Grad Coach

Research Aims, Objectives & Questions

The “Golden Thread” Explained Simply (+ Examples)

By: David Phair (PhD) and Alexandra Shaeffer (PhD) | June 2022

The research aims , objectives and research questions (collectively called the “golden thread”) are arguably the most important thing you need to get right when you’re crafting a research proposal , dissertation or thesis . We receive questions almost every day about this “holy trinity” of research and there’s certainly a lot of confusion out there, so we’ve crafted this post to help you navigate your way through the fog.

Overview: The Golden Thread

  • What is the golden thread
  • What are research aims ( examples )
  • What are research objectives ( examples )
  • What are research questions ( examples )
  • The importance of alignment in the golden thread

What is the “golden thread”?  

The golden thread simply refers to the collective research aims , research objectives , and research questions for any given project (i.e., a dissertation, thesis, or research paper ). These three elements are bundled together because it’s extremely important that they align with each other, and that the entire research project aligns with them.

Importantly, the golden thread needs to weave its way through the entirety of any research project , from start to end. In other words, it needs to be very clearly defined right at the beginning of the project (the topic ideation and proposal stage) and it needs to inform almost every decision throughout the rest of the project. For example, your research design and methodology will be heavily influenced by the golden thread (we’ll explain this in more detail later), as well as your literature review.

The research aims, objectives and research questions (the golden thread) define the focus and scope ( the delimitations ) of your research project. In other words, they help ringfence your dissertation or thesis to a relatively narrow domain, so that you can “go deep” and really dig into a specific problem or opportunity. They also help keep you on track , as they act as a litmus test for relevance. In other words, if you’re ever unsure whether to include something in your document, simply ask yourself the question, “does this contribute toward my research aims, objectives or questions?”. If it doesn’t, chances are you can drop it.

Alright, enough of the fluffy, conceptual stuff. Let’s get down to business and look at what exactly the research aims, objectives and questions are and outline a few examples to bring these concepts to life.

Free Webinar: How To Find A Dissertation Research Topic

Research Aims: What are they?

Simply put, the research aim(s) is a statement that reflects the broad overarching goal (s) of the research project. Research aims are fairly high-level (low resolution) as they outline the general direction of the research and what it’s trying to achieve .

Research Aims: Examples  

True to the name, research aims usually start with the wording “this research aims to…”, “this research seeks to…”, and so on. For example:

“This research aims to explore employee experiences of digital transformation in retail HR.”   “This study sets out to assess the interaction between student support and self-care on well-being in engineering graduate students”  

As you can see, these research aims provide a high-level description of what the study is about and what it seeks to achieve. They’re not hyper-specific or action-oriented, but they’re clear about what the study’s focus is and what is being investigated.

Need a helping hand?

research paper and objective

Research Objectives: What are they?

The research objectives take the research aims and make them more practical and actionable . In other words, the research objectives showcase the steps that the researcher will take to achieve the research aims.

The research objectives need to be far more specific (higher resolution) and actionable than the research aims. In fact, it’s always a good idea to craft your research objectives using the “SMART” criteria. In other words, they should be specific, measurable, achievable, relevant and time-bound”.

Research Objectives: Examples  

Let’s look at two examples of research objectives. We’ll stick with the topic and research aims we mentioned previously.  

For the digital transformation topic:

To observe the retail HR employees throughout the digital transformation. To assess employee perceptions of digital transformation in retail HR. To identify the barriers and facilitators of digital transformation in retail HR.

And for the student wellness topic:

To determine whether student self-care predicts the well-being score of engineering graduate students. To determine whether student support predicts the well-being score of engineering students. To assess the interaction between student self-care and student support when predicting well-being in engineering graduate students.

  As you can see, these research objectives clearly align with the previously mentioned research aims and effectively translate the low-resolution aims into (comparatively) higher-resolution objectives and action points . They give the research project a clear focus and present something that resembles a research-based “to-do” list.

The research objectives detail the specific steps that you, as the researcher, will take to achieve the research aims you laid out.

Research Questions: What are they?

Finally, we arrive at the all-important research questions. The research questions are, as the name suggests, the key questions that your study will seek to answer . Simply put, they are the core purpose of your dissertation, thesis, or research project. You’ll present them at the beginning of your document (either in the introduction chapter or literature review chapter) and you’ll answer them at the end of your document (typically in the discussion and conclusion chapters).  

The research questions will be the driving force throughout the research process. For example, in the literature review chapter, you’ll assess the relevance of any given resource based on whether it helps you move towards answering your research questions. Similarly, your methodology and research design will be heavily influenced by the nature of your research questions. For instance, research questions that are exploratory in nature will usually make use of a qualitative approach, whereas questions that relate to measurement or relationship testing will make use of a quantitative approach.  

Let’s look at some examples of research questions to make this more tangible.

Research Questions: Examples  

Again, we’ll stick with the research aims and research objectives we mentioned previously.  

For the digital transformation topic (which would be qualitative in nature):

How do employees perceive digital transformation in retail HR? What are the barriers and facilitators of digital transformation in retail HR?  

And for the student wellness topic (which would be quantitative in nature):

Does student self-care predict the well-being scores of engineering graduate students? Does student support predict the well-being scores of engineering students? Do student self-care and student support interact when predicting well-being in engineering graduate students?  

You’ll probably notice that there’s quite a formulaic approach to this. In other words, the research questions are basically the research objectives “converted” into question format. While that is true most of the time, it’s not always the case. For example, the first research objective for the digital transformation topic was more or less a step on the path toward the other objectives, and as such, it didn’t warrant its own research question.  

So, don’t rush your research questions and sloppily reword your objectives as questions. Carefully think about what exactly you’re trying to achieve (i.e. your research aim) and the objectives you’ve set out, then craft a set of well-aligned research questions . Also, keep in mind that this can be a somewhat iterative process , where you go back and tweak research objectives and aims to ensure tight alignment throughout the golden thread.

The importance of strong alignment 

Alignment is the keyword here and we have to stress its importance . Simply put, you need to make sure that there is a very tight alignment between all three pieces of the golden thread. If your research aims and research questions don’t align, for example, your project will be pulling in different directions and will lack focus . This is a common problem students face and can cause many headaches (and tears), so be warned.

Take the time to carefully craft your research aims, objectives and research questions before you run off down the research path. Ideally, get your research supervisor/advisor to review and comment on your golden thread before you invest significant time into your project, and certainly before you start collecting data .  

Recap: The golden thread

In this post, we unpacked the golden thread of research, consisting of the research aims , research objectives and research questions . You can jump back to any section using the links below.

As always, feel free to leave a comment below – we always love to hear from you. Also, if you’re interested in 1-on-1 support, take a look at our private coaching service here.

research paper and objective

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Narrative analysis explainer

39 Comments

Isaac Levi

Thank you very much for your great effort put. As an Undergraduate taking Demographic Research & Methodology, I’ve been trying so hard to understand clearly what is a Research Question, Research Aim and the Objectives in a research and the relationship between them etc. But as for now I’m thankful that you’ve solved my problem.

Hatimu Bah

Well appreciated. This has helped me greatly in doing my dissertation.

Dr. Abdallah Kheri

An so delighted with this wonderful information thank you a lot.

so impressive i have benefited a lot looking forward to learn more on research.

Ekwunife, Chukwunonso Onyeka Steve

I am very happy to have carefully gone through this well researched article.

Infact,I used to be phobia about anything research, because of my poor understanding of the concepts.

Now,I get to know that my research question is the same as my research objective(s) rephrased in question format.

I please I would need a follow up on the subject,as I intends to join the team of researchers. Thanks once again.

Tosin

Thanks so much. This was really helpful.

Ishmael

I know you pepole have tried to break things into more understandable and easy format. And God bless you. Keep it up

sylas

i found this document so useful towards my study in research methods. thanks so much.

Michael L. Andrion

This is my 2nd read topic in your course and I should commend the simplified explanations of each part. I’m beginning to understand and absorb the use of each part of a dissertation/thesis. I’ll keep on reading your free course and might be able to avail the training course! Kudos!

Scarlett

Thank you! Better put that my lecture and helped to easily understand the basics which I feel often get brushed over when beginning dissertation work.

Enoch Tindiwegi

This is quite helpful. I like how the Golden thread has been explained and the needed alignment.

Sora Dido Boru

This is quite helpful. I really appreciate!

Chulyork

The article made it simple for researcher students to differentiate between three concepts.

Afowosire Wasiu Adekunle

Very innovative and educational in approach to conducting research.

Sàlihu Abubakar Dayyabu

I am very impressed with all these terminology, as I am a fresh student for post graduate, I am highly guided and I promised to continue making consultation when the need arise. Thanks a lot.

Mohammed Shamsudeen

A very helpful piece. thanks, I really appreciate it .

Sonam Jyrwa

Very well explained, and it might be helpful to many people like me.

JB

Wish i had found this (and other) resource(s) at the beginning of my PhD journey… not in my writing up year… 😩 Anyways… just a quick question as i’m having some issues ordering my “golden thread”…. does it matter in what order you mention them? i.e., is it always first aims, then objectives, and finally the questions? or can you first mention the research questions and then the aims and objectives?

UN

Thank you for a very simple explanation that builds upon the concepts in a very logical manner. Just prior to this, I read the research hypothesis article, which was equally very good. This met my primary objective.

My secondary objective was to understand the difference between research questions and research hypothesis, and in which context to use which one. However, I am still not clear on this. Can you kindly please guide?

Derek Jansen

In research, a research question is a clear and specific inquiry that the researcher wants to answer, while a research hypothesis is a tentative statement or prediction about the relationship between variables or the expected outcome of the study. Research questions are broader and guide the overall study, while hypotheses are specific and testable statements used in quantitative research. Research questions identify the problem, while hypotheses provide a focus for testing in the study.

Saen Fanai

Exactly what I need in this research journey, I look forward to more of your coaching videos.

Abubakar Rofiat Opeyemi

This helped a lot. Thanks so much for the effort put into explaining it.

Lamin Tarawally

What data source in writing dissertation/Thesis requires?

What is data source covers when writing dessertation/thesis

Latifat Muhammed

This is quite useful thanks

Yetunde

I’m excited and thankful. I got so much value which will help me progress in my thesis.

Amer Al-Rashid

where are the locations of the reserch statement, research objective and research question in a reserach paper? Can you write an ouline that defines their places in the researh paper?

Webby

Very helpful and important tips on Aims, Objectives and Questions.

Refiloe Raselane

Thank you so much for making research aim, research objectives and research question so clear. This will be helpful to me as i continue with my thesis.

Annabelle Roda-Dafielmoto

Thanks much for this content. I learned a lot. And I am inspired to learn more. I am still struggling with my preparation for dissertation outline/proposal. But I consistently follow contents and tutorials and the new FB of GRAD Coach. Hope to really become confident in writing my dissertation and successfully defend it.

Joe

As a researcher and lecturer, I find splitting research goals into research aims, objectives, and questions is unnecessarily bureaucratic and confusing for students. For most biomedical research projects, including ‘real research’, 1-3 research questions will suffice (numbers may differ by discipline).

Abdella

Awesome! Very important resources and presented in an informative way to easily understand the golden thread. Indeed, thank you so much.

Sheikh

Well explained

New Growth Care Group

The blog article on research aims, objectives, and questions by Grad Coach is a clear and insightful guide that aligns with my experiences in academic research. The article effectively breaks down the often complex concepts of research aims and objectives, providing a straightforward and accessible explanation. Drawing from my own research endeavors, I appreciate the practical tips offered, such as the need for specificity and clarity when formulating research questions. The article serves as a valuable resource for students and researchers, offering a concise roadmap for crafting well-defined research goals and objectives. Whether you’re a novice or an experienced researcher, this article provides practical insights that contribute to the foundational aspects of a successful research endeavor.

yaikobe

A great thanks for you. it is really amazing explanation. I grasp a lot and one step up to research knowledge.

UMAR SALEH

I really found these tips helpful. Thank you very much Grad Coach.

Rahma D.

I found this article helpful. Thanks for sharing this.

Juhaida

thank you so much, the explanation and examples are really helpful

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Privacy Policy

Research Method

Home » Research Paper – Structure, Examples and Writing Guide

Research Paper – Structure, Examples and Writing Guide

Table of Contents

Research Paper

Research Paper

Definition:

Research Paper is a written document that presents the author’s original research, analysis, and interpretation of a specific topic or issue.

It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new knowledge or insights to a particular field of study, and to demonstrate the author’s understanding of the existing literature and theories related to the topic.

Structure of Research Paper

The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. The following is a detailed explanation of the structure of a research paper:

The title page contains the title of the paper, the name(s) of the author(s), and the affiliation(s) of the author(s). It also includes the date of submission and possibly, the name of the journal or conference where the paper is to be published.

The abstract is a brief summary of the research paper, typically ranging from 100 to 250 words. It should include the research question, the methods used, the key findings, and the implications of the results. The abstract should be written in a concise and clear manner to allow readers to quickly grasp the essence of the research.

Introduction

The introduction section of a research paper provides background information about the research problem, the research question, and the research objectives. It also outlines the significance of the research, the research gap that it aims to fill, and the approach taken to address the research question. Finally, the introduction section ends with a clear statement of the research hypothesis or research question.

Literature Review

The literature review section of a research paper provides an overview of the existing literature on the topic of study. It includes a critical analysis and synthesis of the literature, highlighting the key concepts, themes, and debates. The literature review should also demonstrate the research gap and how the current study seeks to address it.

The methods section of a research paper describes the research design, the sample selection, the data collection and analysis procedures, and the statistical methods used to analyze the data. This section should provide sufficient detail for other researchers to replicate the study.

The results section presents the findings of the research, using tables, graphs, and figures to illustrate the data. The findings should be presented in a clear and concise manner, with reference to the research question and hypothesis.

The discussion section of a research paper interprets the findings and discusses their implications for the research question, the literature review, and the field of study. It should also address the limitations of the study and suggest future research directions.

The conclusion section summarizes the main findings of the study, restates the research question and hypothesis, and provides a final reflection on the significance of the research.

The references section provides a list of all the sources cited in the paper, following a specific citation style such as APA, MLA or Chicago.

How to Write Research Paper

You can write Research Paper by the following guide:

  • Choose a Topic: The first step is to select a topic that interests you and is relevant to your field of study. Brainstorm ideas and narrow down to a research question that is specific and researchable.
  • Conduct a Literature Review: The literature review helps you identify the gap in the existing research and provides a basis for your research question. It also helps you to develop a theoretical framework and research hypothesis.
  • Develop a Thesis Statement : The thesis statement is the main argument of your research paper. It should be clear, concise and specific to your research question.
  • Plan your Research: Develop a research plan that outlines the methods, data sources, and data analysis procedures. This will help you to collect and analyze data effectively.
  • Collect and Analyze Data: Collect data using various methods such as surveys, interviews, observations, or experiments. Analyze data using statistical tools or other qualitative methods.
  • Organize your Paper : Organize your paper into sections such as Introduction, Literature Review, Methods, Results, Discussion, and Conclusion. Ensure that each section is coherent and follows a logical flow.
  • Write your Paper : Start by writing the introduction, followed by the literature review, methods, results, discussion, and conclusion. Ensure that your writing is clear, concise, and follows the required formatting and citation styles.
  • Edit and Proofread your Paper: Review your paper for grammar and spelling errors, and ensure that it is well-structured and easy to read. Ask someone else to review your paper to get feedback and suggestions for improvement.
  • Cite your Sources: Ensure that you properly cite all sources used in your research paper. This is essential for giving credit to the original authors and avoiding plagiarism.

Research Paper Example

Note : The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors. Students should always consult with their professors or supervisors for specific guidelines and expectations for their research papers.

Research Paper Example sample for Students:

Title: The Impact of Social Media on Mental Health among Young Adults

Abstract: This study aims to investigate the impact of social media use on the mental health of young adults. A literature review was conducted to examine the existing research on the topic. A survey was then administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO (Fear of Missing Out) are significant predictors of mental health problems among young adults.

Introduction: Social media has become an integral part of modern life, particularly among young adults. While social media has many benefits, including increased communication and social connectivity, it has also been associated with negative outcomes, such as addiction, cyberbullying, and mental health problems. This study aims to investigate the impact of social media use on the mental health of young adults.

Literature Review: The literature review highlights the existing research on the impact of social media use on mental health. The review shows that social media use is associated with depression, anxiety, stress, and other mental health problems. The review also identifies the factors that contribute to the negative impact of social media, including social comparison, cyberbullying, and FOMO.

Methods : A survey was administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The survey included questions on social media use, mental health status (measured using the DASS-21), and perceived impact of social media on their mental health. Data were analyzed using descriptive statistics and regression analysis.

Results : The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO are significant predictors of mental health problems among young adults.

Discussion : The study’s findings suggest that social media use has a negative impact on the mental health of young adults. The study highlights the need for interventions that address the factors contributing to the negative impact of social media, such as social comparison, cyberbullying, and FOMO.

Conclusion : In conclusion, social media use has a significant impact on the mental health of young adults. The study’s findings underscore the need for interventions that promote healthy social media use and address the negative outcomes associated with social media use. Future research can explore the effectiveness of interventions aimed at reducing the negative impact of social media on mental health. Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health.

Limitations : The study has some limitations, including the use of self-report measures and a cross-sectional design. The use of self-report measures may result in biased responses, and a cross-sectional design limits the ability to establish causality.

Implications: The study’s findings have implications for mental health professionals, educators, and policymakers. Mental health professionals can use the findings to develop interventions that address the negative impact of social media use on mental health. Educators can incorporate social media literacy into their curriculum to promote healthy social media use among young adults. Policymakers can use the findings to develop policies that protect young adults from the negative outcomes associated with social media use.

References :

  • Twenge, J. M., & Campbell, W. K. (2019). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 15, 100918.
  • Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., … & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among US young adults. Computers in Human Behavior, 69, 1-9.
  • Van der Meer, T. G., & Verhoeven, J. W. (2017). Social media and its impact on academic performance of students. Journal of Information Technology Education: Research, 16, 383-398.

Appendix : The survey used in this study is provided below.

Social Media and Mental Health Survey

  • How often do you use social media per day?
  • Less than 30 minutes
  • 30 minutes to 1 hour
  • 1 to 2 hours
  • 2 to 4 hours
  • More than 4 hours
  • Which social media platforms do you use?
  • Others (Please specify)
  • How often do you experience the following on social media?
  • Social comparison (comparing yourself to others)
  • Cyberbullying
  • Fear of Missing Out (FOMO)
  • Have you ever experienced any of the following mental health problems in the past month?
  • Do you think social media use has a positive or negative impact on your mental health?
  • Very positive
  • Somewhat positive
  • Somewhat negative
  • Very negative
  • In your opinion, which factors contribute to the negative impact of social media on mental health?
  • Social comparison
  • In your opinion, what interventions could be effective in reducing the negative impact of social media on mental health?
  • Education on healthy social media use
  • Counseling for mental health problems caused by social media
  • Social media detox programs
  • Regulation of social media use

Thank you for your participation!

Applications of Research Paper

Research papers have several applications in various fields, including:

  • Advancing knowledge: Research papers contribute to the advancement of knowledge by generating new insights, theories, and findings that can inform future research and practice. They help to answer important questions, clarify existing knowledge, and identify areas that require further investigation.
  • Informing policy: Research papers can inform policy decisions by providing evidence-based recommendations for policymakers. They can help to identify gaps in current policies, evaluate the effectiveness of interventions, and inform the development of new policies and regulations.
  • Improving practice: Research papers can improve practice by providing evidence-based guidance for professionals in various fields, including medicine, education, business, and psychology. They can inform the development of best practices, guidelines, and standards of care that can improve outcomes for individuals and organizations.
  • Educating students : Research papers are often used as teaching tools in universities and colleges to educate students about research methods, data analysis, and academic writing. They help students to develop critical thinking skills, research skills, and communication skills that are essential for success in many careers.
  • Fostering collaboration: Research papers can foster collaboration among researchers, practitioners, and policymakers by providing a platform for sharing knowledge and ideas. They can facilitate interdisciplinary collaborations and partnerships that can lead to innovative solutions to complex problems.

When to Write Research Paper

Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share with the academic or professional community. Research papers are usually written in academic settings, such as universities, but they can also be written in professional settings, such as research organizations, government agencies, or private companies.

Here are some common situations where a person might need to write a research paper:

  • For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities. Writing research papers helps students to develop research skills, critical thinking skills, and academic writing skills.
  • For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing research papers is an important way to disseminate research findings to the academic community and to establish oneself as an expert in a particular field.
  • To inform policy or practice : Researchers may write research papers to inform policy decisions or to improve practice in various fields. Research findings can be used to inform the development of policies, guidelines, and best practices that can improve outcomes for individuals and organizations.
  • To share new insights or ideas: Researchers may write research papers to share new insights or ideas with the academic or professional community. They may present new theories, propose new research methods, or challenge existing paradigms in their field.

