Hypothesis Maker Online

Looking for a hypothesis maker? This online tool for students will help you formulate a beautiful hypothesis quickly, efficiently, and for free.

Are you looking for an effective hypothesis maker online? Worry no more; try our online tool for students and formulate your hypothesis within no time.

  • 🔎 How to Use the Tool?
  • ⚗️ What Is a Hypothesis in Science?

👍 What Does a Good Hypothesis Mean?

  • 🧭 Steps to Making a Good Hypothesis

🔗 References

📄 hypothesis maker: how to use it.

Our hypothesis maker is a simple and efficient tool you can access online for free.

If you want to create a research hypothesis quickly, you should fill out the research details in the given fields on the hypothesis generator.

Below are the fields you should complete to generate your hypothesis:

  • Who or what is your research based on? For instance, the subject can be research group 1.
  • What does the subject (research group 1) do?
  • What does the subject affect? - This shows the predicted outcome, which is the object.
  • Who or what will be compared with research group 1? (research group 2).

Once you fill the in the fields, you can click the ‘Make a hypothesis’ tab and get your results.

⚗️ What Is a Hypothesis in the Scientific Method?

A hypothesis is a statement describing an expectation or prediction of your research through observation.

It is similar to academic speculation and reasoning that discloses the outcome of your scientific test . An effective hypothesis, therefore, should be crafted carefully and with precision.

A good hypothesis should have dependent and independent variables . These variables are the elements you will test in your research method – it can be a concept, an event, or an object as long as it is observable.

You can observe the dependent variables while the independent variables keep changing during the experiment.

In a nutshell, a hypothesis directs and organizes the research methods you will use, forming a large section of research paper writing.

Hypothesis vs. Theory

A hypothesis is a realistic expectation that researchers make before any investigation. It is formulated and tested to prove whether the statement is true. A theory, on the other hand, is a factual principle supported by evidence. Thus, a theory is more fact-backed compared to a hypothesis.

Another difference is that a hypothesis is presented as a single statement , while a theory can be an assortment of things . Hypotheses are based on future possibilities toward a specific projection, but the results are uncertain. Theories are verified with undisputable results because of proper substantiation.

When it comes to data, a hypothesis relies on limited information , while a theory is established on an extensive data set tested on various conditions.

You should observe the stated assumption to prove its accuracy.

Since hypotheses have observable variables, their outcome is usually based on a specific occurrence. Conversely, theories are grounded on a general principle involving multiple experiments and research tests.

This general principle can apply to many specific cases.

The primary purpose of formulating a hypothesis is to present a tentative prediction for researchers to explore further through tests and observations. Theories, in their turn, aim to explain plausible occurrences in the form of a scientific study.

It would help to rely on several criteria to establish a good hypothesis. Below are the parameters you should use to analyze the quality of your hypothesis.

🧭 6 Steps to Making a Good Hypothesis

Writing a hypothesis becomes way simpler if you follow a tried-and-tested algorithm. Let’s explore how you can formulate a good hypothesis in a few steps:

Step #1: Ask Questions

The first step in hypothesis creation is asking real questions about the surrounding reality.

Why do things happen as they do? What are the causes of some occurrences?

Your curiosity will trigger great questions that you can use to formulate a stellar hypothesis. So, ensure you pick a research topic of interest to scrutinize the world’s phenomena, processes, and events.

Step #2: Do Initial Research

Carry out preliminary research and gather essential background information about your topic of choice.

The extent of the information you collect will depend on what you want to prove.

Your initial research can be complete with a few academic books or a simple Internet search for quick answers with relevant statistics.

Still, keep in mind that in this phase, it is too early to prove or disapprove of your hypothesis.

Step #3: Identify Your Variables

Now that you have a basic understanding of the topic, choose the dependent and independent variables.

Take note that independent variables are the ones you can’t control, so understand the limitations of your test before settling on a final hypothesis.

Step #4: Formulate Your Hypothesis

You can write your hypothesis as an ‘if – then’ expression . Presenting any hypothesis in this format is reliable since it describes the cause-and-effect you want to test.

For instance: If I study every day, then I will get good grades.

Step #5: Gather Relevant Data

Once you have identified your variables and formulated the hypothesis, you can start the experiment. Remember, the conclusion you make will be a proof or rebuttal of your initial assumption.

So, gather relevant information, whether for a simple or statistical hypothesis, because you need to back your statement.

Step #6: Record Your Findings

Finally, write down your conclusions in a research paper .

Outline in detail whether the test has proved or disproved your hypothesis.

Edit and proofread your work, using a plagiarism checker to ensure the authenticity of your text.

We hope that the above tips will be useful for you. Note that if you need to conduct business analysis, you can use the free templates we’ve prepared: SWOT , PESTLE , VRIO , SOAR , and Porter’s 5 Forces .

❓ Hypothesis Formulator FAQ

Updated: Oct 25th, 2023

  • How to Write a Hypothesis in 6 Steps - Grammarly
  • Forming a Good Hypothesis for Scientific Research
  • The Hypothesis in Science Writing
  • Scientific Method: Step 3: HYPOTHESIS - Subject Guides
  • Hypothesis Template & Examples - Video & Lesson Transcript
  • Free Essays
  • Writing Tools
  • Lit. Guides
  • Donate a Paper
  • Referencing Guides
  • Free Textbooks
  • Tongue Twisters
  • Job Openings
  • Expert Application
  • Video Contest
  • Writing Scholarship
  • Discount Codes
  • IvyPanda Shop
  • Terms and Conditions
  • Privacy Policy
  • Cookies Policy
  • Copyright Principles
  • DMCA Request
  • Service Notice

Use our hypothesis maker whenever you need to formulate a hypothesis for your study. We offer a very simple tool where you just need to provide basic info about your variables, subjects, and predicted outcomes. The rest is on us. Get a perfect hypothesis in no time!

You are using an outdated browser. Please upgrade your browser to improve your experience (and have this site working as it suppose).

