What Is A Research Hypothesis?
A Plain-Language Explainer + Practical Examples
Research Hypothesis 101
- What is a hypothesis ?
- What is a research hypothesis (scientific hypothesis)?
- Requirements for a research hypothesis
- Definition of a research hypothesis
- The null hypothesis
What is a hypothesis?
Let’s start with the general definition of a hypothesis (not a research hypothesis or scientific hypothesis), according to the Cambridge Dictionary:
Hypothesis: an idea or explanation for something that is based on known facts but has not yet been proved.
In other words, it’s a statement that provides an explanation for why or how something works, based on facts (or some reasonable assumptions), but that has not yet been specifically tested . For example, a hypothesis might look something like this:
Hypothesis: sleep impacts academic performance.
This statement predicts that academic performance will be influenced by the amount and/or quality of sleep a student engages in – sounds reasonable, right? It’s based on reasonable assumptions , underpinned by what we currently know about sleep and health (from the existing literature). So, loosely speaking, we could call it a hypothesis, at least by the dictionary definition.
But that’s not good enough…
Unfortunately, that’s not quite sophisticated enough to describe a research hypothesis (also sometimes called a scientific hypothesis), and it wouldn’t be acceptable in a dissertation, thesis or research paper . In the world of academic research, a statement needs a few more criteria to constitute a true research hypothesis .
What is a research hypothesis?
A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes – specificity , clarity and testability .
Let’s take a look at these more closely.
Need a helping hand?
Hypothesis Essential #1: Specificity & Clarity
A good research hypothesis needs to be extremely clear and articulate about both what’ s being assessed (who or what variables are involved ) and the expected outcome (for example, a difference between groups, a relationship between variables, etc.).
Let’s stick with our sleepy students example and look at how this statement could be more specific and clear.
Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.
As you can see, the statement is very specific as it identifies the variables involved (sleep hours and test grades), the parties involved (two groups of students), as well as the predicted relationship type (a positive relationship). There’s no ambiguity or uncertainty about who or what is involved in the statement, and the expected outcome is clear.
Contrast that to the original hypothesis we looked at – “Sleep impacts academic performance” – and you can see the difference. “Sleep” and “academic performance” are both comparatively vague , and there’s no indication of what the expected relationship direction is (more sleep or less sleep). As you can see, specificity and clarity are key.
Hypothesis Essential #2: Testability (Provability)
A statement must be testable to qualify as a research hypothesis. In other words, there needs to be a way to prove (or disprove) the statement. If it’s not testable, it’s not a hypothesis – simple as that.
For example, consider the hypothesis we mentioned earlier:
We could test this statement by undertaking a quantitative study involving two groups of students, one that gets 8 or more hours of sleep per night for a fixed period, and one that gets less. We could then compare the standardised test results for both groups to see if there’s a statistically significant difference.
Again, if you compare this to the original hypothesis we looked at – “Sleep impacts academic performance” – you can see that it would be quite difficult to test that statement, primarily because it isn’t specific enough. How much sleep? By who? What type of academic performance?
So, remember the mantra – if you can’t test it, it’s not a hypothesis 🙂
Defining A Research Hypothesis
You’re still with us? Great! Let’s recap and pin down a clear definition of a hypothesis.
A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable.
So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you’ll not only have rock-solid hypotheses but you’ll also ensure a clear focus for your entire research project.
What about the null hypothesis?
You may have also heard the terms null hypothesis , alternative hypothesis, or H-zero thrown around. At a simple level, the null hypothesis is the counter-proposal to the original hypothesis.
For example, if the hypothesis predicts that there is a relationship between two variables (for example, sleep and academic performance), the null hypothesis would predict that there is no relationship between those variables.
At a more technical level, the null hypothesis proposes that no statistical significance exists in a set of given observations and that any differences are due to chance alone.
And there you have it – hypotheses in a nutshell.
If you have any questions, be sure to leave a comment below and we’ll do our best to help you. If you need hands-on help developing and testing your hypotheses, consider our private coaching service , where we hold your hand through the research journey.
Learn More About Methodology
How To Choose A Tutor For Your Dissertation
Hiring the right tutor for your dissertation or thesis can make the difference between passing and failing. Here’s what you need to consider.
5 Signs You Need A Dissertation Helper
Discover the 5 signs that suggest you need a dissertation helper to get unstuck, finish your degree and get your life back.
Triangulation: The Ultimate Credibility Enhancer
Triangulation is one of the best ways to enhance the credibility of your research. Learn about the different options here.
Research Limitations 101: What You Need To Know
Learn everything you need to know about research limitations (AKA limitations of the study). Includes practical examples from real studies.
In Vivo Coding 101: Full Explainer With Examples
Learn about in vivo coding, a popular qualitative coding technique ideal for studies where the nuances of language are central to the aims.
📄 FREE TEMPLATES
Research Topic Ideation
Proposal Writing
Literature Review
Methodology & Analysis
Academic Writing
Referencing & Citing
Apps, Tools & Tricks
The Grad Coach Podcast
18 Comments
Very useful information. I benefit more from getting more information in this regard.
Very great insight,educative and informative. Please give meet deep critics on many research data of public international Law like human rights, environment, natural resources, law of the sea etc
In a book I read a distinction is made between null, research, and alternative hypothesis. As far as I understand, alternative and research hypotheses are the same. Can you please elaborate? Best Afshin
This is a self explanatory, easy going site. I will recommend this to my friends and colleagues.
Very good definition. How can I cite your definition in my thesis? Thank you. Is nul hypothesis compulsory in a research?
It’s a counter-proposal to be proven as a rejection
Please what is the difference between alternate hypothesis and research hypothesis?
It is a very good explanation. However, it limits hypotheses to statistically tasteable ideas. What about for qualitative researches or other researches that involve quantitative data that don’t need statistical tests?
In qualitative research, one typically uses propositions, not hypotheses.
could you please elaborate it more
I’ve benefited greatly from these notes, thank you.
This is very helpful
well articulated ideas are presented here, thank you for being reliable sources of information
Excellent. Thanks for being clear and sound about the research methodology and hypothesis (quantitative research)
I have only a simple question regarding the null hypothesis. – Is the null hypothesis (Ho) known as the reversible hypothesis of the alternative hypothesis (H1? – How to test it in academic research?
Angelo Loye Very fantastic information. From here I am going straightaway to present the research hypothesis One question, do we apply hypothesis in qualitative research? What nul hypothesi Otherwise I appreciate your research methodo
this is very important note help me much more
Hi” best wishes to you and your very nice blog”
Trackbacks/Pingbacks
- What Is Research Methodology? Simple Definition (With Examples) - Grad Coach - […] Contrasted to this, a quantitative methodology is typically used when the research aims and objectives are confirmatory in nature. For example,…
Submit a Comment Cancel reply
Your email address will not be published. Required fields are marked *
Save my name, email, and website in this browser for the next time I comment.
Submit Comment
- Print Friendly
Educational resources and simple solutions for your research journey
What is a Research Hypothesis: How to Write it, Types, and Examples
Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.
It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .
Table of Contents
What is a hypothesis ?
A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.
What is a research hypothesis ?
Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”
A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.
Characteristics of a good hypothesis
Here are the characteristics of a good hypothesis :
- Clearly formulated and free of language errors and ambiguity
- Concise and not unnecessarily verbose
- Has clearly defined variables
- Testable and stated in a way that allows for it to be disproven
- Can be tested using a research design that is feasible, ethical, and practical
- Specific and relevant to the research problem
- Rooted in a thorough literature search
- Can generate new knowledge or understanding.
How to create an effective research hypothesis
A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.
Let’s look at each step for creating an effective, testable, and good research hypothesis :
- Identify a research problem or question: Start by identifying a specific research problem.
- Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.
- Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.
- State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.
- Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.
- Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .
Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.
How to write a research hypothesis
When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.
An example of a research hypothesis in this format is as follows:
“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”
Population: athletes
Independent variable: daily cold water showers
Dependent variable: endurance
You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.
Research hypothesis checklist
Following from above, here is a 10-point checklist for a good research hypothesis :
- Testable: A research hypothesis should be able to be tested via experimentation or observation.
- Specific: A research hypothesis should clearly state the relationship between the variables being studied.
- Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.
- Falsifiable: A research hypothesis should be able to be disproven through testing.
- Clear and concise: A research hypothesis should be stated in a clear and concise manner.
- Logical: A research hypothesis should be logical and consistent with current understanding of the subject.
- Relevant: A research hypothesis should be relevant to the research question and objectives.
- Feasible: A research hypothesis should be feasible to test within the scope of the study.
- Reflects the population: A research hypothesis should consider the population or sample being studied.
- Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.
By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.
Types of research hypothesis
Different types of research hypothesis are used in scientific research:
1. Null hypothesis:
A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.
Example: “ The newly identified virus is not zoonotic .”
2. Alternative hypothesis:
This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.
Example: “ The newly identified virus is zoonotic .”
3. Directional hypothesis :
This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.
Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”
4. Non-directional hypothesis:
While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.
Example, “ Cats and dogs differ in the amount of affection they express .”
5. Simple hypothesis :
A simple hypothesis only predicts the relationship between one independent and another independent variable.
Example: “ Applying sunscreen every day slows skin aging .”
6 . Complex hypothesis :
A complex hypothesis states the relationship or difference between two or more independent and dependent variables.
Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)
7. Associative hypothesis:
An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.
Example: “ There is a positive association between physical activity levels and overall health .”
8 . Causal hypothesis:
A causal hypothesis proposes a cause-and-effect interaction between variables.
Example: “ Long-term alcohol use causes liver damage .”
Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.
Research hypothesis examples
Here are some good research hypothesis examples :
“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”
“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”
“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”
“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”
Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.
Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:
“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)
“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)
“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)
Importance of testable hypothesis
If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.
To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.
Frequently Asked Questions (FAQs) on research hypothesis
1. What is the difference between research question and research hypothesis ?
A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.
2. When to reject null hypothesis ?
A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.
3. How can I be sure my hypothesis is testable?
A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:
- Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.
- The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.
- You should be able to collect the necessary data within the constraints of your study.
- It should be possible for other researchers to replicate your study, using the same methods and variables.
- Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.
- The hypothesis should be able to be disproven or rejected through the collection of data.
4. How do I revise my research hypothesis if my data does not support it?
If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.
5. I am performing exploratory research. Do I need to formulate a research hypothesis?
As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.
6. How is a research hypothesis different from a research question?
A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.
7. Can a research hypothesis change during the research process?
Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.
8. How many hypotheses should be included in a research study?
The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.
9. Can research hypotheses be used in qualitative research?
Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.
Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.
Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place – Get All Access now starting at just $14 a month !
Related Posts
Paperpal Review: Key Features, Pricing Plans, and How-to-Use
How to Structure a Dissertation?
- Privacy Policy
Home » What is a Hypothesis – Types, Examples and Writing Guide
What is a Hypothesis – Types, Examples and Writing Guide
Table of Contents
Definition:
Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.
Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.
Types of Hypothesis
Types of Hypothesis are as follows:
Research Hypothesis
A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.
Null Hypothesis
The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.
Alternative Hypothesis
An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.
Directional Hypothesis
A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.
Non-directional Hypothesis
A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.
Statistical Hypothesis
A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.
Composite Hypothesis
A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.
Empirical Hypothesis
An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.
Simple Hypothesis
A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.
Complex Hypothesis
A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.
Applications of Hypothesis
Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:
- Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
- Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
- Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
- Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
- Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
- Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.
How to write a Hypothesis
Here are the steps to follow when writing a hypothesis:
Identify the Research Question
The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.
Conduct a Literature Review
Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.
Determine the Variables
The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.
Formulate the Hypothesis
Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.
Write the Null Hypothesis
The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.
Refine the Hypothesis
After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.
Examples of Hypothesis
Here are a few examples of hypotheses in different fields:
- Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
- Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
- Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
- Education : “Implementing a new teaching method will result in higher student achievement scores.”
- Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
- Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
- Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”
Purpose of Hypothesis
The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.
The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.
In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.
When to use Hypothesis
Here are some common situations in which hypotheses are used:
- In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
- In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
- I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.
Characteristics of Hypothesis
Here are some common characteristics of a hypothesis:
- Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
- Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
- Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
- Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
- Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
- Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
- Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.
Advantages of Hypothesis
Hypotheses have several advantages in scientific research and experimentation:
- Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
- Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
- Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
- Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
- Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
- Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.
Limitations of Hypothesis
Some Limitations of the Hypothesis are as follows:
- Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
- May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
- May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
- Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
- Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
- May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.
About the author
Muhammad Hassan
Researcher, Academic Writer, Web developer
You may also like
Data Verification – Process, Types and Examples
Future Research – Thesis Guide
Thesis Format – Templates and Samples
Research Gap – Types, Examples and How to...
Tables in Research Paper – Types, Creating Guide...
Research Report – Example, Writing Guide and...
The 3 Required Parts of a Hypothesis: Understanding the Basics
- by Brian Thomas
- October 4, 2024
Have you ever wondered what it takes to create a hypothesis? Whether you’re a student delving into scientific research or just curious about the world around you, understanding the key components of a hypothesis is essential. In this blog post, we’ll explore the three required parts of a hypothesis, breaking down their importance and providing real-world examples along the way.
A hypothesis serves as the foundation of any scientific investigation , allowing researchers to form predictions and test their ideas. But what are these three essential elements that make up a hypothesis? How do you develop a hypothesis that is effective and meaningful? Join us as we unravel the mysteries of hypothesis writing and explore the stages of hypothesis testing. By the end of this post, you’ll be equipped with the knowledge to craft your own hypotheses and embark on exciting scientific endeavors. So let’s dive in!
What Are the 3 Essential Components of a Hypothesis?
When it comes to hypotheses, the three key components are like the three musketeers of scientific inquiry. Each element plays an important role in shaping the hypothesis and guiding the research process. So, let’s dive into the three essential parts of a hypothesis and unravel their roles, shall we?
The Sneaky Subject: “If”
The first amigo of our hypothesis trio is the sneaky subject “If.” This little word sets the stage for your hypothesis, introducing the condition or factor you are exploring in your research. It’s like the Sherlock Holmes of hypotheses, searching for clues and connections. Without the “If,” our hypothesis would be as lost as a penguin in the Sahara.
The Clever Connection: “Then”
Ah, the clever companion “Then” joins the hypothesis party! This element helps you establish the expected outcome based on your “If” condition. It’s the bridge that connects your hypothesis to the results you hope to find. Think of it as the conductor of a symphony, orchestrating the relationship between the “If” and the “Then” in harmonious scientific fashion.
The Mighty Explanation: “Because”
Last but certainly not least, we have the mighty explanation “Because.” This component adds depth and substance to your hypothesis by providing a rationale or reason for your expected outcome. It’s like the wise old sage who imparts wisdom and knowledge. With the “Because” in place, your hypothesis transforms from a mere statement into a well-grounded prediction.
Putting It All Together
Now that we’ve met the three essential parts of a hypothesis, let’s see how they work together in a hypothetical example:
If eating chocolate leads to increased happiness, then individuals who consume chocolate daily because they have lower stress levels will report higher levels of satisfaction and well-being.
