PND Digest

From Dilemmas to Solutions: Problem-Solving Examples to Learn From

  • By Daria Burnett
  • May 21, 2023

Introduction to Problem-Solving

Life is full of challenges and dilemmas, both big and small.

But if there’s one skill that can help you navigate these, it’s problem-solving .

So, what exactly is problem-solving? And why is it such a crucial skill in daily life?

Understanding the Concept of Problem-Solving

Problem-solving is a mental process that involves identifying, analyzing, and resolving challenges or difficulties.

It’s like a journey that starts with a problem and ends with a solution.

It’s a skill that’s not just used in the field of psychology but in all aspects of life.

Whether you’re trying to decide on the best route to work, dealing with a disagreement with a friend, or figuring out how to fix a leaky faucet, you’re using your problem-solving skills.

When you’re faced with a problem, your brain goes through a series of steps to find a solution.

This process can be conscious or unconscious and can involve logical thinking, creativity, and prior knowledge.

Effective problem-solving can lead to better decisions and outcomes, making it a valuable tool in your personal and professional life.

Related Posts:

  • Your Path to Success: Best Career Options with a Psychology Degree
  • Type C Personality Traits: The Power of Positivity
  • Embrace the Change: Embodying the Democratic Leadership Style

Importance of Problem-Solving in Daily Life

Why is problem-solving so important in daily life? Well, it’s simple.

Problems are a part of life.

They arise in different shapes and sizes, and in different areas of life, including work, relationships, health, and personal growth.

Having strong problem-solving skills can help you navigate these challenges effectively and efficiently.

In your personal life, problem-solving can help you manage stress and conflict, make better decisions, and achieve your goals.

In the workplace, it can help you navigate complex projects, improve processes, and foster innovation.

Problem-solving is also a key skill in many professions and industries, from engineering and science to healthcare and customer service.

Moreover, problem-solving can contribute to your overall mental well-being.

It can give you a sense of control and agency, reduce feelings of stress and anxiety, and foster a positive attitude.

It’s also a key component of resilience, the ability to bounce back from adversity.

In conclusion, problem-solving is a fundamental skill in life.

It’s a tool you can use to tackle challenges, make informed decisions, and drive change.

By understanding the concept of problem-solving and recognizing its importance in daily life, you’re taking the first step toward becoming a more effective problem solver.

As we delve deeper into this topic, you’ll discover practical problem-solving examples, learn about different problem-solving techniques, and gain insights on how to improve your own problem-solving skills.

So, stay tuned and continue your exploration of introduction to psychology with us.

Stages of Problem-Solving

The process of problem-solving can be broken down into three key stages: identifying the problem , developing possible solutions , and implementing the best solution .

Each stage requires a different set of skills and strategies.

By understanding these stages, you can enhance your problem-solving abilities and tackle various challenges more effectively.

Identifying the Problem

The first step in problem-solving is recognizing that a problem exists.

This involves defining the issue clearly and understanding its root cause.

You might need to gather information, ask questions, and analyze the situation from multiple perspectives.

It can be helpful to write down the problem and think about how it impacts you or others involved.

For instance, if you’re struggling with time management, the problem might be that you have too many obligations and not enough time.

Or perhaps your methods of organizing your tasks aren’t effective.

It’s important to be as specific as possible when identifying the problem, as this will guide the rest of the problem-solving process.

Developing Possible Solutions

Once you’ve identified the problem, the next step is to brainstorm possible solutions.

This is where creativity comes into play.

Don’t limit yourself; even ideas that seem unrealistic or out of the box can lead to effective solutions.

Consider different strategies and approaches.

You could try using techniques like mind mapping, listing pros and cons, or consulting with others for fresh perspectives.

Remember, the goal is to generate a variety of options, not to choose a solution at this stage.

Implementing the Best Solution

The final stage of problem-solving is to select the best solution and put it into action.

Review the options you’ve developed, evaluate their potential effectiveness, and make a decision.

Keep in mind that the “best” solution isn’t necessarily the perfect one (as there might not be a perfect solution), but rather the one that seems most likely to achieve your desired outcome given the circumstances.

Once you’ve chosen a solution, plan out the steps needed to implement it and then take action.

Monitor the results and adjust your approach as necessary.

If the problem persists, don’t be discouraged; return to the previous stages, reassess the problem and your potential solutions, and try again.

Remember, problem-solving is a dynamic process that often involves trial and error.

It’s an essential skill in many areas of life, from everyday challenges to workplace dilemmas.

To learn more about the psychology behind problem-solving and decision-making, check out our introduction to psychology article.

Problem-Solving Examples

Understanding the concept of problem-solving is one thing, but seeing it in action is another.

To help you grasp the practical application of problem-solving strategies, let’s explore three different problem-solving examples from daily life, the workplace, and relationships.

Daily Life Problem-Solving Example

Imagine you’re trying to lose weight but struggle with late-night snacking.

The issue isn’t uncommon, but it’s hindering your progress towards your weight loss goal.

  • Identifying the Problem : Late-night snacking is causing you to consume extra calories, preventing weight loss.
  • Developing Possible Solutions : You could consider eating an earlier dinner, having a healthier snack option, or practicing mindful eating.
  • Implementing the Best Solution : After trying out different solutions, you find that preparing a healthy snack in advance minimizes your calorie intake and satisfies your late-night cravings, helping you stay on track with your weight loss goal.

Workplace Problem-Solving Example

Let’s consider a scenario where a team at work is failing to meet project deadlines consistently.

  • Identifying the Problem : The team is not completing projects on time, causing delays in the overall project timeline.
  • Developing Possible Solutions : The team could consider improving their time management skills, using project management tools, or redistributing tasks among team members.
  • Implementing the Best Solution : After trying out different strategies, the team finds that using a project management tool helps them stay organized, delegate tasks effectively, and complete projects within the given timeframe.

For more insights on effective management styles that can help in problem-solving at the workplace, check out our articles on autocratic leadership , democratic leadership style , and laissez faire leadership .

Relationship Problem-Solving Example

In a romantic relationship, conflicts can occasionally arise.

Let’s imagine a common issue where one partner feels the other isn’t spending enough quality time with them.

  • Identifying the Problem : One partner feels neglected due to a lack of quality time spent together.
  • Developing Possible Solutions : The couple could consider scheduling regular date nights, engaging in shared hobbies, or setting aside a specific time each day for undisturbed conversation.
  • Implementing the Best Solution : The couple decides to implement a daily “unplugged” hour where they focus solely on each other without distractions. This results in improved relationship satisfaction.

For more on navigating relationship challenges, check out our articles on anxious avoidant attachment and emotional awareness .

These problem-solving examples illustrate how the process of identifying a problem, developing possible solutions, and implementing the best solution can be applied to various situations.

By understanding and applying these strategies, you can improve your problem-solving skills and navigate challenges more effectively.

Techniques for Effective Problem-Solving

As you navigate the world of problem-solving, you’ll find that there are multiple techniques you can use to arrive at a solution.

Each technique offers a unique approach to identifying issues, generating potential solutions, and choosing the best course of action.

In this section, we’ll explore three common techniques: Brainstorming , Root Cause Analysis , and SWOT Analysis .

Brainstorming

Brainstorming is a free-thinking method used to generate a large number of ideas related to a specific problem.

You do this by suspending criticism and allowing your creativity to flow.

The aim is to produce as many ideas as possible, even if they seem far-fetched.

You then evaluate these ideas to identify the most beneficial solutions.

By using brainstorming, you can encourage out-of-the-box thinking and possibly discover innovative solutions to challenging problems.

Root Cause Analysis

Root Cause Analysis (RCA) is a method used to identify the underlying causes of a problem.

The goal is to address these root causes rather than the symptoms of the problem.

This technique helps to prevent the same issue from recurring in the future.

There are several RCA methods, such as the “5 Whys” technique, where you ask “why” multiple times until you uncover the root cause of the problem.

By identifying and addressing the root cause, you tackle the problem at its source, which can lead to more effective and long-lasting solutions.

SWOT Analysis

SWOT Analysis is a strategic planning technique that helps you identify your Strengths, Weaknesses, Opportunities, and Threats related to a problem.

This approach encourages you to examine the problem from different angles, helping you understand the resources you have at your disposal (Strengths), the areas where you could improve (Weaknesses), the external factors that could benefit you (Opportunities), and the external factors that could cause problems (Threats).

With this comprehensive understanding, you can develop a well-informed strategy to solve the problem.

Each of these problem-solving techniques provides a distinct approach to identifying and resolving issues.

By understanding and utilizing these methods, you can enhance your problem-solving skills and increase your effectiveness in dealing with challenges.

For more insights into effective problem-solving and other psychological topics, explore our introduction to psychology .

Improving Your Problem-Solving Skills

Learning to solve problems effectively is a skill that can be honed with time and practice.

The following are some ways to enhance your problem-solving capabilities.

Practice Makes Perfect

The saying “practice makes perfect” holds true when it comes to problem-solving.

The more problems you tackle, the better you’ll become at devising and implementing effective solutions.

Seek out opportunities to practice your problem-solving skills both in everyday life and in more complex situations.

This could involve resolving a dispute at work, figuring out a puzzle, or even strategizing in a board game.

Each problem you encounter is a new opportunity to apply and refine your skills.

Learning from Others’ Experiences

There’s much to be gained from observing how others approach problem-solving.

Whether it’s reading about problem solving examples from renowned psychologists or discussing strategies with colleagues, you can learn valuable techniques and perspectives from the experiences of others.

Consider participating in group activities that require problem-solving, such as escape rooms or team projects.

Observe how team members identify problems, brainstorm solutions, and decide on the best course of action.

Embracing a Growth Mindset

A key component of effective problem-solving is adopting a growth mindset.

This mindset, coined by psychologist Carol Dweck, is the belief that abilities and intelligence can be developed through dedication and hard work.

When you embrace a growth mindset, you view challenges as opportunities to learn and grow rather than as insurmountable obstacles.

Believing in your ability to develop and enhance your problem-solving skills over time can make the process less daunting and more rewarding.

So, when you encounter a problem, instead of thinking, “I can’t do this,” try thinking, “I can’t do this yet, but with effort and practice, I can learn.”

For more on the growth mindset, you might want to check out our article on what is intrinsic motivation which includes how a growth mindset can fuel your motivation to improve.

By practicing regularly, learning from others, and embracing a growth mindset, you can continually improve your problem-solving skills and become more adept at overcoming challenges you encounter.

culture partners logo

Culture Development

Workplace problem-solving examples: real scenarios, practical solutions.

  • March 11, 2024

In today’s fast-paced and ever-changing work environment, problems are inevitable. From conflicts among employees to high levels of stress, workplace problems can significantly impact productivity and overall well-being. However, by developing the art of problem-solving and implementing practical solutions, organizations can effectively tackle these challenges and foster a positive work culture. In this article, we will delve into various workplace problem scenarios and explore strategies for resolution. By understanding common workplace problems and acquiring essential problem-solving skills, individuals and organizations can navigate these challenges with confidence and success.

Men in Hardhats

Understanding Workplace Problems

Before we can effectively solve workplace problems , it is essential to gain a clear understanding of the issues at hand. Identifying common workplace problems is the first step toward finding practical solutions. By recognizing these challenges, organizations can develop targeted strategies and initiatives to address them.

Identifying Common Workplace Problems

One of the most common workplace problems is conflict. Whether it stems from differences in opinions, miscommunication, or personality clashes, conflict can disrupt collaboration and hinder productivity. It is important to note that conflict is a natural part of any workplace, as individuals with different backgrounds and perspectives come together to work towards a common goal. However, when conflict is not managed effectively, it can escalate and create a toxic work environment.

In addition to conflict, workplace stress and burnout pose significant challenges. High workloads, tight deadlines, and a lack of work-life balance can all contribute to employee stress and dissatisfaction. When employees are overwhelmed and exhausted, their performance and overall well-being are compromised. This not only affects the individuals directly, but it also has a ripple effect on the entire organization.

Another common workplace problem is poor communication. Ineffective communication can lead to misunderstandings, delays, and errors. It can also create a sense of confusion and frustration among employees. Clear and open communication is vital for successful collaboration and the smooth functioning of any organization.

The Impact of Workplace Problems on Productivity

Workplace problems can have a detrimental effect on productivity levels. When conflicts are left unresolved, they can create a tense work environment, leading to decreased employee motivation and engagement. The negative energy generated by unresolved conflicts can spread throughout the organization, affecting team dynamics and overall performance.

Similarly, high levels of stress and burnout can result in decreased productivity, as individuals may struggle to focus and perform optimally. When employees are constantly under pressure and overwhelmed, their ability to think creatively and problem-solve diminishes. This can lead to a decline in the quality of work produced and an increase in errors and inefficiencies.

Poor communication also hampers productivity. When information is not effectively shared or understood, it can lead to misunderstandings, delays, and rework. This not only wastes time and resources but also creates frustration and demotivation among employees.

Furthermore, workplace problems can negatively impact employee morale and job satisfaction. When individuals are constantly dealing with conflicts, stress, and poor communication, their overall job satisfaction and engagement suffer. This can result in higher turnover rates, as employees seek a healthier and more supportive work environment.

In conclusion, workplace problems such as conflict, stress, burnout, and poor communication can significantly hinder productivity and employee well-being. Organizations must address these issues promptly and proactively to create a positive and productive work atmosphere. By fostering open communication, providing support for stress management, and promoting conflict resolution strategies, organizations can create a work environment that encourages collaboration, innovation, and employee satisfaction.

Office Supplies

The Art of Problem Solving in the Workplace

Now that we have a clear understanding of workplace problems, let’s explore the essential skills necessary for effective problem-solving in the workplace. By developing these skills and adopting a proactive approach, individuals can tackle problems head-on and find practical solutions.

Problem-solving in the workplace is a complex and multifaceted skill that requires a combination of analytical thinking, creativity, and effective communication. It goes beyond simply identifying problems and extends to finding innovative solutions that address the root causes.

Essential Problem-Solving Skills for the Workplace

To effectively solve workplace problems, individuals should possess a range of skills. These include strong analytical and critical thinking abilities, excellent communication and interpersonal skills, the ability to collaborate and work well in a team, and the capacity to adapt to change. By honing these skills, individuals can approach workplace problems with confidence and creativity.

Analytical and critical thinking skills are essential for problem-solving in the workplace. They involve the ability to gather and analyze relevant information, identify patterns and trends, and make logical connections. These skills enable individuals to break down complex problems into manageable components and develop effective strategies to solve them.

Effective communication and interpersonal skills are also crucial for problem-solving in the workplace. These skills enable individuals to clearly articulate their thoughts and ideas, actively listen to others, and collaborate effectively with colleagues. By fostering open and honest communication channels, individuals can better understand the root causes of problems and work towards finding practical solutions.

Collaboration and teamwork are essential for problem-solving in the workplace. By working together, individuals can leverage their diverse skills, knowledge, and perspectives to generate innovative solutions. Collaboration fosters a supportive and inclusive environment where everyone’s ideas are valued, leading to more effective problem-solving outcomes.

The ability to adapt to change is another important skill for problem-solving in the workplace. In today’s fast-paced and dynamic work environment, problems often arise due to changes in technology, processes, or market conditions. Individuals who can embrace change and adapt quickly are better equipped to find solutions that address the evolving needs of the organization.

The Role of Communication in Problem Solving

Communication is a key component of effective problem-solving in the workplace. By fostering open and honest communication channels, individuals can better understand the root causes of problems and work towards finding practical solutions. Active listening, clear and concise articulation of thoughts and ideas, and the ability to empathize are all valuable communication skills that facilitate problem-solving.

Active listening involves fully engaging with the speaker, paying attention to both verbal and non-verbal cues, and seeking clarification when necessary. By actively listening, individuals can gain a deeper understanding of the problem at hand and the perspectives of others involved. This understanding is crucial for developing comprehensive and effective solutions.

Clear and concise articulation of thoughts and ideas is essential for effective problem-solving communication. By expressing oneself clearly, individuals can ensure that their ideas are understood by others. This clarity helps to avoid misunderstandings and promotes effective collaboration.

Empathy is a valuable communication skill that plays a significant role in problem-solving. By putting oneself in the shoes of others and understanding their emotions and perspectives, individuals can build trust and rapport. This empathetic connection fosters a supportive and collaborative environment where everyone feels valued and motivated to contribute to finding solutions.

In conclusion, problem-solving in the workplace requires a combination of essential skills such as analytical thinking, effective communication, collaboration, and adaptability. By honing these skills and fostering open communication channels, individuals can approach workplace problems with confidence and creativity, leading to practical and innovative solutions.

Real Scenarios of Workplace Problems

Now, let’s explore some real scenarios of workplace problems and delve into strategies for resolution. By examining these practical examples, individuals can develop a deeper understanding of how to approach and solve workplace problems.

Conflict Resolution in the Workplace

Imagine a scenario where two team members have conflicting ideas on how to approach a project. The disagreement becomes heated, leading to a tense work environment. To resolve this conflict, it is crucial to encourage open dialogue between the team members. Facilitating a calm and respectful conversation can help uncover underlying concerns and find common ground. Collaboration and compromise are key in reaching a resolution that satisfies all parties involved.

In this particular scenario, let’s dive deeper into the dynamics between the team members. One team member, let’s call her Sarah, strongly believes that a more conservative and traditional approach is necessary for the project’s success. On the other hand, her colleague, John, advocates for a more innovative and out-of-the-box strategy. The clash between their perspectives arises from their different backgrounds and experiences.

As the conflict escalates, it is essential for a neutral party, such as a team leader or a mediator, to step in and facilitate the conversation. This person should create a safe space for both Sarah and John to express their ideas and concerns without fear of judgment or retribution. By actively listening to each other, they can gain a better understanding of the underlying motivations behind their respective approaches.

