering, the process entails a disciplined, quantifiable approach to the application of said findings in the creation, operation, management, and security of software.

Further research topics and areas yet to be fully explored in software engineering are listed below.

  • The Internet of Things.
  • Cybersecurity.
  • Mining data.
  • Application of software engineering in the diagnosis and treatment of medical diseases.
  • Applications of Deep Neural Networking.
  • Detection and prevention of scams and online frauds.
  • Hacking: ethical hacking and the blue nowhere.
  • Benefits of professionalizing esports.
  • Automating the repairs of machines and industrial structures.
  • Assessing and testing clones.
  • The sustainability of ICT in various industries.
  • Application of ICT in Small and Medium-scale Enterprises.
  • Artificial intelligence and its contribution to the economy.
  • Ranking clone codes.
  • Data analytics.
  • Prediction and elimination of errors in software engineering.
  • Debugging in architecture.
  • Using machine learning to predict and detect defects in software.

Research Paper Topics For Engineering

Without mincing words, engineering is an umbrella term for the discipline which combines mathematics, physics, and physical sciences in the creation, development, and maintenance of technology.

Some areas for further research are listed below.

  • Systems of electrical power.
  • Sustainable alternatives and sources of energy.
  • Material modeling.
  • The mechanics of damage.
  • Renewable and non-renewable sources of energy.
  • Acoustics in engineering.
  • The engineering of chemical reactions.
  • Electronic appliances.
  • Electronics.
  • Electromagnetism.
  • The fusion of Information and Communications Technology with multimedia.
  • Content administration.
  • Electrical applications of physics.
  • Fusion of nuclei.
  • Engineering of light.
  • Design of advanced systems.
  • Clean technology and zero-carbon energy.
  • Hydroelectric engineering.

Research Paper Topics About Electrical Engineering

Electrical engineering refers to the branch of engineering that entails the operational use of technology of electricity and electrical appliances. This division of engineering focuses on the design and application of equipment used in the generation and distribution of power, as well as the control of machines and communications.

There’s a whole new world under the name of electrical engineering, and further research into the field will yield solutions to many world problems. Some of these research topics are listed below.

  • Harnessing the infinite potentials of solar energy.
  • Harnessing the infinite potentials of thermal energy.
  • Designing, engineering, and creating wind generators.
  • 3D printing.
  • Constructing circuits.
  • Additive manufacture.
  • Renewable forms of energy.
  • Soft robotics.
  • Conventional robotics.
  • Medical diagnoses and health monitoring using electrical appliances and engineering.
  • Design of energy generators.
  • Management and control of energy.
  • General applications of vehicular control.
  • Cloud services.
  • Smart grids.
  • Quality of power.
  • Wireless transfer of energy from a higher source of energy to a machine with low energy.

Research Paper Topics In Automobile Engineering

Automobile engineering is perhaps one of the most practical branches of engineering that can be seen and put to use in everyday life. It involves the study of the creation, design, structure, interaction between component parts, etc. of vehicles and other means of transportation.

Automobile engineering is often restricted to land vehicles and some suitable research topics that may interest you are listed below.

  • Techniques, procedures, structural designs, and functionality in race cars and Formula 1.
  • Drones and other unmanned aerial conveyors.
  • Processes in centrifugal casting.
  • Shaper machines and their practical examples in everyday life.
  • Tectonic sources of heat energy.
  • Conversion of wave energy.
  • General conversion of energy.
  • Airbags and their contribution to ensuring the safety of passengers while en route.
  • Designs, applications, and operations of aerodynamics.
  • Application of aerodynamics in physics and automobile engineering.
  • Design, application, functions, and restrictions surrounding robotic systems.
  • Electric cars, the future of automobiles and driving.
  • Solar-powered cars.
  • Brakes and vehicular control.
  • Solar-powered air conditioning units.
  • Speed sensors for vehicles in motion.
  • Steam energy: application, viability, risks associated with it, and how to minimize the risks involved.
  • Wind energy: production of renewable energy from wind turbines.
  • Smart cars: artificial intelligence, real-time analyses, and utilization of data by artificial intelligence.

Engineering Ethics Research Paper Topics

Engineering ethics refers to the branch of engineering that addresses ethical issues surrounding the study and pursuit of engineering.

More often than not, engineering, in the quest for globalization and technological advancement, crosses some ethical lines in carrying out its duties. Engineering ethics is there to keep the branches of engineering in check to make sure that the obligations to the public and everyone else are carried out ethically.

Discover new horizons in engineering ethics by studying any of the following research topics.

  • The history of engineering ethics, and its application through the years.
  • Circumstances that led to the relevance and development of engineering ethics.
  • Connections between the scientific, historical and technological in engineering ethics.
  • Approaches to ethical engineering.
  • Principles and vast potentials of engineering ethics.
  • Associations and bodies that monitor and uphold engineering ethics.
  • Similarities in engineering ethics and ethics in other professions.
  • Differences between engineering ethics and ethics in other professions.
  • The engineer’s obligations to the public in general.
  • Engineering ethics: responsibility and accountability of engineers.
  • Violation of engineering ethics.
  • Effects of projects undertaken in engineering on the environment.
  • Balancing public obligations and development of work projects.
  • The impacts of globalization on ethical engineering.
  • Engineering ethics and voluntarism.
  • Contradictory ethical standpoints in engineering ethics.
  • The engineer’s societal obligations and ethics in engineering.
  • Engineering ethics and professional obligations.
  • How engineering ethics influences profit generation.

Research Paper Topics: Security Engineering

Security engineering is a branch of engineering that deals with the integration of security monitoring and controls in a system, such that the controls are absorbed into the system, and are now seen as parts of the operational abilities of the system.

Above all else, security engineers analyze, supervise and develop technology and technicalities that help organizations in preventing malware from invading their systems, leaks of client information, breaches, etc. associated with cyberterrorism and cybercrime.

Security engineers major in building infallible, resilient software systems that stand tall in the face of malware, defects, errors, etc. It relies on certain tools in the design, implementation, testing, etc. of finished systems, as well as the continuous upgrades in time with environmental changes.

  • Protection of clients’ data.
  • Protecting the privacy of users.
  • Cloud security.
  • Security policies to protect client data.
  • Data management and security policies.
  • Privacy and security on the internet.
  • Client data and software security.
  • Security of users while participating in online interactive platforms.
  • Mobile app security.
  • The implication of unified user profiles for clients while using the Internet of Things.
  • Cyberattacks and some ways that corporations can survive them.
  • Centralizing the system of data storage.
  • Cybersecurity of online mobile gaming platforms and user data.
  • Computer security.
  • Security of software.
  • Cybersecurity and social engineering.
  • Effects of automation of operations in security engineering.
  • The human factor in security engineering.
  • Combating malware with antiviruses.

Aerospace Engineering Research Paper Topics

Aerospace engineering refers to the branch of engineering that is concerned with making current, factual researches, designing, developing, constructing, conducting tests, technology, dynamics, and applications of spacecraft and airplanes.

Aerospace engineering refers to aerial systems that are operational within the Earth, and in outer space.

  • The dynamics of unstable gases.
  • Parallel systems based on ground power unit (GPU).
  • Laser tools: computation, precision calculations, and implementation from start to finish.
  • Simulation of turbulence in reactive flows.
  • Fluid dynamics in aerospace engineering.
  • The propagation of elastic waves.
  • Designs for lunar missions.
  • Detection of faults in composite aerospace locations.
  • Applications of elastic abrasives.
  • Management of supply chains.
  • Functional designs for wind turbines.
  • Dynamics of fluids and fuels for machines.
  • Mechanics of solids.
  • Rocket propulsion.
  • Missile launching: precision and analyses.
  • Structures in aerospace.
  • Micro Aerial Vehicles.
  • Different fuselage systems.
  • Structural differences between a forward-swept wing passenger aircraft and a backward-swept wing passenger aircraft.

Chemical Engineering Research Paper Topics

Chemical engineering is another practical branch of engineering. It deals with the planning, designing, as well as operations of processing sites, as well as the interaction between physical, biological, and chemical processes involved in creating economically important technologies.