Purpose of Research Paper

The purpose of a research paper is to present the results of a study or investigation in a clear, concise, and structured manner. Research papers are written to communicate new knowledge, ideas, or findings to a specific audience, such as researchers, scholars, practitioners, or policymakers. The primary purposes of a research paper are:

  • To contribute to the body of knowledge : Research papers aim to add new knowledge or insights to a particular field or discipline. They do this by reporting the results of empirical studies, reviewing and synthesizing existing literature, proposing new theories, or providing new perspectives on a topic.
  • To inform or persuade: Research papers are written to inform or persuade the reader about a particular issue, topic, or phenomenon. They present evidence and arguments to support their claims and seek to persuade the reader of the validity of their findings or recommendations.
  • To advance the field: Research papers seek to advance the field or discipline by identifying gaps in knowledge, proposing new research questions or approaches, or challenging existing assumptions or paradigms. They aim to contribute to ongoing debates and discussions within a field and to stimulate further research and inquiry.
  • To demonstrate research skills: Research papers demonstrate the author’s research skills, including their ability to design and conduct a study, collect and analyze data, and interpret and communicate findings. They also demonstrate the author’s ability to critically evaluate existing literature, synthesize information from multiple sources, and write in a clear and structured manner.

Characteristics of Research Paper

Research papers have several characteristics that distinguish them from other forms of academic or professional writing. Here are some common characteristics of research papers:

  • Evidence-based: Research papers are based on empirical evidence, which is collected through rigorous research methods such as experiments, surveys, observations, or interviews. They rely on objective data and facts to support their claims and conclusions.
  • Structured and organized: Research papers have a clear and logical structure, with sections such as introduction, literature review, methods, results, discussion, and conclusion. They are organized in a way that helps the reader to follow the argument and understand the findings.
  • Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal opinions and instead rely on objective data and analysis to support their arguments.
  • Citations and references: Research papers include citations and references to acknowledge the sources of information and ideas used in the paper. They use a specific citation style, such as APA, MLA, or Chicago, to ensure consistency and accuracy.
  • Peer-reviewed: Research papers are often peer-reviewed, which means they are evaluated by other experts in the field before they are published. Peer-review ensures that the research is of high quality, meets ethical standards, and contributes to the advancement of knowledge in the field.
  • Objective and unbiased: Research papers strive to be objective and unbiased in their presentation of the findings. They avoid personal biases or preconceptions and instead rely on the data and analysis to draw conclusions.

Advantages of Research Paper

Research papers have many advantages, both for the individual researcher and for the broader academic and professional community. Here are some advantages of research papers:

  • Contribution to knowledge: Research papers contribute to the body of knowledge in a particular field or discipline. They add new information, insights, and perspectives to existing literature and help advance the understanding of a particular phenomenon or issue.
  • Opportunity for intellectual growth: Research papers provide an opportunity for intellectual growth for the researcher. They require critical thinking, problem-solving, and creativity, which can help develop the researcher’s skills and knowledge.
  • Career advancement: Research papers can help advance the researcher’s career by demonstrating their expertise and contributions to the field. They can also lead to new research opportunities, collaborations, and funding.
  • Academic recognition: Research papers can lead to academic recognition in the form of awards, grants, or invitations to speak at conferences or events. They can also contribute to the researcher’s reputation and standing in the field.
  • Impact on policy and practice: Research papers can have a significant impact on policy and practice. They can inform policy decisions, guide practice, and lead to changes in laws, regulations, or procedures.
  • Advancement of society: Research papers can contribute to the advancement of society by addressing important issues, identifying solutions to problems, and promoting social justice and equality.

Limitations of Research Paper

Research papers also have some limitations that should be considered when interpreting their findings or implications. Here are some common limitations of research papers:

  • Limited generalizability: Research findings may not be generalizable to other populations, settings, or contexts. Studies often use specific samples or conditions that may not reflect the broader population or real-world situations.
  • Potential for bias : Research papers may be biased due to factors such as sample selection, measurement errors, or researcher biases. It is important to evaluate the quality of the research design and methods used to ensure that the findings are valid and reliable.
  • Ethical concerns: Research papers may raise ethical concerns, such as the use of vulnerable populations or invasive procedures. Researchers must adhere to ethical guidelines and obtain informed consent from participants to ensure that the research is conducted in a responsible and respectful manner.
  • Limitations of methodology: Research papers may be limited by the methodology used to collect and analyze data. For example, certain research methods may not capture the complexity or nuance of a particular phenomenon, or may not be appropriate for certain research questions.
  • Publication bias: Research papers may be subject to publication bias, where positive or significant findings are more likely to be published than negative or non-significant findings. This can skew the overall findings of a particular area of research.
  • Time and resource constraints: Research papers may be limited by time and resource constraints, which can affect the quality and scope of the research. Researchers may not have access to certain data or resources, or may be unable to conduct long-term studies due to practical limitations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

  • Link to facebook
  • Link to linkedin
  • Link to twitter
  • Link to youtube
  • Writing Tips

How to Write Research Objectives

How to Write Research Objectives

3-minute read

  • 22nd November 2021

Writing a research paper, thesis, or dissertation ? If so, you’ll want to state your research objectives in the introduction of your paper to make it clear to your readers what you’re trying to accomplish. But how do you write effective research objectives? In this post, we’ll look at two key topics to help you do this:

  • How to use your research aims as a basis for developing objectives.
  • How to use SMART criteria to refine your research objectives.

For more advice on how to write strong research objectives, see below.

Research Aims and Objectives

There is an important difference between research aims and research objectives:

  • A research aim defines the main purpose of your research. As such, you can think of your research aim as answering the question “What are you doing?”
  • Research objectives (as most studies will have more than one) are the steps you will take to fulfil your aims. As such, your objectives should answer the question “How are you conducting your research?”

For instance, an example research aim could be:

This study will investigate the link between dehydration and the incidence of urinary tract infections (UTIs) in intensive care patients in Australia.

To develop a set of research objectives, you would then break down the various steps involved in meeting said aim. For example:

This study will investigate the link between dehydration and the incidence of urinary tract infections (UTIs) in intensive care patients in Australia. To achieve this, the study objectives w ill include:

  • Replicat ing a small Singaporean study into the role of dehydration in UTIs in hospital patients (Sepe, 2018) in a larger Australian cohort.
  • Trialing the use of intravenous fluids for intensive care patients to prevent dehydration.
  • Assessing the relationship between the age of patients and quantities of intravenous fluids needed to counter dehydration.

Find this useful?

Subscribe to our newsletter and get writing tips from our editors straight to your inbox.

Note that the objectives don’t go into any great detail here. The key is to briefly summarize each component of your study. You can save details for how you will conduct the research for the methodology section of your paper.

Make Your Research Objectives SMART

A great way to refine your research objectives is to use SMART criteria . Borrowed from the world of project management, there are many versions of this system. However, we’re going to focus on developing specific, measurable, achievable, relevant, and timebound objectives.

In other words, a good research objective should be all of the following:

  • S pecific – Is the objective clear and well-defined?
  • M easurable – How will you know when the objective has been achieved? Is there a way to measure the thing you’re seeking to do?
  • A chievable – Do you have the support and resources necessary to undertake this action? Are you being overly ambitious with this objective?
  • R elevant – Is this objective vital for fulfilling your research aim?
  • T imebound – Can this action be realistically undertaken in the time you have?

If you follow this system, your research objectives will be much stronger.

Expert Research Proofreading

Whatever your research aims and objectives, make sure to have your academic writing proofread by the experts!

Our academic editors can help you with research papers and proposals , as well as any other scholarly document you need checking. And this will help to ensure that your academic writing is always clear, concise, and precise.

Submit a free sample document today to trial our services and find out more.

Share this article:

Post A New Comment

Got content that needs a quick turnaround? Let us polish your work. Explore our editorial business services.

9-minute read

How to Use Infographics to Boost Your Presentation

Is your content getting noticed? Capturing and maintaining an audience’s attention is a challenge when...

8-minute read

Why Interactive PDFs Are Better for Engagement

Are you looking to enhance engagement and captivate your audience through your professional documents? Interactive...

7-minute read

Seven Key Strategies for Voice Search Optimization

Voice search optimization is rapidly shaping the digital landscape, requiring content professionals to adapt their...

4-minute read

Five Creative Ways to Showcase Your Digital Portfolio

Are you a creative freelancer looking to make a lasting impression on potential clients or...

How to Ace Slack Messaging for Contractors and Freelancers

Effective professional communication is an important skill for contractors and freelancers navigating remote work environments....

How to Insert a Text Box in a Google Doc

Google Docs is a powerful collaborative tool, and mastering its features can significantly enhance your...

Logo Harvard University

Make sure your writing is the best it can be with our expert English proofreading and editing.

research paper and objective

  • Aims and Objectives – A Guide for Academic Writing
  • Doing a PhD

One of the most important aspects of a thesis, dissertation or research paper is the correct formulation of the aims and objectives. This is because your aims and objectives will establish the scope, depth and direction that your research will ultimately take. An effective set of aims and objectives will give your research focus and your reader clarity, with your aims indicating what is to be achieved, and your objectives indicating how it will be achieved.

Introduction

There is no getting away from the importance of the aims and objectives in determining the success of your research project. Unfortunately, however, it is an aspect that many students struggle with, and ultimately end up doing poorly. Given their importance, if you suspect that there is even the smallest possibility that you belong to this group of students, we strongly recommend you read this page in full.

This page describes what research aims and objectives are, how they differ from each other, how to write them correctly, and the common mistakes students make and how to avoid them. An example of a good aim and objectives from a past thesis has also been deconstructed to help your understanding.

What Are Aims and Objectives?

Research aims.

A research aim describes the main goal or the overarching purpose of your research project.

In doing so, it acts as a focal point for your research and provides your readers with clarity as to what your study is all about. Because of this, research aims are almost always located within its own subsection under the introduction section of a research document, regardless of whether it’s a thesis , a dissertation, or a research paper .

A research aim is usually formulated as a broad statement of the main goal of the research and can range in length from a single sentence to a short paragraph. Although the exact format may vary according to preference, they should all describe why your research is needed (i.e. the context), what it sets out to accomplish (the actual aim) and, briefly, how it intends to accomplish it (overview of your objectives).

To give an example, we have extracted the following research aim from a real PhD thesis:

Example of a Research Aim

The role of diametrical cup deformation as a factor to unsatisfactory implant performance has not been widely reported. The aim of this thesis was to gain an understanding of the diametrical deformation behaviour of acetabular cups and shells following impaction into the reamed acetabulum. The influence of a range of factors on deformation was investigated to ascertain if cup and shell deformation may be high enough to potentially contribute to early failure and high wear rates in metal-on-metal implants.

Note: Extracted with permission from thesis titled “T he Impact And Deformation Of Press-Fit Metal Acetabular Components ” produced by Dr H Hothi of previously Queen Mary University of London.

Research Objectives

Where a research aim specifies what your study will answer, research objectives specify how your study will answer it.

They divide your research aim into several smaller parts, each of which represents a key section of your research project. As a result, almost all research objectives take the form of a numbered list, with each item usually receiving its own chapter in a dissertation or thesis.

Following the example of the research aim shared above, here are it’s real research objectives as an example:

Example of a Research Objective

  • Develop finite element models using explicit dynamics to mimic mallet blows during cup/shell insertion, initially using simplified experimentally validated foam models to represent the acetabulum.
  • Investigate the number, velocity and position of impacts needed to insert a cup.
  • Determine the relationship between the size of interference between the cup and cavity and deformation for different cup types.
  • Investigate the influence of non-uniform cup support and varying the orientation of the component in the cavity on deformation.
  • Examine the influence of errors during reaming of the acetabulum which introduce ovality to the cavity.
  • Determine the relationship between changes in the geometry of the component and deformation for different cup designs.
  • Develop three dimensional pelvis models with non-uniform bone material properties from a range of patients with varying bone quality.
  • Use the key parameters that influence deformation, as identified in the foam models to determine the range of deformations that may occur clinically using the anatomic models and if these deformations are clinically significant.

It’s worth noting that researchers sometimes use research questions instead of research objectives, or in other cases both. From a high-level perspective, research questions and research objectives make the same statements, but just in different formats.

Taking the first three research objectives as an example, they can be restructured into research questions as follows:

Restructuring Research Objectives as Research Questions

  • Can finite element models using simplified experimentally validated foam models to represent the acetabulum together with explicit dynamics be used to mimic mallet blows during cup/shell insertion?
  • What is the number, velocity and position of impacts needed to insert a cup?
  • What is the relationship between the size of interference between the cup and cavity and deformation for different cup types?

Difference Between Aims and Objectives

Hopefully the above explanations make clear the differences between aims and objectives, but to clarify:

  • The research aim focus on what the research project is intended to achieve; research objectives focus on how the aim will be achieved.
  • Research aims are relatively broad; research objectives are specific.
  • Research aims focus on a project’s long-term outcomes; research objectives focus on its immediate, short-term outcomes.
  • A research aim can be written in a single sentence or short paragraph; research objectives should be written as a numbered list.

How to Write Aims and Objectives

Before we discuss how to write a clear set of research aims and objectives, we should make it clear that there is no single way they must be written. Each researcher will approach their aims and objectives slightly differently, and often your supervisor will influence the formulation of yours on the basis of their own preferences.

Regardless, there are some basic principles that you should observe for good practice; these principles are described below.

Your aim should be made up of three parts that answer the below questions:

  • Why is this research required?
  • What is this research about?
  • How are you going to do it?

The easiest way to achieve this would be to address each question in its own sentence, although it does not matter whether you combine them or write multiple sentences for each, the key is to address each one.

The first question, why , provides context to your research project, the second question, what , describes the aim of your research, and the last question, how , acts as an introduction to your objectives which will immediately follow.

Scroll through the image set below to see the ‘why, what and how’ associated with our research aim example.

Explaining aims vs objectives

Note: Your research aims need not be limited to one. Some individuals per to define one broad ‘overarching aim’ of a project and then adopt two or three specific research aims for their thesis or dissertation. Remember, however, that in order for your assessors to consider your research project complete, you will need to prove you have fulfilled all of the aims you set out to achieve. Therefore, while having more than one research aim is not necessarily disadvantageous, consider whether a single overarching one will do.

Research Objectives

Each of your research objectives should be SMART :

  • Specific – is there any ambiguity in the action you are going to undertake, or is it focused and well-defined?
  • Measurable – how will you measure progress and determine when you have achieved the action?
  • Achievable – do you have the support, resources and facilities required to carry out the action?
  • Relevant – is the action essential to the achievement of your research aim?
  • Timebound – can you realistically complete the action in the available time alongside your other research tasks?

In addition to being SMART, your research objectives should start with a verb that helps communicate your intent. Common research verbs include:

Table of Research Verbs to Use in Aims and Objectives

Last, format your objectives into a numbered list. This is because when you write your thesis or dissertation, you will at times need to make reference to a specific research objective; structuring your research objectives in a numbered list will provide a clear way of doing this.

To bring all this together, let’s compare the first research objective in the previous example with the above guidance:

Checking Research Objective Example Against Recommended Approach

Research Objective:

1. Develop finite element models using explicit dynamics to mimic mallet blows during cup/shell insertion, initially using simplified experimentally validated foam models to represent the acetabulum.

Checking Against Recommended Approach:

Q: Is it specific? A: Yes, it is clear what the student intends to do (produce a finite element model), why they intend to do it (mimic cup/shell blows) and their parameters have been well-defined ( using simplified experimentally validated foam models to represent the acetabulum ).

Q: Is it measurable? A: Yes, it is clear that the research objective will be achieved once the finite element model is complete.

Q: Is it achievable? A: Yes, provided the student has access to a computer lab, modelling software and laboratory data.

Q: Is it relevant? A: Yes, mimicking impacts to a cup/shell is fundamental to the overall aim of understanding how they deform when impacted upon.

Q: Is it timebound? A: Yes, it is possible to create a limited-scope finite element model in a relatively short time, especially if you already have experience in modelling.

Q: Does it start with a verb? A: Yes, it starts with ‘develop’, which makes the intent of the objective immediately clear.

Q: Is it a numbered list? A: Yes, it is the first research objective in a list of eight.

Mistakes in Writing Research Aims and Objectives

1. making your research aim too broad.

Having a research aim too broad becomes very difficult to achieve. Normally, this occurs when a student develops their research aim before they have a good understanding of what they want to research. Remember that at the end of your project and during your viva defence , you will have to prove that you have achieved your research aims; if they are too broad, this will be an almost impossible task. In the early stages of your research project, your priority should be to narrow your study to a specific area. A good way to do this is to take the time to study existing literature, question their current approaches, findings and limitations, and consider whether there are any recurring gaps that could be investigated .

Note: Achieving a set of aims does not necessarily mean proving or disproving a theory or hypothesis, even if your research aim was to, but having done enough work to provide a useful and original insight into the principles that underlie your research aim.

2. Making Your Research Objectives Too Ambitious

Be realistic about what you can achieve in the time you have available. It is natural to want to set ambitious research objectives that require sophisticated data collection and analysis, but only completing this with six months before the end of your PhD registration period is not a worthwhile trade-off.

3. Formulating Repetitive Research Objectives

Each research objective should have its own purpose and distinct measurable outcome. To this effect, a common mistake is to form research objectives which have large amounts of overlap. This makes it difficult to determine when an objective is truly complete, and also presents challenges in estimating the duration of objectives when creating your project timeline. It also makes it difficult to structure your thesis into unique chapters, making it more challenging for you to write and for your audience to read.

Fortunately, this oversight can be easily avoided by using SMART objectives.

Hopefully, you now have a good idea of how to create an effective set of aims and objectives for your research project, whether it be a thesis, dissertation or research paper. While it may be tempting to dive directly into your research, spending time on getting your aims and objectives right will give your research clear direction. This won’t only reduce the likelihood of problems arising later down the line, but will also lead to a more thorough and coherent research project.

Finding a PhD has never been this easy – search for a PhD by keyword, location or academic area of interest.

Browse PhDs Now

Join thousands of students.

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

Writing the Research Objectives: 5 Straightforward Examples

The research objective of a research proposal or scientific article defines the direction or content of a research investigation. Without the research objectives, the proposal or research paper is in disarray. It is like a fisherman riding on a boat without any purpose and with no destination in sight. Therefore, at the beginning of any research venture, the researcher must be clear about what he or she intends to do or achieve in conducting a study.

How do you define the objectives of a study? What are the uses of the research objective? How would a researcher write this essential part of the research? This article aims to provide answers to these questions.

Table of Contents

Definition of a research objective.

A research objective describes, in a few words, the result of the research project after its implementation. It answers the question,

“ What does the researcher want or hope to achieve at the end of the research project.”  

The research objective provides direction to the performance of the study.

What are the Uses of the Research Objective?

The uses of the research objective are enumerated below:

  • serves as the researcher’s guide in identifying the appropriate research design,
  • identifies the variables of the study, and
  • specifies the data collection procedure and the corresponding analysis for the data generated.

The research design serves as the “blueprint” for the research investigation. The University of Southern California describes the different types of research design extensively. It details the data to be gathered, data collection procedure, data measurement, and statistical tests to use in the analysis.

The variables of the study include those factors that the researcher wants to evaluate in the study. These variables narrow down the research to several manageable components to see differences or correlations between them.

Specifying the data collection procedure ensures data accuracy and integrity . Thus, the probability of error is minimized. Generalizations or conclusions based on valid arguments founded on reliable data strengthens research findings on particular issues and problems.

In data mining activities where large data sets are involved, the research objective plays a crucial role. Without a clear objective to guide the machine learning process, the desired outcomes will not be met.

How is the Research Objective Written?

A research objective must be achievable, i.e., it must be framed keeping in mind the available time, infrastructure required for research, and other resources.

Before forming a research objective, you should read about all the developments in your area of research and find gaps in knowledge that need to be addressed. Readings will help you come up with suitable objectives for your research project.

5 Examples of Research Objectives

The following examples of research objectives based on several published studies on various topics demonstrate how the research objectives are written:

  • This study aims to find out if there is a difference in quiz scores between students exposed to direct instruction and flipped classrooms (Webb and Doman, 2016).
  • This study seeks to examine the extent, range, and method of coral reef rehabilitation projects in five shallow reef areas adjacent to popular tourist destinations in the Philippines (Yeemin et al ., 2006).
  • This study aims to investigate species richness of mammal communities in five protected areas over the past 20 years (Evans et al ., 2006).
  • This study aims to clarify the demographic, epidemiological, clinical, and radiological features of 2019-nCoV patients with other causes of pneumonia (Zhao et al ., 2020).
  • This research aims to assess species extinction risks for sample regions that cover some 20% of the Earth’s terrestrial surface.

Finally, writing the research objectives requires constant practice, experience, and knowledge about the topic investigated. Clearly written objectives save time, money, and effort.

Once you have a clear idea of your research objectives, you can now develop your conceptual framework which is a crucial element of your research paper as it guides the flow of your research. The conceptual framework will help you develop your methodology and statistical tests.

I wrote a detailed, step-by-step guide on how to develop a conceptual framework with illustration in my post titled “ Conceptual Framework: A Step by Step Guide on How to Make One. “

Evans, K. L., Rodrigues, A. S., Chown, S. L., & Gaston, K. J. (2006). Protected areas and regional avian species richness in South Africa.  Biology letters ,  2 (2), 184-188.

Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., … & Hughes, L. (2004). Extinction risk from climate change. Nature, 427(6970), 145-148.

Webb, M., & Doman, E. (2016). Does the Flipped Classroom Lead to Increased Gains on Learning Outcomes in ESL/EFL Contexts?. CATESOL Journal, 28(1), 39-67.

Yeemin, T., Sutthacheep, M., & Pettongma, R. (2006). Coral reef restoration projects in Thailand.  Ocean & Coastal Management ,  49 (9-10), 562-575.

Zhao, D., Yao, F., Wang, L., Zheng, L., Gao, Y., Ye, J., Guo, F., Zhao, H. & Gao, R. (2020). A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias, Clinical Infectious Diseases , ciaa247, https://doi.org/10.1093/cid/ciaa247

© 2020 March 23 P. A. Regoniel Updated 17 November 2020 | Updated 18 January 2024

Related Posts

Master Content Analysis: An All-in-One Guide

Master Content Analysis: An All-in-One Guide

Two Tips on How to Write the Significance of the Study

Two Tips on How to Write the Significance of the Study

5 thesis writing tips for greater impact, about the author, patrick regoniel.

Dr. Regoniel, a faculty member of the graduate school, served as consultant to various environmental research and development projects covering issues and concerns on climate change, coral reef resources and management, economic valuation of environmental and natural resources, mining, and waste management and pollution. He has extensive experience on applied statistics, systems modelling and analysis, an avid practitioner of LaTeX, and a multidisciplinary web developer. He leverages pioneering AI-powered content creation tools to produce unique and comprehensive articles in this website.

thank you for clarification

This is excellent

SimplyEducate.Me Privacy Policy

Frequently asked questions

What is a research objective.

Research objectives describe what you intend your research project to accomplish.

They summarise the approach and purpose of the project and help to focus your research.

Your objectives should appear in the introduction of your research paper , at the end of your problem statement .

Frequently asked questions: Dissertation

The acknowledgements are generally included at the very beginning of your thesis or dissertation, directly after the title page and before the abstract .

If you only used a few abbreviations in your thesis or dissertation, you don’t necessarily need to include a list of abbreviations .

If your abbreviations are numerous, or if you think they won’t be known to your audience, it’s never a bad idea to add one. They can also improve readability, minimising confusion about abbreviations unfamiliar to your reader.

A list of figures and tables compiles all of the figures and tables that you used in your thesis or dissertation and displays them with the page number where they can be found.

A thesis or dissertation outline is one of the most critical first steps in your writing process. It helps you to lay out and organise your ideas and can provide you with a roadmap for deciding what kind of research you’d like to undertake.

Generally, an outline contains information on the different sections included in your thesis or dissertation, such as:

  • Your anticipated title
  • Your abstract
  • Your chapters (sometimes subdivided into further topics like literature review, research methods, avenues for future research, etc.)

An abstract for a thesis or dissertation is usually around 150–300 words. There’s often a strict word limit, so make sure to check your university’s requirements.

The abstract appears on its own page, after the title page and acknowledgements but before the table of contents .

While it may be tempting to present new arguments or evidence in your thesis or disseration conclusion , especially if you have a particularly striking argument you’d like to finish your analysis with, you shouldn’t. Theses and dissertations follow a more formal structure than this.

All your findings and arguments should be presented in the body of the text (more specifically in the discussion section and results section .) The conclusion is meant to summarize and reflect on the evidence and arguments you have already presented, not introduce new ones.

For a stronger dissertation conclusion , avoid including:

  • Generic concluding phrases (e.g. “In conclusion…”)
  • Weak statements that undermine your argument (e.g. “There are good points on both sides of this issue.”)

Your conclusion should leave the reader with a strong, decisive impression of your work.

The conclusion of your thesis or dissertation shouldn’t take up more than 5-7% of your overall word count.

The conclusion of your thesis or dissertation should include the following:

  • A restatement of your research question
  • A summary of your key arguments and/or results
  • A short discussion of the implications of your research

Don’t feel that you have to write the introduction first. The introduction is often one of the last parts of the research paper you’ll write, along with the conclusion.

This is because it can be easier to introduce your paper once you’ve already written the body ; you may not have the clearest idea of your arguments until you’ve written them, and things can change during the writing process .

In a thesis or dissertation, the discussion is an in-depth exploration of the results, going into detail about the meaning of your findings and citing relevant sources to put them in context.

The conclusion is more shorter and more general: it concisely answers your main research question and makes recommendations based on your overall findings.

A dissertation prospectus or proposal describes what or who you plan to research for your dissertation. It delves into why, when, where, and how you will do your research, as well as helps you choose a type of research to pursue. You should also determine whether you plan to pursue qualitative or quantitative methods and what your research design will look like.

It should outline all of the decisions you have taken about your project, from your dissertation topic to your hypotheses and research objectives , ready to be approved by your supervisor or committee.

Note that some departments require a defense component, where you present your prospectus to your committee orally.

A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.

Ask our team

Want to contact us directly? No problem. We are always here for you.

Support team - Nina

Our support team is here to help you daily via chat, WhatsApp, email, or phone between 9:00 a.m. to 11:00 p.m. CET.

Our APA experts default to APA 7 for editing and formatting. For the Citation Editing Service you are able to choose between APA 6 and 7.

Yes, if your document is longer than 20,000 words, you will get a sample of approximately 2,000 words. This sample edit gives you a first impression of the editor’s editing style and a chance to ask questions and give feedback.

How does the sample edit work?

You will receive the sample edit within 24 hours after placing your order. You then have 24 hours to let us know if you’re happy with the sample or if there’s something you would like the editor to do differently.

Read more about how the sample edit works

Yes, you can upload your document in sections.

We try our best to ensure that the same editor checks all the different sections of your document. When you upload a new file, our system recognizes you as a returning customer, and we immediately contact the editor who helped you before.

However, we cannot guarantee that the same editor will be available. Your chances are higher if

  • You send us your text as soon as possible and
  • You can be flexible about the deadline.

Please note that the shorter your deadline is, the lower the chance that your previous editor is not available.

If your previous editor isn’t available, then we will inform you immediately and look for another qualified editor. Fear not! Every Scribbr editor follows the  Scribbr Improvement Model  and will deliver high-quality work.

Yes, our editors also work during the weekends and holidays.

Because we have many editors available, we can check your document 24 hours per day and 7 days per week, all year round.

If you choose a 72 hour deadline and upload your document on a Thursday evening, you’ll have your thesis back by Sunday evening!

Yes! Our editors are all native speakers, and they have lots of experience editing texts written by ESL students. They will make sure your grammar is perfect and point out any sentences that are difficult to understand. They’ll also notice your most common mistakes, and give you personal feedback to improve your writing in English.

Every Scribbr order comes with our award-winning Proofreading & Editing service , which combines two important stages of the revision process.

For a more comprehensive edit, you can add a Structure Check or Clarity Check to your order. With these building blocks, you can customize the kind of feedback you receive.

You might be familiar with a different set of editing terms. To help you understand what you can expect at Scribbr, we created this table:

View an example

When you place an order, you can specify your field of study and we’ll match you with an editor who has familiarity with this area.

However, our editors are language specialists, not academic experts in your field. Your editor’s job is not to comment on the content of your dissertation, but to improve your language and help you express your ideas as clearly and fluently as possible.

This means that your editor will understand your text well enough to give feedback on its clarity, logic and structure, but not on the accuracy or originality of its content.

Good academic writing should be understandable to a non-expert reader, and we believe that academic editing is a discipline in itself. The research, ideas and arguments are all yours – we’re here to make sure they shine!

After your document has been edited, you will receive an email with a link to download the document.

The editor has made changes to your document using ‘Track Changes’ in Word. This means that you only have to accept or ignore the changes that are made in the text one by one.

It is also possible to accept all changes at once. However, we strongly advise you not to do so for the following reasons:

  • You can learn a lot by looking at the mistakes you made.
  • The editors don’t only change the text – they also place comments when sentences or sometimes even entire paragraphs are unclear. You should read through these comments and take into account your editor’s tips and suggestions.
  • With a final read-through, you can make sure you’re 100% happy with your text before you submit!

You choose the turnaround time when ordering. We can return your dissertation within 24 hours , 3 days or 1 week . These timescales include weekends and holidays. As soon as you’ve paid, the deadline is set, and we guarantee to meet it! We’ll notify you by text and email when your editor has completed the job.

Very large orders might not be possible to complete in 24 hours. On average, our editors can complete around 13,000 words in a day while maintaining our high quality standards. If your order is longer than this and urgent, contact us to discuss possibilities.

Always leave yourself enough time to check through the document and accept the changes before your submission deadline.

Scribbr is specialised in editing study related documents. We check:

  • Graduation projects
  • Dissertations
  • Admissions essays
  • College essays
  • Application essays
  • Personal statements
  • Process reports
  • Reflections
  • Internship reports
  • Academic papers
  • Research proposals
  • Prospectuses

Calculate the costs

The fastest turnaround time is 24 hours.

You can upload your document at any time and choose between four deadlines:

At Scribbr, we promise to make every customer 100% happy with the service we offer. Our philosophy: Your complaint is always justified – no denial, no doubts.

Our customer support team is here to find the solution that helps you the most, whether that’s a free new edit or a refund for the service.

Yes, in the order process you can indicate your preference for American, British, or Australian English .

If you don’t choose one, your editor will follow the style of English you currently use. If your editor has any questions about this, we will contact you.

Research Objectives: The Compass of Your Study

image

Table of contents

  • 1 Definition and Purpose of Setting Clear Research Objectives
  • 2 How Research Objectives Fit into the Overall Research Framework
  • 3 Types of Research Objectives
  • 4 Aligning Objectives with Research Questions and Hypotheses
  • 5 Role of Research Objectives in Various Research Phases
  • 6.1 Key characteristics of well-defined research objectives
  • 6.2 Step-by-Step Guide on How to Formulate Both General and Specific Research Objectives
  • 6.3 How to Know When Your Objectives Need Refinement
  • 7 Research Objectives Examples in Different Fields
  • 8 Conclusion

Embarking on a research journey without clear objectives is like navigating the sea without a compass. This article delves into the essence of establishing precise research objectives, serving as the guiding star for your scholarly exploration.

We will unfold the layers of how the objective of study not only defines the scope of your research but also directs every phase of the research process, from formulating research questions to interpreting research findings. By bridging theory with practical examples, we aim to illuminate the path to crafting effective research objectives that are both ambitious and attainable. Let’s chart the course to a successful research voyage, exploring the significance, types, and formulation of research paper objectives.

Definition and Purpose of Setting Clear Research Objectives

Defining the research objectives includes which two tasks? Research objectives are clear and concise statements that outline what you aim to achieve through your study. They are the foundation for determining your research scope, guiding your data collection methods, and shaping your analysis. The purpose of research proposal and setting clear objectives in it is to ensure that your research efforts are focused and efficient, and to provide a roadmap that keeps your study aligned with its intended outcomes.

To define the research objective at the outset, researchers can avoid the pitfalls of scope creep, where the study’s focus gradually broadens beyond its initial boundaries, leading to wasted resources and time. Clear objectives facilitate communication with stakeholders, such as funding bodies, academic supervisors, and the broader academic community, by succinctly conveying the study’s goals and significance. Furthermore, they help in the formulation of precise research questions and hypotheses, making the research process more systematic and organized. Yet, it is not always easy. For this reason, PapersOwl is always ready to help. Lastly, clear research objectives enable the researcher to critically assess the study’s progress and outcomes against predefined benchmarks, ensuring the research stays on track and delivers meaningful results.

How Research Objectives Fit into the Overall Research Framework

Research objectives are integral to the research framework as the nexus between the research problem, questions, and hypotheses. They translate the broad goals of your study into actionable steps, ensuring every aspect of your research is purposefully aligned towards addressing the research problem. This alignment helps in structuring the research design and methodology, ensuring that each component of the study is geared towards answering the core questions derived from the objectives. Creating such a difficult piece may take a lot of time. If you need it to be accurate yet fast delivered, consider getting professional research paper writing help whenever the time comes. It also aids in the identification and justification of the research methods and tools used for data collection and analysis, aligning them with the objectives to enhance the validity and reliability of the findings.

Furthermore, by setting clear objectives, researchers can more effectively evaluate the impact and significance of their work in contributing to existing knowledge. Additionally, research objectives guide literature review, enabling researchers to focus their examination on relevant studies and theoretical frameworks that directly inform their research goals.

Types of Research Objectives

In the landscape of research, setting objectives is akin to laying down the tracks for a train’s journey, guiding it towards its destination. Constructing these tracks involves defining two main types of objectives: general and specific. Each serves a unique purpose in guiding the research towards its ultimate goals, with general objectives providing the broad vision and specific objectives outlining the concrete steps needed to fulfill that vision. Together, they form a cohesive blueprint that directs the focus of the study, ensuring that every effort contributes meaningfully to the overarching research aims.

  • General objectives articulate the overarching goals of your study. They are broad, setting the direction for your research without delving into specifics. These objectives capture what you wish to explore or contribute to existing knowledge.
  • Specific objectives break down the general objectives into measurable outcomes. They are precise, detailing the steps needed to achieve the broader goals of your study. They often correspond to different aspects of your research question , ensuring a comprehensive approach to your study.

To illustrate, consider a research project on the impact of digital marketing on consumer behavior. A general objective might be “to explore the influence of digital marketing on consumer purchasing decisions.” Specific objectives could include “to assess the effectiveness of social media advertising in enhancing brand awareness” and “to evaluate the impact of email marketing on customer loyalty.”

Aligning Objectives with Research Questions and Hypotheses

The harmony between what research objectives should be, questions, and hypotheses is critical. Objectives define what you aim to achieve; research questions specify what you seek to understand, and hypotheses predict the expected outcomes.

This alignment ensures a coherent and focused research endeavor. Achieving it necessitates a thoughtful consideration of how each component interrelates, ensuring that the objectives are not only ambitious but also directly answerable through the research questions and testable via the hypotheses. This interconnectedness facilitates a streamlined approach to the research process, enabling researchers to systematically address each aspect of their study in a logical sequence. Moreover, it enhances the clarity and precision of the research, making it easier for peers and stakeholders to grasp the study’s direction and potential contributions.

Role of Research Objectives in Various Research Phases

Throughout the research process, objectives guide your choices and strategies – from selecting the appropriate research design and methods to analyzing data and interpreting results. They are the criteria against which you measure the success of your study. In the initial stages, research objectives inform the selection of a topic, helping to narrow down a broad area of interest into a focused question that can be explored in depth. During the methodology phase, they dictate the type of data needed and the best methods for obtaining that data, ensuring that every step taken is purposeful and aligned with the study’s goals. As the research progresses, objectives provide a framework for analyzing the collected data, guiding the researcher in identifying patterns, drawing conclusions, and making informed decisions.

Crafting Effective Research Objectives

pic

The effective objective of research is pivotal in laying the groundwork for a successful investigation. These objectives clarify the focus of your study and determine its direction and scope. Ensuring that your objectives are well-defined and aligned with the SMART criteria is crucial for setting a strong foundation for your research.

Key characteristics of well-defined research objectives

Well-defined research objectives are characterized by the SMART criteria – Specific, Measurable, Achievable, Relevant, and Time-bound. Specific objectives clearly define what you plan to achieve, eliminating any ambiguity. Measurable objectives allow you to track progress and assess the outcome. Achievable objectives are realistic, considering the research sources and time available. Relevant objectives align with the broader goals of your field or research question. Finally, Time-bound objectives have a clear timeline for completion, adding urgency and a schedule to your work.

Step-by-Step Guide on How to Formulate Both General and Specific Research Objectives

So lets get to the part, how to write research objectives properly?

  • Understand the issue or gap in existing knowledge your study aims to address.
  • Gain insights into how similar challenges have been approached to refine your objectives.
  • Articulate the broad goal of research based on your understanding of the problem.
  • Detail the specific aspects of your research, ensuring they are actionable and measurable.

How to Know When Your Objectives Need Refinement

Your objectives of research may require refinement if they lack clarity, feasibility, or alignment with the research problem. If you find yourself struggling to design experiments or methods that directly address your objectives, or if the objectives seem too broad or not directly related to your research question, it’s likely time for refinement. Additionally, objectives in research proposal that do not facilitate a clear measurement of success indicate a need for a more precise definition. Refinement involves ensuring that each objective is specific, measurable, achievable, relevant, and time-bound, enhancing your research’s overall focus and impact.

Research Objectives Examples in Different Fields

The application of research objectives spans various academic disciplines, each with its unique focus and methodologies. To illustrate how the objectives of the study guide a research paper across different fields, here are some research objective examples:

  • In Health Sciences , a research aim may be to “determine the efficacy of a new vaccine in reducing the incidence of a specific disease among a target population within one year.” This objective is specific (efficacy of a new vaccine), measurable (reduction in disease incidence), achievable (with the right study design and sample size), relevant (to public health), and time-bound (within one year).
  • In Environmental Studies , the study objectives could be “to assess the impact of air pollution on urban biodiversity over a decade.” This reflects a commitment to understanding the long-term effects of human activities on urban ecosystems, emphasizing the need for sustainable urban planning.
  • In Economics , an example objective of a study might be “to analyze the relationship between fiscal policies and unemployment rates in developing countries over the past twenty years.” This seeks to explore macroeconomic trends and inform policymaking, highlighting the role of economic research study in societal development.

These examples of research objectives describe the versatility and significance of research objectives in guiding scholarly inquiry across different domains. By setting clear, well-defined objectives, researchers can ensure their studies are focused and impactful and contribute valuable knowledge to their respective fields.

Defining research studies objectives and problem statement is not just a preliminary step, but a continuous guiding force throughout the research journey. These goals of research illuminate the path forward and ensure that every stride taken is meaningful and aligned with the ultimate goals of the inquiry. Whether through the meticulous application of the SMART criteria or the strategic alignment with research questions and hypotheses, the rigor in crafting and refining these objectives underscores the integrity and relevance of the research. As scholars venture into the vast terrains of knowledge, the clarity, and precision of their objectives serve as beacons of light, steering their explorations toward discoveries that advance academic discourse and resonate with the broader societal needs.

Readers also enjoyed

Research Design Basics: Building Blocks of Scholarly Research

WHY WAIT? PLACE AN ORDER RIGHT NOW!

Just fill out the form, press the button, and have no worries!

We use cookies to give you the best experience possible. By continuing we’ll assume you board with our cookie policy.

research paper and objective

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • College University and Postgraduate
  • Academic Writing
  • Research Papers

How to Write Objectives in a Research Proposal

Last Updated: April 30, 2024 Fact Checked

This article was co-authored by Felipe Corredor . Felipe is a Senior College Admissions Consultant at American College Counselors with over seven years of experience. He specializes in helping clients from all around the world gain admission into America's top universities through private, one-on-one consulting. He helps guide clients through the entire college admissions process and perfect every aspect of their college applications. Felipe earned a Bachelor's Degree from the University of Chicago and recently received his MBA. There are 9 references cited in this article, which can be found at the bottom of the page. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 127,009 times.

A research proposal is a detailed outline for a significant research project. They’re common for class assignments, capstone papers, grant applications, and even job applications in some fields, so it's possible you'll have to prepare one at some point. The objectives are a very important part of a research proposal because they outline where the project is headed and what it will accomplish. Developing objectives can be a little tricky, so take some time to consider them. Then work on wording them carefully so your readers understand your goals. With clear objectives, your research proposal will be much stronger.

Brainstorming Your Objectives

Step 1 State your main research question to guide your ideas.

  • For example, your research question might be “What is the effect of prolonged TV-watching on children?” You can then use that question to build your study around.
  • Narrow down your research topic if it’s too broad. A broad research topic makes breaking the objectives down much more difficult. A research question like “How can we save the environment?” is a huge question. Something like “What safety measures would prevent ocean pollution?” is more specific and attainable. [2] X Research source

Step 2 Describe the ultimate goal of your study.

  • Remember that in most cases, you shouldn’t state that your study will prove or disprove something exactly since you haven’t done the work yet. Don’t say “This study proves that honey is not an effective treatment for acne.” Instead, make it something like “This study will demonstrate whether or not honey is an effective treatment for acne.”

Step 3 Break that goal down into sub-categories to develop your objectives.

  • If your research question was “What is the effect of prolonged TV-watching on children?” then there are a few categories you could look at. Objectives wrapped up within that question might be: 1) the incidence of eyestrain among children who watch a lot of TV, 2) their muscular development, 3) their level of socialization with other children. Design your objectives around answering these questions.

Step 4 Limit your objectives to 3 to 5 at most.

  • You could always state in your research proposal that you plan to design future experiments or studies to answer additional questions. Most experiments leave unanswered questions and subsequent studies try to tackle them.

Step 5 Divide your objectives into 1 general and 3-4 specific ones.

  • A general objective might be "Establish the effect of diet on mental health." Some specific goals in that project could be 1) Determine if processed foods make depression worse, 2) Identify foods that improve mood, 3) Measure if portion sizes have an impact on mood.
  • Not all research proposals want you to divide between general and specific goals. Remember to follow the instructions for the proposal you're writing.