During the conversation, it may become apparent that Sarah’s conservative approach stems from a fear of taking risks and a desire for stability. On the other hand, John’s innovative mindset is driven by a passion for pushing boundaries and finding creative solutions. Recognizing these underlying motivations can help foster empathy and create a foundation for collaboration.

As the dialogue progresses, Sarah and John can begin to identify areas of overlap and potential compromise. They may realize that while Sarah’s conservative approach provides stability, John’s innovative ideas can inject fresh perspectives into the project. By combining their strengths and finding a middle ground, they can develop a hybrid strategy that incorporates both stability and innovation.

Ultimately, conflict resolution in the workplace requires effective communication, active listening, empathy, and a willingness to find common ground. By addressing conflicts head-on and fostering a collaborative environment, teams can overcome challenges and achieve their goals.

Dealing with Workplace Stress and Burnout

Workplace stress and burnout can be debilitating for individuals and organizations alike. In this scenario, an employee is consistently overwhelmed by their workload and experiencing signs of burnout. To address this issue, organizations should promote a healthy work-life balance and provide resources to manage stress effectively. Encouraging employees to take breaks, providing access to mental health support, and fostering a supportive work culture are all practical solutions to alleviate workplace stress.

In this particular scenario, let’s imagine that the employee facing stress and burnout is named Alex. Alex has been working long hours, often sacrificing personal time and rest to meet tight deadlines and demanding expectations. As a result, Alex is experiencing physical and mental exhaustion, reduced productivity, and a sense of detachment from work.

Recognizing the signs of burnout, Alex’s organization takes proactive measures to address the issue. They understand that employee well-being is crucial for maintaining a healthy and productive workforce. To promote a healthy work-life balance, the organization encourages employees to take regular breaks and prioritize self-care. They emphasize the importance of disconnecting from work during non-working hours and encourage employees to engage in activities that promote relaxation and rejuvenation.

Additionally, the organization provides access to mental health support services, such as counseling or therapy sessions. They recognize that stress and burnout can have a significant impact on an individual’s mental well-being and offer resources to help employees manage their stress effectively. By destigmatizing mental health and providing confidential support, the organization creates an environment where employees feel comfortable seeking help when needed.

Furthermore, the organization fosters a supportive work culture by promoting open communication and empathy. They encourage managers and colleagues to check in with each other regularly, offering support and understanding. Team members are encouraged to collaborate and share the workload, ensuring that no one person is overwhelmed with excessive responsibilities.

By implementing these strategies, Alex’s organization aims to alleviate workplace stress and prevent burnout. They understand that a healthy and balanced workforce is more likely to be engaged, productive, and satisfied. Through a combination of promoting work-life balance, providing mental health support, and fostering a supportive work culture, organizations can effectively address workplace stress and create an environment conducive to employee well-being.

Practical Solutions to Workplace Problems

Now that we have explored real scenarios, let’s discuss practical solutions that organizations can implement to address workplace problems. By adopting proactive strategies and establishing effective policies, organizations can create a positive work environment conducive to problem-solving and productivity.

Implementing Effective Policies for Problem Resolution

Organizations should have clear and well-defined policies in place to address workplace problems. These policies should outline procedures for conflict resolution, channels for reporting problems, and accountability measures. By ensuring that employees are aware of these policies and have easy access to them, organizations can facilitate problem-solving and prevent issues from escalating.

Promoting a Positive Workplace Culture

A positive workplace culture is vital for problem-solving. By fostering an environment of respect, collaboration, and open communication, organizations can create a space where individuals feel empowered to address and solve problems. Encouraging teamwork, recognizing and appreciating employees’ contributions, and promoting a healthy work-life balance are all ways to cultivate a positive workplace culture.

The Role of Leadership in Problem Solving

Leadership plays a crucial role in facilitating effective problem-solving within organizations. Different leadership styles can impact how problems are approached and resolved.

Leadership Styles and Their Impact on Problem-Solving

Leaders who adopt an autocratic leadership style may make decisions independently, potentially leaving their team members feeling excluded and undervalued. On the other hand, leaders who adopt a democratic leadership style involve their team members in the problem-solving process, fostering a sense of ownership and empowerment. By encouraging employee participation, organizations can leverage the diverse perspectives and expertise of their workforce to find innovative solutions to workplace problems.

Encouraging Employee Participation in Problem Solving

To harness the collective problem-solving abilities of an organization, it is crucial to encourage employee participation. Leaders can create opportunities for employees to contribute their ideas and perspectives through brainstorming sessions, team meetings, and collaborative projects. By valuing employee input and involving them in decision-making processes, organizations can foster a culture of inclusivity and drive innovative problem-solving efforts.

In today’s dynamic work environment, workplace problems are unavoidable. However, by understanding common workplace problems, developing essential problem-solving skills, and implementing practical solutions, individuals and organizations can navigate these challenges effectively. By fostering a positive work culture, implementing effective policies, and encouraging employee participation, organizations can create an environment conducive to problem-solving and productivity. With proactive problem-solving strategies in place, organizations can thrive and overcome obstacles, ensuring long-term success and growth.

Related Stories

  • April 17, 2024

Understanding the Organizational Culture Profile: A Deeper Look into Core Values

Culture statement examples: inspiring your business growth.

  • April 16, 2024

Fostering a Healthy Organizational Culture: Key Strategies and Benefits

What can we help you find.

50 Problem-Solving and Critical Thinking Examples

Critical thinking and problem solving are essential skills for success in the 21st century. Critical thinking is the ability to analyze information, evaluate evidence, and draw logical conclusions. Problem solving is the ability to apply critical thinking to find effective solutions to various challenges. Both skills require creativity, curiosity, and persistence. Developing critical thinking and problem solving skills can help students improve their academic performance, enhance their career prospects, and become more informed and engaged citizens.

real life problems using problem solving

Sanju Pradeepa

Problem-Solving and Critical Thinking Examples

In today’s complex and fast-paced world, the ability to think critically and solve problems effectively has become a vital skill for success in all areas of life. Whether it’s navigating professional challenges, making sound decisions, or finding innovative solutions, critical thinking and problem-solving are key to overcoming obstacles and achieving desired outcomes. In this blog post, we will explore problem-solving and critical thinking examples.

Table of Contents

Developing the skills needed for critical thinking and problem solving.

Developing the skills needed for critical thinking and problem solving

It is not enough to simply recognize an issue; we must use the right tools and techniques to address it. To do this, we must learn how to define and identify the problem or task at hand, gather relevant information from reliable sources, analyze and compare data to draw conclusions, make logical connections between different ideas, generate a solution or action plan, and make a recommendation.

The first step in developing these skills is understanding what the problem or task is that needs to be addressed. This requires careful consideration of all available information in order to form an accurate picture of what needs to be done. Once the issue has been identified, gathering reliable sources of data can help further your understanding of it. Sources could include interviews with customers or stakeholders, surveys, industry reports, and analysis of customer feedback.

After collecting relevant information from reliable sources, it’s important to analyze and compare the data in order to draw meaningful conclusions about the situation at hand. This helps us better understand our options for addressing an issue by providing context for decision-making. Once you have analyzed the data you collected, making logical connections between different ideas can help you form a more complete picture of the situation and inform your potential solutions.

Once you have analyzed your options for addressing an issue based on all available data points, it’s time to generate a solution or action plan that takes into account considerations such as cost-effectiveness and feasibility. It’s also important to consider the risk factors associated with any proposed solutions in order to ensure that they are responsible before moving forward with implementation. Finally, once all the analysis has been completed, it is time to make a recommendation based on your findings, which should take into account any objectives set out by stakeholders at the beginning of this process as well as any other pertinent factors discovered throughout the analysis stage.

By following these steps carefully when faced with complex issues, one can effectively use critical thinking and problem-solving skills in order to achieve desired outcomes more efficiently than would otherwise be possible without them, while also taking responsibility for decisions made along the way.

what does critical thinking involve

What Does Critical Thinking Involve: 5 Essential Skill

Problem-solving and critical thinking examples.

Problem-Solving and Critical Thinking Examples

Problem-solving and critical thinking are key skills that are highly valued in any professional setting. These skills enable individuals to analyze complex situations, make informed decisions, and find innovative solutions. Here, we present 25 examples of problem-solving and critical thinking. problem-solving scenarios to help you cultivate and enhance these skills.

Ethical dilemma: A company faces a situation where a client asks for a product that does not meet quality standards. The team must decide how to address the client’s request without compromising the company’s credibility or values.

Brainstorming session: A team needs to come up with new ideas for a marketing campaign targeting a specific demographic. Through an organized brainstorming session, they explore various approaches and analyze their potential impact.

Troubleshooting technical issues : An IT professional receives a ticket indicating a network outage. They analyze the issue, assess potential causes (hardware, software, or connectivity), and solve the problem efficiently.

Negotiation : During contract negotiations, representatives from two companies must find common ground to strike a mutually beneficial agreement, considering the needs and limitations of both parties.

Project management: A project manager identifies potential risks and develops contingency plans to address unforeseen obstacles, ensuring the project stays on track.

Decision-making under pressure: In a high-stakes situation, a medical professional must make a critical decision regarding a patient’s treatment, weighing all available information and considering potential risks.

Conflict resolution: A team encounters conflicts due to differing opinions or approaches. The team leader facilitates a discussion to reach a consensus while considering everyone’s perspectives.

Data analysis: A data scientist is presented with a large dataset and is tasked with extracting valuable insights. They apply analytical techniques to identify trends, correlations, and patterns that can inform decision-making.

Customer service: A customer service representative encounters a challenging customer complaint and must employ active listening and problem-solving skills to address the issue and provide a satisfactory resolution.

Market research : A business seeks to expand into a new market. They conduct thorough market research, analyzing consumer behavior, competitor strategies, and economic factors to make informed market-entry decisions.

Creative problem-solvin g: An engineer faces a design challenge and must think outside the box to come up with a unique and innovative solution that meets project requirements.

Change management: During a company-wide transition, managers must effectively communicate the change, address employees’ concerns, and facilitate a smooth transition process.

Crisis management: When a company faces a public relations crisis, effective critical thinking is necessary to analyze the situation, develop a response strategy, and minimize potential damage to the company’s reputation.

Cost optimization : A financial analyst identifies areas where expenses can be reduced while maintaining operational efficiency, presenting recommendations for cost savings.

Time management : An employee has multiple deadlines to meet. They assess the priority of each task, develop a plan, and allocate time accordingly to achieve optimal productivity.

Quality control: A production manager detects an increase in product defects and investigates the root causes, implementing corrective actions to enhance product quality.

Strategic planning: An executive team engages in strategic planning to define long-term goals, assess market trends, and identify growth opportunities.

Cross-functional collaboration: Multiple teams with different areas of expertise must collaborate to develop a comprehensive solution, combining their knowledge and skills.

Training and development : A manager identifies skill gaps in their team and designs training programs to enhance critical thinking, problem-solving, and decision-making abilities.

Risk assessment : A risk management professional evaluates potential risks associated with a new business venture, weighing their potential impact and developing strategies to mitigate them.

Continuous improvement: An operations manager analyzes existing processes, identifies inefficiencies, and introduces improvements to enhance productivity and customer satisfaction.

Customer needs analysis: A product development team conducts extensive research to understand customer needs and preferences, ensuring that the resulting product meets those requirements.

Crisis decision-making: A team dealing with a crisis must think quickly, assess the situation, and make timely decisions with limited information.

Marketing campaign analysis : A marketing team evaluates the success of a recent campaign, analyzing key performance indicators to understand its impact on sales and customer engagement.

Constructive feedback: A supervisor provides feedback to an employee, highlighting areas for improvement and offering constructive suggestions for growth.

Conflict resolution in a team project: Team members engaged in a project have conflicting ideas on the approach. They must engage in open dialogue, actively listen to each other’s perspectives, and reach a compromise that aligns with the project’s goals.

Crisis response in a natural disaster: Emergency responders must think critically and swiftly in responding to a natural disaster, coordinating rescue efforts, allocating resources effectively, and prioritizing the needs of affected individuals.

Product innovation : A product development team conducts market research, studies consumer trends, and uses critical thinking to create innovative products that address unmet customer needs.

Supply chain optimization: A logistics manager analyzes the supply chain to identify areas for efficiency improvement, such as reducing transportation costs, improving inventory management, or streamlining order fulfillment processes.

Business strategy formulation: A business executive assesses market dynamics, the competitive landscape, and internal capabilities to develop a robust business strategy that ensures sustainable growth and competitiveness.

Crisis communication: In the face of a public relations crisis, an organization’s spokesperson must think critically to develop and deliver a transparent, authentic, and effective communication strategy to rebuild trust and manage reputation.

Social problem-solving: A group of volunteers addresses a specific social issue, such as poverty or homelessness, by critically examining its root causes, collaborating with stakeholders, and implementing sustainable solutions for the affected population.

Problem-Solving Mindset

Problem-Solving Mindset: How to Achieve It (15 Ways)

Risk assessment in investment decision-making: An investment analyst evaluates various investment opportunities, conducting risk assessments based on market trends, financial indicators, and potential regulatory changes to make informed investment recommendations.

Environmental sustainability: An environmental scientist analyzes the impact of industrial processes on the environment, develops strategies to mitigate risks, and promotes sustainable practices within organizations and communities.

Adaptation to technological advancements : In a rapidly evolving technological landscape, professionals need critical thinking skills to adapt to new tools, software, and systems, ensuring they can effectively leverage these advancements to enhance productivity and efficiency.

Productivity improvement: An operations manager leverages critical thinking to identify productivity bottlenecks within a workflow and implement process improvements to optimize resource utilization, minimize waste, and increase overall efficiency.

Cost-benefit analysis: An organization considering a major investment or expansion opportunity conducts a thorough cost-benefit analysis, weighing potential costs against expected benefits to make an informed decision.

Human resources management : HR professionals utilize critical thinking to assess job applicants, identify skill gaps within the organization, and design training and development programs to enhance the workforce’s capabilities.

Root cause analysis: In response to a recurring problem or inefficiency, professionals apply critical thinking to identify the root cause of the issue, develop remedial actions, and prevent future occurrences.

Leadership development: Aspiring leaders undergo critical thinking exercises to enhance their decision-making abilities, develop strategic thinking skills, and foster a culture of innovation within their teams.

Brand positioning : Marketers conduct comprehensive market research and consumer behavior analysis to strategically position a brand, differentiating it from competitors and appealing to target audiences effectively.

Resource allocation: Non-profit organizations distribute limited resources efficiently, critically evaluating project proposals, considering social impact, and allocating resources to initiatives that align with their mission.

Innovating in a mature market: A company operating in a mature market seeks to innovate to maintain a competitive edge. They cultivate critical thinking skills to identify gaps, anticipate changing customer needs, and develop new strategies, products, or services accordingly.

Analyzing financial statements : Financial analysts critically assess financial statements, analyze key performance indicators, and derive insights to support financial decision-making, such as investment evaluations or budget planning.

Crisis intervention : Mental health professionals employ critical thinking and problem-solving to assess crises faced by individuals or communities, develop intervention plans, and provide support during challenging times.

Data privacy and cybersecurity : IT professionals critically evaluate existing cybersecurity measures, identify vulnerabilities, and develop strategies to protect sensitive data from threats, ensuring compliance with privacy regulations.

Process improvement : Professionals in manufacturing or service industries critically evaluate existing processes, identify inefficiencies, and implement improvements to optimize efficiency, quality, and customer satisfaction.

Multi-channel marketing strategy : Marketers employ critical thinking to design and execute effective marketing campaigns across various channels such as social media, web, print, and television, ensuring a cohesive brand experience for customers.

Peer review: Researchers critically analyze and review the work of their peers, providing constructive feedback and ensuring the accuracy, validity, and reliability of scientific studies.

Project coordination : A project manager must coordinate multiple teams and resources to ensure seamless collaboration, identify potential bottlenecks, and find solutions to keep the project on schedule.  

These examples highlight the various contexts in which problem-solving and critical-thinking skills are necessary for success. By understanding and practicing these skills, individuals can enhance their ability to navigate challenges and make sound decisions in both personal and professional endeavors.

Conclusion:

Critical thinking and problem-solving are indispensable skills that empower individuals to overcome challenges, make sound decisions, and find innovative solutions. By honing these skills, one can navigate through the complexities of modern life and achieve success in both personal and professional endeavors. Embrace the power of critical thinking and problem-solving, and unlock the door to endless possibilities and growth.

  • Problem solving From Wikipedia, the free encyclopedia
  • Critical thinking From Wikipedia, the free encyclopedia
  • The Importance of Critical Thinking and Problem Solving Skills for Students (5 Minutes)

Believe in mind Newsletter

Let’s boost your self-growth with Believe in Mind.

Interested in self-reflection tips, learning hacks, and knowing ways to calm down your mind? We offer you the best content which you have been looking for.

Follow Me on

You May Like Also

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

real life problems using problem solving

Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.

real life problems using problem solving

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

real life problems using problem solving

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

real life problems using problem solving

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

' src=

Your list of techniques for problem solving can be helpfully extended by adding TRIZ to the list of techniques. TRIZ has 40 problem solving techniques derived from methods inventros and patent holders used to get new patents. About 10-12 are general approaches. many organization sponsor classes in TRIZ that are used to solve business problems or general organiztational problems. You can take a look at TRIZ and dwonload a free internet booklet to see if you feel it shound be included per your selection process.

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

real life problems using problem solving

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

real life problems using problem solving

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

Learn more

How it works

Transform your enterprise with the scalable mindsets, skills, & behavior change that drive performance.

Explore how BetterUp connects to your core business systems.