Some research topics are listed below.

  • The use of different types of oils in the manufacture of soap.
  • Replenishing soil nutrients and microorganisms in polluted areas by the use of organic fertilizers.
  • Degradation of soil and stripping of soil nutrients by industrial waste deposition.
  • Speeding up the degradation of plastic and reducing pollution.
  • Petrochemical products and their applications.
  • The interaction between soil microorganisms and organic fertilizers.
  • Techniques in separating simple and complex homogeneous liquids.
  • Techniques in reversing the action of free radicals.
  • Relationship between elements in the environment.
  • Molecular biology and the intricate specialization of cells.
  • Interaction between drugs and the immune system of a living organism.
  • Heat and heat energy.
  • Mass production of alternatives to fossil fuels.
  • Renewable, plant-based sources of energy.
  • Reclaiming methane as by-products of waste products.
  • Redox reactions and their applications.
  • Heat properties of paper.
  • Designing, producing, and enhancing supercapacitors.
  • Controlled extraction of plant-based wax from the pods of plants like the Theobroma cacao.
  • Water pollution and pollutants.

Research in engineering begins with an ideal topic. Backing either of the above up with factual findings is guaranteed to get you top grades.

biology research topics

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Comment * Error message

Name * Error message

Email * Error message

Save my name, email, and website in this browser for the next time I comment.

As Putin continues killing civilians, bombing kindergartens, and threatening WWIII, Ukraine fights for the world's peaceful future.

Ukraine Live Updates

Research at Purdue ME - Mechanical Engineering - Purdue University

Purdue University

Research at Purdue University Mechanical Engineering

engineering research ideas

  • Zucrow Labs , the largest academic propulsion lab in the world
  • Herrick Labs , the largest academic HVAC lab in the world
  • Birck Nanotechnology Center , the largest academic cleanroom in the world
  • Maha Labs , the largest academic hydraulics lab in the country
  • MMRL , a lab devoted to the future of manufcaturing
  • ... and many more!

NEW! Tour through our Purdue ME research labs with this YouTube playlist!

I want to research in these fundamental areas...

I want to have an impact in....

  • Systems Ph.D.
  • M.Eng. Degree On Campus
  • M.Eng. Degree Distance Learning
  • Systems M.S. Degree
  • Minor in Systems Engineering
  • Professional Certificates
  • Student Organizations
  • Energy Systems M.Eng. Pathway
  • Health Systems Engineeing M.Eng. Pathway
  • Systems M.Eng. Projects

Research Topics

  • Research News
  • Ezra's Round Table / Systems Seminar Series
  • Academic Leadership
  • Graduate Field Faculty
  • Graduate Students
  • Staff Directory
  • Ezra Systems Postdoctoral Associates
  • Research Associates
  • Faculty Openings-Systems
  • Get Involved
  • Giving Opportunities
  • Recruit Students
  • Systems Magazine
  • Academic Support
  • Experience and Employment
  • Graduate Services and Activities
  • Mental Health Resources
  • Recruitment Calendar
  • Tuition and Financial Aid
  • Program Description
  • Program Offerings
  • How to Apply
  • Ezra Postdoctoral Associate in Energy Systems Engineering
  • Cornell Systems Summit

Research in Systems Engineering at Cornell covers an extremely broad range of topics, because of this nature, the research takes on a collaborative approach with faculty from many different disciplines both in traditional engineering areas as well as those outside of engineering.

Because of the nature of systems science and engineering, the research takes on a collaborative approach with faculty and students from many different disciplines both in traditional engineering areas as well as those outside of engineering such as health care, food systems, environmental studies, architecture and regional planning, and many others.

Artificial Intelligence

Computational science and engineering, computer systems.

Data Mining

Earth and Atmospheric Science

Energy systems, health systems, heat and mass transfer.

Information Theory and Communication

Infrastructure Systems

Mechanics biological materials, natural hazards.

Programming Languages - CS

Remote Sensing

Robotics and autonomy, satellite systems, scientific computing, sensor and actuators, signal and image processing, space science and engineering, statistics and machine learning, statistical mechanics and molecular simulation, sustainable energy systems, systems and networking - cs, transportation systems engineering, water systems.

Algorithms

Oliver Gao | Civil and Environmental Engineering

David Goldberg | Operations Research and Information Engineering

Adrian Lewis |  Operations Research and Information Engineering

Linda Nozick |  Civil and Environmental Engineering

Francesca Parise | Electrical and Computer Engineering

Mason Peck | Mechanical and Aerospace Engineering

Patrick Reed |  Civil and Environmental Engineering

Samitha Samaranayake |  Civil and Environmental Engineering

Timothy Sands |  Mechanical and Aerospace Engineering

Huseyin Topaloglu |  Operations Research and Information Engineering

Fengqi You | Chemical and Biomolecular Engineering

infrastructure

Mark Campbell | Mechanical and Aerospace Engineering

Kirstin Petersen |  Electrical and Computer Engineering

Patrick Reed | Civil and Environmental Engineering

Computational Science and Engineering

Jose Martinez | Electrical and Computer Engineering

Data science

Data Science

Madeleine Udell | Operations Research and Information Engineering

Earth and atmospheric science

Maha Haji | Mechanical and Aerospace Engineering

Semida Silveira | Systems Engineering

Jery Stedinger |  Civil and Environmental Engineering

Jefferson Tester | Chemical and Biomolecular Engineering

Lang Tong | Electrical and Computer Engineering

Fengqi You |  Chemical and Biomolecular Engineering

Health systems

Shane Henderson | Operations Research and Information Engineering

John Muckstadt |  Operations Research and Information Engineering

Jamol Pender |  Operations Research and Information Engineering

Rana Zadeh |  Human Centered Design

Yiye Zhang |  Weill Cornell Medicine

Heat and mass transfer

Information Theory and Communications

Stephen Wicker | Electrical and Computer Engineering

Infrastructure Systems

Programming Languages – CS

Andrew Myers | Computer Science

Fred Schneider | Computer Science

Remote Sensing

Mason Pack | Mechanical and Aerospace Engineering

Robotics

Mark Campbell |  Mechanical and Aerospace Engineering

Robert Shepherd |  Mechanical and Aerospace Engineering

Satellite systems

Richardo Daziano | Civil and Environmental Engineering

Linda Nozick | Civil and Environmental Engineering

Bart Selman | Computer Science

Statistical Mechanics and Molecular Simulation

Timur Dogan | Arts Architecture and Planning

Systems and Networking - CS

Ken Birman | Computer Science

Hakim Weatherspoon | Computer Science

Transportation Systems Engineering

Richard Geddes | College of Human Ecology

Water systems

Final Summer I 2024 Application Deadline is June 2, 2024.  

Click here to apply.

One__3_-removebg-preview.png

Featured Posts

engineering research ideas

10 Reasons Why You Should Apply to APA’s Internship for High School Students

Stanford STaRS Internship Program - Is It Worth It?

Stanford STaRS Internship Program - Is It Worth It?

engineering research ideas

How to Show Demonstrated Interest - 8 Tips for College Admissions

10 Free Summer Math Programs for High School Students

10 Free Summer Math Programs for High School Students

10 Online Summer Camps for Middle School Students

10 Online Summer Camps for Middle School Students

6 Entrepreneurship Internships that You Should Check out as a High School Student

6 Entrepreneurship Internships that You Should Check out as a High School Student

10 Free Biology Summer Programs for High School Students

10 Free Biology Summer Programs for High School Students

engineering research ideas

10 Free Programs for High School Students in California

NASA's High School Aerospace Scholars - 7 Reasons Why You Should Apply

NASA's High School Aerospace Scholars - 7 Reasons Why You Should Apply

engineering research ideas

10 Film Internships for High School Students

25+ Research Ideas in Aerospace Engineering for High School Students

Aerospace engineering is an exciting domain that merges the principles of physics, mathematics, and engineering to design and analyze aircraft and spacecraft. If you have a passion for flight and space exploration, then you should know that while it's the pilots and astronauts pushing the physical frontiers, it’s the researchers and theorists doing the heavy lifting to push the edges of the theoretical envelope. Though it may seem daunting, you should not hold yourself back from pursuing research while still in school, as it will highlight your initiative and dedication, while actually building your analytical expertise, core domain knowledge, and problem-solving skills . Of course, it can also significantly boost your profile for the purpose of college applications.