Step 6 Assess each objective using the SMART acronym.

  • The best goals align with each letter in the SMART acronym. The weaker ones are missing some letters. For example, you might come up with a topic that’s specific, measurable, and time-bound, but not realistic or attainable. This is a weak objective because you probably can’t achieve it.
  • Think about the resources at your disposal. Some objectives might be doable with the right equipment, but if you don’t have that equipment, then you can’t achieve that goal. For example, you might want to map DNA structures, but you can’t view DNA without an electron microscope.
  • Ask the same question for your entire project. Is it attainable overall? You don’t want to try to achieve too much and overwhelm yourself.
  • The specific words in this acronym sometimes change, but the sentiment is the same. Your objectives should overall be clear and specific, measurable, feasible, and limited by time.

Using the Right Language

Step 1 Start each objective with an action verb.

  • Verbs like use, understand, or study is vague and weak. Instead, choose words like calculate, compare, and assess.
  • Your objective list might read like this: 1) Compare the muscle development of children who play video games to children who don’t, 2) Assess whether or not video games cause eyestrain, 3) Determine if videogames inhibit a child’s socialization skills.
  • Some proposals use the infinitive form of verbs, like “to measure” or “to determine.” This is also fine but refer to the proposal instructions to see if this is correct.

Step 2 State each objective clearly and concisely.

  • You can further explain your objectives further in the research proposal. No need to elaborate a lot when you’re just listing them.
  • If you’re having trouble shortening an objective to 1 sentence, then you probably need to split it into 2 objectives. It might also be too complicated for this project.

Step 3 Use specific language so readers know what your goals are.

  • For example, “Determine if sunlight is harmful” is too vague. Instead, state the objective as “Determine if prolonged sun exposure increases subjects’ risk of skin cancer.”
  • It’s helpful to let someone else read your proposal and see if they understand the objectives. If they’re confused, then you need to be more specific.

Step 4 State your objectives as outcomes rather than a process.

  • For example, don’t say “Measure the effect of radiation on living tissue.” Instead, say “Determine what level of radiation is dangerous to living tissue.”
  • Remember, don’t state the objectives as you’ve already done the experiments. They’re still not answered.

Writing the Objectives

Step 1 Insert your objectives after your introduction and problem statement.

  • This is a common format for research proposals, but not universal. Always follow the format that the instructions provided.
  • Depending on how long your introduction has to be, you might also list the objectives there. This depends on whether or not you have room.

Step 2 Note the objectives...

  • At the very least, the abstract should list the general objective. This tells the readers what your study is working towards.

Step 3 Introduce the section with your general objective first.

  • In some research projects, the general objective is called a long-term goal instead. Adjust your language to the proposal requirements.
  • Some proposals directions may just want the specific objectives rather than a division between the general and specific ones. Don’t divide them if the instructions tell you not to.

Step 4 List your specific objectives next.

  • Your introduction may be as follows: "My long-term objective with this project is determining whether or not prolonged video-game playing is harmful to children under 5. I will accomplish this aim by meeting the following objectives: 1) Compare the muscle development of children who play videogames to children who don’t 2) Assess whether or not videogames cause eyestrain 3) Determine if videogames inhibit a child’s socialization skills"
  • The specific objectives are usually listed as a bullet or numbered points. However, follow the instructions given.

Research Proposal Templates

research paper and objective

Expert Q&A

  • It’s always a good idea to let someone else read your research proposals and make sure they’re clear. Thanks Helpful 0 Not Helpful 0
  • Proofread! A great proposal could be ruined by typos and errors. Thanks Helpful 0 Not Helpful 0

research paper and objective

  • Some proposal instructions are very specific, and applicants that don’t follow the format are eliminated. Always follow the instructions given to stay within the requirements. Thanks Helpful 3 Not Helpful 0

You Might Also Like

Write a Synopsis for Research

  • ↑ https://uk.sagepub.com/sites/default/files/upm-assets/15490_book_item_15490.pdf
  • ↑ https://research-methodology.net/research-methodology/research-aims-and-objectives/
  • ↑ https://www.uh.edu/~lsong5/documents/A%20sample%20proposal%20with%20comment.pdf
  • ↑ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282423/
  • ↑ https://www.cdc.gov/healthyyouth/evaluation/pdf/brief3b.pdf
  • ↑ https://www.open.edu/openlearncreate/mod/oucontent/view.php?id=231&section=8.6.2
  • ↑ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398294/
  • ↑ https://arxiv.org/pdf/physics/0601009.pdf
  • ↑ https://www.bpcc.edu/institutional-advancement-grants/how-to-write-goals-and-objectives-for-grant-proposals

About This Article

Felipe Corredor

  • Send fan mail to authors

Reader Success Stories

Holly Hoar

Aug 9, 2022

Did this article help you?

research paper and objective

Mar 20, 2023

Relyn Jungco

Relyn Jungco

May 15, 2022

Am I a Narcissist or an Empath Quiz

Featured Articles

Right Brain vs Left Brain Test

Trending Articles

What Does “If They Wanted to, They Would” Mean and Is It True?

Watch Articles

Clean Silver Jewelry with Vinegar

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

wikiHow Tech Help Pro:

Level up your tech skills and stay ahead of the curve

Crafting Clear Pathways: Writing Objectives in Research Papers

Struggling to write research objectives? Follow our easy steps to learn how to craft effective and compelling objectives in research papers.

' src=

Are you struggling to define the goals and direction of your research? Are you losing yourself while doing research and tend to go astray from the intended research topic? Fear not, as many face the same problem and it is quite understandable to overcome this, a concept called research objective comes into play here.

In this article, we’ll delve into the world of the objectives in research papers and why they are essential for a successful study. We will be studying what they are and how they are used in research.

What is a Research Objective?

A research objective is a clear and specific goal that a researcher aims to achieve through a research study. It serves as a roadmap for the research, providing direction and focus. Research objectives are formulated based on the research questions or hypotheses, and they help in defining the scope of the study and guiding the research design and methodology. They also assist in evaluating the success and outcomes of the research.

Types of Research Objectives

There are typically three main types of objectives in a research paper:

  • Exploratory Objectives: These objectives are focused on gaining a deeper understanding of a particular phenomenon, topic, or issue. Exploratory research objectives aim to explore and identify new ideas, insights, or patterns that were previously unknown or poorly understood. This type of objective is commonly used in preliminary or qualitative studies.
  • Descriptive Objectives: Descriptive objectives seek to describe and document the characteristics, behaviors, or attributes of a specific population, event, or phenomenon. The purpose is to provide a comprehensive and accurate account of the subject of study. Descriptive research objectives often involve collecting and analyzing data through surveys, observations, or archival research.
  • Explanatory or Causal Objectives: Explanatory objectives aim to establish a cause-and-effect relationship between variables or factors. These objectives focus on understanding why certain events or phenomena occur and how they are related to each other. 

Also Read: What are the types of research?

Steps for Writing Objectives in Research Paper

1. identify the research topic:.

Clearly define the subject or topic of your research. This will provide a broad context for developing specific research objectives.

2. Conduct a Literature Review

Review existing literature and research related to your topic. This will help you understand the current state of knowledge, identify any research gaps, and refine your research objectives accordingly.

3. Identify the Research Questions or Hypotheses

Formulate specific research questions or hypotheses that you want to address in your study. These questions should be directly related to your research topic and guide the development of your research objectives.

4. Focus on Specific Goals

Break down the broader research questions or hypothesis into specific goals or objectives. Each objective should focus on a particular aspect of your research topic and be achievable within the scope of your study.

5. Use Clear and Measurable Language

Write your research objectives using clear and precise language. Avoid vague terms and use specific and measurable terms that can be observed, analyzed, or measured.

6. Consider Feasibility

Ensure that your research objectives are feasible within the available resources, time constraints, and ethical considerations. They should be realistic and attainable given the limitations of your study.

7. Prioritize Objectives

If you have multiple research objectives, prioritize them based on their importance and relevance to your overall research goals. This will help you allocate resources and focus your efforts accordingly.

8. Review and Refine

Review your research objectives to ensure they align with your research questions or hypotheses, and revise them if necessary. Seek feedback from peers or advisors to ensure clarity and coherence.

Tips for Writing Objectives in Research Paper

1. be clear and specific.

Clearly state what you intend to achieve with your research. Use specific language that leaves no room for ambiguity or confusion. This ensures that your objectives are well-defined and focused.

2. Use Action Verbs

Begin each research objective with an action verb that describes a measurable action or outcome. This helps make your objectives more actionable and measurable.

3. Align with Research Questions or Hypotheses

Your research objectives should directly address the research questions or hypotheses you have formulated. Ensure there is a clear connection between them to maintain coherence in your study.

4. Be Realistic and Feasible

Set research objectives that are attainable within the constraints of your study, including available resources, time, and ethical considerations. Unrealistic objectives may undermine the validity and reliability of your research.

5. Consider Relevance and Significance

Your research objectives should be relevant to your research topic and contribute to the broader field of study. Consider the potential impact and significance of achieving the objectives.

SMART Goals for Writing Research Objectives

To ensure that your research objectives are well-defined and effectively guide your study, you can apply the SMART framework. SMART stands for Specific, Measurable, Achievable, Relevant, and Time-bound. Here’s how you can make your research objectives SMART:

  • Specific : Clearly state what you want to achieve in a precise and specific manner. Avoid vague or generalized language. Specify the population, variables, or phenomena of interest.
  • Measurable : Ensure that your research objectives can be quantified or observed in a measurable way. This allows for objective evaluation and assessment of progress.
  • Achievable : Set research objectives that are realistic and attainable within the available resources, time, and scope of your study. Consider the feasibility of conducting the research and collecting the necessary data.
  • Relevant : Ensure that your research objectives are directly relevant to your research topic and contribute to the broader knowledge or understanding of the field. They should align with the purpose and significance of your study.
  • Time-bound : Set a specific timeframe or deadline for achieving your research objectives. This helps create a sense of urgency and provides a clear timeline for your study.

Examples of Research Objectives

Here are some examples of research objectives from various fields of study:

  • To examine the relationship between social media usage and self-esteem among young adults aged 18-25 in order to understand the potential impact on mental well-being.
  • To assess the effectiveness of a mindfulness-based intervention in reducing stress levels and improving coping mechanisms among individuals diagnosed with anxiety disorders.
  • To investigate the factors influencing consumer purchasing decisions in the e-commerce industry, with a focus on the role of online reviews and social media influencers.
  • To analyze the effects of climate change on the biodiversity of coral reefs in a specific region, using remote sensing techniques and field surveys.

Importance of Research Objectives

Research objectives play a crucial role in the research process and hold significant importance for several reasons:

  • Guiding the Research Process: Research objectives provide a clear roadmap for the entire research process. They help researchers stay focused and on track, ensuring that the study remains purposeful and relevant. 
  • Defining the Scope of the Study: Research objectives help in determining the boundaries and scope of the study. They clarify what aspects of the research topic will be explored and what will be excluded. 
  • Providing Direction for Data Collection and Analysis: Research objectives assist in identifying the type of data to be collected and the methods of data collection. They also guide the selection of appropriate data analysis techniques. 
  • Evaluating the Success of the Study: Research objectives serve as benchmarks for evaluating the success and outcomes of the research. They provide measurable criteria against which the researcher can assess whether the objectives have been met or not. 
  • Enhancing Communication and Collaboration: Clearly defined research objectives facilitate effective communication and collaboration among researchers, advisors, and stakeholders. 

Common Mistakes to Avoid While Writing Research Objectives

When writing research objectives, it’s important to be aware of common mistakes and pitfalls that can undermine the effectiveness and clarity of your objectives. Here are some common mistakes to avoid:

  • Vague or Ambiguous Language: One of the key mistakes is using vague or ambiguous language that lacks specificity. Ensure that your research objectives are clearly and precisely stated, leaving no room for misinterpretation or confusion.
  • Lack of Measurability: Research objectives should be measurable, meaning that they should allow for the collection of data or evidence that can be quantified or observed. Avoid setting objectives that cannot be measured or assessed objectively.
  • Lack of Alignment with Research Questions or Hypotheses: Your research objectives should directly align with the research questions or hypotheses you have formulated. Make sure there is a clear connection between them to maintain coherence in your study.
  • Overgeneralization : Avoid writing research objectives that are too broad or encompass too many variables or phenomena. Overgeneralized objectives may lead to a lack of focus or feasibility in conducting the research.
  • Unrealistic or Unattainable Objectives: Ensure that your research objectives are realistic and attainable within the available resources, time, and scope of your study. Setting unrealistic objectives may compromise the validity and reliability of your research.

In conclusion, research objectives are integral to the success and effectiveness of any research study. They provide a clear direction, focus, and purpose, guiding the entire research process from start to finish. By formulating specific, measurable, achievable, relevant, and time-bound objectives, researchers can define the scope of their study, guide data collection and analysis, and evaluate the outcomes of their research.

Turn your data into easy-to-understand and dynamic stories

When you wish to explain any complex data, it’s always advised to break it down into simpler visuals or stories. This is where Mind the Graph comes in. It is a platform that helps researchers and scientists to turn their data into easy-to-understand and dynamic stories, helping the audience understand the concepts better. Sign Up now to explore the library of scientific infographics. 

research paper and objective

Subscribe to our newsletter

Exclusive high quality content about effective visual communication in science.

Unlock Your Creativity

Create infographics, presentations and other scientifically-accurate designs without hassle — absolutely free for 7 days!

About Sowjanya Pedada

Sowjanya is a passionate writer and an avid reader. She holds MBA in Agribusiness Management and now is working as a content writer. She loves to play with words and hopes to make a difference in the world through her writings. Apart from writing, she is interested in reading fiction novels and doing craftwork. She also loves to travel and explore different cuisines and spend time with her family and friends.

Content tags

en_US

Enago Academy

Research Aims and Objectives: The dynamic duo for successful research

' src=

Picture yourself on a road trip without a destination in mind — driving aimlessly, not knowing where you’re headed or how to get there. Similarly, your research is navigated by well-defined research aims and objectives. Research aims and objectives are the foundation of any research project. They provide a clear direction and purpose for the study, ensuring that you stay focused and on track throughout the process. They are your trusted navigational tools, leading you to success.

Understanding the relationship between research objectives and aims is crucial to any research project’s success, and we’re here to break it down for you in this article. Here, we’ll explore the importance of research aims and objectives, understand their differences, and delve into the impact they have on the quality of research.

Understanding the Difference between Research Aims and Objectives

In research, aims and objectives are two important components but are often used interchangeably. Though they may sound similar, they are distinct and serve different purposes.

Research Aims:

Research aims are broad statements that describe the overall purpose of your study. They provide a general direction for your study and indicate the intended achievements of your research. Aims are usually written in a general and abstract manner describing the ultimate goal of the research.

Research Objectives:

Research objectives are specific, measurable, and achievable goals that you aim to accomplish within a specified timeframe. They break down the research aims into smaller, more manageable components and provide a clear picture of what you want to achieve and how you plan to achieve it.

research paper and objective

In the example, the objectives provide specific targets that must be achieved to reach the aim. Essentially, aims provide the overall direction for the research while objectives provide specific targets that must be achieved to accomplish the aims. Aims provide a broad context for the research, while the objectives provide smaller steps that the researcher must take to accomplish the overall research goals. To illustrate, when planning a road trip, your research aim is the destination you want to reach, and your research objectives are the specific routes you need to take to get there.

Aims and objectives are interconnected. Objectives play a key role in defining the research methodology, providing a roadmap for how you’ll collect and analyze data, while aim is the final destination, which represents the ultimate goal of your research. By setting specific goals, you’ll be able to design a research plan that helps you achieve your objectives and, ultimately, your research aim.

Importance of Well-defined Aims and Objectives

The impact of clear research aims and objectives on the quality of research cannot be understated. But it’s not enough to simply have aims and objectives. Well-defined research aims and objectives are important for several reasons:

  • Provides direction: Clear aims and well-defined objectives provide a specific direction for your research study, ensuring that the research stays focused on a specific topic or problem. This helps to prevent the research from becoming too broad or unfocused, and ensures that the study remains relevant and meaningful.
  • Guides research design: The research aim and objectives help guide the research design and methodology, ensuring that your study is designed in a way that will answer the research questions and achieve the research objectives.
  • Helps with resource allocation: Clear research aims and objectives helps you to allocate resources effectively , including time, financial resources, human resources, and other required materials. With a well-defined aim and objectives, you can identify the resources required to conduct the research, and allocate them in a way that maximizes efficiency and productivity.
  • Assists in evaluation: Clearly specified research aims and objectives allow for effective evaluation of your research project’s success. You can assess whether the research has achieved its objectives, and whether the aim has been met. This evaluation process can help to identify areas of the research project that may require further attention or modification.
  • Enhances communication: Well-defined research aims and objectives help to enhance communication among the research team, stakeholders, funding agencies, and other interested parties. Clear aims and objectives ensure that everyone involved in your research project understands the purpose and goals of the study. This can help to foster collaboration and ensure that everyone is working towards the same end goal.

How to Formulate Research Aims and Objectives

Formulating effective research aims and objectives involves a systematic process to ensure that they are clear, specific, achievable, and relevant. Start by asking yourself what you want to achieve through your research. What impact do you want your research to have? Once you have a clear understanding of your aims, you can then break them down into specific, achievable objectives. Here are some steps you can follow when developing research aims and objectives:

  • Identify the research question : Clearly identify the questions you want to answer through your research. This will help you define the scope of your research. Understanding the characteristics of a good research question will help you generate clearer aims and objectives.
  • Conduct literature review : When defining your research aim and objectives, it’s important to conduct a literature review to identify key concepts, theories, and methods related to your research problem or question. Conducting a thorough literature review can help you understand what research has been done in the area and what gaps exist in the literature.
  • Identify the research aim: Develop a research aim that summarizes the overarching goal of your research. The research aim should be broad and concise.
  • Develop research objectives: Based on your research questions and research aim, develop specific research objectives that outline what you intend to achieve through your research. These objectives should be specific, measurable, achievable, relevant, and time-bound (SMART).
  • Use action verbs: Use action verbs such as “investigate,” “examine,” “analyze,” and “compare” to describe your research aims and objectives. This makes them more specific and measurable.
  • Ensure alignment with research question: Ensure that the research aim and objectives are aligned with the research question. This helps to ensure that the research remains focused and that the objectives are specific enough to answer your research question.
  • Refine and revise: Once the research aim and objectives have been developed, refine and revise them as needed. Seek feedback from your colleagues, mentors, or supervisors to ensure that they are clear, concise, and achievable within the given resources and timeframe.
  • Communicate: After finalizing the research aim and objectives, they should be communicated to the research team, stakeholders, and other interested parties. This helps to ensure that everyone is working towards the same end goal and understands the purpose of the study.

Common Pitfalls to Avoid While Formulating Aims and Objectives

There are several common mistakes that researchers can make when writing research aims and objectives. These include:

  • Being too broad or vague: Aims and objectives that are too general or unclear can lead to confusion and lack of focus. It is important to ensure that the aims and objectives are concise and clear.
  • Being too narrow or specific: On the other hand, aims and objectives that are too narrow or specific may limit the scope of the research and make it difficult to draw meaningful conclusions or implications.
  • Being too ambitious: While it is important to aim high, being too ambitious with the aims and objectives can lead to unrealistic expectations and can be difficult to achieve within the constraints of the research project.
  • Lack of alignment: The aims and objectives should be directly linked to the research questions being investigated. Otherwise, this will lead to a lack of coherence in the research project.
  • Lack of feasibility: The aims and objectives should be achievable within the constraints of the research project, including time, budget, and resources. Failing to consider feasibility may cause compromise of the research quality.
  • Failing to consider ethical considerations: The aims and objectives should take into account any ethical considerations, such as ensuring the safety and well-being of study participants.
  • Failing to involve all stakeholders: It’s important to involve all relevant stakeholders, such as participants, supervisors, and funding agencies, in the development of the aims and objectives to ensure they are appropriate and relevant.

To avoid these common pitfalls, it is important to be specific, clear, relevant, and realistic when writing research aims and objectives. Seek feedback from colleagues or supervisors to ensure that the aims and objectives are aligned with the research problem , questions, and methodology, and are achievable within the constraints of the research project. It’s important to continually refine your aims and objectives as you go. As you progress in your research, it’s not uncommon for research aims and objectives to evolve slightly, but it’s important that they remain consistent with the study conducted and the research topic.

In summary, research aims and objectives are the backbone of any successful research project. They give you the ability to cut through the noise and hone in on what really matters. By setting clear goals and aligning them with your research questions and methodology, you can ensure that your research is relevant, impactful, and of the highest quality. So, before you hit the road on your research journey, make sure you have a clear destination and steps to get there. Let us know in the comments section below the challenges you faced and the strategies you followed while fomulating research aims and objectives! Also, feel free to reach out to us at any stage of your research or publication by using #AskEnago  and tagging @EnagoAcademy on Twitter , Facebook , and Quora . Happy researching!