We pair AI with the latest in human-centered coaching to drive powerful, lasting learning and behavior change.

Build leaders that accelerate team performance and engagement.

Unlock performance potential at scale with AI-powered curated growth journeys.

Build resilience, well-being and agility to drive performance across your entire enterprise.

Transform your business, starting with your sales leaders.

Unlock business impact from the top with executive coaching.

Foster a culture of inclusion and belonging.

Accelerate the performance and potential of your agencies and employees.

See how innovative organizations use BetterUp to build a thriving workforce.

Discover how BetterUp measurably impacts key business outcomes for organizations like yours.

A demo is the first step to transforming your business. Meet with us to develop a plan for attaining your goals.

Request a demo

  • What is coaching?

Learn how 1:1 coaching works, who its for, and if it's right for you.

Accelerate your personal and professional growth with the expert guidance of a BetterUp Coach.

Types of Coaching

Navigate career transitions, accelerate your professional growth, and achieve your career goals with expert coaching.

Enhance your communication skills for better personal and professional relationships, with tailored coaching that focuses on your needs.

Find balance, resilience, and well-being in all areas of your life with holistic coaching designed to empower you.

Discover your perfect match : Take our 5-minute assessment and let us pair you with one of our top Coaches tailored just for you.

Find your Coach

Research, expert insights, and resources to develop courageous leaders within your organization.

Best practices, research, and tools to fuel individual and business growth.

View on-demand BetterUp events and learn about upcoming live discussions.

The latest insights and ideas for building a high-performing workplace.

  • BetterUp Briefing

The online magazine that helps you understand tomorrow's workforce trends, today.

Innovative research featured in peer-reviewed journals, press, and more.

Founded in 2022 to deepen the understanding of the intersection of well-being, purpose, and performance

We're on a mission to help everyone live with clarity, purpose, and passion.

Join us and create impactful change.

Read the buzz about BetterUp.

Meet the leadership that's passionate about empowering your workforce.

For Business

For Individuals

10 Problem-solving strategies to turn challenges on their head

Find my Coach

Jump to section

What is an example of problem-solving?

What are the 5 steps to problem-solving, 10 effective problem-solving strategies, what skills do efficient problem solvers have, how to improve your problem-solving skills.

Problems come in all shapes and sizes — from workplace conflict to budget cuts.

Creative problem-solving is one of the most in-demand skills in all roles and industries. It can boost an organization’s human capital and give it a competitive edge. 

Problem-solving strategies are ways of approaching problems that can help you look beyond the obvious answers and find the best solution to your problem . 

Let’s take a look at a five-step problem-solving process and how to combine it with proven problem-solving strategies. This will give you the tools and skills to solve even your most complex problems.

Good problem-solving is an essential part of the decision-making process . To see what a problem-solving process might look like in real life, let’s take a common problem for SaaS brands — decreasing customer churn rates.

To solve this problem, the company must first identify it. In this case, the problem is that the churn rate is too high. 

Next, they need to identify the root causes of the problem. This could be anything from their customer service experience to their email marketing campaigns. If there are several problems, they will need a separate problem-solving process for each one. 

Let’s say the problem is with email marketing — they’re not nurturing existing customers. Now that they’ve identified the problem, they can start using problem-solving strategies to look for solutions. 

This might look like coming up with special offers, discounts, or bonuses for existing customers. They need to find ways to remind them to use their products and services while providing added value. This will encourage customers to keep paying their monthly subscriptions.

They might also want to add incentives, such as access to a premium service at no extra cost after 12 months of membership. They could publish blog posts that help their customers solve common problems and share them as an email newsletter.

The company should set targets and a time frame in which to achieve them. This will allow leaders to measure progress and identify which actions yield the best results.

team-meeting-problem-solving-strategies

Perhaps you’ve got a problem you need to tackle. Or maybe you want to be prepared the next time one arises. Either way, it’s a good idea to get familiar with the five steps of problem-solving. 

Use this step-by-step problem-solving method with the strategies in the following section to find possible solutions to your problem.

1. Identify the problem

The first step is to know which problem you need to solve. Then, you need to find the root cause of the problem. 

The best course of action is to gather as much data as possible, speak to the people involved, and separate facts from opinions. 

Once this is done, formulate a statement that describes the problem. Use rational persuasion to make sure your team agrees .

2. Break the problem down 

Identifying the problem allows you to see which steps need to be taken to solve it. 

First, break the problem down into achievable blocks. Then, use strategic planning to set a time frame in which to solve the problem and establish a timeline for the completion of each stage.

3. Generate potential solutions

At this stage, the aim isn’t to evaluate possible solutions but to generate as many ideas as possible. 

Encourage your team to use creative thinking and be patient — the best solution may not be the first or most obvious one.

Use one or more of the different strategies in the following section to help come up with solutions — the more creative, the better.

4. Evaluate the possible solutions

Once you’ve generated potential solutions, narrow them down to a shortlist. Then, evaluate the options on your shortlist. 

There are usually many factors to consider. So when evaluating a solution, ask yourself the following questions:

  • Will my team be on board with the proposition?
  • Does the solution align with organizational goals ?
  • Is the solution likely to achieve the desired outcomes?
  • Is the solution realistic and possible with current resources and constraints?
  • Will the solution solve the problem without causing additional unintended problems?

woman-helping-her-colleague-problem-solving-strategies

5. Implement and monitor the solutions

Once you’ve identified your solution and got buy-in from your team, it’s time to implement it. 

But the work doesn’t stop there. You need to monitor your solution to see whether it actually solves your problem. 

Request regular feedback from the team members involved and have a monitoring and evaluation plan in place to measure progress.

If the solution doesn’t achieve your desired results, start this step-by-step process again.

There are many different ways to approach problem-solving. Each is suitable for different types of problems. 

The most appropriate problem-solving techniques will depend on your specific problem. You may need to experiment with several strategies before you find a workable solution.

Here are 10 effective problem-solving strategies for you to try:

  • Use a solution that worked before
  • Brainstorming
  • Work backward
  • Use the Kipling method
  • Draw the problem
  • Use trial and error
  • Sleep on it
  • Get advice from your peers
  • Use the Pareto principle
  • Add successful solutions to your toolkit

Let’s break each of these down.

1. Use a solution that worked before

It might seem obvious, but if you’ve faced similar problems in the past, look back to what worked then. See if any of the solutions could apply to your current situation and, if so, replicate them.

2. Brainstorming

The more people you enlist to help solve the problem, the more potential solutions you can come up with.

Use different brainstorming techniques to workshop potential solutions with your team. They’ll likely bring something you haven’t thought of to the table.

3. Work backward

Working backward is a way to reverse engineer your problem. Imagine your problem has been solved, and make that the starting point.

Then, retrace your steps back to where you are now. This can help you see which course of action may be most effective.

4. Use the Kipling method

This is a method that poses six questions based on Rudyard Kipling’s poem, “ I Keep Six Honest Serving Men .” 

  • What is the problem?
  • Why is the problem important?
  • When did the problem arise, and when does it need to be solved?
  • How did the problem happen?
  • Where is the problem occurring?
  • Who does the problem affect?

Answering these questions can help you identify possible solutions.

5. Draw the problem

Sometimes it can be difficult to visualize all the components and moving parts of a problem and its solution. Drawing a diagram can help.

This technique is particularly helpful for solving process-related problems. For example, a product development team might want to decrease the time they take to fix bugs and create new iterations. Drawing the processes involved can help you see where improvements can be made.

woman-drawing-mind-map-problem-solving-strategies

6. Use trial-and-error

A trial-and-error approach can be useful when you have several possible solutions and want to test them to see which one works best.

7. Sleep on it

Finding the best solution to a problem is a process. Remember to take breaks and get enough rest . Sometimes, a walk around the block can bring inspiration, but you should sleep on it if possible.

A good night’s sleep helps us find creative solutions to problems. This is because when you sleep, your brain sorts through the day’s events and stores them as memories. This enables you to process your ideas at a subconscious level. 

If possible, give yourself a few days to develop and analyze possible solutions. You may find you have greater clarity after sleeping on it. Your mind will also be fresh, so you’ll be able to make better decisions.

8. Get advice from your peers

Getting input from a group of people can help you find solutions you may not have thought of on your own. 

For solo entrepreneurs or freelancers, this might look like hiring a coach or mentor or joining a mastermind group. 

For leaders , it might be consulting other members of the leadership team or working with a business coach .

It’s important to recognize you might not have all the skills, experience, or knowledge necessary to find a solution alone. 

9. Use the Pareto principle

The Pareto principle — also known as the 80/20 rule — can help you identify possible root causes and potential solutions for your problems.

Although it’s not a mathematical law, it’s a principle found throughout many aspects of business and life. For example, 20% of the sales reps in a company might close 80% of the sales. 

You may be able to narrow down the causes of your problem by applying the Pareto principle. This can also help you identify the most appropriate solutions.

10. Add successful solutions to your toolkit

Every situation is different, and the same solutions might not always work. But by keeping a record of successful problem-solving strategies, you can build up a solutions toolkit. 

These solutions may be applicable to future problems. Even if not, they may save you some of the time and work needed to come up with a new solution.

three-colleagues-looking-at-computer-problem-solving-strategies

Improving problem-solving skills is essential for professional development — both yours and your team’s. Here are some of the key skills of effective problem solvers:

  • Critical thinking and analytical skills
  • Communication skills , including active listening
  • Decision-making
  • Planning and prioritization
  • Emotional intelligence , including empathy and emotional regulation
  • Time management
  • Data analysis
  • Research skills
  • Project management

And they see problems as opportunities. Everyone is born with problem-solving skills. But accessing these abilities depends on how we view problems. Effective problem-solvers see problems as opportunities to learn and improve.

Ready to work on your problem-solving abilities? Get started with these seven tips.

1. Build your problem-solving skills

One of the best ways to improve your problem-solving skills is to learn from experts. Consider enrolling in organizational training , shadowing a mentor , or working with a coach .

2. Practice

Practice using your new problem-solving skills by applying them to smaller problems you might encounter in your daily life. 

Alternatively, imagine problematic scenarios that might arise at work and use problem-solving strategies to find hypothetical solutions.

3. Don’t try to find a solution right away

Often, the first solution you think of to solve a problem isn’t the most appropriate or effective.

Instead of thinking on the spot, give yourself time and use one or more of the problem-solving strategies above to activate your creative thinking. 

two-colleagues-talking-at-corporate-event-problem-solving-strategies

4. Ask for feedback

Receiving feedback is always important for learning and growth. Your perception of your problem-solving skills may be different from that of your colleagues. They can provide insights that help you improve. 

5. Learn new approaches and methodologies

There are entire books written about problem-solving methodologies if you want to take a deep dive into the subject. 

We recommend starting with “ Fixed — How to Perfect the Fine Art of Problem Solving ” by Amy E. Herman. 

6. Experiment

Tried-and-tested problem-solving techniques can be useful. However, they don’t teach you how to innovate and develop your own problem-solving approaches. 

Sometimes, an unconventional approach can lead to the development of a brilliant new idea or strategy. So don’t be afraid to suggest your most “out there” ideas.

7. Analyze the success of your competitors

Do you have competitors who have already solved the problem you’re facing? Look at what they did, and work backward to solve your own problem. 

For example, Netflix started in the 1990s as a DVD mail-rental company. Its main competitor at the time was Blockbuster. 

But when streaming became the norm in the early 2000s, both companies faced a crisis. Netflix innovated, unveiling its streaming service in 2007. 

If Blockbuster had followed Netflix’s example, it might have survived. Instead, it declared bankruptcy in 2010.

Use problem-solving strategies to uplevel your business

When facing a problem, it’s worth taking the time to find the right solution. 

Otherwise, we risk either running away from our problems or headlong into solutions. When we do this, we might miss out on other, better options.

Use the problem-solving strategies outlined above to find innovative solutions to your business’ most perplexing problems.

If you’re ready to take problem-solving to the next level, request a demo with BetterUp . Our expert coaches specialize in helping teams develop and implement strategies that work.

Boost your productivity

Maximize your time and productivity with strategies from our expert coaches.

Elizabeth Perry, ACC

Elizabeth Perry is a Coach Community Manager at BetterUp. She uses strategic engagement strategies to cultivate a learning community across a global network of Coaches through in-person and virtual experiences, technology-enabled platforms, and strategic coaching industry partnerships. With over 3 years of coaching experience and a certification in transformative leadership and life coaching from Sofia University, Elizabeth leverages transpersonal psychology expertise to help coaches and clients gain awareness of their behavioral and thought patterns, discover their purpose and passions, and elevate their potential. She is a lifelong student of psychology, personal growth, and human potential as well as an ICF-certified ACC transpersonal life and leadership Coach.

8 creative solutions to your most challenging problems

5 problem-solving questions to prepare you for your next interview, what are metacognitive skills examples in everyday life, 31 examples of problem solving performance review phrases, what is lateral thinking 7 techniques to encourage creative ideas, leadership activities that encourage employee engagement, learn what process mapping is and how to create one (+ examples), how much do distractions cost 8 effects of lack of focus, can dreams help you solve problems 6 ways to try, similar articles, the pareto principle: how the 80/20 rule can help you do more with less, thinking outside the box: 8 ways to become a creative problem solver, experimentation brings innovation: create an experimental workplace, 3 problem statement examples and steps to write your own, contingency planning: 4 steps to prepare for the unexpected, stay connected with betterup, get our newsletter, event invites, plus product insights and research..

3100 E 5th Street, Suite 350 Austin, TX 78702

  • Platform Overview
  • Integrations
  • Powered by AI
  • BetterUp Lead
  • BetterUp Manage™
  • BetterUp Care™
  • Sales Performance
  • Diversity & Inclusion
  • Case Studies
  • Why BetterUp?
  • About Coaching
  • Find your Coach
  • Career Coaching
  • Communication Coaching
  • Life Coaching
  • News and Press
  • Leadership Team
  • Become a BetterUp Coach
  • BetterUp Labs
  • Center for Purpose & Performance
  • Leadership Training
  • Business Coaching
  • Contact Support
  • Contact Sales
  • Privacy Policy
  • Acceptable Use Policy
  • Trust & Security
  • Cookie Preferences

Julie Radico Psy.D. ABPP

Self-Esteem

It’s ok you can’t solve every problem, trying to “fix" everything can leave you feeling like a failure..

Updated May 10, 2024 | Reviewed by Ray Parker

  • What Is Self-Esteem?
  • Find a therapist near me
  • Your intrinsic value is more than what you can do for other people.

You are still worthwhile and can be successful, even if you don’t have all the solutions.

  • Consider which decision will make you feel you’ve stayed true to your values.

In coaching others, I often discuss problem-solving strategies to help individuals think creatively and consider many options when they are faced with challenging situations.

Problem solving 1-2 includes the following:

  • Define the problem, identify obstacles, and set realistic goals .
  • Generate a variety of alternative solutions to overcome obstacles identified.
  • Choose which idea has the highest likelihood to achieve the goal.
  • Try out the solution in real-life and see if it worked or not.

Problem-solving strategies can be helpful in many situations. Thinking creatively and testing out different potential solutions can help you come up with alternative ways of solving your problems.

While many problems can be solved, there are also situations in which there is no “perfect” solution or in which what seems to be the best solution still leaves you feeling unsatisfied or like you’re not doing enough.

I encourage you to increase your comfort around the following three truths:

1. You can’t always solve everyone else’s problems.

2. You can’t always solve all of your own problems.

3. You are not a failure if you can’t solve every problem.

Source: Hans-Peter Gauster / Unsplash

You can’t always solve everyone else’s problems.

When someone around you needs help, do you feel compelled to find solutions to their problem?

Are you seen as the problem solver at your job or in your close relationships?

Does it feel uncomfortable for you to listen to someone tell you about a problem and not offer solutions?

There are times when others come to you because they know you can help them solve a problem. There are also times when the other person is coming to you not for a solution to their problem, but for support, empathy, and a listening ear.

Your relationships may be negatively impacted if others feel that you don’t fully listen and only try to “fix” everything for them. While this may feel like a noble act, it may lead the other person to feel like they have failed or that you think they are unable to solve their own problems.

Consider approaching such situations with curiosity by saying to the other person:

  • As you share this information with me, tell me how I can best support you.
  • What would be most helpful right now? Are you looking for an empathetic ear or want to brainstorm potential next steps?
  • I want to be sure I am as helpful as I can be right now; what are you hoping to get out of our conversation?

You can’t always solve all of your own problems.

We are taught from a young age that problems have a solution. For example, while solving word problems in math class may not have been your favorite thing to do, you knew there was ultimately a “right” answer. Many times, the real world is much more complex, and many of the problems that you face do not have clear or “right” answers.

You may often be faced with finding solutions that do the most good for the most amount of people, but you know that others may still be left out or feel unsatisfied with the result.

Your beliefs about yourself, other people, and the world can sometimes help you make decisions in such circumstances. You may ask for help from others. Some may consider their faith or spirituality for guidance. While others may consider philosophical theories.

Knowing that there often isn’t a “perfect” solution, you may consider asking yourself some of the following questions:

  • What’s the healthiest decision I can make? The healthiest decision for yourself and for those who will be impacted.
  • Imagine yourself 10 years in the future, looking back on the situation: What do you think the future-you would encourage you to do?
  • What would a wise person do?
  • What decision will allow you to feel like you’ve stayed true to your values?

You are not a failure if you can’t solve all of the problems.

If you have internalized feeling like you need to be able to solve every problem that comes across your path, you may feel like a failure each time you don’t.

It’s impossible to solve every problem.

real life problems using problem solving

Your intrinsic value is more than what you can do for other people. You have value because you are you.