In this blog, we present 25+ research ideas across various subdomains within aerospace engineering that you could consider exploring.

How should you go about pursuing research in engineering as a high schooler?

First and foremost, you should be aware of your relative inexperience and therefore choose a research topic that’s both accessible and relevant. The ideal subject should address a contemporary challenge or an existing knowledge gap, but as long as you try to innovate and add value to the field while having the resources and tools to do so, then you’re in the right direction. Once you've finalized a promising research topic, decide your methodology, and presentation of results, and of course be aware of any ethical considerations.

Topic 1: Aircraft Design and Aerodynamics

If the magic of flight has always fascinated you, then these are the topics for you. By diving into aircraft design and aerodynamics , you'll unravel how aircraft defy gravity, the principles that govern their design, and the complex mechanics of the movement of air molecules around an aircraft's body.

Good to have before you start:

A basic understanding of fluid dynamics, interest in aircraft design, and familiarity with computer-aided design (CAD) tools.

Convenient access to a computer design lab or CAD software - a lot of the theoretical research you do will require this specialized software.

Some potential topics:

1. Next-Gen Aircraft Designs: Delve into futuristic designs that prioritize sustainability, efficiency, and passenger comfort.

2. Stability and Control of Aircraft: Understand the delicate balance that keeps aircraft stable in the skies.

3. High-Speed Flight Aerodynamics: Explore the challenges faced when breaking the sound barrier and the realm of supersonic flight.

4. Micro Air Vehicles (MAVs): Investigate the world of tiny aircraft and their potential applications in surveillance, research, and more.

Ideas contributed by Lumiere Mentors from the Imperial College London, Texas A&M University, and the University of Illinois at Urbana-Champaign.

Topic 2: Spacecraft and Satellite Systems

Venturing beyond our atmosphere, this topic will take you on a journey through the vast expanse of space. From the intricacies of spacecraft design to the silent sentinels (satellites) that orbit our planet, you'll gain insights into how humans have extended their reach to the stars and the technologies that make space exploration possible. This is a beginner-friendly topic because much of the data you might need is already in the public domain, courtesy of NASA , and the topics are largely theoretical and give you a good opportunity to build your knowledge of physics and mathematics.

A foundation in orbital mechanics, interest in space exploration, and some understanding of electronic systems.

5. Reusable Rocket Technologies: Study the mechanics and feasibility of rockets designed for multiple launches.

6. Satellite Communication Systems: Explore the technology behind satellite-based communication and its advancements.

7. Spacecraft Propulsion Systems: Investigate innovative methods to propel spacecraft beyond Earth's orbit.

8. CubeSats and Miniaturized Satellites: Delve into the design and applications of small-scale satellites.

Ideas contributed by Lumiere Mentors from the University of Illinois at Urbana-Champaign and Cornell University.

Topic 3: Materials and Structures in Aerospace

At the core of aerospace engineering lies the challenge of creating structures that are both lightweight and incredibly strong. These topics delve into the advanced materials and innovative designs that ensure aircraft and spacecraft can withstand the extreme conditions they face.

Knowledge of material properties, understanding of stress and strain, and interest in innovative material solutions.

Access to a materials lab where you can test material properties yourself.

Some mentorship - due to the hands-on and experimental nature of these topics, we suggest that you work with a teacher, a mentor, or at the very least a lab assistant who can guide you on the basics and direct your testing.

Safety wear - as always, when working with materials, it’s important to wear appropriate safety gear.

9. Composite Materials in Aerospace: Learn about the blend of materials that offer strength without adding weight.

10. Thermal Protection Systems: Understand the shields that protect spacecraft from the intense heat of re-entry.

11. Aircraft Wing Morphing: Discover the adaptive designs that allow aircraft wings to change shape in response to flight conditions.

12. Nanostructured Materials in Aerospace: Dive into the microscopic world of nanomaterials and their transformative potential in aerospace applications.

Ideas contributed by a Lumiere Mentor from Cornell University.

Topic 4: Avionics and Control Systems

The brains behind every aerospace vehicle, avionics, and control system ensure that aircraft and spacecraft can navigate, communicate, and operate safely. This topic offers a deep dive into the electronic and software systems that are the nerve center of any aerospace vehicle.

Familiarity with electronic systems, understanding of control theory, and interest in software development.

Some experience with coding and knowledge of common programming language(s)

13. Autonomous Flight Systems: Explore the technologies enabling aircraft to fly without human intervention.

14. Spacecraft Navigation Systems: Delve into the advanced systems that guide spacecraft through the vastness of space.

15. Air Traffic Management: Understand the complex systems that coordinate the movement of thousands of aircraft in our skies.

16. Sensor Integration in Aircraft: Learn about the myriad sensors that monitor everything from airspeed to engine health.

Topic 5: Propulsion and Energy Systems

The driving force of aerospace vehicles, propulsion systems, is what makes flight and space travel possible. This topic will introduce you to the engines that roar on takeoff, the silent thrusters of spacecraft, and the future of propulsion technologies. It is a good intersection of chemical, thermal, and design engineering that is accessible to newcomers and great for building your knowledge.

A grasp of thermodynamics, an understanding of fluid mechanics, and an interest in energy solutions.

Some mentorship - since this field involves expertise in multiple topics, you will greatly benefit from a mentor who can guide your efforts.

17. Electric Propulsion in Aircraft: Discover the shift towards greener, electrically powered flight.

18. Rocket Engine Innovations: Understand the fiery powerhouses that send rockets soaring into space.

19. Alternative Fuels in Aviation: Explore the potential of biofuels and other alternatives to traditional aviation fuels.

20. Energy Storage in Aerospace: Delve into the challenges and solutions of storing energy for long-duration space missions.

Ideas contributed by Lumiere Mentors from Cornell University and Texas A&M University.

Topic 6: Aerospace Safety and Reliability

When you’re moving at hundreds or even thousands of miles per hour, safety becomes paramount. This topic focuses on the designs, systems, and protocols that ensure every flight is safe, and every space mission is executed without a hitch. It's an essential area for those who prioritize safety and reliability above all.

21. Aircraft Crashworthiness: Learn about the designs that protect passengers and crew during the unthinkable.

22. Spacecraft Life Support Systems: Understand the vital systems that keep astronauts alive in the hostile environment of space.

23. Reliability Analysis of Aerospace Systems: Dive into the methods used to ensure every component of an aircraft or spacecraft is reliable.

24. Emergency Landing Systems: Discover the technologies that can bring an aircraft safely back to the ground in emergencies.

Topic 7: Aerospace Environmental Impact

As the world becomes more environmentally conscious, understanding the impact of aerospace activities on our planet is crucial. This is a future-oriented topic that deals with the environmental fallout of humanity’s race for the stars . This topic will introduce you to the challenges and innovations aimed at reducing the environmental footprint of flying and space exploration.

A foundation in environmental science, understanding of emissions and their effects, and interest in sustainable solutions.

Some mentorship - while the ideas below are primarily theoretical, submitting an innovative research paper in this field will require good knowledge across multiple fields and the interplay between aerospace and sustainability engineering. Your chances and learning will be greatly enhanced if you find a mentor.

25. Aircraft Emissions and Climate Change: Explore the impact of aviation on our climate and the steps being taken to mitigate it.

26. Space Debris Management: Delve into the growing challenge of space junk and the solutions to manage and reduce it.

27. Noise Pollution from Aircraft: Understand the sources of noise from aircraft and the innovations aimed at quieter skies.

28. Sustainable Space Exploration: Learn about the practices ensuring that our exploration of space leaves no lasting harm.

Embarking on a research journey in aerospace engineering is like launching a personal mission to the stars. Not only will you learn much of the theory behind aerospace engineering, you will also ensure that your profile stands out to admissions officers by demonstrating your dedication, innovative thinking, and contribution to the field. Good luck with your research!