Create your rock solid experiment hypothesis

A. fill out the form  , b. your hypothesis will appear here, why should you use this method.

Hypotheses give good test results, simple as that. Use our tool to get structure in how to formulate your hypotheses.

You could use it as a kind of "bullshit detector" - if your hypothesis doesn’t fit into the template it's probably not a good testing hypothesis.

A good hypothesis is a multi-stage rocket - IAR

  • Insights - What have you noticed that makes you think that you have to make a change?
  • Action - What will you do?
  • Results - What do you want to accomplish and how do you measure it?

Get in touch with us

♥ from the Conversionista! team | Report a bug or an issue

scientific hypothesis maker

Research Hypothesis Generator

Generate research hypotheses with ai.

  • Academic Research: Formulate a hypothesis for your thesis or dissertation based on your research topic and objectives.
  • Data Analysis: Generate a hypothesis to guide your data collection and analysis strategy.
  • Market Research: Develop a hypothesis to guide your investigation into market trends and consumer behavior.
  • Scientific Research: Create a hypothesis to direct your experimental design and data interpretation.

New & Trending Tools

Resume improvement assistant, global branding and cultural considerations tutor, brand extensions and line extensions tutor.

Research Hypothesis Generator Online

  • ️👍 Hypothesis Maker: the Benefits
  • ️🔎 How to Use the Tool?
  • ️🕵️ What Is a Research Hypothesis?
  • ️⚗️ Scientific Method
  • ️🔗 References

👍 Hypothesis Maker: the Benefits

Here are the key benefits of this null and alternative hypothesis generator.

🔎 Hypothesis Generator: How to Use It?

Whenever you conduct research, whether a 5-paragraph essay or a more complex assignment, you need to create a hypothesis for this study.

Clueless about how to create a good hypothesis?

No need to waste time and energy on this small portion of your writing process! You can always use our hypothesis creator to get a researchable assumption in no time.

To get a ready-made hypothesis idea, you need to:

  • State the object of your study
  • Specify what the object does
  • Lay out the outcome of that activity
  • Indicate the comparison group

Once all data is inserted into the fields, you can press the “Generate now” button and get the result from our hypothesis generator for research paper or any other academic task.

🕵️ What Is a Research Hypothesis?

A hypothesis is your assumption based on existing academic knowledge and observations of the surrounding natural world.

The picture describes what is hypothesis.

It also involves a healthy portion of intuition because you should arrive at an interesting, commonsense question about the phenomena or processes you observe.

The traditional formula for hypothesis generation is an “if…then” statement, reflecting its falsifiability and testability.

What do these terms mean?

  • Testability means you can formulate a scientific guess and test it with data and analysis.
  • Falsifiability is a related feature, allowing you to refute the hypothesis with data and show that your guess has no tangible support in real-world data.

For example, you might want to hypothesize the following:

If children are given enough free play time, their intelligence scores rise quicker.

You can test this assumption by observing and measuring two groups – children involved in much free play and those who don’t get free play time. Once the study period ends, you can measure the intelligence scores in both groups to see the difference, thus proving or disproving your hypothesis, which will be testing your hypothesis. If you find tangible differences between the two groups, your hypothesis will be proven, and if there is no difference, the hypothesis will prove false.

Null and Alternative Hypothesis

As a rule, hypotheses are presented in pairs in academic studies, as your scientific guess may be refuted or proved. Thus, you should formulate two hypotheses – a null and alternative variant of the same guess – to see which one is proved with your experiment.

The picture compares null and alternative hypotheses.

The alternative hypothesis is formulated in an affirmative form, assuming a specific relationship between variables. In other words, you hypothesize that the predetermined outcome will be observed if one condition is met.

Watching films before sleep reduces the quality of sleep.

The null hypothesis is formulated in a negative form, suggesting that there is no association between the variables of your interest. For example:

Watching films before sleep doesn’t affect the quality of sleep.

⚗️ Creating a Hypothesis: the Key Steps

The development and testing of multiple hypotheses are the basis of the scientific method .

Without such inquiries, academic knowledge would never progress, and humanity would remain with a limited understanding of the natural world.

How can you contribute to the existing academic base with well-developed and rigorously planned scientific studies ? Here is an introduction to the empirical method of scientific inquiry.

Step #1: Observe the World Around You

Look around you to see what’s taking place in your academic area. If you’re a biology researcher, look into the untapped biological processes or intriguing facts that nobody has managed to explain before you.

What’s surprising or unusual in your observations? How can you approach this area of interest?

That’s the starting point of an academic journey to new knowledge.

Step #2: Ask Questions

Now that you've found a subject of interest, it's time to generate scientific research questions .

A question can be called scientific if it is well-defined, focuses on measurable dimensions, and is largely testable.

Some hints for a scientific question are:

  • What effect does X produce on Y?
  • What happens if the intensity of X’s impact reduces or rises?
  • What is the primary cause of X?
  • How is X related to Y in this group of people?
  • How effective is X in the field of C?

As you can see, X is the independent variable , and Y is the dependent variable.

This principle of hypothesis formulation is vital for cases when you want to illustrate or measure the strength of one variable's effect on the other.

Step #3: Generate a Research Hypothesis

After asking the scientific question, you can hypothesize what your answer to it can be.

You don't have any data yet to answer the question confidently, but you can assume what effect you will observe during an empirical investigation.

For example, suppose your background research shows that protein consumption boosts muscle growth.

In that case, you can hypothesize that a sample group consuming much protein after physical training will exhibit better muscle growth dynamics compared to those who don’t eat protein. This way, you’re making a scientific guess based on your prior knowledge of the subject and your intuition.

Step #4: Hold an Experiment

With a hypothesis at hand, you can proceed to the empirical study for its testing. As a rule, you should have a clearly formulated methodology for proving or disproving your hypothesis before you create it. Otherwise, how can you know that it is testable? An effective hypothesis usually contains all data about the research context and the population of interest.

For example:

Marijuana consumption among U. S. college students reduces their motivation and academic achievement.

