• University of Detroit Mercy
  • Health Professions

Health Services Administration

  • Writing a Literature Review
  • Find Articles (Databases)
  • Evidence-based Practice
  • eBooks & Articles
  • General Writing Support
  • Creating & Printing Posters
  • Research Project Web Resources
  • Statistics: Health / Medical
  • Searching Tips
  • Streaming Video
  • Database & Library Help
  • Medical Apps & Mobile Sites
  • Faculty Publications

Literature Review Overview

What is a Literature Review? Why Are They Important?

A literature review is important because it presents the "state of the science" or accumulated knowledge on a specific topic. It summarizes, analyzes, and compares the available research, reporting study strengths and weaknesses, results, gaps in the research, conclusions, and authors’ interpretations.

Tips and techniques for conducting a literature review are described more fully in the subsequent boxes:

  • Literature review steps
  • Strategies for organizing the information for your review
  • Literature reviews sections
  • In-depth resources to assist in writing a literature review
  • Templates to start your review
  • Literature review examples

Literature Review Steps

literature review on health care administration

Graphic used with permission: Torres, E. Librarian, Hawai'i Pacific University

1. Choose a topic and define your research question

  • Try to choose a topic of interest. You will be working with this subject for several weeks to months.
  • Ideas for topics can be found by scanning medical news sources (e.g MedPage Today), journals / magazines, work experiences, interesting patient cases, or family or personal health issues.
  • Do a bit of background reading on topic ideas to familiarize yourself with terminology and issues. Note the words and terms that are used.
  • Develop a focused research question using PICO(T) or other framework (FINER, SPICE, etc - there are many options) to help guide you.
  • Run a few sample database searches to make sure your research question is not too broad or too narrow.
  • If possible, discuss your topic with your professor. 

2. Determine the scope of your review

The scope of your review will be determined by your professor during your program. Check your assignment requirements for parameters for the Literature Review.

  • How many studies will you need to include?
  • How many years should it cover? (usually 5-7 depending on the professor)
  • For the nurses, are you required to limit to nursing literature?

3. Develop a search plan

  • Determine which databases to search. This will depend on your topic. If you are not sure, check your program specific library website (Physician Asst / Nursing / Health Services Admin) for recommendations.
  • Create an initial search string using the main concepts from your research (PICO, etc) question. Include synonyms and related words connected by Boolean operators
  • Contact your librarian for assistance, if needed.

4. Conduct searches and find relevant literature

  • Keep notes as you search - tracking keywords and search strings used in each database in order to avoid wasting time duplicating a search that has already been tried
  • Read abstracts and write down new terms to search as you find them
  • Check MeSH or other subject headings listed in relevant articles for additional search terms
  • Scan author provided keywords if available
  • Check the references of relevant articles looking for other useful articles (ancestry searching)
  • Check articles that have cited your relevant article for more useful articles (descendancy searching). Both PubMed and CINAHL offer Cited By links
  • Revise the search to broaden or narrow your topic focus as you peruse the available literature
  • Conducting a literature search is a repetitive process. Searches can be revised and re-run multiple times during the process.
  • Track the citations for your relevant articles in a software citation manager such as RefWorks, Zotero, or Mendeley

5. Review the literature

  • Read the full articles. Do not rely solely on the abstracts. Authors frequently cannot include all results within the confines of an abstract. Exclude articles that do not address your research question.
  • While reading, note research findings relevant to your project and summarize. Are the findings conflicting? There are matrices available than can help with organization. See the Organizing Information box below.
  • Critique / evaluate the quality of the articles, and record your findings in your matrix or summary table. Tools are available to prompt you what to look for. (See Resources for Appraising a Research Study box on the HSA, Nursing , and PA guides )
  • You may need to revise your search and re-run it based on your findings.

6. Organize and synthesize

  • Compile the findings and analysis from each resource into a single narrative.
  • Using an outline can be helpful. Start broad, addressing the overall findings and then narrow, discussing each resource and how it relates to your question and to the other resources.
  • Cite as you write to keep sources organized.
  • Write in structured paragraphs using topic sentences and transition words to draw connections, comparisons, and contrasts.
  • Don't present one study after another, but rather relate one study's findings to another. Speak to how the studies are connected and how they relate to your work.

Organizing Information

Options to assist in organizing sources and information :

1. Synthesis Matrix

  • helps provide overview of the literature
  • information from individual sources is entered into a grid to enable writers to discern patterns and themes
  • article summary, analysis, or results
  • thoughts, reflections, or issues
  • each reference gets its own row
  • mind maps, concept maps, flowcharts
  • at top of page record PICO or research question
  • record major concepts / themes from literature
  • list concepts that branch out from major concepts underneath - keep going downward hierarchically, until most specific ideas are recorded
  • enclose concepts in circles and connect the concept with lines - add brief explanation as needed

3. Summary Table

  • information is recorded in a grid to help with recall and sorting information when writing
  • allows comparing and contrasting individual studies easily
  • purpose of study
  • methodology (study population, data collection tool)

Efron, S. E., & Ravid, R. (2019). Writing the literature review : A practical guide . Guilford Press.

Literature Review Sections

  • Lit reviews can be part of a larger paper / research study or they can be the focus of the paper
  • Lit reviews focus on research studies to provide evidence
  • New topics may not have much that has been published

* The sections included may depend on the purpose of the literature review (standalone paper or section within a research paper)

Standalone Literature Review (aka Narrative Review):

  • presents your topic or PICO question
  • includes the why of the literature review and your goals for the review.
  • provides background for your the topic and previews the key points
  • Narrative Reviews: tmay not have an explanation of methods.
  • include where the search was conducted (which databases) what subject terms or keywords were used, and any limits or filters that were applied and why - this will help others re-create the search
  • describe how studies were analyzed for inclusion or exclusion
  • review the purpose and answer the research question
  • thematically - using recurring themes in the literature
  • chronologically - present the development of the topic over time
  • methodological - compare and contrast findings based on various methodologies used to research the topic (e.g. qualitative vs quantitative, etc.)
  • theoretical - organized content based on various theories
  • provide an overview of the main points of each source then synthesize the findings into a coherent summary of the whole
  • present common themes among the studies
  • compare and contrast the various study results
  • interpret the results and address the implications of the findings
  • do the results support the original hypothesis or conflict with it
  • provide your own analysis and interpretation (eg. discuss the significance of findings; evaluate the strengths and weaknesses of the studies, noting any problems)
  • discuss common and unusual patterns and offer explanations
  •  stay away from opinions, personal biases and unsupported recommendations
  • summarize the key findings and relate them back to your PICO/research question
  • note gaps in the research and suggest areas for further research
  • this section should not contain "new" information that had not been previously discussed in one of the sections above
  • provide a list of all the studies and other sources used in proper APA 7

Literature Review as Part of a Research Study Manuscript:

  • Compares the study with other research and includes how a study fills a gap in the research.
  • Focus on the body of the review which includes the synthesized Findings and Discussion

Literature Reviews vs Systematic Reviews

Systematic Reviews are NOT the same as a Literature Review:

Literature Reviews:

  • Literature reviews may or may not follow strict systematic methods to find, select, and analyze articles, but rather they selectively and broadly review the literature on a topic
  • Research included in a Literature Review can be "cherry-picked" and therefore, can be very subjective

Systematic Reviews:

  • Systemic reviews are designed to provide a comprehensive summary of the evidence for a focused research question
  • rigorous and strictly structured, using standardized reporting guidelines (e.g. PRISMA, see link below)
  • uses exhaustive, systematic searches of all relevant databases
  • best practice dictates search strategies are peer reviewed
  • uses predetermined study inclusion and exclusion criteria in order to minimize bias
  • aims to capture and synthesize all literature (including unpublished research - grey literature) that meet the predefined criteria on a focused topic resulting in high quality evidence

Literature Review Examples

  • Breastfeeding initiation and support: A literature review of what women value and the impact of early discharge (2017). Women and Birth : Journal of the Australian College of Midwives
  • Community-based participatory research to promote healthy diet and nutrition and prevent and control obesity among African-Americans: A literature review (2017). Journal of Racial and Ethnic Health Disparities

Restricted to Detroit Mercy Users

  • Vitamin D deficiency in individuals with a spinal cord injury: A literature review (2017). Spinal Cord

Resources for Writing a Literature Review

These sources have been used in developing this guide.

Cover Art

Resources Used on This Page

Aveyard, H. (2010). Doing a literature review in health and social care : A practical guide . McGraw-Hill Education.

Purdue Online Writing Lab. (n.d.). Writing a literature review . Purdue University. https://owl.purdue.edu/owl/research_and_citation/conducting_research/writing_a_literature_review.html

Torres, E. (2021, October 21). Nursing - graduate studies research guide: Literature review. Hawai'i Pacific University Libraries. Retrieved January 27, 2022, from https://hpu.libguides.com/c.php?g=543891&p=3727230

  • << Previous: General Writing Support
  • Next: Creating & Printing Posters >>
  • Last Updated: Jun 6, 2024 2:48 PM
  • URL: https://udmercy.libguides.com/hsa

Ohio University Logo

University Libraries

  • Ohio University Libraries
  • Library Guides

Evidence-based Practice in Healthcare

  • Performing a Literature Review
  • EBP Tutorials
  • Question- PICO
  • Definitions
  • Systematic Reviews
  • Levels of Evidence
  • Finding Evidence
  • Filter by Study Type
  • Too Much or Too Little?
  • Critical Appraisal
  • Quality Improvement (QI)
  • Contact - Need Help?

Hanna's Performing a qualitity literature review presentation slides

  • Link to the PPT slides via OneDrive anyone can view

Characteristics of a Good Literature Review in Health & Medicine

Clear Objectives and Research Questions : The review should start with clearly defined objectives and research questions that guide the scope and focus of the review.

Comprehensive Coverage : Include a wide range of relevant sources, such as research articles, review papers, clinical guidelines, and books. Aim for a broad understanding of the topic, covering historical developments and current advancements. To do this, an intentional and minimally biased search strategy.

  • Link to relevant databases to consider for a comprehensive search (search 2+ databases)
  • Link to the video "Searching your Topic: Strategies and Efficiencies" by Hanna Schmillen
  • Link to the worksheet "From topic, to PICO, to search strategy" to help researchers work through their topic into an intentional search strategy by Hanna Schmillen

Transparency and Replicability : The review process, search strategy, should be transparent, with detailed documentation of all steps taken. This allows others to replicate the review or update it in the future.

Appraisal of Studies Included : Each included study should be critically appraised for methodological quality and relevance. Use standardized appraisal tools to assess the risk of bias and the quality of evidence.

  • Link to the video " Evaluating Health Research" by Hanna Schmillen
  • Link to evaluating and appraising studies tab, which includes a rubric and checklists

Clear Synthesis and Discussion of Findings : The review should provide a thorough discussion of the findings, including any patterns, relationships, or trends identified in the literature. Address the strengths and limitations of the reviewed studies and the review itself. Present findings in a balanced and unbiased manner, avoiding over interpretation or selective reporting of results.

Implications for Practice and Research : The review should highlight the practical implications of the findings for medical practice and policy. It should also identify gaps in the current literature and suggest areas for future research.

Referencing and Citation : Use proper citation practices to credit original sources. Provide a comprehensive reference list to guide readers to the original studies.

  • Link to Citation Style Guide, includes tab about Zotero

Note: A literature review is not a systematic review. For more information about systematic reviews and different types of evidence synthesis projects, see the Evidence Synthesis guide .

  • << Previous: Quality Improvement (QI)
  • Next: Contact - Need Help? >>
  • Open access
  • Published: 12 October 2020

A systematic literature review of researchers’ and healthcare professionals’ attitudes towards the secondary use and sharing of health administrative and clinical trial data

  • Elizabeth Hutchings   ORCID: orcid.org/0000-0002-6030-954X 1 ,
  • Max Loomes   ORCID: orcid.org/0000-0003-1042-0968 2 ,
  • Phyllis Butow   ORCID: orcid.org/0000-0003-3562-6954 2 , 3 , 4 &
  • Frances M. Boyle   ORCID: orcid.org/0000-0003-3798-1570 1 , 5  

Systematic Reviews volume  9 , Article number:  240 ( 2020 ) Cite this article

14k Accesses

12 Citations

5 Altmetric

Metrics details

A systematic literature review of researchers and healthcare professionals’ attitudes towards the secondary use and sharing of health administrative and clinical trial data was conducted using electronic data searching. Eligible articles included those reporting qualitative or quantitative original research and published in English. No restrictions were placed on publication dates, study design, or disease setting. Two authors were involved in all stages of the review process; conflicts were resolved by consensus. Data was extracted independently using a pre-piloted data extraction template. Quality and bias were assessed using the QualSyst criteria for qualitative studies. Eighteen eligible articles were identified, and articles were categorised into four key themes: barriers, facilitators, access, and ownership; 14 subthemes were identified. While respondents were generally supportive of data sharing, concerns were expressed about access to data, data storage infrastructure, and consent. Perceptions of data ownership and acknowledgement, trust, and policy frameworks influenced sharing practice, as did age, discipline, professional focus, and world region. Young researchers were less willing to share data; they were willing to share in circumstances where they were acknowledged. While there is a general consensus that increased data sharing in health is beneficial to the wider scientific community, substantial barriers remain.

Systematic review registration

PROSPERO CRD42018110559

Peer Review reports

Healthcare systems generate large amounts of data; approximately 80 mB of data are generated per patient per year [ 1 ]. It is projected that this figure will continue to grow with an increasing reliance on technologies and diagnostic capabilities. Healthcare data provides an opportunity for secondary data analysis with the capacity to greatly influence medical research, service planning, and health policy.

There are many forms of data collected in the healthcare setting including administrative and clinical trial data which are the focus of this review. Administrative data collected during patients’ care in the primary, secondary, and tertiary settings can be analysed to identify systemic issues and service gaps, and used to inform improved health resourcing. Clinical trials play an essential role in furthering our understanding of disease, advancing new therapeutics, and developing improved supportive care interventions. However, clinical trials are expensive and can take several years to complete; a frequently quoted figure is that it takes 17 years for 14% of clinical research to benefit the patient [ 2 , 3 ].

Those who argue for increased data sharing in healthcare suggest that it may lead to improved treatment decisions based on all available information [ 4 , 5 ], improved identification of causes and clinical manifestations of disease [ 6 ], and provide increased research transparency [ 7 ]. In rare diseases, secondary data analysis may greatly accelerate the medical community’s understanding of the disease’s pathology and influence treatment.

Internationally, there are signs of movement towards greater transparency, particularly with regard to clinical research data. This change has been driven by governments [ 8 ], peak bodies [ 9 ], and clinician led initiatives [ 5 ]. One initiative led by the International Council of Medical Journal Editors (ICMJE) now requires a data sharing plan for all clinical research submitted for publication in a member scientific journal [ 9 ]. Further, international examples of data sharing can be seen in projects such as The Cancer Genome Atlas (TCGA) [ 10 ] dataset and the Surveillance, Epidemiology, and End Results (SEER) [ 11 ] database which have been used extensively for cancer research.

However, consent, data ownership, privacy, intellectual property rights, and potential for misinterpretation of data [ 12 ] remain areas of concern to individuals who are more circumspect about changing the data sharing norm. To date, there has been no published synthesis of views on data sharing from the perspectives of diverse professional stakeholders. Thus, we conducted a systematic review of the literature on the views of researchers and healthcare professionals regarding the sharing of health data.

This systematic literature review was part of a larger review of articles addressing data sharing, undertaken in accordance with the PRISMA statement for systematic reviews and meta-analysis [ 13 ]. The protocol was prospectively registered on PROSPERO ( www.crd.york.ac.uk /PROSPERO, CRD42018110559).

The following databases were searched: EMBASE/MEDLINE, Cochrane Library, PubMed, CINAHL, Informit Health Collection, PROSPERO Database of Systematic Reviews, PsycINFO, and ProQuest. The final search was conducted on 21 October 2018. No date restrictions were placed on the search; key search terms are listed in Table 1 . Papers were considered eligible if they: were published in English; were published in a peer review journal; reported original research, either qualitative or quantitative with any study design, related to data sharing in any disease setting; and included subjects over 18 years of age. Systematic literature reviews were included in the wider search but were not included in the results. Reference list and hand searching were undertaken to identify additional papers. Papers were considered ineligible if they focused on electronic health records, biobanking, or personal health records or were review articles, opinion pieces/articles/letters, editorials, or theses from masters or doctoral research. Duplicates were removed and title and abstract and full-text screening were undertaken using the Cochrane systematic literature review program Covidence [ 14 ]. Two authors were involved in all stages of the review process; conflicts were resolved by consensus.

Quality and bias were assessed at a study level using the QualSyst system for quantitative and qualitative studies as described by Kmet et al. [ 15 ]. A maximum score of 20 is assigned to articles of high quality and low bias; the final QualSyst score is a proportion of the total, with a possible score ranging from 0.0 to 1.0 [ 15 ].

Data extraction was undertaken using a pre-piloted form in Microsoft Office Excel. Data points included author, country and year of study, study design and methodology, health setting, and key themes and results. Where available, detailed information on research participants was extracted including age, sex, clinical/academic employment setting, publication and grant history, career stage, and world region.