' src=

This particular material has added important but overlooked concepts regarding my experiences in explaining research aims and objectives. Thank you

Rate this article Cancel Reply

Your email address will not be published.

research paper and objective

Enago Academy's Most Popular Articles

Types of Essays in Academic Writing - Quick Guide (2024)

  • Reporting Research

Academic Essay Writing Made Simple: 4 types and tips

The pen is mightier than the sword, they say, and nowhere is this more evident…

research paper and objective

  • Old Webinars
  • Webinar Mobile App

Improving Research Manuscripts Using AI-Powered Insights: Enago reports for effective research communication

Language Quality Importance in Academia AI in Evaluating Language Quality Enago Language Reports Live Demo…

AI Summarization Tools

  • AI in Academia
  • Trending Now

Simplifying the Literature Review Journey — A comparative analysis of 6 AI summarization tools

Imagine having to skim through and read mountains of research papers and books, only to…

Content Analysis vs Thematic Analysis: What's the difference?

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

Research Recommendations – Guiding policy-makers for evidence-based decision making

research paper and objective

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

research paper and objective

As a researcher, what do you consider most when choosing an image manipulation detector?

helpful professor logo

21 Research Objectives Examples (Copy and Paste)

research aim and research objectives, explained below

Research objectives refer to the definitive statements made by researchers at the beginning of a research project detailing exactly what a research project aims to achieve.

These objectives are explicit goals clearly and concisely projected by the researcher to present a clear intention or course of action for his or her qualitative or quantitative study. 

Research objectives are typically nested under one overarching research aim. The objectives are the steps you’ll need to take in order to achieve the aim (see the examples below, for example, which demonstrate an aim followed by 3 objectives, which is what I recommend to my research students).

Research Objectives vs Research Aims

Research aim and research objectives are fundamental constituents of any study, fitting together like two pieces of the same puzzle.

The ‘research aim’ describes the overarching goal or purpose of the study (Kumar, 2019). This is usually a broad, high-level purpose statement, summing up the central question that the research intends to answer.

Example of an Overarching Research Aim:

“The aim of this study is to explore the impact of climate change on crop productivity.” 

Comparatively, ‘research objectives’ are concrete goals that underpin the research aim, providing stepwise actions to achieve the aim.

Objectives break the primary aim into manageable, focused pieces, and are usually characterized as being more specific, measurable, achievable, relevant, and time-bound (SMART).

Examples of Specific Research Objectives:

1. “To examine the effects of rising temperatures on the yield of rice crops during the upcoming growth season.” 2. “To assess changes in rainfall patterns in major agricultural regions over the first decade of the twenty-first century (2000-2010).” 3. “To analyze the impact of changing weather patterns on crop diseases within the same timeframe.”

The distinction between these two terms, though subtle, is significant for successfully conducting a study. The research aim provides the study with direction, while the research objectives set the path to achieving this aim, thereby ensuring the study’s efficiency and effectiveness.

How to Write Research Objectives

I usually recommend to my students that they use the SMART framework to create their research objectives.

SMART is an acronym standing for Specific, Measurable, Achievable, Relevant, and Time-bound. It provides a clear method of defining solid research objectives and helps students know where to start in writing their objectives (Locke & Latham, 2013).

Each element of this acronym adds a distinct dimension to the framework, aiding in the creation of comprehensive, well-delineated objectives.

Here is each step:

  • Specific : We need to avoid ambiguity in our objectives. They need to be clear and precise (Doran, 1981). For instance, rather than stating the objective as “to study the effects of social media,” a more focused detail would be “to examine the effects of social media use (Facebook, Instagram, and Twitter) on the academic performance of college students.”
  • Measurable: The measurable attribute provides a clear criterion to determine if the objective has been met (Locke & Latham, 2013). A quantifiable element, such as a percentage or a number, adds a measurable quality. For example, “to increase response rate to the annual customer survey by 10%,” makes it easier to ascertain achievement.
  • Achievable: The achievable aspect encourages researchers to craft realistic objectives, resembling a self-check mechanism to ensure the objectives align with the scope and resources at disposal (Doran, 1981). For example, “to interview 25 participants selected randomly from a population of 100” is an attainable objective as long as the researcher has access to these participants.
  • Relevance : Relevance, the fourth element, compels the researcher to tailor the objectives in alignment with overarching goals of the study (Locke & Latham, 2013). This is extremely important – each objective must help you meet your overall one-sentence ‘aim’ in your study.
  • Time-Bound: Lastly, the time-bound element fosters a sense of urgency and prioritization, preventing procrastination and enhancing productivity (Doran, 1981). “To analyze the effect of laptop use in lectures on student engagement over the course of two semesters this year” expresses a clear deadline, thus serving as a motivator for timely completion.

You’re not expected to fit every single element of the SMART framework in one objective, but across your objectives, try to touch on each of the five components.

Research Objectives Examples

1. Field: Psychology

Aim: To explore the impact of sleep deprivation on cognitive performance in college students.

  • Objective 1: To compare cognitive test scores of students with less than six hours of sleep and those with 8 or more hours of sleep.
  • Objective 2: To investigate the relationship between class grades and reported sleep duration.
  • Objective 3: To survey student perceptions and experiences on how sleep deprivation affects their cognitive capabilities.

2. Field: Environmental Science

Aim: To understand the effects of urban green spaces on human well-being in a metropolitan city.

  • Objective 1: To assess the physical and mental health benefits of regular exposure to urban green spaces.
  • Objective 2: To evaluate the social impacts of urban green spaces on community interactions.
  • Objective 3: To examine patterns of use for different types of urban green spaces. 

3. Field: Technology

Aim: To investigate the influence of using social media on productivity in the workplace.

  • Objective 1: To measure the amount of time spent on social media during work hours.
  • Objective 2: To evaluate the perceived impact of social media use on task completion and work efficiency.
  • Objective 3: To explore whether company policies on social media usage correlate with different patterns of productivity.

4. Field: Education

Aim: To examine the effectiveness of online vs traditional face-to-face learning on student engagement and achievement.

  • Objective 1: To compare student grades between the groups exposed to online and traditional face-to-face learning.
  • Objective 2: To assess student engagement levels in both learning environments.
  • Objective 3: To collate student perceptions and preferences regarding both learning methods.

5. Field: Health

Aim: To determine the impact of a Mediterranean diet on cardiac health among adults over 50.

  • Objective 1: To assess changes in cardiovascular health metrics after following a Mediterranean diet for six months.
  • Objective 2: To compare these health metrics with a similar group who follow their regular diet.
  • Objective 3: To document participants’ experiences and adherence to the Mediterranean diet.

6. Field: Environmental Science

Aim: To analyze the impact of urban farming on community sustainability.

  • Objective 1: To document the types and quantity of food produced through urban farming initiatives.
  • Objective 2: To assess the effect of urban farming on local communities’ access to fresh produce.
  • Objective 3: To examine the social dynamics and cooperative relationships in the creating and maintaining of urban farms.

7. Field: Sociology

Aim: To investigate the influence of home offices on work-life balance during remote work.

  • Objective 1: To survey remote workers on their perceptions of work-life balance since setting up home offices.
  • Objective 2: To conduct an observational study of daily work routines and family interactions in a home office setting.
  • Objective 3: To assess the correlation, if any, between physical boundaries of workspaces and mental boundaries for work in the home setting.

8. Field: Economics

Aim: To evaluate the effects of minimum wage increases on small businesses.

  • Objective 1: To analyze cost structures, pricing changes, and profitability of small businesses before and after minimum wage increases.
  • Objective 2: To survey small business owners on the strategies they employ to navigate minimum wage increases.
  • Objective 3: To examine employment trends in small businesses in response to wage increase legislation.

9. Field: Education

Aim: To explore the role of extracurricular activities in promoting soft skills among high school students.

  • Objective 1: To assess the variety of soft skills developed through different types of extracurricular activities.
  • Objective 2: To compare self-reported soft skills between students who participate in extracurricular activities and those who do not.
  • Objective 3: To investigate the teachers’ perspectives on the contribution of extracurricular activities to students’ skill development.

10. Field: Technology

Aim: To assess the impact of virtual reality (VR) technology on the tourism industry.

  • Objective 1: To document the types and popularity of VR experiences available in the tourism market.
  • Objective 2: To survey tourists on their interest levels and satisfaction rates with VR tourism experiences.
  • Objective 3: To determine whether VR tourism experiences correlate with increased interest in real-life travel to the simulated destinations.

11. Field: Biochemistry

Aim: To examine the role of antioxidants in preventing cellular damage.

  • Objective 1: To identify the types and quantities of antioxidants in common fruits and vegetables.
  • Objective 2: To determine the effects of various antioxidants on free radical neutralization in controlled lab tests.
  • Objective 3: To investigate potential beneficial impacts of antioxidant-rich diets on long-term cellular health.

12. Field: Linguistics

Aim: To determine the influence of early exposure to multiple languages on cognitive development in children.

  • Objective 1: To assess cognitive development milestones in monolingual and multilingual children.
  • Objective 2: To document the number and intensity of language exposures for each group in the study.
  • Objective 3: To investigate the specific cognitive advantages, if any, enjoyed by multilingual children.

13. Field: Art History

Aim: To explore the impact of the Renaissance period on modern-day art trends.

  • Objective 1: To identify key characteristics and styles of Renaissance art.
  • Objective 2: To analyze modern art pieces for the influence of the Renaissance style.
  • Objective 3: To survey modern-day artists for their inspirations and the influence of historical art movements on their work.

14. Field: Cybersecurity

Aim: To assess the effectiveness of two-factor authentication (2FA) in preventing unauthorized system access.

  • Objective 1: To measure the frequency of unauthorized access attempts before and after the introduction of 2FA.
  • Objective 2: To survey users about their experiences and challenges with 2FA implementation.
  • Objective 3: To evaluate the efficacy of different types of 2FA (SMS-based, authenticator apps, biometrics, etc.).

15. Field: Cultural Studies

Aim: To analyze the role of music in cultural identity formation among ethnic minorities.

  • Objective 1: To document the types and frequency of traditional music practices within selected ethnic minority communities.
  • Objective 2: To survey community members on the role of music in their personal and communal identity.
  • Objective 3: To explore the resilience and transmission of traditional music practices in contemporary society.

16. Field: Astronomy

Aim: To explore the impact of solar activity on satellite communication.

  • Objective 1: To categorize different types of solar activities and their frequencies of occurrence.
  • Objective 2: To ascertain how variations in solar activity may influence satellite communication.
  • Objective 3: To investigate preventative and damage-control measures currently in place during periods of high solar activity.

17. Field: Literature

Aim: To examine narrative techniques in contemporary graphic novels.

  • Objective 1: To identify a range of narrative techniques employed in this genre.
  • Objective 2: To analyze the ways in which these narrative techniques engage readers and affect story interpretation.
  • Objective 3: To compare narrative techniques in graphic novels to those found in traditional printed novels.

18. Field: Renewable Energy

Aim: To investigate the feasibility of solar energy as a primary renewable resource within urban areas.

  • Objective 1: To quantify the average sunlight hours across urban areas in different climatic zones. 
  • Objective 2: To calculate the potential solar energy that could be harnessed within these areas.
  • Objective 3: To identify barriers or challenges to widespread solar energy implementation in urban settings and potential solutions.

19. Field: Sports Science

Aim: To evaluate the role of pre-game rituals in athlete performance.

  • Objective 1: To identify the variety and frequency of pre-game rituals among professional athletes in several sports.
  • Objective 2: To measure the impact of pre-game rituals on individual athletes’ performance metrics.
  • Objective 3: To examine the psychological mechanisms that might explain the effects (if any) of pre-game ritual on performance.

20. Field: Ecology

Aim: To investigate the effects of urban noise pollution on bird populations.

  • Objective 1: To record and quantify urban noise levels in various bird habitats.
  • Objective 2: To measure bird population densities in relation to noise levels.
  • Objective 3: To determine any changes in bird behavior or vocalization linked to noise levels.

21. Field: Food Science

Aim: To examine the influence of cooking methods on the nutritional value of vegetables.

  • Objective 1: To identify the nutrient content of various vegetables both raw and after different cooking processes.
  • Objective 2: To compare the effect of various cooking methods on the nutrient retention of these vegetables.
  • Objective 3: To propose cooking strategies that optimize nutrient retention.

The Importance of Research Objectives

The importance of research objectives cannot be overstated. In essence, these guideposts articulate what the researcher aims to discover, understand, or examine (Kothari, 2014).

When drafting research objectives, it’s essential to make them simple and comprehensible, specific to the point of being quantifiable where possible, achievable in a practical sense, relevant to the chosen research question, and time-constrained to ensure efficient progress (Kumar, 2019). 

Remember that a good research objective is integral to the success of your project, offering a clear path forward for setting out a research design , and serving as the bedrock of your study plan. Each objective must distinctly address a different dimension of your research question or problem (Kothari, 2014). Always bear in mind that the ultimate purpose of your research objectives is to succinctly encapsulate your aims in the clearest way possible, facilitating a coherent, comprehensive and rational approach to your planned study, and furnishing a scientific roadmap for your journey into the depths of knowledge and research (Kumar, 2019). 

Kothari, C.R (2014). Research Methodology: Methods and Techniques . New Delhi: New Age International.

Kumar, R. (2019). Research Methodology: A Step-by-Step Guide for Beginners .New York: SAGE Publications.

Doran, G. T. (1981). There’s a S.M.A.R.T. way to write management’s goals and objectives. Management review, 70 (11), 35-36.

Locke, E. A., & Latham, G. P. (2013). New Developments in Goal Setting and Task Performance . New York: Routledge.

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Top Stakeholders in Education
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ The Six Principles of Andragogy (Malcolm Knowles)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ What are Pedagogical Skills? - 15 Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 44 Maslow’s Hierarchy of Needs Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.53(4); 2010 Aug

Logo of canjsurg

Research questions, hypotheses and objectives

Patricia farrugia.

* Michael G. DeGroote School of Medicine, the

Bradley A. Petrisor

† Division of Orthopaedic Surgery and the

Forough Farrokhyar

‡ Departments of Surgery and

§ Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ont

Mohit Bhandari

There is an increasing familiarity with the principles of evidence-based medicine in the surgical community. As surgeons become more aware of the hierarchy of evidence, grades of recommendations and the principles of critical appraisal, they develop an increasing familiarity with research design. Surgeons and clinicians are looking more and more to the literature and clinical trials to guide their practice; as such, it is becoming a responsibility of the clinical research community to attempt to answer questions that are not only well thought out but also clinically relevant. The development of the research question, including a supportive hypothesis and objectives, is a necessary key step in producing clinically relevant results to be used in evidence-based practice. A well-defined and specific research question is more likely to help guide us in making decisions about study design and population and subsequently what data will be collected and analyzed. 1

Objectives of this article

In this article, we discuss important considerations in the development of a research question and hypothesis and in defining objectives for research. By the end of this article, the reader will be able to appreciate the significance of constructing a good research question and developing hypotheses and research objectives for the successful design of a research study. The following article is divided into 3 sections: research question, research hypothesis and research objectives.

Research question

Interest in a particular topic usually begins the research process, but it is the familiarity with the subject that helps define an appropriate research question for a study. 1 Questions then arise out of a perceived knowledge deficit within a subject area or field of study. 2 Indeed, Haynes suggests that it is important to know “where the boundary between current knowledge and ignorance lies.” 1 The challenge in developing an appropriate research question is in determining which clinical uncertainties could or should be studied and also rationalizing the need for their investigation.

Increasing one’s knowledge about the subject of interest can be accomplished in many ways. Appropriate methods include systematically searching the literature, in-depth interviews and focus groups with patients (and proxies) and interviews with experts in the field. In addition, awareness of current trends and technological advances can assist with the development of research questions. 2 It is imperative to understand what has been studied about a topic to date in order to further the knowledge that has been previously gathered on a topic. Indeed, some granting institutions (e.g., Canadian Institute for Health Research) encourage applicants to conduct a systematic review of the available evidence if a recent review does not already exist and preferably a pilot or feasibility study before applying for a grant for a full trial.

In-depth knowledge about a subject may generate a number of questions. It then becomes necessary to ask whether these questions can be answered through one study or if more than one study needed. 1 Additional research questions can be developed, but several basic principles should be taken into consideration. 1 All questions, primary and secondary, should be developed at the beginning and planning stages of a study. Any additional questions should never compromise the primary question because it is the primary research question that forms the basis of the hypothesis and study objectives. It must be kept in mind that within the scope of one study, the presence of a number of research questions will affect and potentially increase the complexity of both the study design and subsequent statistical analyses, not to mention the actual feasibility of answering every question. 1 A sensible strategy is to establish a single primary research question around which to focus the study plan. 3 In a study, the primary research question should be clearly stated at the end of the introduction of the grant proposal, and it usually specifies the population to be studied, the intervention to be implemented and other circumstantial factors. 4

Hulley and colleagues 2 have suggested the use of the FINER criteria in the development of a good research question ( Box 1 ). The FINER criteria highlight useful points that may increase the chances of developing a successful research project. A good research question should specify the population of interest, be of interest to the scientific community and potentially to the public, have clinical relevance and further current knowledge in the field (and of course be compliant with the standards of ethical boards and national research standards).

FINER criteria for a good research question

Adapted with permission from Wolters Kluwer Health. 2

Whereas the FINER criteria outline the important aspects of the question in general, a useful format to use in the development of a specific research question is the PICO format — consider the population (P) of interest, the intervention (I) being studied, the comparison (C) group (or to what is the intervention being compared) and the outcome of interest (O). 3 , 5 , 6 Often timing (T) is added to PICO ( Box 2 ) — that is, “Over what time frame will the study take place?” 1 The PICOT approach helps generate a question that aids in constructing the framework of the study and subsequently in protocol development by alluding to the inclusion and exclusion criteria and identifying the groups of patients to be included. Knowing the specific population of interest, intervention (and comparator) and outcome of interest may also help the researcher identify an appropriate outcome measurement tool. 7 The more defined the population of interest, and thus the more stringent the inclusion and exclusion criteria, the greater the effect on the interpretation and subsequent applicability and generalizability of the research findings. 1 , 2 A restricted study population (and exclusion criteria) may limit bias and increase the internal validity of the study; however, this approach will limit external validity of the study and, thus, the generalizability of the findings to the practical clinical setting. Conversely, a broadly defined study population and inclusion criteria may be representative of practical clinical practice but may increase bias and reduce the internal validity of the study.

PICOT criteria 1

A poorly devised research question may affect the choice of study design, potentially lead to futile situations and, thus, hamper the chance of determining anything of clinical significance, which will then affect the potential for publication. Without devoting appropriate resources to developing the research question, the quality of the study and subsequent results may be compromised. During the initial stages of any research study, it is therefore imperative to formulate a research question that is both clinically relevant and answerable.

Research hypothesis

The primary research question should be driven by the hypothesis rather than the data. 1 , 2 That is, the research question and hypothesis should be developed before the start of the study. This sounds intuitive; however, if we take, for example, a database of information, it is potentially possible to perform multiple statistical comparisons of groups within the database to find a statistically significant association. This could then lead one to work backward from the data and develop the “question.” This is counterintuitive to the process because the question is asked specifically to then find the answer, thus collecting data along the way (i.e., in a prospective manner). Multiple statistical testing of associations from data previously collected could potentially lead to spuriously positive findings of association through chance alone. 2 Therefore, a good hypothesis must be based on a good research question at the start of a trial and, indeed, drive data collection for the study.

The research or clinical hypothesis is developed from the research question and then the main elements of the study — sampling strategy, intervention (if applicable), comparison and outcome variables — are summarized in a form that establishes the basis for testing, statistical and ultimately clinical significance. 3 For example, in a research study comparing computer-assisted acetabular component insertion versus freehand acetabular component placement in patients in need of total hip arthroplasty, the experimental group would be computer-assisted insertion and the control/conventional group would be free-hand placement. The investigative team would first state a research hypothesis. This could be expressed as a single outcome (e.g., computer-assisted acetabular component placement leads to improved functional outcome) or potentially as a complex/composite outcome; that is, more than one outcome (e.g., computer-assisted acetabular component placement leads to both improved radiographic cup placement and improved functional outcome).

However, when formally testing statistical significance, the hypothesis should be stated as a “null” hypothesis. 2 The purpose of hypothesis testing is to make an inference about the population of interest on the basis of a random sample taken from that population. The null hypothesis for the preceding research hypothesis then would be that there is no difference in mean functional outcome between the computer-assisted insertion and free-hand placement techniques. After forming the null hypothesis, the researchers would form an alternate hypothesis stating the nature of the difference, if it should appear. The alternate hypothesis would be that there is a difference in mean functional outcome between these techniques. At the end of the study, the null hypothesis is then tested statistically. If the findings of the study are not statistically significant (i.e., there is no difference in functional outcome between the groups in a statistical sense), we cannot reject the null hypothesis, whereas if the findings were significant, we can reject the null hypothesis and accept the alternate hypothesis (i.e., there is a difference in mean functional outcome between the study groups), errors in testing notwithstanding. In other words, hypothesis testing confirms or refutes the statement that the observed findings did not occur by chance alone but rather occurred because there was a true difference in outcomes between these surgical procedures. The concept of statistical hypothesis testing is complex, and the details are beyond the scope of this article.