In this example, the “If” identifies the condition being explored (eating chocolate), the “Then” predicts the expected outcome (higher levels of satisfaction and well-being), and the “Because” provides the rationale (lower stress levels). It’s like a mini science equation, where each element contributes to the overall hypothesis.
Hypotheses are like the backbone of scientific research, guiding the direction and purpose of investigations. By understanding the three essential components – the sneaky “If,” clever “Then,” and mighty “Because” – you’re equipped to construct robust hypotheses that withstand the scrutiny of the scientific world. So, go forth and let your hypotheses shine like beacons of knowledge in the vast sea of research!
Remember, the next time you encounter a hypothesis, you’ll know its secret formula: “If” + “Then” + “Because” = scientific awesomeness!
FAQ: What are the 3 Required Parts of a Hypothesis?
Welcome to our comprehensive FAQ-style guide on hypotheses! If you’ve ever wondered about the key components of a hypothesis or how to develop one for your research paper, you’ve come to the right place. In this FAQ, we’ll address common questions and provide you with the information you need in a friendly, engaging, and even humorous way. So, grab a cup of coffee and let’s dive in!
What are the Requirements for a Hypothesis
A hypothesis is an essential part of the scientific method, serving as a description of the expected outcome of a research study. It must meet a few requirements to be considered valid:
Clear and Testable : A hypothesis should be formulated in a way that allows it to be empirically tested or proved wrong. Fuzzy or ambiguous hypotheses won’t hold up under scrutiny, so precision is key.
Based on Existing Knowledge : Your hypothesis should be grounded in previous research or observations. It should build upon what is already known in the field, helping to advance scientific understanding.
Specific and Measurable : A good hypothesis needs to be specific and measurable, allowing for objective evaluation. Vague statements won’t cut it – scientists want something concrete to sink their teeth into.
What Makes a Valid Hypothesis? 3 Things!
A valid hypothesis possesses three crucial characteristics, which we’ll explore in detail:
Dependent and Independent Variables : To create a valid hypothesis, you need to identify the dependent and independent variables. The dependent variable is the outcome you’re investigating, while the independent variable is the one manipulated to measure its effect on the dependent variable. This relationship forms the core of your hypothesis.
Directional Statement : Your hypothesis should include a directional statement that predicts the expected outcome of your research. Will the independent variable have a positive, negative, or no effect on the dependent variable? Don’t be shy – make a bold prediction!
Testability : A hypothesis must be testable through experiments or observations. This means you need to design a method to gather data and analyze whether it supports or refutes your hypothesis. It’s all about putting your hypothesis to the test and embracing scientific scrutiny.
What is a Hypothesis Example
Let’s put theory into practice with an example: – Hypothesis: “Increasing the amount of sunlight exposure will lead to faster plant growth.” – In this example, the dependent variable is plant growth, while the independent variable is the amount of sunlight exposure. The hypothesis is clear, testable, and includes a directional statement. Now go out there and test it with your green thumbs!
What are the Main Characteristics of a Hypothesis
A good hypothesis possesses several key characteristics. Take a look at these essential traits:
Precise : A hypothesis should be clear and unambiguous to avoid misinterpretation or confusion. Leave no room for doubt!
Falsifiable : For a hypothesis to be valid, it must be capable of being disproven or proven wrong. It should be open to testing and potential refutation.
Relevant : It’s important for a hypothesis to be relevant to the research question or problem at hand. It should address a specific aspect and contribute to the existing body of knowledge.
Logical : Logical coherence is crucial in a hypothesis. There should be a clear connection between the proposed relationship of variables and any supporting evidence or rationale.
What’s a Research Hypothesis
A research hypothesis is a statement formulated to predict a possible outcome of a research study. It serves as a proposed explanation or prediction based on existing knowledge and sets the groundwork for further investigation. Research hypotheses help guide scientific research and provide a clear focus for researchers to explore.
How Do You Write a Hypothesis for a Research Paper
When writing a hypothesis for a research paper, remember these steps:
Identify the Variables : Determine the dependent and independent variables in your study. The dependent variable is the outcome you’re interested in, while the independent variable is the one you’re manipulating.
Formulate a Question : Based on your research and variables, frame a clear and specific research question that links the variables together.
Craft a Statement : Turn your research question into a statement that predicts the relationship between the variables. Make it precise, testable, and include a directional statement.
Revise and Refine : Review your hypothesis for clarity, testability, and logical coherence. Refine it until it accurately represents your research expectations.
Research papers thrive on solid hypotheses, so take the time to craft yours with care!
What are Three Types of Scientific Studies
Scientific studies come in different flavors, each serving a unique purpose:
Observational Studies : These studies involve observing and analyzing existing data or phenomena without manipulating variables. They help identify associations or relationships but can’t establish causation.
Experimental Studies : Experimental studies involve manipulating variables to observe their effects on the dependent variable. These studies allow for causal relationships to be established.
Descriptive Studies : Descriptive studies seek to describe characteristics or behaviors within a population. They often involve surveys, interviews, or observations to collect data.
Consider the nature of your research to determine which type of study is most appropriate for your hypothesis.
How Do You Develop a Research Hypothesis
Developing a research hypothesis requires careful consideration and planning. Follow these steps:
Review Existing Literature : Familiarize yourself with the relevant research already conducted in your field. What questions remain unanswered? What potential gaps can you address?
Identify Variables : Determine the key variables involved in your study. Specify the independent and dependent variables that establish the relationship to be tested.
Formulate a Hypothesis : Create a clear and testable hypothesis that predicts the expected outcome. Make sure it aligns with previous research, is specific, and includes a directional statement.
Refine and Iterate : Continuously refine and iterate your hypothesis as you gather more information and insights. Adapt it based on feedback, new findings, or emerging theories.
Developing a research hypothesis is an iterative process that requires thoughtfulness and adaptability. Embrace the journey!
What are the Needs of Hypothesis in Research
Hypotheses play a vital role in the research process. Here are the key needs they fulfill:
Focus : Hypotheses provide a clear focus for research efforts by highlighting the expected outcome and guiding the investigation.
Testability : Hypotheses allow researchers to design experiments and collect data to test their predictions. This allows for objective evaluation and validation.
Advancement of Knowledge : By formulating hypotheses, researchers contribute to the existing body of knowledge in their field. They add new insights and build upon previous work.
Logic and Coherence : Hypotheses drive research by providing a logical framework and rationale for conducting the study. They ensure that research efforts are purposeful and well-grounded.
What are Types of Hypothesis
Hypotheses can fall into different categories based on their nature and purpose. Here are a few common types:
Null Hypothesis : The null hypothesis states that there is no significant relationship between the variables under investigation. Researchers aim to reject this hypothesis to support their alternative hypothesis.
Alternative Hypothesis : The alternative hypothesis reflects the researcher’s prediction of a specific relationship between variables. It’s the opposite of the null hypothesis and what researchers hope to support.
Directional Hypothesis : A directional hypothesis predicts the direction of the relationship between variables. It specifies whether the effect will be positive or negative, leaving no room for ambiguity.
Non-Directional Hypothesis : In contrast, a non-directional hypothesis simply predicts that a relationship exists between variables, without specifying the direction.
Consider the specific context of your research to determine the most appropriate type of hypothesis to formulate.
What are the Stages of Hypothesis
The hypothesis goes through several stages in the research process:
Formulation : In this initial stage, the researcher identifies the research question, variables, and constructs a hypothesis to guide the investigation.
Design : The hypothesis helps determine the research design and methodology. It guides the selection of variables, sample size, data collection methods, and statistical analyses.
Testing : During this stage, the researcher collects and analyzes data to evaluate the hypothesis. Statistical tests are often used to determine if the data supports or refutes the hypothesis.
Conclusion : Based on the analysis of the data, the researcher draws conclusions about the hypothesis. The hypothesis is either supported or rejected, leading to further research or new questions.
Remember, the hypothesis is not a one-time thing. It evolves throughout the research process, integrating new knowledge and findings.
What is the Process of Hypothesis Testing
Hypothesis testing involves a systematic process to assess the validity of a hypothesis. Here’s a simplified overview:
State the Hypotheses : Clearly articulate the null and alternative hypotheses based on your research question and expected outcomes.
Collect Data : Gather relevant data through surveys, observations, or experiments, depending on your research design.
Analyze Data : Apply appropriate statistical analyses to your data, comparing it to the expected outcomes.
Determine Significance : Assess the statistical significance of your findings. If the p-value is below a predetermined threshold (often 0.05), you can reject the null hypothesis and support the alternative hypothesis.
Draw Conclusions : Based on the analysis, draw conclusions regarding the hypothesis and its implications for your research.
Remember, hypothesis testing is a crucial step in the scientific process, providing evidence to support or refute theories.
How Many Steps are Required to Conduct a Hypothesis Testing
Hypothesis testing typically involves the following four steps:
Formulate Hypotheses : Articulate the null and alternative hypotheses that reflect your research question and predicted outcomes accurately.
Choose a Significance Level : Determine the desired level of significance (usually 0.05), representing the probability of obtaining results as extreme as those observed, assuming the null hypothesis is true.
Collect and Analyze Data : Gather data through experiments or observations, then analyze it using appropriate statistical tests, such as t-tests or chi-square tests.
Interpret Results : Evaluate the results and determine whether the data supports or refutes the null hypothesis. Consider the p-value, confidence intervals, and effect size when interpreting results.
Don’t let these steps intimidate you – they are the building blocks of scientific inquiry and help ensure robust conclusions.
What are the Key Characteristics of a Good Hypothesis
A good hypothesis possesses several key characteristics worth mentioning:
Testability : A hypothesis needs to be testable through empirical evidence, allowing researchers to gather data and substantiate it scientifically.
Specificity : A good hypothesis is precise and specific, leaving no room for ambiguity or misinterpretation. It focuses on a well-defined relationship between variables.
Relevance : A hypothesis should address a relevant research question or problem, contributing to the existing knowledge base in the field.
Logical Coherence : There should be a logical connection between the proposed relationship and any supporting evidence or theoretical framework.
Keep these characteristics in mind when crafting your hypothesis, and you’ll be well on your way to conducting sound research.
What are the 4 Steps of Hypothesis Testing
State the Hypotheses : Clearly articulate the null and alternative hypotheses, representing the current understanding and the researcher’s prediction, respectively.
Determine the Test Statistic : Select an appropriate test statistic based on the research question and type of data you’re analyzing.
Calculate the p-value : Calculate the p-value, which represents the probability of obtaining results as extreme as those observed, assuming the null hypothesis is true.
Conclusion : Compare the calculated p-value to the predefined significance level to determine whether to reject or fail to reject the null hypothesis. Make sure to interpret the results in the context of your research question.
These steps form the backbone of hypothesis testing, allowing you to draw meaningful conclusions based on statistical evidence.
Congratulations on making it to the end of our FAQ on the three required parts of a hypothesis! We’ve covered everything from the requirements of a hypothesis to types of hypotheses and even the stages of hypothesis testing. Armed with this knowledge, you’re ready to tackle your research projects with confidence. Remember, hypotheses are the backbone of scientific inquiry, so take your time to craft them, test them, and embrace the exciting process of discovery. Happy researching!
Disclaimer: This article is for informational purposes only and should not be considered as professional advice. Always consult with a qualified researcher before conducting any experiments or research studies.
- hypothesis testing
- independent variables
- mere statement
- null hypothesis
- observations
- research process
- research study
- scientific research
Brian Thomas
You may also like, will pine sol keep mosquitoes away.
- by Thomas Harrison
Can Hand Sanitizer Help Mosquito Bites?
- by Willie Wilson
What is a 4 to 1 Paint Mix? Your Complete Guide to Dilution Ratios in Painting
- by Richard Edwards
The 5 Levels of Anger: Understanding and Managing Your Emotions
- by Travis Heath
How to Get to Pirate Cove in Stardew Valley: A Comprehensive Guide
What does it mean when sage smoke is thick.
- by Mr. Gilbert Preston
- Skip to main content
- Skip to primary sidebar
- Skip to footer
- QuestionPro
- Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
- Resources Blog eBooks Survey Templates Case Studies Training Help center
Home Market Research
Research Hypothesis: What It Is, Types + How to Develop?
A research study starts with a question. Researchers worldwide ask questions and create research hypotheses. The effectiveness of research relies on developing a good research hypothesis. Examples of research hypotheses can guide researchers in writing effective ones.
In this blog, we’ll learn what a research hypothesis is, why it’s important in research, and the different types used in science. We’ll also guide you through creating your research hypothesis and discussing ways to test and evaluate it.
What is a Research Hypothesis?
A hypothesis is like a guess or idea that you suggest to check if it’s true. A research hypothesis is a statement that brings up a question and predicts what might happen.
It’s really important in the scientific method and is used in experiments to figure things out. Essentially, it’s an educated guess about how things are connected in the research.
A research hypothesis usually includes pointing out the independent variable (the thing they’re changing or studying) and the dependent variable (the result they’re measuring or watching). It helps plan how to gather and analyze data to see if there’s evidence to support or deny the expected connection between these variables.
Importance of Hypothesis in Research
Hypotheses are really important in research. They help design studies, allow for practical testing, and add to our scientific knowledge. Their main role is to organize research projects, making them purposeful, focused, and valuable to the scientific community. Let’s look at some key reasons why they matter:
- A research hypothesis helps test theories.
A hypothesis plays a pivotal role in the scientific method by providing a basis for testing existing theories. For example, a hypothesis might test the predictive power of a psychological theory on human behavior.
- It serves as a great platform for investigation activities.
It serves as a launching pad for investigation activities, which offers researchers a clear starting point. A research hypothesis can explore the relationship between exercise and stress reduction.
- Hypothesis guides the research work or study.
A well-formulated hypothesis guides the entire research process. It ensures that the study remains focused and purposeful. For instance, a hypothesis about the impact of social media on interpersonal relationships provides clear guidance for a study.
- Hypothesis sometimes suggests theories.
In some cases, a hypothesis can suggest new theories or modifications to existing ones. For example, a hypothesis testing the effectiveness of a new drug might prompt a reconsideration of current medical theories.
- It helps in knowing the data needs.
A hypothesis clarifies the data requirements for a study, ensuring that researchers collect the necessary information—a hypothesis guiding the collection of demographic data to analyze the influence of age on a particular phenomenon.
- The hypothesis explains social phenomena.
Hypotheses are instrumental in explaining complex social phenomena. For instance, a hypothesis might explore the relationship between economic factors and crime rates in a given community.
- Hypothesis provides a relationship between phenomena for empirical Testing.
Hypotheses establish clear relationships between phenomena, paving the way for empirical testing. An example could be a hypothesis exploring the correlation between sleep patterns and academic performance.
- It helps in knowing the most suitable analysis technique.