Quantitative data were summarised using descriptive statistics. Synthesis of qualitative findings used a meta-ethnographic approach, in accordance with guidelines from Lockwood et al. [ 16 ].The main themes of each qualitative study were first identified and then combined, if relevant, into categories of commonality. Using a constant comparative approach, higher order themes and subthemes were developed. Quantitative data relevant to each theme were then incorporated. Using a framework analysis approach as described by Gale et al. [ 17 ], the perspectives of different professional groups (researchers, healthcare professionals, data custodians, and ethics committees) towards data sharing were identified. Where differences occurred, they are highlighted in the results. Similarly, where systematic differences according to other characteristics (such as age or years of experience), these are highlighted.

This search identified 4019 articles, of which 241 underwent full-text screening; 73 articles met the inclusion criteria for the larger review. Five systematic literature reviews were excluded as was one article which presented duplicate results; this left a total of 67 articles eligible for review. See Fig. 1 for the PRISMA diagram describing study screening.

figure 1

PRIMSA flow diagram (attached)

This systematic literature review was originally developed to identify attitudes towards secondary use and sharing of health administrative and clinical trial data in breast cancer. However, as there was a paucity of material identified specifically related to this group, we present the multidisciplinary results of this search, and where possible highlight results specific to breast cancer, and cancer more generally. We believe that the material identified in this search is relevant and reflective of the wider attitudes towards data sharing within the scientific and medical communities and can be used to inform data sharing strategies in breast cancer.

Eighteen [ 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 ] of the 67 articles addressed the perspectives of clinical and scientific researchers, data custodians, and ethics committees and were analysed for this paper (Table 2 ). The majority ( n = 16) of articles focused on the views of researchers and health professionals, [ 18 , 19 , 20 , 21 , 22 , 24 , 25 , 26 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 ], only one article focused on data custodians [ 27 ] and ethics committees [ 23 ] respectively. Four articles [ 18 , 19 , 21 , 35 ] included a discussion on the attitudes of both researchers and healthcare professionals and patients; only results relating to researchers/clinicians are included in this analysis (Fig. 1 ).

Study design, location, and disciplines

Several study methodologies were used, including surveys ( n = 11) [ 24 , 25 , 26 , 27 , 29 , 30 , 31 , 32 , 33 , 34 , 35 ], interviews and focus groups ( n = 6) [ 18 , 19 , 20 , 21 , 22 , 23 ], and mixed methods ( n = 1) [ 28 ]. Studies were conducted in a several countries and regions; a breakdown by country and study is available in Table 3 .

In addition to papers focusing on general health and sciences [ 18 , 21 , 22 , 24 , 25 , 26 , 29 , 30 , 31 , 32 , 33 , 34 ], two articles included views from both science and non-science disciplines [ 27 , 28 ]. Multiple sclerosis (MS) [ 19 ], mental health [ 35 ], and human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS)/tuberculosis (TB) [ 20 ] were each the subject of one article.

Study quality

Results of the quality assessment are provided in Table 2 . QualSyst [15] scores ranged from 0.7 to 1.0 (possible range 0.0 to 1.0). While none were blinded studies, most provided clear information on respondent selection, data analysis methods, and justifiable study design and methodology.

Four key themes, barriers, facilitators, access, and ownership were identified; 14 subthemes were identified. A graphical representation of article themes is presented in Fig. 2 . Two articles reflect the perspective of research ethics committees [ 23 ] and data custodians [ 27 ]; concerns noted by these groups are similar to those highlighted by researchers and healthcare professionals.

figure 2

Graphic representation of key themes and subthemes identified (attached)

Barriers and facilitators

Reasons for not sharing.

Eleven articles identified barriers to data sharing [ 20 , 22 , 24 , 25 , 27 , 29 , 30 , 31 , 32 , 33 , 34 ]. Concerns cited by respondents included other researchers taking their results [ 24 , 25 ], having data misinterpreted or misattributed [ 24 , 27 , 31 , 32 ], loss of opportunities to maximise intellectual property [ 24 , 25 , 27 ], and loss of publication opportunities [ 24 , 25 ] or funding [ 25 ]. Results of a qualitative study showed respondents emphasised the competitive value of research data and its capacity to advance an individual’s career [ 20 ] and the potential for competitive disadvantage with data sharing [ 22 ]. Systematic issues related to increased data sharing were noted in several articles where it was suggested the barriers are ‘deeply rooted in the practices and culture of the research process as well as the researchers themselves’ [ 33 ] (p. 1), and that scientific competition and a lack of incentive in academia to share data remain barriers to increased sharing [ 30 ].

Insufficient time, lack of funding, limited storage infrastructure, and lack of procedural standards were also noted as barriers [ 33 ]. Quantitative results demonstrated that the researchers did not have the right to make the data public or that there was no requirement to share by the study sponsor [ 33 ]. Maintaining the balance between investigator and funder interests and the protection of research subjects [ 31 ] were also cited as barriers. Concerns about privacy were noted in four articles [ 25 , 27 , 29 , 30 ]; one study indicated that clinical researchers were significantly more concerned with issues of privacy compared to scientific researchers [ 25 ]. The results of one qualitative study indicated that clinicians were more cautious than patients regarding the inclusion of personal information in a disease specific registry; the authors suggest this may be a result of potential for legal challenges in the setting of a lack of explicit consent and consistent guidelines [ 19 ]. Researchers, particularly clinical staff, indicated that they did not see sharing data in a repository as relevant to their work [ 29 ]

Trust was also identified as a barrier to greater data sharing [ 32 ]. Rathi et al. identified that researchers were likely to withhold data if they mistrusted the intent of the researcher requesting the information [ 32 ]. Ethical, moral, and legal issues were other potential barriers cited [ 19 , 22 ]. In one quantitative study, 74% of respondents ( N = 317) indicated that ensuring appropriate data use was a concern; other concerns included data not being appropriate for the requested purpose [ 32 ]. Concerns about data quality were also cited as a barrier to data reuse; some respondents suggested that there was a perceived negative association of data reuse among health scientists [ 30 ].

Reasons for sharing

Eleven articles [ 19 , 20 , 21 , 22 , 24 , 25 , 29 , 30 , 31 , 32 , 33 ] discussed the reasons identified by researchers and healthcare professionals for sharing health data; broadly the principle of data sharing was seen as a desirable norm [ 25 , 31 ]. Cited benefits included improvements to the delivery of care, communication and receipt of information, impacts on care and quality of life [ 19 ], contributing to the advancement of science [ 20 , 24 , 29 ], validating scientific outputs, reducing duplication of scientific effort and minimising research costs [ 20 ], and promoting open science [ 31 , 32 ]. Professional reasons for sharing data included academic benefit and recognition, networking and collaborative opportunities [ 20 , 24 , 29 , 31 ], and contributing to the visibility of their research [ 24 ]. Several articles noted the potential of shared data for enabling faster access to a wider pool of patients [ 21 ] for research, improved access to population data for longitudinal studies [ 22 ], and increased responsiveness to public health needs [ 20 ]. In one study, a small percentage of respondents indicated that there were no benefits from sharing their data [ 24 ].

Analysis of quantitative survey data indicated that the perceived usefulness of data was most strongly associated with reuse intention [ 30 ]. The lack of access to data generated by other researchers or institutions was seen as a major impediment to progress in science [ 33 ]. In a second study, quantitative data showed no significant differences in reasons for sharing by clinical trialists’ academic productivity, geographic location, trial funding source or size, or the journal in which the results were published [ 32 ]. Attitudes towards sharing in order to receive academic benefits or recognition differed significantly based on the respondent’s geographic location; those from Western Europe were more willing to share compared to respondents in the USA or Canada, and the rest of the world [ 32 ].

Views on sharing

Seven articles [ 19 , 20 , 21 , 29 , 31 , 33 , 34 ] discussed researchers’ and healthcare professionals’ views relating to sharing data, with a broad range of views noted. Two articles, both qualitative, discussed the role of national registries [ 21 ], and data repositories [ 31 ]. Generally, there was clear support for national research registers and an acceptance for their rationale [ 21 ], and some respondents believed that sharing de-identified data through data repositories should be required and that when requested, investigators should share data [ 31 ]. Sharing de-identified data for reasons beyond academic and public health benefit were cited as a concern [ 20 ]. Two quantitative studies noted a proportion of researchers who believed that data should not be made available [ 33 , 34 ]. Researchers also expressed differences in how shared data should be managed; the requirement for data to be ‘gate-kept’ was preferred by some, while others were happy to relinquish control of their data once curated or on release [ 20 ]. Quantitative results indicated that scientists were significantly more likely to rank data reuse as highly relevant to their work than clinicians [ 29 ], but not all scientists shared data equally or had the same views about data sharing or reuse [ 33 ]. Some respondents argued that not all data were equal and therefore should only be shared in certain circumstances. This was in direct contrast to other respondents who suggested that all data should be shared, all of the time [ 20 ].

Differences by age, background, discipline, professional focus, and world region

Differences in attitudes towards shared data were noted by age, professional focus, and world region [ 25 , 27 , 33 , 34 ]. Younger researchers, aged between 20–39 and 40–49 years, were less likely to share their data with others (39% and 38% respectively) compared to other age groups; respondents aged over 50 years of age were more willing (46%) to share [ 33 ]. Interestingly, while less willing to share, younger researchers also believed that the lack of access to data was a major impediment to science and their research [ 33 ]. Where younger researchers were able to place conditions on access to their data, rates of willingness to share were increased [ 33 ].

Respondents from the disciplines of education, medicine/health science, and psychology were more inclined than others to agree that their data should not be available for others to use in the first place [ 34 ]. However, results from one study indicated that researchers from the medical field and social sciences were less likely to share compared to other disciplines [ 33 ]. For example, results of a quantitative study showed that compared to biologists, who reported sharing 85% of their data, medical and social sciences reported sharing their data 65% and 58% percent of the time, respectively [ 33 ].

One of the primary reasons for controlling access to data, identified in a study of data custodians, was due to a desire to avoid data misuse; this was cited as a factor for all surveyed data repositories except those of an interdisciplinary nature [ 27 ]. Limiting access to certain types of research and ensuring attribution were not listed as a concern for sociology, humanities or interdisciplinary data collections [ 27 ]. Issues pertaining to privacy and sensitive data were only cited as concerns for data collections related to humanities, social sciences, and biology, ecology, and chemistry; concerns regarding intellectual property were also noted [ 27 ]. The disciplines of biology, ecology, and chemistry and social sciences had the most policy restrictions on the use of data held in their repositories [ 27 ].

Differences in data sharing practices were also noted by world region. Respondents not from North American and European countries were more willing to place their data on a central repository; however, they were also more likely to place conditions on the reuse of their data [ 33 , 34 ].

Experience of data sharing

The experience of data sharing among researchers was discussed in nine articles [ 20 , 24 , 25 , 26 , 28 , 29 , 30 , 31 , 32 , 33 ]. Data sharing arrangements were highly individual and ranged from ad hoc and informal processes to formal procedures enforced by institutional policies in the form of contractual agreements, with respondents indicating data sharing behaviour ranging from sharing no data to sharing all data [ 20 , 26 , 31 ]. Quantitative data from one study showed that researchers were more inclined to share data prior to publication with people that they knew compared to those they did not; post publication, these figures were similar between groups [ 24 ]. While many researchers were prepared to share data, results of a survey identified a preference of researchers to collect data themselves, followed by their team, or by close colleagues [ 26 ].

Differences in the stated rate of data sharing compared to the actual rate of sharing [ 25 ] were noted. In a large quantitative study ( N = 1329), nearly one third of respondents chose not to answer whether they make their data available to others; of those who responded to the question, 46% reported they do not make their data electronically available to others [ 33 ]. By discipline, differences in the rate of refusal to share were higher in chemistry compared to non-science disciplines such as sociology [ 25 ]. Respondents who were more academically productive (> 25 articles over the past 3 years) reported that they have or would withhold data to protect research subjects less frequently than those who were less academically productive or received industry funding [ 32 ].

Attitudes to sharing de-identified data via data repositories was discussed in two articles [ 29 , 31 ]. A majority of respondents in one study indicated that de-identified data should be shared via a repository and that it should be shared when requested. A lack of experience in uploading data to repositories was noted as a barrier [ 29 ]. When data was shared, most researchers included additional materials to support their data including materials such as metadata or a protocol description [ 29 ].

Two articles [ 28 , 30 ] focused on processes and variables associated with sharing. Factors such as norms, data infrastructure/organisational support, and research communities were identified as important factors in a researcher’s attitude towards data sharing [ 28 , 30 ]. A moderate correlation between data reuse and data sharing suggest that these two variables are not linked. Furthermore, sharing data compared to self-reported data reuse were also only moderately associated (Pearson’s correlation of 0.25 ( p ≤ 0.001)) [ 26 ].

Predictors of data sharing and norms

Two articles [ 26 , 30 ] discussed the role of social norms and an individual’s willingness to share health data. Perceived efficacy and efficiency of data reuse were strong predictors of data sharing [ 26 ] and the development of a ‘positive social norm towards data sharing support(s)[ed] researcher data reuse intention’ [ 30 ] (p. 400).

Policy framework

The establishment of clear policies and procedures to support data sharing was highlighted in two articles [ 22 , 28 ]. The presence of ambiguous data sharing policies was noted as a major limitation, particularly in primary care and the increased adoption of health informatics systems [ 22 ]. Policies that support an efficient exchange system allowing for the maximum amount of data sharing are preferred and may include incentives such as formal recognition and financial reimbursement; a framework for this is proposed in Fecher et al. [ 28 ].

Research funding

The requirement to share data funded by public monies was discussed in one article [ 25 ]. Some cases were reported of researchers refusing to share data funded by tax-payer funds; reasons for refusal included a potential reduction in future funding or publishing opportunities [ 25 ].

Access and ownership

Articles relating to access and ownership were grouped together and seven subthemes were identified.

Access, information systems, and metadata

Ten articles [ 19 , 20 , 21 , 22 , 26 , 27 , 29 , 33 , 34 , 35 ] discussed the themes of access, information systems, and the use of metadata. Ensuring privacy protections in a prospective manner was seen as important for data held in registries [ 19 ]. In the setting of mental health, researchers indicated that patients should have more choices for controlling access to shared registry data [ 35 ]. The use of guardianship committees [ 19 ] or gate-keepers [ 20 ] was seen as important in ensuring the security and access to data held in registries by some respondents; however, many suggested that a researcher should relinquish control of the data collection once curated or released, unless embargoed [ 20 ]. Reasons for maintaining control over registry data included ensuring attribution, restricting commercial research, protecting sensitive (non-personal) information, and limiting certain types of research [ 27 ]. Concerns about security and confidentiality were noted as important and assurances about these needed to be provided; accountability and transparency mechanisms also need to be included [ 21 ]. Many respondents believed that access to the registry data by pharmaceutical companies and marketing agencies was not considered appropriate [ 19 ].

Respondents to a survey from medicine and social sciences were less likely to agree to have all data included on a central repository with no restrictions [ 33 ]; notably, this was also reflected in the results of qualitative research which indicated that health professionals were more cautious than patients about the inclusion of personal data within a disease specific register [ 19 ].

While many researchers stated that they commonly shared data directly with other researchers, most did not have experience with uploading data to repositories [ 29 ]. Results from a survey indicated that younger respondents have more data access restrictions and thought that their data is easier to access significantly more than older respondents [ 34 ]. In the primary care setting, concerns were noted about the potential for practitioners to block patient involvement in a registry by refusing access to a patient’s personal data or by not giving permission for the data to be extracted from their clinical system [ 21 ]. There was also resistance in primary care towards health data amalgamation undertaken for an unspecified purpose [ 22 ]; respondents were not in favour of systems which included unwanted functionality (do not want/need), inadequate attributes (capability and receptivity) of the practice, or undesirable impact on the role of the general practitioner (autonomy, status, control, and workflow) [ 22 ].

Access to ‘comprehensive metadata (is needed) to support the correct interpretation of the data’ [ 26 ] (p. 4) at a later stage. When additional materials were shared, most researchers shared contextualising information or a description of the experimental protocol [ 29 ]. The use of metadata standards was not universal with some respondents using their own [ 33 ].

Several articles highlighted the impact of data curation on researchers’ time [ 20 , 21 , 22 , 29 , 33 ] or finances [ 24 , 28 , 29 , 33 , 34 ]; these were seen as potential barriers to increased registry adoption [ 21 ]. Tasks required for curation included preparing data for dissemination in a usable format and uploading data to repositories. The importance of ensuring that the data is accurately preserved for future reuse was highlighted; it must be presented in a retriable and auditable manner [ 20 ]. The amount of time required to curate data ranged from ‘no additional time’ to ‘greater than ten hours’ [ 29 ]. In one study, no clinical respondent had their data in a sharable format [ 29 ]. In the primary care setting, health information systems which promote sharing were not seen as being beneficial if they required standardisation of processes and/or sharing of clinical notes [ 22 ]. Further, spending time on non-medical issues in a time poor environment [ 22 ] was identified as a barrier. Six articles described the provision of funding or technical support to ensure data storage, maintenance, and the ability to provide access to data when requested. All noted a lack of funding and time as a barrier to increased sharing data [ 20 , 24 , 28 , 29 , 33 , 34 ].

