Python Tutorial

File handling, python modules, python numpy, python pandas, python matplotlib, python scipy, machine learning, python mysql, python mongodb, python reference, module reference, python how to, python examples, python assignment operators.

Assignment operators are used to assign values to variables:

Operator Example Same As Try it
= x = 5 x = 5
+= x += 3 x = x + 3
-= x -= 3 x = x - 3
*= x *= 3 x = x * 3
/= x /= 3 x = x / 3
%= x %= 3 x = x % 3
//= x //= 3 x = x // 3
**= x **= 3 x = x ** 3
&= x &= 3 x = x & 3
|= x |= 3 x = x | 3
^= x ^= 3 x = x ^ 3
>>= x >>= 3 x = x >> 3
<<= x <<= 3 x = x << 3

Related Pages

Get Certified

COLOR PICKER

colorpicker

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail: [email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail: [email protected]

Top Tutorials

Top references, top examples, get certified.

  • Python Course
  • Python Basics
  • Interview Questions
  • Python Quiz
  • Popular Packages
  • Python Projects
  • Practice Python
  • AI With Python
  • Learn Python3
  • Python Automation
  • Python Web Dev
  • DSA with Python
  • Python OOPs
  • Dictionaries

Assignment Operators in Python

The Python Operators are used to perform operations on values and variables. These are the special symbols that carry out arithmetic, logical, and bitwise computations. The value the operator operates on is known as the Operand. Here, we will cover Different Assignment operators in Python .

Operators

=

Assign the value of the right side of the expression to the left side operandc = a + b 


+=

Add right side operand with left side operand and then assign the result to left operanda += b   

-=

Subtract right side operand from left side operand and then assign the result to left operanda -= b  


*=

Multiply right operand with left operand and then assign the result to the left operanda *= b     


/=

Divide left operand with right operand and then assign the result to the left operanda /= b


%=

Divides the left operand with the right operand and then assign the remainder to the left operanda %= b  


//=

Divide left operand with right operand and then assign the value(floor) to left operanda //= b   


**=

Calculate exponent(raise power) value using operands and then assign the result to left operanda **= b     


&=

Performs Bitwise AND on operands and assign the result to left operanda &= b   


|=

Performs Bitwise OR on operands and assign the value to left operanda |= b    


^=

Performs Bitwise XOR on operands and assign the value to left operanda ^= b    


>>=

Performs Bitwise right shift on operands and assign the result to left operanda >>= b     


<<=

Performs Bitwise left shift on operands and assign the result to left operanda <<= b 


:=

Assign a value to a variable within an expression

a := exp

Here are the Assignment Operators in Python with examples.

Assignment Operator

Assignment Operators are used to assign values to variables. This operator is used to assign the value of the right side of the expression to the left side operand.

Addition Assignment Operator

The Addition Assignment Operator is used to add the right-hand side operand with the left-hand side operand and then assigning the result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the addition assignment operator which will first perform the addition operation and then assign the result to the variable on the left-hand side.

S ubtraction Assignment Operator

The Subtraction Assignment Operator is used to subtract the right-hand side operand from the left-hand side operand and then assigning the result to the left-hand side operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the subtraction assignment operator which will first perform the subtraction operation and then assign the result to the variable on the left-hand side.

M ultiplication Assignment Operator

The Multiplication Assignment Operator is used to multiply the right-hand side operand with the left-hand side operand and then assigning the result to the left-hand side operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the multiplication assignment operator which will first perform the multiplication operation and then assign the result to the variable on the left-hand side.

D ivision Assignment Operator

The Division Assignment Operator is used to divide the left-hand side operand with the right-hand side operand and then assigning the result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the division assignment operator which will first perform the division operation and then assign the result to the variable on the left-hand side.

M odulus Assignment Operator

The Modulus Assignment Operator is used to take the modulus, that is, it first divides the operands and then takes the remainder and assigns it to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the modulus assignment operator which will first perform the modulus operation and then assign the result to the variable on the left-hand side.

F loor Division Assignment Operator

The Floor Division Assignment Operator is used to divide the left operand with the right operand and then assigs the result(floor value) to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the floor division assignment operator which will first perform the floor division operation and then assign the result to the variable on the left-hand side.

Exponentiation Assignment Operator

The Exponentiation Assignment Operator is used to calculate the exponent(raise power) value using operands and then assigning the result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the exponentiation assignment operator which will first perform exponent operation and then assign the result to the variable on the left-hand side.

Bitwise AND Assignment Operator

The Bitwise AND Assignment Operator is used to perform Bitwise AND operation on both operands and then assigning the result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the bitwise AND assignment operator which will first perform Bitwise AND operation and then assign the result to the variable on the left-hand side.

Bitwise OR Assignment Operator

The Bitwise OR Assignment Operator is used to perform Bitwise OR operation on the operands and then assigning result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the bitwise OR assignment operator which will first perform bitwise OR operation and then assign the result to the variable on the left-hand side.

Bitwise XOR Assignment Operator 

The Bitwise XOR Assignment Operator is used to perform Bitwise XOR operation on the operands and then assigning result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the bitwise XOR assignment operator which will first perform bitwise XOR operation and then assign the result to the variable on the left-hand side.

Bitwise Right Shift Assignment Operator

The Bitwise Right Shift Assignment Operator is used to perform Bitwise Right Shift Operation on the operands and then assign result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the bitwise right shift assignment operator which will first perform bitwise right shift operation and then assign the result to the variable on the left-hand side.

Bitwise Left Shift Assignment Operator

The Bitwise Left Shift Assignment Operator is used to perform Bitwise Left Shift Opertator on the operands and then assign result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the bitwise left shift assignment operator which will first perform bitwise left shift operation and then assign the result to the variable on the left-hand side.

Walrus Operator

The Walrus Operator in Python is a new assignment operator which is introduced in Python version 3.8 and higher. This operator is used to assign a value to a variable within an expression.

Example: In this code, we have a Python list of integers. We have used Python Walrus assignment operator within the Python while loop . The operator will solve the expression on the right-hand side and assign the value to the left-hand side operand ‘x’ and then execute the remaining code.

Assignment Operators in Python – FAQs

What are assignment operators in python.

Assignment operators in Python are used to assign values to variables. These operators can also perform additional operations during the assignment. The basic assignment operator is = , which simply assigns the value of the right-hand operand to the left-hand operand. Other common assignment operators include += , -= , *= , /= , %= , and more, which perform an operation on the variable and then assign the result back to the variable.

What is the := Operator in Python?

The := operator, introduced in Python 3.8, is known as the “walrus operator”. It is an assignment expression, which means that it assigns values to variables as part of a larger expression. Its main benefit is that it allows you to assign values to variables within expressions, including within conditions of loops and if statements, thereby reducing the need for additional lines of code. Here’s an example: # Example of using the walrus operator in a while loop while (n := int(input("Enter a number (0 to stop): "))) != 0: print(f"You entered: {n}") This loop continues to prompt the user for input and immediately uses that input in both the condition check and the loop body.

What is the Assignment Operator in Structure?

In programming languages that use structures (like C or C++), the assignment operator = is used to copy values from one structure variable to another. Each member of the structure is copied from the source structure to the destination structure. Python, however, does not have a built-in concept of ‘structures’ as in C or C++; instead, similar functionality is achieved through classes or dictionaries.

What is the Assignment Operator in Python Dictionary?

In Python dictionaries, the assignment operator = is used to assign a new key-value pair to the dictionary or update the value of an existing key. Here’s how you might use it: my_dict = {} # Create an empty dictionary my_dict['key1'] = 'value1' # Assign a new key-value pair my_dict['key1'] = 'updated value' # Update the value of an existing key print(my_dict) # Output: {'key1': 'updated value'}

What is += and -= in Python?

The += and -= operators in Python are compound assignment operators. += adds the right-hand operand to the left-hand operand and assigns the result to the left-hand operand. Conversely, -= subtracts the right-hand operand from the left-hand operand and assigns the result to the left-hand operand. Here are examples of both: # Example of using += a = 5 a += 3 # Equivalent to a = a + 3 print(a) # Output: 8 # Example of using -= b = 10 b -= 4 # Equivalent to b = b - 4 print(b) # Output: 6 These operators make code more concise and are commonly used in loops and iterative data processing.

author

Please Login to comment...

Similar reads.

  • Python-Operators

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

  • Trending Categories

Data Structure

  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

Different Forms of Assignment Statements in Python

Assignment statement in python is the statement used to assign the value to the specified variable. The value assigned to the variable can be of any data type supported by python programming language such as integer, string, float Boolean, list, tuple, dictionary, set etc.

Types of assignment statements

The different types of assignment statements are as follows.

Basic assignment statement

Multiple assignment statement

Augmented assignment statement

Chained assignment statement, unpacking assignment statement, swapping assignment statement.

Let’s see about each one in detail.

Basic Assignment Statement

The most frequently and commonly used is the basic assignment statement. In this type of assignment, we will assign the value to the variable directly. Following is the syntax.

Variable_name is the name of the variable.

value is the any datatype of input value to be assigned to the variable.

In this example, we are assigning a value to the variable using the basic assignment statement in the static manner.

In this example, we will use the dynamic inputting way to assign the value using the basic assignment statement.

Multiple Assignment statement

We can assign multiple values to multiple variables within a single line of code in python. Following is the syntax.

v1,v2,……,vn are the variable names.

val1,val2,……,valn are the values.

In this example, we will assign multiple values to the multiple variables using the multiple assignment statement.

By using the augmented assignment statement, we can combine the arithmetic or bitwise operations with the assignment. Following is the syntax.

variable is the variable name.

value is the input value.

+= is the assignment operator with the arithmetic operator.

In this example, we will use the augmented assignment statement to assign the values to the variable.

By using the chained assignment statement, we can assign a single value to the multiple variables within a single line. Following is the syntax -

v1,v2,v3 are the variable names.

value is the value to be assigned to the variables.

Here is the example to assign the single value to the multiple variables using the chain assignment statement.

We can assign the values given in a list or tuple can be assigned to multiple variables using the unpacking assignment statement. Following is the syntax -

val1,val2,val3 are the values.

In this example, we will assign the values grouped in the list to the multiple variables using the unpacking assignment statement.

In python, we can swap two values of the variables without using any temporary third variable with the help of assignment statement. Following is the syntax.

var1, var2 are the variables.

In the following example, we will assign the values two variables and swap the values with each other.

Niharika Aitam

  • Related Articles
  • What is assignment statements with Integer types in compiler design?
  • Give the different forms of silica in nature.
  • A += B Assignment Riddle in Python
  • Python – Priority key assignment in dictionary
  • Python Program to Minimum Value Key Assignment
  • What is vertical bar in Python bitwise assignment operator?
  • Multiple Statements in Python
  • Multi-Line Statements in Python
  • Loop Control Statements in Python
  • The import Statements in Python
  • What are the different types of conditional statements supported by C#?
  • Compound Assignment Operators in C++
  • Compound assignment operators in C#
  • Short Circuit Assignment in JavaScript
  • Assignment operators in Dart Programming

Kickstart Your Career

Get certified by completing the course

previous episode

Python for absolute beginners, next episode, variables and assignment.