  • The study sample here is college students.
  • The dependent variable is motivation and academic achievement, which you can measure with any validated scale (e.g., Intrinsic Motivation Inventory).
  • The inclusion criterion for the study's experimental group is marijuana use.
  • The control group might be a group of marijuana non-users from the same population.
  • A viable research methodology is to ask both groups to fill out the survey and compare the results.

Step #5: Analyze Your Findings

Once the study is over and you have the collected dataset, it's time to analyze the findings.

The methodology should also delineate the criteria for proving or disproving the hypothesis.

Using the previous section's example, your hypothesis is proven if the experimental group reveals lower motivational scores and has a lower GPA . If both groups' motivation and GPA scores aren't statistically different, your hypothesis is false.

Step #6: Formulate Your Conclusion

Using your study's hypothesis and outcomes, you can now generate a conclusion . If the alternative hypothesis is proven, you can conclude that marijuana use hinders students' achievement and motivation. If the null hypothesis is validated, you should report no identified relationship between low academic achievement and weed use.

Thank you for reading this article! Note that if you need to conduct a business analysis, you can try our free tools: SWOT , VRIO , SOAR , PESTEL , and Porter’s Five Forces .

❓ Research Hypothesis Generator FAQ

❓ what is a research hypothesis.

A hypothesis is a guess or assumption you make by looking at the available data from the natural world. You assume a specific relationship between variables or phenomena and formulate that supposition for further testing with experimentation and analysis.

❓ How to write a hypothesis?

To compose an effective hypothesis, you need to look at your research question and formulate a couple of ways to answer it. The available scientific data can guide you to assume your study's outcome. Thus, the hypothesis is a guess of how your research question will be answered by the end of your research.

❓ What is the difference between prediction and hypothesis?

A prediction is your forecast about the outcome of some activities or experimentation. It is a guess of what will happen if you perform some actions with a specific object or person. A hypothesis is a more in-depth inquiry into the way things are related. It is more about explaining specific mechanisms and relationships.

❓ What makes a good hypothesis?

A strong hypothesis should indicate the dependent and independent variables, specifying the relationship you assume between them. You can also strengthen your hypothesis by indicating a specific population group, an intervention period, and the context in which you'll hold the study.

🔗 References

  • What is and How to Write a Good Hypothesis in Research?
  • Research questions, hypotheses and objectives - PMC - NCBI
  • Developing the research hypothesis - PubMed
  • Alternative Hypothesis - SAGE Research Methods
  • Alternative Hypothesis Guide: Definition, Types and Examples

Use Our Free A/B Testing Hypothesis Generator . Never Miss Key Elements From Your Hypotheses. Get Big Conversion Lifts.

Observation, inadvertent impact.

Get Toolkit

Streamline Your Hypothesis Generation Research with Custom Templates the Pros Use.

Have questions about a/b testing hypotheses, what is a hypothesis.

Many people define a hypothesis as an “educated guess”.

To be more precise, a properly constructed hypothesis predicts a possible outcome to an experiment or a test where one variable (the independent one ) is tweaked and/or modified and the impact is measured by the change in behavior of another variable (generally the dependent one).

A hypothesis should be specific (it should clearly define what is being altered and what is the expected impact), data-driven (the changes being made to the independent variable should be based on historic data or theories that have been proven in the past), and testable (it should be possible to conduct the proposed test in a controlled environment to establish the relationship between the variables involved, and disprove the hypothesis - should it be untrue.)

What is the Cost of a Hastily Assembled Hypothesis?

According to an analysis of over 28,000 tests run using the Convert Experiences platform, only 1 in 5 tests proves to be statistically significant.

While more and more debate is opening up around sticking to the concept of 95% statistical significance, it is still a valid rule of thumb for optimizers who do not want to get into the fray with peeking vs. no peeking, and custom stopping rules for experiments.

There might be a multitude of reasons why a test does not reach statistical significance. But framing a tenable hypothesis that already proves itself logistically feasible on paper is a better starting point than a hastily assembled assumption.

Moreover, the aim of an A/B test may be to extract a learning, but some learnings come with heavy costs. 26% decrease in conversion rates to be specific.

A robust hypothesis may not be the answer to all testing woes, but it does help prioritisation of possible solutions and leads testing teams to pick low hanging fruits.

How is an A/B Testing Hypothesis Different?

An A/B test should be treated with the same rigour as tests conducted in laboratories. That is an easy way to guarantee better hypotheses, more relevant experiments, and ultimately more profitable optimization programs.

The focus of an A/B test should be on first extracting a learning , and then monetizing it in the form of increased registration completions, better cart conversions and more revenue.

If that is true, then an A/B test hypothesis is not very different from a regular scientific hypothesis. With a couple of interesting points to note:

  • Most scientific hypotheses proceed with one independent variable and one dependent variable, for the sake of simplicity. But in A/B tests, there might be changes made to several independent variables at the same time. Under such circumstances it is good to explore the relationship between the independent variables to make sure that they do not inadvertently impact one another. For example changing both the value proposition and button copy of a landing page to determine improvement in click through or completion rates is tricky. Reaching a point where the browser is compelled to click the button could easily have been impacted by the value proposition (as in a strong hook and heading). So what caused the improvement in the dependent variable? Was it the change to the first element or the second one?
  • The concept of Operational Definition is non-negotiable in most laboratory experiments. And comes baked with the question of ethics or morality. Operation Definition is the specific process that will be used to quantify the change in the value/behavior of the independent variable in the test. As an example, if a test wishes to measure the level of frustration that subjects experience when they are exposed to certain stimuli, researchers must be careful to define exactly how they will measure the output or frustration. Should they allow the test subjects to act out, in which case they may hurt or harm other individuals. Or should they use a non-invasive technique like an fMRI scan to monitor brain activity and collect the needed data. In A/B tests however, since data is collected through relatively inanimate channels like analytics dashboards, generally little thought is spared to Operational Definition and the impact of A/B testing on the human subjects (site traffic in this case).