Results of qualitative research indicated a range of views regarding consent mechanisms for future data use [ 18 , 19 , 20 , 23 , 35 ]. Consenting for future research can be complex given that the exact nature of the study will be unknown, and therefore some respondents suggested that a broad statement on future data uses be included [ 19 , 20 ] during the consent process. In contrast, other participants indicated that the current consent processes were too broad and do not reflect patient preferences sufficiently [ 35 ]. The importance of respecting the original consent in all future research was noted [ 20 ]. It was suggested that seeking additional consent for future data use may discourage participation in the original study [ 20 ]. Differences in views regarding the provision of detailed information about sharing individual level data was noted suggesting that the researchers wanted to exert some control over data they had collected [ 20 ]. An opt-out consent process was considered appropriate in some situations [ 18 ] but not all; some respondents suggested that consent to use a patient’s medical records was not required [ 18 ]. There was support by some researchers to provide patients with the option to ‘opt-in’ to different levels of involvement in a registry setting [ 19 ]. Providing patients more granular choices when controlling access to their medical data [ 35 ] was seen as important.

The attitudes of ethics and review boards ( N = 30) towards the use of medical records for research was discussed in one article [ 23 ]. While 38% indicated that no further consent would be required, 47% required participant consent, and 10% said that the requirement for consent would depend on how the potentially identifying variables would be managed [ 23 ]. External researcher access to medical record data was associated with a requirement for consent [ 23 ].

Acknowledgement

The importance of establishing mechanisms which acknowledge the use of shared data were discussed in four articles [ 27 , 29 , 33 , 34 ]. A significant proportion of respondents to a survey believed it was fair to use other researchers’ data if they acknowledged the originator and the funding body in all disseminated work or as a formal citation in published works [ 33 ]. Other mechanisms for acknowledging the data originator included opportunities to collaborate on the project, reciprocal data sharing agreements, allowing the originator to review or comment on results, but not approve derivative works, or the provision of a list of products making use of the data and co-authorship [ 33 , 34 ]. In the setting of controlled data collections, survey results indicated that ensuring attribution was a motivator for controlled access [ 27 ]. Over half of respondents in one survey believed it was fair to disseminate results based either in whole or part without the data provider’s approval [ 33 ]. No significant differences in mechanisms for acknowledgement were noted between clinical and scientific participants; mechanisms included co-authorship, recognition in the acknowledgement section of publications, and citation in the bibliography [ 29 ]. No consentient method for acknowledging shared data reuse was identified [ 29 ].

Data ownership was identified as a potential barrier to increased data sharing in academic research [ 28 ]. In the setting of control of data collections, survey respondents indicated that they wanted to maintain some control over the dataset, which is suggestive of researchers having a perceived ownership of their research data [ 28 ]. Examples of researchers extending ownership over their data include the right to publish first and the control of access to datasets [ 28 ]. Fecher et al. noted that the idea of data ownership by the researcher is not a position always supported legally; ‘the ownership and rights of use, privacy, contractual consent and copyright’ are subsumed [ 28 ] (p. 15). Rather data sharing is restricted by privacy law, which is applied to datasets containing data from individuals. The legal uncertainty about data ownership and the complexity of law can deter data sharing [ 28 ].

Promotion/professional criteria

The role of data sharing and its relation to promotion and professional criteria were discussed in two articles [ 24 , 28 ]. The requirement to share data is rarely a promotion or professional criterion, rather the systems are based on grants and publication history [ 24 , 28 ]. One study noted that while the traditional link between publication history and promotion remains, it is ‘likely that funders will continue to get sub-optimal returns on their investments, and that data will continue to be inefficiently utilised and disseminated’ [ 24 ] (p. 49).

This systematic literature review highlights the ongoing complexity associated with increasing data sharing across the sciences. No additional literature meeting the inclusion criteria were identified in the period between the data search and the submission of this manuscript. Data gaps identified include a paucity of information specifically related to the attitudes of breast cancer researchers and health professionals towards the secondary use and sharing of health administrative and clinical trial data.

While the majority of respondents believed the principles of data sharing were sound, significant barriers remain: issues of consent, privacy, information security, and ownership were key themes throughout the literature. Data ownership and acknowledgement, trust, and policy frameworks influenced sharing practice, as did age, discipline, professional focus, and world region.

Addressing concerns of privacy, trust, and information security in a technologically changing and challenging landscape is complex. Ensuring the balance between privacy and sharing data for the greater good will require the formation of policy and procedures, which promote both these ideals.

Establishing clear consent mechanisms would provide greater clarity for all parties involved in the data sharing debate. Ensuring that appropriate consent for future research, including secondary data analysis and sharing and linking of datasets, is gained at the point of data collection, would continue to promote research transparency and provide healthcare professionals and researchers with knowledge that an individual is aware that their data may be used for other research purposes. The establishment of policy which supports and promotes the secondary use of data and data sharing will assist in the normalisation of this type of health research. With the increased promotion of data sharing and secondary data analysis as an established tool in health research, over time barriers to its use, including perceptions of ownership and concerns regarding privacy and consent, will decrease.

The importance of establishing clear and formal processes associated with acknowledging the use of shared data has been underscored in the results presented. Initiatives such as the Bioresource Research Impact Factor/Framework (BRIF) [ 36 ] and the Citation of BioResources in journal Articles (CoBRA) [ 37 ] have sought to formalise the process. However, increased academic recognition of sharing data for secondary analysis requires further development and the allocation of funding to ensure that collected data is in a usable, searchable, and retrievable format. Further, there needs to be a shift away from the traditional criteria of academic promotion, which includes research outputs, to one which is inclusive of a researcher’s data sharing history and the availability of their research dataset for secondary analysis.

The capacity to identify and use already collected data was identified as a barrier. Moves to make data findable, accessible, interoperable, and reusable (FAIR) have been promoted as a means to encourage greater accessibility to data in a systematic way [ 38 ]. The FAIR principles focus on data characteristics and should be interpreted alongside the collective benefit, authority to control, responsibility, and ethics (CARE) principles established by the Global Indigenous Data Alliance (GIDA) which a people and purpose orientated [ 39 ].

Limitations

The papers included in this study were limited to those indexed on major databases. Some literature on this topic may have been excluded if it was not identified during the grey literature and hand searching phases.

Implications

Results of this systematic literature review indicate that while there is broad agreement for the principles of data sharing in medical research, there remain disagreements about the infrastructure and procedures associated with the data sharing process. Additional work is therefore required on areas such as acknowledgement, curation, and data ownership.

While the literature confirms that there is overall support for data sharing in medical and scientific research, there remain significant barriers to its uptake. These include concerns about privacy, consent, information security, and data ownership.

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Abbreviations

Bioresource Research Impact Factor/Framework

Collective benefit, authority to control, responsibility, and ethics

Citation of BioResources in journal Articles

Findable, accessible, interoperable, and reusable

Global Indigenous Data Alliance

Human immunodeficiency virus/acquired immunodeficiency

International Council of Medical Journal Editors

Multiple sclerosis

Surveillance, Epidemiology, and End Results

Tuberculosis

The Cancer Genome Atlas

Huesch MD, Mosher TJ. Using it or losing it? The case for data scientists inside health care. NEJM Catalyst. 2017.

Green LW. Closing the chasm between research and practice: evidence of and for change. Health Promot J Australia. 2014;25(1):25–9.

Article   Google Scholar  

Morris ZS, Wooding S, Grant J. The answer is 17 years, what is the question: understanding time lags in translational research. J R Soc Med. 2011;104(12):510–20.

Article   PubMed   PubMed Central   Google Scholar  

Goldacre B. Are clinical trial data shared sufficiently today? No. Br Med J. 2013;347:f1880.

Goldacre B, Gray J. OpenTrials: towards a collaborative open database of all available information on all clinical trials. Trials. 2016;17(1):164.

Kostkova P, Brewer H, de Lusignan S, Fottrell E, Goldacre B, Hart G, et al. Who owns the data? Open data for healthcare. Front Public Health. 2016;4.

Elliott M. Seeing through the lies: innovation and the need for transparency. Gresham College Lecture Series; 23 November 2016; Museum of London. 2016.

European Medicines Agency. Publication and access to clinical-trial data. London: European Medicines Agency; 2013.

Google Scholar  

Taichman DB, Backus J, Baethge C, Bauchner H, de Leeuw PW, Drazen JM, et al. Sharing clinical trial data: a proposal from the International Committee of Medical Journal Editors. J Am Med Assoc. 2016;315(5):467–8.

Article   CAS   Google Scholar  

National Institue of Health (NIH). The Cancer Genome Atlas (TCGA): program overview United States of America: National Institue of Health (NIH); 2019 [Available from: https://cancergenome.nih.gov/abouttcga/overview ].

National Institue of Health (NIH). Surveillance, Epidemiology, and End Results (SEER) Program Washington: The Government of United States of Ameica; 2019 [Available from: https://seer.cancer.gov ].

Castellani J. Are clinical trial data shared sufficiently today? Yes. Br Med J. 2013;347:f1881.

Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097–e.

Veritas Health Innovation. Covidence systematic review software. Melbourne: Cochrane Collaboration; 2018.

Kmet LM, Cook LS, Lee RC. Standard quality assessment criteria for evaluating primary research papers from a variety of fields; 2004.

Lockwood C, Munn Z, Porritt K. Qualitative research synthesis: methodological guidance for systematic reviewers utilizing meta-aggregation. Int J Evidence Based Healthcare. 2015;13(3):179–87.

Gale NK, Heath G, Cameron E, Rashid S, Redwood S. Using the framework method for the analysis of qualitative data in multi-disciplinary health research. BMC Med Res Methodol. 2013;13(1):117.

Asai A, Ohnishi M, Nishigaki E, Sekimoto M, Fukuhara S, Fukui T. Attitudes of the Japanese public and doctors towards use of archived information and samples without informed consent: preliminary findings based on focus group interviews. BMC Medical Ethics. 2002;3(1):1.

Article   PubMed Central   Google Scholar  

Baird W, Jackson R, Ford H, Evangelou N, Busby M, Bull P, et al. Holding personal information in a disease-specific register: the perspectives of people with multiple sclerosis and professionals on consent and access. J Med Ethics. 2009;35(2):92–6.

Article   CAS   PubMed   Google Scholar  

Denny SG, Silaigwana B, Wassenaar D, Bull S, Parker M. Developing ethical practices for public health research data sharing in South Africa: the views and experiences from a diverse sample of research stakeholders. J Empiric Res Human Res Ethics. 2015;10(3):290–301.

Grant A, Ure J, Nicolson DJ, Hanley J, Sheikh A, McKinstry B, et al. Acceptability and perceived barriers and facilitators to creating a national research register to enable 'direct to patient' enrolment into research: the Scottish Health Research register (SHARE). BMC Health Serv Res. 2013;13(1):422.

Knight J, Patrickson M, Gurd B. Understanding GP attitudes towards a data amalgamating health informatics system. Electron J Health Inform. 2008;3(2):12.

Willison DJ, Emerson C, Szala-Meneok KV, Gibson E, Schwartz L, Weisbaum KM, et al. Access to medical records for research purposes: varying perceptions across research ethics boards. J Med Ethics. 2008;34(4):308–14.

Bezuidenhout L, Chakauya E. Hidden concerns of sharing research data by low/middle-income country scientists. Glob Bioethics. 2018;29(1):39–54.

Ceci SJ. Scientists' attitudes toward data sharing. Sci Technol Human Values. 1988;13(1-2):45–52.

Curty RG, Crowston K, Specht A, Grant BW, Dalton ED. Attitudes and norms affecting scientists’ data reuse. PLoS One. 2017;12(12):e0189288.

Article   PubMed   PubMed Central   CAS   Google Scholar  

Eschenfelder K, Johnson A. The limits of sharing: controlled data collections. Proc Am Soc Inf Sci Technol. 2011;48(1):1–10.

Fecher B, Friesike S, Hebing M. What drives academic data sharing? PLoS One. 2015;10(2):e0118053.

Federer LM, Lu Y-L, Joubert DJ, Welsh J, Brandys B. Biomedical data sharing and reuse: attitudes and practices of clinical and scientific research staff. PLoS One. 2015;10(6):e0129506.

Joo S, Kim S, Kim Y. An exploratory study of health scientists’ data reuse behaviors: examining attitudinal, social, and resource factors. Aslib J Inf Manag. 2017;69(4):389–407.

Rathi V, Dzara K, Gross CP, Hrynaszkiewicz I, Joffe S, Krumholz HM, et al. Sharing of clinical trial data among trialists: a cross sectional survey. Br Med J. 2012;345:e7570.

Rathi VK, Strait KM, Gross CP, Hrynaszkiewicz I, Joffe S, Krumholz HM, et al. Predictors of clinical trial data sharing: exploratory analysis of a cross-sectional survey. Trials. 2014;15(1):384.

Tenopir C, Allard S, Douglass K, Aydinoglu AU, Wu L, Read E, et al. Data sharing by scientists: practices and perceptions. PLoS One. 2011;6(6):e21101.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Tenopir C, Dalton ED, Allard S, Frame M, Pjesivac I, Birch B, et al. Changes in data sharing and data reuse practices and perceptions among scientists worldwide. PLoS One. 2015;10(8):e0134826.

Grando MA, Murcko A, Mahankali S, Saks M, Zent M, Chern D, et al. A study to elicit behavioral health patients' and providers' opinions on health records consent. J Law Med Ethics. 2017;45(2):238–59.

Howard HC, Mascalzoni D, Mabile L, Houeland G, Rial-Sebbag E, Cambon-Thomsen A. How to responsibly acknowledge research work in the era of big data and biobanks: ethical aspects of the bioresource research impact factor (BRIF). J Commun Genetics. 2018;9(2):169–76.

Bravo E, Calzolari A, De Castro P, Mabile L, Napolitani F, Rossi AM, et al. Developing a guideline to standardize the citation of bioresources in journal articles (CoBRA). BMC Med. 2015;13:33.

Boeckhout M, Zielhuis GA, Bredenoord AL. The FAIR guiding principles for data stewardship: fair enough? Eur J Human Genetics. 2018;26(7):931–6.

Global Indigenous Data Alliance (GIDA). CARE principles for indigenous data governance GIDA; 2019 [Available from: https://www.gida-global.org/care ].

Download references

Acknowledgements

The authors would like to thank Ms. Ngaire Pettit-Young, Information First, Sydney, NSW, Australia, for her assistance in developing the search strategy.

This project was supported by the Sydney Vital, Translational Cancer Research, through a Cancer Institute NSW competitive grant. The views expressed herein are those of the authors and are not necessarily those of the Cancer Institute NSW. FB is supported in her academic role by the Friends of the Mater Foundation.

Author information

Authors and affiliations.

Northern Clinical School, Faculty of Medicine, University of Sydney, Sydney, Australia

Elizabeth Hutchings & Frances M. Boyle

Department of Psychology, The University of Sydney, Sydney, NSW, Australia

Max Loomes & Phyllis Butow

Centre for Medical Psychology & Evidence-Based Decision-Making (CeMPED), Sydney, Australia

Phyllis Butow

Psycho-Oncology Co-Operative Research Group (PoCoG), The University of Sydney, Sydney, NSW, Australia

Patricia Ritchie Centre for Cancer Care and Research, Mater Hospital, North Sydney, Sydney, Australia

Frances M. Boyle

You can also search for this author in PubMed   Google Scholar

Contributions

EH, PB, and FB were responsible for developing the study concept and the development of the protocol. EH and ML were responsible for the data extraction and data analysis. FB and PB supervised this research. All authors participated in interpreting the findings and contributed the intellectual content of the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Elizabeth Hutchings .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

EH, ML, PB, and FB declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Hutchings, E., Loomes, M., Butow, P. et al. A systematic literature review of researchers’ and healthcare professionals’ attitudes towards the secondary use and sharing of health administrative and clinical trial data. Syst Rev 9 , 240 (2020). https://doi.org/10.1186/s13643-020-01485-5

Download citation

Received : 27 December 2019

Accepted : 17 September 2020

Published : 12 October 2020

DOI : https://doi.org/10.1186/s13643-020-01485-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Secondary data analysis

Systematic Reviews

ISSN: 2046-4053

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

literature review on health care administration

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • Write for Us
  • BMJ Journals

You are here

  • Volume 19, Issue 1
  • Reviewing the literature
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • Joanna Smith 1 ,
  • Helen Noble 2
  • 1 School of Healthcare, University of Leeds , Leeds , UK
  • 2 School of Nursing and Midwifery, Queens's University Belfast , Belfast , UK
  • Correspondence to Dr Joanna Smith , School of Healthcare, University of Leeds, Leeds LS2 9JT, UK; j.e.smith1{at}leeds.ac.uk

https://doi.org/10.1136/eb-2015-102252

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Implementing evidence into practice requires nurses to identify, critically appraise and synthesise research. This may require a comprehensive literature review: this article aims to outline the approaches and stages required and provides a working example of a published review.

Are there different approaches to undertaking a literature review?

What stages are required to undertake a literature review.