If you’re looking to build a project/research paper in the field of AI & ML, consider applying to Veritas AI! 

Veritas AI  is founded by Harvard graduate students. Through the programs, you get a chance to work 1-1 with mentors from universities like Harvard, Stanford, MIT, and more to create unique, personalized projects. In the past year, we had over 1000 students learn AI & ML with us. You can apply here !

Lumiere Research Scholar Program

If you’re looking for the opportunity to do in-depth research on the above topics and more, you could also consider applying to one of the Lumiere Research Scholar Programs , selective online high school programs for students I founded with researchers at Harvard and Oxford. Last year, we had over 4000 students apply for 500 spots in the program! You can find the application form here.

Stephen is one of the founders of Lumiere and a Harvard College graduate. He founded Lumiere as a PhD student at Harvard Business School. Lumiere is a selective research program where students work 1-1 with a research mentor to develop an independent research paper.

Image Source: Unsplash

  • research ideas

StatAnalytica

Top 100+ Computer Engineering Project Topics [Updated]

computer engineering project topics

Computer engineering projects offer a captivating blend of creativity and technical prowess, allowing enthusiasts to dive into a world where innovation meets functionality. Whether you’re fascinated by hardware design, software development, networking, or artificial intelligence, there’s a wide array of project topics to explore within the realm of computer engineering. In this blog, we’ll delve into some intriguing computer engineering project topics, catering to both beginners and seasoned enthusiasts alike.

What Is A CSE Project?

Table of Contents

A CSE project refers to a project within the field of Computer Science and Engineering (CSE). These projects involve the application of computer science principles and engineering techniques to develop software, hardware, or systems that solve real-world problems or advance technology.

CSE projects can range from developing new algorithms and programming languages to designing and building computer hardware, networking systems, software applications, or artificial intelligence systems.

They often require interdisciplinary knowledge and skills in areas such as programming, data structures, algorithms, software engineering, hardware design, networking, and more.

How Do I Start A CSE Project?

Starting a CSE (Computer Science and Engineering) project can be an exciting endeavor, but it requires careful planning and preparation. Here’s a step-by-step guide to help you get started:

  • Define Your Project Scope and Goals:
  • Identify the problem or opportunity you want to address with your project.
  • Clearly define the objectives and outcomes you aim to achieve.
  • Determine the scope of your project, including the technologies, tools, and resources you’ll need.
  • Conduct Research:
  • Research existing solutions and technologies related to your project idea.
  • Identify any gaps or opportunities for innovation in the field.
  • Explore relevant literature, academic papers, online resources, and case studies to gain insights and inspiration.
  • Choose a Project Topic:
  • Based on your research, select a specific topic or area of focus for your project.
  • Take into account your passions, abilities, and the assets at your disposal.
  • Make sure that the topic you select corresponds with the aims and objectives of your project.
  • Develop a Project Plan:
  • Make a thorough plan for your project by writing down all the things you need to do, when you need to do them, and what you want to achieve at different points.
  • Break the project into smaller parts that are easier to handle, and if you’re working with others, make sure everyone knows what they’re responsible for.
  • Define the deliverables and criteria for success for each phase of the project.
  • Gather Resources:
  • Identify the software, hardware, and other resources you’ll need for your project.
  • Set up development environments, programming tools, and any necessary infrastructure.
  • Consider collaborating with peers, mentors, or experts who can provide guidance and support.
  • Design Your Solution:
  • Develop a conceptual design or architecture for your project.
  • Define the system requirements, data structures, algorithms, and user interfaces.
  • Consider usability, scalability, security, and other factors in your design decisions.
  • Implement Your Project:
  • Start building your project based on the design and specifications you’ve developed.
  • Write code, design user interfaces, implement algorithms, and integrate components as needed.
  • Test your project continuously throughout the development process to identify and fix any issues early on.
  • Iterate and Refine:
  • Iterate on your project based on feedback and testing results.
  • Refine your implementation, make improvements, and address any issues or challenges that arise.
  • Continuously evaluate your progress against your project plan and adjust as necessary.
  • Document Your Work:
  • Keep detailed documentation of your project, including design decisions, code comments, and user manuals.
  • Document any challenges you faced, solutions you implemented, and lessons learned throughout the project.
  • Present Your Project:
  • Prepare a presentation or demo showcasing your project’s features, functionality, and achievements.
  • Communicate your project’s goals, methodology, results, and impact effectively to your audience.
  • Solicit feedback from peers, instructors, or industry professionals to gain insights and improve your project.

By following these steps and staying organized, focused, and adaptable, you can successfully start and complete a CSE project that not only enhances your skills and knowledge but also makes a meaningful contribution to the field of computer science and engineering.

Top 100+ Computer Engineering Project Topics

  • Design and Implementation of a Simple CPU
  • Development of a Real-time Operating System Kernel
  • Construction of a Digital Signal Processor (DSP)
  • Designing an FPGA-based Video Processing System
  • Building a GPU for Parallel Computing
  • Development of a Low-Power Microcontroller System
  • Designing an Efficient Cache Memory Architecture
  • Construction of a Network-on-Chip (NoC) for Multicore Systems
  • Development of a Hardware-based Encryption Engine
  • Designing a Reconfigurable Computing Platform
  • Building a RISC-V Processor Core
  • Development of a Custom Instruction Set Architecture (ISA)
  • Designing an Energy-Efficient Embedded System
  • Construction of a High-Speed Serial Communication Interface
  • Developing a Real-time Embedded System for Robotics
  • Designing an IoT-based Home Automation System
  • Building a Wearable Health Monitoring Device
  • Development of a Wireless Sensor Network for Environmental Monitoring
  • Designing an Automotive Control System
  • Building a GPS Tracking System for Vehicles
  • Development of a Smart Grid Monitoring System
  • Designing a Digital Audio Processor for Music Synthesis
  • Building a Speech Recognition System
  • Developing a Biometric Authentication System
  • Designing a Facial Recognition Security System
  • Construction of an Autonomous Drone
  • Development of a Gesture Recognition Interface
  • Designing an Augmented Reality Application
  • Building a Virtual Reality Simulator
  • Developing a Haptic Feedback System
  • Designing a Real-time Video Streaming Platform
  • Building a Multimedia Content Delivery Network (CDN)
  • Development of a Scalable Web Server Architecture
  • Designing a Peer-to-Peer File Sharing System
  • Building a Distributed Database Management System
  • Developing a Blockchain-based Voting System
  • Designing a Secure Cryptocurrency Exchange Platform
  • Building an Anonymous Communication Network
  • Development of a Secure Email Encryption System
  • Designing a Network Intrusion Detection System (NIDS)
  • Building a Firewall with Deep Packet Inspection (DPI)
  • Developing a Vulnerability Assessment Tool
  • Designing a Secure Password Manager Application
  • Building a Malware Analysis Sandbox
  • Development of a Phishing Detection System
  • Designing a Chatbot for Customer Support
  • Building a Natural Language Processing (NLP) System
  • Developing an AI-powered Personal Assistant
  • Designing a Recommendation System for E-commerce
  • Building an Intelligent Tutoring System
  • Development of a Sentiment Analysis Tool
  • Designing an Autonomous Vehicle Navigation System
  • Building a Traffic Management System
  • Developing a Smart Parking Solution
  • Designing a Remote Health Monitoring System
  • Building a Telemedicine Platform
  • Development of a Medical Image Processing Application
  • Designing a Drug Discovery System
  • Building a Healthcare Data Analytics Platform
  • Developing a Smart Agriculture Solution
  • Designing a Crop Monitoring System
  • Building an Automated Irrigation System
  • Developing a Food Quality Inspection Tool
  • Designing a Supply Chain Management System
  • Building a Warehouse Automation Solution
  • Developing a Inventory Optimization Tool
  • Designing a Smart Retail Store System
  • Building a Self-checkout System
  • Developing a Customer Behavior Analytics Platform
  • Designing a Fraud Detection System for Banking
  • Building a Risk Management Solution
  • Developing a Personal Finance Management Application
  • Designing a Stock Market Prediction System
  • Building a Portfolio Management Tool
  • Developing a Smart Energy Management System
  • Designing a Home Energy Monitoring Solution
  • Building a Renewable Energy Integration Platform
  • Developing a Smart Grid Demand Response System
  • Designing a Disaster Management System
  • Building an Emergency Response Coordination Tool
  • Developing a Weather Prediction and Monitoring System
  • Designing a Climate Change Mitigation Solution
  • Building a Pollution Monitoring and Control System
  • Developing a Waste Management Optimization Tool
  • Designing a Smart City Infrastructure Management System
  • Building a Traffic Congestion Management Solution
  • Developing a Public Safety and Security Platform
  • Designing a Citizen Engagement and Participation System
  • Building a Smart Transportation Network
  • Developing a Smart Water Management System
  • Designing a Water Quality Monitoring and Control System
  • Building a Flood Detection and Response System
  • Developing a Coastal Erosion Prediction Tool
  • Designing an Air Quality Monitoring and Control System
  • Building a Green Building Energy Optimization Solution
  • Developing a Sustainable Transportation Planning Tool
  • Designing a Wildlife Conservation Monitoring System
  • Building a Biodiversity Mapping and Protection Platform
  • Developing a Natural Disaster Early Warning System
  • Designing a Remote Sensing and GIS Integration Solution
  • Building a Climate Change Adaptation and Resilience Platform