Overview Teaching: 15 min Exercises: 15 min Questions How can I store data in programs? Objectives Write scripts that assign values to variables and perform calculations with those values. Correctly trace value changes in scripts that use assignment.

Use variables to store values

Variables are one of the fundamental building blocks of Python. A variable is like a tiny container where you store values and data, such as filenames, words, numbers, collections of words and numbers, and more.

The variable name will point to a value that you “assign” it. You might think about variable assignment like putting a value “into” the variable, as if the variable is a little box 🎁

(In fact, a variable is not a container as such but more like an adress label that points to a container with a given value. This difference will become relevant once we start talking about lists and mutable data types.)

You assign variables with an equals sign ( = ). In Python, a single equals sign = is the “assignment operator.” (A double equals sign == is the “real” equals sign.)

  • Variables are names for values.
  • In Python the = symbol assigns the value on the right to the name on the left.
  • The variable is created when a value is assigned to it.
  • Here, Python assigns an age to a variable age and a name in quotation marks to a variable first_name :

Variable names

Variable names can be as long or as short as you want, but there are certain rules you must follow.

  • Cannot start with a digit.
  • Cannot contain spaces, quotation marks, or other punctuation.
  • May contain an underscore (typically used to separate words in long variable names).
  • Having an underscore at the beginning of a variable name like _alistairs_real_age has a special meaning. So we won’t do that until we understand the convention.
  • The standard naming convention for variable names in Python is the so-called “snake case”, where each word is separated by an underscore. For example my_first_variable . You can read more about naming conventions in Python here .

Use meaningful variable names

Python doesn’t care what you call variables as long as they obey the rules (alphanumeric characters and the underscore). As you start to code, you will almost certainly be tempted to use extremely short variables names like f . Your fingers will get tired. Your coffee will wear off. You will see other people using variables like f . You’ll promise yourself that you’ll definitely remember what f means. But you probably won’t.

So, resist the temptation of bad variable names! Clear and precisely-named variables will:

  • Make your code more readable (both to yourself and others).
  • Reinforce your understanding of Python and what’s happening in the code.
  • Clarify and strengthen your thinking.

Use meaningful variable names to help other people understand what the program does. The most important “other person” is your future self!

Python is case-sensitive

Python thinks that upper- and lower-case letters are different, so Name and name are different variables. There are conventions for using upper-case letters at the start of variable names so we will use lower-case letters for now.

Off-Limits Names

The only variable names that are off-limits are names that are reserved by, or built into, the Python programming language itself — such as print , True , and list . Some of these you can overwrite into variable names (not ideal!), but Jupyter Lab (and many other environments and editors) will catch this by colour coding your variable. If your would-be variable is colour-coded green, rethink your name choice. This is not something to worry too much about. You can get the object back by resetting your kernel.

Use print() to display values

We can check to see what’s “inside” variables by running a cell with the variable’s name. This is one of the handiest features of a Jupyter notebook. Outside the Jupyter environment, you would need to use the print() function to display the variable.

You can run the print() function inside the Jupyter environment, too. This is sometimes useful because Jupyter will only display the last variable in a cell, while print() can display multiple variables. Additionally, Jupyter will display text with \n characters (which means “new line”), while print() will display the text appropriately formatted with new lines.

  • Python has a built-in function called print() that prints things as text.
  • Provide values to the function (i.e., the things to print) in parentheses.
  • To add a string to the printout, wrap the string in single or double quotations.
  • The values passed to the function are called ‘arguments’ and are separated by commas.
  • When using the print() function, we can also separate with a ‘+’ sign. However, when using ‘+’ we have to add spaces in between manually.
  • print() automatically puts a single space between items to separate them.
  • And wraps around to a new line at the end.

Variables must be created before they are used

If a variable doesn’t exist yet, or if the name has been misspelled, Python reports an error (unlike some languages, which “guess” a default value).

The last line of an error message is usually the most informative. This message lets us know that there is no variable called eye_color in the script.

Variables Persist Between Cells Variables defined in one cell exist in all other cells once executed, so the relative location of cells in the notebook do not matter (i.e., cells lower down can still affect those above). Notice the number in the square brackets [ ] to the left of the cell. These numbers indicate the order, in which the cells have been executed. Cells with lower numbers will affect cells with higher numbers as Python runs the cells chronologically. As a best practice, we recommend you keep your notebook in chronological order so that it is easier for the human eye to read and make sense of, as well as to avoid any errors if you close and reopen your project, and then rerun what you have done. Remember: Notebook cells are just a way to organize a program! As far as Python is concerned, all of the source code is one long set of instructions.

Variables can be used in calculations

  • We can use variables in calculations just as if they were values. Remember, we assigned 42 to age a few lines ago.

This code works in the following way. We are reassigning the value of the variable age by taking its previous value (42) and adding 3, thus getting our new value of 45.

Use an index to get a single character from a string

  • The characters (individual letters, numbers, and so on) in a string are ordered. For example, the string ‘AB’ is not the same as ‘BA’. Because of this ordering, we can treat the string as a list of characters.
  • Each position in the string (first, second, etc.) is given a number. This number is called an index or sometimes a subscript.
  • Indices are numbered from 0 rather than 1.
  • Use the position’s index in square brackets to get the character at that position.

Use a slice to get a substring

A part of a string is called a substring. A substring can be as short as a single character. A slice is a part of a string (or, more generally, any list-like thing). We take a slice by using [start:stop] , where start is replaced with the index of the first element we want and stop is replaced with the index of the element just after the last element we want. Mathematically, you might say that a slice selects [start:stop] . The difference between stop and start is the slice’s length. Taking a slice does not change the contents of the original string. Instead, the slice is a copy of part of the original string.

Use the built-in function len() to find the length of a string

The built-in function len() is used to find the length of a string (and later, of other data types, too).

Note that the result is 6 and not 7. This is because it is the length of the value of the variable (i.e. 'helium' ) that is being counted and not the name of the variable (i.e. element )

Also note that nested functions are evaluated from the inside out, just like in mathematics. Thus, Python first reads the len() function, then the print() function.

Choosing a Name Which is a better variable name, m , min , or minutes ? Why? Hint: think about which code you would rather inherit from someone who is leaving the library: ts = m * 60 + s tot_sec = min * 60 + sec total_seconds = minutes * 60 + seconds Solution minutes is better because min might mean something like “minimum” (and actually does in Python, but we haven’t seen that yet).
Swapping Values Draw a table showing the values of the variables in this program after each statement is executed. In simple terms, what do the last three lines of this program do? x = 1.0 y = 3.0 swap = x x = y y = swap Solution swap = x # x->1.0 y->3.0 swap->1.0 x = y # x->3.0 y->3.0 swap->1.0 y = swap # x->3.0 y->1.0 swap->1.0 These three lines exchange the values in x and y using the swap variable for temporary storage. This is a fairly common programming idiom.
Predicting Values What is the final value of position in the program below? (Try to predict the value without running the program, then check your prediction.) initial = "left" position = initial initial = "right" Solution initial = "left" # Initial is assigned the string "left" position = initial # Position is assigned the variable initial, currently "left" initial = "right" # Initial is assigned the string "right" print(position) left The last assignment to position was “left”
Can you slice integers? If you assign a = 123 , what happens if you try to get the second digit of a ? Solution Numbers are not stored in the written representation, so they can’t be treated like strings. a = 123 print(a[1]) TypeError: 'int' object is not subscriptable
Slicing What does the following program print? library_name = 'social sciences' print('library_name[1:3] is:', library_name[1:3]) If thing is a variable name, low is a low number, and high is a high number: What does thing[low:high] do? What does thing[low:] (without a value after the colon) do? What does thing[:high] (without a value before the colon) do? What does thing[:] (just a colon) do? What does thing[number:negative-number] do? Solution library_name[1:3] is: oc It will slice the string, starting at the low index and ending an element before the high index It will slice the string, starting at the low index and stopping at the end of the string It will slice the string, starting at the beginning on the string, and ending an element before the high index It will print the entire string It will slice the string, starting the number index, and ending a distance of the absolute value of negative-number elements from the end of the string
Key Points Use variables to store values. Use meaningful variable names. Python is case-sensitive. Use print() to display values. Variables must be created before they are used. Variables persist between cells. Variables can be used in calculations. Use an index to get a single character from a string. Use a slice to get a substring. Use the built-in function len to find the length of a string.

Assignment Expressions: The Walrus Operator

Christopher Bailey

  • Discussion (8)

In this lesson, you’ll learn about the biggest change in Python 3.8: the introduction of assignment expressions . Assignment expression are written with a new notation (:=) .This operator is often called the walrus operator as it resembles the eyes and tusks of a walrus on its side.

Assignment expressions allow you to assign and return a value in the same expression. For example, if you want to assign to a variable and print its value, then you typically do something like this:

In Python 3.8, you’re allowed to combine these two statements into one, using the walrus operator:

The assignment expression allows you to assign True to walrus , and immediately print the value. But keep in mind that the walrus operator does not do anything that isn’t possible without it. It only makes certain constructs more convenient, and can sometimes communicate the intent of your code more clearly.

One pattern that shows some of the strengths of the walrus operator is while loops where you need to initialize and update a variable. For example, the following code asks the user for input until they type quit :

This code is less than ideal. You’re repeating the input() statement, and somehow you need to add current to the list before asking the user for it. A better solution is to set up an infinite while loop, and use break to stop the loop:

This code is equivalent to the code above, but avoids the repetition and somehow keeps the lines in a more logical order. If you use an assignment expression, then you can simplify this loop further:

This moves the test back to the while line, where it should be. However, there are now several things happening at that line, so it takes a bit more effort to read it properly. Use your best judgement about when the walrus operator helps make your code more readable.

PEP 572 describes all the details of assignment expressions, including some of the rationale for introducing them into the language, as well as several examples of how the walrus operator can be used. The Python 3.8 documentation also includes some good examples of assignment expressions.

Here are a few resources for more info on using bpython, the REPL (Read–Eval–Print Loop) tool used in most of these videos:

  • Discover bpython: A Python REPL With IDE-Like Features
  • A better Python REPL: bpython vs python
  • bpython Homepage
  • bpython Docs

00:00 In this video, you’ll learn about what’s being called the walrus operator. One of the biggest changes in Python 3.8 is the introduction of these assignment expressions. So, what does it do?

00:12 Well, it allows the assignment and the return of a value in the same expression, using a new notation. On the left side, you’d have the name of the object that you’re assigning, and then you have the operator, a colon and an equal sign ( := ), affectionately known as the walrus operator as it resembles the eyes and tusks of a walrus on its side.

00:32 And it’s assigning this expression on the right side, so it’s assigning and returning the value in the same expression. Let me have you practice with this operator with some code.

00:44 Throughout this tutorial, when I use a REPL, I’m going to be using this custom REPL called bpython . I’ll include links on how to install bpython below this video.

00:53 So, how do you use this assignment operator? Let me have you start with a small example. You could have an object named walrus and assign it the value of False , and then you could print it. In Python 3.8, you can combine those two statements and do a single statement using the walrus operator. So inside of print() , you could say walrus , the new object, and use the operator, the assignment expression := , and a space, and then say True . That’s going to do two things. Most notably, in reverse order, it returned the value True . And then it also assigned the value to walrus , and of course the type of 'bool' .