The rationale for the review should be established; consider why the review is important and relevant to patient care/safety or service delivery. For example, Noble et al 's 4 review sought to understand and make recommendations for practice and research in relation to dialysis refusal and withdrawal in patients with end-stage renal disease, an area of care previously poorly described. If appropriate, highlight relevant policies and theoretical perspectives that might guide the review. Once the key issues related to the topic, including the challenges encountered in clinical practice, have been identified formulate a clear question, and/or develop an aim and specific objectives. The type of review undertaken is influenced by the purpose of the review and resources available. However, the stages or methods used to undertake a review are similar across approaches and include:

Formulating clear inclusion and exclusion criteria, for example, patient groups, ages, conditions/treatments, sources of evidence/research designs;

Justifying data bases and years searched, and whether strategies including hand searching of journals, conference proceedings and research not indexed in data bases (grey literature) will be undertaken;

Developing search terms, the PICU (P: patient, problem or population; I: intervention; C: comparison; O: outcome) framework is a useful guide when developing search terms;

Developing search skills (eg, understanding Boolean Operators, in particular the use of AND/OR) and knowledge of how data bases index topics (eg, MeSH headings). Working with a librarian experienced in undertaking health searches is invaluable when developing a search.

Once studies are selected, the quality of the research/evidence requires evaluation. Using a quality appraisal tool, such as the Critical Appraisal Skills Programme (CASP) tools, 5 results in a structured approach to assessing the rigour of studies being reviewed. 3 Approaches to data synthesis for quantitative studies may include a meta-analysis (statistical analysis of data from multiple studies of similar designs that have addressed the same question), or findings can be reported descriptively. 6 Methods applicable for synthesising qualitative studies include meta-ethnography (themes and concepts from different studies are explored and brought together using approaches similar to qualitative data analysis methods), narrative summary, thematic analysis and content analysis. 7 Table 1 outlines the stages undertaken for a published review that summarised research about parents’ experiences of living with a child with a long-term condition. 8

  • View inline

An example of rapid evidence assessment review

In summary, the type of literature review depends on the review purpose. For the novice reviewer undertaking a review can be a daunting and complex process; by following the stages outlined and being systematic a robust review is achievable. The importance of literature reviews should not be underestimated—they help summarise and make sense of an increasingly vast body of research promoting best evidence-based practice.

  • ↵ Centre for Reviews and Dissemination . Guidance for undertaking reviews in health care . 3rd edn . York : CRD, York University , 2009 .
  • ↵ Canadian Best Practices Portal. http://cbpp-pcpe.phac-aspc.gc.ca/interventions/selected-systematic-review-sites / ( accessed 7.8.2015 ).
  • Bridges J , et al
  • ↵ Critical Appraisal Skills Programme (CASP). http://www.casp-uk.net / ( accessed 7.8.2015 ).
  • Dixon-Woods M ,
  • Shaw R , et al
  • Agarwal S ,
  • Jones D , et al
  • Cheater F ,

Twitter Follow Joanna Smith at @josmith175

Competing interests None declared.

Read the full text or download the PDF:

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Health Care Administration: A Systematic Literature Review - G Roland, Prof. M M Moleki

Profile image of Editor  IJIRMF

Related Papers

Gilbert Roland

Abstract: Purpose The aim of this systematic review is to highlight the significance of the health care administration to the health care setting by synthesizing the evidence on the roles and responsibilities discharged by these professionals. Methodology After a methodical search process, ten articles meeting inclusion criteria were analysed using a textual analysis technique. Practical implications Implementation of policies in the health sector requires support by up to date evidence. Proof scientifically built from a laborious systematic review process that benefits communities in favour of improving quality of their health care services. Findings The results of the analysis verified that health care system administrators have a responsibility to improve the processes of health care. Additionally, they are responsible for managing complicated and complex organizational issues. They are also expected to implement the policies, technologies, and evidence-based practices required to improve the wellbeing of patients. The training of health care professionals and application of cost-effective strategies are also included in their accountabilities. Originality These findings will add value to existing health care administration education programs as well as create better policies for organizations to provide improved health care quality-assurance services. Limitations This paper analyses recent published research primarily from developed nations. Hence, the conclusion cannot be generalized to the developing countries. Keywords: Administration, Health care, Systematic review, Community, Responsibility.

literature review on health care administration

Australian Health Review

Sandra Leggat

Implementation Science

Gisèle Bouchard

Background Decisions regarding health systems are sometimes made without the input of timely and reliable evidence, leading to less than optimal health outcomes. Healthcare organizations can implement tools and infrastructures to support the use of research evidence to inform decision-making. Objectives The purpose of this study was to profile the supports and instruments (i.e., programs, interventions, instruments or tools) that healthcare organizations currently have in place and which ones were perceived to facilitate evidence-informed decision-making. Methods In-depth semi-structured telephone interviews were conducted with individuals in three different types of positions (i.e., a senior management team member, a library manager, and a ‘knowledge broker’) in three types of healthcare organizations (i.e., regional health authorities, hospitals and primary care practices) in two Canadian provinces (i.e., Ontario and Quebec). The interviews were taped, transcribed, and then analyz...

Mohammad Hasan Imani-Nasab

Background: Scientific evidence is the basis for improving public health; decision-making without sufficient attention to evidence may lead to unpleasant consequences. Despite efforts to create comprehensive guidelines and models for evidence-based decision-making (EBDM), there isn`t any to make the best decisions concerning scarce resources and unlimited needs. The present study aimed to develop a comprehensive applied framework for EBDM. Methods: This was a meta-synthesis including two phases of a Scoping Review (SR) and a Best-Fit Framework (BFF) synthesis conducted in 2019. A scoping review was done for the comprehensive review of the existing published studies in this area. The six-stage approach of Arksey and O’Malley was applied. Six main databases including PUBMED, Scopus, Web of Science, Science Direct, EMBASE, and ProQuest were searched using related keywords. Data were extracted and analyzed via thematic analysis. Results of the scoping review were then synthesized to ach...

Nepal Journal of Epidemiology

Dr. Russell Kabir

Systematic reviews that are out-of-date delay policymaking, create controversy, and can erode trust in research. To avoid this issue, it is preferable to keep summaries of the study evidence. Living evidence is a synthesis approach that provides up-to-date rigorous research evidence summaries to decision-makers. This strategy is particularly useful in rapidly expanding research domains, uncertain existing evidence, and new research that may impact policy or practice, ensuring that physicians have access to the most recent evidence. Addressing global challengesranging from public health crises to climate change or political instability-requires evidencebased judgements. An obsolete, biased, or selective information poses risks of poor decisions and resource misallocation. The relatively nascent practice of living evidence proves invaluable in maintaining continuous interest and team engagement. The concept of living evidence has been particularly relevant during the COVID-19 pandemic due to the rapidly evolving nature of the virus, the urgent need for timely information, and the continuous emergence of new research findings. Although the COVID-19 pandemic accelerated the adoption of evidence systems, researchers and funders of research should rigorously test the living-evidence model across diverse domains to further advance and optimize its methodology.

Nursing Inquiry

Peter Griffiths

Health information and libraries journal

Andrew Booth

Jennie Popay

British Journal of Management

Palminder Smart , David Tranfield

Karl Claxton

Background - This project developed as a result of the activities of the Research Teams at the Centre for Health Economics, University of York, and ScHARR at the University of Sheffield in the methods and application of decision analysis and value of information analysis as a means of informing the research recommendations made by NICE, as part of its Guidance to the NHS in England and Wales, and informing the deliberations of the NICE Research and Development Committee. Objectives - The specific objectives of the pilot study were to: • Demonstrate the benefits of using appropriate decision analytic methods and value of information analysis to inform research recommendations. • Establish the feasibility and resource implications of applying these methods in a timely way, to inform NICE. • Identify critical issues and methodological challenges to the use of value of information methods for research recommendations (with particular regard to the new reference case as a suitable basis ...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

RELATED PAPERS

Studies in health technology and informatics

Itamar Shabtai

Zeitschrift für Evidenz, Fortbildung und Qualität im Gesundheitswesen

Health informatics journal

Cost Effectiveness and Resource Allocation

Inger Scheel

Journal of Nursing Ufpe Online

Tayane Oliveira

Journal of General Internal Medicine

Journal of Advanced Nursing

Anne-Marie Brady

Health Policy and Planning

Sima Nedjat

Ethiopian Journal of Health Sciences

Leila Shahmoradi

Sima Marzban

Davide Nicolini

Implementation science : IS

Jessica Sheringham

Worldviews on Evidence-Based Nursing

A. Kothari , Maureen Dobbins

BMC Public Health

Maureen Dobbins

Internal and Emergency Medicine

Rosario Scaglione

BMC Medical Informatics and Decision Making

Amanda Clifford

Victoria Brazil , John Burke

Christopher McCabe

Worku Jimma

From Patient Choice to Global Policy

Anne Andermann

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

healthcare-logo

Article Menu

literature review on health care administration

  • Subscribe SciFeed
  • Recommended Articles
  • PubMed/Medline
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

A systematic literature review of health information systems for healthcare.

literature review on health care administration

1. Introduction

2. material and method, 3. discussion, 3.1. the evolution of health information systems, 3.2. his structural deployment, 3.3. health information systems benefits, 3.4. information system and knowledge management in the healthcare arena, 3.4.1. information system, 3.4.2. knowledge management, 4. conclusions, author contributions, institutional review board statement, informed consent statement, data availability statement, conflicts of interest.