A hypothesis guides researchers in selecting the most appropriate analysis techniques for their data. For example, a hypothesis focusing on the effectiveness of a teaching method may lead to the choice of statistical analyses best suited for educational research.
Characteristics of a Good Research Hypothesis
A hypothesis is a specific idea that you can test in a study. It often comes from looking at past research and theories. A good hypothesis usually starts with a research question that you can explore through background research. For it to be effective, consider these key characteristics:
- Clear and Focused Language: A good hypothesis uses clear and focused language to avoid confusion and ensure everyone understands it.
- Related to the Research Topic: The hypothesis should directly relate to the research topic, acting as a bridge between the specific question and the broader study.
- Testable: An effective hypothesis can be tested, meaning its prediction can be checked with real data to support or challenge the proposed relationship.
- Potential for Exploration: A good hypothesis often comes from a research question that invites further exploration. Doing background research helps find gaps and potential areas to investigate.
- Includes Variables: The hypothesis should clearly state both the independent and dependent variables, specifying the factors being studied and the expected outcomes.
- Ethical Considerations: Check if variables can be manipulated without breaking ethical standards. It’s crucial to maintain ethical research practices.
- Predicts Outcomes: The hypothesis should predict the expected relationship and outcome, acting as a roadmap for the study and guiding data collection and analysis.
- Simple and Concise: A good hypothesis avoids unnecessary complexity and is simple and concise, expressing the essence of the proposed relationship clearly.
- Clear and Assumption-Free: The hypothesis should be clear and free from assumptions about the reader’s prior knowledge, ensuring universal understanding.
- Observable and Testable Results: A strong hypothesis implies research that produces observable and testable results, making sure the study’s outcomes can be effectively measured and analyzed.
When you use these characteristics as a checklist, it can help you create a good research hypothesis. It’ll guide improving and strengthening the hypothesis, identifying any weaknesses, and making necessary changes. Crafting a hypothesis with these features helps you conduct a thorough and insightful research study.
Types of Research Hypotheses
The research hypothesis comes in various types, each serving a specific purpose in guiding the scientific investigation. Knowing the differences will make it easier for you to create your own hypothesis. Here’s an overview of the common types:
01. Null Hypothesis
The null hypothesis states that there is no connection between two considered variables or that two groups are unrelated. As discussed earlier, a hypothesis is an unproven assumption lacking sufficient supporting data. It serves as the statement researchers aim to disprove. It is testable, verifiable, and can be rejected.
For example, if you’re studying the relationship between Project A and Project B, assuming both projects are of equal standard is your null hypothesis. It needs to be specific for your study.
02. Alternative Hypothesis
The alternative hypothesis is basically another option to the null hypothesis. It involves looking for a significant change or alternative that could lead you to reject the null hypothesis. It’s a different idea compared to the null hypothesis.
When you create a null hypothesis, you’re making an educated guess about whether something is true or if there’s a connection between that thing and another variable. If the null view suggests something is correct, the alternative hypothesis says it’s incorrect.
For instance, if your null hypothesis is “I’m going to be $1000 richer,” the alternative hypothesis would be “I’m not going to get $1000 or be richer.”
03. Directional Hypothesis
The directional hypothesis predicts the direction of the relationship between independent and dependent variables. They specify whether the effect will be positive or negative.
If you increase your study hours, you will experience a positive association with your exam scores. This hypothesis suggests that as you increase the independent variable (study hours), there will also be an increase in the dependent variable (exam scores).
04. Non-directional Hypothesis
The non-directional hypothesis predicts the existence of a relationship between variables but does not specify the direction of the effect. It suggests that there will be a significant difference or relationship, but it does not predict the nature of that difference.
For example, you will find no notable difference in test scores between students who receive the educational intervention and those who do not. However, once you compare the test scores of the two groups, you will notice an important difference.
05. Simple Hypothesis
A simple hypothesis predicts a relationship between one dependent variable and one independent variable without specifying the nature of that relationship. It’s simple and usually used when we don’t know much about how the two things are connected.
For example, if you adopt effective study habits, you will achieve higher exam scores than those with poor study habits.
06. Complex Hypothesis
A complex hypothesis is an idea that specifies a relationship between multiple independent and dependent variables. It is a more detailed idea than a simple hypothesis.
While a simple view suggests a straightforward cause-and-effect relationship between two things, a complex hypothesis involves many factors and how they’re connected to each other.
For example, when you increase your study time, you tend to achieve higher exam scores. The connection between your study time and exam performance is affected by various factors, including the quality of your sleep, your motivation levels, and the effectiveness of your study techniques.
If you sleep well, stay highly motivated, and use effective study strategies, you may observe a more robust positive correlation between the time you spend studying and your exam scores, unlike those who may lack these factors.
07. Associative Hypothesis
An associative hypothesis proposes a connection between two things without saying that one causes the other. Basically, it suggests that when one thing changes, the other changes too, but it doesn’t claim that one thing is causing the change in the other.
For example, you will likely notice higher exam scores when you increase your study time. You can recognize an association between your study time and exam scores in this scenario.
Your hypothesis acknowledges a relationship between the two variables—your study time and exam scores—without asserting that increased study time directly causes higher exam scores. You need to consider that other factors, like motivation or learning style, could affect the observed association.
08. Causal Hypothesis
A causal hypothesis proposes a cause-and-effect relationship between two variables. It suggests that changes in one variable directly cause changes in another variable.
For example, when you increase your study time, you experience higher exam scores. This hypothesis suggests a direct cause-and-effect relationship, indicating that the more time you spend studying, the higher your exam scores. It assumes that changes in your study time directly influence changes in your exam performance.
09. Empirical Hypothesis
An empirical hypothesis is a statement based on things we can see and measure. It comes from direct observation or experiments and can be tested with real-world evidence. If an experiment proves a theory, it supports the idea and shows it’s not just a guess. This makes the statement more reliable than a wild guess.
For example, if you increase the dosage of a certain medication, you might observe a quicker recovery time for patients. Imagine you’re in charge of a clinical trial. In this trial, patients are given varying dosages of the medication, and you measure and compare their recovery times. This allows you to directly see the effects of different dosages on how fast patients recover.
This way, you can create a research hypothesis: “Increasing the dosage of a certain medication will lead to a faster recovery time for patients.”
10. Statistical Hypothesis
A statistical hypothesis is a statement or assumption about a population parameter that is the subject of an investigation. It serves as the basis for statistical analysis and testing. It is often tested using statistical methods to draw inferences about the larger population.
In a hypothesis test, statistical evidence is collected to either reject the null hypothesis in favor of the alternative hypothesis or fail to reject the null hypothesis due to insufficient evidence.
For example, let’s say you’re testing a new medicine. Your hypothesis could be that the medicine doesn’t really help patients get better. So, you collect data and use statistics to see if your guess is right or if the medicine actually makes a difference.
If the data strongly shows that the medicine does help, you say your guess was wrong, and the medicine does make a difference. But if the proof isn’t strong enough, you can stick with your original guess because you didn’t get enough evidence to change your mind.
How to Develop a Research Hypotheses?
Step 1: identify your research problem or topic..
Define the area of interest or the problem you want to investigate. Make sure it’s clear and well-defined.
Start by asking a question about your chosen topic. Consider the limitations of your research and create a straightforward problem related to your topic. Once you’ve done that, you can develop and test a hypothesis with evidence.
Step 2: Conduct a literature review
Review existing literature related to your research problem. This will help you understand the current state of knowledge in the field, identify gaps, and build a foundation for your hypothesis. Consider the following questions:
- What existing research has been conducted on your chosen topic?
- Are there any gaps or unanswered questions in the current literature?
- How will the existing literature contribute to the foundation of your research?
Step 3: Formulate your research question
Based on your literature review, create a specific and concise research question that addresses your identified problem. Your research question should be clear, focused, and relevant to your field of study.
Step 4: Identify variables
Determine the key variables involved in your research question. Variables are the factors or phenomena that you will study and manipulate to test your hypothesis.
- Independent Variable: The variable you manipulate or control.
- Dependent Variable: The variable you measure to observe the effect of the independent variable.
Step 5: State the Null hypothesis
The null hypothesis is a statement that there is no significant difference or effect. It serves as a baseline for comparison with the alternative hypothesis.
Step 6: Select appropriate methods for testing the hypothesis
Choose research methods that align with your study objectives, such as experiments, surveys, or observational studies. The selected methods enable you to test your research hypothesis effectively.
Creating a research hypothesis usually takes more than one try. Expect to make changes as you collect data. It’s normal to test and say no to a few hypotheses before you find the right answer to your research question.
Testing and Evaluating Hypotheses
Testing hypotheses is a really important part of research. It’s like the practical side of things. Here, real-world evidence will help you determine how different things are connected. Let’s explore the main steps in hypothesis testing:
- State your research hypothesis.
Before testing, clearly articulate your research hypothesis. This involves framing both a null hypothesis, suggesting no significant effect or relationship, and an alternative hypothesis, proposing the expected outcome.
- Collect data strategically.
Plan how you will gather information in a way that fits your study. Make sure your data collection method matches the things you’re studying.
Whether through surveys, observations, or experiments, this step demands precision and adherence to the established methodology. The quality of data collected directly influences the credibility of study outcomes.
- Perform an appropriate statistical test.
Choose a statistical test that aligns with the nature of your data and the hypotheses being tested. Whether it’s a t-test, chi-square test, ANOVA, or regression analysis, selecting the right statistical tool is paramount for accurate and reliable results.
- Decide if your idea was right or wrong.
Following the statistical analysis, evaluate the results in the context of your null hypothesis. You need to decide if you should reject your null hypothesis or not.
- Share what you found.
When discussing what you found in your research, be clear and organized. Say whether your idea was supported or not, and talk about what your results mean. Also, mention any limits to your study and suggest ideas for future research.
The Role of QuestionPro to Develop a Good Research Hypothesis
QuestionPro is a survey and research platform that provides tools for creating, distributing, and analyzing surveys. It plays a crucial role in the research process, especially when you’re in the initial stages of hypothesis development. Here’s how QuestionPro can help you to develop a good research hypothesis:
- Survey design and data collection: You can use the platform to create targeted questions that help you gather relevant data.
- Exploratory research: Through surveys and feedback mechanisms on QuestionPro, you can conduct exploratory research to understand the landscape of a particular subject.
- Literature review and background research: QuestionPro surveys can collect sample population opinions, experiences, and preferences. This data and a thorough literature evaluation can help you generate a well-grounded hypothesis by improving your research knowledge.
- Identifying variables: Using targeted survey questions, you can identify relevant variables related to their research topic.
- Testing assumptions: You can use surveys to informally test certain assumptions or hypotheses before formalizing a research hypothesis.
- Data analysis tools: QuestionPro provides tools for analyzing survey data. You can use these tools to identify the collected data’s patterns, correlations, or trends.
- Refining your hypotheses: As you collect data through QuestionPro, you can adjust your hypotheses based on the real-world responses you receive.
A research hypothesis is like a guide for researchers in science. It’s a well-thought-out idea that has been thoroughly tested. This idea is crucial as researchers can explore different fields, such as medicine, social sciences, and natural sciences. The research hypothesis links theories to real-world evidence and gives researchers a clear path to explore and make discoveries.
QuestionPro Research Suite is a helpful tool for researchers. It makes creating surveys, collecting data, and analyzing information easily. It supports all kinds of research, from exploring new ideas to forming hypotheses. With a focus on using data, it helps researchers do their best work.
Are you interested in learning more about QuestionPro Research Suite? Take advantage of QuestionPro’s free trial to get an initial look at its capabilities and realize the full potential of your research efforts.
LEARN MORE FREE TRIAL
MORE LIKE THIS
You Can’t Please Everyone — Tuesday CX Thoughts
Oct 22, 2024
Edit survey: A new way of survey building and collaboration
Oct 10, 2024
Pulse Surveys vs Annual Employee Surveys: Which to Use
Oct 4, 2024
Employee Perception Role in Organizational Change
Oct 3, 2024
Other categories
- Academic Research
- Artificial Intelligence
- Assessments
- Brand Awareness
- Case Studies
- Communities
- Consumer Insights
- Customer effort score
- Customer Engagement
- Customer Experience
- Customer Loyalty
- Customer Research
- Customer Satisfaction
- Employee Benefits
- Employee Engagement
- Employee Retention
- Friday Five
- General Data Protection Regulation
- Insights Hub
- Life@QuestionPro
- Market Research
- Mobile diaries
- Mobile Surveys
- New Features
- Online Communities
- Question Types
- Questionnaire
- QuestionPro Products
- Release Notes
- Research Tools and Apps
- Revenue at Risk
- Survey Templates
- Training Tips
- Tuesday CX Thoughts (TCXT)
- Uncategorized
- What’s Coming Up
- Workforce Intelligence
Research Hypothesis In Psychology: Types, & Examples
Saul McLeod, PhD
Editor-in-Chief for Simply Psychology
BSc (Hons) Psychology, MRes, PhD, University of Manchester
Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.
Learn about our Editorial Process
Olivia Guy-Evans, MSc
Associate Editor for Simply Psychology
BSc (Hons) Psychology, MSc Psychology of Education
Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.
On This Page:
A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .
Hypotheses connect theory to data and guide the research process towards expanding scientific understanding
Some key points about hypotheses:
- A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
- It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
- A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
- Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
- For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
- Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.
Types of Research Hypotheses
Alternative hypothesis.
The research hypothesis is often called the alternative or experimental hypothesis in experimental research.
It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.
The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).
A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:
- Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.
In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.
An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.
It states that the results are not due to chance and are significant in supporting the theory being investigated.
The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.
Null Hypothesis
The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.
It states results are due to chance and are not significant in supporting the idea being investigated.
The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.
Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.
This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.
Nondirectional Hypothesis
A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.
It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.
For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.
Directional Hypothesis
A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)
It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.
For example, “Exercise increases weight loss” is a directional hypothesis.
Falsifiability
The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.
Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.
It means that there should exist some potential evidence or experiment that could prove the proposition false.
However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.
For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.
Can a Hypothesis be Proven?
Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.
All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.
In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
- Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
- However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.
We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.
If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.
Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.
How to Write a Hypothesis
- Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
- Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
- Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
- Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
- Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.
Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).
Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:
- The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
- The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.
More Examples
- Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
- Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
- Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
- Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
- Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
- Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
- Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
- Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.
- Bipolar Disorder
- Therapy Center
- When To See a Therapist
- Types of Therapy
- Best Online Therapy
- Best Couples Therapy
- Managing Stress
- Sleep and Dreaming
- Understanding Emotions
- Self-Improvement
- Healthy Relationships
- Student Resources
- Personality Types
- Guided Meditations
- Verywell Mind Insights
- 2024 Verywell Mind 25
- Mental Health in the Classroom
- Editorial Process
- Meet Our Review Board
- Crisis Support
How to Write a Great Hypothesis
Hypothesis Definition, Format, Examples, and Tips
Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk, "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.
Verywell / Alex Dos Diaz
- The Scientific Method
Hypothesis Format
Falsifiability of a hypothesis.