01:38 Keep in mind, the walrus operator doesn’t do anything that isn’t possible without it. It only makes certain constructs a bit more convenient, and can sometimes communicate the intent of your code more clearly.

01:48 Let me show you another example. It’s a pattern that shows some of the strengths of the walrus operator inside of while loops, where you need to initialize and update a variable. For example, create a new file, and name it write_something.py . Here’s write_something.py .

02:09 It starts with inputs , which will be a list. So create a list called inputs .

02:16 Into an object named current , use an input() statement. The input() statement is going to provide a prompt and read a string in from standard input. The prompt will be this, "Write something: " .

02:28 So when the user inputs that, that’ll go into current . So while current != "quit" — if the person has not typed quit yet— you’re going to take inputs and append the current value.

02:44 And then here, you’re asking to "Write something: " again.

02:50 Down here at my terminal, after saving—let’s see, make sure you’re saved. Okay. Now that’s saved.

03:00 So here, I could say, Hello , Welcome , and then finally quit , which then would quit it. So, this code isn’t ideal.

03:08 You’re repeating the input() statement twice, and somehow you need to add current to the list before asking the user for it. So a better solution is going to be to set up maybe an infinite while loop, and then use a break to stop the loop. How would that look?

03:22 You’re going to rearrange this a little bit. Move the while loop up, and say while True:

03:35 and here say if current == "quit": then break . Otherwise, go ahead and append it. So, a little different here, but this is a while loop that’s going to continue as long as it doesn’t get broken out of by someone typing quit . Okay.

03:53 Running it again. And there, you can see it breaking out. Nice. So, that code avoids the repetition and kind of keeps things in a more logical order, but there’s a way to simplify this to use that new assignment expression, the walrus operator. In that case, you’re going to modify this quite a bit.

04:17 Here you’re going to say while , current and then use that assignment operator ( := ) to create current .

04:23 But also, while doing that, check to see that it’s not equal to "quit" . So here, each time that assigns the value to current and it’s returned, so the value can be checked.

04:35 So while , current , assigning the value from the input() , and then if it’s not equal to "quit" , you’re going to append current . Make sure to save.

04:42 Run the code one more time.

04:47 And it works the same. This moves that test all the way back to the while line, where it should be. However, there’s a couple of things now happening all in one line, and that might take a little more effort to read what’s happening and to understand it properly.

05:00 There are a handful of other examples that you could look into to learn a little more about assignment expressions. I’ll include a link to PEP 572, and also a link to the Python docs for version 3.8, both of which include more code examples.

05:14 So you need to use your best judgment as to when this operator’s going to make your code more readable and more useful. In the next video, you’ll learn about the new feature of positional-only arguments.

Avatar image for rajeshboyalla

rajeshboyalla on Dec. 4, 2019

Why do you use list() to initialize a list rather than using [] ?

Avatar image for Geir Arne Hjelle

Geir Arne Hjelle RP Team on Dec. 4, 2019

My two cents about list() vs [] (I wrote the original article this video series is based on):

  • I find spelling out list() to be more readable and easier to notice and interpret than []
  • [] is several times faster than list() , but we’re still talking nanoseconds. On my computer [] takes about 15ns, while list() runs in 60ns. Typically, lists are initiated once, so this does not cause any meaningful slowdown of code.

That said, if I’m initializing a list with existing elements, I usually use [elem1, elem2, ...] , since list(...) has different–and sometimes surprising–semantics.

Avatar image for Jason

Jason on April 3, 2020

Sorry for my ignorance, did the the standard assignment = operator work in this way? I don’t understand what has been gained from adding the := operator. If anything I think it will allow people to write more obfuscated code. But minds better than mine have been working on this, so I’ll have to take their word it is an improvement.

As for the discussion on whether [] is more readable than list(). I’d never seen list() before, so to me [] is better. I’ve only just come over from the dark 2.7 side so maybe it’s an old python programmer thing?

Oh I checked the operation on the assignment operator. I was obviously wrong. lol Still I think the existing operator could’ve been tweaked to do the same thing as := … I’m still on the fence about that one.

Avatar image for gedece

gedece on April 3, 2020

you are right in that the existing operator could have worked, but it can lead to something unexpected.

if you do something like

if (newvar = somevar): it gives a traceback, because you are supposed to use == for comparations.

So if you use the normal operator for this, then that expression is valid and you’ll be hard pressed to realize the mistake.

It then makes complete sense to use a different operator as that helps to clarify intent in code.

Jason on April 6, 2020

Yes, I’ve accidentaly done that in other languages before and it can be a difficult to “see” bug.

Avatar image for varelaautumn

varelaautumn on Sept. 26, 2020

I watched this earlier today and now tonight I just can’t stop myself from throwing these walrus operators everywhere.

(I’m new and learning so these are just personal fooling around programs)

For example I have this function which cycles through a bunch of other very simple parsing functions that check if my input string is valid in the context of the game state. If the string doesn’t pass one of these parsers it returns a string with an error message such as “Input must be less than 5 characters”. And then the parse_input function returns that error string.

I mean it’s not a huge change, but it saves an extra call of the function, and I feel like it makes it much more readable.

I’m not sure if this other case might be considered abuse of the walrus operator, but I decided to use it twice in one line.

This function repeatedly asks for input. If the input does not pass the parser functions, then the error will be returned and printed out in the while loop. Otherwise the input was valid and it gets returned.

I’m able to pass my input into a function and check the result of that function all while retaining my input and the return of the function as their own variables to be used in the next line.

I think the walrus operator helped me put all the relevant details on the three lines. Like if you just read the first words of each line, it basically says “while error, print error, else return input_string.” I don’t see how I could have done that without this cool walrus operator so I’m really appreciative for this video you made! I’ve been converted to a strong believer in the walrus operator.

Geir Arne Hjelle RP Team on Sept. 26, 2020

@varelaautumn Nice examples, thanks for sharing!

I agree that the walrus operator will not revolutionize your code, but it can bring these sorts of small improvements that add up in the long run.

Become a Member to join the conversation.

which of these is an assignment statement in python

Assignment Statements

Learn about assignment statements in Python.

  • Assignment shortcuts
  • Walrus operator

Assignment statements consist of a variable , an equal sign, and an expression .

Here’s an example:

Get hands-on with 1200+ tech skills courses.

01 Career Opportunities

02 beginner, 03 intermediate, 04 training programs, assignment operators in python, what is an assignment operator in python.

.

Types of Assignment Operators in Python

1. simple python assignment operator (=), example of simple python assignment operator, 2. augmented assignment operators in python, 1. augmented arithmetic assignment operators in python.

+=Addition Assignment Operator
-=Subtraction Assignment Operator
*=Multiplication Assignment Operator
/=Division Assignment Operator
%=Modulus Assignment Operator
//=Floor Division Assignment Operator
**=Exponentiation Assignment Operator

2. Augmented Bitwise Assignment Operators in Python

&=Bitwise AND Assignment Operator
|=Bitwise OR Assignment Operator
^=Bitwise XOR Assignment Operator
>>=Bitwise Right Shift Assignment Operator
<<=Bitwise Left Shift Assignment Operator

Augmented Arithmetic Assignment Operators in Python

1. augmented addition operator (+=), example of augmented addition operator in python, 2. augmented subtraction operator (-=), example of augmented subtraction operator in python, 3. augmented multiplication operator (*=), example of augmented multiplication operator in python, 4. augmented division operator (/=), example of augmented division operator in python, 5. augmented modulus operator (%=), example of augmented modulus operator in python, 6. augmented floor division operator (//=), example of augmented floor division operator in python, 7. augmented exponent operator (**=), example of augmented exponent operator in python, augmented bitwise assignment operators in python, 1. augmented bitwise and (&=), example of augmented bitwise and operator in python, 2. augmented bitwise or (|=), example of augmented bitwise or operator in python, 3. augmented bitwise xor (^=), example of augmented bitwise xor operator in python, 4. augmented bitwise right shift (>>=), example of augmented bitwise right shift operator in python, 5. augmented bitwise left shift (<<=), example of augmented bitwise left shift operator in python, walrus operator in python, syntax of an assignment expression, example of walrus operator in python.

Live Classes Schedule

Filling Fast
Filling Fast
Filling Fast
Filling Fast
Filling Fast
Filling Fast
Filling Fast
Filling Fast
Filling Fast
Filling Fast
Filling Fast
Filling Fast

About Author

which of these is an assignment statement in python

Assignment Operators in Python

Assignment Operators in Python

Table of Contents

Assignment Operators will work on values and variables. They are the special symbols that hold arithmetic, logical, and bitwise computations. The value which the operator operates is referred to as the Operand.

Read this article about Assignment Operators in Python

What are Assignment Operators?

The assignment operator will function to provide value to variables. The table below is about the different types of Assignment operator

+= will add right side operand with left side operand, assign to left operand a+=b
= It will assign the value of the right side of the expression to the left side operandx=y+z
-= can subtract the right operand from the left operand and then assign it to the left operand: True if both operands are equala -= b  
*= can subtract the right operand from the left operand and then assign it to the left operand: True if both operands are equala *= b     
/= will divide the left operand with right operand and then assign to the left operanda /= b
%= will divide the left operand with the right operand and then assign to the left operanda %= b  
<<=
It functions bitwise left on operands and will assign value to the left operand a <<= b 
>>=
This operator will perform right shift on operands and can assign value to the left operanda >>= b     

^=
This will function the bitwise xOR operands and can assign value to the left operand a ^= b    

|=
This will function Bitwise OR operands and will provide value to the left operand.a |= b    

&=
This operator will perform Bitwise AND on operand and can provide value to the left operanda&=b
**=
operator will evaluate the exponent value with the help of operands an assign value to the left operanda**=b

Here we have listed each of the Assignment operators

1. What is Assign Operator?

This assign operator will provide the value of the right side of the expression to the left operand.

2. What is Add and Assign

This Add and Assign operator will function to add the right side operand with the left side operator, and provide the result to the left operand.

3. What is Subtract and assign ?

This subtract and assign operator works to subtract the right operand from the left operand and give the result to the left operand.

4. What is Multiply and assign ?

This Multiply and assign will function to multiply the right operand with the left operand and will provide the result in the left operand.

5. What is Divide and assign Operator?

This functions to divide the left operand and provides results at the left operand.

6. What is Modulus and Assign Operator?

This operator functions using the modulus with the left and the right operand and provides results at the left operand.

7. What is Divide ( floor)and Assign Operator?

This operator will divide the left operand with the right operand, and provide the result at the left operand.

8. What is Exponent and Assign Operator?

This operator will function to evaluate the exponent and value with the operands and, provide output in the left operand.

9.What is Bitwise and Assign Operator?

This operator will function Bitwise AND on both the operand and provide the result on the left operand.

10. What is Bitwise OR and Assign Operator?

This operand will function Bitwise OR on the operand, and can provide result at the left operand.

11. What is Bitwise XOR and Assign Operator?

This operator will function for Bitwise XOR on the operands, and provide result at the left operand.

12. What is Bitwise Right Shift and Assign Operator?

This operator will function by providing the Bitwise shift on the operands and giving the result at the left operand.