  • Sahay, S.; Nielsen, P.; Latifov, M. Grand challenges of public health: How can health information systems support facing them? Health Policy Technol. 2018 , 7 , 81–87. [ Google Scholar ] [ CrossRef ]
  • English, R.; Masilela, T.; Barron, P.; Schonfeldt, A. Health information systems in South Africa. S. Afr. Health Rev. 2011 , 2011 , 81–89. [ Google Scholar ]
  • Bagayoko, C.O.; Tchuente, J.; Traoré, D.; Moukoumbi Lipenguet, G.; Ondzigue Mbenga, R.; Koumamba, A.P.; Ondjani, M.C.; Ndjeli, O.L.; Gagnon, M.P. Implementation of a national electronic health information system in Gabon: A survey of healthcare providers’ perceptions. BMC Med. Inform. Decis. Mak. 2020 , 20 , 202. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Berrueta, M.; Bardach, A.; Ciaponni, A.; Xiong, X.; Stergachis, A.; Zaraa, S.; Buekens, P. Maternal and neonatal data collection systems in low- and middle-income countries: Scoping review protocol. Gates Open Res. 2020 , 4 , 18. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Flora, O.C.; Margaret, K.; Dan, K. Perspectives on utilization of community based health information systems in Western Kenya. Pan Afr. Med. J. 2017 , 27 , 180. [ Google Scholar ] [ CrossRef ]
  • Rachmani, E.; Lin, M.C.; Hsu, C.Y.; Jumanto, J.; Iqbal, U.; Shidik, G.F.; Noersasongko, E. The implementation of an integrated e-leprosy framework in a leprosy control program at primary health care centers in Indonesia. Int. J. Med. Inform. 2020 , 140 , 104155. [ Google Scholar ] [ CrossRef ]
  • Almunawar, M.N.; Anshari, M. Health information systems (HIS): Concept and technology. arXiv 2012 , arXiv:1203.3923. [ Google Scholar ]
  • Haule, C.D.; Muhanga, M.; Ngowi, E. The what, why, and how of health information systems: A systematic review. Sub Sahar. J. Soc. Sci. Humanit. 2022 , 1 , 37–43. Available online: http://41.73.194.142/bitstream/handle/123456789/4398/Paper%205.pdf?sequence=1&isAllowed=y (accessed on 1 February 2023).
  • Epizitone, A.; Moyane, S.P.; Agbehadji, I.E. Health Information System and Health Care Applications Performance in the Healthcare Arena: A Bibliometric Analysis. Healthcare 2022 , 10 , 2273. [ Google Scholar ] [ CrossRef ]
  • Haux, R. Health information systems–past, present, future. Int. J. Med. Inform. 2006 , 75 , 268–281. [ Google Scholar ] [ CrossRef ]
  • Malaquias, R.S.; Filho, I.M.B. Middleware for Healthcare Systems: A Systematic Mapping. In Proceedings of the 21st International Conference on Computational Science and Its Applications, ICCSA 2021, Cagliari, Italy, 13–16 September 2021; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blecic, I., Taniar, D., Apduhan, B.O., Rocha, A.M., Tarantino, E., Torre, C.M., Eds.; Springer Science and Business Media Deutschland GmbH: Cham, Switzerland, 2021; Volume 12957, pp. 394–409. [ Google Scholar ] [ CrossRef ]
  • Lippeveld, T. Routine health information systems: The glue of a unified health system. In Proceedings of the Keynote address at the Workshop on Issues and Innovation in Routine Health Information in Developing Countries, Potomac, MD, USA, 14–16 March 2001. [ Google Scholar ]
  • AbouZahr, C.; Boerma, T. Health information systems: The foundations of public health. Bull. World Health Organ. 2005 , 83 , 578–583. [ Google Scholar ]
  • Bogaert, P.; Van Oyen, H. An integrated and sustainable EU health information system: National public health institutes’ needs and possible benefits. Arch. Public Health 2017 , 75 , 3. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Bogaert, P.; van Oers, H.; Van Oyen, H. Towards a sustainable EU health information system infrastructure: A consensus driven approach. Health Policy 2018 , 122 , 1340–1347. [ Google Scholar ] [ CrossRef ]
  • Panerai, R. Health Information Systems ; Global Perspective of Heath; Department of Medical Physics, University of Leicester: Leicester, UK, 2014; pp. 1–6. [ Google Scholar ]
  • Garcia, A.P.; De la Vega, S.F.; Mercado, S.P. Health Information Systems for Older Persons in Select Government Tertiary Hospitals and Health Centers in the Philippines: Cross-sectional Study. J. Med. Internet Res. 2022 , 24 , e29541. [ Google Scholar ] [ CrossRef ]
  • Epizitone, A. Framework to Develop a Resilient and Sustainable Integrated Information System for Health Care Applications: A Review. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2022 , 13 , 477–481. [ Google Scholar ] [ CrossRef ]
  • Walcott-Bryant, A.; Ogallo, W.; Remy, S.L.; Tryon, K.; Shena, W.; Bosker-Kibacha, M. Addressing Care Continuity and Quality Challenges in the Management of Hypertension: Case Study of the Private Health Care Sector in Kenya. J. Med. Internet Res. 2021 , 23 , e18899. [ Google Scholar ] [ CrossRef ]
  • Malekzadeh, S.; Hashemi, N.; Sheikhtaheri, A.; Hashemi, N.S. Barriers for Implementation and Use of Health Information Systems from the Physicians’ Perspectives. Stud. Health Technol. Inform. 2018 , 251 , 269–272. [ Google Scholar ]
  • Tossy, T. Major challenges and constraint of integrating health information systems in african countries: A Namibian experience. Int. J. Inf. Commun. Technol. 2014 , 4 , 273–279. Available online: https://www.researchgate.net/profile/Titus-Tossy-2/publication/272163842_Major_Challenges_and_Constraint_of_Integrating_Health_Information_Systems_in_African_Countries_A_Namibian_Experience/links/54dca52b0cf28a3d93f8233d/Major-Challenges-and-Constraint-of-Integrating-Health-Information-Systems-in-African-Countries-A-Namibian-Experience.pdf (accessed on 1 February 2023).
  • Vaganova, E.; Ishchuk, T.; Zemtsov, A.; Zhdanov, D. Health Information Systems: Background and Trends of Development Worldwide and in Russia. In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies-Volume 5: HEALTHINF, (BIOSTEC 2017), Porto, Portugal, 21–23 February 2017; pp. 424–428. [ Google Scholar ] [ CrossRef ]
  • Thomas, J.; Carlson, R.; Cawley, M.; Yuan, Q.; Fleming, V.; Yu, F. The Gap Between Technology and Ethics, Especially in Low-and Middle-Income Country Health Information Systems: A Bibliometric Study. Stud. Health Technol. Inform. 2022 , 290 , 902–906. [ Google Scholar ] [ PubMed ]
  • Namageyo-Funa, A.; Aketch, M.; Tabu, C.; MacNeil, A.; Bloland, P. Assessment of select electronic health information systems that support immunization data capture—Kenya, 2017. BMC Health Serv. Res. 2018 , 18 , 621. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Lindberg, M.H.; Venkateswaran, M.; Abu Khader, K.; Awwad, T.; Ghanem, B.; Hijaz, T.; Morkrid, K.; Froen, J.F. eRegTime, Efficiency of Health Information Management Using an Electronic Registry for Maternal and Child Health: Protocol for a Time-Motion Study in a Cluster Randomized Trial. JMIR Res. Protoc. 2019 , 8 , e13653. [ Google Scholar ] [ CrossRef ]
  • Tummers, J.; Tekinerdogan, B.; Tobi, H.; Catal, C.; Schalk, B. Obstacles and features of health information systems: A systematic literature review. Comput. Biol. Med. 2021 , 137 , 104785. [ Google Scholar ] [ CrossRef ]
  • Malik, M.; Kazi, A.F.; Hussain, A. Adoption of health technologies for effective health information system: Need of the hour for Pakistan. PLoS ONE 2021 , 16 , e0258081. [ Google Scholar ] [ CrossRef ]
  • De Carvalho Junior, M.A.; Bandiera-Paiva, P. Health Information System Role-Based Access Control Current Security Trends and Challenges. J. Healthc Eng. 2018 , 2018 , 6510249. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Taye, G. Improving health care services through enhanced Health Information System: Human capacity development Model. Ethiop. J. Health Dev. 2021 , 35 , 42–49. Available online: https://www.ajol.info/index.php/ejhd/article/view/210752 (accessed on 1 February 2023).
  • Sligo, J.; Gauld, R.; Roberts, V.; Villa, L. A literature review for large-scale health information system project planning, implementation and evaluation. Int. J. Med. Inform. 2017 , 97 , 86–97. [ Google Scholar ] [ CrossRef ]
  • Bosch-Capblanch, X.; Oyo-Ita, A.; Muloliwa, A.M.; Yapi, R.B.; Auer, C.; Samba, M.; Gajewski, S.; Ross, A.; Krause, L.K.; Ekpenyong, N.; et al. Does an innovative paper-based health information system (PHISICC) improve data quality and use in primary healthcare? Protocol of a multicountry, cluster randomised controlled trial in sub-Saharan African rural settings. BMJ Open 2021 , 11 , e051823. [ Google Scholar ] [ CrossRef ]
  • Suresh, L.; Singh, S.N. Studies in ICT and Health Information System. Int. J. Inf. Libr. Soc. 2014 , 3 , 16–24. [ Google Scholar ]
  • Isleyen, F.; Ulgu, M.M. Data Transfer Model for HIS and Developers Opinions in Turkey. Stud. Health Technol. Inform. 2020 , 270 , 557–561. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Jeffery, C.; Pagano, M.; Hemingway, J.; Valadez, J.J. Hybrid prevalence estimation: Method to improve intervention coverage estimations. Proc. Natl. Acad. Sci. USA 2018 , 115 , 13063–13068. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Sawadogo-Lewis, T.; Keita, Y.; Wilson, E.; Sawadogo, S.; Téréra, I.; Sangho, H.; Munos, M. Can We Use Routine Data for Strategic Decision Making? A Time Trend Comparison Between Survey and Routine Data in Mali. Glob. Health Sci. Pract. 2021 , 9 , 869–880. [ Google Scholar ] [ CrossRef ]
  • Kpobi, L.; Swartz, L.; Ofori-Atta, A.L. Challenges in the use of the mental health information system in a resource-limited setting: Lessons from Ghana. BMC Health Serv. Res. 2018 , 18 , 98. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Feteira-Santos, R.; Camarinha, C.; Nobre, M.D.; Elias, C.; Bacelar-Nicolau, L.; Costa, A.S.; Furtado, C.; Nogueira, P.J. Improving morbidity information in Portugal: Evidence from data linkage of COVID-19 cases surveillance and mortality systems. Int. J. Med. Inform. 2022 , 163 , 104763. [ Google Scholar ] [ CrossRef ]
  • Ker, J.I.; Wang, Y.C.; Hajli, N. Examining the impact of health information systems on healthcare service improvement: The case of reducing in patient-flow delays in a US hospital. Technol. Forecast. Soc. Chang. 2018 , 127 , 188–198. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Alahmar, A.; AlMousa, M.; Benlamri, R. Automated clinical pathway standardization using SNOMED CT- based semantic relatedness. Digital Health 2022 , 8 , 1–17. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Krasuska, M.; Williams, R.; Sheikh, A.; Franklin, B.; Hinder, S.; TheNguyen, H.; Lane, W.; Mozaffar, H.; Mason, K.; Eason, S.; et al. Driving digital health transformation in hospitals: A formative qualitative evaluation of the English Global Digital Exemplar programme. BMJ Health Care Inform. 2021 , 28 , e100429. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Dunn, T.J.; Browne, A.; Haworth, S.; Wurie, F.; Campos-Matos, I. Service Evaluation of the English Refugee Health Information System: Considerations and Recommendations for Effective Resettlement. Int. J. Environ. Res. Public Health 2021 , 18 , 10331. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • See, E.J.; Bello, A.K.; Levin, A.; Lunney, M.; Osman, M.A.; Ye, F.; Ashuntantang, G.E.; Bellorin-Font, E.; Benghanem Gharbi, M.; Davison, S.; et al. Availability, coverage, and scope of health information systems for kidney care across world countries and regions. Nephrol. Dial. Transplant. 2022 , 37 , 159–167. [ Google Scholar ] [ CrossRef ]
  • Nyangena, J.; Rajgopal, R.; Ombech, E.A.; Oloo, E.; Luchetu, H.; Wambugu, S.; Kamau, O.; Nzioka, C.; Gwer, S.; Ndirangu, M.N. Maturity assessment of Kenya’s health information system interoperability readiness. BMJ Health Care Inform. 2021 , 28 , e100241. [ Google Scholar ] [ CrossRef ]
  • Ammenwerth, E.; Duftschmid, G.; Al-Hamdan, Z.; Bawadi, H.; Cheung, N.T.; Cho, K.H.; Goldfarb, G.; Gulkesen, K.H.; Harel, N.; Kimura, M.; et al. International Comparison of Six Basic eHealth Indicators Across 14 Countries: An eHealth Benchmarking Study. Methods Inf. Med. 2020 , 59 , e46–e63. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Tummers, J.; Tobi, H.; Schalk, B.; Tekinerdogan, B.; Leusink, G. State of the practice of health information systems: A survey study amongst health care professionals in intellectual disability care. BMC Health Serv. Res. 2021 , 21 , 1247. [ Google Scholar ] [ CrossRef ]
  • Steil, J.; Finas, D.; Beck, S.; Manzeschke, A.; Haux, R. Robotic Systems in Operating Theaters: New Forms of Team-Machine Interaction in Health Care On Challenges for Health Information Systems on Adequately Considering Hybrid Action of Humans and Machines. Methods Inf. Med. 2019 , 58 , E14–E25. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Sik, A.S.; Aydinoglu, A.U.; Son, Y.A. Assessing the readiness of Turkish health information systems for integrating genetic/genomic patient data: System architecture and available terminologies, legislative, and protection of personal data. Health Policy 2021 , 125 , 203–212. [ Google Scholar ] [ CrossRef ]
  • Bernardi, R.; Constantinides, P.; Nandhakumar, J. Challenging Dominant Frames in Policies for IS Innovation in Healthcare through Rhetorical Strategies. J. Assoc. Inf. Syst. 2017 , 18 , 81–112. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Liu, G.; Tsui, E.; Kianto, A. An emerging knowledge management framework adopted by healthcare workers in China to combat COVID-19. Knowl. Process Manag. 2022 , 29 , 284–295. [ Google Scholar ] [ CrossRef ]
  • Bernardi, R. Health Information Systems and Accountability in Kenya: A Structuration Theory Perspective. J. Assoc. Inf. Syst. 2017 , 18 , 931–958. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Epizitone, A. Critical Success Factors within an Enterprise Resource Planning System Implementation Designed to Support Financial Functions of a Public Higher Education Institution. Master’s Thesis, Durban University of Technology, Durban, South Africa, 2021. [ Google Scholar ]
  • Ostern, N.; Perscheid, G.; Reelitz, C.; Moormann, J. Keeping pace with the healthcare transformation: A literature review and research agenda for a new decade of health information systems research. Electron. Mark. 2021 , 31 , 901–921. [ Google Scholar ] [ CrossRef ]
  • Farnham, A.; Utzinger, J.; Kulinkina, A.V.; Winkler, M.S. Using district health information to monitor sustainable development. Bull. World Health Organ. 2020 , 98 , 69–71. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Faujdar, D.S.; Sahay, S.; Singh, T.; Kaur, M.; Kumar, R. Field testing of a digital health information system for primary health care: A quasi-experimental study from India. Int. J. Med. Inform. 2020 , 141 , 104235. [ Google Scholar ] [ CrossRef ]
  • Jabareen, H.; Khader, Y.; Taweel, A. Health information systems in Jordan and Palestine: The need for health informatics training. East. Mediterr. Health J. 2020 , 26 , 1323–1330. [ Google Scholar ] [ CrossRef ]
  • Ayabakan, S.; Bardhan, I.; Zheng, Z.; Kirksey, K. The Impact of Health Information Sharing on Duplicate Testing. MIS Q. 2017 , 41 , 1083–1104. [ Google Scholar ] [ CrossRef ]
  • Mayer, F.; Faglioni, L.; Agabiti, N.; Fenu, S.; Buccisano, F.; Latagliata, R.; Ricci, R.; Spiriti, M.A.A.; Tatarelli, C.; Breccia, M.; et al. A Population-Based Study on Myelodysplastic Syndromes in the Lazio Region (Italy), Medical Miscoding and 11-Year Mortality Follow-Up: The Gruppo Romano-Laziale Mielodisplasie Experience of Retrospective Multicentric Registry. Mediterr. J. Hematol. Infect. Dis. 2017 , 9 , e2017046. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Soltysik-Piorunkiewicz, A.; Morawiec, P. The Sustainable e-Health System Development in COVID 19 Pandemic–The Theoretical Studies of Knowledge Management Systems and Practical Polish Healthcare Experience. J. e-Health Manag. 2022 , 2022 , 1–12. [ Google Scholar ] [ CrossRef ]
  • Seo, K.; Kim, H.N.; Kim, H. Current Status of the Adoption, Utilization and Helpfulness of Health Information Systems in Korea. Int. J. Environ. Res. Public Health 2019 , 16 , 2122. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Mahendrawathi, E. Knowledge management support for enterprise resource planning implementation. Procedia Comput. Sci. 2015 , 72 , 613–621. [ Google Scholar ]
  • Kim, Y.M.; Newby-Bennett, D.; Song, H.J. Knowledge sharing and institutionalism in the healthcare industry. J. Knowl. Manag. 2012 , 16 , 480–494. [ Google Scholar ] [ CrossRef ]
  • Nwankwo, B.; Sambo, M.N. Effect of Training on Knowledge and Attitude of Health Care Workers towards Health Management Information System in Primary Health Centres in Northwest Nigeria. West Afr. J. Med. 2020 , 37 , 138–144. [ Google Scholar ] [ PubMed ]
  • Khader, Y.; Jabareen, H.; Alzyoud, S.; Awad, S.; Rumeileh, N.A.; Manasrah, N.; Mudallal, R.; Taweel, A. Perception and acceptance of health informatics learning among health-related students in Jordan and Palestine. In Proceedings of the 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), Aqaba, Jordan, 28 October–1 November 2018. [ Google Scholar ]
  • Benis, A.; Harel, N.; Barak Barkan, R.; Srulovici, E.; Key, C. Patterns of Patients’ Interactions With a Health Care Organization and Their Impacts on Health Quality Measurements: Protocol for a Retrospective Cohort Study. JMIR Res. Protoc. 2018 , 7 , e10734. [ Google Scholar ] [ CrossRef ]
  • Delnord, M.; Abboud, L.A.; Costa, C.; Van Oyen, H. Developing a tool to monitor knowledge translation in the health system: Results from an international Delphi study. Eur. J. Public Health 2021 , 31 , 695–702. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Dixon, B.E.; McGowan, J.J.; Cravens, G.D. Knowledge sharing using codification and collaboration technologies to improve health care: Lessons from the public sector. Knowl. Manag. Res. Pract. 2009 , 7 , 249–259. [ Google Scholar ] [ CrossRef ]
  • See, E.J.; Alrukhaimi, M.; Ashuntantang, G.E.; Bello, A.K.; Bellorin-Font, E.; Gharbi, M.B.; Braam, B.; Feehally, J.; Harris, D.C.; Jha, V.; et al. Global coverage of health information systems for kidney disease: Availability, challenges, and opportunitiesfor development. Kidney Int. Suppl. 2018 , 8 , 74–81. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Vicente, E.; Ruiz de Sabando, A.; García, F.; Gastón, I.; Ardanaz, E.; Ramos-Arroyo, M.A. Validation of diagnostic codes and epidemiologic trends of Huntington disease: A population-based study in Navarre, Spain. Orphanet J. Rare Dis. 2021 , 16 , 77. [ Google Scholar ] [ CrossRef ]
  • Colais, P.; Agabiti, N.; Davoli, M.; Buttari, F.; Centonze, D.; De Fino, C.; Di Folco, M.; Filippini, G.; Francia, A.; Galgani, S.; et al. Identifying Relapses in Multiple Sclerosis Patients through Administrative Data: A Validation Study in the Lazio Region, Italy. Neuroepidemiology 2017 , 48 , 171–178. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • De Sanjose, S.; Tsu, V.D. Prevention of cervical and breast cancer mortality in low- and middle-income countries: A window of opportunity. Int. J. Womens Health 2019 , 11 , 381–386. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Aung, E.; Whittaker, M. Preparing routine health information systems for immediate health responses to disasters. Health Policy Plan. 2013 , 28 , 495–507. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Cawthon, C.; Mion, L.C.; Willens, D.E.; Roumie, C.L.; Kripalani, S. Implementing routine health literacy assessment in hospital and primary care patients. Jt. Comm. J. Qual. Patient Saf. 2014 , 40 , 68–76. [ Google Scholar ] [ CrossRef ] [ Green Version ]
Source: Authors Core Enabling HIS Components Benefits
Malaquias and Filho [ ]Health ER
eHealth
mHealth
Ease of access to patient and medical information from records;
Cost reduction;
Enhance efficiency in patients’ data recovery and management;
Enable stakeholders’ health information centralization and remote access.
Ammenwerth, Duftschmid [ ]eHealthUpsurge in care efficacy and quality and condensed costs for clinical services;
Lessen the health care system’s administrative costs;
Facilitates novel models of health care delivery.
Tummers, Tobi [ ]HISPatient information management;
Enable communication within the healthcare arena;
Afford high-quality and efficient care.
Steil, Finas [ ]HISEnable inter- and multidisciplinary collaboration between humans and machines;
Afford autonomous and intelligent decision capabilities for health care applications.
Nyangena, Rajgopal [ ]HISEnable seamless information exchange within the healthcare arena.
Sik, Aydinoglu [ ]HISSupport precision medicine approaches and decision support.
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Epizitone, A.; Moyane, S.P.; Agbehadji, I.E. A Systematic Literature Review of Health Information Systems for Healthcare. Healthcare 2023 , 11 , 959. https://doi.org/10.3390/healthcare11070959

Epizitone A, Moyane SP, Agbehadji IE. A Systematic Literature Review of Health Information Systems for Healthcare. Healthcare . 2023; 11(7):959. https://doi.org/10.3390/healthcare11070959

Epizitone, Ayogeboh, Smangele Pretty Moyane, and Israel Edem Agbehadji. 2023. "A Systematic Literature Review of Health Information Systems for Healthcare" Healthcare 11, no. 7: 959. https://doi.org/10.3390/healthcare11070959

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

Health Care Administration and Management

  • Find Articles/Databases
  • Reference Resources
  • Evidence Summaries & Clinical Guidelines
  • Health Data & Statistics
  • Grey Literature & Reports
  • Framing Research Questions
  • Selecting Databases
  • Crafting a Search
  • Narrowing / Filtering a Search
  • Expanding a Search
  • Cited Reference Searching
  • Saving Searches
  • Citing/Managing References
  • What are Literature Reviews?
  • Conducting & Reporting Systematic Reviews
  • Finding Systematic Reviews
  • Tutorials & Tools for Literature Reviews
  • Critical Appraisal Resources
  • Finding Full Text

Guidelines & Standards

Health sciences.

  • JBI Manual for Evidence Synthesis JBI (Joanna Briggs Institute) is an international evidence-based healthcare research organization. The JBI Manual for Evidence Synthesis is meant to provide authors with a comprehensive guide to conducting JBI systematic reviews. Types of systematic reviews covered in manual include: systematic reviews of qualitative evidence, systematic reviews of effectiveness, mixed methods systematics reviews and scoping reviews, among others.
  • Cochrane Handbook for Systematic Reviews of Interventions (6th Edition) The Cochrane Handbook for Systematic Reviews of Interventions is the official guide that describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of healthcare interventions.
  • Cochrane Training On this site, you will find interactive learning resources and pathways as well as links to webinars, courses, and handbooks produced by the Cochrane Collaboration that relate to systematic review methods. Note that select resources on this site are limited to those with an existing Cochrane account while others are publicly available.
  • Systematic Reviews: CRD's Guidance for Undertaking Reviews in Health Care [PDF, 1.6MB] Published by the Centre for Reviews and Dissemination, University of York, this guide outlines the methods and steps necessary to conduct a systematic review. It also addresses issues associated with reviews in specific areas, such as clinical tests, public health interventions, harm/adverse effects, economic evaluations, and how and why interventions work. Opens as PDF.
  • Finding What Works in Health Care: Standards for Systematic Reviews This ebook, produced by the Institute of Medicine (2011), contains chapters on the following topics: Standards for initiating a systematic review -- Standards for finding and assessing individual studies -- Standards for synthesizing the body of evidence -- Standards for reporting systematic reviews -- Improving the quality of systematic reviews
  • Methods for the Thematic Synthesis of Qualitative Research in Systematic Reviews Article abstract: There is a growing recognition of the value of synthesising qualitative research in the evidence base in order to facilitate effective and appropriate health care. In response to this, methods for undertaking these syntheses are currently being developed. Thematic analysis is a method that is often used to analyse data in primary qualitative research. This paper reports on the use of this type of analysis in systematic reviews to bring together and integrate the findings of multiple qualitative studies.
  • PRESS Peer Review of Electronic Search Strategies The PRESS Guideline provides a set of recommendations concerning the information that should be used by librarians and other information specialists when they are asked to evaluate electronic search strategies developed for systematic review (SR) and health technology assessment (HTA) reports.