- Operationalization
Hypothesis Types
Hypotheses examples.
- Collecting Data
A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.
Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."
At a Glance
A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.
The Hypothesis in the Scientific Method
In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:
- Forming a question
- Performing background research
- Creating a hypothesis
- Designing an experiment
- Collecting data
- Analyzing the results
- Drawing conclusions
- Communicating the results
The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.
Unless you are creating an exploratory study, your hypothesis should always explain what you expect to happen.
In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.
Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.
In many cases, researchers may find that the results of an experiment do not support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.
In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."
In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."
Elements of a Good Hypothesis
So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:
- Is your hypothesis based on your research on a topic?
- Can your hypothesis be tested?
- Does your hypothesis include independent and dependent variables?
Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the journal articles you read . Many authors will suggest questions that still need to be explored.
How to Formulate a Good Hypothesis
To form a hypothesis, you should take these steps:
- Collect as many observations about a topic or problem as you can.
- Evaluate these observations and look for possible causes of the problem.
- Create a list of possible explanations that you might want to explore.
- After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.
In the scientific method , falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.
Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that if something was false, then it is possible to demonstrate that it is false.
One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.
The Importance of Operational Definitions
A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.
Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.
For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.
These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.
Replicability
One of the basic principles of any type of scientific research is that the results must be replicable.
Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.
Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.
To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.
Hypothesis Checklist
- Does your hypothesis focus on something that you can actually test?
- Does your hypothesis include both an independent and dependent variable?
- Can you manipulate the variables?
- Can your hypothesis be tested without violating ethical standards?
The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:
- Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
- Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
- Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
- Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
- Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
- Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.
A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the dependent variable if you change the independent variable .
The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."
A few examples of simple hypotheses:
- "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
- "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."
- "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
- "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."
Examples of a complex hypothesis include:
- "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
- "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."
Examples of a null hypothesis include:
- "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
- "There is no difference in scores on a memory recall task between children and adults."
- "There is no difference in aggression levels between children who play first-person shooter games and those who do not."
Examples of an alternative hypothesis:
- "People who take St. John's wort supplements will have less anxiety than those who do not."
- "Adults will perform better on a memory task than children."
- "Children who play first-person shooter games will show higher levels of aggression than children who do not."
Collecting Data on Your Hypothesis
Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.
Descriptive Research Methods
Descriptive research such as case studies , naturalistic observations , and surveys are often used when conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.
Once a researcher has collected data using descriptive methods, a correlational study can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.
Experimental Research Methods
Experimental methods are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).
Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually cause another to change.
The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.
Thompson WH, Skau S. On the scope of scientific hypotheses . R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607
Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:]. Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z
Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004
Nosek BA, Errington TM. What is replication ? PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691
Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies . Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18
Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.
By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
- How it works
"Christmas Offer"
Terms & conditions.
As the Christmas season is upon us, we find ourselves reflecting on the past year and those who we have helped to shape their future. It’s been quite a year for us all! The end of the year brings no greater joy than the opportunity to express to you Christmas greetings and good wishes.
At this special time of year, Research Prospect brings joyful discount of 10% on all its services. May your Christmas and New Year be filled with joy.
We are looking back with appreciation for your loyalty and looking forward to moving into the New Year together.
"Claim this offer"
In unfamiliar and hard times, we have stuck by you. This Christmas, Research Prospect brings you all the joy with exciting discount of 10% on all its services.
Offer valid till 5-1-2024
We love being your partner in success. We know you have been working hard lately, take a break this holiday season to spend time with your loved ones while we make sure you succeed in your academics
Discount code: RP0996Y
How to Write a Hypothesis – Steps & Tips
Published by Alaxendra Bets at August 14th, 2021 , Revised On October 26, 2023
What is a Research Hypothesis?
You can test a research statement with the help of experimental or theoretical research, known as a hypothesis.
If you want to find out the similarities, differences, and relationships between variables, you must write a testable hypothesis before compiling the data, performing analysis, and generating results to complete.
The data analysis and findings will help you test the hypothesis and see whether it is true or false. Here is all you need to know about how to write a hypothesis for a dissertation .
Research Hypothesis Definition
Not sure what the meaning of the research hypothesis is?
A research hypothesis predicts an answer to the research question based on existing theoretical knowledge or experimental data.
Some studies may have multiple hypothesis statements depending on the research question(s). A research hypothesis must be based on formulas, facts, and theories. It should be testable by data analysis, observations, experiments, or other scientific methodologies that can refute or support the statement.
Variables in Hypothesis
Developing a hypothesis is easy. Most research studies have two or more variables in the hypothesis, particularly studies involving correlational and experimental research. The researcher can control or change the independent variable(s) while measuring and observing the independent variable(s).
“How long a student sleeps affects test scores.”
In the above statement, the dependent variable is the test score, while the independent variable is the length of time spent in sleep. Developing a hypothesis will be easy if you know your research’s dependent and independent variables.
Once you have developed a thesis statement, questions such as how to write a hypothesis for the dissertation and how to test a research hypothesis become pretty straightforward.
Looking for dissertation help?
Researchprospect to the rescue then.
We have expert writers on our team who are skilled at helping students with quantitative dissertations across a variety of STEM disciplines. Guaranteeing 100% satisfaction!
Step-by-Step Guide on How to Write a Hypothesis
Here are the steps involved in how to write a hypothesis for a dissertation.
Step 1: Start with a Research Question
- Begin by asking a specific question about a topic of interest.
- This question should be clear, concise, and researchable.
Example: Does exposure to sunlight affect plant growth?
Step 2: Do Preliminary Research
- Before formulating a hypothesis, conduct background research to understand existing knowledge on the topic.
- Familiarise yourself with prior studies, theories, or observations related to the research question.
Step 3: Define Variables
- Independent Variable (IV): The factor that you change or manipulate in an experiment.
- Dependent Variable (DV): The factor that you measure.
Example: IV: Amount of sunlight exposure (e.g., 2 hours/day, 4 hours/day, 8 hours/day) DV: Plant growth (e.g., height in centimetres)
Step 4: Formulate the Hypothesis
- A hypothesis is a statement that predicts the relationship between variables.
- It is often written as an “if-then” statement.
Example: If plants receive more sunlight, then they will grow taller.
Step 5: Ensure it is Testable
A good hypothesis is empirically testable. This means you should be able to design an experiment or observation to test its validity.
Example: You can set up an experiment where plants are exposed to varying amounts of sunlight and then measure their growth over a period of time.
Step 6: Consider Potential Confounding Variables
- Confounding variables are factors other than the independent variable that might affect the outcome.
- It is important to identify these to ensure that they do not skew your results.
Example: Soil quality, water frequency, or type of plant can all affect growth. Consider keeping these constant in your experiment.
Step 7: Write the Null Hypothesis
- The null hypothesis is a statement that there is no effect or no relationship between the variables.
- It is what you aim to disprove or reject through your research.
Example: There is no difference in plant growth regardless of the amount of sunlight exposure.
Step 8: Test your Hypothesis
Design an experiment or conduct observations to test your hypothesis.
Example: Grow three sets of plants: one set exposed to 2 hours of sunlight daily, another exposed to 4 hours, and a third exposed to 8 hours. Measure and compare their growth after a set period.
Step 9: Analyse the Results
After testing, review your data to determine if it supports your hypothesis.
Step 10: Draw Conclusions
- Based on your findings, determine whether you can accept or reject the hypothesis.
- Remember, even if you reject your hypothesis, it’s a valuable result. It can guide future research and refine questions.
Three Ways to Phrase a Hypothesis
Try to use “if”… and “then”… to identify the variables. The independent variable should be present in the first part of the hypothesis, while the dependent variable will form the second part of the statement. Consider understanding the below research hypothesis example to create a specific, clear, and concise research hypothesis;
If an obese lady starts attending Zomba fitness classes, her health will improve.
In academic research, you can write the predicted variable relationship directly because most research studies correlate terms.
The number of Zomba fitness classes attended by the obese lady has a positive effect on health.
If your research compares two groups, then you can develop a hypothesis statement on their differences.
An obese lady who attended most Zumba fitness classes will have better health than those who attended a few.
How to Write a Null Hypothesis
If a statistical analysis is involved in your research, then you must create a null hypothesis. If you find any relationship between the variables, then the null hypothesis will be the default position that there is no relationship between them. H0 is the symbol for the null hypothesis, while the hypothesis is represented as H1. The null hypothesis will also answer your question, “How to test the research hypothesis in the dissertation.”
H0: The number of Zumba fitness classes attended by the obese lady does not affect her health.
H1: The number of Zumba fitness classes attended by obese lady positively affects health.
Also see: Your Dissertation in Education
Hypothesis Examples
Research Question: Does the amount of sunlight a plant receives affect its growth? Hypothesis: Plants that receive more sunlight will grow taller than plants that receive less sunlight.
Research Question: Do students who eat breakfast perform better in school exams than those who don’t? Hypothesis: Students who eat a morning breakfast will score higher on school exams compared to students who skip breakfast.
Research Question: Does listening to music while studying impact a student’s ability to retain information? Hypothesis 1 (Directional): Students who listen to music while studying will retain less information than those who study in silence. Hypothesis 2 (Non-directional): There will be a difference in information retention between students who listen to music while studying and those who study in silence.
How can ResearchProspect Help?
If you are unsure about how to rest a research hypothesis in a dissertation or simply unsure about how to develop a hypothesis for your research, then you can take advantage of our dissertation services which cover every tiny aspect of a dissertation project you might need help with including but not limited to setting up a hypothesis and research questions, help with individual chapters , full dissertation writing , statistical analysis , and much more.
Frequently Asked Questions
What are the 5 rules for writing a good hypothesis.
- Clear Statement: State a clear relationship between variables.
- Testable: Ensure it can be investigated and measured.
- Specific: Avoid vague terms, be precise in predictions.
- Falsifiable: Design to allow potential disproof.
- Relevant: Address research question and align with existing knowledge.
What is a hypothesis in simple words?
A hypothesis is an educated guess or prediction about something that can be tested. It is a statement that suggests a possible explanation for an event or phenomenon based on prior knowledge or observation. Scientists use hypotheses as a starting point for experiments to discover if they are true or false.
What is the hypothesis and examples?
A hypothesis is a testable prediction or explanation for an observation or phenomenon. For example, if plants are given sunlight, then they will grow. In this case, the hypothesis suggests that sunlight has a positive effect on plant growth. It can be tested by experimenting with plants in varying light conditions.
What is the hypothesis in research definition?
A hypothesis in research is a clear, testable statement predicting the possible outcome of a study based on prior knowledge and observation. It serves as the foundation for conducting experiments or investigations. Researchers test the validity of the hypothesis to draw conclusions and advance knowledge in a particular field.
Why is it called a hypothesis?
The term “hypothesis” originates from the Greek word “hypothesis,” which means “base” or “foundation.” It’s used to describe a foundational statement or proposition that can be tested. In scientific contexts, it denotes a tentative explanation for a phenomenon, serving as a starting point for investigation or experimentation.
You May Also Like
Make sure that your selected topic is intriguing, manageable, and relevant. Here are some guidelines to help understand how to find a good dissertation topic.
This article is a step-by-step guide to how to write statement of a problem in research. The research problem will be half-solved by defining it correctly.
How to write a hypothesis for dissertation,? A hypothesis is a statement that can be tested with the help of experimental or theoretical research.
As Featured On
USEFUL LINKS
LEARNING RESOURCES
COMPANY DETAILS
Splash Sol LLC
- How It Works
Research Hypothesis – Types, Examples Characteristics, and Sources
Research hypothesis.
A research hypothesis is referred to as a scientific hypothesis. This is a clear, specific, and testable statement that predicts the expected result in a scientific study. It is a prediction, reasonable guess, and logical supposition about the relationship between the variables. A research hypothesis is an integral and central part of research whether it is exploratory or explanatory, qualitative or quantitative. It creates the base of scientific experiments. So, you must be very careful while building any hypothesis.
A hypothesis can be correct or wrong. It is tested through experiments or research to determine whether it is correct or incorrect.
Functions of research hypothesis
There are major functions of research hypothesis that are as follow:
- It helps in making observations and experiments possible.
- It is the basic point for the research.
- It verifies the observations.
- It leads the inquiries in the right regulation.
- It provides the extension of knowledge.
- It helps to explore different aspects of the research.
- It introduces different research techniques.
- It ensures the precision and accuracy of the results of the research.
- It enables the researcher to be focused. Because without a hypothesis, he may focus on unnecessary aspects and wastes his resources like time, money, and effort.
Sources of hypothesis
Following are the sources of the hypothesis:
- Scientific theories
- Personal experience
- Observation
- Imagination and thinking
- Previous study
- General patterns
Characteristics of an effective research hypothesis
Following are the characteristics of an effective research hypothesis:
- It must be logical.
- It must be simple and clear.
- It needs to be precise.
- It must identify the research objectives.
- It must be empirically testable with experimentation and research.
- It must be manageable.
- It must be relevant and specific to the theme of the research.
- It must be predictable.
- It must be falsifiable.
- It must be neither specific nor general.
- It must be considered valuable even if it proves false.
Types of research hypothesis
Following are the types of research hypotheses.
- Simple hypothesis
It shows a relationship between a single dependent variable and an independent variable. For instance, if you take in more carbs and fats, you will gain obesity. Here taking more carbs and fats are an independent variable and gaining weight is the dependent variable.
- Complex hypothesis
It predicts the relationship between two or more independent variables and dependent variables. For example, we can say that taking in more carbs and fats can cause obesity along with other problems like high blood pressure, heart disease, and so on.
- Directional hypothesis
Typically, directional hypotheses are derived from theory. This type of hypothesis shows the researcher’s intellectual commitment towards a specific outcome. The researcher predicts the existence and nature of a relationship between variables.
- Non-directional hypothesis
The non-directional hypothesis is used when there is no theory and the findings of studies are contradictory. It shows the relationship between two variables but does not set down the expected direction or nature of the relationship.
- Null hypothesis
Null hypotheses are made when there is no empirical and adequate theoretical information to show a hypothesis. The null hypothesis negates the relationship between variables. It is denoted by Ho. This hypothesis is made when the researcher wants to reject or disapprove the null hypothesis. It is contrary to what an experimenter or investigator expects. The purpose is to confirm the existence of a relationship between the variables.
The null hypothesis can be:
- Associative or causal
- Simple or complex
1. Alternative hypothesis
When a hypothesis is rejected, then another hypothesis is made to be tested and show the desired results. This is called an alternative hypothesis. It is opposite to the null hypothesis and is made to disprove that hypothesis. This hypothesis is denoted by H1.
2. Statistical hypothesis
As the name mentions, this hypothesis has the quality to be verified statistically. It is tested by using quantitative techniques. The variables in this hypothesis are quantifiable and can also transform into quantifiable indicators to verify it statistically.