13. What is Bitwise Left shift and Assign Operator?

This operator will function Bitwise left shift by providing the Bitwise left shift on the operands and giving the result on the left operand.

To conclude, different types of assignment operators are discussed in this. Beginners can improve their knowledge and understand how to apply the assignment operators through reading this.

Assignment Operators in Python- FAQs

Q1. what is an assignment statement in python.

Ans. It will calculate the expression list and can provide a single resulting object to each target list from left to right

Q2. What is the compound operator in Python?

Ans. The compound operator will do the operation of a binary operator and will save the result of the operation at the left operand.

Q3. What are the two types of assignment statements

Ans. Simple Assignment Statements and Reference Assignment Statements are the two types of assignment statements.

Hridhya Manoj

Hello, I’m Hridhya Manoj. I’m passionate about technology and its ever-evolving landscape. With a deep love for writing and a curious mind, I enjoy translating complex concepts into understandable, engaging content. Let’s explore the world of tech together

Python Logical Operators

Python Bitwise Operator

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Reach Out to Us for Any Query

SkillVertex is an edtech organization that aims to provide upskilling and training to students as well as working professionals by delivering a diverse range of programs in accordance with their needs and future aspirations.

© 2024 Skill Vertex

  • DigitalOcean
  • Sign up for:

How To Use Assignment Expressions in Python

author

DavidMuller and Kathryn Hancox

How To Use Assignment Expressions in Python

The author selected the COVID-19 Relief Fund to receive a donation as part of the Write for DOnations program.

Introduction

Python 3.8 , released in October 2019, adds assignment expressions to Python via the := syntax. The assignment expression syntax is also sometimes called “the walrus operator” because := vaguely resembles a walrus with tusks.

Assignment expressions allow variable assignments to occur inside of larger expressions. While assignment expressions are never strictly necessary to write correct Python code, they can help make existing Python code more concise. For example, assignment expressions using the := syntax allow variables to be assigned inside of if statements , which can often produce shorter and more compact sections of Python code by eliminating variable assignments in lines preceding or following the if statement.

In this tutorial, you will use assignment expressions in several examples to produce concise sections of code.

Prerequisites

To get the most out of this tutorial, you will need:

Python 3.8 or above. Assignment expressions are a new feature added starting in Python 3.8. You can view the How To Install Python 3 and Set Up a Programming Environment on an Ubuntu 18.04 Server tutorial for help installing and upgrading Python.

The Python Interactive Console. If you would like to try out the example code in this tutorial you can use the How To Work with the Python Interactive Console tutorial.

Some familiarity with while loops, if statements, list comprehensions, and functions in Python 3 is useful, but not necessary. You can review our How To Code in Python 3 tutorial series for background knowledge.

Using Assignment Expressions in if Statements

Let’s start with an example of how you can use assignment expressions in an if statement.

Consider the following code that checks the length of a list and prints a statement:

If you run the previous code, you will receive the following output:

You initialize a list named some_list that contains three elements. Then, the if statement uses the assignment expression ((list_length := len(some_list)) to bind the variable named list_length to the length of some_list . The if statement evaluates to True because list_length is greater than 2 . You print a string using the list_length variable, which you bound initially with the assignment expression, indicating the the three-element list is too long.

Note: Assignment expressions are a new feature introduced in Python 3.8 . To run the examples in this tutorial, you will need to use Python 3.8 or higher.

Had we not used assignment expression, our code might have been slightly longer. For example:

This code sample is equivalent to the first example, but this code requires one extra standalone line to bind the value of list_length to len(some_list) .

Another equivalent code sample might just compute len(some_list) twice: once in the if statement and once in the print statement. This would avoid incurring the extra line required to bind a variable to the value of len(some_list) :

Assignment expressions help avoid the extra line or the double calculation.

Note: Assignment expressions are a helpful tool, but are not strictly necessary. Use your judgement and add assignment expressions to your code when it significantly improves the readability of a passage.

In the next section, we’ll explore using assignment expressions inside of while loops.

Using Assignment Expressions in while Loops

Assignment expressions often work well in while loops because they allow us to fold more context into the loop condition.

Consider the following example that embeds a user input function inside the while loop condition:

If you run this code, Python will continually prompt you for text input from your keyboard until you type the word stop . One example session might look like:

The assignment expression (directive := input("Enter text: ")) binds the value of directive to the value retrieved from the user via the input function. You bind the return value to the variable directive , which you print out in the body of the while loop. The while loop exits whenever the you type stop .

Had you not used an assignment expression, you might have written an equivalent input loop like:

This code is functionally identical to the one with assignment expressions, but requires four total lines (as opposed to two lines). It also duplicates the input("Enter text: ") call in two places. Certainly, there are many ways to write an equivalent while loop, but the assignment expression variant introduced earlier is compact and captures the program’s intention well.

So far, you’ve used assignment expression in if statements and while loops. In the next section, you’ll use an assignment expression inside of a list comprehension.

Using Assignment Expressions in List Comprehensions

We can also use assignment expressions in list comprehensions . List comprehensions allow you to build lists succinctly by iterating over a sequence and potentially adding elements to the list that satisfy some condition. Like list comprehensions, we can use assignment expressions to improve readability and make our code more concise.

Consider the following example that uses a list comprehension and an assignment expression to build a list of multiplied integers:

If you run the previous code, you will receive the following:

You define a function named slow_calculation that multiplies the given number x with itself. A list comprehension then iterates through 0 , 1 , and 2 returned by range(3) . An assignment expression binds the value result to the return of slow_calculation with i . You add the result to the newly built list as long as it is greater than 0. In this example, 0 , 1 , and 2 are all multiplied with themselves, but only the results 1 ( 1 * 1 ) and 4 ( 2 * 2 ) satisfy the greater than 0 condition and become part of the final list [1, 4] .

The slow_calculation function isn’t necessarily slow in absolute terms, but is meant to illustrate an important point about effeciency. Consider an alternate implementation of the previous example without assignment expressions:

Running this, you will receive the following output:

In this variant of the previous code, you use no assignment expressions. Instead, you call slow_calculation up to two times: once to ensure slow_calculation(i) is greater than 0 , and potentially a second time to add the result of the calculation to the final list. 0 is only multiplied with itself once because 0 * 0 is not greater than 0 . The other results, however, are doubly calculated because they satisfy the greater than 0 condition, and then have their results recalculated to become part of the final list [1, 4] .

You’ve now combined assignment expressions with list comprehensions to create blocks of code that are both efficient and concise.

In this tutorial, you used assignment expressions to make compact sections of Python code that assign values to variables inside of if statements, while loops, and list comprehensions.

For more information on other assignment expressions, you can view PEP 572 —the document that initially proposed adding assignment expressions to Python.

You may also want to check out our other Python content on our topic page .

Thanks for learning with the DigitalOcean Community. Check out our offerings for compute, storage, networking, and managed databases.

Learn more about our products

Default avatar

Author of Intuitive Python

Check out Intuitive Python: Productive Development for Projects that Last

https://pragprog.com/titles/dmpython/intuitive-python/

Still looking for an answer?

This textbox defaults to using Markdown to format your answer.

You can type !ref in this text area to quickly search our full set of tutorials, documentation & marketplace offerings and insert the link!

Creative Commons

Try DigitalOcean for free

Click below to sign up and get $200 of credit to try our products over 60 days!

Popular Topics

  • Linux Basics
  • All tutorials
  • Talk to an expert

Join the Tech Talk

Please complete your information!

Featured on Community

which of these is an assignment statement in python

Get our biweekly newsletter

Sign up for Infrastructure as a Newsletter.

which of these is an assignment statement in python

Hollie's Hub for Good

Working on improving health and education, reducing inequality, and spurring economic growth? We'd like to help.

which of these is an assignment statement in python

Become a contributor

Get paid to write technical tutorials and select a tech-focused charity to receive a matching donation.

Featured Tutorials

Digitalocean products, welcome to the developer cloud.

DigitalOcean makes it simple to launch in the cloud and scale up as you grow — whether you're running one virtual machine or ten thousand.

  • Contributors

Basic Statements in Python

Table of contents, what is a statement in python, statement set, multi-line statements, simple statements, expression statements, the assert statement, the try statement.

Statements in Python

In Python, statements are instructions or commands that you write to perform specific actions or tasks. They are the building blocks of a Python program.

A statement is a line of code that performs a specific action. It is the smallest unit of code that can be executed by the Python interpreter.

Assignment Statement

In this example, the value 10 is assigned to the variable x using the assignment statement.

Conditional Statement

In this example, the if-else statement is used to check the value of x and print a corresponding message.

By using statements, programmers can instruct the computer to perform a variety of tasks, from simple arithmetic operations to complex decision-making processes. Proper use of statements is crucial to writing efficient and effective Python code.

Here's a table summarizing various types of statements in Python:

Statement Description
Multi-Line Statements Statements spanning multiple lines using line continuation or braces.
Compound Statements Statements that contain other statements (e.g., , while, for).
Simple Statements Basic standalone statements that perform a single action.
Expression Statements Statements that evaluate and produce a value.
Statement A placeholder statement that does nothing.
Statement Used to delete references to objects.
Statement Terminates a function and returns a value (optional).
Statement Imports modules or specific objects from modules.
and Statements Control flow statements used in loops ( skips to the next iteration, exits the loop).

Please note that this table provides a brief overview of each statement type, and there may be additional details and variations for each statement.

Multi-line statements are a convenient way to write long code in Python without making it cluttered. They allow you to write several lines of code as a single statement, making it easier for developers to read and understand the code. Here are two examples of multi-line statements in Python:

  • Using backslash:
  • Using parentheses:

Simple statements are the smallest unit of execution in Python programming language and they do not contain any logical or conditional expressions. They are usually composed of a single line of code and can perform basic operations such as assigning values to variables , printing out values, or calling functions .

Examples of simple statements in Python:

Simple statements are essential to programming in Python and are often used in combination with more complex statements to create robust programs and applications.

Expression statements in Python are lines of code that evaluate and produce a value. They are used to assign values to variables, call functions, and perform other operations that produce a result.

In this example, we assign the value 5 to the variable x , then add 3 to x and assign the result ( 8 ) to the variable y . Finally, we print the value of y .

In this example, we define a function square that takes one argument ( x ) and returns its square. We then call the function with the argument 5 and assign the result ( 25 ) to the variable result . Finally, we print the value of result .

Overall, expression statements are an essential part of Python programming and allow for the execution of mathematical and computational operations.

The assert statement in Python is used to test conditions and trigger an error if the condition is not met. It is often used for debugging and testing purposes.

Where condition is the expression that is tested, and message is the optional error message that is displayed when the condition is not met.

In this example, the assert statement tests whether x is equal to 5 . If the condition is met, the statement has no effect. If the condition is not met, an error will be raised with the message x should be 5 .

In this example, the assert statement tests whether y is not equal to 0 before performing the division. If the condition is met, the division proceeds as normal. If the condition is not met, an error will be raised with the message Cannot divide by zero .

Overall, assert statements are a useful tool in Python for debugging and testing, as they can help catch errors early on. They are also easily disabled in production code to avoid any unnecessary overhead.

The try statement in Python is used to catch exceptions that may occur during the execution of a block of code. It ensures that even when an error occurs, the code does not stop running.