7 Helpful Tips for Final Year Engineering Project

Embarking on a final year engineering project can be both exhilarating and daunting. Here are seven helpful tips to guide you through the process and ensure the success of your project:

Start Early and Plan Thoroughly

  • Begin planning your project as soon as possible to allow ample time for research, design, and implementation.
  • Break down your project into smaller tasks and create a detailed timeline with milestones to track your progress.
  • Consider any potential challenges or obstacles you may encounter and plan contingencies accordingly.

Choose the Right Project

  • Select a project that aligns with your interests, skills, and career goals.
  • Ensure that the project is feasible within the time and resource constraints of your final year.
  • Seek advice from professors, mentors, or industry professionals to help you choose a project that is both challenging and achievable.

Conduct Thorough Research

  • Invest time in researching existing solutions, technologies, and literature related to your project idea.
  • Identify gaps or opportunities for innovation that your project can address.
  • Keep track of relevant papers, articles, and resources to inform your design and implementation decisions.

Communicate Effectively

  • Maintain regular communication with your project advisor or supervisor to seek guidance and feedback.
  • Collaborate effectively with teammates, if applicable, by establishing clear channels of communication and dividing tasks appropriately.
  • Practice effective communication skills when presenting your project to classmates, professors, or industry professionals.

Focus on Quality and Innovation

  • Strive for excellence in every aspect of your project, from design and implementation to documentation and presentation.
  • Try to come up with new ideas and find ways to make them better than what’s already out there.
  • Make sure you do your work carefully and make it the best it can be.

Test and Iterate

  • Test your project rigorously throughout the development process to identify and address any issues or bugs.
  • Solicit feedback from peers, advisors, or end-users to gain insights and improve your project.
  • Iterate on your design and implementation based on feedback and testing results to refine your solution and enhance its functionality.

Manage Your Time Effectively

  • Prioritize tasks and allocate time wisely to ensure that you meet deadlines and deliverables.
  • Break down larger tasks into smaller, manageable chunks and tackle them one at a time.
  • Stay organized with tools such as calendars, to-do lists, and project management software to track your progress and stay on schedule.

By following these tips and staying focused, disciplined, and proactive, you can navigate the challenges of your final year engineering project with confidence and achieve outstanding results. Remember to stay flexible and adaptable, and don’t hesitate to seek help or advice when needed. Good luck!

Computer engineering project topics offer a unique opportunity to blend creativity with technical expertise, empowering enthusiasts to explore diverse domains of computing while tackling real-world challenges. Whether you’re interested in hardware design, software development, networking, or artificial intelligence, there’s a wealth of project topics to inspire innovation and learning.

By starting these projects, people who are passionate about it can improve their abilities, learn more, and add to the changing world of technology. So, get ready to work hard, let your imagination flow, and begin an exciting adventure of learning and discovery in the amazing field of computer engineering.

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

From steel engineering to ovarian tumor research

Press contact :.

Ashutash Kumar stands with arms folded in the lab

Previous image Next image

Ashutosh Kumar is a classically trained materials engineer. Having grown up with a passion for making things, he has explored steel design and studied stress fractures in alloys.

Throughout Kumar’s education, however, he was also drawn to biology and medicine. When he was accepted into an undergraduate metallurgical engineering and materials science program at Indian Institute of Technology (IIT) Bombay, the native of Jamshedpur was very excited — and “a little dissatisfied, since I couldn’t do biology anymore.”

Now a PhD candidate and a MathWorks Fellow in MIT’s Department of Materials Science and Engineering, and a researcher for the Koch Institute, Kumar can merge his wide-ranging interests. He studies the effect of certain bacteria that have been observed encouraging the spread of ovarian cancer and possibly reducing the effectiveness of chemotherapy and immunotherapy.

“Some microbes have an affinity toward infecting ovarian cancer cells, which can lead to changes in the cellular structure and reprogramming cells to survive in stressful conditions,” Kumar says. “This means that cells can migrate to different sites and may have a mechanism to develop chemoresistance. This opens an avenue to develop therapies to see if we can start to undo some of these changes.”

Kumar’s research combines microbiology, bioengineering, artificial intelligence, big data, and materials science. Using microbiome sequencing and AI, he aims to define microbiome changes that may correlate with poor patient outcomes. Ultimately, his goal is to engineer bacteriophage viruses to reprogram bacteria to work therapeutically.

Kumar started inching toward work in the health sciences just months into earning his bachelor's degree at IIT Bombay.

“I realized engineering is so flexible that its applications extend to any field,” he says, adding that he started working with biomaterials “to respect both my degree program and my interests."

“I loved it so much that I decided to go to graduate school,” he adds.

Starting his PhD program at MIT, he says, “was a fantastic opportunity to switch gears and work on more interdisciplinary or ‘MIT-type’ work.”

Kumar says he and Angela Belcher, the James Mason Crafts Professor of biological engineering, materials science and of the Koch Institute of Integrative Cancer Research, began discussing the impact of the microbiome on ovarian cancer when he first arrived at MIT.

“I shared my enthusiasm about human health and biology, and we started brainstorming,” he says. “We realized that there’s an unmet need to understand a lot of gynecological cancers. Ovarian cancer is an aggressive cancer, which is usually diagnosed when it’s too late and has already spread.”

In 2022, Kumar was awarded a MathWorks Fellowship. The fellowships are awarded to School of Engineering graduate students, preferably those who use MATLAB or Simulink — which were developed by the mathematical computer software company MathWorks — in their research. The philanthropic support fueled Kumar’s full transition into health science research.

“The work we are doing now was initially not funded by traditional sources, and the MathWorks Fellowship gave us the flexibility to pursue this field,” Kumar says. “It provided me with opportunities to learn new skills and ask questions about this topic. MathWorks gave me a chance to explore my interests and helped me navigate from being a steel engineer to a cancer scientist.”

Kumar’s work on the relationship between bacteria and ovarian cancer started with studying which bacteria are incorporated into tumors in mouse models.

“We started looking closely at changes in cell structure and how those changes impact cancer progression,” he says, adding that MATLAB image processing helps him and his collaborators track tumor metastasis.

The research team also uses RNA sequencing and MATLAB algorithms to construct a taxonomy of the bacteria.

“Once we have identified the microbiome composition,” Kumar says, “we want to see how the microbiome changes as cancer progresses and identify changes in, let’s say, patients who develop chemoresistance.”

He says recent findings that ovarian cancer may originate in the fallopian tubes are promising because detecting cancer-related biomarkers or lesions before cancer spreads to the ovaries could lead to better prognoses.

As he pursues his research, Kumar says he is extremely thankful to Belcher “for believing in me to work on this project.