- Empirical hypothesis
This hypothesis is used when a theory is tested with observation and experiment. It is just a notion or idea. This hypothesis goes through trial and error by changing independent variables. The series of trial and error helps to find the best result. The outcomes of these experiments can be proven over time.
- Associative and causal hypothesis
The associative hypothesis shows interdependency between variables. Any change in one variable causes the change in another variable. Whereas, the causal hypothesis shows a cause and effect between variables.
How to formulate a research hypothesis
There are some important points you must consider while formulating a hypothesis:
- Ask a question
The first and foremost thing for creating a research hypothesis is to generate a research question. The question should be specific, focused, and researchable within the limitations of your project.
- Do preliminary research
Now try to find the answer to your question. The initial answer must be based on previous knowledge about the topic. Concern theories and previous studies and try to form assumptions about what you will find in your research.
Create a conceptual framework about different variables you are going to study and the relationships between them.
- Formulate the hypothesis
Now you have an idea of what you are expecting to find. Make a clear and concise answer to the question.
- Refine your hypothesis
Now check whether your hypothesis is testable. There must be clear definitions of your hypothesis while phrasing. It should contain:
- The relevant variables
The particular group being studied.
The predicted result of the analysis or experiment
- Phrase your hypothesis in three ways
To recognize the variables, write a prediction in (if-then) form. Like, if a particular action is taken, a certain result is expected. The first part of the phrase shows the independent variable while the second part shows the dependent variable.
- Write a null hypothesis
If the research requires statistical hypothesis testing, you must have to make a null hypothesis and an alternative hypothesis.
Now test your hypothesis through observations, techniques, and experiments by keeping necessary things and resources in consideration.
Related Posts:
- Correlational Research Design [Examples, Types, Advantages, Disadvantages, Characteristics]
- Which of the following is the first step in hypothesis testing?
- Quantitative research Examples, Methods, Characteristics, Advantages, Disadvantages
- Which of the following is considered one of the earliest literary sources in human history?
- Understanding metrics (bounce rate, session duration, traffic sources) MCQs in digital marketing
- Sources of Islamic law (Islamic Study) MCQs
You must be logged in to post a comment.
- Research Process
- Manuscript Preparation
- Manuscript Review
- Publication Process
- Publication Recognition
- Language Editing Services
- Translation Services
Step-by-Step Guide: How to Craft a Strong Research Hypothesis
- 4 minute read
- 405.7K views
Table of Contents
A research hypothesis is a concise statement about the expected result of an experiment or project. In many ways, a research hypothesis represents the starting point for a scientific endeavor, as it establishes a tentative assumption that is eventually substantiated or falsified, ultimately improving our certainty about the subject investigated.
To help you with this and ease the process, in this article, we discuss the purpose of research hypotheses and list the most essential qualities of a compelling hypothesis. Let’s find out!
How to Craft a Research Hypothesis
Crafting a research hypothesis begins with a comprehensive literature review to identify a knowledge gap in your field. Once you find a question or problem, come up with a possible answer or explanation, which becomes your hypothesis. Now think about the specific methods of experimentation that can prove or disprove the hypothesis, which ultimately lead to the results of the study.
Enlisted below are some standard formats in which you can formulate a hypothesis¹ :
- A hypothesis can use the if/then format when it seeks to explore the correlation between two variables in a study primarily.
Example: If administered drug X, then patients will experience reduced fatigue from cancer treatment.
- A hypothesis can adopt when X/then Y format when it primarily aims to expose a connection between two variables
Example: When workers spend a significant portion of their waking hours in sedentary work , then they experience a greater frequency of digestive problems.
- A hypothesis can also take the form of a direct statement.
Example: Drug X and drug Y reduce the risk of cognitive decline through the same chemical pathways
What are the Features of an Effective Hypothesis?
Hypotheses in research need to satisfy specific criteria to be considered scientifically rigorous. Here are the most notable qualities of a strong hypothesis:
- Testability: Ensure the hypothesis allows you to work towards observable and testable results.
- Brevity and objectivity: Present your hypothesis as a brief statement and avoid wordiness.
- Clarity and Relevance: The hypothesis should reflect a clear idea of what we know and what we expect to find out about a phenomenon and address the significant knowledge gap relevant to a field of study.
Understanding Null and Alternative Hypotheses in Research
There are two types of hypotheses used commonly in research that aid statistical analyses. These are known as the null hypothesis and the alternative hypothesis . A null hypothesis is a statement assumed to be factual in the initial phase of the study.
For example, if a researcher is testing the efficacy of a new drug, then the null hypothesis will posit that the drug has no benefits compared to an inactive control or placebo . Suppose the data collected through a drug trial leads a researcher to reject the null hypothesis. In that case, it is considered to substantiate the alternative hypothesis in the above example, that the new drug provides benefits compared to the placebo.
Let’s take a closer look at the null hypothesis and alternative hypothesis with two more examples:
Null Hypothesis:
The rate of decline in the number of species in habitat X in the last year is the same as in the last 100 years when controlled for all factors except the recent wildfires.
In the next experiment, the researcher will experimentally reject this null hypothesis in order to confirm the following alternative hypothesis :
The rate of decline in the number of species in habitat X in the last year is different from the rate of decline in the last 100 years when controlled for all factors other than the recent wildfires.
In the pair of null and alternative hypotheses stated above, a statistical comparison of the rate of species decline over a century and the preceding year will help the research experimentally test the null hypothesis, helping to draw scientifically valid conclusions about two factors—wildfires and species decline.
We also recommend that researchers pay attention to contextual echoes and connections when writing research hypotheses. Research hypotheses are often closely linked to the introduction ² , such as the context of the study, and can similarly influence the reader’s judgment of the relevance and validity of the research hypothesis.
Seasoned experts, such as professionals at Elsevier Language Services, guide authors on how to best embed a hypothesis within an article so that it communicates relevance and credibility. Contact us if you want help in ensuring readers find your hypothesis robust and unbiased.
References
- Hypotheses – The University Writing Center. (n.d.). https://writingcenter.tamu.edu/writing-speaking-guides/hypotheses
- Shaping the research question and hypothesis. (n.d.). Students. https://students.unimelb.edu.au/academic-skills/graduate-research-services/writing-thesis-sections-part-2/shaping-the-research-question-and-hypothesis
Systematic Literature Review or Literature Review?
How to Write an Effective Problem Statement for Your Research Paper
You may also like.
Submission 101: What format should be used for academic papers?
Page-Turner Articles are More Than Just Good Arguments: Be Mindful of Tone and Structure!
A Must-see for Researchers! How to Ensure Inclusivity in Your Scientific Writing
Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions
Can Describing Study Limitations Improve the Quality of Your Paper?
A Guide to Crafting Shorter, Impactful Sentences in Academic Writing
6 Steps to Write an Excellent Discussion in Your Manuscript
How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider
Input your search keywords and press Enter.
15 Hypothesis Examples
Chris Drew (PhD)
Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]
Learn about our Editorial Process
A hypothesis is defined as a testable prediction , and is used primarily in scientific experiments as a potential or predicted outcome that scientists attempt to prove or disprove (Atkinson et al., 2021; Tan, 2022).
In my types of hypothesis article, I outlined 13 different hypotheses, including the directional hypothesis (which makes a prediction about an effect of a treatment will be positive or negative) and the associative hypothesis (which makes a prediction about the association between two variables).
This article will dive into some interesting examples of hypotheses and examine potential ways you might test each one.
Hypothesis Examples
1. “inadequate sleep decreases memory retention”.
Field: Psychology
Type: Causal Hypothesis A causal hypothesis explores the effect of one variable on another. This example posits that a lack of adequate sleep causes decreased memory retention. In other words, if you are not getting enough sleep, your ability to remember and recall information may suffer.
How to Test:
To test this hypothesis, you might devise an experiment whereby your participants are divided into two groups: one receives an average of 8 hours of sleep per night for a week, while the other gets less than the recommended sleep amount.
During this time, all participants would daily study and recall new, specific information. You’d then measure memory retention of this information for both groups using standard memory tests and compare the results.
Should the group with less sleep have statistically significant poorer memory scores, the hypothesis would be supported.
Ensuring the integrity of the experiment requires taking into account factors such as individual health differences, stress levels, and daily nutrition.
Relevant Study: Sleep loss, learning capacity and academic performance (Curcio, Ferrara & De Gennaro, 2006)
2. “Increase in Temperature Leads to Increase in Kinetic Energy”
Field: Physics
Type: Deductive Hypothesis The deductive hypothesis applies the logic of deductive reasoning – it moves from a general premise to a more specific conclusion. This specific hypothesis assumes that as temperature increases, the kinetic energy of particles also increases – that is, when you heat something up, its particles move around more rapidly.
This hypothesis could be examined by heating a gas in a controlled environment and capturing the movement of its particles as a function of temperature.
You’d gradually increase the temperature and measure the kinetic energy of the gas particles with each increment. If the kinetic energy consistently rises with the temperature, your hypothesis gets supporting evidence.
Variables such as pressure and volume of the gas would need to be held constant to ensure validity of results.
3. “Children Raised in Bilingual Homes Develop Better Cognitive Skills”
Field: Psychology/Linguistics
Type: Comparative Hypothesis The comparative hypothesis posits a difference between two or more groups based on certain variables. In this context, you might propose that children raised in bilingual homes have superior cognitive skills compared to those raised in monolingual homes.
Testing this hypothesis could involve identifying two groups of children: those raised in bilingual homes, and those raised in monolingual homes.
Cognitive skills in both groups would be evaluated using a standard cognitive ability test at different stages of development. The examination would be repeated over a significant time period for consistency.
If the group raised in bilingual homes persistently scores higher than the other, the hypothesis would thereby be supported.
The challenge for the researcher would be controlling for other variables that could impact cognitive development, such as socio-economic status, education level of parents, and parenting styles.
Relevant Study: The cognitive benefits of being bilingual (Marian & Shook, 2012)
4. “High-Fiber Diet Leads to Lower Incidences of Cardiovascular Diseases”
Field: Medicine/Nutrition
Type: Alternative Hypothesis The alternative hypothesis suggests an alternative to a null hypothesis. In this context, the implied null hypothesis could be that diet has no effect on cardiovascular health, which the alternative hypothesis contradicts by suggesting that a high-fiber diet leads to fewer instances of cardiovascular diseases.
To test this hypothesis, a longitudinal study could be conducted on two groups of participants; one adheres to a high-fiber diet, while the other follows a diet low in fiber.
After a fixed period, the cardiovascular health of participants in both groups could be analyzed and compared. If the group following a high-fiber diet has a lower number of recorded cases of cardiovascular diseases, it would provide evidence supporting the hypothesis.
Control measures should be implemented to exclude the influence of other lifestyle and genetic factors that contribute to cardiovascular health.
Relevant Study: Dietary fiber, inflammation, and cardiovascular disease (King, 2005)
5. “Gravity Influences the Directional Growth of Plants”
Field: Agronomy / Botany
Type: Explanatory Hypothesis An explanatory hypothesis attempts to explain a phenomenon. In this case, the hypothesis proposes that gravity affects how plants direct their growth – both above-ground (toward sunlight) and below-ground (towards water and other resources).
The testing could be conducted by growing plants in a rotating cylinder to create artificial gravity.
Observations on the direction of growth, over a specified period, can provide insights into the influencing factors. If plants consistently direct their growth in a manner that indicates the influence of gravitational pull, the hypothesis is substantiated.
It is crucial to ensure that other growth-influencing factors, such as light and water, are uniformly distributed so that only gravity influences the directional growth.
6. “The Implementation of Gamified Learning Improves Students’ Motivation”
Field: Education
Type: Relational Hypothesis The relational hypothesis describes the relation between two variables. Here, the hypothesis is that the implementation of gamified learning has a positive effect on the motivation of students.
To validate this proposition, two sets of classes could be compared: one that implements a learning approach with game-based elements, and another that follows a traditional learning approach.
The students’ motivation levels could be gauged by monitoring their engagement, performance, and feedback over a considerable timeframe.
If the students engaged in the gamified learning context present higher levels of motivation and achievement, the hypothesis would be supported.
Control measures ought to be put into place to account for individual differences, including prior knowledge and attitudes towards learning.
Relevant Study: Does educational gamification improve students’ motivation? (Chapman & Rich, 2018)
7. “Mathematics Anxiety Negatively Affects Performance”
Field: Educational Psychology
Type: Research Hypothesis The research hypothesis involves making a prediction that will be tested. In this case, the hypothesis proposes that a student’s anxiety about math can negatively influence their performance in math-related tasks.
To assess this hypothesis, researchers must first measure the mathematics anxiety levels of a sample of students using a validated instrument, such as the Mathematics Anxiety Rating Scale.
Then, the students’ performance in mathematics would be evaluated through standard testing. If there’s a negative correlation between the levels of math anxiety and math performance (meaning as anxiety increases, performance decreases), the hypothesis would be supported.
It would be crucial to control for relevant factors such as overall academic performance and previous mathematical achievement.
8. “Disruption of Natural Sleep Cycle Impairs Worker Productivity”
Field: Organizational Psychology
Type: Operational Hypothesis The operational hypothesis involves defining the variables in measurable terms. In this example, the hypothesis posits that disrupting the natural sleep cycle, for instance through shift work or irregular working hours, can lessen productivity among workers.
To test this hypothesis, you could collect data from workers who maintain regular working hours and those with irregular schedules.
Measuring productivity could involve examining the worker’s ability to complete tasks, the quality of their work, and their efficiency.
If workers with interrupted sleep cycles demonstrate lower productivity compared to those with regular sleep patterns, it would lend support to the hypothesis.
Consideration should be given to potential confounding variables such as job type, worker age, and overall health.
9. “Regular Physical Activity Reduces the Risk of Depression”
Field: Health Psychology
Type: Predictive Hypothesis A predictive hypothesis involves making a prediction about the outcome of a study based on the observed relationship between variables. In this case, it is hypothesized that individuals who engage in regular physical activity are less likely to suffer from depression.
Longitudinal studies would suit to test this hypothesis, tracking participants’ levels of physical activity and their mental health status over time.
The level of physical activity could be self-reported or monitored, while mental health status could be assessed using standard diagnostic tools or surveys.
If data analysis shows that participants maintaining regular physical activity have a lower incidence of depression, this would endorse the hypothesis.
However, care should be taken to control other lifestyle and behavioral factors that could intervene with the results.
Relevant Study: Regular physical exercise and its association with depression (Kim, 2022)
10. “Regular Meditation Enhances Emotional Stability”
Type: Empirical Hypothesis In the empirical hypothesis, predictions are based on amassed empirical evidence . This particular hypothesis theorizes that frequent meditation leads to improved emotional stability, resonating with numerous studies linking meditation to a variety of psychological benefits.
Earlier studies reported some correlations, but to test this hypothesis directly, you’d organize an experiment where one group meditates regularly over a set period while a control group doesn’t.
Both groups’ emotional stability levels would be measured at the start and end of the experiment using a validated emotional stability assessment.