Social Sciences

  • Systematic Reviews and Meta-Analysis This ebook, written by Littell, Corcoran, and Pillai (2008) and published by Oxford University Press, contains chapters on the following topics: Formulating a topic and developing a protocol -- Locating and screening studies -- Data extraction and study quality assessment -- Effect size metrics and pooling methods -- Assessing bias and variations in effects
  • Systematic Reviews in the Social Sciences: A Practical Guide This ebook, written by Petticrew and Roberts (2006), contains chapters on the following topics: Why do we need systematic reviews? -- Starting the review : refining the question and defining the boundaries -- What sorts of studies do I include in the review? : deciding on the review's inclusion/exclusion criteria -- How to find the studies : the literature search -- How to appraise the studies : an introduction to assessing study quality -- Synthesizing the evidence -- Exploring heterogeneity and publication bias -- Disseminating the review -- Systematic reviews : urban myths and fairy tales
  • Finding and Evaluating Evidence: Systematic Reviews and Evidence-Based Practice Part of the Pocket Guide to Social Work Research Method series, this ebook, written by Bronson and Davis (2012) and published by Oxford University Press, contains chapters on the following topics: Systematic reviews, evidence-based practice, and social work -- Asking the right questions, preparing a protocol, and finding the relevant research -- Critically appraising the quality and credibility of quantitative research for systematic reviews -- The art and science of managing and summarizing the available research -- Systematic reviews of qualitative research -- Assessing the quality of systematic reviews

Reporting Standards

  • Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) PRISMA is an evidence-based minimum set of items for reporting in systematic reviews and meta-analyses. PRISMA focuses on the reporting of reviews evaluating randomized trials, but can also be used as a basis for reporting systematic reviews of other types of research, particularly evaluations of interventions. This website includes the PRISMA statement (which outlines guidelines for reporting), the PRISMA flow diagram, and the PRISMA checklist, as well as a link to a document containing the PRISMA statement's explanation and elaboration.

Writing & Registering a Review Protocol

Writing a protocol.

A protocol is a written document that acts as an a priori plan for your evidence synthesis project.  Beginning your project with a clear plan is important, even if the methods change along the way. 

If your methods (e.g., search queries, inclusion/eligibility criteria) do change after you finish your protocol, you should document those changes in your final manuscript. For instance, completed Cochrane reviews often have a section titled 'Differences between protocol and review’.

Protocols generally contain sections for:

  • Background literature review
  • Review question
  • Criteria for inclusion/exclusion of studies
  • Types of studies, populations, interventions/exposures, outcome measures
  • Search strategy for identification of studies
  • Study selection methods
  • Assessment of methodological quality (if applicable)
  • Data extraction and synthesis
  • Timeframe for conducting the review

For systematic reviews , PRISMA provides guidance for preparing a protocol , as does the Joanna Briggs Institute's Manual for Evidence Synthesis .  

For scoping reviews , section 11.2 in the JBI Manual outlines protocol development

Registering a Protocol

Once you've written the protocol for your evidence synthesis, consider publishing or registering it.  Making the protocol publicly available, through publication or registration, improves research transparency, and can help avoid unnecessary duplication of work around the same review question.  

  • PROSPERO PROSPERO is an international database of prospectively registered systematic reviews in health and social care, welfare, public health, education, crime, justice, and international development, where there is a health related outcome. It aims to provide a comprehensive listing of systematic reviews, registered at inception, to help avoid duplication and reduce opportunity for reporting bias by enabling comparison completed review with what was planned in the protocol.
  • OSF Registries Use the OSF (Open Science Framework) platform to preregister the protocol for your knowledge synthesis. OSF if a useful alternative to PROSPERO if you are not publishing a systematic review or a review of interventions with health-related outcomes. OSF is commonly used to register protocols for scoping reviews.

Publishing a Protocol

Many journals will publish a protocol for research, including systematic reviews.  See the 'Information for Authors' or 'Submissions' sections of journal's websites to determine what kind of articles they publish.  

Examples of Journals that Publish Protocols

  • BMC Journals Many journals in BioMed Central's portfolio publish protocols for evidence syntheses. In particular, check out the journal 'Systematic Reviews'.
  • JBI Evidence Synthesis The journal JBI Evidence Synthesis accepts manuscripts for evidence synthesis protocols, including systematic reviews of effects, reviews of qualitative evidence, scoping reviews and mix methods systematic reviews
  • JMIR Research Protocols JMIR Research Protocols publishes protocols for systematic reviews and scoping reviews.

McGill Library. (2022).  Guides: Systematic Reviews, Scoping Reviews, and Other Knowledge Syntheses: Developing the protocol . Retrieved February 4, 2022, from https://libraryguides.mcgill.ca/knowledge-syntheses/protocol

  • << Previous: What are Literature Reviews?
  • Next: Finding Systematic Reviews >>
  • Last Updated: Jun 11, 2024 2:15 PM
  • URL: https://guides.nyu.edu/healthcaremanagement

Grad Coach

Research Topics & Ideas: Healthcare

100+ Healthcare Research Topic Ideas To Fast-Track Your Project

Healthcare-related research topics and ideas

Finding and choosing a strong research topic is the critical first step when it comes to crafting a high-quality dissertation, thesis or research project. If you’ve landed on this post, chances are you’re looking for a healthcare-related research topic , but aren’t sure where to start. Here, we’ll explore a variety of healthcare-related research ideas and topic thought-starters across a range of healthcare fields, including allopathic and alternative medicine, dentistry, physical therapy, optometry, pharmacology and public health.

NB – This is just the start…

The topic ideation and evaluation process has multiple steps . In this post, we’ll kickstart the process by sharing some research topic ideas within the healthcare domain. This is the starting point, but to develop a well-defined research topic, you’ll need to identify a clear and convincing research gap , along with a well-justified plan of action to fill that gap.

If you’re new to the oftentimes perplexing world of research, or if this is your first time undertaking a formal academic research project, be sure to check out our free dissertation mini-course. In it, we cover the process of writing a dissertation or thesis from start to end. Be sure to also sign up for our free webinar that explores how to find a high-quality research topic.

Overview: Healthcare Research Topics

  • Allopathic medicine
  • Alternative /complementary medicine
  • Veterinary medicine
  • Physical therapy/ rehab
  • Optometry and ophthalmology
  • Pharmacy and pharmacology
  • Public health
  • Examples of healthcare-related dissertations

Allopathic (Conventional) Medicine

  • The effectiveness of telemedicine in remote elderly patient care
  • The impact of stress on the immune system of cancer patients
  • The effects of a plant-based diet on chronic diseases such as diabetes
  • The use of AI in early cancer diagnosis and treatment
  • The role of the gut microbiome in mental health conditions such as depression and anxiety
  • The efficacy of mindfulness meditation in reducing chronic pain: A systematic review
  • The benefits and drawbacks of electronic health records in a developing country
  • The effects of environmental pollution on breast milk quality
  • The use of personalized medicine in treating genetic disorders
  • The impact of social determinants of health on chronic diseases in Asia
  • The role of high-intensity interval training in improving cardiovascular health
  • The efficacy of using probiotics for gut health in pregnant women
  • The impact of poor sleep on the treatment of chronic illnesses
  • The role of inflammation in the development of chronic diseases such as lupus
  • The effectiveness of physiotherapy in pain control post-surgery

Research topic idea mega list

Topics & Ideas: Alternative Medicine

  • The benefits of herbal medicine in treating young asthma patients
  • The use of acupuncture in treating infertility in women over 40 years of age
  • The effectiveness of homoeopathy in treating mental health disorders: A systematic review
  • The role of aromatherapy in reducing stress and anxiety post-surgery
  • The impact of mindfulness meditation on reducing high blood pressure
  • The use of chiropractic therapy in treating back pain of pregnant women
  • The efficacy of traditional Chinese medicine such as Shun-Qi-Tong-Xie (SQTX) in treating digestive disorders in China
  • The impact of yoga on physical and mental health in adolescents
  • The benefits of hydrotherapy in treating musculoskeletal disorders such as tendinitis
  • The role of Reiki in promoting healing and relaxation post birth
  • The effectiveness of naturopathy in treating skin conditions such as eczema
  • The use of deep tissue massage therapy in reducing chronic pain in amputees
  • The impact of tai chi on the treatment of anxiety and depression
  • The benefits of reflexology in treating stress, anxiety and chronic fatigue
  • The role of acupuncture in the prophylactic management of headaches and migraines

Research topic evaluator

Topics & Ideas: Dentistry

  • The impact of sugar consumption on the oral health of infants
  • The use of digital dentistry in improving patient care: A systematic review
  • The efficacy of orthodontic treatments in correcting bite problems in adults
  • The role of dental hygiene in preventing gum disease in patients with dental bridges
  • The impact of smoking on oral health and tobacco cessation support from UK dentists
  • The benefits of dental implants in restoring missing teeth in adolescents
  • The use of lasers in dental procedures such as root canals
  • The efficacy of root canal treatment using high-frequency electric pulses in saving infected teeth
  • The role of fluoride in promoting remineralization and slowing down demineralization
  • The impact of stress-induced reflux on oral health
  • The benefits of dental crowns in restoring damaged teeth in elderly patients
  • The use of sedation dentistry in managing dental anxiety in children
  • The efficacy of teeth whitening treatments in improving dental aesthetics in patients with braces
  • The role of orthodontic appliances in improving well-being
  • The impact of periodontal disease on overall health and chronic illnesses

Free Webinar: How To Find A Dissertation Research Topic

Tops & Ideas: Veterinary Medicine

  • The impact of nutrition on broiler chicken production
  • The role of vaccines in disease prevention in horses
  • The importance of parasite control in animal health in piggeries
  • The impact of animal behaviour on welfare in the dairy industry
  • The effects of environmental pollution on the health of cattle
  • The role of veterinary technology such as MRI in animal care
  • The importance of pain management in post-surgery health outcomes
  • The impact of genetics on animal health and disease in layer chickens
  • The effectiveness of alternative therapies in veterinary medicine: A systematic review
  • The role of veterinary medicine in public health: A case study of the COVID-19 pandemic
  • The impact of climate change on animal health and infectious diseases in animals
  • The importance of animal welfare in veterinary medicine and sustainable agriculture
  • The effects of the human-animal bond on canine health
  • The role of veterinary medicine in conservation efforts: A case study of Rhinoceros poaching in Africa
  • The impact of veterinary research of new vaccines on animal health

Topics & Ideas: Physical Therapy/Rehab

  • The efficacy of aquatic therapy in improving joint mobility and strength in polio patients
  • The impact of telerehabilitation on patient outcomes in Germany
  • The effect of kinesiotaping on reducing knee pain and improving function in individuals with chronic pain
  • A comparison of manual therapy and yoga exercise therapy in the management of low back pain
  • The use of wearable technology in physical rehabilitation and the impact on patient adherence to a rehabilitation plan
  • The impact of mindfulness-based interventions in physical therapy in adolescents
  • The effects of resistance training on individuals with Parkinson’s disease
  • The role of hydrotherapy in the management of fibromyalgia
  • The impact of cognitive-behavioural therapy in physical rehabilitation for individuals with chronic pain
  • The use of virtual reality in physical rehabilitation of sports injuries
  • The effects of electrical stimulation on muscle function and strength in athletes
  • The role of physical therapy in the management of stroke recovery: A systematic review
  • The impact of pilates on mental health in individuals with depression
  • The use of thermal modalities in physical therapy and its effectiveness in reducing pain and inflammation
  • The effect of strength training on balance and gait in elderly patients

Topics & Ideas: Optometry & Opthalmology

  • The impact of screen time on the vision and ocular health of children under the age of 5
  • The effects of blue light exposure from digital devices on ocular health
  • The role of dietary interventions, such as the intake of whole grains, in the management of age-related macular degeneration
  • The use of telemedicine in optometry and ophthalmology in the UK
  • The impact of myopia control interventions on African American children’s vision
  • The use of contact lenses in the management of dry eye syndrome: different treatment options
  • The effects of visual rehabilitation in individuals with traumatic brain injury
  • The role of low vision rehabilitation in individuals with age-related vision loss: challenges and solutions
  • The impact of environmental air pollution on ocular health
  • The effectiveness of orthokeratology in myopia control compared to contact lenses
  • The role of dietary supplements, such as omega-3 fatty acids, in ocular health
  • The effects of ultraviolet radiation exposure from tanning beds on ocular health
  • The impact of computer vision syndrome on long-term visual function
  • The use of novel diagnostic tools in optometry and ophthalmology in developing countries
  • The effects of virtual reality on visual perception and ocular health: an examination of dry eye syndrome and neurologic symptoms

Topics & Ideas: Pharmacy & Pharmacology

  • The impact of medication adherence on patient outcomes in cystic fibrosis
  • The use of personalized medicine in the management of chronic diseases such as Alzheimer’s disease
  • The effects of pharmacogenomics on drug response and toxicity in cancer patients
  • The role of pharmacists in the management of chronic pain in primary care
  • The impact of drug-drug interactions on patient mental health outcomes
  • The use of telepharmacy in healthcare: Present status and future potential
  • The effects of herbal and dietary supplements on drug efficacy and toxicity
  • The role of pharmacists in the management of type 1 diabetes
  • The impact of medication errors on patient outcomes and satisfaction
  • The use of technology in medication management in the USA
  • The effects of smoking on drug metabolism and pharmacokinetics: A case study of clozapine
  • Leveraging the role of pharmacists in preventing and managing opioid use disorder
  • The impact of the opioid epidemic on public health in a developing country
  • The use of biosimilars in the management of the skin condition psoriasis
  • The effects of the Affordable Care Act on medication utilization and patient outcomes in African Americans

Topics & Ideas: Public Health

  • The impact of the built environment and urbanisation on physical activity and obesity
  • The effects of food insecurity on health outcomes in Zimbabwe
  • The role of community-based participatory research in addressing health disparities
  • The impact of social determinants of health, such as racism, on population health
  • The effects of heat waves on public health
  • The role of telehealth in addressing healthcare access and equity in South America
  • The impact of gun violence on public health in South Africa
  • The effects of chlorofluorocarbons air pollution on respiratory health
  • The role of public health interventions in reducing health disparities in the USA
  • The impact of the United States Affordable Care Act on access to healthcare and health outcomes
  • The effects of water insecurity on health outcomes in the Middle East
  • The role of community health workers in addressing healthcare access and equity in low-income countries
  • The impact of mass incarceration on public health and behavioural health of a community
  • The effects of floods on public health and healthcare systems
  • The role of social media in public health communication and behaviour change in adolescents

Examples: Healthcare Dissertation & Theses

While the ideas we’ve presented above are a decent starting point for finding a healthcare-related research topic, they are fairly generic and non-specific. So, it helps to look at actual dissertations and theses to see how this all comes together.

Below, we’ve included a selection of research projects from various healthcare-related degree programs to help refine your thinking. These are actual dissertations and theses, written as part of Master’s and PhD-level programs, so they can provide some useful insight as to what a research topic looks like in practice.

  • Improving Follow-Up Care for Homeless Populations in North County San Diego (Sanchez, 2021)
  • On the Incentives of Medicare’s Hospital Reimbursement and an Examination of Exchangeability (Elzinga, 2016)
  • Managing the healthcare crisis: the career narratives of nurses (Krueger, 2021)
  • Methods for preventing central line-associated bloodstream infection in pediatric haematology-oncology patients: A systematic literature review (Balkan, 2020)
  • Farms in Healthcare: Enhancing Knowledge, Sharing, and Collaboration (Garramone, 2019)
  • When machine learning meets healthcare: towards knowledge incorporation in multimodal healthcare analytics (Yuan, 2020)
  • Integrated behavioural healthcare: The future of rural mental health (Fox, 2019)
  • Healthcare service use patterns among autistic adults: A systematic review with narrative synthesis (Gilmore, 2021)
  • Mindfulness-Based Interventions: Combatting Burnout and Compassionate Fatigue among Mental Health Caregivers (Lundquist, 2022)
  • Transgender and gender-diverse people’s perceptions of gender-inclusive healthcare access and associated hope for the future (Wille, 2021)
  • Efficient Neural Network Synthesis and Its Application in Smart Healthcare (Hassantabar, 2022)
  • The Experience of Female Veterans and Health-Seeking Behaviors (Switzer, 2022)
  • Machine learning applications towards risk prediction and cost forecasting in healthcare (Singh, 2022)
  • Does Variation in the Nursing Home Inspection Process Explain Disparity in Regulatory Outcomes? (Fox, 2020)

Looking at these titles, you can probably pick up that the research topics here are quite specific and narrowly-focused , compared to the generic ones presented earlier. This is an important thing to keep in mind as you develop your own research topic. That is to say, to create a top-notch research topic, you must be precise and target a specific context with specific variables of interest . In other words, you need to identify a clear, well-justified research gap.

Need more help?