“She trusted me and my passion for making an impact on human health — even though I come from a materials engineering background — and supported me throughout. It was her passion to take on new challenges that made it possible for me to work on this idea. She has been an amazing mentor and motivated me to continue moving forward.”

For her part, Belcher is equally enthralled.

“It has been amazing to work with Ashutosh on this ovarian cancer microbiome project," she says. "He has been so passionate and dedicated to looking for less-conventional approaches to solve this debilitating disease. His innovations around looking for very early changes in the microenvironment of this disease could be critical in interception and prevention of ovarian cancer. We started this project with very little preliminary data, so his MathWorks fellowship was critical in the initiation of the project.”

Kumar, who has been very active in student government and community-building activities, believes it is very important for students to feel included and at home at their institutions so they can develop in ways outside of academics. He says that his own involvement helps him take time off from work.

“Science can never stop, and there will always be something to do,” he says, explaining that he deliberately schedules time off and that social engagement helps him to experience downtime. “Engaging with community members through events on campus or at the dorm helps set a mental boundary with work.”

Regarding his unusual route through materials science to cancer research, Kumar regards it as something that occurred organically.

“I have observed that life is very dynamic,” he says. “What we think we might do versus what we end up doing is never consistent. Five years back, I had no idea I would be at MIT working with such excellent scientific mentors around me.”

Share this news article on:

Related links.

  • Ashutosh Kumar
  • Department of Materials Science and Engineering
  • MathWorks Fellowship

Related Topics

  • Graduate, postdoctoral
  • Health sciences and technology
  • Artificial intelligence
  • Bioengineering and biotechnology
  • Materials science and engineering

Related Articles

Headshot of a woman in a colorful striped dress.

A biomedical engineer pivots from human movement to women’s health

Kristina Monakhova, crouching, peers along the surface of a table of experiments with cameras and microscopes. Only her head from the mouth up is visible.

Computational imaging researcher attended a lecture, found her career

Michael West, wearing a suit with an "Engineer" T-shirt, stands in front of chalkboard, flanked by two robotic arms.

A. Michael West: Advancing human-robot interactions in health care

Previous item Next item

More MIT News

A little girl lies on a couch under a blanket while a woman holds a thermometer to the girl's mouth.

Understanding why autism symptoms sometimes improve amid fever

Read full story →

Three rows of five portrait photos

School of Engineering welcomes new faculty

Pawan Sinha looks at a wall of about 50 square photos. The photos are pictures of children with vision loss who have been helped by Project Prakash.

Study explains why the brain can robustly recognize images, even without color

Illustration shows a red, stylized computer chip and circuit board with flames and lava around it.

Turning up the heat on next-generation semiconductors

Sarah Milholland stands in front of an MIT building on a sunny day spring day. Leaves on the trees behind her are just beginning to emerge.

Sarah Millholland receives 2024 Vera Rubin Early Career Award

Grayscale photo of Nolen Scruggs seated on a field of grass

A community collaboration for progress

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

ScienceDaily

'Fossilizing' cracks in infrastructure creates sealing that can even survive earthquakes

Various forms of underground activity, such as deep wells or the disposal of hazardous materials, require the long-term sealing of rocks. A team of researchers has developed an innovative method based on fossilization processes to seal cracks and fractures in rock using a "concretion-forming resin." The results were published in Communications Engineering .

The underground disposal of pollutants, such as radioactive waste and carbon dioxide, poses unique challenges. To avoid their release, it is necessary to seal the shafts and boreholes used for investigations and ensure that there are no leaks from the rock for long periods of time. Unfortunately, current cement-based sealing materials do not offer long-term functionality and durability. Especially in earthquake-prone countries, such as Japan, this may cause future complications, such as leaks.

To find a solution, lead researcher Hidekazu Yoshida of the Nagoya University Museum turned to his expertise in fossil preservation in calcium carbonate concretions. He understood that such concretions form quite rapidly within a few weeks to years, and fossils in concretions remain remarkably intact for millions of years, even when extracted from locations prone to weathering and seismic disturbances. He mused about the potential use of a similar approach in an industrial context.

"I realized that well-preserved fossils in concretions had withstood weathering and the like for tens to hundreds of thousands of years in the natural environment," Yoshida said. "I became inspired by studying how fast concretions were formed and why the fossils inside were preserved so well."

One reason for the durability of fossils is the concretion process. This is a natural fossilization process in which minerals in groundwater precipitate out of the water and accumulate around the organic material. Calcite in the groundwater seals the remains by forming crystals around them, binding the surrounding sediments. This mechanism creates an almost impenetrable fossil, with the crystals blocking even small, micrometer-sized openings.

Based on the concretion-forming process, the researchers mixed two agents to develop a "concretion-forming resin." The resin holds the ions needed to form calcite when water is introduced. Calcite forms impenetrable crystals in cracks and holes, reproducing the concretion formation process seen in nature, only much faster.

During a test in an underground laboratory 350 meters below the surface in Hokkaido, the northernmost island of Japan, the researchers discovered that their resin-based material had remarkable sealing abilities. When applied to flow-paths in the rock, it sealed them completely and rapidly.

The area experienced six earthquakes in the space of two days, including a magnitude 5.4 earthquake, putting their resin to the ultimate test. Despite a further five earthquakes during the test period, the cracks remained sealed. In fact, open cracks even resealed as the crystals reformed.

"The earthquakes were coincidence; something we never expected and planned for," Yoshida said. "They were a surprise to us, but it was such a great opportunity to see the material's performance. Such a fast-acting and sustained sealing effect of rock fractures, including post-earthquake crack repair, has never been reported before. Conventional cement materials cannot achieve this result."

The group is working closely with the Japan Atomic Energy Agency, Sekisui Chemical Co., and Chubu Electric Power Co., Ltd. to ensure that the resin will be commercially viable. Following their successful test, the team anticipates a wide range of applications, including long-term underground sequestration of radioactive waste and carbon dioxide, sealing abandoned oil wells, groundwater control during rock and mine excavation, and repair of cracks in ageing infrastructure such as roads and buildings.

  • Materials Science
  • Engineering and Construction
  • Construction
  • Nature of Water
  • Earthquakes
  • Natural Disasters
  • Recycling and Waste
  • Radiocarbon dating
  • Tissue engineering
  • Artificial reef
  • Hazardous waste
  • Nanoparticle
  • Materials science

Story Source:

Materials provided by Nagoya University . Note: Content may be edited for style and length.

Journal Reference :

  • Hidekazu Yoshida, Koshi Yamamoto, Yoshihiro Asahara, Ippei Maruyama, Koichi Karukaya, Akane Saito, Hiroya Matsui, Akihito Mochizuki, Mayumi Jo, Nagayoshi Katsuta, Ayako Umemura, Richard Metcalfe. Post-earthquake rapid resealing of bedrock flow-paths by concretion-forming resin . Communications Engineering , 2024; 3 (1) DOI: 10.1038/s44172-024-00216-1

Cite This Page :

Explore More

  • Treating Cataracts and Other Eye Conditions
  • Early Arrival of Palaeolithic People On Cyprus
  • Networks Regulating Gene Function in Human Brain
  • Birth of Universe's Earliest Galaxies
  • Why the Brain Can Robustly Recognize B&W Images
  • Birth Control Pill for Men?
  • Intriguing World Sized Between Earth, Venus
  • Billions of Orphan Stars Revealed
  • Massive Catalog of Strange Worlds
  • Mental Disorders May Spread Thru Social Networks

Trending Topics

Strange & offbeat.

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS. A lock ( Lock Locked padlock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

banner for the expeditions in computing award

NSF invests $36M in computing projects that promise to maximize performance, reduce energy demands

The U.S. National Science Foundation is awarding $36 million to three projects selected for their potential to revolutionize computing and make significant impacts in reducing the carbon footprint of the lifecycle of computers. Funding for the projects comes from the NSF Expeditions in Computing (Expeditions) program, an ambitious initiative that supports transformative research poised to yield lasting impacts on society, the economy and technological advancement. Projects funded by Expeditions are characterized by their ambition and potential for transformation, leveraging advances in computing and cyberinfrastructure to accelerate discovery and innovation across various domains of science and engineering. 