If regular meditators display noticeable improvements in emotional stability compared to the control group, the hypothesis gains credit.
You’d have to ensure a similar emotional baseline for all participants at the start to avoid skewed results.
11. “Children Exposed to Reading at an Early Age Show Superior Academic Progress”
Type: Directional Hypothesis The directional hypothesis predicts the direction of an expected relationship between variables. Here, the hypothesis anticipates that early exposure to reading positively affects a child’s academic advancement.
A longitudinal study tracking children’s reading habits from an early age and their consequent academic performance could validate this hypothesis.
Parents could report their children’s exposure to reading at home, while standardized school exam results would provide a measure of academic achievement.
If the children exposed to early reading consistently perform better acadically, it gives weight to the hypothesis.
However, it would be important to control for variables that might impact academic performance, such as socioeconomic background, parental education level, and school quality.
12. “Adopting Energy-efficient Technologies Reduces Carbon Footprint of Industries”
Field: Environmental Science
Type: Descriptive Hypothesis A descriptive hypothesis predicts the existence of an association or pattern related to variables. In this scenario, the hypothesis suggests that industries adopting energy-efficient technologies will resultantly show a reduced carbon footprint.
Global industries making use of energy-efficient technologies could track their carbon emissions over time. At the same time, others not implementing such technologies continue their regular tracking.
After a defined time, the carbon emission data of both groups could be compared. If industries that adopted energy-efficient technologies demonstrate a notable reduction in their carbon footprints, the hypothesis would hold strong.
In the experiment, you would exclude variations brought by factors such as industry type, size, and location.
13. “Reduced Screen Time Improves Sleep Quality”
Type: Simple Hypothesis The simple hypothesis is a prediction about the relationship between two variables, excluding any other variables from consideration. This example posits that by reducing time spent on devices like smartphones and computers, an individual should experience improved sleep quality.
A sample group would need to reduce their daily screen time for a pre-determined period. Sleep quality before and after the reduction could be measured using self-report sleep diaries and objective measures like actigraphy, monitoring movement and wakefulness during sleep.
If the data shows that sleep quality improved post the screen time reduction, the hypothesis would be validated.
Other aspects affecting sleep quality, like caffeine intake, should be controlled during the experiment.
Relevant Study: Screen time use impacts low‐income preschool children’s sleep quality, tiredness, and ability to fall asleep (Waller et al., 2021)
14. Engaging in Brain-Training Games Improves Cognitive Functioning in Elderly
Field: Gerontology
Type: Inductive Hypothesis Inductive hypotheses are based on observations leading to broader generalizations and theories. In this context, the hypothesis deduces from observed instances that engaging in brain-training games can help improve cognitive functioning in the elderly.
A longitudinal study could be conducted where an experimental group of elderly people partakes in regular brain-training games.
Their cognitive functioning could be assessed at the start of the study and at regular intervals using standard neuropsychological tests.
If the group engaging in brain-training games shows better cognitive functioning scores over time compared to a control group not playing these games, the hypothesis would be supported.
15. Farming Practices Influence Soil Erosion Rates
Type: Null Hypothesis A null hypothesis is a negative statement assuming no relationship or difference between variables. The hypothesis in this context asserts there’s no effect of different farming practices on the rates of soil erosion.
Comparing soil erosion rates in areas with different farming practices over a considerable timeframe could help test this hypothesis.
If, statistically, the farming practices do not lead to differences in soil erosion rates, the null hypothesis is accepted.
However, if marked variation appears, the null hypothesis is rejected, meaning farming practices do influence soil erosion rates. It would be crucial to control for external factors like weather, soil type, and natural vegetation.
The variety of hypotheses mentioned above underscores the diversity of research constructs inherent in different fields, each with its unique purpose and way of testing.
While researchers may develop hypotheses primarily as tools to define and narrow the focus of the study, these hypotheses also serve as valuable guiding forces for the data collection and analysis procedures, making the research process more efficient and direction-focused.
Hypotheses serve as a compass for any form of academic research. The diverse examples provided, from Psychology to Educational Studies, Environmental Science to Gerontology, clearly demonstrate how certain hypotheses suit specific fields more aptly than others.
It is important to underline that although these varied hypotheses differ in their structure and methods of testing, each endorses the fundamental value of empiricism in research. Evidence-based decision making remains at the heart of scholarly inquiry, regardless of the research field, thus aligning all hypotheses to the core purpose of scientific investigation.
Testing hypotheses is an essential part of the scientific method . By doing so, researchers can either confirm their predictions, giving further validity to an existing theory, or they might uncover new insights that could potentially shift the field’s understanding of a particular phenomenon. In either case, hypotheses serve as the stepping stones for scientific exploration and discovery.
Atkinson, P., Delamont, S., Cernat, A., Sakshaug, J. W., & Williams, R. A. (2021). SAGE research methods foundations . SAGE Publications Ltd.
Curcio, G., Ferrara, M., & De Gennaro, L. (2006). Sleep loss, learning capacity and academic performance. Sleep medicine reviews , 10 (5), 323-337.
Kim, J. H. (2022). Regular physical exercise and its association with depression: A population-based study short title: Exercise and depression. Psychiatry Research , 309 , 114406.
King, D. E. (2005). Dietary fiber, inflammation, and cardiovascular disease. Molecular nutrition & food research , 49 (6), 594-600.
Marian, V., & Shook, A. (2012, September). The cognitive benefits of being bilingual. In Cerebrum: the Dana forum on brain science (Vol. 2012). Dana Foundation.
Tan, W. C. K. (2022). Research Methods: A Practical Guide For Students And Researchers (Second Edition) . World Scientific Publishing Company.
Waller, N. A., Zhang, N., Cocci, A. H., D’Agostino, C., Wesolek‐Greenson, S., Wheelock, K., … & Resnicow, K. (2021). Screen time use impacts low‐income preschool children’s sleep quality, tiredness, and ability to fall asleep. Child: care, health and development, 47 (5), 618-626.
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 10 Reasons you’re Perpetually Single
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 20 Montessori Toddler Bedrooms (Design Inspiration)
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 21 Montessori Homeschool Setups
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 101 Hidden Talents Examples
Leave a Comment Cancel Reply
Your email address will not be published. Required fields are marked *
How to Write a Research Hypothesis
- Research Process
- Peer Review
Since grade school, we've all been familiar with hypotheses. The hypothesis is an essential step of the scientific method. But what makes an effective research hypothesis, how do you create one, and what types of hypotheses are there? We answer these questions and more.
Updated on April 27, 2022
What is a research hypothesis?
General hypothesis.
Since grade school, we've all been familiar with the term “hypothesis.” A hypothesis is a fact-based guess or prediction that has not been proven. It is an essential step of the scientific method. The hypothesis of a study is a drive for experimentation to either prove the hypothesis or dispute it.
Research Hypothesis
A research hypothesis is more specific than a general hypothesis. It is an educated, expected prediction of the outcome of a study that is testable.
What makes an effective research hypothesis?
A good research hypothesis is a clear statement of the relationship between a dependent variable(s) and independent variable(s) relevant to the study that can be disproven.
Research hypothesis checklist
Once you've written a possible hypothesis, make sure it checks the following boxes:
- It must be testable: You need a means to prove your hypothesis. If you can't test it, it's not a hypothesis.
- It must include a dependent and independent variable: At least one independent variable ( cause ) and one dependent variable ( effect ) must be included.
- The language must be easy to understand: Be as clear and concise as possible. Nothing should be left to interpretation.
- It must be relevant to your research topic: You probably shouldn't be talking about cats and dogs if your research topic is outer space. Stay relevant to your topic.
How to create an effective research hypothesis
Pose it as a question first.
Start your research hypothesis from a journalistic approach. Ask one of the five W's: Who, what, when, where, or why.
A possible initial question could be: Why is the sky blue?
Do the preliminary research
Once you have a question in mind, read research around your topic. Collect research from academic journals.
If you're looking for information about the sky and why it is blue, research information about the atmosphere, weather, space, the sun, etc.
Write a draft hypothesis
Once you're comfortable with your subject and have preliminary knowledge, create a working hypothesis. Don't stress much over this. Your first hypothesis is not permanent. Look at it as a draft.
Your first draft of a hypothesis could be: Certain molecules in the Earth's atmosphere are responsive to the sky being the color blue.
Make your working draft perfect
Take your working hypothesis and make it perfect. Narrow it down to include only the information listed in the “Research hypothesis checklist” above.
Now that you've written your working hypothesis, narrow it down. Your new hypothesis could be: Light from the sun hitting oxygen molecules in the sky makes the color of the sky appear blue.
Write a null hypothesis
Your null hypothesis should be the opposite of your research hypothesis. It should be able to be disproven by your research.
In this example, your null hypothesis would be: Light from the sun hitting oxygen molecules in the sky does not make the color of the sky appear blue.
Why is it important to have a clear, testable hypothesis?
One of the main reasons a manuscript can be rejected from a journal is because of a weak hypothesis. “Poor hypothesis, study design, methodology, and improper use of statistics are other reasons for rejection of a manuscript,” says Dr. Ish Kumar Dhammi and Dr. Rehan-Ul-Haq in Indian Journal of Orthopaedics.
According to Dr. James M. Provenzale in American Journal of Roentgenology , “The clear declaration of a research question (or hypothesis) in the Introduction is critical for reviewers to understand the intent of the research study. It is best to clearly state the study goal in plain language (for example, “We set out to determine whether condition x produces condition y.”) An insufficient problem statement is one of the more common reasons for manuscript rejection.”
Characteristics that make a hypothesis weak include:
- Unclear variables
- Unoriginality
- Too general
- Too specific
A weak hypothesis leads to weak research and methods . The goal of a paper is to prove or disprove a hypothesis - or to prove or disprove a null hypothesis. If the hypothesis is not a dependent variable of what is being studied, the paper's methods should come into question.
A strong hypothesis is essential to the scientific method. A hypothesis states an assumed relationship between at least two variables and the experiment then proves or disproves that relationship with statistical significance. Without a proven and reproducible relationship, the paper feeds into the reproducibility crisis. Learn more about writing for reproducibility .
In a study published in The Journal of Obstetrics and Gynecology of India by Dr. Suvarna Satish Khadilkar, she reviewed 400 rejected manuscripts to see why they were rejected. Her studies revealed that poor methodology was a top reason for the submission having a final disposition of rejection.
Aside from publication chances, Dr. Gareth Dyke believes a clear hypothesis helps efficiency.
“Developing a clear and testable hypothesis for your research project means that you will not waste time, energy, and money with your work,” said Dyke. “Refining a hypothesis that is both meaningful, interesting, attainable, and testable is the goal of all effective research.”
Types of research hypotheses
There can be overlap in these types of hypotheses.
Simple hypothesis
A simple hypothesis is a hypothesis at its most basic form. It shows the relationship of one independent and one independent variable.
Example: Drinking soda (independent variable) every day leads to obesity (dependent variable).
Complex hypothesis
A complex hypothesis shows the relationship of two or more independent and dependent variables.
Example: Drinking soda (independent variable) every day leads to obesity (dependent variable) and heart disease (dependent variable).
Directional hypothesis
A directional hypothesis guesses which way the results of an experiment will go. It uses words like increase, decrease, higher, lower, positive, negative, more, or less. It is also frequently used in statistics.
Example: Humans exposed to radiation have a higher risk of cancer than humans not exposed to radiation.
Non-directional hypothesis
A non-directional hypothesis says there will be an effect on the dependent variable, but it does not say which direction.
Associative hypothesis
An associative hypothesis says that when one variable changes, so does the other variable.
Alternative hypothesis
An alternative hypothesis states that the variables have a relationship.
- The opposite of a null hypothesis
Example: An apple a day keeps the doctor away.
Null hypothesis
A null hypothesis states that there is no relationship between the two variables. It is posed as the opposite of what the alternative hypothesis states.
Researchers use a null hypothesis to work to be able to reject it. A null hypothesis:
- Can never be proven
- Can only be rejected
- Is the opposite of an alternative hypothesis
Example: An apple a day does not keep the doctor away.
Logical hypothesis
A logical hypothesis is a suggested explanation while using limited evidence.
Example: Bats can navigate in the dark better than tigers.
In this hypothesis, the researcher knows that tigers cannot see in the dark, and bats mostly live in darkness.
Empirical hypothesis
An empirical hypothesis is also called a “working hypothesis.” It uses the trial and error method and changes around the independent variables.
- An apple a day keeps the doctor away.
- Two apples a day keep the doctor away.
- Three apples a day keep the doctor away.
In this case, the research changes the hypothesis as the researcher learns more about his/her research.
Statistical hypothesis
A statistical hypothesis is a look of a part of a population or statistical model. This type of hypothesis is especially useful if you are making a statement about a large population. Instead of having to test the entire population of Illinois, you could just use a smaller sample of people who live there.
Example: 70% of people who live in Illinois are iron deficient.
Causal hypothesis
A causal hypothesis states that the independent variable will have an effect on the dependent variable.
Example: Using tobacco products causes cancer.
Final thoughts
Make sure your research is error-free before you send it to your preferred journal . Check our our English Editing services to avoid your chances of desk rejection.
Jonny Rhein, BA
See our "Privacy Policy"
How to Develop a Good Research Hypothesis
The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.
This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis
Table of Contents
What is Hypothesis?
Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study. Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).
What is a Research Hypothesis?
Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).
Characteristics of a Good Research Hypothesis
As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.
A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.
To help you formulate a promising research hypothesis, you should ask yourself the following questions:
- Is the language clear and focused?
- What is the relationship between your hypothesis and your research topic?
- Is your hypothesis testable? If yes, then how?
- What are the possible explanations that you might want to explore?
- Does your hypothesis include both an independent and dependent variable?
- Can you manipulate your variables without hampering the ethical standards?
- Does your research predict the relationship and outcome?
- Is your research simple and concise (avoids wordiness)?
- Is it clear with no ambiguity or assumptions about the readers’ knowledge
- Is your research observable and testable results?
- Is it relevant and specific to the research question or problem?
The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.
Source: Educational Hub
How to formulate a research hypothesis.
A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.
1. State the problem that you are trying to solve.
Make sure that the hypothesis clearly defines the topic and the focus of the experiment.
2. Try to write the hypothesis as an if-then statement.
Follow this template: If a specific action is taken, then a certain outcome is expected.
3. Define the variables
Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.
Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.
4. Scrutinize the hypothesis
Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.
Types of Research Hypothesis
The types of research hypothesis are stated below:
1. Simple Hypothesis
It predicts the relationship between a single dependent variable and a single independent variable.
2. Complex Hypothesis
It predicts the relationship between two or more independent and dependent variables.
3. Directional Hypothesis
It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.
4. Non-directional Hypothesis
It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.
5. Associative and Causal Hypothesis
The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.
6. Null Hypothesis
Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.
7. Alternative Hypothesis
It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.
Research Hypothesis Examples of Independent and Dependent Variables
Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)
You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.