If you’re still feeling a bit unsure about how to find a research topic for your healthcare dissertation or thesis, check out Topic Kickstarter service below.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

Topic Kickstarter: Research topics in education

16 Comments

Mabel Allison

I need topics that will match the Msc program am running in healthcare research please

Theophilus Ugochuku

Hello Mabel,

I can help you with a good topic, kindly provide your email let’s have a good discussion on this.

sneha ramu

Can you provide some research topics and ideas on Immunology?

Julia

Thank you to create new knowledge on research problem verse research topic

Help on problem statement on teen pregnancy

Derek Jansen

This post might be useful: https://gradcoach.com/research-problem-statement/

vera akinyi akinyi vera

can you provide me with a research topic on healthcare related topics to a qqi level 5 student

Didjatou tao

Please can someone help me with research topics in public health ?

Gurtej singh Dhillon

Hello I have requirement of Health related latest research issue/topics for my social media speeches. If possible pls share health issues , diagnosis, treatment.

Chikalamba Muzyamba

I would like a topic thought around first-line support for Gender-Based Violence for survivors or one related to prevention of Gender-Based Violence

Evans Amihere

Please can I be helped with a master’s research topic in either chemical pathology or hematology or immunology? thanks

Patrick

Can u please provide me with a research topic on occupational health and safety at the health sector

Biyama Chama Reuben

Good day kindly help provide me with Ph.D. Public health topics on Reproductive and Maternal Health, interventional studies on Health Education

dominic muema

may you assist me with a good easy healthcare administration study topic

Precious

May you assist me in finding a research topic on nutrition,physical activity and obesity. On the impact on children

Isaac D Olorunisola

I have been racking my brain for a while on what topic will be suitable for my PhD in health informatics. I want a qualitative topic as this is my strong area.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Healthcare (Basel)
  • PMC10094672

Logo of healthcare

A Systematic Literature Review of Health Information Systems for Healthcare

Ayogeboh epizitone.

1 ICT and Society Research Group, Durban University of Technology, Durban 4001, South Africa

Smangele Pretty Moyane

2 Department of Information and Corporate Management, Durban University of Technology, Durban 4001, South Africa

Israel Edem Agbehadji

3 Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa

Associated Data

Not applicable.

Health information system deployment has been driven by the transformation and digitalization currently confronting healthcare. The need and potential of these systems within healthcare have been tremendously driven by the global instability that has affected several interrelated sectors. Accordingly, many research studies have reported on the inadequacies of these systems within the healthcare arena, which have distorted their potential and offerings to revolutionize healthcare. Thus, through a comprehensive review of the extant literature, this study presents a critique of the health information system for healthcare to supplement the gap created as a result of the lack of an in-depth outlook of the current health information system from a holistic slant. From the studies, the health information system was ascertained to be crucial and fundament in the drive of information and knowledge management for healthcare. Additionally, it was asserted to have transformed and shaped healthcare from its conception despite its flaws. Moreover, research has envisioned that the appraisal of the current health information system would influence its adoption and solidify its enactment within the global healthcare space, which is highly demanded.

1. Introduction

Health information systems (HIS) are critical systems deployed to help organizations and all stakeholders within the healthcare arena eradicate disjointed information and modernize health processes by integrating different health functions and departments across the healthcare arena for better healthcare delivery [ 1 , 2 , 3 , 4 , 5 , 6 ]. Over time, the HIS has transformed significantly amidst several players such as political, economic, socio-technical, and technological actors that influence the ability to afford quality healthcare services [ 7 ]. The unification of health-related processes and information systems in the healthcare arena has been realized by HIS. HIS has often been contextualized as a system that improves healthcare services’ quality by supporting management and operation processes to afford vital information and a unified process, technology, and people [ 7 , 8 ]. Several authors assert this disposition of HIS, alluding to its remarkable capabilities in affording seamless healthcare [ 9 ]. Haux [ 10 ] modestly chronicled HIS as a system that handles data to convey knowledge and insights in the healthcare environment. Almunawar and Anshari [ 7 ] incorporated this construed method to describe HIS to be any system within the healthcare arena that processes data and affords information and knowledge. Malaquias and Filho [ 11 ] accentuated the importance of HIS in the same light, highlighting its emergence to tackle the need to store, process, and extract information from the system data for the optimization of processes, enhancing services provided and supporting decision making.

HIS’s definition was popularized by Lippeveld [ 12 ], and reported to be an “integrated effort to collect, process, report and use health information and knowledge to influence policy-making, programme action and research”. Over the course of time, this definition has been adopted and contextualized countlessly by many authors and the World Health Organization (WHO) [ 3 , 8 , 13 , 14 , 15 ]. Although Haule, Muhanga [ 8 ] claimed the definition of HIS varies globally, in actuality, the definition has never changed from its inception, but on the contrary, it has been conceptualized over various contexts. Malaquias and Filho [ 11 ] reiterated this definition in the extant literature. These scholars affirmed HIS as “a set of interrelated components that collect, process, store and distribute information to support the decision-making process and assist in the control of health organizations” [ 11 ]. The same definition is adopted in this paper, and HIS is construed as “a system of interrelated constituents that collect, process, store and distribute data and information to support the decision-making process, assist in the control of health organizations and enhance healthcare applications”. However, it is paramount to note that HIS is broad. In many instances, the definition is of minimal relevance due to its associated incorporation with external applications related to health developments and policy making [ 16 ]. Hence, emphasis should not be placed on the definition but on its contribution to all facets of health development.

The current state of HIS is considered to be inadequate despite its numerus deployment of HIS that has been driven by its potential benefit to uplift healthcare and revolutionize its processes [ 17 , 18 ]. The persistence of many constraints and resistance to technology has resulted to the incapacitation of HIS in the attainment of its objectives. The extant literature reveals several challenges in different categories, such as the inadequacy of human resources and technological convergence within the healthcare [ 18 ], highlighting the evidence of limitations of HIS that restrict their utilization and deployment within the healthcare. Although several authors identified the unique disposition of HIS in integrating care and unifying the health process, these perspectives seems to be marred by the presence of barriers [ 17 , 19 ]. Garcia, De la Vega [ 17 ] alleged that the current HIS deployment is characterized by fragmentation, update instability, and lack of standardization that limit its potential to aid healthcare. Congruently, several authors associated the lack of awareness of HIS potential, the underuse HIS, inadequate communication network, and security and confidentiality concerns among the barriers limiting HIS [ 20 ]. Thus, the need for this paper is set forth: to uncover current and pertinent insights on HIS deployment as a concerted effort to strengthen it and augment its healthcare delivery capabilities. This paper comprehensively explores the extant literature systematically with respect to the overarching objective: to ascertain value insights pertaining to HIS holistically from literature synthesis. To achieve this goal, the following research questions are investigated: What has been the development of the HIS since its conception? How has HIS been deployed? Finally, how does HIS enable information and knowledge management in healthcare?

In this paper, an overview HIS from the extant literature in relation to the health sector is presented with associated related work. It is essential to point out that in spite of the surplus of research work conducted on health information systems, there are still many challenges confronting it within the healthcare area that necessitate the need for this study [ 5 ]. Therefore, the extant literature is explored in this paper systematically to uncover current and pertinent insights surrounding the deployment of the HIS, an integrated information system (IS) for healthcare. This paper is structured into five sections. The paper commences with an introductory background that presents the contextualization of HIS for healthcare, followed by a methodology that details the method and material used in this study. The next section, which is the discussion, presents the discourse of HIS evolution that highlights its progress to date, its structural deployment, and the information system and knowledge management within the healthcare arena as mediated by HIS. The last part of this study focuses on the conclusion that summarizes the discussion presented in this paper.

2. Material and Method

In this paper, a systematic review is conducted to synthesize the extant literature and analyze the content to ascertain the value disposition of HIS in relation to healthcare delivery. Preceding this review, the used of search engines was employed to retrieve related research publications that fit the study scope and contexts. The main database used was the Web of Science . Other databases such as SCOPUS and Google Scholar were also used to obtain additional relevant work associated with the context. For inclusion criteria, only articles containing references to the keywords HIS, information, healthcare, and related healthcare systems were analyzed scrupulously. Research work that did not have these references, did not constitute a journal or conference-proceeding work, and were not written in the English language were excluded. Figure 1 , the PRISMA flow statement, illustrates the methodological phases of this research along with the exclusion and inclusion criteria that were implemented for the study synthesis.

An external file that holds a picture, illustration, etc.
Object name is healthcare-11-00959-g001.jpg

Prisma flow Statement.

3. Discussion

3.1. the evolution of health information systems.

The concept of enhancing healthcare applications has always been the foundation of HIS, which posits that the intercession of information systems with business processes affords better healthcare services [ 7 , 21 ]. According to Almunawar and Anshari [ 7 ], many determinants, such as technological, political, social and economic, have enormously influenced the nature of the healthcare industry. The technological determinant, particularly the computerized component, is thought to be deeply ingrained in the enactment and functioning of HIS. According to Panerai [ 16 ], this single attribute can be held solely responsible for HIS letdowns rather than its accomplishment.

The ownership of HIS has been contested in the literature, with some authors claiming that HIS belongs to the IT industries [ 22 ]. While IT has enabled many developments in various industries, it has also resulted in many dissatisfactions. Recently, there has been an insurgence from many industries, particularly the healthcare industries, who acknowledge the role of IT in optimizing and enhancing health initiatives but want appropriation of their integrated IS. However, according to the definition of HIS, it is presented as “a set of interconnected components that collect, process, store, and distribute information to support decision-making and aid in the control of health organizations”; thus, the disposition of HIS was established. Without bias, the development of HIS was conceived due to unavoidable changes and transformations within the global space.

A good representation and consolidation of this dispute are within the realization that there is a co-existence of different related and non-related components in a system. In this case, the HIS is an entrenched system with several features, including technologies. Panerai [ 16 ] supported this notion and theorized HIS to be broad, stating that the relevance of its definition is contextual. In the study, HIS was reiterated as any kind of “structured repository of data, information, or knowledge” that can be used to support health care delivery or promote health development [ 16 ]. Thus, maintaining a rigid definition is of minimal practical use because many HIS instances are not directly associated with health development, such as the financial and human resource modules. Moreover, several different HIS examples are categorized according to the functions they are dedicated to serving within the healthcare arena. They highlight the instances of the existence of outliers that are not regarded as the normal HIS even though they contain health determinants data, such as socioeconomic and environmental, which can be used to formulate health policies.

The development of HIS over the years has led many to believe they are solely computer technology. This notion has contributed dramatically to the misconception of the origin of HIS and the lack of peculiarity between the HIS conceptual structure and implemented HIS technology. The literature dates back the origin of HIS, which can be associated with the first record of mortality in the 18th century, revealing their existence to be 200 years or older than the invention of computers [ 16 ]. This demonstrates the emergence of digitalized HIS from the availability of commercialized episodes of “electronic medical records” EMR records in the 1970s [ 23 ]. Namageyo-Funa, Aketch [ 24 ] commended the advancement of technologies in the healthcare arena, recounting the implementation of digitalized HIS that significantly revolutionized the recording and accessing of health information. A study by Lindberg, Venkateswaran [ 25 ] highlighted an instance of HIS transition from paper based to digitally based, revealing a streamlined workflow that revolutionized health care applications in the healthcare arena. This HIS transition over the course of time has led to increased adoption of it within the health care arena. Tummers, Tekinerdogan [ 26 ] highlighted the landmark of HIS from its transition to digitalization and reported a current trend in healthcare that has now been extended with the inclusion of block chain technology within the healthcare arena. Malik, Kazi [ 27 ] assessed HIS adoption in terms of technological, organizational, human, and environmental determinants and reported a variation of different degrees of utilization. Despite these facts, the extant literature maintains the need for a resilient and sustainable HIS for health care applications within the healthcare arena at all levels [ 18 , 27 , 28 ].

Figure 2 illustrates the successful adoption of HIS amidst the significant determinants of its effectiveness. From the Figure 2 , the technological, organizational, human, and environmental determinants are the defining concepts along with individual sub-determinants in each domain that influence HIS adoption. At the technological level, the need for digitalization drives HIS adoption, especially for stakeholders such as clinicians and decision makers. The administrative, management, and planning functions are the driving actors within the organization level that endorse the implementation of HIS. The environmental and human determinants are more concerned with the socio-technical components that have been regarded as complex drivers for HIS adoptions. Perceptions, literacy, and usability are known forces within these categories that necessitate the adoption of HIS in many healthcare arenas.

An external file that holds a picture, illustration, etc.
Object name is healthcare-11-00959-g002.jpg

Effective health information system associations with the driving adoption determinants. Source: [ 27 ].

3.2. HIS Structural Deployment

HIS’s unified front is geared toward assimilating and disseminating health gen to enhance healthcare delivery. HIS consists of different sub-systems that serve several actors within the healthcare arena [ 29 ]. These sub-systems are dedicated to specific tasks that perform various functions such as civil registrations, disease surveillance, outbreak notices, interventions, and health information sharing within the healthcare arena. It also supports and links many functions and activities within the healthcare environment, such as recording various data and information for stakeholders, scheduling, billing, and managing. Stakeholders are furnished with health information from diverse HIS scenarios. These include but are not limited to information systems for hospitals and patients, health institution systems, and Internet information systems. Sligo, Gauld [ 30 ] regarded HIS as a panacea within the healthcare ground that improves health care applications. Despite all the limitless capabilities of HIS, it has been reported to be asymmetrical, lacking interactions within subsystems [ 1 , 18 ]. Many decision making methods and policies rely on good health information [ 31 ]. According to Suresh and Singh [ 32 ], the HIS enables stakeholders such as the government and all other players in the healthcare arena to have access to health information, which influences the delivery of healthcare. The sundry literature further reveals accurate health information to be the foundation of decision making and highlights the decisive role of the human constituent [ 29 , 31 , 33 , 34 ].

Furthermore, HIS can be classified into two cogs in today’s era: the computer-related constituent that employs ICT-related tools and the non-computer component, which both operate at different levels. These levels include strategic, tactical, and operational. The deployment of HIS at the strategic level offers intelligence functions such as intelligent decision support, financial estimation, performance assessment, and simulation systems [ 3 , 35 ]. At the tactical level, managerial functions are performed within the system, while at the operational level, functions including recording, invoicing, scheduling, administrative, procurement, automation, and even payroll are carried out. Figure 3 shows the three levels within the healthcare system where HIS deployment is utilized.

An external file that holds a picture, illustration, etc.
Object name is healthcare-11-00959-g003.jpg

Levels of HIS deployment: source authors.

3.3. Health Information Systems Benefits

HIS, as an interrelated system, houses several core processes and branches in the healthcare arena, affording many benefits. Among these are the ease of access to patients and medical records, reduction of costs and time, and evidence-based health policies and interventions [ 8 , 21 , 36 , 37 , 38 ]. Several authors revealed the benefits of HIS to be widely known and influential within the healthcare domain [ 38 ]. Furthermore, many health organizations are drawn to HIS because of these numerous advantages [ 22 , 39 ]. Moreover, investment in HIS has enabled effective decision making, real-time comprehensive health information for quality health care applications, effective policies in the healthcare arena, scaled-up monitoring and evaluation, health innovations, resource allocations, surveillance services, and enhanced governance and accountability [ 36 , 40 , 41 , 42 ]. Ideally, HIS is pertinent for data, information, and broad knowledge sharing in the healthcare environment. HIS critical features are now cherished due to their incorporation with diverse technology [ 16 , 43 ]. The extant literature reveals the role of HIS to extend beyond its reimbursement. Table 1 presents a summarized extract of various HIS benefits as captured in the literature and some of its core enabling components or instances.

HIS core enabling components and its benefits.

Source: Authors Core Enabling HIS Components Benefits
Malaquias and Filho [ ]Health ER
eHealth
mHealth
Ease of access to patient and medical information from records;
Cost reduction;
Enhance efficiency in patients’ data recovery and management;
Enable stakeholders’ health information centralization and remote access.
Ammenwerth, Duftschmid [ ]eHealthUpsurge in care efficacy and quality and condensed costs for clinical services;
Lessen the health care system’s administrative costs;
Facilitates novel models of health care delivery.
Tummers, Tobi [ ]HISPatient information management;
Enable communication within the healthcare arena;
Afford high-quality and efficient care.
Steil, Finas [ ]HISEnable inter- and multidisciplinary collaboration between humans and machines;
Afford autonomous and intelligent decision capabilities for health care applications.
Nyangena, Rajgopal [ ]HISEnable seamless information exchange within the healthcare arena.
Sik, Aydinoglu [ ]HISSupport precision medicine approaches and decision support.

3.4. Information System and Knowledge Management in the Healthcare Arena

The presence of modernized information systems (IS) in the healthcare arena is alleged by scholars to be a congested domain that seldom fosters stakeholders’ multifaceted and disputed relationships [ 48 ]. On the other hand, it is believed that a significant amount of newly acquired knowledge in the field of healthcare is required for the improvement of health care [ 49 ]. Ascertaining and establishing the role of IS and knowledge management is an important step in the development of HIS for healthcare. Flora, Margaret [ 5 ] posited that efficient IS and data usage are crucial for an effective healthcare system. Bernardi [ 50 ] alleged that the underpinning inkling of a “robust and efficient” HIS enables healthcare stakeholders such as managers and providers to leverage health information to commendably plan and regulate healthcare, which could result in enhanced survival rates. As a result, it is imperative to ground these ideas within the context of the healthcare industry to provide a foundation for developing a robust and sustainable HIS for use in the context of health care applications.