Consider creating more realistic and adaptive thoughts around your ability to help others and solve problems.

Some examples include:

  • I am capable, even without solving all of the problems.
  • I am worthwhile, even if I’m not perfect.
  • What I do for others does not define my worth.
  • In living my values, I know I’ve done my best.

I hope you utilize the information above to consider how you can coach yourself the next time you:

  • Start to solve someone else’s problem without being asked.
  • Feel stuck in deciding the best next steps.
  • Judge yourself negatively.

1. D'zurilla, T. J., & Goldfried, M. R. (1971). Problem solving and behavior modification. Journal of abnormal psychology, 78(1), 107.

2. D’Zurilla, T. J., & Nezu, A. M. (2010). Problem-solving therapy. Handbook of cognitive-behavioral therapies, 3(1), 197-225.

Julie Radico Psy.D. ABPP

Julie Radico, Psy.D. ABPP, is a board-certified clinical psychologist and coauthor of You Will Get Through This: A Mental Health First-Aid Kit.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

May 2024 magazine cover

At any moment, someone’s aggravating behavior or our own bad luck can set us off on an emotional spiral that threatens to derail our entire day. Here’s how we can face our triggers with less reactivity so that we can get on with our lives.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience
  • Book a Demo

></center></p><h2>17 Smart Problem-Solving Strategies: Master Complex Problems</h2><ul><li>March 3, 2024</li><li>Productivity</li><li>25 min read</li></ul><p><center><img style=

Struggling to overcome challenges in your life? We all face problems, big and small, on a regular basis.

So how do you tackle them effectively? What are some key problem-solving strategies and skills that can guide you?

Effective problem-solving requires breaking issues down logically, generating solutions creatively, weighing choices critically, and adapting plans flexibly based on outcomes. Useful strategies range from leveraging past solutions that have worked to visualizing problems through diagrams. Core skills include analytical abilities, innovative thinking, and collaboration.

Want to improve your problem-solving skills? Keep reading to find out 17 effective problem-solving strategies, key skills, common obstacles to watch for, and tips on improving your overall problem-solving skills.

Key Takeaways:

  • Effective problem-solving requires breaking down issues logically, generating multiple solutions creatively, weighing choices critically, and adapting plans based on outcomes.
  • Useful problem-solving strategies range from leveraging past solutions to brainstorming with groups to visualizing problems through diagrams and models.
  • Core skills include analytical abilities, innovative thinking, decision-making, and team collaboration to solve problems.
  • Common obstacles include fear of failure, information gaps, fixed mindsets, confirmation bias, and groupthink.
  • Boosting problem-solving skills involves learning from experts, actively practicing, soliciting feedback, and analyzing others’ success.
  • Onethread’s project management capabilities align with effective problem-solving tenets – facilitating structured solutions, tracking progress, and capturing lessons learned.

What Is Problem-Solving?

Problem-solving is the process of understanding an issue, situation, or challenge that needs to be addressed and then systematically working through possible solutions to arrive at the best outcome.

It involves critical thinking, analysis, logic, creativity, research, planning, reflection, and patience in order to overcome obstacles and find effective answers to complex questions or problems.

The ultimate goal is to implement the chosen solution successfully.

What Are Problem-Solving Strategies?

Problem-solving strategies are like frameworks or methodologies that help us solve tricky puzzles or problems we face in the workplace, at home, or with friends.

Imagine you have a big jigsaw puzzle. One strategy might be to start with the corner pieces. Another could be looking for pieces with the same colors. 

Just like in puzzles, in real life, we use different plans or steps to find solutions to problems. These strategies help us think clearly, make good choices, and find the best answers without getting too stressed or giving up.

Why Is It Important To Know Different Problem-Solving Strategies?

Why Is It Important To Know Different Problem-Solving Strategies

Knowing different problem-solving strategies is important because different types of problems often require different approaches to solve them effectively. Having a variety of strategies to choose from allows you to select the best method for the specific problem you are trying to solve.

This improves your ability to analyze issues thoroughly, develop solutions creatively, and tackle problems from multiple angles. Knowing multiple strategies also aids in overcoming roadblocks if your initial approach is not working.

Here are some reasons why you need to know different problem-solving strategies:

  • Different Problems Require Different Tools: Just like you can’t use a hammer to fix everything, some problems need specific strategies to solve them.
  • Improves Creativity: Knowing various strategies helps you think outside the box and come up with creative solutions.
  • Saves Time: With the right strategy, you can solve problems faster instead of trying things that don’t work.
  • Reduces Stress: When you know how to tackle a problem, it feels less scary and you feel more confident.
  • Better Outcomes: Using the right strategy can lead to better solutions, making things work out better in the end.
  • Learning and Growth: Each time you solve a problem, you learn something new, which makes you smarter and better at solving future problems.

Knowing different ways to solve problems helps you tackle anything that comes your way, making life a bit easier and more fun!

17 Effective Problem-Solving Strategies

Effective problem-solving strategies include breaking the problem into smaller parts, brainstorming multiple solutions, evaluating the pros and cons of each, and choosing the most viable option. 

Critical thinking and creativity are essential in developing innovative solutions. Collaboration with others can also provide diverse perspectives and ideas. 

By applying these strategies, you can tackle complex issues more effectively.

Now, consider a challenge you’re dealing with. Which strategy could help you find a solution? Here we will discuss key problem strategies in detail.

1. Use a Past Solution That Worked

Use a Past Solution That Worked

This strategy involves looking back at previous similar problems you have faced and the solutions that were effective in solving them.

It is useful when you are facing a problem that is very similar to something you have already solved. The main benefit is that you don’t have to come up with a brand new solution – you already know the method that worked before will likely work again.

However, the limitation is that the current problem may have some unique aspects or differences that mean your old solution is not fully applicable.

The ideal process is to thoroughly analyze the new challenge, identify the key similarities and differences versus the past case, adapt the old solution as needed to align with the current context, and then pilot it carefully before full implementation.

An example is using the same negotiation tactics from purchasing your previous home when putting in an offer on a new house. Key terms would be adjusted but overall it can save significant time versus developing a brand new strategy.

2. Brainstorm Solutions

Brainstorm Solutions

This involves gathering a group of people together to generate as many potential solutions to a problem as possible.

It is effective when you need creative ideas to solve a complex or challenging issue. By getting input from multiple people with diverse perspectives, you increase the likelihood of finding an innovative solution.

The main limitation is that brainstorming sessions can sometimes turn into unproductive gripe sessions or discussions rather than focusing on productive ideation —so they need to be properly facilitated.

The key to an effective brainstorming session is setting some basic ground rules upfront and having an experienced facilitator guide the discussion. Rules often include encouraging wild ideas, avoiding criticism of ideas during the ideation phase, and building on others’ ideas.

For instance, a struggling startup might hold a session where ideas for turnaround plans are generated and then formalized with financials and metrics.

3. Work Backward from the Solution

Work Backward from the Solution

This technique involves envisioning that the problem has already been solved and then working step-by-step backward toward the current state.

This strategy is particularly helpful for long-term, multi-step problems. By starting from the imagined solution and identifying all the steps required to reach it, you can systematically determine the actions needed. It lets you tackle a big hairy problem through smaller, reversible steps.

A limitation is that this approach may not be possible if you cannot accurately envision the solution state to start with.

The approach helps drive logical systematic thinking for complex problem-solving, but should still be combined with creative brainstorming of alternative scenarios and solutions.

An example is planning for an event – you would imagine the successful event occurring, then determine the tasks needed the week before, two weeks before, etc. all the way back to the present.

4. Use the Kipling Method

Use the Kipling Method

This method, named after author Rudyard Kipling, provides a framework for thoroughly analyzing a problem before jumping into solutions.

It consists of answering six fundamental questions: What, Where, When, How, Who, and Why about the challenge. Clearly defining these core elements of the problem sets the stage for generating targeted solutions.

The Kipling method enables a deep understanding of problem parameters and root causes before solution identification. By jumping to brainstorm solutions too early, critical information can be missed or the problem is loosely defined, reducing solution quality.

Answering the six fundamental questions illuminates all angles of the issue. This takes time but pays dividends in generating optimal solutions later tuned precisely to the true underlying problem.

The limitation is that meticulously working through numerous questions before addressing solutions can slow progress.

The best approach blends structured problem decomposition techniques like the Kipling method with spurring innovative solution ideation from a diverse team. 

An example is using this technique after a technical process failure – the team would systematically detail What failed, Where/When did it fail, How it failed (sequence of events), Who was involved, and Why it likely failed before exploring preventative solutions.

5. Try Different Solutions Until One Works (Trial and Error)

Try Different Solutions Until One Works (Trial and Error)

This technique involves attempting various potential solutions sequentially until finding one that successfully solves the problem.

Trial and error works best when facing a concrete, bounded challenge with clear solution criteria and a small number of discrete options to try. By methodically testing solutions, you can determine the faulty component.

A limitation is that it can be time-intensive if the working solution set is large.

The key is limiting the variable set first. For technical problems, this boundary is inherent and each element can be iteratively tested. But for business issues, artificial constraints may be required – setting decision rules upfront to reduce options before testing.

Furthermore, hypothesis-driven experimentation is far superior to blind trial and error – have logic for why Option A may outperform Option B.

Examples include fixing printer jams by testing different paper tray and cable configurations or resolving website errors by tweaking CSS/HTML line-by-line until the code functions properly.

6. Use Proven Formulas or Frameworks (Heuristics)

Use Proven Formulas or Frameworks (Heuristics)

Heuristics refers to applying existing problem-solving formulas or frameworks rather than addressing issues completely from scratch.

This allows leveraging established best practices rather than reinventing the wheel each time.

It is effective when facing recurrent, common challenges where proven structured approaches exist.

However, heuristics may force-fit solutions to non-standard problems.

For example, a cost-benefit analysis can be used instead of custom weighting schemes to analyze potential process improvements.

Onethread allows teams to define, save, and replicate configurable project templates so proven workflows can be reliably applied across problems with some consistency rather than fully custom one-off approaches each time.

Try One thread

Experience One thread full potential, with all its features unlocked. Sign up now to start your 14-day free trial!

7. Trust Your Instincts (Insight Problem-Solving)

Trust Your Instincts (Insight Problem-Solving)

Insight is a problem-solving technique that involves waiting patiently for an unexpected “aha moment” when the solution pops into your mind.

It works well for personal challenges that require intuitive realizations over calculated logic. The unconscious mind makes connections leading to flashes of insight when relaxing or doing mundane tasks unrelated to the actual problem.

Benefits include out-of-the-box creative solutions. However, the limitations are that insights can’t be forced and may never come at all if too complex. Critical analysis is still required after initial insights.

A real-life example would be a writer struggling with how to end a novel. Despite extensive brainstorming, they feel stuck. Eventually while gardening one day, a perfect unexpected plot twist sparks an ideal conclusion. However, once written they still carefully review if the ending flows logically from the rest of the story.

8. Reverse Engineer the Problem

Reverse Engineer the Problem

This approach involves deconstructing a problem in reverse sequential order from the current undesirable outcome back to the initial root causes.

By mapping the chain of events backward, you can identify the origin of where things went wrong and establish the critical junctures for solving it moving ahead. Reverse engineering provides diagnostic clarity on multi-step problems.

However, the limitation is that it focuses heavily on autopsying the past versus innovating improved future solutions.

An example is tracing back from a server outage, through the cascade of infrastructure failures that led to it finally terminating at the initial script error that triggered the crisis. This root cause would then inform the preventative measure.

9. Break Down Obstacles Between Current and Goal State (Means-End Analysis)

Break Down Obstacles Between Current and Goal State (Means-End Analysis)

This technique defines the current problem state and the desired end goal state, then systematically identifies obstacles in the way of getting from one to the other.

By mapping the barriers or gaps, you can then develop solutions to address each one. This methodically connects the problem to solutions.

A limitation is that some obstacles may be unknown upfront and only emerge later.

For example, you can list down all the steps required for a new product launch – current state through production, marketing, sales, distribution, etc. to full launch (goal state) – to highlight where resource constraints or other blocks exist so they can be addressed.

Onethread allows dividing big-picture projects into discrete, manageable phases, milestones, and tasks to simplify execution just as problems can be decomposed into more achievable components. Features like dependency mapping further reinforce interconnections.

Using Onethread’s issues and subtasks feature, messy problems can be decomposed into manageable chunks.

10. Ask “Why” Five Times to Identify the Root Cause (The 5 Whys)

Ask "Why" Five Times to Identify the Root Cause (The 5 Whys)

This technique involves asking “Why did this problem occur?” and then responding with an answer that is again met with asking “Why?” This process repeats five times until the root cause is revealed.

Continually asking why digs deeper from surface symptoms to underlying systemic issues.

It is effective for getting to the source of problems originating from human error or process breakdowns.

However, some complex issues may have multiple tangled root causes not solvable through this approach alone.

An example is a retail store experiencing a sudden decline in customers. Successively asking why five times may trace an initial drop to parking challenges, stemming from a city construction project – the true starting point to address.

11. Evaluate Strengths, Weaknesses, Opportunities, and Threats (SWOT Analysis)

Evaluate Strengths, Weaknesses, Opportunities, and Threats (SWOT Analysis)

This involves analyzing a problem or proposed solution by categorizing internal and external factors into a 2×2 matrix: Strengths, Weaknesses as the internal rows; Opportunities and Threats as the external columns.

Systematically identifying these elements provides balanced insight to evaluate options and risks. It is impactful when evaluating alternative solutions or developing strategy amid complexity or uncertainty.

The key benefit of SWOT analysis is enabling multi-dimensional thinking when rationally evaluating options. Rather than getting anchored on just the upsides or the existing way of operating, it urges a systematic assessment through four different lenses:

  • Internal Strengths: Our core competencies/advantages able to deliver success
  • Internal Weaknesses: Gaps/vulnerabilities we need to manage
  • External Opportunities: Ways we can differentiate/drive additional value
  • External Threats: Risks we must navigate or mitigate

Multiperspective analysis provides the needed holistic view of the balanced risk vs. reward equation for strategic decision making amid uncertainty.

However, SWOT can feel restrictive if not tailored and evolved for different issue types.

Teams should view SWOT analysis as a starting point, augmenting it further for distinct scenarios.

An example is performing a SWOT analysis on whether a small business should expand into a new market – evaluating internal capabilities to execute vs. risks in the external competitive and demand environment to inform the growth decision with eyes wide open.

12. Compare Current vs Expected Performance (Gap Analysis)

Compare Current vs Expected Performance (Gap Analysis)

This technique involves comparing the current state of performance, output, or results to the desired or expected levels to highlight shortfalls.

By quantifying the gaps, you can identify problem areas and prioritize address solutions.

Gap analysis is based on the simple principle – “you can’t improve what you don’t measure.” It enables facts-driven problem diagnosis by highlighting delta to goals, not just vague dissatisfaction that something seems wrong. And measurement immediately suggests improvement opportunities – address the biggest gaps first.

This data orientation also supports ROI analysis on fixing issues – the return from closing larger gaps outweighs narrowly targeting smaller performance deficiencies.

However, the approach is only effective if robust standards and metrics exist as the benchmark to evaluate against. Organizations should invest upfront in establishing performance frameworks.

Furthermore, while numbers are invaluable, the human context behind problems should not be ignored – quantitative versus qualitative gap assessment is optimally blended.

For example, if usage declines are noted during software gap analysis, this could be used as a signal to improve user experience through design.

13. Observe Processes from the Frontline (Gemba Walk)

Observe Processes from the Frontline (Gemba Walk)

A Gemba walk involves going to the actual place where work is done, directly observing the process, engaging with employees, and finding areas for improvement.

By experiencing firsthand rather than solely reviewing abstract reports, practical problems and ideas emerge.

The limitation is Gemba walks provide anecdotes not statistically significant data. It complements but does not replace comprehensive performance measurement.

An example is a factory manager inspecting the production line to spot jam areas based on direct reality rather than relying on throughput dashboards alone back in her office. Frontline insights prove invaluable.

14. Analyze Competitive Forces (Porter’s Five Forces)

Analyze Competitive Forces (Porter’s Five Forces)

This involves assessing the marketplace around a problem or business situation via five key factors: competitors, new entrants, substitute offerings, suppliers, and customer power.

Evaluating these forces illuminates risks and opportunities for strategy development and issue resolution. It is effective for understanding dynamic external threats and opportunities when operating in a contested space.

However, over-indexing on only external factors can overlook the internal capabilities needed to execute solutions.

A startup CEO, for example, may analyze market entry barriers, whitespace opportunities, and disruption risks across these five forces to shape new product rollout strategies and marketing approaches.

15. Think from Different Perspectives (Six Thinking Hats)

Think from Different Perspectives (Six Thinking Hats)

The Six Thinking Hats is a technique developed by Edward de Bono that encourages people to think about a problem from six different perspectives, each represented by a colored “thinking hat.”

The key benefit of this strategy is that it pushes team members to move outside their usual thinking style and consider new angles. This brings more diverse ideas and solutions to the table.

It works best for complex problems that require innovative solutions and when a team is stuck in an unproductive debate. The structured framework keeps the conversation flowing in a positive direction.

Limitations are that it requires training on the method itself and may feel unnatural at first. Team dynamics can also influence success – some members may dominate certain “hats” while others remain quiet.

A real-life example is a software company debating whether to build a new feature. The white hat focuses on facts, red on gut feelings, black on potential risks, yellow on benefits, green on new ideas, and blue on process. This exposes more balanced perspectives before deciding.

Onethread centralizes diverse stakeholder communication onto one platform, ensuring all voices are incorporated when evaluating project tradeoffs, just as problem-solving should consider multifaceted solutions.