Examples of Error Processing

Dive deep into the topic.

  • Match Statements
  • Operators in Python Statements
  • The IF Statement

Contribute with us!

Do not hesitate to contribute to Python tutorials on GitHub: create a fork, update content and issue a pull request.

Profile picture for user AliaksandrSumich

Python Programming

Python Statements

Updated on:  September 1, 2021 | 21 Comments

In this tutorial, you will learn Python statements. Also, you will learn simple statements and compound statements.

Table of contents

Multi-line statements, python compound statements, expression statements, the pass statement.

  • The del statement
  • The return statement
  • The import statement
  • The continue and break statement

What is a statement in Python?

A statement is an instruction that a Python interpreter can execute . So, in simple words, we can say anything written in Python is a statement.

Python statement ends with the token NEWLINE character. It means each line in a Python script is a statement.

For example, a = 10 is an assignment statement. where a is a variable name and 10 is its value. There are other kinds of statements such as if statement, for statement, while statement, etc., we will learn them in the following lessons.

There are mainly four types of statements in Python, print statements, Assignment statements, Conditional statements , Looping statements .

The print and assignment statements are commonly used. The result of a print statement is a value. Assignment statements don’t produce a result it just assigns a value to the operand on its left side.

A Python script usually contains a sequence of statements. If there is more than one statement, the result appears only one time when all statements execute.

As you can see, we have used three statements in our program. Also, we have added the comments in our code. In Python, we use the hash ( # ) symbol to start writing a comment. In Python, comments describe what code is doing so other people can understand it.

We can add multiple statements on a single line separated by semicolons, as follows:

Python statement ends with the token NEWLINE character. But we can extend the statement over multiple lines using line continuation character ( \ ). This is known as an explicit continuation.

Implicit continuation :

We can use parentheses () to write a multi-line statement. We can add a line continuation statement inside it. Whatever we add inside a parentheses () will treat as a single statement even it is placed on multiple lines.

As you see, we have removed the the line continuation character ( \ ) if we are using the parentheses () .

We can use square brackets [] to create a list . Then, if required, we can place each list item on a single line for better readability.

Same as square brackets, we can use the curly { } to create a dictionary with every key-value pair on a new line for better readability.

Compound statements contain (groups of) other statements; they affect or control the execution of those other statements in some way.

The compound statement includes the conditional and loop statement.

  • if statement: It is a control flow statement that will execute statements under it if the condition is true. Also kown as a conditional statement.
  • while statements: The while loop statement repeatedly executes a code block while a particular condition is true. Also known as a looping statement.
  • for statement: Using for loop statement, we can iterate any sequence or iterable variable. The sequence can be string, list, dictionary, set, or tuple. Also known as a looping statement.
  • try statement: specifies exception handlers .
  • with statement: Used to cleanup code for a group of statements, while the with statement allows the execution of initialization and finalization code around a block of code.

Simple Statements

Apart from the declaration and calculation statements, Python has various simple statements for a specific purpose. Let’s see them one by one.

If you are an absolute beginner, you can move to the other beginner tutorials and then come back to this section.

Expression statements are used to compute and write a value. An expression statement evaluates the expression list and calculates the value.

To understand this, you need to understand an expression is in Python.

An expression is a combination of values, variables , and operators . A single value all by itself is considered an expression. Following are all legal expressions (assuming that the variable x has been assigned a value):

If your type the expression in an interactive python shell, you will get the result.

So here x + 20 is the expression statement which computes the final value if we assume variable x has been assigned a value (10). So final value of the expression will become 30.

But in a script, an expression all by itself doesn’t do anything! So we mostly assign an expression to a variable, which becomes a statement for an interpreter to execute.

pass is a null operation. Nothing happens when it executes. It is useful as a placeholder when a statement is required syntactically, but no code needs to be executed.

For example, you created a function for future releases, so you don’t want to write a code now. In such cases, we can use a pass statement.

The  del  statement

The Python del statement is used to delete objects/variables.

The target_list contains the variable to delete separated by a comma. Once the variable is deleted, we can’t access it.

The  return  statement

We create a function in Python to perform a specific task. The function can return a value that is nothing but an output of function execution.

Using a return statement, we can return a value from a function when called.

The  import  statement

The import statement is used to import modules . We can also import individual classes from a module.

Python has a huge list of built-in modules which we can use in our code. For example, we can use the built-in module DateTime to work with date and time.

Example : Import datetime module

The continue and break statement

  • break Statement: The break statement is used inside the loop to exit out of the loop.
  • continue Statement: The continue statement skip the current iteration and move to the next iteration.

We use break, continue statements to alter the loop’s execution in a certain manner.

Read More : Break and Continue in Python

Did you find this page helpful? Let others know about it. Sharing helps me continue to create free Python resources.

About Vishal

which of these is an assignment statement in python

I’m  Vishal Hule , the Founder of PYnative.com. As a Python developer, I enjoy assisting students, developers, and learners. Follow me on  Twitter .

Related Tutorial Topics:

Python exercises and quizzes.

Free coding exercises and quizzes cover Python basics, data structure, data analytics, and more.

  • 15+ Topic-specific Exercises and Quizzes
  • Each Exercise contains 10 questions
  • Each Quiz contains 12-15 MCQ

Loading comments... Please wait.

About PYnative

PYnative.com is for Python lovers. Here, You can get Tutorials, Exercises, and Quizzes to practice and improve your Python skills .

Explore Python

  • Learn Python
  • Python Basics
  • Python Databases
  • Python Exercises
  • Python Quizzes
  • Online Python Code Editor
  • Python Tricks

To get New Python Tutorials, Exercises, and Quizzes

Legal Stuff

We use cookies to improve your experience. While using PYnative, you agree to have read and accepted our Terms Of Use , Cookie Policy , and Privacy Policy .

Copyright © 2018–2024 pynative.com

  • Hands-on Python Tutorial »
  • 1. Beginning With Python »

1.6. Variables and Assignment ¶

Each set-off line in this section should be tried in the Shell.

Nothing is displayed by the interpreter after this entry, so it is not clear anything happened. Something has happened. This is an assignment statement , with a variable , width , on the left. A variable is a name for a value. An assignment statement associates a variable name on the left of the equal sign with the value of an expression calculated from the right of the equal sign. Enter

Once a variable is assigned a value, the variable can be used in place of that value. The response to the expression width is the same as if its value had been entered.

The interpreter does not print a value after an assignment statement because the value of the expression on the right is not lost. It can be recovered if you like, by entering the variable name and we did above.

Try each of the following lines:

The equal sign is an unfortunate choice of symbol for assignment, since Python’s usage is not the mathematical usage of the equal sign. If the symbol ↤ had appeared on keyboards in the early 1990’s, it would probably have been used for assignment instead of =, emphasizing the asymmetry of assignment. In mathematics an equation is an assertion that both sides of the equal sign are already, in fact, equal . A Python assignment statement forces the variable on the left hand side to become associated with the value of the expression on the right side. The difference from the mathematical usage can be illustrated. Try:

so this is not equivalent in Python to width = 10 . The left hand side must be a variable, to which the assignment is made. Reversed, we get a syntax error . Try

This is, of course, nonsensical as mathematics, but it makes perfectly good sense as an assignment, with the right-hand side calculated first. Can you figure out the value that is now associated with width? Check by entering

In the assignment statement, the expression on the right is evaluated first . At that point width was associated with its original value 10, so width + 5 had the value of 10 + 5 which is 15. That value was then assigned to the variable on the left ( width again) to give it a new value. We will modify the value of variables in a similar way routinely.

Assignment and variables work equally well with strings. Try:

Try entering:

Note the different form of the error message. The earlier errors in these tutorials were syntax errors: errors in translation of the instruction. In this last case the syntax was legal, so the interpreter went on to execute the instruction. Only then did it find the error described. There are no quotes around fred , so the interpreter assumed fred was an identifier, but the name fred was not defined at the time the line was executed.

It is both easy to forget quotes where you need them for a literal string and to mistakenly put them around a variable name that should not have them!

Try in the Shell :

There fred , without the quotes, makes sense.

There are more subtleties to assignment and the idea of a variable being a “name for” a value, but we will worry about them later, in Issues with Mutable Objects . They do not come up if our variables are just numbers and strings.

Autocompletion: A handy short cut. Idle remembers all the variables you have defined at any moment. This is handy when editing. Without pressing Enter, type into the Shell just

Assuming you are following on the earlier variable entries to the Shell, you should see f autocompleted to be

This is particularly useful if you have long identifiers! You can press Alt-/ several times if more than one identifier starts with the initial sequence of characters you typed. If you press Alt-/ again you should see fred . Backspace and edit so you have fi , and then and press Alt-/ again. You should not see fred this time, since it does not start with fi .

1.6.1. Literals and Identifiers ¶

Expressions like 27 or 'hello' are called literals , coming from the fact that they literally mean exactly what they say. They are distinguished from variables, whose value is not directly determined by their name.

The sequence of characters used to form a variable name (and names for other Python entities later) is called an identifier . It identifies a Python variable or other entity.

There are some restrictions on the character sequence that make up an identifier:

The characters must all be letters, digits, or underscores _ , and must start with a letter. In particular, punctuation and blanks are not allowed.

There are some words that are reserved for special use in Python. You may not use these words as your own identifiers. They are easy to recognize in Idle, because they are automatically colored orange. For the curious, you may read the full list:

There are also identifiers that are automatically defined in Python, and that you could redefine, but you probably should not unless you really know what you are doing! When you start the editor, we will see how Idle uses color to help you know what identifies are predefined.

Python is case sensitive: The identifiers last , LAST , and LaSt are all different. Be sure to be consistent. Using the Alt-/ auto-completion shortcut in Idle helps ensure you are consistent.

What is legal is distinct from what is conventional or good practice or recommended. Meaningful names for variables are important for the humans who are looking at programs, understanding them, and revising them. That sometimes means you would like to use a name that is more than one word long, like price at opening , but blanks are illegal! One poor option is just leaving out the blanks, like priceatopening . Then it may be hard to figure out where words split. Two practical options are

  • underscore separated: putting underscores (which are legal) in place of the blanks, like price_at_opening .
  • using camel-case : omitting spaces and using all lowercase, except capitalizing all words after the first, like priceAtOpening

Use the choice that fits your taste (or the taste or convention of the people you are working with).

Table Of Contents

  • 1.6.1. Literals and Identifiers

Previous topic

1.5. Strings, Part I

1.7. Print Function, Part I

  • Show Source

Quick search

Enter search terms or a module, class or function name.

TutorialsTonight Logo

Python Conditional Assignment

When you want to assign a value to a variable based on some condition, like if the condition is true then assign a value to the variable, else assign some other value to the variable, then you can use the conditional assignment operator.

In this tutorial, we will look at different ways to assign values to a variable based on some condition.

1. Using Ternary Operator

The ternary operator is very special operator in Python, it is used to assign a value to a variable based on some condition.

It goes like this:

Here, the value of variable will be value_if_true if the condition is true, else it will be value_if_false .

Let's see a code snippet to understand it better.

You can see we have conditionally assigned a value to variable c based on the condition a > b .