The 5 Essential Parts of an A/B Testing Hypothesis

A robust A/B testing hypothesis should be assembled in 5 key parts:

Observation stage

1. OBSERVATION

This includes a clear outline of the problem (the unexplained phenomenon) observed and what it entails. This section should be completely free of conjecture and rely solely on good quality data - either qualitative and/or quantitative - to bring a potential area of improvement to light. It also includes a mention of the way in which the data is collected.

Proper observation ensures a credible hypothesis that is easy to “defend” later down the line.

Execution Stage

2. EXECUTION

This is the where, what, and the who of the A/B test. It specifies the change(s) you will be making to site element(s) in an attempt to solve the problem that has been outlined under “OBSERVATION”. It serves to also clearly define the segment of site traffic that will be exposed to the experiment.

Proper execution guidelines set the rhythm for the A/B test. They define how easy or difficult it will be to deploy the test and thus aid hypothesis prioritization .

Logistics Stage

This is where you make your educated guess or informed prediction. Based on a diligently identified OBSERVATION and EXECUTION guidelines that are possible to deploy, your OUTCOME should clearly mention two things:

  • The change (increase or decrease) you expect to see to the problem or the symptoms of the problem identified under OBSERVATION.
  • The Key Performance Indicators (KPIs) you will be monitoring to gauge whether your prediction has panned out, or not.

In general most A/B tests have one primary KPI and a couple of secondary KPIs or ways to measure impact. This is to ensure that external influences do not skew A/B test results and even if the primary KPI is compromised in some way, the secondary KPIs do a good job of indicating that the change is indeed due to the implementation of the EXECUTION guidelines, and not the result of unmonitored external factors.

Logistics Stage

4. LOGISTICS

An important part of hypothesis formulation, LOGISTICS talk about what it will take to collect enough clean data from which a reliable conclusion can be drawn. How many unique tested visitors, what is the statistical significance desired, how many conversions is enough and what is the duration for which the A/B test should run? Each question on its own merits a blog or a lesson. But for the sake of convenience, Convert has created a Free Sample Size & A/B/N Test Duration Calculator .

Set the right logistical expectations so that you can prioritise your hypotheses for maximum impact and minimum effort .

Inadvertent Impact Stage

5. INADVERTENT IMPACT

This is a nod in the direction of ethics in A/B testing and marketing, because experiments involve humans and optimizers should be aware of the possible impact on their behavior.

Often a thorough analysis at this stage can modify the way impact is measured or an experiment is conducted. Or Convert certainly hopes that this will be the case in future. Here’s why ethics do matter in testing.

Now Organize, Prioritise & Learn from Your Hypotheses.

Try convert experiences in free trial & access compass beta - our hypothesis management platform., always working to improve outcomes..

Start Your 15 -Day Free Trial Right Now. No Credit Card Required

Important. Please Read.

  • Check your inbox for the password to Convert’s trial account.
  • Log in using the link provided in that email.

This sign up flow is built for maximum security. You’re worth it!

scientific hypothesis maker

Create structured research hypotheses

AI Generators in Science and Research

Hypothesis Generator for Scientific Research

🔬✍️ Formulate precise, well-founded hypotheses for your studies and scientific work. Explore the potential of your research!

Provide additional feedback

Discover the power of a well-formulated hypothesis with our Research Hypothesis Generator. In the world of scientific research, a solid, relevant hypothesis is the foundation on which any study is built.

🧪 Structured and precise

A well-defined hypothesis can guide your experiments and set the course for your discoveries. Our generator provides you with structured proposals based on your field and subject.

🌌 For all areas

Whether you're in biology, physics or the social sciences, we've got you covered. adapted our tool to meet the diversity of research needs.

💭 Refine Your Thinking

With our help, crystallize your idea into a clear, logical hypothesis. Each proposal is designed to stimulate your thinking and enrich your scientific approach.

Similar publications :

Subject Generator for Scientific Research

Popular generators:

Methodology Generator for Research Projects

Create Limitless with Generator AI

Immerse yourself in a world where every idea is instantly transformed into reality. Generator AI brings your boldest visions to life in the blink of an eye.

en_US

cosmos collective logo

from assumptions to testable hypotheses.

You'll start asking the question what impact you can make in which way and for who..

scientific hypothesis maker

What is it for?

Convert your riskiest assumptions into testable hypotheses.

  • Formulate your hypothesis in a waterproof way
  • Hypothesis structure: if we do X, then Y% of the target audience will behave in way Z.

dartboard cosmos emoji

Step by step guide

Download the pdf.

Pick your riskiest assumption.

Define the X-variable. What action are you going to take to test this assumption. Write down your specific repeatable action.

Define the Y-variable. Make sure you vanity check your metric. Be as specific as possible when it comes to your target audience.

Define the Z-variable. What action does your target audience have to take in order for this experiment to be a success? What is the expected measurable action?

Write down your leading indicators. What are the metrics you can track that represent necessary actions to achieve your success goal?

scientific hypothesis maker

Get the tool

Download our H ypothesis C reator and convert your riskiest assumptions into testable hypotheses.

Related tools

Do you need more we have many tools, official press release: ants connect acquires cosmos collective.

By continuing to browse this website, you agree to our use of cookies

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 6 May 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

Online Hypothesis Generator

Add the required information into the fields below to build a list of well-formulated hypotheses.

  • If patients follow medical prescriptions, then their condition will improve.
  • If patients follow medical prescriptions, then their condition will show better results.
  • If patients follow medical prescriptions, then their condition will show better results than those who do not follow medical prescriptions.
  • H0 (null hypothesis) - Attending most lectures by first-year students has no effect on their exam scores.
  • H1 (alternative hypothesis) - Attending most lectures by first-year students has a positive effect on their exam scores.

* Hint - choose either null or alternative hypothesis

⭐️ Hypothesis Creator: the Benefits

  • 🔎 How to Use the Tool?
  • 🤔 What Is a Hypothesis?
  • 👣 Steps to Generating a Hypothesis
  • 🔍 References

🔎 Hypothesis Generator: How to Use It?