16. Visualize the Problem (Draw it Out)

Visualize the Problem (Draw it Out)

Drawing out a problem involves creating visual representations like diagrams, flowcharts, and maps to work through challenging issues.

This strategy is helpful when dealing with complex situations with lots of interconnected components. The visuals simplify the complexity so you can thoroughly understand the problem and all its nuances.

Key benefits are that it allows more stakeholders to get on the same page regarding root causes and it sparks new creative solutions as connections are made visually.

However, simple problems with few variables don’t require extensive diagrams. Additionally, some challenges are so multidimensional that fully capturing every aspect is difficult.

A real-life example would be mapping out all the possible causes leading to decreased client satisfaction at a law firm. An intricate fishbone diagram with branches for issues like service delivery, technology, facilities, culture, and vendor partnerships allows the team to trace problems back to their origins and brainstorm targeted fixes.

17. Follow a Step-by-Step Procedure (Algorithms)

Follow a Step-by-Step Procedure (Algorithms)

An algorithm is a predefined step-by-step process that is guaranteed to produce the correct solution if implemented properly.

Using algorithms is effective when facing problems that have clear, binary right and wrong answers. Algorithms work for mathematical calculations, computer code, manufacturing assembly lines, and scientific experiments.

Key benefits are consistency, accuracy, and efficiency. However, they require extensive upfront development and only apply to scenarios with strict parameters. Additionally, human error can lead to mistakes.

For example, crew members of fast food chains like McDonald’s follow specific algorithms for food prep – from grill times to ingredient amounts in sandwiches, to order fulfillment procedures. This ensures uniform quality and service across all locations. However, if a step is missed, errors occur.

The Problem-Solving Process

The Problem-Solving Process

The problem-solving process typically includes defining the issue, analyzing details, creating solutions, weighing choices, acting, and reviewing results.

In the above, we have discussed several problem-solving strategies. For every problem-solving strategy, you have to follow these processes. Here’s a detailed step-by-step process of effective problem-solving:

Step 1: Identify the Problem

The problem-solving process starts with identifying the problem. This step involves understanding the issue’s nature, its scope, and its impact. Once the problem is clearly defined, it sets the foundation for finding effective solutions.

Identifying the problem is crucial. It means figuring out exactly what needs fixing. This involves looking at the situation closely, understanding what’s wrong, and knowing how it affects things. It’s about asking the right questions to get a clear picture of the issue. 

This step is important because it guides the rest of the problem-solving process. Without a clear understanding of the problem, finding a solution is much harder. It’s like diagnosing an illness before treating it. Once the problem is identified accurately, you can move on to exploring possible solutions and deciding on the best course of action.

Step 2: Break Down the Problem

Breaking down the problem is a key step in the problem-solving process. It involves dividing the main issue into smaller, more manageable parts. This makes it easier to understand and tackle each component one by one.

After identifying the problem, the next step is to break it down. This means splitting the big issue into smaller pieces. It’s like solving a puzzle by handling one piece at a time. 

By doing this, you can focus on each part without feeling overwhelmed. It also helps in identifying the root causes of the problem. Breaking down the problem allows for a clearer analysis and makes finding solutions more straightforward. 

Each smaller problem can be addressed individually, leading to an effective resolution of the overall issue. This approach not only simplifies complex problems but also aids in developing a systematic plan to solve them.

Step 3: Come up with potential solutions

Coming up with potential solutions is the third step in the problem-solving process. It involves brainstorming various options to address the problem, considering creativity and feasibility to find the best approach.

After breaking down the problem, it’s time to think of ways to solve it. This stage is about brainstorming different solutions. You look at the smaller issues you’ve identified and start thinking of ways to fix them. This is where creativity comes in. 

You want to come up with as many ideas as possible, no matter how out-of-the-box they seem. It’s important to consider all options and evaluate their pros and cons. This process allows you to gather a range of possible solutions. 

Later, you can narrow these down to the most practical and effective ones. This step is crucial because it sets the stage for deciding on the best solution to implement. It’s about being open-minded and innovative to tackle the problem effectively.

Step 4: Analyze the possible solutions

Analyzing the possible solutions is the fourth step in the problem-solving process. It involves evaluating each proposed solution’s advantages and disadvantages to determine the most effective and feasible option.

After coming up with potential solutions, the next step is to analyze them. This means looking closely at each idea to see how well it solves the problem. You weigh the pros and cons of every solution.

Consider factors like cost, time, resources, and potential outcomes. This analysis helps in understanding the implications of each option. It’s about being critical and objective, ensuring that the chosen solution is not only effective but also practical.

This step is vital because it guides you towards making an informed decision. It involves comparing the solutions against each other and selecting the one that best addresses the problem.

By thoroughly analyzing the options, you can move forward with confidence, knowing you’ve chosen the best path to solve the issue.

Step 5: Implement and Monitor the Solutions

Implementing and monitoring the solutions is the final step in the problem-solving process. It involves putting the chosen solution into action and observing its effectiveness, making adjustments as necessary.

Once you’ve selected the best solution, it’s time to put it into practice. This step is about action. You implement the chosen solution and then keep an eye on how it works. Monitoring is crucial because it tells you if the solution is solving the problem as expected. 

If things don’t go as planned, you may need to make some changes. This could mean tweaking the current solution or trying a different one. The goal is to ensure the problem is fully resolved. 

This step is critical because it involves real-world application. It’s not just about planning; it’s about doing and adjusting based on results. By effectively implementing and monitoring the solutions, you can achieve the desired outcome and solve the problem successfully.

Why This Process is Important

Following a defined process to solve problems is important because it provides a systematic, structured approach instead of a haphazard one. Having clear steps guides logical thinking, analysis, and decision-making to increase effectiveness. Key reasons it helps are:

  • Clear Direction: This process gives you a clear path to follow, which can make solving problems less overwhelming.
  • Better Solutions: Thoughtful analysis of root causes, iterative testing of solutions, and learning orientation lead to addressing the heart of issues rather than just symptoms.
  • Saves Time and Energy: Instead of guessing or trying random things, this process helps you find a solution more efficiently.
  • Improves Skills: The more you use this process, the better you get at solving problems. It’s like practicing a sport. The more you practice, the better you play.
  • Maximizes collaboration: Involving various stakeholders in the process enables broader inputs. Their communication and coordination are streamlined through organized brainstorming and evaluation.
  • Provides consistency: Standard methodology across problems enables building institutional problem-solving capabilities over time. Patterns emerge on effective techniques to apply to different situations.

The problem-solving process is a powerful tool that can help us tackle any challenge we face. By following these steps, we can find solutions that work and learn important skills along the way.

Key Skills for Efficient Problem Solving

Key Skills for Efficient Problem Solving

Efficient problem-solving requires breaking down issues logically, evaluating options, and implementing practical solutions.

Key skills include critical thinking to understand root causes, creativity to brainstorm innovative ideas, communication abilities to collaborate with others, and decision-making to select the best way forward. Staying adaptable, reflecting on outcomes, and applying lessons learned are also essential.

With practice, these capacities will lead to increased personal and team effectiveness in systematically addressing any problem.

 Let’s explore the powers you need to become a problem-solving hero!

Critical Thinking and Analytical Skills

Critical thinking and analytical skills are vital for efficient problem-solving as they enable individuals to objectively evaluate information, identify key issues, and generate effective solutions. 

These skills facilitate a deeper understanding of problems, leading to logical, well-reasoned decisions. By systematically breaking down complex issues and considering various perspectives, individuals can develop more innovative and practical solutions, enhancing their problem-solving effectiveness.

Communication Skills

Effective communication skills are essential for efficient problem-solving as they facilitate clear sharing of information, ensuring all team members understand the problem and proposed solutions. 

These skills enable individuals to articulate issues, listen actively, and collaborate effectively, fostering a productive environment where diverse ideas can be exchanged and refined. By enhancing mutual understanding, communication skills contribute significantly to identifying and implementing the most viable solutions.

Decision-Making

Strong decision-making skills are crucial for efficient problem-solving, as they enable individuals to choose the best course of action from multiple alternatives. 

These skills involve evaluating the potential outcomes of different solutions, considering the risks and benefits, and making informed choices. Effective decision-making leads to the implementation of solutions that are likely to resolve problems effectively, ensuring resources are used efficiently and goals are achieved.

Planning and Prioritization

Planning and prioritization are key for efficient problem-solving, ensuring resources are allocated effectively to address the most critical issues first. This approach helps in organizing tasks according to their urgency and impact, streamlining efforts towards achieving the desired outcome efficiently.

Emotional Intelligence

Emotional intelligence enhances problem-solving by allowing individuals to manage emotions, understand others, and navigate social complexities. It fosters a positive, collaborative environment, essential for generating creative solutions and making informed, empathetic decisions.

Leadership skills drive efficient problem-solving by inspiring and guiding teams toward common goals. Effective leaders motivate their teams, foster innovation, and navigate challenges, ensuring collective efforts are focused and productive in addressing problems.

Time Management

Time management is crucial in problem-solving, enabling individuals to allocate appropriate time to each task. By efficiently managing time, one can ensure that critical problems are addressed promptly without neglecting other responsibilities.

Data Analysis

Data analysis skills are essential for problem-solving, as they enable individuals to sift through data, identify trends, and extract actionable insights. This analytical approach supports evidence-based decision-making, leading to more accurate and effective solutions.

Research Skills

Research skills are vital for efficient problem-solving, allowing individuals to gather relevant information, explore various solutions, and understand the problem’s context. This thorough exploration aids in developing well-informed, innovative solutions.

Becoming a great problem solver takes practice, but with these skills, you’re on your way to becoming a problem-solving hero. 

How to Improve Your Problem-Solving Skills?

How to Improve Your Problem-Solving Skills

Improving your problem-solving skills can make you a master at overcoming challenges. Learn from experts, practice regularly, welcome feedback, try new methods, experiment, and study others’ success to become better.

Learning from Experts

Improving problem-solving skills by learning from experts involves seeking mentorship, attending workshops, and studying case studies. Experts provide insights and techniques that refine your approach, enhancing your ability to tackle complex problems effectively.

To enhance your problem-solving skills, learning from experts can be incredibly beneficial. Engaging with mentors, participating in specialized workshops, and analyzing case studies from seasoned professionals can offer valuable perspectives and strategies. 

Experts share their experiences, mistakes, and successes, providing practical knowledge that can be applied to your own problem-solving process. This exposure not only broadens your understanding but also introduces you to diverse methods and approaches, enabling you to tackle challenges more efficiently and creatively.

Improving problem-solving skills through practice involves tackling a variety of challenges regularly. This hands-on approach helps in refining techniques and strategies, making you more adept at identifying and solving problems efficiently.

One of the most effective ways to enhance your problem-solving skills is through consistent practice. By engaging with different types of problems on a regular basis, you develop a deeper understanding of various strategies and how they can be applied. 

This hands-on experience allows you to experiment with different approaches, learn from mistakes, and build confidence in your ability to tackle challenges.

Regular practice not only sharpens your analytical and critical thinking skills but also encourages adaptability and innovation, key components of effective problem-solving.

Openness to Feedback

Being open to feedback is like unlocking a secret level in a game. It helps you boost your problem-solving skills. Improving problem-solving skills through openness to feedback involves actively seeking and constructively responding to critiques. 

This receptivity enables you to refine your strategies and approaches based on insights from others, leading to more effective solutions. 

Learning New Approaches and Methodologies

Learning new approaches and methodologies is like adding new tools to your toolbox. It makes you a smarter problem-solver. Enhancing problem-solving skills by learning new approaches and methodologies involves staying updated with the latest trends and techniques in your field. 

This continuous learning expands your toolkit, enabling innovative solutions and a fresh perspective on challenges.

Experimentation

Experimentation is like being a scientist of your own problems. It’s a powerful way to improve your problem-solving skills. Boosting problem-solving skills through experimentation means trying out different solutions to see what works best. This trial-and-error approach fosters creativity and can lead to unique solutions that wouldn’t have been considered otherwise.

Analyzing Competitors’ Success

Analyzing competitors’ success is like being a detective. It’s a smart way to boost your problem-solving skills. Improving problem-solving skills by analyzing competitors’ success involves studying their strategies and outcomes. Understanding what worked for them can provide valuable insights and inspire effective solutions for your own challenges. 

Challenges in Problem-Solving

Facing obstacles when solving problems is common. Recognizing these barriers, like fear of failure or lack of information, helps us find ways around them for better solutions.

Fear of Failure

Fear of failure is like a big, scary monster that stops us from solving problems. It’s a challenge many face. Because being afraid of making mistakes can make us too scared to try new solutions. 

How can we overcome this? First, understand that it’s okay to fail. Failure is not the opposite of success; it’s part of learning. Every time we fail, we discover one more way not to solve a problem, getting us closer to the right solution. Treat each attempt like an experiment. It’s not about failing; it’s about testing and learning.

Lack of Information

Lack of information is like trying to solve a puzzle with missing pieces. It’s a big challenge in problem-solving. Because without all the necessary details, finding a solution is much harder. 

How can we fix this? Start by gathering as much information as you can. Ask questions, do research, or talk to experts. Think of yourself as a detective looking for clues. The more information you collect, the clearer the picture becomes. Then, use what you’ve learned to think of solutions. 

Fixed Mindset

A fixed mindset is like being stuck in quicksand; it makes solving problems harder. It means thinking you can’t improve or learn new ways to solve issues. 

How can we change this? First, believe that you can grow and learn from challenges. Think of your brain as a muscle that gets stronger every time you use it. When you face a problem, instead of saying “I can’t do this,” try thinking, “I can’t do this yet.” Look for lessons in every challenge and celebrate small wins. 

Everyone starts somewhere, and mistakes are just steps on the path to getting better. By shifting to a growth mindset, you’ll see problems as opportunities to grow. Keep trying, keep learning, and your problem-solving skills will soar!

Jumping to Conclusions

Jumping to conclusions is like trying to finish a race before it starts. It’s a challenge in problem-solving. That means making a decision too quickly without looking at all the facts. 

How can we avoid this? First, take a deep breath and slow down. Think about the problem like a puzzle. You need to see all the pieces before you know where they go. Ask questions, gather information, and consider different possibilities. Don’t choose the first solution that comes to mind. Instead, compare a few options. 

Feeling Overwhelmed

Feeling overwhelmed is like being buried under a mountain of puzzles. It’s a big challenge in problem-solving. When we’re overwhelmed, everything seems too hard to handle. 

How can we deal with this? Start by taking a step back. Breathe deeply and focus on one thing at a time. Break the big problem into smaller pieces, like sorting puzzle pieces by color. Tackle each small piece one by one. It’s also okay to ask for help. Sometimes, talking to someone else can give you a new perspective. 

Confirmation Bias

Confirmation bias is like wearing glasses that only let you see what you want to see. It’s a challenge in problem-solving. Because it makes us focus only on information that agrees with what we already believe, ignoring anything that doesn’t. 

How can we overcome this? First, be aware that you might be doing it. It’s like checking if your glasses are on right. Then, purposely look for information that challenges your views. It’s like trying on a different pair of glasses to see a new perspective. Ask questions and listen to answers, even if they don’t fit what you thought before.

Groupthink is like everyone in a group deciding to wear the same outfit without asking why. It’s a challenge in problem-solving. It means making decisions just because everyone else agrees, without really thinking it through. 

How can we avoid this? First, encourage everyone in the group to share their ideas, even if they’re different. It’s like inviting everyone to show their unique style of clothes. 

Listen to all opinions and discuss them. It’s okay to disagree; it helps us think of better solutions. Also, sometimes, ask someone outside the group for their thoughts. They might see something everyone in the group missed.

Overcoming obstacles in problem-solving requires patience, openness, and a willingness to learn from mistakes. By recognizing these barriers, we can develop strategies to navigate around them, leading to more effective and creative solutions.

What are the most common problem-solving techniques?

The most common techniques include brainstorming, the 5 Whys, mind mapping, SWOT analysis, and using algorithms or heuristics. Each approach has its strengths, suitable for different types of problems.

What’s the best problem-solving strategy for every situation?

There’s no one-size-fits-all strategy. The best approach depends on the problem’s complexity, available resources, and time constraints. Combining multiple techniques often yields the best results.

How can I improve my problem-solving skills?

Improve your problem-solving skills by practicing regularly, learning from experts, staying open to feedback, and continuously updating your knowledge on new approaches and methodologies.

Are there any tools or resources to help with problem-solving?

Yes, tools like mind mapping software, online courses on critical thinking, and books on problem-solving techniques can be very helpful. Joining forums or groups focused on problem-solving can also provide support and insights.

What are some common mistakes people make when solving problems?

Common mistakes include jumping to conclusions without fully understanding the problem, ignoring valuable feedback, sticking to familiar solutions without considering alternatives, and not breaking down complex problems into manageable parts.

Final Words

Mastering problem-solving strategies equips us with the tools to tackle challenges across all areas of life. By understanding and applying these techniques, embracing a growth mindset, and learning from both successes and obstacles, we can transform problems into opportunities for growth. Continuously improving these skills ensures we’re prepared to face and solve future challenges more effectively.

' src=

Let's Get Started with Onethread

Onethread empowers you to plan, organise, and track projects with ease, ensuring you meet deadlines, allocate resources efficiently, and keep progress transparent.

By subscribing you agree to our  Privacy Policy .

Giving modern marketing teams superpowers with short links that stand out.

  • Live Product Demo

© Copyright 2023 Onethread, Inc

MiddleWeb

  • STEM By Design / Teacher Preparation

Real-World STEM Problems

by Anne Jolly · Published 12/16/2012 · Updated 10/27/2021

A MiddleWeb Blog

Links checked and updated January 2019. See Anne’s recent posts for more real-world STEM.