"We are thrilled to announce these visionary projects that will advance environmental responsibility and foster innovation in the field of computing," said Dilma DaSilva, acting assistant director for the NSF Directorate for Computer and Information Science and Engineering (CISE). "Congratulations to these pioneering teams whose research will forge new pathways in computational decarbonization and in revolutionizing operating system design with machine learning.    

The 2024 NSF Expeditions awardees   

NSF Expeditions in Computing: Carbon Connect--An Ecosystem for Sustainable Computing . Led by Harvard University, this multi-institutional, five-year research initiative will lay the foundations for sustainable computing, with a focus on reducing the environmental impact of computer systems. This shift toward sustainability could spark a transformation in how computer systems are manufactured, allocated and consumed, leading to a more responsible and sustainable approach to advancing computing technologies. By redefining the way computer scientists consider environmental sustainability, Carbon Connect will establish new standards for carbon accounting in the computing industry, thereby influencing future energy policy and legislation. 

Collaborators on this project include the University of Pennsylvania, the California Institute of Technology, Carnegie Mellon University, Cornell University, Yale University and The Ohio State University. 

NSF Expeditions in Computing for Computational Decarbonization of Societal Infrastructures at Mesoscales . Led by the University of Massachusetts Amherst, this project will develop the new field of computational decarbonization, (CoDec), which focuses on optimizing and reducing the lifecycle of carbon emissions of complex computing and societal infrastructure systems. CoDec will tackle interdependencies across multiple aspects of infrastructure, including computing, transportation, buildings and the electric power grid. Through innovative sensing approaches, optimization methods grounded in theory and artificial intelligence, and software-defined interfaces, CoDec seeks to automate and coordinate carbon-efficiency optimizations across time, space and sectors. These efforts will enable scientific discoveries in decarbonization while supporting sustainable growth, advancing technology and strengthening national security.   

Collaborators of this project include Carnegie Mellon University, the Massachusetts Institute of Technology, the University of Chicago, UCLA and the University of Wisconsin-Madison. 

NSF Expeditions in Computing: Learning Directed Operating System--A Clean-Slate Paradigm for Operating Systems Design and Implementation . Led by The University of Texas at Austin, this project aims to revolutionize the design of operating systems (OSes) by integrating advanced machine learning (ML) into resource management. Current OSes employ rigid, manually designed approaches for allocating hardware resources among running applications. This inflexibility makes it hard to adapt to evolving application needs and hardware, leading to inefficiency and poor performance. This research will develop a learning-directed operating system with intrinsic intelligence and auto-adaptation, enabling ML-driven resource management that optimizes performance and efficiency and requires minimal human intervention. By fundamentally rethinking OS design with ML at its core, this research has the potential to significantly improve the energy efficiency of cloud computing, enable real-time edge computing applications and create innovative computing devices.   

About the Expeditions program  

Established in 2008, the NSF Expeditions awards represent some of the largest investments provided by the CISE directorate. Pioneering work funded by the program includes the Robobee Project and CompSustNet .  

Expeditions projects focus on creating transformative technologies, methodologies and infrastructure that can be adopted by the broader research community, industry or society at large. The program emphasizes the translation of research outcomes into practical applications, thus driving advancements in computer science and its real-world applications. 

  • For more information, see the Expeditions award page

Research areas

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Civil engineering articles from across Nature Portfolio

Civil engineering is the design and fabrication of structures for improving the way we live and work and for enabling rapid, safe and high-volume transportation. Examples include building roads, railways, bridges, canals, skyscrapers and factories. Modern civil engineering often places a focus on aesthetic considerations and environmental impact.

Latest Research and Reviews

engineering research ideas

Axial compression performance of partially encased concrete columns with web opening

  • Jiongfeng Liang
  • Yunchen Wang

engineering research ideas

Typical and extreme weather datasets for studying the resilience of buildings to climate change and heatwaves

  • Anaïs Machard
  • Agnese Salvati
  • Peter Holzer

engineering research ideas

Mechanical performance degradation investigation on FRP reinforced concrete based on neural network design method

  • Yongcheng Ji

engineering research ideas

Slope stability considering multi-fissure seepage under rainfall conditions

  • Jianqing Jia
  • Chengxin Mao
  • Victor O. Tenorio

engineering research ideas

Electric recycling of Portland cement at scale

Recovered cement paste can be reclinkered if used as a partial substitute for the lime–dolomite flux used in steel recycling, which can reduce waste and carbon emissions.

  • Cyrille F. Dunant
  • Shiju Joseph
  • Julian M. Allwood

engineering research ideas

Evaluation of data representation techniques for vibration based road surface condition classification

  • Mohammed F․ Alrahmawy
  • A. S․ Tolba

Advertisement

News and Comment

Advanced transport systems: the future is sustainable and technology-enabled.

Transport has always played a major role in shaping society. By enabling or restricting the movement of people and goods, the presence or absence of transport services and infrastructure has historically been determining for cultures to connect, for knowledge to be shared, and for societies to evolve and prosper, or, in contrast, for societies to decay and fail. Since the beginning of the twenty-first century, transport has been going through a revolution worldwide. One of the primary goals for the transport sector is clear: it needs to be decarbonized and become more sustainable. At the same time, technological advances are shaping the transport sector toward smart services and societies. The Special Collection showcases some of the latest advances in research towards sustainable and technology-enabled transport.

  • Sybil Derrible

engineering research ideas

Leveraging epidemic network models towards wildfire resilience

Wildfires have increased in frequency and intensity due to climate change and have had severe impacts on the built environment worldwide. Moving forward, models should take inspiration from epidemic network modeling to predict damage to individual buildings and understand the impact of different mitigations on the community vulnerability in a network setting.

  • Hussam Mahmoud

engineering research ideas

Inclusive and resilient mobility

  • Danyang Cheng

engineering research ideas

The 2023 Kahramanmaraş Earthquake Sequence: finding a path to a more resilient, sustainable, and equitable society

Learning from the 2023 Kahramanmaraş Earthquake Sequence offers valuable insights into disaster recovery. Carmine Galasso and Eyitayo Opabola delve into the intricacies of the “Build Back Better” (BBB) concept, underscoring the importance of recovery and reconstruction efforts toward a future that is not only more resilient but also more sustainable and equitable.

  • Carmine Galasso
  • Eyitayo A. Opabola

Material durability, material failure, and material investment—the complexity of concrete

Recent high-profile concrete material failures, including the collapse of parts of public buildings in the UK, have highlighted the need for a greater understanding of the durability of concrete. Here, John Provis explores the need to recognise the complexity of concrete when planning both the research and application of this key construction material.

  • John L. Provis

engineering research ideas

Catching up with missing particles

The implementation of particle-tracking techniques with deep neural networks is a promising way to determine particle motion within complex flow structures. A graph neural network-enhanced method enables accurate particle tracking by significantly reducing the number of lost trajectories.

  • Séverine Atis
  • Lionel Agostini

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

engineering research ideas

IMAGES

  1. Engineering Research Paper With Best Topics & Writing Help

    engineering research ideas

  2. 150+ Best Engineering Research Topics for Students To Consider

    engineering research ideas

  3. 55 Stunning Engineering Pictures That Are A Treat To Watch

    engineering research ideas

  4. 200+ Best Engineering Research Paper Topics in 2022

    engineering research ideas

  5. 150+ Best Engineering Research Topics for Students To Consider

    engineering research ideas

  6. 55 Good Engineering Research Paper Topics to Choose From

    engineering research ideas

VIDEO

  1. Top 10 Electrical Research Projects in 2021

  2. Electrical Engineering Project Ideas

  3. Data Science Research Ideas in Aviation Industry for Final Year Undergraduates Top Projects & Topics

  4. double jaw vise mechanical engineering mini project topics

  5. How To Write Your Research Proposal for Our Doctor of Engineering

  6. #technology #inovation #latestresearch #research

COMMENTS

  1. Excellent 110+ Engineering Research Topics

    Biomedical Engineering Research Topics. Biomedical engineering applies principles and design concepts from engineering to medicine and biology for diagnostic or therapeutic healthcare purposes. Here are some suggested biomedical engineering topics to carry out research on! A study on how robots are changing health care.