Another important concept inherent in hypothesis testing is whether the hypotheses will be 1-sided or 2-sided. A 2-sided hypothesis states that there is a difference between the experimental group and the control group, but it does not specify in advance the expected direction of the difference. For example, we asked whether there is there an improvement in outcomes with computer-assisted surgery or whether the outcomes worse with computer-assisted surgery. We presented a 2-sided test in the above example because we did not specify the direction of the difference. A 1-sided hypothesis states a specific direction (e.g., there is an improvement in outcomes with computer-assisted surgery). A 2-sided hypothesis should be used unless there is a good justification for using a 1-sided hypothesis. As Bland and Atlman 8 stated, “One-sided hypothesis testing should never be used as a device to make a conventionally nonsignificant difference significant.”

The research hypothesis should be stated at the beginning of the study to guide the objectives for research. Whereas the investigators may state the hypothesis as being 1-sided (there is an improvement with treatment), the study and investigators must adhere to the concept of clinical equipoise. According to this principle, a clinical (or surgical) trial is ethical only if the expert community is uncertain about the relative therapeutic merits of the experimental and control groups being evaluated. 9 It means there must exist an honest and professional disagreement among expert clinicians about the preferred treatment. 9

Designing a research hypothesis is supported by a good research question and will influence the type of research design for the study. Acting on the principles of appropriate hypothesis development, the study can then confidently proceed to the development of the research objective.

Research objective

The primary objective should be coupled with the hypothesis of the study. Study objectives define the specific aims of the study and should be clearly stated in the introduction of the research protocol. 7 From our previous example and using the investigative hypothesis that there is a difference in functional outcomes between computer-assisted acetabular component placement and free-hand placement, the primary objective can be stated as follows: this study will compare the functional outcomes of computer-assisted acetabular component insertion versus free-hand placement in patients undergoing total hip arthroplasty. Note that the study objective is an active statement about how the study is going to answer the specific research question. Objectives can (and often do) state exactly which outcome measures are going to be used within their statements. They are important because they not only help guide the development of the protocol and design of study but also play a role in sample size calculations and determining the power of the study. 7 These concepts will be discussed in other articles in this series.

From the surgeon’s point of view, it is important for the study objectives to be focused on outcomes that are important to patients and clinically relevant. For example, the most methodologically sound randomized controlled trial comparing 2 techniques of distal radial fixation would have little or no clinical impact if the primary objective was to determine the effect of treatment A as compared to treatment B on intraoperative fluoroscopy time. However, if the objective was to determine the effect of treatment A as compared to treatment B on patient functional outcome at 1 year, this would have a much more significant impact on clinical decision-making. Second, more meaningful surgeon–patient discussions could ensue, incorporating patient values and preferences with the results from this study. 6 , 7 It is the precise objective and what the investigator is trying to measure that is of clinical relevance in the practical setting.

The following is an example from the literature about the relation between the research question, hypothesis and study objectives:

Study: Warden SJ, Metcalf BR, Kiss ZS, et al. Low-intensity pulsed ultrasound for chronic patellar tendinopathy: a randomized, double-blind, placebo-controlled trial. Rheumatology 2008;47:467–71.

Research question: How does low-intensity pulsed ultrasound (LIPUS) compare with a placebo device in managing the symptoms of skeletally mature patients with patellar tendinopathy?

Research hypothesis: Pain levels are reduced in patients who receive daily active-LIPUS (treatment) for 12 weeks compared with individuals who receive inactive-LIPUS (placebo).

Objective: To investigate the clinical efficacy of LIPUS in the management of patellar tendinopathy symptoms.

The development of the research question is the most important aspect of a research project. A research project can fail if the objectives and hypothesis are poorly focused and underdeveloped. Useful tips for surgical researchers are provided in Box 3 . Designing and developing an appropriate and relevant research question, hypothesis and objectives can be a difficult task. The critical appraisal of the research question used in a study is vital to the application of the findings to clinical practice. Focusing resources, time and dedication to these 3 very important tasks will help to guide a successful research project, influence interpretation of the results and affect future publication efforts.

Tips for developing research questions, hypotheses and objectives for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Develop clear and well-defined primary and secondary (if needed) objectives.
  • Ensure that the research question and objectives are answerable, feasible and clinically relevant.

FINER = feasible, interesting, novel, ethical, relevant; PICOT = population (patients), intervention (for intervention studies only), comparison group, outcome of interest, time.

Competing interests: No funding was received in preparation of this paper. Dr. Bhandari was funded, in part, by a Canada Research Chair, McMaster University.

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

Writing a Research Paper

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

The Research Paper

There will come a time in most students' careers when they are assigned a research paper. Such an assignment often creates a great deal of unneeded anxiety in the student, which may result in procrastination and a feeling of confusion and inadequacy. This anxiety frequently stems from the fact that many students are unfamiliar and inexperienced with this genre of writing. Never fear—inexperience and unfamiliarity are situations you can change through practice! Writing a research paper is an essential aspect of academics and should not be avoided on account of one's anxiety. In fact, the process of writing a research paper can be one of the more rewarding experiences one may encounter in academics. What is more, many students will continue to do research throughout their careers, which is one of the reasons this topic is so important.

Becoming an experienced researcher and writer in any field or discipline takes a great deal of practice. There are few individuals for whom this process comes naturally. Remember, even the most seasoned academic veterans have had to learn how to write a research paper at some point in their career. Therefore, with diligence, organization, practice, a willingness to learn (and to make mistakes!), and, perhaps most important of all, patience, students will find that they can achieve great things through their research and writing.

The pages in this section cover the following topic areas related to the process of writing a research paper:

  • Genre - This section will provide an overview for understanding the difference between an analytical and argumentative research paper.
  • Choosing a Topic - This section will guide the student through the process of choosing topics, whether the topic be one that is assigned or one that the student chooses themselves.
  • Identifying an Audience - This section will help the student understand the often times confusing topic of audience by offering some basic guidelines for the process.
  • Where Do I Begin - This section concludes the handout by offering several links to resources at Purdue, and also provides an overview of the final stages of writing a research paper.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 28 May 2024

Quantum computing for several AGV scheduling models

  • Liang Tang 1 ,
  • Chao Yang 1 ,
  • Kai Wen 2 ,
  • Wei Wu 3 &
  • Yiyun Guo 4  

Scientific Reports volume  14 , Article number:  12205 ( 2024 ) Cite this article

1 Altmetric

Metrics details

  • Applied mathematics
  • Computer science
  • Quantum physics

Due to the high degree of automation, automated guided vehicles (AGVs) have been widely used in many scenarios for transportation, and traditional computing power is stretched in large-scale AGV scheduling. In recent years, quantum computing has shown incomparable performance advantages in solving specific problems, especially Combinatorial optimization problem. In this paper, quantum computing technology is introduced into the study of the AGV scheduling problem. Additionally two types of quadratic unconstrained binary optimisation (QUBO) models suitable for different scheduling objectives are constructed, and the scheduling scheme is coded into the ground state of Hamiltonian operator, and the problem is solved by using optical coherent Ising machine (CIM). The experimental results show that compared with the traditional calculation method, the optical quantum computer can save 92% computation time on average. It has great application potential.

Similar content being viewed by others

research paper and objective

Travel time optimization on multi-AGV routing by reverse annealing

research paper and objective

Ecological driving on multiphase trajectories and multiobjective optimization for autonomous electric vehicle platoon

research paper and objective

Traffic light optimization using non-dominated sorting genetic algorithm (NSGA2)

Introduction.

The scale of the logistics industry has maintained a considerable growth rate, and many human and material resources have been invested in it, thus creating the labor-intensive industry. Improving the automatic and intelligent level of the logistics industry has become an important issue for industry and academia. In recent years, some of the industry’s leading enterprises have already carried out technological reforms. For example, the retail giant, Amazon, has established a huge logistics center, that uses intelligent sorting technology, delivery drones, automated guided vehicles (AGVs), etc. China’s e-commerce giant, Jingdong, has also set up an ‘Asia One’ warehouse, in which more than 100 AGVs are used for transportation operations at the same time 1 . In addition, technical innovation also occurred in ports. In 1993, the world’s first automated wharf was built in the Amsterdam Port in the Netherlands, and dozens of AGVs were used for container transshipment. With the introduction of technology and the accumulation of operation experience, the construction of automatic terminals has been tried all over the world, and the usage of AGVs has gradually increased. Currently, the use of AGVs has penetrated all aspects of logistics, transportation and production, which has greatly promoted the level of industrial automation and intelligence and improved efficiency.

To meet the needs of application scenarios, the amount of parallel work of AGVs is increasing, which brings great difficulty to the AGV scheduling. AGV scheduling problem is a difficult combinatorial optimization problem, and a large number of researchers have devoted themselves to this field and made some contributions. Singh et al. 2 considered AGV scheduling with battery constraints, developed a mixed-integer programming model with the objective of minimizing the combined task delay cost and AGV transportation cost, and designed a customized adaptive large-neighborhood search algorithm to solve the model. Zhang et al. 3 studied an AGV scheduling problem in matrix manufacturing plants, and proposed a mixed integer programming model to minimize the generalized transportation cost, based on which an improved iterative greedy algorithm was designed and compared with six other algorithms to show its superior solution performance. For the scheduling problem of AGVs in smart factories, Zhang et al. 4 proposed a self-organized dynamic scheduling method, that groups multiple AGVs to perform tasks among themselves and uses improved gene expression programming to learn dynamic scheduling rules. The numerical experimental results show that the method can considerably reduce system costs. Wang and Zeng 5 studied the port AGV scheduling and path planning problem under conflict-free paths, established a mixed integer model with the objective of minimizing task completion time, and proposed a customized branch and bound algorithm combined with a heuristic algorithm to solve the small-scale problem, and further developed a two-stage greedy heuristic algorithm to quickly obtain a satisfactory solution for the large-scale problem. Sagar and Jerald 6 proposed a real-time scheduling strategy for AGVs based on deep reinforcement learning technology, established a Markov decision model for real-time scheduling, and developed a Q-learning algorithm. The superiority of the method is shown through numerical experiments. Considering the scheduling and path planning model of shop floor AGVs, Saidi et al. 7 developed a discrete-time model and proposed a two-stage ant colony algorithm to solve the model. From the above literature, the research on scheduling problems of AGVs covers several scenarios such as workshops and terminals. Researchers have built mixed integer programming models, integer programming models, Markov decision process models, etc. The methods used are scheduling rules, exact algorithms, heuristic algorithms, reinforcement learning algorithms, etc. From the results, it is observed that the exact algorithm can generate optimal scheduling solutions, however, its computational time is prohibitively slow, rendering it impractical for large-scale problems. Inexact algorithms exhibit favorable efficiency but often converge to local optima. The provision of high-quality scheduling solutions within a short timeframe poses a significant challenge.

In recent years, significant advancements have been made in both theoretical understanding and practical applications of quantum computing. The fundamental distinction between quantum computers and traditional computers lies in their reliance on quantum mechanical principles. Quantum computers utilize quantum bits (qubits) as the fundamental units of information storage 8 , which can exist in superposition states of both 1 and 0, enabling them to hold exponentially more information compared to traditional computers. It is well recognized that quantum computers offer substantial advantages, particularly in addressing specific problems such as combinatorial optimization, often described as the superiority of quantum computing. Many combinatorial optimization problems are NP-hard, presenting significant challenges for traditional computers to solve. Combinatorial optimization problem can be mapped to the ground state search problem of Ising model. Hardware systems can be built in many different ways to simulate the process of Hamiltonian reduction, such as adiabatic quantum computing (AQC), quantum annealing (QA), etc. However, it is always a difficult problem to improve the connection density between qubits, which will affect the efficiency of problem solving 9 , 10 . Coherent Ising Machine (CIM) is a quantum computer developed according to the optical principle 11 , 12 , 13 , 14 , 15 , 16 , 17 , which can work at room temperature and deal with large-scale problems, such as compression sensor problems 18 and polyhedron problems 19 . CIM uses laser pulses in optical fiber as qubits for quantum calculation. The early prototype of CIM is injection synchronous laser Ising machine. The number of coupled lasers in this scheme is proportional to the square of qubits, which is quite difficult. On this basis, optical delay linear CIM and measurement feedback CIM using nonlinear optical crystal instead of laser are developed. The latter uses measurement feedback to avoid the challenge that the former needs to control a large number of optical delay lines accurately 14 . The machine used in this study is measurement feedback CIM.

AGV scheduling problem can be understood as a kind of routing problem. Most traditional solutions to routing problems require sacrificing large amounts of computational resources and Osaba et al. 20 indicated that quantum computing techniques have great potential in the area of solving routing and optimization problems. In the early days, Goswami et al. 21 developed a phase estimation technique to solve the traveling salesman problem (TSP), using IBM’s quantum simulator to provide results for four city cases. Then, researchers tried to solve more complex problems with quantum computing. Feld et al. 22 presented a quadratic unconstrained binary optimization (QUBO) formulation for solving the vehicle routing problem with capacity constraints, evaluated the solution quality and computation time and compared it with classical solution methods. Bao et al. 23 proposed a two-stage QUBO formulation of the vehicle routing problem with balanced pickup, mapping the first stage to a clustering problem and describing the second stage as a TSP problem, and evaluated it against traditional methods in terms of numerical experimental results. Harwood et al. 24 tried to establish a qubo model to describe the vehicle routing problem by using the modeling idea of node and arc, and evaluated the model by using analog quantum devices. Geitz et al. 25 built a QUBO model to solve the job-shop scheduling problem, using quantum computers or simulators, constrained programming and tabu search. The calculation results proved the effectiveness of quantum computing in small-scale situations. And the established QUBO model can be extended to AGV scheduling problem. Ohzeki et al. 26 formulated an Ising model for the collision-free scheduling problem of AGVs within a factory setting. They utilized a quantum annealing machine to solve the model, with results demonstrating the potential application of quantum annealing machines in addressing real-world industrial challenges. Based on the above cases, it can be seen that some researchers have begun to use quantum computing to solve practical problems in the field of optimization. However, the research on quantum computing related to AGV scheduling has just started, and many researchers used simulators to solve them, because the current physical real machine resources are scarce, and the scale of solving problems is still relatively small, and it is easy to make mistakes and lacks the running data of physical real machines.

Our contributions

In a word, most of the existing AGV scheduling research adopts traditional models and methods, which can not effectively meet the actual needs of large-scale scheduling. Quantum computing has great application potential in solving specific problems that traditional computers cannot solve, and researchers have tried in optimization fields. However, as far as we know, there are few literatures about AGV scheduling using quantum computing technology. Based on these facts, the idea of carrying out this research came into being. The main contributions of this paper are summarized as follows.

In traditional research on the AGV scheduling problem, the computation time increases greatly with an increase in the number of AGVs and tasks. We introduce quantum computing technology into the research of the AGV scheduling problem and construct new QUBO models of AGV scheduling. In real scenarios, dispatchers often set different scheduling objectives according to the nature of the work, among which minimizing the total AGV travel time and minimizing the task completion time (makespan) are the two most common objectives. According to the different objectives, we have deduced different QUBO models, and given the model solutions and related theoretical basis under two different objectives.

We use traditional computer and CIM to carry out numerical experiments on the traditional model and QUBO model proposed by us respectively. The experimental results show that the computation speed of CIM is much faster than that of traditional computer, and the average calculation time is saved by 92%, which proves that CIM has great application potential in solving AGV scheduling problem and similar combinatorial optimization problems.

AGV scheduling model

AGV scheduling problems have many classifications according to different scenarios and considerations. For example, consider the time window of the task, joint optimization of scheduling and path, cooperation with other devices, charging strategy and so on. Due to the limitation of quantum bits of CIM, it is impossible to solve the AGV scheduling problem in complex scenes 27 , 28 , 29 . Therefore, we simplify the problem and keep the essence of AGV scheduling problem. On this basis, we construct the AGV scheduling model. In this section, we present the classical AGV scheduling model based on mixed integer programming (MIP), and propose two new models, which we call the node and arc models.

Problem description

figure 1

The AGV scheduling problem and a feasible solution. All AGVs start from a fixed start node, perform transportation tasks, and reach the end node after performing all tasks. ’S’ represents the starting point of a transportation task, and ’E’ represents the end point of a transportation task. Different colors represent different AGV’s mission routes.

We consider an AGV scheduling problem (to make the problem more general, we do not set up a working scenario), as shown in Fig.  1 . Given an AGV set, all AGVs have a unified starting node and ending node, and all AGVs start to accept tasks from the unified starting node until all transportation tasks are completed, and then return to the unified ending node. In the AGV scheduling problem, we are given a set of transportation tasks, each with a starting point and an ending point. For an AGV, the process of completing the transportation task can be described as first arriving at the starting point of the task to load the transported goods, then transporting them to the ending point of the task, and then driving to the starting point of the next task to perform the next task. The travel time of the AGV between any two task points is known. We consider two optimization objectives, the first is to minimize the total AGV travel time and the second is to minimize the maximum task completion time (makespan). The first objective is generally used when the task is not urgent to achieve a reduction in total system energy consumption, while the second objective is set to complete transportation tasks quickly.

Next, we elaborate on the symbolic settings in the problem as follows.

\(V=\{1,\ldots ,k,\ldots ,K \}\) set of AGVs,

\( R=\{1,\ldots ,r,{{r}^{'}},{{r}^{''}},\ldots ,n-1 \}\) set of actual tasks,

\({{R}_{1}}=\{0,1,\ldots ,r,{{r}^{'}},{{r}^{''}},\ldots ,n-1\}\) set of actual tasks and virtual start task,

\({{R}_{2}}=\{1,\ldots ,r,{{r}^{'}},{{r}^{''}},\ldots ,n\}\) set of actual tasks and virtual end task,

\({{R}^{'}}=\{0,1,\ldots ,r,{{r}^{'}},{{r}^{''}},\ldots ,n\}\)  set of all tasks,

\(A=\{(r,{{r}^{'}})\mid r,{{r}^{'}}\in {{R}^{'}}\}\) arc set that consists of all valid task pairs that can be conducted adjacently,

\(\pi =\{1,\ldots ,t,\ldots ,N \}\) set of the sequence of tasks performed by an AGV

a        a single task arc

\(\theta _{r}^{+}\)      an arc with task r as the left node

\(\theta _{r}^{-}\)      an arc with task r as the right node

\(r_{\text{s}}\)       starting point of task r ,

\(r_{\text{d}}\)       ending point of task r .

\({{e}_{{{r}_\text{s}}{{r}_\text{d}}}}\)     indicates the travel time of the AGV from two points \({{r}_\text{s}}\) and \({{r}_\text{d}}\) ,

\({{e}_{{{r}_\text{d}}r_\text{s}^{'}}}\)     indicates the travel time of the AGV from two points \({{r}_\text{d}}\) and \(r_\text{s}^{'}\) ,

\({{c}_{r{{r}^{'}}}}\)      contains two parts of time, the first part is the time from the start of task r to the end of task r , and the second part is the time from the end of task r to the start of task \({r}^{'}\) , \({{c}_{r{{r}^{'}}}}={{e}_{{{r}_{s}}{{r}_{d}}}}+{{e}_{{{r}_{d}}r_{s}^{'}}}\) .

Mixed integer programming model

In this subsection, we introduce the classical model of AGV scheduling. The classical model is formed as a mixed integer programming, and it has the following variables.

\({{y}_{r,{{r}^{'}},k}}\)       binary variable, equal to 1 if task r is performed directly prior to \({{r}^{'}}\) by AGV k , 0 otherwise;

\(f^\text{s}_{rk}\)          arrival time of AGV k at the start node of task r ;

\(f^\text{d}_{rk}\)          arrival time of AGV k at the end node of task r ;

T           the makespan for AGVs to perform transportation tasks.

The first optimization objective of the MIP model is to minimize the total AGV travel time, and its model is presented as follows.

The objective function ( 1 ) is to minimize the total travel time of the AGV. Constraints ( 2 ) and ( 3 ) ensure that all AGVs need to complete the virtual start task and the virtual end task, and constraints ( 4 ) guarantee that all actual tasks are uniquely assigned to a particular AGV. Constraints ( 5 ) ensure that each AGV completes its task satisfying the flow balance. Then, constraints ( 6 ) guarantee that the virtual start task starts and ends at moment 0. Constraints ( 7 ) states that the time to reach the end of a task is equal to the time to reach the start of that task plus the transport time from the start to the end. Constraints ( 8 ) indicates that the time to reach the start of a task is later than the time to reach the end of the previous task plus the transportation time required to reach the start of that task from the end of the previous task, where M is a sufficiently large value. The last constraints ( 9 ) eliminates task self-citation. Constraints ( 10 ) and ( 11 ) represent range limits of variables.

A slight modification of the above model can be used as a model for minimizing the makespan for AGVs to perform transportation tasks, which is given as follows, Eqs. ( 2 )–( 11 ).

where T denotes the makespan. The objective function is to minimize T , and constraints ( 13 ) denotes that T must be no less than the time required by the last AGV to complete the task.