1 stem_design_logo

STEM teachers pose problems and combine problem solving with project-based learning across disciplines. They work together with students on activities to develop students’ critical thinking, communication, assessment, and inquiry skills.

That’s an impressive job description; however, one source describes the teacher preparation system for STEM teachers as “chaotic, incoherent, and uncoordinated, filled with ‘excellent programs, terrible programs, and many in between.’” That’s not surprising, since the STEM acronym has only been around for a few years. But it certainly needs to improve.

What Good STEM Lessons Do

While things seem a bit muddled on the STEM teacher preparation front, we do know some things about STEM curriculum. We know, for example, that a good STEM lesson accomplishes these things:

  • Helps students apply math and science through authentic, hands-on learning
  • Includes the use of (or creation of) technology
  • Involves students in using an engineering design process
  • Engages students in working in collaborative teams
  • Appeals equally to girls and boys
  • Reinforces relevant math and science standards
  • Addresses a real-world problem

real life problems using problem solving

Providing students with real-world problems and asking them to brainstorm solutions will bring their higher order thinking skills into play. But for me, identifying real-world problems that students can solve is one of the hardest parts of creating STEM lessons.

They have to be problems that students can reasonably grapple with. And those all-important problems may need to synchronize with a specific set of math and/or science standards from the school system’s pacing guide. Hopefully you don’t have that constraint, but realistically you probably do.

Sites for Real-World Problems

I’ve located some sites that help me come up with real-world problems, and I’m always on the look-out for more. I’m going to share several sites I’ve identified, and I hope that you’ll share some as well. I invite you to click on these sites and mull over the possibilities.

real life problems using problem solving

In the Greening STEM section on this site you’ll find ideas for relevant problems. Most environmental topics can fit under standards for either life or physical science, so these may provide you with some real “kid-catchers,” or ideas that snag students’ interest.

Topics include areas such as:

•    Oil spills •    Water pollution •    Air quality •    Endangered species •    Environmental Health

Another favorite site of mine is the Design Squad Nation . They have some real-world problems there that I find intriguing. For example student teams might invent these:

•    Band Instrument •    Electric Gamebox •    Confetti Launcher •    Solar Water Heater •    Speedy Shelter

How cool are those ideas? As a middle school science teacher, I found STEM to be a natural fit for most of the topics I taught. Math, however, seems to be a different matter.

The Problem with Math

One issue I hear repeatedly is that math teachers find it difficult to identify real-world problems and implement STEM projects in math classes. (Note that these math teachers are not able to work collaboratively with science teachers to develop/implement lessons, and must therefore “go-it-alone.”) However, the math teachers who mentioned this are looking determinedly for ways to implement STEM lessons.

The Common Core Standards state: “Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace.” This adds urgency to the search for real-world problems that bring in appropriate math standards.

real life problems using problem solving

Math standards addressed by the lessons on this site include these and more:

•    Fractions, decimals, percents •    Ratios and proportions •    Estimating and predicting •    Rates and unit rate •    Modeling problems with graphs, tables, and equations •    Comparing, graphing, and interpreting data •    Scale factors •    Geometry and measurement •    Probability •    Proportional reasoning

Another site that links math to real problems is Middle School Math and Science . Students solve problems involving train races, global sun temperature, amount of water usage, and so on. Most of these are Internet-based, so you may want to design some of them as hands-on projects for students. (UPDATE: This Ohio State University site is now an archive, but you’ll still find plenty of useful resources.)

Teach Engineering

No list of real-world problem ideas would be complete without mentioning the Teach Engineering lessons. As you peruse these, read the summary of the lessons rather than relying on the titles. Look for projects that include hands-on ideas, such as those involving microbes, rocket-powered boats, solid fuel reactants, the fisheries bycatch problem , and so on. Notice that many of the lessons have hands-on “Associated Activities.” These generally hands-on investigations bring the “E” in STEM to your students.

I hope these sites will be of value to you, and will assist you in brainstorming ideas for real-world problems. Feel free to share comments or sites of your own. We’re inventing a new specialty and need all the help we can get and share!

For even more STEM lesson ideas, read Anne’s 2018 posts:

How to Make or Find Good STEM Lessons and Design Squad Global’s Super STEM Resources

and her 2020 post:

Need a Real World STEM Project? Try Plastics Pollution

You’ll also find teaching ideas at Anne’s STEM by Design website

real life problems using problem solving

Click & use code MWEB1 for 20% off!

Share this:

Tags: STEM curriculum STEM real-world problems STEM teacher preparation teaching STEM

' src=

Anne Jolly began her career as a lab scientist, caught the science teaching bug and was recognized as an Alabama Teacher of the Year during her long career as a middle grades science teacher. From 2007-2014 Anne was part of an NSF-funded team that developed middle grades STEM curriculum modules and teacher PD. In 2020-2021 Anne teamed with Flight Works Alabama to develop a workforce-friendly middle school curriculum and is now working on an elementary version. Her book STEM By Design: Strategies & Activities for Grades 4-8 is published by Routledge/EOE in partnership with MiddleWeb.

65 Responses

  • Comments 63
  • Pingbacks 2

' src=

Hello Anne. As a new STEM coordinator, I have to give a STEM presentation to principals for my charter schools. Can you suggest and lessons, books. power points,etc. that would be advantageous? Fondly, Linda Schwerer Pinellas Academy of Math & Science

' src=

Hi, Linda – I have a couple of ideas . . . If you contact Susan Pruet – Director if Engaging Youth through Engineering (you can google it) she will send you a copy of a free STEM launcher. It’s a lesson intended to demonstrate the STEM process. You could lead your principals through it if you think they really need a better understanding of the difference in STEM and science experimentation. You could also distribute it to your schools for teachers to use as a launcher into the STEM way of thinking. It has PowerPoint slides with it.

An online document that you might like to look at is “STEM Teachers in Professional Learning Communities: From Good Teachers to Great Teaching.” You can google this document online as well as a National Academies Press document titled “Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics.”

I’m not sure if you’re trying to introduce these principals to the idea of STEM and convince them that they need to do this, or if you’re trying to show your principals how to do this. Those are two separate presentations – at least.

Good luck with your preparation! You have a lot of research to back up the need for STEM!

Thank you so much Anne! I will get to work! Your advice is very helpful!

' src=

I realize this comment is 3 years old, but I came across it just now. I would like to know if Susan Pruet is still available to get that free STEM launcher you mentioned – a lesson intended to demo the STEM process. I would love this.

' src=

Harry – thanks for asking. This is still a popular post at MiddleWeb! Anne Jolly’s January 2017 blog post shares the Launcher activity: Launch the New Year with STEM Mini-Lessons!

Thank you! Much appreciated from a fellow Alabaman. (correct use of that word? :) )

' src=

I love the STEM idea. But, as a 7th grade math teacher, I don’t see a place in STEM programs to ensure that students understand the basic math skills required by educational standards. For many kids, it takes a long time to understand and be able to apply math concepts. With STEM programming focusing on the project-based approach, where does mastering basic skills fit in?

Mastering math skills and applying them through STEM isn’t actually an either-or situation. If kids see reasons for what they are learning, they tend to learn more deeply and quickly because they are actually engaged in the content. I’ve worked with STEM courses that made use of math that the kids had already learned. I’ve also worked with STEM projects that taught the math kids needed in order to solve the problem. Both were effective. The real purpose of STEM is to ensure that math and science students learn their content more deeply. If that isn’t working, then we’ll need to keep adjusting until we get there. Thanks for asking!

' src=

Hi Ann, I am a third grade teacher and currently co-chair a curriculum committee to develop a summer program for Kindergarten through 3rd grade. I am having trouble finding age appropriate STEM lessons for kindergarten through 3rd grade. Do you have ideas or suggestiosn as to where I can start? Thank you.

Hi, Mary! So glad you’re working on developing a summer program. I know someone who’s been there, done that, and I’m going to put you in touch with her. Her name is Susan Pruet and her email is [email protected] . Please shoot her an email and she’ll be happy to tell you about what materials, etc. she uses.

I’d also take a look at the Engineering is Elementary (EiE) curriculum from the Boston Museum of Science. Those are quite thorough and good.

' src=

Hi Ann I am a seventh grade science teacher and we are in the early stages of implementing STEMS at our school site.Can this program incorporate all content areas, history, language arts, math and science all in the science classroom? This is not my understanding of how it should be taught. I understand the math and science but to include what the history and language art teacher is teaching doesnt seem to work. I am hoping you can clarify this for me.

Hi, Darren. Wow. You’re gonna be sorry you asked me this . . . my answer won’t be short!

For me personally, STEM includes an indepth, integrated focus on science and math, and on using the engineering design process to solve real-world problems. Technology may be used to help with the solution, or teams of kids may create technology as part of the solution. (Anything made by humans to meet a want or need is designated as technology). This in-depth focus on science and math through STEM has come about as the result of a 21st Century workforce with an increasing need in STEM fields and a lack of STEM-prepared workers. The math and science deficits are sending our industries abroad to find workers qualified for our 21st century workforce.

Now to your question. I see a place for art in the STEM product design – it could be used to make the product teams produce more appealing and desirable – although that may be for the art teacher to work with if it’s going to involve knowing art design principles.

Likewise, you have to use some form of language arts in the communication process (communication is part of the engineering design process); however, it’s used naturally as teams work together to solve the engineering (STEM) challenge and to publicize their solutions. It’s not used try to accomplish specific language arts objectives.

History might be incorporated if you need to set some sort of context for the engineering challenge. But I can’t visualize incorporating specific history objectives during a STEM challenge unless they happen to be a natural fit. And unless you need a historical context for the challenge.

Doing a “force fit” with other subjects doesn’t make much sense to me. Not to mention – class time is already at a premium. STEM work, with its inquiry-based approach, already requires more time than a traditional science (or math) class.

The fact that all subjects are not taught directly in an engineering challenge doesn’t lessen the value of those other subjects. Again – it goes back to the need we’re attempting to meet by going deeper in math and science content through an engineering process.

So for me, in a STEM project students focus on using science and math to solve real world challenges, and they use the engineering design process to bring structure and process to doing that. Language arts and history are always appropriate to the extent that (and if) they add value to the STEM challenge. They shouldn’t be add-ons just for the sake of adding them on.

Remember, however, that there is an intense focus on the science and mathematics objectives in a solid STEM program. And this works best when these two subjects are integrated and the math and science teachers work together on teaching STEM projects.

Now, aren’t you sorry you asked? Seriously – remember this is MY opinion and STEM has other looks as well. I’d advise you to listen openly to the need for including other subjects as explained by your principal or other decision-maker. Then – rather than pushing back – in a positive manner explain how these subjects could fit naturally during the course of the STEM projects. Also explain what you expect to accomplish for your students through STEM and note the limited time you already have. Let me know how it goes. :-)

' src=

I am looking for STEM lessons that I can incorporate in my middle school Math Enrichment program which is for advanced math students in grades 6-8 and meets for approximately 10 weeks during the school year. I have been given the charge of creating a Math/STEM enrichment program/curriculum and am looking for resources to help. Currently, our school is implementing STEM curriculum/projects in the Science classrooms, but I need to find more of a mathematical slant. Thanks for your help…..I am so glad I found this website!

Hi, Sharon,

Math is one of the under-resourced areas in terms of lessons that apply real, grade-level math. I’ve seen so many lessons that ask students to “find the average” (my math teachers say it should be “find the median”), and then the writer feels that math has been sufficiently covered. NOT! Some areas of math that I’ve seen successfully developed into STEM lessons include applying what middle school students have learned about flow rate, unit rate, scaling and proportion, and statistics, to name a few.

Susan Pruet – a real math guru – will be writing a post for this blog in August. She’s going to address how math teachers can be STEM teachers, and will give some examples.

Some of the better math lessons I’ve found and adapted are from the Design Squad. This one – making cardboard furniture ( http://pbskids.org/designsquad/build/paper-table/ )- uses geometry. Try browsing around there for ideas. The Design Squad site also has links to other sites as well.

I’m SO glad that you, a math teacher, are taking on this task. Applying math will eliminate forever kids asking “Why should I learn this?”

Keep us posted, and stay in touch.

Thanks for your reply. I will be looking for the post in August and I will look at the Design Squad site as well. I too feel that Math takes a back seat to Science when STEM programs are created and implemented. I hope to change that! I will keep in touch and again, I appreciate your reply and support!!

' src=

You are providing amazing resources – thank you! I am starting a STEM program for all 6th, 7th and 8th grade students in our middle school. They will have STEM on three consecutive days (3 – 45 minute blocks) for 12 weeks. This will be a very exciting introductory year for us! My challenge is to design the curriculum this summer, though. I am searching for any type of “canned” curriculum to purchase as a start and then to develop from there. Can you provide any suggestions? Thanks so much!

I, too, have been given the charge of STEM curriculum writing for grades 6-8 in mathematics during the summer. If I find anything useful, I could let you know. It is a daunting task!!

Hi Sharon, Yes that would be excellent, and I will do the same! Nancy

I found a great resource for STEM projects on TeachersPayTeachers.com It is: 21st Century Math Projects. The emphasis is on Math, but STEM oriented. Check it out!

I checked it out, too, Sharon . . . I can’t see to what extent it mirrors STEM lessons, but it certainly seems to do so from what I read. And I love the fact that it’s written from a math perspective. Thanks for pointing out this resource!

Wow. What a feat to accomplish over the summer, Nancy!

Several “For purchase” STEM packages are out there, but I can’t recommend any in particular because I don’t know enough about them. You want your STEM program to integrate math, science, and technology, and to follow an engineering design process. (It’s the engineering piece that many would-be STEM curricula leave out.)

I’ll put out the feelers and see if any show up on the horizon. Check my Twitter feed at @ajollygal – I may get some responses there.

Thanks so much, Anne! I am a bit overwhelmed at the moment, but simultaneously excited about bringing STEM to our school! I appreciate any help or guidance – I will check twitter as well.

' src=

I am a parent of a 3rd grader who has been given the task of doing a stem project, and I have no idea how to help her, or what I am looking to do. I do not understand what this curriculum is. Can you please explain to me what I’m supposed to be doing with her

STEM curriculum helps kids apply the science and math they learn in a real world situations. Parents can help a lot with the STEM skills kids need. Here are some posts that contain information I wrote mostly for parents. See if these can give you the information you’re looking for. http://www.middleweb.com/3569/10-stem-tips-for-parents/ http://www.middleweb.com/15579/ideas-activities-stem-summer-slide/ http://www.middleweb.com/22787/reinvent-summer-learning-make-it-up/

Thanks for your question, and for looking for ways to help your daughter in STEM!

' src=

please suggest me some hands on activity on maths for 10-15 yrs of age

' src=

I am a technology teacher for grades 3-5. I am looking for STEM problems my students can do on the computer. Any ideas?

' src=

Thanks for the information on applying STEM. I am actually a spatial ecologist that is teaching gr7-9 mathematics at a small school in South Africa. I feel that we came up with a brilliant idea of how to combine Math and STEM (for those Math teachers that were uncertain). I combined our focus on insects (biology) for the term with all the data chapters (collect, organise, summarise, interpret and report). The learners were tasked with creating a question that we wanted to answer regarding insects and using the data cycle/scientific method (above) to develop a plan how to answer this question. The learners decided to do a survey of insects at the school. They set up a plan of how to collect the insects, did so and then analysed the data and reported their findings. They had to include a section on possible errors/bias in their data. I admit that this is one of the easier sections in math to incorporate into a STEM-type approach but I provide it as an example. The kids loved it!

Thank you so much, Marie! Integrating math and science fits naturally in your example. I appreciate your sharing your idea here, and I wonder if you’d allow me to share it on my website – http://www.stem-by-design.com/ .

You are more than welcome to share it. I think often we are unaware of how what we are doing can be related to STEM/is STEM! (Pls leave my e-mail address anonymous). Thank you Marie

' src=

Hello, I work in the scholastic department of a wastewater treatment plant. We provide hands on STEM outreach to schools and community. We are preparing for our second year STEM camp for high school students. Last year we partnered with a local university and focused on microbiology and chemistry. This year we are looking for some additional engaging ideas to incorporate into our 5 day camp. Are there any recommendations that you can provide? Thank you

' src=

Hi Ron, I am going to be teaching a Medical Microbiology class this fall. I would love to know how you focused on microbiology and what lessons you may have used. The University of Texas has potential to help us. What university department did you work with? Thanks for any help you can give me.

' src=

Hi Ann I am a STEM instructor, using lego materials as hands on instruction materials,how do I make my class more interesting and innovative. I need ideas on how to make my class a real world problem solving session,please your kind recommendations. Thank you

Try this idea . . . your kids should have a real reason for building whatever it is they make with the Legos (or any other materials). Suppose they are studying the human body in science. They could use the Legos to construct a prototype of something to solve a problem – perhaps a model of a miniature artificial arm or leg that would help a disabled person, If the kids have a reason for making something and the freedom to come up with their own designs, this often stimulates interest and innovation.

' src=

I am looking or some STEAM projects for 4-5th graders to work on in relation to Earth Day. Does anyone have any suggestions? We are just starting to implement these into our classes at school which ranges from Prek-8 so suggestions for any grade level are welcome and I will pass them on.

' src=

Thank you for all of your valuable STEM resources! I’ve enjoyed reading/researching through your site!

I am new to teaching a middle school 9-week STEM class for 6th graders. As of right now, my curriculum/materials consist of a canned STEM program that has zero depth.

I’ve been tasked with overhauling the class – developing a true STEM curriculum. Do you know of any middle school models I could research?

I’d appreciate any help.