The generation of a workable hypothesis is not an easy task for many students. You need to research widely, understand the gaps in your study area, and comprehend the method of hypothesis formulation to the dot. Lucky for you, we have a handy hypothesis generator that takes hours of tedious work out of your study process.

To use our hypothesis generator, you’ll need to do the following:

  • Indicate your experimental group (people, phenomena, event)
  • Stipulate what it does
  • Add the effect that the subject’s activities produce
  • Specify the comparison group

Once you put all this data into our online hypothesis generator, click on the “Generate hypothesis” tab and enjoy instant results. The tool will come up with a well-formulated hypothesis in seconds.

🤔 What Is a Research Hypothesis?

A hypothesis is a claim or statement you make about the assumed relationship between the dependent and independent variables you're planning to test. It is formulated at the beginning of your study to show the direction you will take in the analysis of your subject of interest.

The hypothesis works in tandem with your research purpose and research question , delineating your entire perspective.

For example, if you focus on the quality of palliative care in the USA , your perspective may be as follows.

This way, your hypothesis serves as a tentative answer to your research question, which you aim to prove or disprove with scientific data, statistics, and analysis.

Hypothesis Types

In most scholarly studies, you’ll be required to write hypotheses in pairs – as a null and alternative hypothesis :

  • The alternative hypothesis assumes a statistically significant relationship between the identified variables. Thus, if you find that relationship in the analysis process, you can consider the alternative hypothesis proven.
  • A null hypothesis is the opposite; it assumes that there is no relationship between the variables. Thus, if you find no statistically significant association, the null hypothesis is considered proven.

The picture lists four types of research hypothesis

A handy example is as follows:

You are researching the impact of sugar intake on child obesity . So, based on your data, you can either find that the number of sugar spoons a day directly impacts obesity or that the sugar intake is not associated with obesity in your sample. The hypotheses for this study would be as follows:

ALTERNATIVE

There is a relationship between the number of sugar spoons consumed daily and obesity in U.S. preschoolers.

There is no relationship between the number of sugar spoons consumed daily and obesity in U.S. preschoolers.

Besides, hypotheses can be directional and non-directional by type:

  • A directional hypothesis assumes a cause-and-effect relationship between variables, clearly designating the assumed difference in study groups or parameters.
  • A non-directional hypothesis , in turn, only assumes a relationship or difference without a clear estimate of its direction.

NON-DIRECTIONAL

Students in high school and college perform differently on critical thinking tests.

DIRECTIONAL

College students perform better on critical thinking tests that high-school students.

👣 How to Make a Hypothesis in Research

Now let’s cover the algorithm of hypothesis generation to make this process simple and manageable for you.

The picture lists the steps necessary to generate a research hypothesis.

Step #1: Formulate Your Research Question

The first step is to create a research question . Study the topic of interest and clarify what aspect you're fascinated about, wishing to learn more about the hidden connections, effects, and relationships.

Step #2: Research the Topic

Next, you should conduct some research to test your assumption and see whether there’s enough published evidence to back up your point. You should find credible sources that discuss the concepts you’ve singled out for the study and delineate a relationship between them. Once you identify a reasonable body of research, it’s time to go on.

Step #3: Make an Assumption

With some scholarly data, you should now be better positioned to make a researchable assumption.

For instance, if you find out that many scholars associate heavy social media use with a feeling of loneliness, you can hypothesize that the hours spent on social networks will directly correlate with perceived loneliness intensity.

Step #4: Improve Your Hypothesis

Now that you have a hypothesis, it’s time to refine it by adding context and population specifics. Who will you study? What social network will you focus on? In this example, you can focus on the student sample’s use of Instagram .

Step #5: Try Different Phrasing

The final step is the proper presentation of your hypothesis. You can try several variants, focusing on the variables, correlations , or groups you compare.

For instance, you can say that students spending 3+ hours on Instagram every day are lonelier than their peers. Otherwise, you can hypothesize that heavy social media use leads to elevated feelings of loneliness.

👀 Null Hypothesis Examples

If you’re unsure about how to generate great hypotheses, get some inspiration from the list of examples formulated by our writing pros.

Thank you for reading this article! If you’re planning to analyze business issues, try our free templates: PEST , PESTEL , SWOT , SOAR , VRIO , and Five Forces .

❓ Hypothesis Generator FAQ

❓ what does hypothesis mean.

A hypothesis in an essay or a larger research assignment is your claim or prediction of the relationship you assume between the identified dependent and independent variables. You share an assumption that you’re going to test with research and data analysis in the later sections of your paper.

❓ How to create a hypothesis?

The first step to formulating a good hypothesis is to ask a question about your subject of interest and understand what effects it may experience from external sources or how it changes over time. You can identify differences between groups and inquire into the nature of those distinctions. In any way, you need to voice some assumption that you’ll further test with data; that assumption will be your hypothesis for a study.

❓ What is a null and alternative hypothesis?

You need to formulate a null and alternative hypothesis if you plan to test some relationship between variables with statistical instruments. For example, you might compare a group of students on an emotional intelligence scale to determine whether first-year students are less emotionally competent than graduates. In this case, your alternative hypothesis would state that they are, and a null hypothesis would say that there is no difference between student groups.

❓ What does it mean to reject the null hypothesis?

A null hypothesis assumes that there is no difference between groups or that the dependent variables don't have any sizable impact on the independent variable. If your null hypothesis gets rejected, it means that your alternative hypothesis has been proved, showing that there is a tangible difference or relationship between your variables.

🔗 References

  • How to Write a Hypothesis in 6 Steps - Grammarly
  • The Hypothesis in Science Writing
  • Hypothesis Definition & Examples - Simply Psychology
  • Hypothesis Examples: Different Types in Science and Research
  • Forming a Good Hypothesis for Scientific Research
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

scientific hypothesis maker

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

scientific hypothesis maker

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Navigation Menu

Search code, repositories, users, issues, pull requests..., provide feedback.

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly.

To see all available qualifiers, see our documentation .