  2. 150+ Best Engineering Research Topics for Students To Consider

    Engineering is a wide field of study that is divided into various branches such as Civil, Electrical, Mechanical, Electronics, Chemical, etc. Basically, each branch has thousands of engineering research topics to focus on.

  3. Top 150 Mechanical Engineering Research Topics [Updated]

    Top 150 Mechanical Engineering Research Topics [Updated] General / By Stat Analytica / 10th February 2024. Mechanical engineering is an intriguing discipline that holds significant sway in shaping our world. With a focus on crafting inventive machinery and fostering sustainable energy initiatives, mechanical engineers stand as pioneers in ...

  4. 200+ Best Engineering Research Paper Topics in 2022

    Top 8 Engineering Branches and Research Topics. Engineering ethics-related research paper topics. Genetic engineering research paper topics. Biomedical engineering research paper topics. Electrical engineering research paper topics. Security engineering research paper topics. Software engineering research paper topics.

  5. Top 100 in Engineering

    Top 100 in Engineering - 2022 This collection highlights our most downloaded* engineering papers published in 2022. Featuring authors from around the world, these papers showcase valuable research ...

  6. Engineering

    Engineering is the design and construction of systems and structures for influencing the world around us and enhancing our experience within it. Engineers use the fundamental principles of ...

  7. Top 50 Emerging Research Topics in Mechanical Engineering

    Top 50 Emerging Research Ideas in Mechanical Engineering. Additive Manufacturing and 3D Printing: Exploring novel materials, processes, and applications for 3D printing in manufacturing, aerospace, healthcare, etc. Advanced Composite Materials: Developing lightweight, durable, and high-strength composite materials for various engineering ...

  8. Mechanical engineering

    Definition. Mechanical engineering is the branch of engineering that deals with moving machines and their components. A central principle of mechanical engineering is the control of energy ...

  9. 100 Engineering Research Paper Topics

    20 Mechanical Engineering Research Topics. The mechanical engineering background role in the study of robotics. The role of structural analysis in mechanical engineering. Improvement in manufacturing via implementation of new mechanical theories. A parabolic solar cooker: design and performance evaluation.

  10. LibGuides: Engineering (Basic): How to Research a Topic

    Researching an Engineering Topic, Part 4: Know Where to Look. As an undergraduate, you'll use primarily two types of resources: Books for a broad treatment of a topic, and. Journal Articles for an in-depth treatment of a specific aspect of a topic. Use the "Books" and "Journal Articles" links above to discover what library resources will help ...

  11. Research Topics

    Research Topics. The field of Materials Science & Engineering is evolving dramatically as we enter the 21st Century. What began as the study of metals and ceramics in the 1960s has broadened in recent years to include semiconductors and soft materials. With this evolution and broadening of the discipline, current research projects span multiple ...

  12. 211 Engineering Research Paper Topics For College Students

    Below are some more topics you might be interested in, which will help as a student to answer some research paper projects and assignments. Automation of the operation of machines in industries. Designing, building, and engineering sturdy structures. Designing long-lasting buildings and systems. Materials for innovation.

  13. Top Engineering Research Paper Topics for the Best Essay

    Industrial Engineering Research Paper Topics. Lean Manufacturing: Principles and Applications in the 21st Century. The Role of Industrial Engineers in Sustainable Development. Ergonomics in the Workplace: Designing for Human Health and Efficiency. Supply Chain Optimization: Strategies for Global Competitiveness.

  14. 25+ Research Ideas in Engineering for High School Students

    1. Recycled Materials in Construction: Assess the viability and benefits of using recycled materials in modern infrastructure. 2. Urbanization and Stormwater Management: Understand how rapid urban growth affects natural water systems and potential mitigation strategies. 3.

  15. 30 Engineering Research Ideas for High School Students

    Engineering Research Area #4: Smart Cities and Urban Planning. Smart cities and urban planning are at the forefront of creating sustainable, efficient, and livable environments. For high school students exploring engineering research ideas, this area offers a chance to address complex urban challenges through technology and design.

  16. Research at Purdue ME

    At Purdue's School of Mechanical Engineering, researchers study everything from fuel pumps to heart pumps. Carbon fiber to carbon nanotubes. Rocket engines to solar power. Purdue ME's 94 faculty and 1,000 graduate students collaborate with industry, government, and academia on millions of dollars of groundbreaking research to tackle the world's ...

  17. Engineering

    Read the latest Research articles in Engineering from Scientific Reports. ... Research on overburden structural characteristics and support adaptability in cooperative mining of sectional coal ...

  18. Research Topics

    Research in Systems Engineering at Cornell covers an extremely broad range of topics, because of this nature, the research takes on a collaborative approach with faculty from many different disciplines both in traditional engineering areas as well as those outside of engineering.

  19. 200+ Civil Engineering Research Topics

    200+ Civil Engineering Research Topics: Exploring Promising Topics. Civil engineering research is the driving force behind the development of sustainable infrastructure and innovative construction methods. It plays a crucial role in shaping our world, from designing earthquake-resistant buildings to developing advanced transportation systems.

  20. 25+ Research Ideas in Aerospace Engineering for High School Students

    3. High-Speed Flight Aerodynamics: Explore the challenges faced when breaking the sound barrier and the realm of supersonic flight. 4. Micro Air Vehicles (MAVs): Investigate the world of tiny aircraft and their potential applications in surveillance, research, and more.

  21. A current of research and learning runs through Mason's Smart Grid Lab

    In summer 2024, the lab will host a week-long summer camp titled, "Exploring Renewable Energy Engineering." Rising high school sophomores and juniors will learn about renewable energy technologies, ideally sparking an interest in environmental stewardship and engineering excellence. Amazon Web Services is funding the camp.

  22. Top 100+ Computer Engineering Project Topics [Updated]

    Top 100+ Computer Engineering Project Topics [Updated] Computer engineering projects offer a captivating blend of creativity and technical prowess, allowing enthusiasts to dive into a world where innovation meets functionality. Whether you're fascinated by hardware design, software development, networking, or artificial intelligence, there ...

  23. From steel engineering to ovarian tumor research

    The fellowships are awarded to School of Engineering graduate students, preferably those who use MATLAB or Simulink — which were developed by the mathematical computer software company MathWorks — in their research. The philanthropic support fueled Kumar's full transition into health science research.

  24. Electrical and electronic engineering

    The inherent differences in epistemologies and research methods in electrical engineering and earth science hinder interdisciplinary collaboration. In the context of climate change, this divide ...

  25. 'Fossilizing' cracks in infrastructure creates sealing that can even

    In a new study, a team of researchers used research on fossilizing techniques to create a new method for sealing cracks and fractures in rocks and bedrock using a 'concretion-forming resin'. This ...

  26. Report ranks 60+ ideas, including geoengineering, to save the Arctic

    Last year was the hottest on record and possibly the hottest in 125,000 years — long before humans invented agriculture, the internet, the wheel, or beer pong. The planet is toasting. And ...

  27. NSF invests $36M in computing projects that promise to maximize

    This research will develop a learning-directed operating system with intrinsic intelligence and auto-adaptation, enabling ML-driven resource management that optimizes performance and efficiency and requires minimal human intervention. ... Topics. Computing Engineering Share Facebook X (formerly known as Twitter) LinkedIn Email. Related stories ...

  28. Civil engineering

    Civil engineering is the design and fabrication of structures for improving the way we live and work and for enabling rapid, safe and high-volume transportation. Examples include building roads ...

  29. Seven Engineering Faculty Receive Dean's Excellence Awards

    College of Engineering Dean Kim Needy recognized seven faculty members with Dean's Excellence Awards for their achievements in teaching, research and service during a faculty-staff meeting May 3. The faculty members were nominated by their departments for excellent performance during the 2023-24 academic year.