2. Using if-else statement

if-else statements are the core part of any programming language, they are used to execute a block of code based on some condition.

Using an if-else statement, we can assign a value to a variable based on the condition we provide.

Here is an example of replacing the above code snippet with the if-else statement.

3. Using Logical Short Circuit Evaluation

Logical short circuit evaluation is another way using which you can assign a value to a variable conditionally.

The format of logical short circuit evaluation is:

It looks similar to ternary operator, but it is not. Here the condition and value_if_true performs logical AND operation, if both are true then the value of variable will be value_if_true , or else it will be value_if_false .

Let's see an example:

But if we make condition True but value_if_true False (or 0 or None), then the value of variable will be value_if_false .

So, you can see that the value of c is 20 even though the condition a < b is True .

So, you should be careful while using logical short circuit evaluation.

While working with lists , we often need to check if a list is empty or not, and if it is empty then we need to assign some default value to it.

Let's see how we can do it using conditional assignment.

Here, we have assigned a default value to my_list if it is empty.

Assign a value to a variable conditionally based on the presence of an element in a list.

Now you know 3 different ways to assign a value to a variable conditionally. Any of these methods can be used to assign a value when there is a condition.

The cleanest and fastest way to conditional value assignment is the ternary operator .

if-else statement is recommended to use when you have to execute a block of code based on some condition.

Happy coding! 😊

  • Python »
  • 3.12.5 Documentation »
  • The Python Language Reference »
  • 7. Simple statements
  • Theme Auto Light Dark |

7. Simple statements ¶

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line separated by semicolons. The syntax for simple statements is:

7.1. Expression statements ¶

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a function that returns no meaningful result; in Python, procedures return the value None ). Other uses of expression statements are allowed and occasionally useful. The syntax for an expression statement is:

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None , it is converted to a string using the built-in repr() function and the resulting string is written to standard output on a line by itself (except if the result is None , so that procedure calls do not cause any output.)

7.2. Assignment statements ¶

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

(See section Primaries for the syntax definitions for attributeref , subscription , and slicing .)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object (an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types and the exceptions raised are given with the definition of the object types (see section The standard type hierarchy ).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined as follows.

If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to that target.

If the target list contains one target prefixed with an asterisk, called a “starred” target: The object must be an iterable with at least as many items as there are targets in the target list, minus one. The first items of the iterable are assigned, from left to right, to the targets before the starred target. The final items of the iterable are assigned to the targets after the starred target. A list of the remaining items in the iterable is then assigned to the starred target (the list can be empty).

Else: The object must be an iterable with the same number of items as there are targets in the target list, and the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.

If the target is an identifier (name):

If the name does not occur in a global or nonlocal statement in the current code block: the name is bound to the object in the current local namespace.

Otherwise: the name is bound to the object in the global namespace or the outer namespace determined by nonlocal , respectively.

The name is rebound if it was already bound. This may cause the reference count for the object previously bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be called.

If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an object with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but not necessarily AttributeError ).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator, the right-hand side expression, a.x can access either an instance attribute or (if no instance attribute exists) a class attribute. The left-hand side target a.x is always set as an instance attribute, creating it if necessary. Thus, the two occurrences of a.x do not necessarily refer to the same attribute: if the right-hand side expression refers to a class attribute, the left-hand side creates a new instance attribute as the target of the assignment:

This description does not necessarily apply to descriptor attributes, such as properties created with property() .

If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative, the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the mapping’s key type, and the mapping is then asked to create a key/value pair which maps the subscript to the assigned object. This can either replace an existing key/value pair with the same key value, or insert a new key/value pair (if no key with the same value existed).

For user-defined objects, the __setitem__() method is called with appropriate arguments.

If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be different from the length of the assigned sequence, thus changing the length of the target sequence, if the target sequence allows it.

CPython implementation detail: In the current implementation, the syntax for targets is taken to be the same as for expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are ‘simultaneous’ (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to variables occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2] :

The specification for the *target feature.

7.2.1. Augmented assignment statements ¶

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking) and the expression list, performs the binary operation specific to the type of assignment on the two operands, and assigns the result to the original target. The target is only evaluated once.

An augmented assignment statement like x += 1 can be rewritten as x = x + 1 to achieve a similar, but not exactly equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is performed in-place , meaning that rather than creating a new object and assigning that to the target, the old object is modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side. For example, a[i] += f(x) first looks-up a[i] , then it evaluates f(x) and performs the addition, and lastly, it writes the result back to a[i] .

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible in-place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same caveat about class and instance attributes applies as for regular assignments.

7.2.2. Annotated assignment statements ¶

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional assignment statement:

The difference from normal Assignment statements is that only a single target is allowed.

The assignment target is considered “simple” if it consists of a single name that is not enclosed in parentheses. For simple assignment targets, if in class or module scope, the annotations are evaluated and stored in a special class or module attribute __annotations__ that is a dictionary mapping from variable names (mangled if private) to evaluated annotations. This attribute is writable and is automatically created at the start of class or module body execution, if annotations are found statically.

If the assignment target is not simple (an attribute, subscript node, or parenthesized name), the annotation is evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and stored in function scopes.

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations (where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the target except for the last __setitem__() or __setattr__() call.

The proposal that added syntax for annotating the types of variables (including class variables and instance variables), instead of expressing them through comments.

The proposal that added the typing module to provide a standard syntax for type annotations that can be used in static analysis tools and IDEs.

Changed in version 3.8: Now annotated assignments allow the same expressions in the right hand side as regular assignments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3. The assert statement ¶

Assert statements are a convenient way to insert debugging assertions into a program:

The simple form, assert expression , is equivalent to

The extended form, assert expression1, expression2 , is equivalent to

These equivalences assume that __debug__ and AssertionError refer to the built-in variables with those names. In the current implementation, the built-in variable __debug__ is True under normal circumstances, False when optimization is requested (command line option -O ). The current code generator emits no code for an assert statement when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to __debug__ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4. The pass statement ¶

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is required syntactically, but no code needs to be executed, for example:

7.5. The del statement ¶

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the name occurs in a global statement in the same code block. If the name is unbound, a NameError exception will be raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a slicing is in general equivalent to assignment of an empty slice of the right type (but even this is determined by the sliced object).

Changed in version 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free variable in a nested block.

7.6. The return statement ¶

return may only occur syntactically nested in a function definition, not within a nested class definition.

If an expression list is present, it is evaluated, else None is substituted.

return leaves the current function call with the expression list (or None ) as return value.

When return passes control out of a try statement with a finally clause, that finally clause is executed before really leaving the function.

In a generator function, the return statement indicates that the generator is done and will cause StopIteration to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the StopIteration.value attribute.

In an asynchronous generator function, an empty return statement indicates that the asynchronous generator is done and will cause StopAsyncIteration to be raised. A non-empty return statement is a syntax error in an asynchronous generator function.

7.7. The yield statement ¶

A yield statement is semantically equivalent to a yield expression . The yield statement can be used to omit the parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield statements

are equivalent to the yield expression statements

Yield expressions and statements are only used when defining a generator function, and are only used in the body of the generator function. Using yield in a function definition is sufficient to cause that definition to create a generator function instead of a normal function.

For full details of yield semantics, refer to the Yield expressions section.

7.8. The raise statement ¶

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known as the active exception . If there isn’t currently an active exception, a RuntimeError exception is raised indicating that this is an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance of BaseException . If it is a class, the exception instance will be obtained when needed by instantiating the class with no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the __traceback__ attribute. You can create an exception and set your own traceback in one step using the with_traceback() exception method (which returns the same exception instance, with its traceback set to its argument), like so:

The from clause is used for exception chaining: if given, the second expression must be another exception class or instance. If the second expression is an exception instance, it will be attached to the raised exception as the __cause__ attribute (which is writable). If the expression is an exception class, the class will be instantiated and the resulting exception instance will be attached to the raised exception as the __cause__ attribute. If the raised exception is not handled, both exceptions will be printed:

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled. An exception may be handled when an except or finally clause, or a with statement, is used. The previous exception is then attached as the new exception’s __context__ attribute:

Exception chaining can be explicitly suppressed by specifying None in the from clause:

Additional information on exceptions can be found in section Exceptions , and information about handling exceptions is in section The try statement .

Changed in version 3.3: None is now permitted as Y in raise X from Y .

Added the __suppress_context__ attribute to suppress automatic display of the exception context.

Changed in version 3.11: If the traceback of the active exception is modified in an except clause, a subsequent raise statement re-raises the exception with the modified traceback. Previously, the exception was re-raised with the traceback it had when it was caught.

7.9. The break statement ¶

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition within that loop.

It terminates the nearest enclosing loop, skipping the optional else clause if the loop has one.

If a for loop is terminated by break , the loop control target keeps its current value.

When break passes control out of a try statement with a finally clause, that finally clause is executed before really leaving the loop.

7.10. The continue statement ¶

continue may only occur syntactically nested in a for or while loop, but not nested in a function or class definition within that loop. It continues with the next cycle of the nearest enclosing loop.

When continue passes control out of a try statement with a finally clause, that finally clause is executed before really starting the next loop cycle.

7.11. The import statement ¶

The basic import statement (no from clause) is executed in two steps:

find a module, loading and initializing it if necessary

define a name or names in the local namespace for the scope where the import statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for each clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules, are described in greater detail in the section on the import system , which also describes the various types of packages and modules that can be imported, as well as all the hooks that can be used to customize the import system. Note that failures in this step may indicate either that the module could not be located, or that an error occurred while initializing the module, which includes execution of the module’s code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three ways:

If the module name is followed by as , then the name following as is bound directly to the imported module.

If no other name is specified, and the module being imported is a top level module, the module’s name is bound in the local namespace as a reference to the imported module

If the module being imported is not a top level module, then the name of the top level package that contains the module is bound in the local namespace as a reference to the top level package. The imported module must be accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:

find the module specified in the from clause, loading and initializing it if necessary;

for each of the identifiers specified in the import clauses:

check if the imported module has an attribute by that name

if not, attempt to import a submodule with that name and then check the imported module again for that attribute

if the attribute is not found, ImportError is raised.

otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if it is present, otherwise using the attribute name

If the list of identifiers is replaced by a star ( '*' ), all public names defined in the module are bound in the local namespace for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named __all__ ; if defined, it must be a sequence of strings which are names defined or imported by that module. The names given in __all__ are all considered public and are required to exist. If __all__ is not defined, the set of public names includes all names found in the module’s namespace which do not begin with an underscore character ( '_' ). __all__ should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such as library modules which were imported and used within the module).

The wild card form of import — from module import * — is only allowed at the module level. Attempting to use it in class or function definitions will raise a SyntaxError .

When specifying what module to import you do not have to specify the absolute name of the module. When a module or package is contained within another package it is possible to make a relative import within the same top package without having to mention the package name. By using leading dots in the specified module or package after from you can specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot means the current package where the module making the import exists. Two dots means up one package level. Three dots is up two levels, etc. So if you execute from . import mod from a module in the pkg package then you will end up importing pkg.mod . If you execute from ..subpkg2 import mod from within pkg.subpkg1 you will import pkg.subpkg2.mod . The specification for relative imports is contained in the Package Relative Imports section.

importlib.import_module() is provided to support applications that determine dynamically the modules to be loaded.