  • Notifications

An AI Tool for Automated Research Question and Hypothesis Generation from a given Scientific Literature

bhaskatripathi/HypothesisHub

Folders and files, repository files navigation, hypothesishub.

HypothesisHub is an AI Tool for the Automated Generation of Research Questions and Hypotheses from Scientific Literature. It applies a chain of reasoning to scientific literature to generate questions and hypotheses. OpenAI and Langchain serve as the underlying technologies for the tool.

Open In Colab

  • Generates research questions from a given scientific literature
  • Generates a null hypothesis (H0) and an alternate hypothesis (H1) for each research question
  • Handles cases where either H0 or H1 is not present
  • Automatically generates missing H1 using the LLMChain if needed
  • Negates hypothesis statement if H0 is missing

Sequence Diagram

Output image

Please give a star if you like this project and find it useful.

Star History

Star History Chart

  • Jupyter Notebook 100.0%

What is a scientific hypothesis?

It's the initial building block in the scientific method.

A girl looks at plants in a test tube for a science experiment. What's her scientific hypothesis?

Hypothesis basics

What makes a hypothesis testable.

  • Types of hypotheses
  • Hypothesis versus theory

Additional resources

Bibliography.

A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method . Many describe it as an "educated guess" based on prior knowledge and observation. While this is true, a hypothesis is more informed than a guess. While an "educated guess" suggests a random prediction based on a person's expertise, developing a hypothesis requires active observation and background research. 

The basic idea of a hypothesis is that there is no predetermined outcome. For a solution to be termed a scientific hypothesis, it has to be an idea that can be supported or refuted through carefully crafted experimentation or observation. This concept, called falsifiability and testability, was advanced in the mid-20th century by Austrian-British philosopher Karl Popper in his famous book "The Logic of Scientific Discovery" (Routledge, 1959).

A key function of a hypothesis is to derive predictions about the results of future experiments and then perform those experiments to see whether they support the predictions.

A hypothesis is usually written in the form of an if-then statement, which gives a possibility (if) and explains what may happen because of the possibility (then). The statement could also include "may," according to California State University, Bakersfield .

Here are some examples of hypothesis statements:

  • If garlic repels fleas, then a dog that is given garlic every day will not get fleas.
  • If sugar causes cavities, then people who eat a lot of candy may be more prone to cavities.
  • If ultraviolet light can damage the eyes, then maybe this light can cause blindness.

A useful hypothesis should be testable and falsifiable. That means that it should be possible to prove it wrong. A theory that can't be proved wrong is nonscientific, according to Karl Popper's 1963 book " Conjectures and Refutations ."

An example of an untestable statement is, "Dogs are better than cats." That's because the definition of "better" is vague and subjective. However, an untestable statement can be reworded to make it testable. For example, the previous statement could be changed to this: "Owning a dog is associated with higher levels of physical fitness than owning a cat." With this statement, the researcher can take measures of physical fitness from dog and cat owners and compare the two.

Types of scientific hypotheses

Elementary-age students study alternative energy using homemade windmills during public school science class.

In an experiment, researchers generally state their hypotheses in two ways. The null hypothesis predicts that there will be no relationship between the variables tested, or no difference between the experimental groups. The alternative hypothesis predicts the opposite: that there will be a difference between the experimental groups. This is usually the hypothesis scientists are most interested in, according to the University of Miami .

For example, a null hypothesis might state, "There will be no difference in the rate of muscle growth between people who take a protein supplement and people who don't." The alternative hypothesis would state, "There will be a difference in the rate of muscle growth between people who take a protein supplement and people who don't."

If the results of the experiment show a relationship between the variables, then the null hypothesis has been rejected in favor of the alternative hypothesis, according to the book " Research Methods in Psychology " (​​BCcampus, 2015). 

There are other ways to describe an alternative hypothesis. The alternative hypothesis above does not specify a direction of the effect, only that there will be a difference between the two groups. That type of prediction is called a two-tailed hypothesis. If a hypothesis specifies a certain direction — for example, that people who take a protein supplement will gain more muscle than people who don't — it is called a one-tailed hypothesis, according to William M. K. Trochim , a professor of Policy Analysis and Management at Cornell University.

Sometimes, errors take place during an experiment. These errors can happen in one of two ways. A type I error is when the null hypothesis is rejected when it is true. This is also known as a false positive. A type II error occurs when the null hypothesis is not rejected when it is false. This is also known as a false negative, according to the University of California, Berkeley . 

A hypothesis can be rejected or modified, but it can never be proved correct 100% of the time. For example, a scientist can form a hypothesis stating that if a certain type of tomato has a gene for red pigment, that type of tomato will be red. During research, the scientist then finds that each tomato of this type is red. Though the findings confirm the hypothesis, there may be a tomato of that type somewhere in the world that isn't red. Thus, the hypothesis is true, but it may not be true 100% of the time.

Scientific theory vs. scientific hypothesis

The best hypotheses are simple. They deal with a relatively narrow set of phenomena. But theories are broader; they generally combine multiple hypotheses into a general explanation for a wide range of phenomena, according to the University of California, Berkeley . For example, a hypothesis might state, "If animals adapt to suit their environments, then birds that live on islands with lots of seeds to eat will have differently shaped beaks than birds that live on islands with lots of insects to eat." After testing many hypotheses like these, Charles Darwin formulated an overarching theory: the theory of evolution by natural selection.

"Theories are the ways that we make sense of what we observe in the natural world," Tanner said. "Theories are structures of ideas that explain and interpret facts." 

  • Read more about writing a hypothesis, from the American Medical Writers Association.
  • Find out why a hypothesis isn't always necessary in science, from The American Biology Teacher.
  • Learn about null and alternative hypotheses, from Prof. Essa on YouTube .

Encyclopedia Britannica. Scientific Hypothesis. Jan. 13, 2022. https://www.britannica.com/science/scientific-hypothesis

Karl Popper, "The Logic of Scientific Discovery," Routledge, 1959.