Hi, Sarah, Take a look at this STEM launcher on my website at http://www.stem-by-design.com/use-mini-lessons-to-launch-stem-projects/ . It will help your kids get engaged with the “E” in STEM. It’s written for use in math+science classes, but it would be simple to modify and use with your kids. I have two more launchers I can send you if you like this one.

Another idea – look around the website while you’re there. There are plenty free resources and tools (click on the tabs at the top) and you are welcome to use (and modify) any of them.

If you want to check out my book – it has suggestions for developing STEM lessons. If you have a chance to develop STEM projects that carry over from one time the kids meet until the next, that’s the best look. If you only see them once a week or so, then that’s a bit more of an issue. If you want to email me we can probably “chat” more over email than here. [email protected]

Thanks for being a STEM person!

Thank you, Anne! I appreciate your suggestions and resources. When you get a chance, I’d love to take a look at the other launchers.

' src=

Hello! I am a 11 year old kid going to Somerset Academy. I am doing a STEM project like all of else as well. I am working with two other friends on this project. In our project there is some different things we must do. Most of all we need to make a product that solves an everyday problem. Our group created and idea with ice cream. Our product name is Drip Catch. It is basically a plastic cup for our ice cream cones whenever it melts. The Ice cram will just fall into the cup looking thing. But….. it does not really work. So I am asking for an idea that is a product that solves everyday problems.

I also forgot to mention I am in 5th grade. Please help me. You only need to give me an easy/ OK difficulty stem project. But.. it must be a product we created and it HAS to solve a problem.

What a neat assignment! I like the Drip Catch idea – I wish it had worked. Can you redesign it so that it will work? I think its a great start.

Let me tell you where you can find some good ideas for STEM projects. Go to the Design Squad at http://pbskids.org/designsquad/projects/ . At the top of the page, click on “Design” or click on “Build.” There are some pretty good ideas there.

I read of a group of kids who designed Popsicles with vitamins in them. Here are some other problems kids tackled. http://read.bi/2DoiBSY Just scroll down to see them.

Have you ever noticed that kids on crutches have a problem carrying things around? Is there some sort of carrier that can be added to crutches so that kids can carry things?

Keep your eyes open. Look for a problem you can help in your community or at your school.

Good luck to you and your friends. I hope you’ll come back and post what you finally decided to do. I bet it will be neat!

Thank you very much! I looked at the links you provided and got some new ideas. But.. my friends and I decided to keep doing the Drip Catch idea! But thx for your help! Bye have a great day/

Thanks, Jaden! Let me know how the Drip Catch works. I thought it sounded like a useful and original idea.

Tom is the STEM fair and we finished! It looks amazing. We made the drip catch with a plastic container and cut it into a circle and a hole inside. SO ready for tom!! Thank you so much.

Good luck!!

' src=

HI Anne I am in the process of starting a STEM Summer Academy for 6-8 graders, looking for projects in STEM that will motivate the students

Take a look at “Engineering Is Elementary” (EIE) Curriculum Units. You can find them at( http://www.eie.org/eie-curriculum/curriculum-units .) While they are designed for up to 5th grade, they are easily adaptable for older students. Also check out “Engineering Adventures” at https://www.eie.org/engineering-adventures/curriculum-units .

“Engineering Everywhere” (www.eie.org/engineering-everywhere) is a free Middle School curriculum you may like. It’s designed for youth in afterschool and camp programs.

Another place I go for just fun activity ideas is the Design Squad (pbskids.org/designsquad/projects/)

I hope those give you some good ideas!

Thank you I will keep you posted on how it turns out ; any ideas for projects

' src=

What a great resource! I am currently teaching in a small school of 22 P-6 students and have been asked to complete a 1-1.5 hour Maths Problem Solving Session with a STEM focus each week with all of the children. Can you please put me in touch with some resources/activities that are hands on and suitable for multi age/abilities?

Hi, Karlene. One resource that seems popular is the Student Teaming Guide, and it’s a free download on my book website (www.stem-by-design.com). To get it, click the tab at the top of the webpage titled Student Teaming Tips. Scroll to the bottom, and download it and share it.

You may enjoy looking around the website as well. You’ll find plenty of free tools, tips, and teaching ideas there. You’ll also find a free STEM Launcher (a mini-lesson called Stop, Drop, Don’t Pop) to introduce engineering to your students. ( http://bit.ly/2Cvb2cw ) Scroll toward the bottom of the page and you will see 3 pdfs you can download, use, and share.

In my MiddleWeb blog I write about all sorts of topics from lesson design to including girls in STEM. You may wish to look at some of those resources as well. In fact, I’ve just posted another launcher there – the ‘Bama Bears – to help kick off STEM (the engineering component) for 2018.

I also came across another good muliti-grade level resource that I think you’ll like. Take a look at this site: http://bit.ly/2IaNeda

I hope some of these help! Thanks for your work with STEM.

I forgot to include the link to my MW blog – it’s https://www.middleweb.com/category/stem-by-design/

' src=

I’m involved in our school’s pilot STEAM classes and found the resources in your post helpful. I’ve used TeachEngineering quite often to help me get ideas.

About the problem with maths, we’ve had the same concern but what we’re aiming to do in our next project is getting the students to collect data themselves than using made-up ones. We think that the authenticity of these activities will increase students’ level of motivation.

Great idea, Ms B! Authenticity is, indeed, the key.

Also consider checking out some of the big math grade-level concepts and targeting one or more of those specific concepts for a STEM challenge. We did that with flow rate. We did an environmental STEM project that dealt with water erosion (that was an authentic problem for our school.) The kids used flow rate to measure and calculate the effectiveness of their barriers. Then they redesigned them and got much better results. And . . . they finally saw a practical use for learning how to calculate flow rate!

' src=

I am the middle school science teacher at a Christian school and is desirous of coordinating and developing a STEM curriculum. I have heard a lot about STEM but want to have a clear focus on how to start this first in the middle school then to the rest of the student body.

Hi, Edmund, What an exciting adventure – starting to implement STEM in the elementary school. That’s certainly the right way to do it. Start with this article on building a foundation with elementary STEM: https://www.middleweb.com/26244/building-a-foundation-with-elementary-stem/ . If you haven’t checked out my latest book, STEM by Design , it’s published by Routledge/MiddleWeb. Among other things, this book shares practical tips, principles, and strategies for implementing STEM in Grades 4-8. Those principles can be applied at earlier grades as well. You may enjoy looking around the book website as well at https://www.STEM-by-Design.com . You’ll find plenty of free tools, tips, and teaching ideas there. You’ll also find a free STEM Launcher (mini-lesson called Stop, Drop, Don’t Pop) to introduce engineering to your students. I’ve posted another launcher – the ‘Bama Bears – on my MiddleWeb blog site. You can modify both of these to help kick off STEM (the engineering component) for this fall.

' src=

hii, i’am education student , and i want to work on stem activity based on problem solving for grade 4 to 6 math student , but i don’t have any idea what should i doo :(

One place to start is looking at issues in your community. Also checking news geared towards kids (news depth, TFK, and National Geographic. Then get creative around the engineering design process.

You might also check out Design Squad Global, Dana. There are a lot of super STEM activities for all grade levels on that site. Good luck with your STEM activities.

' src=

Hi Anne, I don’t teach but I was wondering if you could give me ideas for STEM ideas for some of my peers. It is a school project so I’ve got to knock it out of the ballpark. Appreciate it. Thanks. Please get back to me before 2/20/19. Thanks again.

Hi, Yen-Dow,

A couple of suggestions that will help you find ideas: Go to Design Squad Global Lesson Plans. ( https://to.pbs.org/2XcjPXBd/ ). They have some amazing ideas there.

You might try this MiddleWeb blog post I wrote. ( http://bit.ly/2BK3qmS )

And look at Science Buddies. They have a lot of good resources there. (Note: The Science Buddies site requires a free account to access all the details. Just takes a minute.)

I hope those suggestions will be of some help!

' src=

Selam, Türkiye’de ilkokul öğretmeniyim. Bio ekonomi ile ilgili STEM projesi geliştirmek istiyorum.Fikirlerinizi almak benim için muhteşem olacaktır.Teşekkür ederim.

Selam, Candan. Thanks for teaching STEM to elementary students.To find ideas for bio economy projects, please go to this link: https://www.middleweb.com/39326/how-elementary-stem-can-meet-the-future/ . At the end of this article you will find links to six sites that have good lessons you may be able to use. I hope this helps, and please continue your good work.

' src=

Hello Anne, Such a wonderful site! So I am interested in researching teacher’s beliefs about integrated STEM education and if it can improve science and math skills for my dissertation. I am planning to explore authentic tasks in both science and math. What do you think about this idea? How can I explore this topic in greater depth? Can you recommend me some readings? Should I use the same authentic activities for both math and science or can I use scientific inquiry in science and models in math? Hoping to hear your thoughts.

Also, I forgot to mention that I would be focusing on primary schools so if you can suggest me some readings.

[…] By Anne JollySummary by MiddleWeb Smartbrief"Providing STEM students with real-world challenges fuels their curiosity & investigative interests, writes science educator Anne Jolly. But where do teachers find problems worthy of investigation? In a new post at MiddleWeb's STEM Imagineering blog, Jolly makes the case for real-world problem solving and points to Internet resources that can help teachers find suitable challenges in science, math and engineering."  […]

[…] head over heels in a STEM project—before the familiar acronym had even burst onto the scene. See Real World STEM Problems for some suggestions for projects students might focus […]

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Notify me of follow-up comments by email.

Notify me of new posts by email.

This site uses Akismet to reduce spam. Learn how your comment data is processed .

  • Popular Posts
  • Recent Posts
  • Recent Comments

real life problems using problem solving

Articles / Managing Time

3 Tips Help Teachers Make Good Use of Time

real life problems using problem solving

Articles / Motivation

Value and Success Can Build Student Motivation

real life problems using problem solving

Articles / Writing

Give Students Writing Feedback That Works

real life problems using problem solving

Book Reviews / Gifted Education

Coaching That Builds GT Teacher Capacity

real life problems using problem solving

Articles / Deeper Learning

Try This UDL Higher Order Thinking Strategy

real life problems using problem solving

Articles / Mathematics

Math: the Perfect Place to Teach Character

real life problems using problem solving

Articles / Picture Books

What Picture Books Add to a Middle School Class

real life problems using problem solving

Book Reviews / World Languages

Building Skills in the World Language Class

real life problems using problem solving

Collaboration / Making Questions Count

Nurturing Students As Collaborative Contributors

real life problems using problem solving

Articles / Leadership

It May Be Developmental and Still Not Appropriate

  • Karin Hess says: This approach provides a needed balance between decoding words to get...
  • Sunday Cummins says: So helpful! Thank you!
  • K. Sunday Cummins says: This is so inspiring! Thank you!
  • Judith Wilson says: Write On! I've always believed in the power of watching, analyzing,...

Sign Up & Receive the Latest News about Our Content…

Email address:

First Name:

Read our Privacy Policy

BOOK REVIEWS

real life problems using problem solving

Mapping Out Diverse Gifted Programs

real life problems using problem solving

Using 100-Word Stories for Expansive Writing

real life problems using problem solving

What to Expect from AI in Class and Beyond

real life problems using problem solving

Strategies for Teaching Against Disinformation

real life problems using problem solving

The Democratic Roots Essential to Literacy

real life problems using problem solving

How to Reclaim Your Energy, Passion, & Time

real life problems using problem solving

A Leadership Blueprint for Growth and Success

real life problems using problem solving

A How-to Guide to Better Engage Your Students

real life problems using problem solving

10 Tools to Help Kids Develop Their Talents

real life problems using problem solving

The Reading Strategies Book Gets an Update

real life problems using problem solving

Opportunities for Swift Achievement Gains

real life problems using problem solving

Teaching for Retention, Application and Transfer

real life problems using problem solving

Strategies to Adjust ‘Up’ What Students Know

real life problems using problem solving

Assuring Just, Inclusive Learning for Newcomers

real life problems using problem solving

Building Bridges That Cultivate Teacher Growth

real life problems using problem solving

SEL, Civic Engagement, & a Healthy Democracy

real life problems using problem solving

An Enhanced Edition of ‘When Kids Can’t Read’

real life problems using problem solving

Shifting to Asset-Based Literacy Assessments

Research does solve real-world problems: experts must work together to make it happen

real life problems using problem solving

Deputy Vice Chancellor Research & Innovation, University of South Australia

Disclosure statement

Tanya Monro receives funding from the Australian Research Council. She is Deputy Vice Chancellor of the University of South Australia, a member of the Commonwealth Science Council, the CSIRO board, the SA Economic Development Board and Defence SA.

University of South Australia provides funding as a member of The Conversation AU.

View all partners

real life problems using problem solving

Generating knowledge is one of the most exciting aspects of being human. The inventiveness required to apply this knowledge to solve practical problems is perhaps our most distinctive attribute.

But right now we have before us some hairy challenges – whether that be figuring our how to save our coral reefs from warmer water , landing a human on Mars , eliminating the gap in life expectancy between the “haves” and “have-nots” or delivering reliable carbon-free energy .

It’s commonly said that an interdisciplinary approach is vital if we are to tackle such real world challenges. But what does this really mean?

Read more: It takes a community to raise a startup

Listen and read with care and you’ll start to notice that the words crossdisciplinary, multidisciplinary, interdisciplinary and transdisciplinary are used interchangeably. These words describe distinctly different ways of harnessing the power of disciplinary expertise to chart a course into the unknown.

In navigation, the tools and methods matter – choose differently and you’ll end up in a different spot. How we go about creating knowledge and solving problems really matters – it changes not only what questions can be asked and answered but fundamentally shapes what’s possible.

What is a discipline?

For centuries we have organised research within disciplines, and this has delivered extraordinary depths of knowledge.

But what is a discipline? It’s a shared language, an environment in which there’s no need to explain the motivation for one’s work, and in which people have a shared sense of what’s valuable.

For example, my background discipline is optical physics. I know what it’s like to be able to skip down the corridor and say,

“I’ve figured out how we can get broadband flat dispersion - we just need to tailor the radial profile!”

…and have people instantly not just know what I mean, but be able to add their own ideas and drive the work forward.

In long-established disciplines it’s often necessary to focus in a narrow area to be able to extend the limits of knowledge within the time-frame of a PhD. And while it’s rarely obvious at the time what benefits will flow from digging a little deeper, our way of life has been transformed over and over as result.

real life problems using problem solving

Disciplines focus talent and so can be amazingly efficient ways of generating knowledge. But they can also be extraordinarily difficult to penetrate from the outside without understanding that discipline’s particular language and shared values.

The current emphasis on real-world impact has sharpened awareness on the need to translate knowledge into outcomes. It has also brought attention to the critical role partnerships with industry and other end-users of research play in this process.

Creating impact across disciplines

Try to solve a problem with the tools of a single discipline alone, and it’s as if you have a hammer - everything starts to look like a nail. It’s usually obvious when expertise from more than one discipline is needed.

Consider a panel of experts drawn from different fields to each apply the tools of their field to a problem that’s been externally framed. This has traditionally been how expertise from the social sciences is brought to bear on challenges in public health or the environment.

This is a crossdisciplinary approach , which can produce powerful outcomes provided that those who posed the question are positioned to make decisions based on the knowledge generated. But the research fields themselves are rarely influenced by this glancing encounter with different approaches to knowledge generation.

Multidisciplinary research involves the application of tools from one discipline to questions from other fields. An example is the application of crystallography, discovered by the Braggs, to unravel the structure of proteins . This requires concepts to transfer across domains, sometimes in real time but usually with a lag of years or decades.

Read more: If we really want an ideas boom, we need more women at the top tiers of science

Interdisciplinary research happens when researchers from different fields come together to pose a challenge that wouldn’t be possible in isolation. One example is the highly transparent optical fibres that underpin intercontinental telecommunication networks.

The knowledge creation that made this possible involved glass chemists, optical physicists and communication engineers coming together to articulate the possible, and develop the shared language required to make it a reality. When fields go on this journey together over decades, new fields are born.

In this example the question itself was clear – how can we harness the transparency of silica glass to create optical transmission systems that can transport large volumes of data over long distances?

But what about the questions we don’t know how to pose because without knowledge of another field we don’t know what’s possible? This line of reasoning leads us into the domain of transdisciplinary research .

Transdisciplinary research requires a willingness to craft new questions – whether because they were considered intractable or because without the inspiration from left field they simply didn’t arise. An example of this is applying photonics to IVF incubators - the idea that it could be possible to “listen” to how embryos experience their environment is unlikely to have arisen without bringing these fields together.

Read more: National Science Statement a positive gesture but lacks policy solutions: experts

In my own field, physics, I discovered that when talking to people from other areas the simple question “what would you like to measure?” quickly led to uncharted territory.

Before long we were usually, together, posing fundamentally new questions and establishing teams to tackle them. This can be scary territory but it’s tremendously rewarding and creates space for creativity and the emergence of disruptive technologies.

Excellence, communication, co-location, funding

One of the best ways of getting out of a disciplinary silo is to take every opportunity to talk to others outside your field. Disciplinary excellence is the starting point to get to the table.

And while disciplinary collaborations can flourish over large distances because they share a language and values, it’s usually true that once you mix disciplines co-location becomes a real asset. Then of course there are the questions of how we fund and organise research concentrations to allow inter- and transdisciplinary research to flourish.

With the increased emphasis on impact, these questions are becoming ever more pressing. Organisations that get this right will thrive.