Raises an auditing event import with arguments module , filename , sys.path , sys.meta_path , sys.path_hooks .

7.11.1. Future statements ¶

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to the language. It allows use of the new features on a per-module basis before the release in which the feature becomes standard.

A future statement must appear near the top of the module. The only lines that can appear before a future statement are:

the module docstring (if any),

blank lines, and

other future statements.

The only feature that requires using the future statement is annotations (see PEP 563 ).

All historical features enabled by the future statement are still recognized by Python 3. The list includes absolute_import , division , generators , generator_stop , unicode_literals , print_function , nested_scopes and with_statement . They are all redundant because they are always enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs are often implemented by generating different code. It may even be the case that a new feature introduces new incompatible syntax (such as a new reserved word), in which case the compiler may need to parse the module differently. Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module __future__ , described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec() and compile() that occur in a module M containing a future statement will, by default, use the new syntax or semantics associated with the future statement. This can be controlled by optional arguments to compile() — see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an interpreter is started with the -i option, is passed a script name to execute, and the script includes a future statement, it will be in effect in the interactive session started after the script is executed.

The original proposal for the __future__ mechanism.

7.12. The global statement ¶

The global statement is a declaration which holds for the entire current code block. It means that the listed identifiers are to be interpreted as globals. It would be impossible to assign to a global variable without global , although free variables may refer to globals without being declared global.

Names listed in a global statement must not be used in the same code block textually preceding that global statement.

Names listed in a global statement must not be defined as formal parameters, or as targets in with statements or except clauses, or in a for target list, class definition, function definition, import statement, or variable annotation.

CPython implementation detail: The current implementation does not enforce some of these restrictions, but programs should not abuse this freedom, as future implementations may enforce them or silently change the meaning of the program.

Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the global statement. In particular, a global statement contained in a string or code object supplied to the built-in exec() function does not affect the code block containing the function call, and code contained in such a string is unaffected by global statements in the code containing the function call. The same applies to the eval() and compile() functions.

7.13. The nonlocal statement ¶

When the definition of a function or class is nested (enclosed) within the definitions of other functions, its nonlocal scopes are the local scopes of the enclosing functions. The nonlocal statement causes the listed identifiers to refer to names previously bound in nonlocal scopes. It allows encapsulated code to rebind such nonlocal identifiers. If a name is bound in more than one nonlocal scope, the nearest binding is used. If a name is not bound in any nonlocal scope, or if there is no nonlocal scope, a SyntaxError is raised.

The nonlocal statement applies to the entire scope of a function or class body. A SyntaxError is raised if a variable is used or assigned to prior to its nonlocal declaration in the scope.

The specification for the nonlocal statement.

Programmer’s note: nonlocal is a directive to the parser and applies only to code parsed along with it. See the note for the global statement.

7.14. The type statement ¶

The type statement declares a type alias, which is an instance of typing.TypeAliasType .

For example, the following statement creates a type alias:

This code is roughly equivalent to:

annotation-def indicates an annotation scope , which behaves mostly like a function, but with several small differences.

The value of the type alias is evaluated in the annotation scope. It is not evaluated when the type alias is created, but only when the value is accessed through the type alias’s __value__ attribute (see Lazy evaluation ). This allows the type alias to refer to names that are not yet defined.

Type aliases may be made generic by adding a type parameter list after the name. See Generic type aliases for more.

type is a soft keyword .

Added in version 3.12.

Introduced the type statement and syntax for generic classes and functions.

Table of Contents

  • 7.1. Expression statements
  • 7.2.1. Augmented assignment statements
  • 7.2.2. Annotated assignment statements
  • 7.3. The assert statement
  • 7.4. The pass statement
  • 7.5. The del statement
  • 7.6. The return statement
  • 7.7. The yield statement
  • 7.8. The raise statement
  • 7.9. The break statement
  • 7.10. The continue statement
  • 7.11.1. Future statements
  • 7.12. The global statement
  • 7.13. The nonlocal statement
  • 7.14. The type statement

Previous topic

6. Expressions

8. Compound statements

  • Report a Bug
  • Show Source

I'm trying to figure out why a 3rd party module import no longer works after chmod +x

The python script works when it’s not an executable. After chmod +x, I get this error. The traceback is just the import statement.

I tried both of these shebang lines.

The python path is set to the conda environment’s. However, I also installed drawsvg for the entire system.

Whether I’m in the regular system, conda base, or conda project, the python version is the same.

Whether I’m in the regular system, conda base, or conda project, drawsvg always shows the same way.

I tried changing the shebang line and installing drawsvg everywhere.

Is the drawsvg module a .so or a .py? Alleast with .py files the eXexcute permission makes no difference.

What exactly did your chmod +x do? What does ls -l show for the drawsvg module? Try python -v then import drawsvg to see where python looks for the module.

So, when you run the python script as python3 your-script.py , it’s executed by /home/sl/anaconda3/envs/project/bin/python3 , but when you run it as ./your-script.py , it’s being executed by /usr/bin/python3 . These are not the same even if you have installed drawsvg globally.

Try #! /usr/bin/env python3 and #! /home/sl/anaconda3/envs/project/bin/python3 instead, I bet one of them will work.

Never use an interpreter whose base name is python to run Python 3 programs. That name must be kept permanently reserved for Python 2.

What is sys.path ?

Likely tangential to your problem, but you generally want to avoid using which . In most shells, the path that’s returned by which isn’t necessarily what gets run when you type the same name at the command line. Prefer using whence , type -a , or command -v , depending on your use case and shell.

See your shell’s man page for which and this SE question for more details.

Just to this: try using:

adjusting python to python3 or to the full path to the python executable you’re using.

This is because pip is bound to a specific python and that might not be the one you’re using. By invoking the pip module from a specific python you get information about that pythons packages.

  • Stack Overflow for Teams Where developers & technologists share private knowledge with coworkers
  • Advertising & Talent Reach devs & technologists worldwide about your product, service or employer brand
  • OverflowAI GenAI features for Teams
  • OverflowAPI Train & fine-tune LLMs
  • Labs The future of collective knowledge sharing
  • About the company Visit the blog

Collectives™ on Stack Overflow

Find centralized, trusted content and collaborate around the technologies you use most.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

Get early access and see previews of new features.

Assign variable in while loop condition in Python?

I just came across this piece of code

and thought, there must be a better way to do this, than using an infinite loop with break .

So I tried:

and, obviously, got an error.

Is there any way to avoid using a break in that situation?

Ideally, you'd want to avoid saying readline twice... IMHO, repeating is even worse than just a break , especially if the statement is complex.

  • variable-assignment

Community's user avatar

  • 3 While this is a good question and I think the for line in data solution is a good fit for this specific problem, I don't think there's anything wrong with the while True: ... break idiom. Don't be afraid of it. :-) –  Kirk Strauser Commented Jul 8, 2011 at 22:53
  • 4 These answers provide alternatives to assignment in the conditional of the while-loop, but really don't answer the question: is there a way to do assignment in the while-loop? I'm running into this same problem, trying to do while (character = string[i]): I know that a for-loop is a better way to iterate over a string, but my conditional is actually much more complex than this, and I want to do this assignment as the right-hand side of an "or" within the conditional. –  user2760926 Commented Sep 9, 2013 at 9:30
  • 1 @KirkStrauser The problem with the break construction is, that it is using four lines to express something, which other languages can do in just one line. However it does the right thing. None of the answers given so far has provided a better general purpose solution. They either only work with iterators or duplicate the assignment, which is worse than three extra lines of code for the break version. –  kasperd Commented Nov 21, 2014 at 3:18

10 Answers 10

Starting Python 3.8 , and the introduction of assignment expressions (PEP 572) ( := operator), it's now possible to capture the condition value ( data.readline() ) of the while loop as a variable ( line ) in order to re-use it within the body of the loop:

Xavier Guihot's user avatar

  • 5 As a side note, an explicit condition may be written as while (line := data.readline()) is not None: –  Hi-Angel Commented May 18, 2023 at 15:00

Try this one, works for files opened with open('filename')

Niklas Claesson's user avatar

  • 3 +1 for being exemplified in the python core documentation: docs.python.org/2/library/functions.html#iter –  ThorSummoner Commented Oct 15, 2014 at 2:59

If you aren't doing anything fancier with data, like reading more lines later on, there's always:

Ned Batchelder's user avatar

  • I was trying to play Stump The Sushi Eater by thinking of a type of object data might be that would support .readline() but not __iter__(). I'm drawing a blank. Do you know of any offhand? –  Kirk Strauser Commented Jul 8, 2011 at 22:32
  • Doesn't this require reading the entire file into memory first? That doesn't seem applicable for large files. (Especially if the file is larger than your ram can hold!) –  ThorSummoner Commented Oct 15, 2014 at 2:48
  • 1 If data is a file object (which is an odd name, but that's the way the OP used it), then the entire file will not be read into memory. for line in data will iterate over lines, reading them as needed. –  Ned Batchelder Commented Oct 15, 2014 at 11:37
  • 1 @NedBatchelder: according to the docs at docs.python.org/2/library/stdtypes.html#file.next - and my unfortunate experience - the filepointer is not where you'd expect it to be (e.g. for a data.tell() ) with for line in data and might even be at the end of the file even before the last line is read. So, it doesn't quite "read them as needed" if you're counting on python/os to do the accounting of where you are in the file. –  mpag Commented Jan 5, 2017 at 18:25
  • 2 @mpag There's definitely no guarantee (and I didn't mean to imply there was) that each line is read precisely as needed. I was countering the notion that the entire file would be read into memory. If you are iterating by lines, you can't make any assumptions about where the file pointer is. –  Ned Batchelder Commented Jan 5, 2017 at 22:23

This isn't much better, but this is the way I usually do it. Python doesn't return the value upon variable assignment like other languages (e.g., Java).

cwallenpoole's user avatar

  • 7 I'm not a big fan of that, especially if ... do stuff ... is sizable as it requires you to keep the flow of the entire loop in mind as you hack around on it. For example, if you add something like if line.startswith('foo'): continue later without realizing that line is only updated at the very end, then you've accidentally created an infinite loop. –  Kirk Strauser Commented Jul 8, 2011 at 22:22
  • 1 @Kirk - In part, I agree ,but the alternatives aren't much better. Ideally, the class you're using implements a generator and you can just use a for loop, but there are certain cases where you need a while loop ( e.g., 'while cur_time>expected_time:'). I don't know if the OPs post is much better, but I suppose its a matter of opinion :) –  dfb Commented Jul 8, 2011 at 22:33
  • A classic while loop, and understandable for any quality of programmer. Probably the best choice for future maintenance purposes. –  Kim Commented Jan 24, 2019 at 17:09
  • 2 @Kirk Strauser One could argue if ... do stuff ... is so long you lost track of what's going on in your loop then you're probably doing it wrong. –  arkan Commented Apr 26, 2019 at 6:11

? It large depends on the semantics of the data object's readline semantics. If data is a file object, that'll work.

Kirk Strauser's user avatar

Will iterate over each line in the file , rather than using a while . It is a much more common idiom for the task of reading a file in my experience (in Python).