California State University, Bakersfield, "Formatting a testable hypothesis." https://www.csub.edu/~ddodenhoff/Bio100/Bio100sp04/formattingahypothesis.htm  

Karl Popper, "Conjectures and Refutations," Routledge, 1963.

Price, P., Jhangiani, R., & Chiang, I., "Research Methods of Psychology — 2nd Canadian Edition," BCcampus, 2015.‌

University of Miami, "The Scientific Method" http://www.bio.miami.edu/dana/161/evolution/161app1_scimethod.pdf  

William M.K. Trochim, "Research Methods Knowledge Base," https://conjointly.com/kb/hypotheses-explained/  

University of California, Berkeley, "Multiple Hypothesis Testing and False Discovery Rate" https://www.stat.berkeley.edu/~hhuang/STAT141/Lecture-FDR.pdf  

University of California, Berkeley, "Science at multiple levels" https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Alina Bradford

Collapse of Earth's magnetic field may have fueled evolution of life 600 million years ago

The Gulf Stream stopped pumping nutrients during the last ice age — and the same could be happening now

Gargantuan sunspot 15-Earths wide shoots powerful X-class flare toward Earth, triggering radio blackouts

Most Popular

  • 2 1,900-year-old Roman legionary fortress unearthed next to UK cathedral
  • 3 China has launched a secret robot to the far side of the moon, new Chang'e 6 photos reveal
  • 4 Hoard of 17th-century coins hidden during English Civil War unearthed during kitchen renovation
  • 5 Epic NASA video takes you to the heart of a black hole — and destroys you in seconds
  • 2 Siberia's 'gateway to the underworld' is growing a staggering amount each year
  • 3 Hoard of 17th-century coins hidden during English Civil War unearthed during kitchen renovation
  • 4 2,500-year-old Illyrian helmet found in burial mound likely caused 'awe in the enemy'
  • 5 Record-shattering Tonga volcanic eruption wasn't triggered by what we thought, new study suggests

scientific hypothesis maker

Corvus CRO

Hypothesis Builder

Formulating a strong hypothesis is the foundation of a successful split test. A good hypothesis has three main components:

  • Comprehension – Identifying something that can be improved upon
  • Response – Change that can cause improvement
  • Outcome – Measurable result of change that determines success

Don’t know where to start? We’ve got you covered. Use this hypothesis builder to assemble all the information you need.

We have observed by .

We want to at on for .

This should lead to , which will be measured by and backed up by .

Need Help Testing Your New Hypothesis?

Thanks to the builder above you’ve got a great hypothesis on your hands, but now what? How does that translate into a test? What tools should I use? Which test should I run first?

You have questions. We have answers. We can help.

Chemix is an online editor for drawing lab diagrams and school experiment apparatus. Easy sketching for both students and teachers.

 loading….

  • Share full article

Advertisement

Supported by

Why You Can Hear the Temperature of Water

A science video maker in China couldn’t find a good explanation for why hot and cold water sound different, so he did his own research and published it.

scientific hypothesis maker

By Sam Kean

Most people are quite good at distinguishing between the sound of a hot liquid and the sound of a cold one being poured, even if they don’t realize it.

“Every time I give a talk and I say, ‘Surprisingly, adults can tell the difference between hot and cold water,’ people just go like this,” said Tanushree Agrawal, a psychologist who, during a video call, mimicked audience members shaking their heads no. But research she completed at the University of California at San Diego demonstrated that three-fourths of the participants in her experiments could in fact detect the difference.

You can try it yourself. Put on your headphones or listen closely to your computer or phone’s speaker and hit play on this audio recording.

Can You Hear the Temperature?

Could you tell which sound was hot and which was cold?

If you said the first one was cold, congratulations: You’re in Dr. Agrawal’s majority.

In general, cold water sounds brighter and splashier, while hot water sounds duller and frothier. But until recently no one really had evidence to explain the difference.

However, Xiaotian Bi, who earned a Ph.D. in chemical engineering last year from Tsinghua University in Beijing, offers a new explanation in a paper he and colleagues published in March on the arXiv website. It’s all about the size of the bubbles that form during pouring, he says, and this insight may have implications for how we enjoy everyday food and drink.

Dr. Bi’s paper has not yet been through peer review, and he acknowledges that much more research is needed. But Joshua Reiss, a professor of audio engineering at Queen Mary University of London, who has also studied the acoustics of hot and cold water, said he was “on the right track, for sure.”

Discussions of the varying sounds of hot and cold liquids usually point to differences in viscosity as the culprit. But Dr. Bi wasn’t satisfied with that reasoning. He produces and stars in his own popular science videos , and decided that the sounds water makes at different temperatures was a good topic . He poked around looking for published research on the subject and came away disappointed.

“None of them gave a precise explanation,” he said, adding that it was “an unsolved mystery.”

So Dr. Bi decided to do his own scientific investigation, which would inform his video. He used his expertise in fluid dynamics to explore the role played by bubbles, which actually create most of the sound we hear in moving water. You can observe this in waves, which glide along silently until they break, at which point they fall and trap air that produces noise as the bubbles resonate briefly within the water.

Previous research showed that larger air bubbles in liquids produce lower-frequency sounds. Dr. Bi also found that the acoustical spectrum of hot water has more low-frequency sounds than the spectrum of cold water. He wondered, then, whether pouring hot water into a container would trap larger bubbles than pouring cold would, and whether that might explain the difference in sounds.

His hunch proved correct. Dr. Bi purchased a container with a spigot to dispense water in a controlled fashion, first at 50 degrees Fahrenheit, then at 194 degrees. High-resolution videos and photographs revealed that hot water consistently produced bubbles 5 to 10 millimeters in size, while cold water produced bubbles around 1 to 2 millimeters.

(That’s why the cold water is on the left side of your screen in video above, and the hot water on the right)

In addition to offering an explanation of something that people hear, the research also provides insight into how we enjoy food and drink in general. Consider coffee.

Coffee tastes delicious when hot, but gunky and bitter when cold. That’s because aromatic flavor molecules jump off the surface of hot beverages more readily. And that link between flavor and temperature can produce a Pavlovian response in coffee drinkers.