More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.
Importance of a Testable Hypothesis
To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:
- There must be a possibility to prove that the hypothesis is true.
- There must be a possibility to prove that the hypothesis is false.
- The results of the hypothesis must be reproducible.
Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.
What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.
Frequently Asked Questions
The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis
Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.
Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.
Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.
The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.
Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.
Thanks a lot for your valuable guidance.
I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.
Useful piece!
This is awesome.Wow.
It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market
Nicely explained
It is really a useful for me Kindly give some examples of hypothesis
It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated
clear and concise. thanks.
So Good so Amazing
Good to learn
Thanks a lot for explaining to my level of understanding
Explained well and in simple terms. Quick read! Thank you
It awesome. It has really positioned me in my research project
Brief and easily digested
Very valuable resource and well done.
Rate this article Cancel Reply
Your email address will not be published.
Enago Academy's Most Popular Articles
- Reporting Research
Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation
In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…
Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach
The process of choosing the right research design can put ourselves at the crossroads of…
- Industry News
COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards
The COPE forum discussion held in December 2023 initiated with a fundamental question — is…
- Career Corner
Unlocking the Power of Networking in Academic Conferences
Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…
Research Recommendations – Guiding policy-makers for evidence-based decision making
Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…
Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…
Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…
How to Design Effective Research Questionnaires for Robust Findings
Sign-up to read more
Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:
- 2000+ blog articles
- 50+ Webinars
- 10+ Expert podcasts
- 50+ Infographics
- 10+ Checklists
- Research Guides
We hate spam too. We promise to protect your privacy and never spam you.
- Publishing Research
- AI in Academia
- Promoting Research
- Diversity and Inclusion
- Infographics
- Expert Video Library
- Other Resources
- Enago Learn
- Upcoming & On-Demand Webinars
- Open Access Week 2024
- Peer Review Week 2024
- Conference Videos
- Enago Report
- Journal Finder
- Enago Plagiarism & AI Grammar Check
- Editing Services
- Publication Support Services
- Research Impact
- Translation Services
- Publication solutions
- AI-Based Solutions
- Thought Leadership
- Call for Articles
- Call for Speakers
- Author Training
- Edit Profile
I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:
What factors would influence the future of open access (OA) publishing?
Public Health Notes
Your partner for better health, hypothesis in research: definition, types and importance .
April 21, 2020 Kusum Wagle Epidemiology 0
Table of Contents
What is Hypothesis?
- Hypothesis is a logical prediction of certain occurrences without the support of empirical confirmation or evidence.
- In scientific terms, it is a tentative theory or testable statement about the relationship between two or more variables i.e. independent and dependent variable.
Different Types of Hypothesis:
1. Simple Hypothesis:
- A Simple hypothesis is also known as composite hypothesis.
- In simple hypothesis all parameters of the distribution are specified.
- It predicts relationship between two variables i.e. the dependent and the independent variable
2. Complex Hypothesis:
- A Complex hypothesis examines relationship between two or more independent variables and two or more dependent variables.
3. Working or Research Hypothesis:
- A research hypothesis is a specific, clear prediction about the possible outcome of a scientific research study based on specific factors of the population.
4. Null Hypothesis:
- A null hypothesis is a general statement which states no relationship between two variables or two phenomena. It is usually denoted by H 0 .
5. Alternative Hypothesis:
- An alternative hypothesis is a statement which states some statistical significance between two phenomena. It is usually denoted by H 1 or H A .
6. Logical Hypothesis:
- A logical hypothesis is a planned explanation holding limited evidence.
7. Statistical Hypothesis:
- A statistical hypothesis, sometimes called confirmatory data analysis, is an assumption about a population parameter.
Although there are different types of hypothesis, the most commonly and used hypothesis are Null hypothesis and alternate hypothesis . So, what is the difference between null hypothesis and alternate hypothesis? Let’s have a look:
Major Differences Between Null Hypothesis and Alternative Hypothesis:
Importance of hypothesis:.
- It ensures the entire research methodologies are scientific and valid.
- It helps to assume the probability of research failure and progress.
- It helps to provide link to the underlying theory and specific research question.
- It helps in data analysis and measure the validity and reliability of the research.
- It provides a basis or evidence to prove the validity of the research.
- It helps to describe research study in concrete terms rather than theoretical terms.
Characteristics of Good Hypothesis:
- Should be simple.
- Should be specific.
- Should be stated in advance.
References and For More Information:
https://ocw.jhsph.edu/courses/StatisticalReasoning1/PDFs/2009/BiostatisticsLecture4.pdf
https://keydifferences.com/difference-between-type-i-and-type-ii-errors.html
https://www.khanacademy.org/math/ap-statistics/tests-significance-ap/error-probabilities-power/a/consequences-errors-significance
https://stattrek.com/hypothesis-test/hypothesis-testing.aspx
http://davidmlane.com/hyperstat/A2917.html
https://study.com/academy/lesson/what-is-a-hypothesis-definition-lesson-quiz.html
https://keydifferences.com/difference-between-null-and-alternative-hypothesis.html
https://blog.minitab.com/blog/adventures-in-statistics-2/understanding-hypothesis-tests-why-we-need-to-use-hypothesis-tests-in-statistics
- Characteristics of Good Hypothesis
- complex hypothesis
- example of alternative hypothesis
- example of null hypothesis
- how is null hypothesis different to alternative hypothesis
- Importance of Hypothesis
- null hypothesis vs alternate hypothesis
- simple hypothesis
- Types of Hypotheses
- what is alternate hypothesis
- what is alternative hypothesis
- what is hypothesis?
- what is logical hypothesis
- what is null hypothesis
- what is research hypothesis
- what is statistical hypothesis
- why is hypothesis necessary
Copyright © 2024 | WordPress Theme by MH Themes
The Research Hypothesis: Role and Construction
- First Online: 01 January 2012
Cite this chapter
- Phyllis G. Supino EdD 3
6173 Accesses
A hypothesis is a logical construct, interposed between a problem and its solution, which represents a proposed answer to a research question. It gives direction to the investigator’s thinking about the problem and, therefore, facilitates a solution. There are three primary modes of inference by which hypotheses are developed: deduction (reasoning from a general propositions to specific instances), induction (reasoning from specific instances to a general proposition), and abduction (formulation/acceptance on probation of a hypothesis to explain a surprising observation).
A research hypothesis should reflect an inference about variables; be stated as a grammatically complete, declarative sentence; be expressed simply and unambiguously; provide an adequate answer to the research problem; and be testable. Hypotheses can be classified as conceptual versus operational, single versus bi- or multivariable, causal or not causal, mechanistic versus nonmechanistic, and null or alternative. Hypotheses most commonly entail statements about “variables” which, in turn, can be classified according to their level of measurement (scaling characteristics) or according to their role in the hypothesis (independent, dependent, moderator, control, or intervening).
A hypothesis is rendered operational when its broadly (conceptually) stated variables are replaced by operational definitions of those variables. Hypotheses stated in this manner are called operational hypotheses, specific hypotheses, or predictions and facilitate testing.
Wrong hypotheses, rightly worked from, have produced more results than unguided observation
—Augustus De Morgan, 1872[ 1 ]—
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save.
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
- Available as PDF
- Read on any device
- Instant download
- Own it forever
- Available as EPUB and PDF
- Compact, lightweight edition
- Dispatched in 3 to 5 business days
- Free shipping worldwide - see info
- Durable hardcover edition
Tax calculation will be finalised at checkout
Purchases are for personal use only
Institutional subscriptions
Similar content being viewed by others
The Nature and Logic of Science: Testing Hypotheses
Abductive Research Methods in Psychological Science
Abductive Research Methods in Psychological Science
De Morgan A, De Morgan S. A budget of paradoxes. London: Longmans Green; 1872.
Google Scholar
Leedy Paul D. Practical research. Planning and design. 2nd ed. New York: Macmillan; 1960.
Bernard C. Introduction to the study of experimental medicine. New York: Dover; 1957.
Erren TC. The quest for questions—on the logical force of science. Med Hypotheses. 2004;62:635–40.
Article PubMed Google Scholar
Peirce CS. Collected papers of Charles Sanders Peirce, vol. 7. In: Hartshorne C, Weiss P, editors. Boston: The Belknap Press of Harvard University Press; 1966.
Aristotle. The complete works of Aristotle: the revised Oxford Translation. In: Barnes J, editor. vol. 2. Princeton/New Jersey: Princeton University Press; 1984.
Polit D, Beck CT. Conceptualizing a study to generate evidence for nursing. In: Polit D, Beck CT, editors. Nursing research: generating and assessing evidence for nursing practice. 8th ed. Philadelphia: Wolters Kluwer/Lippincott Williams and Wilkins; 2008. Chapter 4.
Jenicek M, Hitchcock DL. Evidence-based practice. Logic and critical thinking in medicine. Chicago: AMA Press; 2005.
Bacon F. The novum organon or a true guide to the interpretation of nature. A new translation by the Rev G.W. Kitchin. Oxford: The University Press; 1855.
Popper KR. Objective knowledge: an evolutionary approach (revised edition). New York: Oxford University Press; 1979.
Morgan AJ, Parker S. Translational mini-review series on vaccines: the Edward Jenner Museum and the history of vaccination. Clin Exp Immunol. 2007;147:389–94.
Article PubMed CAS Google Scholar
Pead PJ. Benjamin Jesty: new light in the dawn of vaccination. Lancet. 2003;362:2104–9.
Lee JA. The scientific endeavor: a primer on scientific principles and practice. San Francisco: Addison-Wesley Longman; 2000.
Allchin D. Lawson’s shoehorn, or should the philosophy of science be rated, ‘X’? Science and Education. 2003;12:315–29.
Article Google Scholar
Lawson AE. What is the role of induction and deduction in reasoning and scientific inquiry? J Res Sci Teach. 2005;42:716–40.
Peirce CS. Collected papers of Charles Sanders Peirce, vol. 2. In: Hartshorne C, Weiss P, editors. Boston: The Belknap Press of Harvard University Press; 1965.
Bonfantini MA, Proni G. To guess or not to guess? In: Eco U, Sebeok T, editors. The sign of three: Dupin, Holmes, Peirce. Bloomington: Indiana University Press; 1983. Chapter 5.
Peirce CS. Collected papers of Charles Sanders Peirce, vol. 5. In: Hartshorne C, Weiss P, editors. Boston: The Belknap Press of Harvard University Press; 1965.
Flach PA, Kakas AC. Abductive and inductive reasoning: background issues. In: Flach PA, Kakas AC, editors. Abduction and induction. Essays on their relation and integration. The Netherlands: Klewer; 2000. Chapter 1.
Murray JF. Voltaire, Walpole and Pasteur: variations on the theme of discovery. Am J Respir Crit Care Med. 2005;172:423–6.
Danemark B, Ekstrom M, Jakobsen L, Karlsson JC. Methodological implications, generalization, scientific inference, models (Part II) In: explaining society. Critical realism in the social sciences. New York: Routledge; 2002.
Pasteur L. Inaugural lecture as professor and dean of the faculty of sciences. In: Peterson H, editor. A treasury of the world’s greatest speeches. Douai, France: University of Lille 7 Dec 1954.
Swineburne R. Simplicity as evidence for truth. Milwaukee: Marquette University Press; 1997.
Sakar S, editor. Logical empiricism at its peak: Schlick, Carnap and Neurath. New York: Garland; 1996.
Popper K. The logic of scientific discovery. New York: Basic Books; 1959. 1934, trans. 1959.
Caws P. The philosophy of science. Princeton: D. Van Nostrand Company; 1965.
Popper K. Conjectures and refutations. The growth of scientific knowledge. 4th ed. London: Routledge and Keegan Paul; 1972.
Feyerabend PK. Against method, outline of an anarchistic theory of knowledge. London, UK: Verso; 1978.
Smith PG. Popper: conjectures and refutations (Chapter IV). In: Theory and reality: an introduction to the philosophy of science. Chicago: University of Chicago Press; 2003.
Blystone RV, Blodgett K. WWW: the scientific method. CBE Life Sci Educ. 2006;5:7–11.
Kleinbaum DG, Kupper LL, Morgenstern H. Epidemiological research. Principles and quantitative methods. New York: Van Nostrand Reinhold; 1982.
Fortune AE, Reid WJ. Research in social work. 3rd ed. New York: Columbia University Press; 1999.
Kerlinger FN. Foundations of behavioral research. 1st ed. New York: Hold, Reinhart and Winston; 1970.
Hoskins CN, Mariano C. Research in nursing and health. Understanding and using quantitative and qualitative methods. New York: Springer; 2004.
Tuckman BW. Conducting educational research. New York: Harcourt, Brace, Jovanovich; 1972.
Wang C, Chiari PC, Weihrauch D, Krolikowski JG, Warltier DC, Kersten JR, Pratt Jr PF, Pagel PS. Gender-specificity of delayed preconditioning by isoflurane in rabbits: potential role of endothelial nitric oxide synthase. Anesth Analg. 2006;103:274–80.
Beyer ME, Slesak G, Nerz S, Kazmaier S, Hoffmeister HM. Effects of endothelin-1 and IRL 1620 on myocardial contractility and myocardial energy metabolism. J Cardiovasc Pharmacol. 1995;26(Suppl 3):S150–2.
PubMed CAS Google Scholar
Stone J, Sharpe M. Amnesia for childhood in patients with unexplained neurological symptoms. J Neurol Neurosurg Psychiatry. 2002;72:416–7.
Naughton BJ, Moran M, Ghaly Y, Michalakes C. Computer tomography scanning and delirium in elder patients. Acad Emerg Med. 1997;4:1107–10.
Easterbrook PJ, Berlin JA, Gopalan R, Matthews DR. Publication bias in clinical research. Lancet. 1991;337:867–72.
Stern JM, Simes RJ. Publication bias: evidence of delayed publication in a cohort study of clinical research projects. BMJ. 1997;315:640–5.
Stevens SS. On the theory of scales and measurement. Science. 1946;103:677–80.
Knapp TR. Treating ordinal scales as interval scales: an attempt to resolve the controversy. Nurs Res. 1990;39:121–3.
The Cochrane Collaboration. Open Learning Material. www.cochrane-net.org/openlearning/html/mod14-3.htm . Accessed 12 Oct 2009.
MacCorquodale K, Meehl PE. On a distinction between hypothetical constructs and intervening variables. Psychol Rev. 1948;55:95–107.
Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic and statistical considerations. J Pers Soc Psychol. 1986;51:1173–82.
Williamson GM, Schultz R. Activity restriction mediates the association between pain and depressed affect: a study of younger and older adult cancer patients. Psychol Aging. 1995;10:369–78.
Song M, Lee EO. Development of a functional capacity model for the elderly. Res Nurs Health. 1998;21:189–98.
MacKinnon DP. Introduction to statistical mediation analysis. New York: Routledge; 2008.
Download references
Author information
Authors and affiliations.