QUBO and Ising model

This section mainly describes the concepts of QUBO model and Ising model and their relationship. QUBO is an expression of optimization problem, and its goal is to find binary variables that minimize quadratic polynomials. Ising model was first put forward and applied in statistical physics. It describes a system composed of interacting units, in which each spin particle must have two possible random states (such as + 1 and − 1), and then it was introduced into the field of mathematics as a model to describe a series of optimization problems. Many combinatorial optimization problems can be expressed in the form of quadratic unconstrained binary optimization or ising model, and they can be transformed into each other 30 , 31 , 32 . The general expression of QUBO model is shown in Eq. ( 14 ).

where x is a z dimensional vector of binary variables, Q is the quadratic coefficient matrix, and \({{c}^\texttt{T}}\) is the coefficient matrix of the primary term.

The above model in the form of QUBO can be easily transformed into an Ising model, and the variable range of the Ising model is \(\left\{ -1,1 \right\} \) . Specifically, it can be realized by variable substitution \({{\sigma }_{i}}=2{{x}_{i}}-1\) . Then, the optimization function can be expressed in the following form.

where the \({{\sigma }_{i}}\) is spin variable, \({{J}_{ij}}\) and \({{h}_{i}}\) are the quadratic and linear coefficients. The solution of Ising problem is to find the ground state of Hamiltonian. CIM solves the Ising problem according to the principle of minimum gain, and can find the ground state or low energy state of Ising Hamiltonian. The method is to map the QUBO problem into a fully connected Ising Hamiltonian with programmable parameters, and obtain the solution of the problem through controllable quantum phase transition 33 , 34 .

In this section, we will describe the node model. The core idea of node model is to regard tasks as nodes and the order of task execution as the order of vehicles passing through nodes.The node model has the QUBO form and is suitable for quantum computing, the variables of the model are described as below.

\({{x}_{r,t,k}}\) binary variable, equal to 1 if task r is assigned to AGV k as it is t -th task, 0 otherwise.

The first optimization objective of the node model is to minimize the total AGV travel time, and the model is shown below.

\({{\partial }_{i}}\) \((i=1,\ldots ,6)\) are weights correspond to each objective function. The objective function ( 17 ) is to minimize the total travel time of all the AGVs. The minimization function ( 18 ) and ( 19 ) ensures that for each AGV, the virtual start task and the virtual end task must be the first task and the last task, respectively. For each actual task, we want it to be assigned exactly to one AGV, so we add the minimization function ( 20 ). We also consider the minimization function ( 21 ) in order to make each AGV perform at most one task on each task sequence. For a particular AGV, the order of its tasks must be continuous, based on which we set the minimization function ( 22 ).

The model described below is modified from the above model to accommodate the goal of minimizing the makespan.

The least time-consuming task model requires finding the AGV with the longest task execution time and minimizing its execution task time, which leads to inequality constraints, as follows.

The objective function ( 24 ) is to minimize the makespan T .

Then we add slack variables to transform the above inequality constraint into an equation, as follows.

\({{T}_{k}}\) \((k\in V)\) is the slack variable, and both T and \({{T}_{k}}\) \((k\in V)\) need to be represented by binary variables. \({{\delta }_{i}}\) \( (i=1,2,\ldots ,m)\) and \({{\delta }_{ik}}\) \((i=1,2,\ldots ,{m}^{'}, {k}\in {V})\) are the discretized auxiliary variables we introduce, whose number is related to the size of the arithmetic case and needs to be estimated. A large number of auxiliary variables will make the difficulty of solving soar. In general, to represent an integer between 0 and \(\varsigma \) , \(\left[ {{\log }_{2}} \varsigma \right] +1\) discretized auxiliary variables need to be introduced, where \([\varsigma ]\) denotes the largest integer that does not exceed \(\varsigma \) . Of course, if there are non-integer values introduced in the calculation example, then it is necessary to introduce an approximate representation. First, we introduce the precision matrix as follows:

Then the real numbers \({{\varpi }_{i}}\) \((i=1,\ldots ,L)\) in some interval can be approximated as follows.

where \({{b}_{i}}\in {{\{0,1\}}^{L}}\) \((i=1,\ldots ,L)\) . If the error is expressed in terms of \(\phi \) , the error satisfies the following relation:

In this way, we can rewrite ( 24 ) and ( 25 ) as follows.

The positive real numbers can be approximated using integer auxiliary variables. \({{\sigma }_{j}}\) \((j=1,2\ldots ,L)\) and \({{\sigma }_{jk}}\) \((j=1,2,\ldots ,{{L}^{'}},k\in V)\) are used to approximate the decimal part. The number of binary variables used is related to the required approximate accuracy, as shown in Formula ( 28 ).

Thus, the model under this objective can be represented as follows, Eqs. ( 18 )–( 22 ), ( 24 )–( 25 ), ( 31 )–( 32 ).

In ( 33 ), \({{\varepsilon }_{i}}\) \((i=1\ldots ,7)\) are weights for each objectives. The model does not satisfy the QUBO form, because \({{H}_{Z}}\) is a quadrinomial binary polynomial, which needs to be degenerated. Next, we provide some analysis of the \({{H}_{Z}}\) . First, to make it easier to show our results, we perform a variable substitution, as follows:

The total number of tasks is N , and \(\eta \) contains \(({{N}^{2}}-3N+3)(N-1)\) monomials. Then \({{H}_{Z}}\) can be expanded as follows.

In the \({{H}_{Z}}\) , \({{\eta }^{2}}\) is a quadrinomial binary polynomial, \(-2\eta T\) and \(2\eta {{T}_{k}}\) are cubic binary polynomials, and \({{T}^{2}}\) , \(T_{k}^{2}\) and \(-2T{{T}_{k}}\) are all quadratic binary polynomials, so we need to reduce \({{\eta }^{2}}\) , \(-2\eta T\) and \(2\eta {{T}_{k}}\) . The number of quardrinomial binary monomials in \({{\eta }^{2}}\) is represented by \({{\tau }_{4}}\) , and \({{\tau }_{4}}\) is as follows:

where \({{\mathbb {Z}}^{+}}\) represents the set of all positive integers. Equation ( 37 ) indicates that any power of the binary variable itself is equal to itself, and thus, \(\tau _{4}^{'}\) quardrinomial monomial can be directly reduced, and its specific number is as follows.

Therefore, the number of quadrinomial polynomials that truly need to be reduced is \({{\tau }_{4}}-\tau _{4}^{'}\) terms. Looking at the part of cubic polynomial, the number of cubic monomials in \({{H}_{Z}}\) is represented by \({{\tau }_{3}}\) , and then \({{\tau }_{3}}\) is as follows:

Then, the number of all polynomials in \({{H}_{Z}}\) that need to be descended \(\tau \) is as follows:

At least \(\tau \) binary auxiliary variables must be introduced to complete the descending order according to a paper 35 . Due to the number of auxiliary variables introduced, the processing is more complex and it is difficult to calculate using existing quantum computers. So this model will not be introduced so far in this paper.

In this section we will describe the arc model. The core idea of arc model is that the sequence of tasks before and after execution is regarded as an arc connected between nodes, and building the model with arc as the basic unit can reduce the dimension. The arc model also has a QUBO form with the same parameter settings as the node model, and the decision variables are shown below.

\({{\upsilon }_{a,t,k}}\) binary variable, equal to 1 if arc a is assigned to AGV k in sequence t , 0 otherwise.

As with the node model, we first explore the model with the optimization objective of minimizing the total travel time.

\({{\beta }_{i}}\) \((i=1,\ldots ,8)\) are weights for the corresponding objective. The objective function ( 42 ) is to minimize the total travel time of the AGV. We want all AGVs to be executed in the first order a task arc that starts with a virtual start task, so we add the minimization function ( 43 ). The minimization function ( 44 ) means that the last task completed by each AGV must be a virtual end task. We want to complete at most one task arc in a certain order of an AGV, so we add the minimization function ( 45 ). The minimization function ( 46 ) indicates that for each actual task, we want a certain task arc with it as the starting node to be assigned to an AGV in a certain order of completion, and we want the virtual start task to be completed only once for each AGV, so we add the minimization function ( 47 ). Similarly, for each AGV, its virtual end task can only be completed once, so we add the minimization function ( 48 ). The minimization function ( 49 ) ensures that for each AGV, it is must to satisfy the flow balance when performing the task arc.

Next, we show a model with the goal of minimizing the makespan as follows, Eqs. ( 42 )–( 49 ).

Numerical experiments

In this section, we provide rich numerical experimental results, and research data can be obtained on public databases 36 . In the first subsection we use Gurobi 37 solver to solve the MIP model proposed above on a traditional computer, and show its computing performance under different problem scales. In the second subsection we use optical quantum computer to solve the problem cases of node model and arc model at different scales. And the computation performance is compared with that of traditional computers.

The CIM we used is provided by Beijing Qboson Quantum Technology Co.Ltd, and its structure and principle diagram are shown in Fig.  2 . The components of this CIM are mainly composed of optical parts and electrical parts. The optical part of the machine is composed of pulsed laser, erbium-doped fiber amplifier(EDFA), fiber rings and periodically poled lithium niobate (PPLN) crystals, while the electrical part is mainly composed of optical balanced homodyne detectors (BHD), analog-to-digital/digital-to-analog (AD/DA) converter and field-programmable gate array (FPGA). The laser emits laser with a repetition frequency of 100mhz, which is amplified by EDFA, and then the amplified laser frequency is doubled by PPLN crystal to generate 780 nm laser, which is used as the pump source to synchronously pump the phase sensitive amplifier, forming degenerate optical parametric oscillation(DOPO). There are 211 oscillation pulses in the fiber ring, and the time interval between adjacent pulses is 10 ns, so the transmission time of optical pulses in the ring is 2.11 µs. Then, the laser output in the fiber ring and the laser with the fundamental frequency of 1560 nm are determined by BHD, and the FPGA obtains the feedback signal of the next round trip according to the interaction intensity between spins in Ising Hamiltonian, which is used as the control signal of the intensity modulator (IM), and its sign defines the phase shift (0 or \(\pi \) ) of the phase modulator (PM) 9 , 14 , 34 , 38 .

To compare the performance between CIM and traditional computer, we also run our experiments with Gurobi 9.5.1 on a Mechrevo computer with 2.8 GHz Intel Core i7 CPU and 8GB memory, using up to four threads. The task points used in this experiment are randomly selected on the two-dimensional axis, ranging from 10 to 90, and then Euclidean distance is used as the length between two points, and we design the speed of each AGV to be constant, the time passing through the unit distance is the unit time.

figure 2

Schematic diagram of coherent Ising mechanism construction and principle.

Computing on a traditional PC

In this section, we use Gurobi to solve the mixed integer programming model of AGV scheduling for two optimization objectives. In “ Number of tasks ” we show experiments on the variation in computation time with the number of tasks, while in “ Number of AGVs ” we show experiments on the variation in computation time with the number of AGVs. We set a time limit to 1800 seconds for each run.

Number of tasks

In general, an increase in the number of tasks leads to a slower generation of AGV scheduling solutions. In this subsection, we investigate the effect of task number variation on the computational speed of the three models proposed in this paper. To achieve this goal, we generate instances of 4 tasks to 12 tasks with a fixed number of AGVs of 2 and obtain the computational time graphs shown in Fig.  3 , where the left figure takes the minimum total travel time as the objective function, and the right figure takes the minimum makespan as the objective function. The legend section represents the model number, which corresponds to the previous section number.

figure 3

Computation time versus number of tasks for MIP model. ( a ) Represents the change of MIP model computation time with the number of tasks under the goal of minimizing the total travel time. ( b ) Represents the change of MIP model computation time with the number of tasks under the goal of minimizing the makespan.

In Fig.  3 , we find that the computing speed of mixed integer programming model gradually slows down with the increase of the number of AGV tasks, and the computation time increases sharply when the number of tasks reaches a certain critical value, which is a common property reflected by two different objective functions. Especially when the number of tasks increases to 12, the computing time has exceeded 1800s, which reflects the weakness of traditional models in the face of large-scale problems.

Number of AGVs

In this subsection, we hope to explore the influence of the change of AGV number on the computing time of mixed integer programming model, so we fixed the number of tasks as 10 and 11, and set the number of AGVs in the range from 2 to 8. We show the results in Tables  1 and  2 . Notation “–” in the table implies that the corresponding model failed to obtain an optimal solution within the time limit. An instance with a tasks and b AGVs are denoted by “a–b”.

From the results obtained in Tables  1 and  2 , we can conclude that there is no strict correlation between the number of AGV and the computing time. Table  1 shows the computational performance of the three models under the objective of minimize the total travel time, and we can observe that the computational performance of the MIP model is very poor, and many groups of experiments failed to obtain an optimal solution within the limited time. Table   2 shows the computational performance of the MIP model under the objective of minimize the makespan, and the model performs much better, the optimal solution is obtained in the limited time in all groups of experiments. However, its computation time is still at a great disadvantage.

Computational experiment on CIM

In this subsection, we use the CIM to solve the QUBO model and compare its performance with the MIP solver on traditional PC. Since the maximum number of Quantum bits of the CIM used in this research is 100, all the comparative examples in this section limit the number of variables to 100. Based on this, we completed six groups of computation experiments with a quantum computer. In all the experiments, the number of AGV was limited to two. For the numerical experiment of node model, we set the number of tasks to 4 to 7, while for the numerical experiment of arc model, we fixed the number of tasks to 4.

figure 4

Evolution diagram of Hamiltonian with time under the objective functions of minimizing the total travel time in node model. ( a ) Represents the evolution diagram of Hamiltonian with time under the example of 4 tasks. ( b ) Represents the evolution diagram of Hamiltonian with time under the example of 5 tasks. ( c ) Represents the evolution diagram of Hamiltonian with time under the example of 6 tasks. ( d ) Represents the evolution diagram of Hamiltonian with time under the example of 7 tasks.

figure 5

Evolution diagram of Hamiltonian with time under two objective functions of arc mode. ( a ) represents the evolution diagram of Hamiltonian with time under the objective function of minimizing the total travel time. ( b ) Represents the evolution diagram of Hamiltonian with time under the objective function of minimizing the makespan.

In Figs.  4 and   5 , we plot the evolution of Ising Hamiltonian with time under node model and arc model, respectively. According to the above explanation of CIM principle construction, we can know that the time interval between every two adjacent data points in the figure is 2.11 microseconds. The Hamiltonian decreases with the passage of time, and the phase transition occurs as the power of the pump light gradually increases to the oscillation threshold. The solution obtained when reaching the lowest energy state is the result of CIM solution, and the corresponding time at this time is the computation time.

figure 6

Schematic diagram of quantum computing solutions for node model. ( a ) represents solution under 4 tasks. ( b ) represents solution under 5 tasks. ( c ) represents solution under 6 tasks. ( d ) represents solution under 7 tasks.

figure 7

Schematic diagram of quantum computing solutions for arc model. ( a ) represents the solution of 4 task under the objective function of minimizing the total time. ( b ) represents the solution of 4 task under the objective function of minimizing the makespan.

Figures  6 and 7 show the schematic diagrams of CIM’s solution under node model and arc model. Among them, Fig.  6 contains four parts, which respectively represent the schematic diagrams under 4-7 tasks, while Fig.  7 contains two parts, which respectively represent the schematic diagrams of solving two objective functions under 4 tasks. In fact, Ising model can be transformed into the corresponding representation of maximum cut problem 15 . The maximum cut problem is usually used as a measure and demonstration basis for the complexity of quantum computing problems and the distribution of solutions. The figure shows the solution of our problem expressed by the representation method of maximum cut problem. Points with different colors indicate that they are in different groups, and the connecting lines of points in the same group are gray, while those of points in different groups are red. In these figures, we can clearly perceive the complexity of each model at different scales.

Here, we compare the performance of node model and arc model on quantum computer with that of mixed integer programming model on traditional computer, and the comparison results are shown in Table  3 . An instance with a tasks and b AGVs are denoted by “a–b”.

Due to the limitation of hardware, the comparison of large-scale examples cannot be carried out. However, from Table  3 , we can see that the solutions obtained by CIM are all optimal solutions. And the CIM is much faster than the traditional computer in small-scale examples. We can observe that CIM has obvious performance advantages over traditional computers in small-scale examples. In particular, when the scale increases, the time required for CIM does not increase significantly as that of traditional computers. This shows that CIM has great development and application potential. In addition, there is little difference in computing performance between node model and arc model on quantum computer. Node model is slightly faster than arc model, but arc model is more universal than node model. In order to measure the improvement of CIM’s computing efficiency compared with the traditional computer in the given example, we propose the following computation formula.

IMP represents the calculation speed improvement rate, \(Q_{TRA}\) and \(Q_{CIM}\) respectively represent the computation time of traditional computer and CIM on the same example, and both node model and arc model participate in the comparison. After calculating the IMP of all examples, we find that the computation efficiency of CIM is \(92\%\) faster than that of traditional computers.

Conclusion and future research

We applied quantum computing technology to the research on AGV scheduling, and proposed QUBO models that adapts to solve the problem under two different criteria, minimizing total AGV travel time and makespan. Compared with the traditional MIP model, numerical experiments were carried out on traditional computers and CIM. The experimental results proved the superiority and great potential of quantum computing in this field. Of course, due to the limitation of hardware, there are still some shortcomings in this study, which can not show the advantages of quantum computing in large-scale situations. It is believed that with the continuous development of quantum computing technology, the outstanding performance of quantum computing will be demonstrated in solving large-scale problems in the future. In addition, we also summarized the situation that this study can expand, as follows.

First, the model can be improved and expanded. The model we considered above applies to AGVs with a uniform start node and a uniform end node. Realistic scenarios exist where AGVs have different start and end nodes, and our model is easily expandable for these types of cases. The solution is to involve the number of virtual start and end tasks based on the number of AGVs. Due to the difficulty of mapping large-scale optimization problems to the QUBO form with the small number of bits currently available for quantum computing, our proposed model is a pure scheduling problem that does not consider path optimization. Of course, subsequent researchers can consider this possibility in the case of mature technology. We believe that a two-layer planning model can be built on the basis of the existing model, where the scheduling and path planning problems are computationally solved alternately in two sub-models, which reduces both the modeling difficulty and the number of bits used in the solution of a single model.

Second, quantum computer and traditional computer can be combined to study AGV scheduling problem, and their respective characteristics can be better used to improve the efficiency of solving this problem.

Data availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Abbreviations

  • Automated guided vehicles

Quadratic uncontrained binary optimization

  • Coherent Ising machine

Traveling salesman problem

Mixed integer programming

Field programmable gate array

Erbium-doped fiber amplifier

Phase sensitive amplifier

Degenerate optical parametric oscillation

Balanced homodyne detectors

Qin, H. et al. Jd.com: Operations research algorithms drive intelligent warehouse robots to work. INFORMS J. Appl. Anal. 52 , 42–55 (2022).

Article   Google Scholar  

Singh, N., Dang, Q.-V., Akcay, A., Adan, I. & Martagan, T. A matheuristic for AGV scheduling with battery constraints. Eur. J. Oper. Res. 298 , 855–873 (2022).

Article   MathSciNet   Google Scholar  

Zhang, X.-J., Sang, H.-Y., Li, J.-Q., Han, Y.-Y. & Duan, P. An effective multi-AGVs dispatching method applied to matrix manufacturing workshop. Comput. Ind. Eng. 163 , 107791 (2022).

Zhang, L., Yan, Y., Hu, Y. & Ren, W. A dynamic scheduling method for self-organized AGVs in production logistics systems. Procedia CIRP 104 , 381–386 (2021).

Wang, Z. & Zeng, Q. A branch-and-bound approach for AGV dispatching and routing problems in automated container terminals. Comput. Ind. Eng. 166 , 107968 (2022).

Sagar, K. V. & Jerald, J. Real-time automated guided vehicles scheduling with Markov decision process and double q-learning algorithm. Mater. Today Proc. 64 , 279–284 (2022).

Saidi-Mehrabad, M., Dehnavi-Arani, S., Evazabadian, F. & Mahmoodian, V. An ant colony algorithm (aca) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs. Comput. Ind. Eng. 86 , 2–13 (2015).

Ajagekar, A., Humble, T. & You, F. Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems. Comput. Chem. Eng. 132 , 106630 (2020).

Article   CAS   Google Scholar  

Yamamoto, Y. et al. Coherent ising machines-optical neural networks operating at the quantum limit. NPJ Quant. Inf. 3 , 49 (2017).

Article   ADS   Google Scholar  

Bunyk, P. I. et al. Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Trans. Appl. Supercond. 24 , 1–10 (2014).

Wang, Z., Marandi, A., Wen, K., Byer, R. L. & Yamamoto, Y. Coherent ising machine based on degenerate optical parametric oscillators. Phys. Rev. A 88 , 063853 (2013).

Marandi, A., Wang, Z., Takata, K., Byer, R. L. & Yamamoto, Y. Network of time-multiplexed optical parametric oscillators as a coherent ising machine. Nat. Photon. 8 , 937–942 (2014).

Article   ADS   CAS   Google Scholar  

McMahon, P. L. et al. A fully programmable 100-spin coherent ising machine with all-to-all connections. Science 354 , 614–617 (2016).

Article   ADS   MathSciNet   CAS   PubMed   Google Scholar  

Inagaki, T. et al. A coherent ising machine for 2000-node optimization problems. Science 354 , 603–606 (2016).