In fact, data does not have to be a file but merely provide an iterator.

shelhamer's user avatar

According to the FAQ from Python's documentation, iterating over the input with for construct or running an infinite while True loop and using break statement to terminate it, are preferred and idiomatic ways of iteration.

Mr. Deathless's user avatar

If data is a file, as stated in other answers, using for line in file will work fine. If data is not a file, and a random data reading object, then you should implement it as an iterator, implementing __iter__ and next methods.

The next method should to the reading, check if there is more data, and if not, raise StopIteration . If you do this, you can continue using the for line in data idiom.

rafalotufo's user avatar

You could do:

brandon's user avatar

  • 8 That will execute the body of the loop one more time than it is supposed to. –  kasperd Commented Nov 21, 2014 at 3:15

If data has a function that returns an iterator instead of readline (say data.iterate ), you could simply do:

TorelTwiddler's user avatar

  • 1 Don't do that unless you know data is tiny (and really not even then) as .readlines() slurps the entire contents into RAM, but it doesn't really buy you anything in return. –  Kirk Strauser Commented Jul 8, 2011 at 22:30
  • It should work fine if the function returns an iterator instead of the entire list, correct? –  TorelTwiddler Commented Jul 8, 2011 at 22:38
  • Yes, but I haven't seen .readlines() implemented that way. The docs for file.readlines() say that it will "[r]ead until EOF using readline() and return a list containing the lines thus read." –  Kirk Strauser Commented Jul 8, 2011 at 22:49
  • I like that answer better. :-) However, the usual name for iterate is __iter__ , and then you can re-write the loop as for line in data . –  Kirk Strauser Commented Jul 8, 2011 at 22:55
  • True, but I'm going to leave it like this, since there are already 4 other answers that have for line in data . =D –  TorelTwiddler Commented Jul 8, 2011 at 23:02

Your Answer

Reminder: Answers generated by artificial intelligence tools are not allowed on Stack Overflow. Learn more

Sign up or log in

Post as a guest.

Required, but never shown

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy .

Not the answer you're looking for? Browse other questions tagged python while-loop variable-assignment or ask your own question .

  • The Overflow Blog
  • Ryan Dahl explains why Deno had to evolve with version 2.0
  • From PHP to JavaScript to Kubernetes: how one backend engineer evolved over time
  • Featured on Meta
  • We've made changes to our Terms of Service & Privacy Policy - July 2024
  • Bringing clarity to status tag usage on meta sites
  • Feedback requested: How do you use tag hover descriptions for curating and do...
  • What does a new user need in a homepage experience on Stack Overflow?

Hot Network Questions

  • How should I respond to a former student from my old institution asking for a reference?
  • Are there any original heat shield tiles on any of the retired space shuttles that flew to space?
  • How can I push back on my co-worker's changes that I disagree with?
  • What is the lesson of the Book of Iyov for the "average" person
  • Sticker on caption phone says that using the captions can be illegal. Why?
  • \includegraphics not reading \newcommand
  • How to remove a file which name seems to be "." on an SMB share?
  • Can I repair these deck support posts, or do I need to replace them?
  • Is there anything that stops the majority shareholder(s) from destroying company value?
  • Miracle Miracle Octad Generator Generator
  • Do cities usually form at the mouth of rivers or closer to the headwaters?
  • Can a "sharp turn" on a trace with an SMD resistor also present a risk of reflection?
  • Why do combinatorists care about Kazhdan–Lusztig polynomials?
  • I can't select a certain record with like %value%
  • Why would aliens want to invade Earth?
  • In the US, can I buy iPhone and Android phones and claim them as expense?
  • Should I be worried about this giant crack?
  • Feasibility of self-modifying prompts for enhanced performance in Generative AI
  • Non decreasing function for utility transformation
  • What is the difference between an `.iso` OS for a network and an `.iso` OS for CD?
  • Thai word not breaking properly between lines, in LuaLaTeX
  • Aberrant Mind spell swapping
  • If you get pulled for secondary inspection at immigration, missing flight, will the airline rebook you?
  • 80 or 90ies Anime, something about a submarine and apocalypse?

which of these is an assignment statement in python

IMAGES

  1. Assignment Statement in Python

    which of these is an assignment statement in python

  2. PPT

    which of these is an assignment statement in python

  3. Assigning multiple variables in one line in Python

    which of these is an assignment statement in python

  4. What Is An Assignment Statement In Python

    which of these is an assignment statement in python

  5. #5 Variables, Assignment statements in Python || Python Course 2020

    which of these is an assignment statement in python

  6. Assignment operators in python

    which of these is an assignment statement in python

COMMENTS

  1. Different Forms of Assignment Statements in Python

    We use Python assignment statements to assign objects to names. The target of an assignment statement is written on the left side of the equal sign (=), and the object on the right can be an arbitrary expression that computes an object. ... Predict the output of these two expressions on Python console On console Geek = (1, 2, [8, 9]) Geek[2 ...

  2. Python's Assignment Operator: Write Robust Assignments

    Here, variable represents a generic Python variable, while expression represents any Python object that you can provide as a concrete value—also known as a literal—or an expression that evaluates to a value. To execute an assignment statement like the above, Python runs the following steps: Evaluate the right-hand expression to produce a concrete value or object.

  3. Python Assignment Operators

    Python Assignment Operators. Assignment operators are used to assign values to variables: Operator. Example. Same As. Try it. =. x = 5. x = 5.

  4. Assignment Operators in Python

    The Walrus Operator in Python is a new assignment operator which is introduced in Python version 3.8 and higher. This operator is used to assign a value to a variable within an expression. Syntax: a := expression. Example: In this code, we have a Python list of integers. We have used Python Walrus assignment operator within the Python while loop.

  5. Assignment Statement in Python

    Learn the basics of assignment statements in Python in this tutorial. We'll cover the syntax and usage of the assignment operator, including multiple assignm...

  6. Different Forms of Assignment Statements in Python

    Assignment statement in python is the statement used to assign the value to the specified variable. The value assigned to the variable can be of any data type supported by python programming language such as integer, string, float Boolean, list, tuple, dictionary, set etc. Types of assignment statements

  7. Variables and Assignment

    In Python, a single equals sign = is the "assignment operator." (A double equals sign == is the "real" equals sign.) Variables are names for values. In Python the = symbol assigns the value on the right to the name on the left. The variable is created when a value is assigned to it. Here, Python assigns an age to a variable age and a ...

  8. Assignment Expressions: The Walrus Operator

    The Python 3.8 documentation also includes some good examples of assignment expressions. Here are a few resources for more info on using bpython, the REPL (Read-Eval-Print Loop) tool used in most of these videos: Discover bpython: A Python REPL With IDE-Like Features; A better Python REPL: bpython vs python; bpython Homepage; bpython Docs

  9. 6.3 Assignment statements

    An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right. ... (This rule is relaxed as of Python 1.5; in earlier versions, the object had to be a tuple. Since ...

  10. Assignment Statements

    Learn about assignment statements in Python. Syntax. Assignment statements consist of a variable, an equal sign, and an expression.. Here's an example:

  11. Assignment Operators in Python

    Types of Assignment Operators in Python. There are three types of assignment operators in Python: 1. Simple Python Assignment Operator (=) This assigns the value on the right-hand side (RHS) to the variable on the left-hand side (LHS). You can use a literal, another variable, or an expression in the assignment statement.

  12. Assignment Operators in Python

    a /= b. %=. Divide AND will divide the left operand with the right operand and then assign to the left operand. a %= b. <<=. It functions bitwise left on operands and will assign value to the left operand. a <<= b. >>=. This operator will perform right shift on operands and can assign value to the left operand.

  13. How To Use Assignment Expressions in Python

    In this tutorial, you used assignment expressions to make compact sections of Python code that assign values to variables inside of if statements, while loops, and list comprehensions. For more information on other assignment expressions, you can view PEP 572 —the document that initially proposed adding assignment expressions to Python.

  14. Introduction into Python Statements: Assignment, Conditional Examples

    Expression statements in Python are lines of code that evaluate and produce a value. They are used to assign values to variables, call functions, and perform other operations that produce a result. x = 5. y = x + 3. print(y) In this example, we assign the value 5 to the variable x, then add 3 to x and assign the result ( 8) to the variable y.

  15. Python Statements With Examples- PYnative

    A statement is an instruction that a Python interpreter can execute. So, in simple words, we can say anything written in Python is a statement. Python statement ends with the token NEWLINE character. It means each line in a Python script is a statement. For example, a = 10 is an assignment statement. where a is a variable name and

  16. 1.6. Variables and Assignment

    A variable is a name for a value. An assignment statement associates a variable name on the left of the equal sign with the value of an expression calculated from the right of the equal sign. Enter. width. Once a variable is assigned a value, the variable can be used in place of that value. The response to the expression width is the same as if ...

  17. Python Conditional Assignment (in 3 Ways)

    Let's see a code snippet to understand it better. a = 10. b = 20 # assigning value to variable c based on condition. c = a if a > b else b. print(c) # output: 20. You can see we have conditionally assigned a value to variable c based on the condition a > b. 2. Using if-else statement.

  18. What actually is the assignment symbol in python?

    1. Most sources online call = (and +=, -=, etc...) an assignment operator (for python). This makes sense in most languages, however, not in python. An operator takes one or more operands, returns a value, and forms an expression. However, in python, assignment is not an expression, and assignment does not yield a value.

  19. 7. Simple statements

    Annotated assignment statements¶ Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional assignment statement: annotated_assignment_stmt::= augtarget ":" expression ["=" (starred_expression | yield_expression)] The difference from normal Assignment statements is that only a single ...

  20. python

    The one liner doesn't work because, in Python, assignment (fruit = isBig(y)) is a statement, not an expression.In C, C++, Perl, and countless other languages it is an expression, and you can put it in an if or a while or whatever you like, but not in Python, because the creators of Python thought that this was too easily misused (or abused) to write "clever" code (like you're trying to).

  21. Python Multiple Assignment Statements In One Line

    All credit goes to @MarkDickinson, who answered this in a comment: Notice the + in (target_list "=")+, which means one or more copies.In foo = bar = 5, there are two (target_list "=") productions, and the expression_list part is just 5. All target_list productions (i.e. things that look like foo =) in an assignment statement get assigned, from left to right, to the expression_list on the right ...

  22. python

    site.py env_base is only used on these lines, putting its assignment on the if moves it as the "header" of the block. Current: ... Note that in Python, unlike C, assignment cannot occur inside expressions. C programmers may grumble about this, but it avoids a common class of problems encountered in C programs: typing = in an expression when ...

  23. I'm trying to figure out why a 3rd party module import no longer works

    The traceback is just the import statement. import drawsvg ModuleNotFoundError: No module named 'drawsvg' I tried both of these s… The python script works when it's not an executable. ... No module named 'drawsvg' I tried both of these shebang lines. #!/usr/bin/python #!/usr/bin/python3 The python path is set to the conda environment's. ...

  24. Assign variable in while loop condition in Python?

    Starting Python 3.8, and the introduction of assignment expressions (PEP 572) ( := operator), it's now possible to capture the condition value ( data.readline()) of the while loop as a variable ( line) in order to re-use it within the body of the loop: while line := data.readline(): do_smthg(line)