Department of Medicine, College of Medicine, SUNY Downstate Medical Center, 450 Clarkson Avenue, 1199, Brooklyn, NY, 11203, USA
Phyllis G. Supino EdD
You can also search for this author in PubMed Google Scholar
Corresponding author
Correspondence to Phyllis G. Supino EdD .
Editor information
Editors and affiliations.
, Cardiovascular Medicine, SUNY Downstate Medical Center, Clarkson Avenue, box 1199 450, Brooklyn, 11203, USA
Phyllis G. Supino
, Cardiovascualr Medicine, SUNY Downstate Medical Center, Clarkson Avenue 450, Brooklyn, 11203, USA
Jeffrey S. Borer
Rights and permissions
Reprints and permissions
Copyright information
© 2012 Springer Science+Business Media, LLC
About this chapter
Supino, P.G. (2012). The Research Hypothesis: Role and Construction. In: Supino, P., Borer, J. (eds) Principles of Research Methodology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3360-6_3
Download citation
DOI : https://doi.org/10.1007/978-1-4614-3360-6_3
Published : 18 April 2012
Publisher Name : Springer, New York, NY
Print ISBN : 978-1-4614-3359-0
Online ISBN : 978-1-4614-3360-6
eBook Packages : Medicine Medicine (R0)
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
- Publish with us
Policies and ethics
- Find a journal
- Track your research
Main navigation
- Funding Opportunities
- NeuroSphere
- Funded Projects
- Research Spotlight
- 2024 Graduate Student Fellowships - Application
- Neuro Partnerships Program
- Neuro Commercialization Grants
- Bridge Funding Program
- 2024 NeuroSphere Neurotech Hackathon Challenge Award
- NeuroSphere Emerging Entrepreneur Program
- Social Determinants of Health in Neuroscience Team Grant: Canadian Framework for Brain Health Research Initiative
- HBHL International Trainee Travel Awards
- IMPRESS Paid Indigenous Mentorship Program
- HBHL Graduate Student Fellowships Competition
2024 HBHL Undergraduate Summer Research Internship
- McGill-Western Initiative for Translational Neuroscience
- New Recruit Start-Up Supplements
- Core Facility and Technology Development Program
- HBHL International Partnerships Program
Healthy Brains, Healthy Lives (HBHL) is a high-profile, high-priority multidisciplinary and cross-sectoral initiative located at McGill University made possible with support from the Canada First Research Excellence Fund (CFREF), Quebec’s Ministère de l'Économie et de l'Innovation (MEI), and the Fonds de recherche du Québec (FRQS, FRQSC and FRQNT). HBHL builds on McGill’s scientific excellence and global leadership in areas of neuroscience that hold the greatest promise for delivering implementable, clinically effective outcomes in brain and mental health.
HBHL values creating experiences for students at all levels to get involved in brain health research. As such, we are pleased to announce the creation of a new HBHL funding initiative to support McGill undergraduate students in gaining hands-on research experience.
HBHL highly encourages individuals from equity-deserving backgrounds who are underrepresented in the fields of Science, Technology, Engineering and Mathematics (STEM) to apply. HBHL welcomes and encourages applications from individuals belonging to racialized communities, women, gender minorities, individuals with disabilities, 2SLGBTQIA+ students, Indigenous students, first-generation students, primary caregivers and students from lower-income backgrounds. We also welcome applications from all eligible applicants with the skills and knowledge to engage productively with diverse communities.
Funding Value and Duration
HBHL will fund up to 20 undergraduate student research internships (valued at $10,000 each) in brain and mental health research. This funding will compensate students for their research (spanning 16 weeks between May 2024 to August 2024, flexible start date) and provide them with the opportunity to gain valuable research and networking experience. All funded projects must align with one of HBHL’s research themes .
Eligibility Criteria
To be eligible to apply for the HBHL Undergraduate Summer Research Internship Program, you must meet all of the following criteria:
- Be a current full- or part-time non-graduating undergraduate McGill student (non-graduating means that your expected graduation date is December 2024 or later) from ANY faculty .
- Have not previously had a paid research experience.
- The proposed research project must be aligned with HBHL’s goals and objectives and align with at least one of HBHL’s four Research Themes.
- Prior to applying you must complete at least one of CIHR's Online Training Modules on Integrating Sex and Gender in Health Research (time required: 30-45 minutes) and submit your signed certificate of completion as part of your PDF application package (see below).
Supervisor Selection and Proposal Design
Before applying for the internship, you must contact the prospective supervisor(s) you are interested in working with. To assist you in this process and to help you identify prospective supervisors at McGill currently working in brain health, please refer to the HBHL's overview of funded projects and the Integrated Program in Neuroscience supervisor database . However, you are not restricted to prospective supervisors only from this list—it is simply a tool to help you in your search.
In addition, the HBHL Trainee Committee has put together a document including resources and a template email that applicants can refer to get assistance in reaching out to a prospective supervisor.
At the time of application, you must have:
- A signed HBHL USRI 2024 Supervisor Agreement Form from a McGill faculty member who agrees to supervise you should you receive the internship funding.
- Theme 1: Neuroinformatics and Computational Modelling
- Theme 2: Mechanistic Models of Neurodegenerative Disorders
- Theme 3: Applied Cognitive Neuroscience of Brain Plasticity
- Theme 4: Population Neuroscience and Brain Health
Application Process
Applications must be submitted through the online submission form by Sunday, March 3, 2024, by 11:59 p.m. EST.
The application package must include:
- Impact Statement
- Proposed Research Summary
- Supervisor Agreement Form
- Research Ethics Training (CIHR Certificate)
Please see the section below for full details on the application package contents.
All applications must be submitted online through the Undergraduate Summer Research Fellowship Application Form as a single PDF document. Please save the application document using the following file name format: “Lastname_Firstname.pdf” (eg., Smith_Jane or Smith_John). Documents must be typed in size 12 of any standard font with one-inch margins.
Application Package and Evaluation Criteria
Applications will be reviewed by the HBHL Trainee Committee in accordance with the following criteria:
Impact Statement (maximum 500 words)
Discuss how this internship will support you in achieving your career goals. For example, you may choose to discuss:
- Your potential career interests (including academic and non-academic paths);
- Skills you hope to gain through the internship and how they will support your education and career path;
- Barriers that have impacted your access to and/or participation in education and career development opportunities (including but not limited to barriers related to personal circumstances and societal injustice);
- Outcomes you hope to support through the proposed research; and/or
- Anything else that demonstrates the value of this internship experience for you.
The Impact Statement counts for 50% of the total application grade, and will be evaluated using the following criteria:
- Explanation of the benefit the internship will provide the applicant: 95% (This may include: career interests that are connected to the proposed research project, learning, skill development, breaking down barriers, personal development, how it will allow student to reach their short-term and long-term goals)
- Quality of statement (e.g., clarity, grammar, used appropriate verb tense, easy to follow): 5%
Proposed Research Summary (maximum one page, not including references. No page restriction on references)
Describe the project you will work on during your internship. The proposed project must fall under one of the four HBHL Research Themes . The Proposed Research Summary counts for 50% of the total application grade, and must include:
- A brief summary of literature in the field;
- Rationale for the study, explaining why this study is novel and important in the context of previous work;
- A clear hypothesis and aim;
- A description of the proposed methods, with considerations of feasibility and connections to the rationale and aim;
- Explanation of how equity, diversity and inclusion (EDI) will be considered in the research design, as applicable (for example, testing for sex differences in a cellular or animal study; considerations in participant recruitment and integration of demographic data in a human study). If EDI is not applicable to your research project, you must provide an evidence-based justification; and
- A reference list in APA 7 th format.
This proposal will be graded on the following:
- Structure (following page limit and guidelines): 0% (pass or fail)
- Quality of proposal (clarity, defined all the acronyms, grammatically correct, sufficiently explained scientific terms, easy to follow): 5%
- Understanding of existing literature (demonstrates that the student has explored existing research in their topic): 15%
- Rationale for study (it is suggested to have a clear statement): 20%
- Clear hypotheses and aims: 20%
- Proposed methods (sufficiently detailed, feasible, understanding of recruitment if applicable, evidence of thought put into the design of analyses, connected to rationale and aims): 25%
- Explanation of how equity, diversity and inclusion (EDI) will be integrated into the study design: 15%
Please note that you will be asked to indicate in which of HBHL’s Research Themes your project fits best.
Supervisor Agreement Form (using the official form, completed by the proposed research supervisor)
The supervisor will:
- Indicate the HBHL research theme that best fits with their work;
- State agreement to supervise the student applicant should the application be successful;
- Indicate the name and year of graduation of a postdoc or PhD student who will serve as a mentor to the undergraduate student; and
- State the percentage of the supervision the PI will be providing versus others such as a postdoc/PhD.
Please download and provide your prospective supervisor with the HBHL USRI 2024 Supervisor Agreement Form .
Research Ethics Training (CIHR Certificate)
Students must complete at least one of CIHR’s Online Training Modules on Integrating Sex and Gender in Health Research prior to submitting their application.
- Please submit your certificate of completion: 0% (pass or fail)
- Time estimate for completion: 30-45 minutes
I'm graduating in May 2024. Am I eligible to apply?
No, unfortunately this award is restricted to non-graduating students. Students must be returning, but do not need to be returning for a full year (i.e., they may be returning for only one semester).
I have previously been awarded a summer internship (e.g., NSERC). Am I eligible to apply?
No, unfortunately this award is restricted to students who have not previously engaged in paid research work.
I've previously held/currently hold a paid research position (e.g., RA). Am I eligible to apply?
I've previously worked as a paid research assistant during the school year (but not in the summer). am i eligible to apply, i've previously worked as a paid research assistant outside of mcgill (e.g., in a hospital setting, internship, previous university, etc.). am i eligible to apply, i'm a student at another university in montreal (e.g., concordia, université de montréal). am i eligible to apply.
No, unfortunately due to the nature of the funding source, this award is restricted to McGill students.
I'm an international student at McGill. Am I eligible to apply?
Yes, all McGill students are eligible to apply.
How do I find a supervisor? Do they have to be at McGill? What happens if I can’t find one?
To help you identify prospective supervisors at McGill, please refer to the list of HBHL funded projects and the Integrated Program in Neuroscience Directory and their key research areas as a starting point to help you find a supervisor. While supervisors must be McGill faculty members, if a student is being co-supervised by another faculty member, only one of the supervisors must be at McGill. Please note that finding a professor who agrees to supervise you is not the only requirement and does not guarantee that you will receive funding. Additionally, we are not able to fund students who do not have a supervisor.
My research does not fit under one of the four HBHL Research Themes. Am I eligible?
No, only research projects aligning with one of HBHL’s four research themes will be selected.
Is funding restricted to students in a particular faculty or program?
No, funding is available to students from all undergraduate faculties and from any program (e.g., Psychology, Biology, Physiology, Physics, Biomedical Engineering, Computer Science, etc.).
When will I find out if my application was successful? Will I be contacted if it's not?
Yes, all applicants will be contacted, whether their application is selected or not. Results will be announced in the spring of 2024.
Related Content
Department and university information, healthy brains, healthy lives.
- Logo Downloads
- Website Feedback
IMAGES
VIDEO
COMMENTS
5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.
A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes - specificity, clarity and testability. Let's take a look at these more closely.
A research hypothesis is an assumption or a tentative explanation for a specific process observed during research. Unlike a guess, research hypothesis is a calculated, educated guess proven or disproven through research methods. ... Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent ...
It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.
A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction. ... Guides research: A hypothesis provides a clear ...
A hypothesis is an essential part of the scientific method, serving as a description of the expected outcome of a research study. It must meet a few requirements to be considered valid: Clear and Testable : A hypothesis should be formulated in a way that allows it to be empirically tested or proved wrong.
A hypothesis is a statement that explains the predictions and reasoning of your research—an "educated guess" about how your scientific experiments will end. As a fundamental part of the scientific method, a good hypothesis is carefully written, but even the simplest ones can be difficult to put into words.
A research hypothesis helps test theories. A hypothesis plays a pivotal role in the scientific method by providing a basis for testing existing theories. For example, a hypothesis might test the predictive power of a psychological theory on human behavior. It serves as a great platform for investigation activities.
A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.
1. State the hypothesis. This is a necessary first step. Before a study can be designed, a researcher needs to specify exactly what the hypothesis is what they intend to test. Then the process for collecting data (which is the research method) can be developed and carried out, accordingly.
The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another.
Try to use "if"… and "then"… to identify the variables. The independent variable should be present in the first part of the hypothesis, while the dependent variable will form the second part of the statement. Consider understanding the below research hypothesis example to create a specific, clear, and concise research hypothesis;
Your hypothesis is what you propose to "prove" by your research. As a result of your research, you will arrive at a conclusion, a theory, or understanding that will be useful or applicable beyond the research itself. 3. Avoid judgmental words in your hypothesis. Value judgments are subjective and are not appropriate for a hypothesis.
A research hypothesis is referred to as a scientific hypothesis. This is a clear, specific, and testable statement that predicts the expected result in a scientific study. It is a prediction, reasonable guess, and logical supposition about the relationship between the variables. A research hypothesis is an integral and central part of research ...
Hypotheses in research need to satisfy specific criteria to be considered scientifically rigorous. Here are the most notable qualities of a strong hypothesis: Testability: Ensure the hypothesis allows you to work towards observable and testable results. Brevity and objectivity: Present your hypothesis as a brief statement and avoid wordiness.
A research hypothesis is an educated, clear, specific and falsifiable prediction of the possible outcomes of scientific observation. ... While the first part of the statement introduces the independent variable, the latter part brings up the dependent variable. For example: If the plant is watered, then the plant's growth will improve.
Type: Research Hypothesis The research hypothesis involves making a prediction that will be tested. In this case, the hypothesis proposes that a student's anxiety about math can negatively influence their performance in math-related tasks. ... Testing hypotheses is an essential part of the scientific method. By doing so, researchers can ...
A good research hypothesis is a clear statement of the relationship between a dependent variable(s) and independent variable(s) relevant to the study that can be disproven. Research hypothesis checklist. ... A statistical hypothesis is a look of a part of a population or statistical model. This type of hypothesis is especially useful if you are ...
Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis.
2. Complex Hypothesis: A Complex hypothesis examines relationship between two or more independent variables and two or more dependent variables. 3. Working or Research Hypothesis: A research hypothesis is a specific, clear prediction about the possible outcome of a scientific research study based on specific factors of the population. 4.
A hypothesis (from the Greek, foundation) is a logical construct, interposed between a problem and its solution, which represents a proposed answer to a research question. It gives direction to the investigator's thinking about the problem and, therefore, facilitates a solution. Unlike facts and assumptions (presumed true and, therefore, not ...
The Proposed Research Summary counts for 50% of the total application grade, and must include: A brief summary of literature in the field; Rationale for the study, explaining why this study is novel and important in the context of previous work; A clear hypothesis and aim; A description of the proposed methods, with considerations of ...