Article   ADS   CAS   PubMed   Google Scholar  

Honjo, T. et al. 100,000-spin coherent ising machine. Sci. Adv. 7 , 0952 (2021).

Lu, B., Fan, C.-R., Liu, L., Wen, K. & Wang, C. Speed-up coherent ising machine with a spiking neural network. Opt. Express 31 , 3676–3684 (2023).

Article   ADS   PubMed   Google Scholar  

Lu, B., Liu, L., Song, J.-Y., Wen, K. & Wang, C. Recent progress on coherent computation based on quantum squeezing. AAPPS Bull. 33 , 7 (2023).

Aonishi, T., Mimura, K., Okada, M. & Yamamoto, Y. L0 regularization-based compressed sensing with quantum-classical hybrid approach. Quant. Sci. Technol. 7 , 035013 (2022).

Takabatake, K., Yanagisawa, K. & Akiyama, Y. Solving generalized polyomino puzzles using the ising model. Entropy 24 , 354 (2022).

Article   ADS   MathSciNet   PubMed   PubMed Central   Google Scholar  

Osaba, E., Villar-Rodriguez, E. & Oregi, I. A systematic literature review of quantum computing for routing problems. IEEE Access (2022).

Goswami, D., Karnick, H., Jain, P. & Maji, H. K. Towards efficiently solving quantum traveling salesman problem. http://arxiv.org/abs/quant-ph/0411013 (2004).

Feld, S. et al. A hybrid solution method for the capacitated vehicle routing problem using a quantum annealer. Front. ICT 6 , 13 (2019).

Bao, S., Tawada, M., Tanaka, S. & Togawa, N. An approach to the vehicle routing problem with balanced pick-up using ising machines. in 2021 International Symposium on VLSI Design, Automation and Test (VLSI-DAT) , 1–4 (IEEE, 2021).

Harwood, S. et al. Formulating and solving routing problems on quantum computers. IEEE Trans. Quant. Eng. 2 , 1–17 (2021).

Geitz, M., Grozea, C., Steigerwald, W., Stöhr, R. & Wolf, A. Solving the extended job shop scheduling problem with AGVs: Classical and quantum approaches. in Integration of Constraint Programming, Artificial Intelligence, and Operations Research , 120–137 (Springer, 2022).

Ohzeki, M., Miki, A., Miyama, M. J. & Terabe, M. Control of automated guided vehicles without collision by quantum annealer and digital devices. Front. Comput. Sci. 1 , 1–10 (2019).

Dang, Q.-V., Singh, N., Adan, I., Martagan, T. & van de Sande, D. Scheduling heterogeneous multi-load AGVs with battery constraints. Comput. Oper. Res. 136 , 105517 (2021).

Hu, Y., Yang, H. & Huang, Y. Conflict-free scheduling of large-scale multi-load AGVs in material transportation network. Transp. Res. E 158 , 102623 (2022).

Murakami, K. Time-space network model and milp formulation of the conflict-free routing problem of a capacitated AGV system. Comput. Ind. Eng. 141 , 106270 (2020).

Ising, E. Contribution to the theory of ferromagnetism. Z. Phys. 31 , 253–258 (1925).

Nabors, C., Yang, S., Day, T. & Byer, R. Coherence properties of a doubly resonant monolithic optical parametric oscillator. JOSA B. 7 , 815–820 (1990).

Marandi, A., Leindecker, N. C., Pervak, V., Byer, R. L. & Vodopyanov, K. L. Coherence properties of a broadband femtosecond mid-ir optical parametric oscillator operating at degeneracy. Opt. Express 20 , 7255–7262 (2012).

Nannicini, G. Performance of hybrid quantum-classical variational heuristics for combinatorial optimization. Phys. Rev. E 99 , 013304 (2019).

Wen, J. et al. Optical experimental solution for the multiway number partitioning problem and its application to computing power scheduling. Sci. Chin. Phys. Mech. Astron. 66 , 290313 (2023).

Rodríguez-Heck, E. Linear and quadratic reformulations of nonlinear optimization problems in binary variables. 4OR 2 , 221–222 (2018).

MathSciNet   Google Scholar  

Chao Yang. Data set. Figshare (2024). Accessed 01 Mar 2024.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual (2023).

Huang, Y. et al. Quantum computing for mimo beam selection problem: Model and optical experimental solution. http://arxiv.org/abs/2310.12389 (2023).

Download references

Acknowledgements

The authors would like to thank the team of Bose Quantum Technology Co., Ltd. for helping to obtain experimental data on a quantum computer, the members of this team include Kai Wen, Congyu Cao, Yin Ma and Hai Wei.

This work was partially supported by Grants (72372015, 71871038)from the National Natural Science Foundation of China, Liaoning Provincial Natural Science Foundation (2023-MS-125), and the General support project of China Postdoctoral Science Foundation (2019M661085), and the Humanities and Social Science Foundation of the Ministry of Education(21YJAZH070). Wei Wu was partially supported by JSPS KAKENHI [Grant No.~21K14367] and Industrial Technology Development Organization (NEDO) project (JPNP23003).

Author information

Authors and affiliations.

College of Transportation Engineering, Dalian Maritime University, Dalian, China

Liang Tang & Chao Yang

Beijing QBoson Quantum Technology Co., Ltd, Beijing, China

Faculty of Engineering, Shizuoka University, Hamamatsu, Japan

Department of Information Science and Engineering, Ocean University of China, Qingdao, China

You can also search for this author in PubMed   Google Scholar

Contributions

L.T. has carried out research work division and personnel deployment. C.Y. and W.W are responsible for building the model, and C.Y. is also responsible for the numerical experiment of the classic computer. K.W and his team are responsible for numerical experiments and technical support related to quantum computing. Y.Y.G is responsible for providing guidance on relevant business background. Everyone participated in the writing and revision of the paper. Submission of a paper implies that the work described has not been published previously, that it is not under consideration for publication elsewhere and that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. Submission also implies that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, without the written consent of the publisher.

Corresponding author

Correspondence to Kai Wen .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary information 1., supplementary information 2., supplementary information 3., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Tang, L., Yang, C., Wen, K. et al. Quantum computing for several AGV scheduling models. Sci Rep 14 , 12205 (2024). https://doi.org/10.1038/s41598-024-62821-6

Download citation

Received : 25 November 2023

Accepted : 21 May 2024

Published : 28 May 2024

DOI : https://doi.org/10.1038/s41598-024-62821-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Quantum computing
  • Quadratic unconstrained binary optimization

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

research paper and objective

Help | Advanced Search

Computer Science > Robotics

Title: multi-objective cross-task learning via goal-conditioned gpt-based decision transformers for surgical robot task automation.

Abstract: Surgical robot task automation has been a promising research topic for improving surgical efficiency and quality. Learning-based methods have been recognized as an interesting paradigm and been increasingly investigated. However, existing approaches encounter difficulties in long-horizon goal-conditioned tasks due to the intricate compositional structure, which requires decision-making for a sequence of sub-steps and understanding of inherent dynamics of goal-reaching tasks. In this paper, we propose a new learning-based framework by leveraging the strong reasoning capability of the GPT-based architecture to automate surgical robotic tasks. The key to our approach is developing a goal-conditioned decision transformer to achieve sequential representations with goal-aware future indicators in order to enhance temporal reasoning. Moreover, considering to exploit a general understanding of dynamics inherent in manipulations, thus making the model's reasoning ability to be task-agnostic, we also design a cross-task pretraining paradigm that uses multiple training objectives associated with data from diverse tasks. We have conducted extensive experiments on 10 tasks using the surgical robot learning simulator SurRoL~\cite{long2023human}. The results show that our new approach achieves promising performance and task versatility compared to existing methods. The learned trajectories can be deployed on the da Vinci Research Kit (dVRK) for validating its practicality in real surgical robot settings. Our project website is at: this https URL .

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Purdue Hospitality and Tourism Management graduate student wins best paper award for innovative technology research

Written By: Rebecca Hoffa, [email protected]

A group of individuals stand in a banquet-style conference room, posing for the camera.

Evita Ma poses with the fellow Purdue HTM attendees at the 29th Annual Graduate Education and Graduate Student Research Conference in Hospitality and Tourism in January. (Photo provided)

As Starship robots deliver food to hungry Boilermakers across Purdue University’s West Lafayette campus, their presence is often welcomed like that of a neighborhood pet — students are often seen helping them when they get stuck or smiling and moving out of their way when they meet them on the sidewalk. When Alei (Aileen) Fan , associate professor in the White Lodging-J.W. Marriott, Jr. School of Hospitality and Tourism Management (HTM) and an expert in service innovation and experience design, helped one along its way one day, she was met with a low-tone, male voice saying, “Thank you.” This contradicted the “cute” vision Fan had in her mind of the robots being like her dog at home.

When Fan relayed the experience to her PhD student Chang (Evita) Ma , the College of Health and Human Sciences graduate student was inspired to investigate deeper how the combination of appearance and voice impacted the consumer’s overall experience in the service encounter.  

Evita Ma stands in front of a backdrop, posing with her award.

Evita Ma poses with her best paper award at the 29th Annual Graduate Education and Graduate Student Research Conference in Hospitality and Tourism. (Photo provided)

These efforts culminated in winning a best paper award at the 29th Annual Graduate Education and Graduate Student Research Conference in Hospitality and Tourism in January.

“I’m really honored,” Ma said. “As far as I know, for the past three years or so, no one from our school has gotten the award, so it was a pleasure to have that. It’s very competitive — over the 130-some presentations, I was selected as one of the four winners.”

The study looked at how people’s reactions differed when comparing matched, or congruent, voice and appearance and mismatched, or incongruent, voice and appearance. The researchers found that depending on the robot’s function, people tended to be either more or less accepting of when a robot’s voice does not match its appearance.

In a utilitarian scenario where the consumer really only desires the robot to perform a job function and doesn’t care as much about having an emotional connection, people often prefer the congruent voice and appearance because they feel the incongruent one is not well-designed or not capable of performing their desired outcome. When consumers are in a hedonic scenario where they don’t care as much about the functions the robot is performing but simply wish to have a connection or engage with the robot, the congruency doesn’t matter as much, and some of the surprising elements, such as the mismatched voice and appearance, may attract people to engage with it.

“We as human beings actually view things holistically,” Ma said. “We don’t separate the different parts.”

Considering how these distinct factors work together to shape consumer perceptions could ultimately shape the characteristics of future service robots to improve service encounters across the industry.

“It’s a timely topic,” Fan said. “Whether you like it or not, technology takes up a lot of our lives. This research provided practical guidelines for industries and companies on how to design different robots to better serve our customer.”

This study resulted as a product of Ma’s study “Decoding the Shared Pathways of Consumer Technology Experience in Hospitality and Tourism: A Meta-Analysis,” which examined the literature currently available to investigate the different types of technology and how humans interact with them. Ma ultimately noticed a gap in papers that combined elements — many simply looked at appearance or voice independently.

“Very few of the papers actually combine all the different subtle elements together; they just focus on one single perspective like appearance or voice,” Ma said. “So, I began looking at: What is the combination between those? Our initial idea was we wanted to know how the combination of design elements of service robots impacts the customer’s reactions and feelings of the service in different scenarios.”

Prior to coming to Purdue, Ma spent four years gaining industry experience at the Hospitality Financial and Technology Professionals nonprofit in Hong Kong, where she made many connections on the technology side of the industry and solidified her interest in coming to a very technology-focused university to earn her PhD.

“Purdue has such a strong background in terms of technology and engineering, so that was also one of the reasons I wanted to keep focusing on that for my research area,” Ma said. “After taking a class with Dr. Fan, I decided to join her team.”

Beyond research, Ma has fully immersed herself in the teaching and engagement areas of graduate student life as well. Ma teaches two 200-level marketing courses to undergraduate HTM students, where she’s maximized opportunities for the students to engage in experiential education. She’s also working on curriculum development with HTM faculty and has become involved in several graduate student organizations, including the Purdue Graduate Student Government, where she is a senator.

After graduating from the program, Ma plans to pursue a faculty position that allows her to combine her passion for research with her love for teaching and service.

“She’s really the star student,” Fan said. “When we evaluate a PhD student, there are three aspects: research, teaching and service. Evita is excellent in all of these.”

IMAGES

  1. 10 Easy Steps: How to Write Objectives in Research for Maximum Results

    research paper and objective

  2. Research Objectives

    research paper and objective

  3. Writing an Impressive Academic Statement of Objective With Us

    research paper and objective

  4. Sample objectives of the study in research paper

    research paper and objective

  5. Research Paper Objectives Of The Study Sample Thesis

    research paper and objective

  6. 🏆 Objectives for research paper. Objective of research paper. 2019-03-06

    research paper and objective

VIDEO

  1. Research Objective With Examples

  2. How to Write Objectives in Research Proposal

  3. Research Objectives

  4. Types of research objectives

  5. Research Questions, Research Hypotheses, and Research Objectives: An overview

  6. Session-1: Introduction to Research Paper Writing

COMMENTS

  1. What Are Research Objectives and How to Write Them (with Examples)

    Characteristics of research objectives. Research objectives must start with the word "To" because this helps readers identify the objective in the absence of headings and appropriate sectioning in research papers. 5,6. A good objective is SMART (mostly applicable to specific objectives): Specific—clear about the what, why, when, and how

  2. Research Objectives

    Your research objectives may evolve slightly as your research progresses, but they should always line up with the research carried out and the actual content of your paper. Research aims. A distinction is often made between research objectives and research aims. A research aim typically refers to a broad statement indicating the general purpose ...

  3. Research Objectives

    Research Objectives. Research objectives refer to the specific goals or aims of a research study. They provide a clear and concise description of what the researcher hopes to achieve by conducting the research.The objectives are typically based on the research questions and hypotheses formulated at the beginning of the study and are used to guide the research process.

  4. What is a Research Objective? Definition, Types, Examples and Best

    A research objective is defined as a clear and concise statement of the specific goals and aims of a research study. It outlines what the researcher intends to accomplish and what they hope to learn or discover through their research. Research objectives are crucial for guiding the research process and ensuring that the study stays focused and ...

  5. Research Questions, Objectives & Aims (+ Examples)

    The research aims, objectives and research questions (collectively called the "golden thread") are arguably the most important thing you need to get right when you're crafting a research proposal, dissertation or thesis.We receive questions almost every day about this "holy trinity" of research and there's certainly a lot of confusion out there, so we've crafted this post to help ...

  6. Research Paper

    A research paper is a piece of academic writing that provides analysis, interpretation, and argument based on in-depth independent research. About us; Disclaimer; ... Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal ...

  7. How to Write Research Objectives

    To develop a set of research objectives, you would then break down the various steps involved in meeting said aim. For example: This study will investigate the link between dehydration and the incidence of urinary tract infections (UTIs) in intensive care patients in Australia. To achieve this, the study objectives w ill include:

  8. Aims and Objectives

    Summary. One of the most important aspects of a thesis, dissertation or research paper is the correct formulation of the aims and objectives. This is because your aims and objectives will establish the scope, depth and direction that your research will ultimately take. An effective set of aims and objectives will give your research focus and ...

  9. Writing the Research Objectives: 5 Straightforward Examples

    5 Examples of Research Objectives. The following examples of research objectives based on several published studies on various topics demonstrate how the research objectives are written: This study aims to find out if there is a difference in quiz scores between students exposed to direct instruction and flipped classrooms (Webb and Doman, 2016).

  10. How do I write a research objective?

    The best way to remember the difference between a research plan and a research proposal is that they have fundamentally different audiences. A research plan helps you, the researcher, organize your thoughts. On the other hand, a dissertation proposal or research proposal aims to convince others (e.g., a supervisor, a funding body, or a dissertation committee) that your research topic is ...

  11. Writing a Research Paper Introduction

    Table of contents. Step 1: Introduce your topic. Step 2: Describe the background. Step 3: Establish your research problem. Step 4: Specify your objective (s) Step 5: Map out your paper. Research paper introduction examples. Frequently asked questions about the research paper introduction.

  12. What is a research objective?

    Research objectives describe what you intend your research project to accomplish. They summarise the approach and purpose of the project and help to focus your research. Your objectives should appear in the introduction of your research paper, at the end of your problem statement.

  13. Research Objectives: What They Are and How to Write Them

    Research Objectives Examples in Different Fields. The application of research objectives spans various academic disciplines, each with its unique focus and methodologies. To illustrate how the objectives of the study guide a research paper across different fields, here are some research objective examples:

  14. Research Objectives: Definition and How To Write Them

    Here are three simple steps that you can follow to identify and write your research objectives: 1. Pinpoint the major focus of your research. The first step to writing your research objectives is to pinpoint the major focus of your research project. In this step, make sure to clearly describe what you aim to achieve through your research.

  15. How to Write Objectives in a Research Proposal

    Objectives wrapped up within that question might be: 1) the incidence of eyestrain among children who watch a lot of TV, 2) their muscular development, 3) their level of socialization with other children. Design your objectives around answering these questions. 4. Limit your objectives to 3 to 5 at most.

  16. Crafting Clear Pathways: Writing Objectives in Research Papers

    There are typically three main types of objectives in a research paper: Exploratory Objectives: These objectives are focused on gaining a deeper understanding of a particular phenomenon, topic, or issue. Exploratory research objectives aim to explore and identify new ideas, insights, or patterns that were previously unknown or poorly understood

  17. Research Aims and Objectives: The dynamic duo for successful ...

    Research aims and objectives are the foundation of any research project. They provide a clear direction and purpose for the study, ensuring that you stay focused and on track throughout the process. They are your trusted navigational tools, leading you to success. Understanding the relationship between research objectives and aims is crucial to ...

  18. 21 Research Objectives Examples (Copy and Paste)

    Examples of Specific Research Objectives: 1. "To examine the effects of rising temperatures on the yield of rice crops during the upcoming growth season.". 2. "To assess changes in rainfall patterns in major agricultural regions over the first decade of the twenty-first century (2000-2010).". 3.

  19. A Practical Guide to Writing Quantitative and Qualitative Research

    The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question.1 An excellent research question ... these would determine the research objectives and the design of the study ...

  20. Research questions, hypotheses and objectives

    The development of the research question, including a supportive hypothesis and objectives, is a necessary key step in producing clinically relevant results to be used in evidence-based practice. A well-defined and specific research question is more likely to help guide us in making decisions about study design and population and subsequently ...

  21. Writing a Research Paper

    The pages in this section cover the following topic areas related to the process of writing a research paper: Genre - This section will provide an overview for understanding the difference between an analytical and argumentative research paper. Choosing a Topic - This section will guide the student through the process of choosing topics ...

  22. (PDF) How to write Research objectives

    Here are three simple steps that you can. follow to identify and write your research objectives: Pinpoint the major focus of your research. The first step to writing your research objectives is to ...

  23. Quantum computing for several AGV scheduling models

    1. In traditional research on the AGV scheduling problem, the computation time increases greatly with an increase in the number of AGVs and tasks. We introduce quantum computing technology into ...

  24. Buildings

    This study aligns with the European Union's objectives of achieving climate-neutral cities by 2030 and the United Nations' Sustainable Development Goals outlined for completion by 2030. ... During this phase, academic research, policy papers, and case studies relevant to reusing building materials in the context of greenhouse gas emissions ...

  25. Flood of Fake Science Forces Multiple Journal Closures

    May 14, 2024 8:00 am ET. Text. 1225 Responses. Fake studies have flooded the publishers of top scientific journals, leading to thousands of retractions and millions of dollars in lost revenue. The ...

  26. [2405.18448] Multi-objective Representation for Numbers in Clinical

    View a PDF of the paper titled Multi-objective Representation for Numbers in Clinical Narratives Using CamemBERT-bio, by Boammani Aser Lompo and 1 other authors View PDF HTML (experimental) Abstract: This research aims to classify numerical values extracted from medical documents across seven distinct physiological categories, employing ...

  27. Figures at a glance

    How many refugees are there around the world? At least 108.4 million people around the world have been forced to flee their homes. Among them are nearly 35.3 million refugees, around 41 per cent of whom are under the age of 18.. There are also millions of stateless people, who have been denied a nationality and lack access to basic rights such as education, health care, employment and freedom ...

  28. Multi-objective Cross-task Learning via Goal-conditioned GPT-based

    Surgical robot task automation has been a promising research topic for improving surgical efficiency and quality. Learning-based methods have been recognized as an interesting paradigm and been increasingly investigated. However, existing approaches encounter difficulties in long-horizon goal-conditioned tasks due to the intricate compositional structure, which requires decision-making for a ...

  29. How to Write a Research Proposal

    Once you've decided on your research objectives, you need to explain them in your paper, at the end of your problem statement. Keep your research objectives clear and concise, and use appropriate verbs to accurately convey the work that you will carry out for each one. Example: Verbs for research objectives I will assess … I will compare …

  30. Purdue Hospitality and Tourism Management graduate ...

    These efforts culminated in winning a best paper award at the 29th Annual Graduate Education and Graduate Student Research Conference in Hospitality and Tourism in January. "I'm really honored," Ma said. "As far as I know, for the past three years or so, no one from our school has gotten the award, so it was a pleasure to have that.