This is consistent with an observation by Charles Spence, a psychologist who heads the Crossmodal Research Laboratory at Oxford and has won an Ig-Nobel Prize for research on the links between sound and taste when potato chips are consumed. In a 2021 paper, he wrote that “the sound of temperature likely helps to subtly set people’s aromatic flavor expectations,” even if unconsciously.

“Very often we taste what we predict,” he said. It’s all part of what he calls the hidden “sonic seasoning” of food and drinks.

COMMENTS

  1. Hypothesis Maker

    Our hypothesis maker is a simple and efficient tool you can access online for free. If you want to create a research hypothesis quickly, you should fill out the research details in the given fields on the hypothesis generator. Below are the fields you should complete to generate your hypothesis:

  2. Hypothesis Maker

    Create a hypothesis for your research based on your research question. HyperWrite's Hypothesis Maker is an AI-driven tool that generates a hypothesis based on your research question. Powered by advanced AI models like GPT-4 and ChatGPT, this tool can help streamline your research process and enhance your scientific studies.

  3. Free AI Hypothesis Maker

    Paragraph Generator. Generate paragraphs with the click of a button! Create Faster With AI. Try it Risk-Free. Stop wasting time and start creating high-quality content immediately with power of generative AI. Get started for free. Generate a hypothesis for your research or project in seconds! Use it for Free.

  4. Experiment Hypothesis Generator

    Hypotheses give good test results, simple as that. Use our tool to get structure in how to formulate your hypotheses. You could use it as a kind of "bullshit detector" - if your hypothesis doesn't fit into the template it's probably not a good testing hypothesis. A good hypothesis is a multi-stage rocket - IAR.

  5. Hypothesis Generator

    Create null (H0) and alternative (H1) hypotheses based on a given research question and dataset. HyperWrite's Hypothesis Generator is a powerful AI tool that helps you create null and alternative hypotheses for your research. This tool takes a given research question and dataset and generates hypotheses that are clear, concise, and testable. By utilizing the latest AI models, it simplifies the ...

  6. Research Hypothesis Generator

    Create a research hypothesis based on a provided research topic and objectives. Introducing HyperWrite's Research Hypothesis Generator, an AI-powered tool designed to formulate clear, concise, and testable hypotheses based on your research topic and objectives. Leveraging advanced AI models, this tool is perfect for students, researchers, and professionals looking to streamline their research ...

  7. Research Hypothesis Generator Online

    Here are the key benefits of this null and alternative hypothesis generator. Use the prompts and examples to write a hypothesis. The more details you add, the more accurate result you'll get. No need to download any software with this hypothesis writer. The hypothesis creator is 100% free, no hidden payments.

  8. Convert Hypothesis Generator: Free Tool for A/B Testers

    Many people define a hypothesis as an "educated guess".. To be more precise, a properly constructed hypothesis predicts a possible outcome to an experiment or a test where one variable (the independent one) is tweaked and/or modified and the impact is measured by the change in behavior of another variable (generally the dependent one).. A hypothesis should be specific (it should clearly ...

  9. Hypothesis Generator for Scientific Research

    Discover the power of a well-formulated hypothesis with our Research Hypothesis Generator. In the world of scientific research, a solid, relevant hypothesis is the foundation on which any study is built. 🧪 Structured and precise. A well-defined hypothesis can guide your experiments and set the course for your discoveries. Our generator ...

  10. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  11. Hypothesis Creator

    Formulate your hypothesis in a waterproof way; Hypothesis structure: if we do X, then Y% of the target audience will behave in way Z. Step by step guide. 1. Download the pdf. 2. Pick your riskiest assumption. 3. Define the X-variable. What action are you going to take to test this assumption. Write down your specific repeatable action.

  12. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  13. Online Hypothesis Generator

    Stipulate what it does. Add the effect that the subject's activities produce. Specify the comparison group. Once you put all this data into our online hypothesis generator, click on the "Generate hypothesis" tab and enjoy instant results. The tool will come up with a well-formulated hypothesis in seconds.

  14. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  15. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  16. An AI Tool for Automated Research Question and Hypothesis ...

    Generates research questions from a given scientific literature; Generates a null hypothesis (H0) and an alternate hypothesis (H1) for each research question; Handles cases where either H0 or H1 is not present; Automatically generates missing H1 using the LLMChain if needed; Negates hypothesis statement if H0 is missing

  17. Scientific hypothesis

    The Royal Society - On the scope of scientific hypotheses (Apr. 24, 2024) scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If ...

  18. What is a scientific hypothesis?

    A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. ... artist, janitor, children's book author, pizza maker, event coordinator and much more.

  19. Hypothesis Builder

    Hypothesis Builder. Formulating a strong hypothesis is the foundation of a successful split test. A good hypothesis has three main components: Comprehension - Identifying something that can be improved upon. Response - Change that can cause improvement. Outcome - Measurable result of change that determines success.

  20. Writing a Hypothesis for Your Science Fair Project

    A hypothesis is a tentative, testable answer to a scientific question. Once a scientist has a scientific question she is interested in, the scientist reads up to find out what is already known on the topic. Then she uses that information to form a tentative answer to her scientific question. Sometimes people refer to the tentative answer as "an ...

  21. Chemix

    Chemix is a free online editor for drawing science lab diagrams and school experiment apparatus. Easy sketching for both students and teachers. Chemix is a free online editor for drawing lab diagrams. Simple and intuitive, it is designed for students and pupils to help them draw diagrams of common laboratory equipment and lab setup of science ...

  22. AI Science Experiment Generator

    A science experiment is a rigorous procedure undertaken to make a discovery, test a hypothesis, or demonstrate a known fact through observations and measurable results. They are essential components in the pursuit of scientific knowledge - a practical avenue to understand and explain the inner workings of the universe.

  23. Why You Can Hear the Temperature of Water

    A science video maker in China couldn't find a good explanation for why hot and cold water sound different, so he did his own research and published it. Share full article. Video.