3.4.1. Information System

The assimilation and dissimilation of health information and data within the healthcare system is an important task that influences healthcare outcome. Within the healthcare setting, IS plays a significant role in the assimilation and dissimilation of health information needed by healthcare stakeholders. Many continents endorse the deployment of IS mainly to consolidate mutable information from different sources within the systems. The primary objective for these systems’ deployment has been centered on bringing together unique and different components such as institutions, people, processes, and technology in the system under one umbrella [ 5 , 51 ]. An overview of the extant literature reveals that this has rarely been easy, as integration within this system has always been difficult in many contexts. In the context of HIS, many reported the integration phenomena to be problematic, attributing this to the global transformation within the healthcare arena [ 52 , 53 ]. This revolution, coupled with the advancement of the healthcare arena, has resulted in the need for robust allied health IS systems that incorporates different IS and information technology [ 5 , 22 ]. These allied health information systems are necessary to consolidate independent information systems within their healthcare arena use to enhance healthcare applications [ 54 , 55 ]. Organizations in the healthcare arena expect these systems to be sustainable and resilient; however, in order to satisfy these requirements, an integrated information system is needed to unify all independent, agile, and flexible health IS to mitigate challenges for HIS [ 56 ].

An aligned HIS that is allied is essential, as it supports health information networks (HIN) that subsequently enhance and improve healthcare applications [ 44 , 57 ]. Thus, many organizations within the healthcare settings are fine-tuning their HIS to be resilient and sustainable. However, the realization of a robust information system within the healthcare arena is challenging and depends on the flow of information as a crucial constituent for suave and efficient functioning [ 58 , 59 ].

3.4.2. Knowledge Management

The process of constructing value and generating a maintainable edge for an industry with capitalization on building, communicating, and knowledge applications procedures to realize set aspirations is denoted as knowledge management [ 60 ]. The literature reveals knowledge management as an important contributor to organizational performance through its knowledge-sharing capabilities [ 61 ]. In the healthcare industry, there is a high demand for knowledge to enhance healthcare applications [ 49 , 62 ]. Several studies reported that the deployment of knowledge management in the healthcare arena is set to enhance healthcare treatment effectiveness [ 49 , 58 , 61 ]. Many stakeholders such as governments, World Health Organization (WHO), and healthcare workers rely on the management of healthcare knowledge to complement healthcare applications. According to Kim, Newby-Bennett [ 61 ], the focus of knowledge management is to efficaciously expedite knowledge sharing. However, integrating knowledge from different sources is challenging and requires an enabler [ 61 ].

The HIS is an indispensable enabler of health knowledge generated from amalgamated health information within the healthcare arena [ 63 , 64 , 65 ]. Dixon, McGowan [ 66 ] asserted that efficacious modifications in the healthcare arena are made possible by knowledge codification and collaboration from information technologies. Similarly, some authors have pinpointed information and communication technologies within the healthcare arena to be a major determinant in the attainment of a sustainable health system development [ 58 ]. The knowledge management relationship with HIS is considered complementary and balanced, as it enables the availability of knowledge that can be shared. The importance of knowledge management is relevant for the realization of an enhanced healthcare application via HIS. Soltysik-Piorunkiewicz and Morawiec [ 58 ] claimed that the information society effectively uses HIS as an information system for management, patient knowledge, health knowledge, healthcare unit knowledge, and drug knowledge. The authors herein demonstrated how HIS facilitates knowledge management in the healthcare sector to improve healthcare applications.

The role of HIS as an integrated IS and key enabler of healthcare knowledge management highlights its potential within the healthcare arena. From the conception of HIS and the records of its evolution, significant achievements have been attained that are demonstrated at different levels of its structural deployment. HIS deployment in several settings of healthcare have positively influenced clinical processes and patients’ outcomes [ 17 ]. Globally, the need for HIS within the healthcare system is critical in the enhancement of healthcare. Many healthcare actions are dependent on the use of HIS [ 67 , 68 , 69 ]. This demand is substantiated by the offerings of HIS in tackling the transformation and digitalization confronting the healthcare system. However, despite the need for HIS and its potential within healthcare, several barriers limit its optimization. Some authors posited the role and involvement of healthcare professionals such as physicians to be important measure that is paramount to decreasing the technical and personal barriers sabotaging HIS deployment [ 20 ]. Nonetheless, the design of HIS is accentuated on augmenting health and is considered to be lagging behind in attaining quality healthcare [ 70 ].

Although there are equal blessings as well as challenges with HIS deployment, this study appraisal of HIS highlights its capabilities and attributes that enhance healthcare in many ways. From its conception, HIS has evolved significantly to enable the digitalization of many healthcare processes. Its deployment structurally has facilitated many healthcare applications at all levels within the health system where it has been implemented. Many benefits such as ease of access to medical records, cost reduction, data and information management, precision medicine, and autonomous and intelligent decisions have been enabled by HIS deployment. Primarily, HIS is the core enabler of the healthcare information system and knowledge management within the healthcare arena. Ascertaining the attributes and development of HIS is a paramount to driving its implementation and realizing its potential. Many deployments of HIS can be anchored on this study as a reference for planning and executing HIS implementation. The extant literature points out the need for the role of technology such HIS to be ascertained, as little is known in this regard, which as a result has adversely influenced healthcare coordination [ 19 ]. Additionally, among the barriers of HIS, the presence of inadequate planning that fails to cater to the needs of those adopting it hinders the optimization of these systems within the healthcare arena [ 71 ]. Cawthon, Mion [ 72 ] associated the lack of health literacy incorporation in deployed HIS to increased cost and poorer health outcomes. Hence, the insight from this study can be incorporated and associated with HIS initiatives to mitigate these issues. Thus, the findings of this study can be employed to strategize HIS deployment and plans as well as augment its potential to enhance healthcare. Furthermore, the competency of healthcare stakeholders such as patients can be enhanced with the findings of this study that accentuate the holistic representation of HIS in the dissimilation and assimilation of health data and information.

4. Conclusions

In the healthcare information and knowledge arena, assimilation and dissemination is a facet that influences healthcare delivery. The conception and evolution of HIS has positioned this system within the healthcare arena to arbitrate information interchange for its stakeholders. HIS deployment within healthcare has not only enabled information and knowledge management, but it has also enabled and driven many healthcare agendas and continues to maintain a solidified presence within the healthcare space. However, its deployment and enactment globally has been marred and plagued with several challenges that hinder its optimization and defeat its purpose. Phenomena such as the occurrences of pandemics such as COVID-19, which are uncertain, and the advancement of technology that cannot be controlled have caused disputed gradients regarding the positioning of HIS. These phenomena have not only influenced the adoption of HIS but have also limited its ability to be fully utilized. Although much research on HIS has been conducted, the presence of these phenomena and many other inherent challenges such as fragmentation and cost still maintain a constant, prominent presence, which has led to the need for this study.

Consequently, the starting point for this study was to provide insight and expertise regarding the discourse of HIS for healthcare applications. This paper presents current and pertinent insights regarding the deployment of the HIS that, when adopted, can positively aid its employment. This paper investigated the existing HIS literature to accomplish the objective set forth in the introduction. This study’s synthesis derived key insights relevant to the holistic view of HIS through a thorough systematic review of the various extant literature on HIS and healthcare. According to the study’s findings, HIS are critical and foundational in the drive of information and knowledge management for healthcare. The contribution of HIS to healthcare has been and continues to be groundbreaking since its conception and through its consequent evolution. Nevertheless, despite the presence of some limitations that are external and inherent, it is claimed to have transformed and changed healthcare from the start. Similarly, the evaluation of the current HIS is expected to impact its adoption and strengthen its implementation within the global healthcare space, which is greatly desired. These findings are of great importance to the healthcare stakeholders that directly and indirect interact with HIS. Additionally, scholars and healthcare researchers can benefit from this study by incorporating the findings in future works that plan HIS for healthcare.

Funding Statement

This research received no external funding.

Author Contributions

Conceptualization, A.E.; methodology, A.E.; software, A.E.; validation, A.E.; formal analysis, A.E.; investigation, A.E.; resources, A.E.; data curation, A.E.; writing—original draft preparation, A.E.; writing—review and editing, A.E.; visualization, A.E.; supervision, S.P.M. and I.E.A.; project administration, A.E., S.P.M. and I.E.A.; funding acquisition, A.E., S.P.M. and I.E.A. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Informed consent statement, data availability statement, conflicts of interest.

The authors declare there are no conflict of interest.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

A Systematic Literature Review of Health Information Systems for Healthcare

  • Healthcare 11(7):959

Ayogeboh Epizitone at Durban University of Technology

  • Durban University of Technology

Smangele Moyane at Durban University of Technology

Abstract and Figures

HIS core enabling components and its benefits.

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • Reem Ladadwa
  • Mahmoud Hariri
  • Muhammed Mansur Alatraş

Nassim El Achi

  • Paul C. Hong
  • Matteo Maria Cati

Beston Musoma

  • Fatihiya Ally Massawe
  • Babita Bisht
  • Ecenur Aydemir
  • M. Fevzi Esen

Stanford Mphahlele

  • Raymond Mompoloki Kekwaletswe
  • Tshinakaho Relebogile Seaba

Ayogeboh Epizitone

  • James Thomas
  • Rebecca Carlson

Michelle Cawley

  • Ayman Alahmar

Mohannad A AlMousa

  • J MED INTERNET RES

Angely Garcia

  • Susan Pineda Mercado

Marta Krasuska

  • Aziz Sheikh

Kathrin Cresswell

  • INT J MED INFORM

Rodrigo Feteira-Santos

  • Catarina Camarinha

Miguel De Araújo Nobre

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

IMAGES

  1. 33 Literature ReviewSample.docx

    literature review on health care administration

  2. Legal Aspects of Health Care Administration 11th edition

    literature review on health care administration

  3. Doing a literature review in nursing, health and social care by

    literature review on health care administration

  4. (PDF) Conducting a Literature Review on the Effectiveness of Health

    literature review on health care administration

  5. (PDF) Literature review on smart health care Overview

    literature review on health care administration

  6. Studyguide for Legal Aspects Of Health Care Administration by Pozgar

    literature review on health care administration

VIDEO

  1. What is Healthcare Administration?

  2. Extragenital Testing in Women: What's Changed?

  3. HIV in Rural Communities

  4. Home STD Testing

  5. Testimonial Elaine for Shayna Melissa Stockman

  6. Treating STDs During COVID-19

COMMENTS

  1. Literature Reviews

    2. Scope the Literature. A "scoping search" investigates the breadth and/or depth of the initial question or may identify a gap in the literature. Eligible studies may be located by searching in: Background sources (books, point-of-care tools) Article databases; Trial registries; Grey literature; Cited references; Reference lists

  2. Improving Patient Outcomes Through Effective Hospital Administration: A

    This comprehensive review delves into the critical role of effective hospital administration in shaping patient outcomes within the healthcare ecosystem. Exploration of key components, strategies, measurement methodologies, and future trends elucidates the multifaceted nature of hospital administration. Key findings underscore the profound ...

  3. What are Literature Reviews?

    Literature reviews are comprehensive summaries and syntheses of the previous research on a given topic. While narrative reviews are common across all academic disciplines, reviews that focus on appraising and synthesizing research evidence are increasingly important in the health and social sciences.. Most evidence synthesis methods use formal and explicit methods to identify, select and ...

  4. Writing a Literature Review

    Run a few sample database searches to make sure your research question is not too broad or too narrow. If possible, discuss your topic with your professor. 2. Determine the scope of your review. The scope of your review will be determined by your professor during your program. Check your assignment requirements for parameters for the Literature ...

  5. Systematically Reviewing the Literature: Building the Evidence for

    Systematic reviews that summarize the available information on a topic are an important part of evidence-based health care. There are both research and non-research reasons for undertaking a literature review. It is important to systematically review the literature when one would like to justify the need for a study, to update personal ...

  6. 35060 PDFs

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on HEALTH CARE ADMINISTRATION. Find methods information, sources, references or conduct a literature ...

  7. Mapping the literature of health care management: an update

    This study updates a study published in 2007, in which the authors used bibliometric methods to map the literature of health care management; in the 2007 study, the authors found that HCM is a multidisciplinary field, drawing from research in health services or health policy, biomedicine, health care administration, and business [ 4 ].

  8. Performing a Literature Review

    Clear Objectives and Research Questions: The review should start with clearly defined objectives and research questions that guide the scope and focus of the review.. Comprehensive Coverage: Include a wide range of relevant sources, such as research articles, review papers, clinical guidelines, and books.Aim for a broad understanding of the topic, covering historical developments and current ...

  9. PDF Doing a Literature Review in Health

    The systematic review of the literature in health and social care has a differ-ent focus. It aims to contribute to clinical practice through an assessment of the efficacy of a particular health care intervention and, with the emphasis on evidence-based practice, has become increasingly important. A basic overview

  10. Health Care Management Review

    Health Care Management Review (HCMR) disseminates state-of-the-art knowledge about management, leadership, and administration of health care systems, organizations, and agencies. Multidisciplinary and international in scope, articles present completed research relevant to health care management, leadership, and administration, as well report on ...

  11. A systematic literature review of researchers' and healthcare

    A systematic literature review of researchers and healthcare professionals' attitudes towards the secondary use and sharing of health administrative and clinical trial data was conducted using electronic data searching. Eligible articles included those reporting qualitative or quantitative original research and published in English. No restrictions were placed on publication dates, study ...

  12. Reviewing the literature

    Literature reviews aim to answer focused questions to: inform professionals and patients of the best available evidence when making healthcare decisions; influence policy; and identify future research priorities. Although over 14 types of reviews have been identified, 1 literature reviews can be broadly divided into narrative (descriptive ...

  13. Clinical supervision for nurses in administrative and leadership

    Aim The aim of this systematic literature review was to describe administrative clinical supervision from the nursing leaders', directors' and administrators' perspective.. Background Administrative clinical supervision is a timely and important topic as organizational structures in health care and nursing leadership are changing in addition to the increasing number of complex challenges ...

  14. Servant Leadership in the Healthcare Literature: A Systematic Review

    The review has shown that servant leadership research has made considerable progress in the healthcare literature. Consistent across other non-healthcare domains, scholars predominantly approach servant leadership as an exogenous variable that directly and indirectly influences various individual and organizational outcomes in healthcare.

  15. (PDF) Conflict in healthcare: A literature review

    The Internet Journal of Healthcare Administration. 2014 Volume. 9 Number 1. ... [11] literature review of conflict in health care did not mention specialization or unit type as a relevant factor ...

  16. Health Care Administration: A Systematic Literature Review

    The work judges that health care system administrations Health Care Administration: A Systematic Literature Review Page 369 INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN - 2455-0620 Volume - 2, Issue - 10, Oct - 2016 should use different approaches and strategies to fulfill the financial demands of health care ...

  17. Healthcare

    Health information systems (HIS) are critical systems deployed to help organizations and all stakeholders within the healthcare arena eradicate disjointed information and modernize health processes by integrating different health functions and departments across the healthcare arena for better healthcare delivery [1,2,3,4,5,6].Over time, the HIS has transformed significantly amidst several ...

  18. Leadership Effectiveness in Healthcare Settings: A Systematic Review

    1. Introduction. Over the last years, patients' outcomes, population wellness and organizational standards have become the main purposes of any healthcare structure [].These standards can be achieved following evidence-based practice (EBP) for diseases prevention and care [2,3] and optimizing available economical and human resources [3,4], especially in low-industrialized geographical areas [].

  19. Conducting & Reporting Systematic Reviews

    Part of the Pocket Guide to Social Work Research Method series, this ebook, written by Bronson and Davis (2012) and published by Oxford University Press, contains chapters on the following topics: Systematic reviews, evidence-based practice, and social work -- Asking the right questions, preparing a protocol, and finding the relevant research -- Critically appraising the quality and ...

  20. 100+ Healthcare Research Topics (+ Free Webinar)

    A mega list of research topic ideas in healthcare, including allopathic and alternative medicine, dentistry, rehab, optometry and more. ... A systematic literature review (Balkan, 2020) Farms in Healthcare: Enhancing Knowledge, Sharing, and Collaboration (Garramone, 2019) ... may you assist me with a good easy healthcare administration study ...

  21. A Systematic Literature Review of Health Information Systems for Healthcare

    Thus, through a comprehensive review of the extant literature, this study presents a critique of the health information system for healthcare to supplement the gap created as a result of the lack of an in-depth outlook of the current health information system from a holistic slant. From the studies, the health information system was ascertained ...

  22. HLT 364 RS Table of Evidence

    Table of Evidence Research Assignment Week 3 literature review: table of evidence student name: describe the care administration issue addressed in your health. Skip to document. University; High School. Books; ... Describe the barrier/health care administration issue addressed in your Health Care Research Paper (two or three sentences ...

  23. A Systematic Literature Review of Health Information Systems for Healthcare

    literature maintains the need for a resilient and sustainable HIS for health care applications within the healthcare arena at all levels [ 18 , 27 , 28 ]. Healthcare 2023 , 11 , 959 5 of 13