  • Research impact
  • cross-disciplinary

real life problems using problem solving

Compliance Lead

real life problems using problem solving

Lecturer / Senior Lecturer - Marketing

real life problems using problem solving

Assistant Editor - 1 year cadetship

real life problems using problem solving

Executive Dean, Faculty of Health

real life problems using problem solving

Lecturer/Senior Lecturer, Earth System Science (School of Science)

Career Sidekick

26 Expert-Backed Problem Solving Examples – Interview Answers

Published: February 13, 2023

Interview Questions and Answers

Actionable advice from real experts:

picture of Biron Clark

Biron Clark

Former Recruiter

real life problems using problem solving

Contributor

Dr. Kyle Elliott

Career Coach

real life problems using problem solving

Hayley Jukes

Editor-in-Chief

Biron Clark

Biron Clark , Former Recruiter

Kyle Elliott , Career Coach

Image of Hayley Jukes

Hayley Jukes , Editor

As a recruiter , I know employers like to hire people who can solve problems and work well under pressure.

 A job rarely goes 100% according to plan, so hiring managers are more likely to hire you if you seem like you can handle unexpected challenges while staying calm and logical.

But how do they measure this?

Hiring managers will ask you interview questions about your problem-solving skills, and they might also look for examples of problem-solving on your resume and cover letter. 

In this article, I’m going to share a list of problem-solving examples and sample interview answers to questions like, “Give an example of a time you used logic to solve a problem?” and “Describe a time when you had to solve a problem without managerial input. How did you handle it, and what was the result?”

  • Problem-solving involves identifying, prioritizing, analyzing, and solving problems using a variety of skills like critical thinking, creativity, decision making, and communication.
  • Describe the Situation, Task, Action, and Result ( STAR method ) when discussing your problem-solving experiences.
  • Tailor your interview answer with the specific skills and qualifications outlined in the job description.
  • Provide numerical data or metrics to demonstrate the tangible impact of your problem-solving efforts.

What are Problem Solving Skills? 

Problem-solving is the ability to identify a problem, prioritize based on gravity and urgency, analyze the root cause, gather relevant information, develop and evaluate viable solutions, decide on the most effective and logical solution, and plan and execute implementation. 

Problem-solving encompasses other skills that can be showcased in an interview response and your resume. Problem-solving skills examples include:

  • Critical thinking
  • Analytical skills
  • Decision making
  • Research skills
  • Technical skills
  • Communication skills
  • Adaptability and flexibility

Why is Problem Solving Important in the Workplace?

Problem-solving is essential in the workplace because it directly impacts productivity and efficiency. Whenever you encounter a problem, tackling it head-on prevents minor issues from escalating into bigger ones that could disrupt the entire workflow. 

Beyond maintaining smooth operations, your ability to solve problems fosters innovation. It encourages you to think creatively, finding better ways to achieve goals, which keeps the business competitive and pushes the boundaries of what you can achieve. 

Effective problem-solving also contributes to a healthier work environment; it reduces stress by providing clear strategies for overcoming obstacles and builds confidence within teams. 

Examples of Problem-Solving in the Workplace

  • Correcting a mistake at work, whether it was made by you or someone else
  • Overcoming a delay at work through problem solving and communication
  • Resolving an issue with a difficult or upset customer
  • Overcoming issues related to a limited budget, and still delivering good work through the use of creative problem solving
  • Overcoming a scheduling/staffing shortage in the department to still deliver excellent work
  • Troubleshooting and resolving technical issues
  • Handling and resolving a conflict with a coworker
  • Solving any problems related to money, customer billing, accounting and bookkeeping, etc.
  • Taking initiative when another team member overlooked or missed something important
  • Taking initiative to meet with your superior to discuss a problem before it became potentially worse
  • Solving a safety issue at work or reporting the issue to those who could solve it
  • Using problem solving abilities to reduce/eliminate a company expense
  • Finding a way to make the company more profitable through new service or product offerings, new pricing ideas, promotion and sale ideas, etc.
  • Changing how a process, team, or task is organized to make it more efficient
  • Using creative thinking to come up with a solution that the company hasn’t used before
  • Performing research to collect data and information to find a new solution to a problem
  • Boosting a company or team’s performance by improving some aspect of communication among employees
  • Finding a new piece of data that can guide a company’s decisions or strategy better in a certain area

Problem-Solving Examples for Recent Grads/Entry-Level Job Seekers

  • Coordinating work between team members in a class project
  • Reassigning a missing team member’s work to other group members in a class project
  • Adjusting your workflow on a project to accommodate a tight deadline
  • Speaking to your professor to get help when you were struggling or unsure about a project
  • Asking classmates, peers, or professors for help in an area of struggle
  • Talking to your academic advisor to brainstorm solutions to a problem you were facing
  • Researching solutions to an academic problem online, via Google or other methods
  • Using problem solving and creative thinking to obtain an internship or other work opportunity during school after struggling at first

How To Answer “Tell Us About a Problem You Solved”

When you answer interview questions about problem-solving scenarios, or if you decide to demonstrate your problem-solving skills in a cover letter (which is a good idea any time the job description mentions problem-solving as a necessary skill), I recommend using the STAR method.

STAR stands for:

It’s a simple way of walking the listener or reader through the story in a way that will make sense to them. 

Start by briefly describing the general situation and the task at hand. After this, describe the course of action you chose and why. Ideally, show that you evaluated all the information you could given the time you had, and made a decision based on logic and fact. Finally, describe the positive result you achieved.

Note: Our sample answers below are structured following the STAR formula. Be sure to check them out!

EXPERT ADVICE

real life problems using problem solving

Dr. Kyle Elliott , MPA, CHES Tech & Interview Career Coach caffeinatedkyle.com

How can I communicate complex problem-solving experiences clearly and succinctly?

Before answering any interview question, it’s important to understand why the interviewer is asking the question in the first place.

When it comes to questions about your complex problem-solving experiences, for example, the interviewer likely wants to know about your leadership acumen, collaboration abilities, and communication skills, not the problem itself.

Therefore, your answer should be focused on highlighting how you excelled in each of these areas, not diving into the weeds of the problem itself, which is a common mistake less-experienced interviewees often make.

Tailoring Your Answer Based on the Skills Mentioned in the Job Description

As a recruiter, one of the top tips I can give you when responding to the prompt “Tell us about a problem you solved,” is to tailor your answer to the specific skills and qualifications outlined in the job description. 

Once you’ve pinpointed the skills and key competencies the employer is seeking, craft your response to highlight experiences where you successfully utilized or developed those particular abilities. 

For instance, if the job requires strong leadership skills, focus on a problem-solving scenario where you took charge and effectively guided a team toward resolution. 

By aligning your answer with the desired skills outlined in the job description, you demonstrate your suitability for the role and show the employer that you understand their needs.

Amanda Augustine expands on this by saying:

“Showcase the specific skills you used to solve the problem. Did it require critical thinking, analytical abilities, or strong collaboration? Highlight the relevant skills the employer is seeking.”  

Interview Answers to “Tell Me About a Time You Solved a Problem”

Now, let’s look at some sample interview answers to, “Give me an example of a time you used logic to solve a problem,” or “Tell me about a time you solved a problem,” since you’re likely to hear different versions of this interview question in all sorts of industries.

The example interview responses are structured using the STAR method and are categorized into the top 5 key problem-solving skills recruiters look for in a candidate.

1. Analytical Thinking

real life problems using problem solving

Situation: In my previous role as a data analyst , our team encountered a significant drop in website traffic.

Task: I was tasked with identifying the root cause of the decrease.

Action: I conducted a thorough analysis of website metrics, including traffic sources, user demographics, and page performance. Through my analysis, I discovered a technical issue with our website’s loading speed, causing users to bounce. 

Result: By optimizing server response time, compressing images, and minimizing redirects, we saw a 20% increase in traffic within two weeks.

2. Critical Thinking

real life problems using problem solving

Situation: During a project deadline crunch, our team encountered a major technical issue that threatened to derail our progress.

Task: My task was to assess the situation and devise a solution quickly.

Action: I immediately convened a meeting with the team to brainstorm potential solutions. Instead of panicking, I encouraged everyone to think outside the box and consider unconventional approaches. We analyzed the problem from different angles and weighed the pros and cons of each solution.

Result: By devising a workaround solution, we were able to meet the project deadline, avoiding potential delays that could have cost the company $100,000 in penalties for missing contractual obligations.

3. Decision Making

real life problems using problem solving

Situation: As a project manager , I was faced with a dilemma when two key team members had conflicting opinions on the project direction.

Task: My task was to make a decisive choice that would align with the project goals and maintain team cohesion.

Action: I scheduled a meeting with both team members to understand their perspectives in detail. I listened actively, asked probing questions, and encouraged open dialogue. After carefully weighing the pros and cons of each approach, I made a decision that incorporated elements from both viewpoints.

Result: The decision I made not only resolved the immediate conflict but also led to a stronger sense of collaboration within the team. By valuing input from all team members and making a well-informed decision, we were able to achieve our project objectives efficiently.

4. Communication (Teamwork)

real life problems using problem solving

Situation: During a cross-functional project, miscommunication between departments was causing delays and misunderstandings.

Task: My task was to improve communication channels and foster better teamwork among team members.

Action: I initiated regular cross-departmental meetings to ensure that everyone was on the same page regarding project goals and timelines. I also implemented a centralized communication platform where team members could share updates, ask questions, and collaborate more effectively.

Result: Streamlining workflows and improving communication channels led to a 30% reduction in project completion time, saving the company $25,000 in operational costs.

5. Persistence 

Situation: During a challenging sales quarter, I encountered numerous rejections and setbacks while trying to close a major client deal.

Task: My task was to persistently pursue the client and overcome obstacles to secure the deal.

Action: I maintained regular communication with the client, addressing their concerns and demonstrating the value proposition of our product. Despite facing multiple rejections, I remained persistent and resilient, adjusting my approach based on feedback and market dynamics.

Result: After months of perseverance, I successfully closed the deal with the client. By closing the major client deal, I exceeded quarterly sales targets by 25%, resulting in a revenue increase of $250,000 for the company.

Tips to Improve Your Problem-Solving Skills

Throughout your career, being able to showcase and effectively communicate your problem-solving skills gives you more leverage in achieving better jobs and earning more money .

So to improve your problem-solving skills, I recommend always analyzing a problem and situation before acting.

 When discussing problem-solving with employers, you never want to sound like you rush or make impulsive decisions. They want to see fact-based or data-based decisions when you solve problems.

Don’t just say you’re good at solving problems. Show it with specifics. How much did you boost efficiency? Did you save the company money? Adding numbers can really make your achievements stand out.

To get better at solving problems, analyze the outcomes of past solutions you came up with. You can recognize what works and what doesn’t.

Think about how you can improve researching and analyzing a situation, how you can get better at communicating, and deciding on the right people in the organization to talk to and “pull in” to help you if needed, etc.

Finally, practice staying calm even in stressful situations. Take a few minutes to walk outside if needed. Step away from your phone and computer to clear your head. A work problem is rarely so urgent that you cannot take five minutes to think (with the possible exception of safety problems), and you’ll get better outcomes if you solve problems by acting logically instead of rushing to react in a panic.

You can use all of the ideas above to describe your problem-solving skills when asked interview questions about the topic. If you say that you do the things above, employers will be impressed when they assess your problem-solving ability.

More Interview Resources

  • 3 Answers to “How Do You Handle Stress?”
  • How to Answer “How Do You Handle Conflict?” (Interview Question)
  • Sample Answers to “Tell Me About a Time You Failed”

picture of Biron Clark

About the Author

Biron Clark is a former executive recruiter who has worked individually with hundreds of job seekers, reviewed thousands of resumes and LinkedIn profiles, and recruited for top venture-backed startups and Fortune 500 companies. He has been advising job seekers since 2012 to think differently in their job search and land high-paying, competitive positions. Follow on Twitter and LinkedIn .

Read more articles by Biron Clark

About the Contributor

Kyle Elliott , career coach and mental health advocate, transforms his side hustle into a notable practice, aiding Silicon Valley professionals in maximizing potential. Follow Kyle on LinkedIn .

Image of Hayley Jukes

About the Editor

Hayley Jukes is the Editor-in-Chief at CareerSidekick with five years of experience creating engaging articles, books, and transcripts for diverse platforms and audiences.

Continue Reading

12 Expert-Approved Responses to ‘What Makes You Unique?’ in Job Interviews

15 most common pharmacist interview questions and answers, 15 most common paralegal interview questions and answers, top 30+ funny interview questions and answers, 60 hardest interview questions and answers, 100+ best ice breaker questions to ask candidates, top 20 situational interview questions (& sample answers), 15 most common physical therapist interview questions and answers.

real life problems using problem solving

Creative Problem-Solving Approach: Skills, Framework, 3 Real-life Examples

What is creative problem-solving, creative problem-solving framework, 3 real-life examples of creative problem solving:, skills to develop for creative problem-solving.

Other Related Blogs

  • Finding a new solution for a recurring issue at work
  • Generating new marketing ideas for an upcoming product launch
  • Coming up with unique ways to engage employees during meetings 

creative problem-solving framework

  • Identifying the Real Problem : Imagine you wake up to a cold shower. The obvious problem? No hot water! But before you start dismantling the showerhead, take a step back. Is it a faulty heating element, a low thermostat setting, or a bigger issue with the building’s plumbing? This initial step is crucial. Ask yourself questions like “What are the symptoms?” and “When did this problem start?”. In our shower scenario, identifying the root cause (a faulty heating element) saves you time and unnecessary tinkering.
  • Generating Wild Ideas : Now, it’s time to unleash your creativity! Remember that brainstorming session in school where every idea, no matter how wacky, was welcome? That’s the spirit! Back to our chilly shower situation, ideas might include: boiling water on the stove for a makeshift bath (not ideal!), calling the landlord for repairs (the most likely solution!), or – if you’re feeling adventurous – installing a solar water heater (hey, it could work!).
  • Evaluating Ideas: Okay, so you have a list of ideas, from the practical to the downright peculiar. Here comes the filter. Evaluate each idea based on realistic criteria. For the shower scenario, fixing the heating element is likely the most feasible and impactful solution. While a solar water heater might be innovative, the cost and practicality might not make it the best choice at this moment.
  • From Idea to Action Plan: We’ve identified the best course of action (fixing the heating element). Now, it’s time to develop a concrete solution. This might involve calling a plumber, gathering the necessary tools, or researching DIY repair tutorials (if you’re handy!). The key is to create a clear plan that addresses the problem directly.
  • Putting Your Solution to the Test : The plan is in place, it’s time to implement! In our case, this means calling the plumber and getting that heating element fixed. Once the repair is done, take a celebratory hot shower! But remember, even the best plans can have hiccups. If the hot water issue persists, you might need to re-evaluate your initial diagnosis or call the plumber back for further troubleshooting.
  • Transforming Training with Learning Curation: 5 Effective Strategies
  • Performance Appraisal: A Catalyst for Growth and Success
  • Performance Management and Compensation: 3 Perspectives
  • How to Coach an Underperforming Employee? 5 Manager Hacks to Save Your Team
  • 5 Primary Coaching Skills for Managers and How to Develop Them
  • Problem Solving And Decision Making: 10 Hacks That Managers Love
  • Top 15 ways of Improving influence and negotiation skills
  • 7 Expert Tips for Becoming Persuasive Leaders and Inspiring Success
  • 8 Steps To Become A Results-Oriented Leader (with Examples)
  • 10+ Positive Feedback Examples for Managers at Work
  • Netflix:  The company revolutionized how we watch TV shows and movies. However, when the company started, it faced a big challenge – getting people to watch their content when they were not a well-known brand. Instead of relying on traditional advertising, Netflix used creative problem-solving to develop a unique solution. They created an algorithm recommending TV shows and movies based on a user’s viewing history, leading to a highly personalized viewing experience. This recommendation engine became a critical factor in the company’s success, helping them attract and retain customers.
  • NASA:  NASA had to devise an instant solution to save the Apollo 13 mission and their team. Their spacecraft was damaged, and they needed a solution to bring their astronauts safely back to Earth. The team fitted a square CO2 filter into a round hole using available materials on the spacecraft; the team used creative problem-solving to develop this approach. This innovative solution allowed the astronauts to return safely to Earth and set this incident as a classic creative solving example.
  • IKEA:  IKEA makes stylish and affordable furniture and is a well-versed company. However, they faced significant challenges entering the Japanese market. Japanese apartments are comparatively smaller than the rest of the world, so the regular product range was irrelevant to Japanese customers. So, IKEA used creative problem-solving to develop a solution appealing to the Japanese market. They launched a variety of products specially created for smaller spaces that are easy to assemble and disassemble—they also introduced a range of futons designed to look like beds, appealing to Japanese customers who prefer sleeping on the floor. This innovative and creative approach helped IKEA successfully enter the Japanese market.

real life problems using problem solving

  • Flexibility:  Being able to adapt to changing circumstances and consider multiple perspectives.
  • Open-mindedness:  Being open to new ideas and willing to challenge assumptions.
  • Curiosity:  Seek more information by questioning and better understanding the problem.
  • Persistence:  If a solution does not work, apply another solution, but continue until the problem is solved.
  • Divergent thinking:  Generating multiple ideas and exploring different possibilities.
  • Convergent thinking:  Evaluating and selecting the best ideas based on specific criteria.
  • Visualization:  Using mental imagery to explore solutions and ideas.
  • Collaboration:  Working with others to combine different perspectives and knowledge.
  • Risk-taking:  Being willing to take calculated risks and try new approaches.
  • Innovation:  Combining ideas and approaches in novel ways to create new solutions.

Evaluate your problem-solving skills for free now

Take the free problem-solving assessment by Risely to get started on your journey.

What are the five steps in creative problem-solving?

What are the 4 ps of creative problem solving, is creative problem solving a skill, how is creative problem solving a logical process.

conflict mediation

Top 15 Tips for Effective Conflict Mediation at Work

Top 10 games for negotiation skills to make you a better leader, manager effectiveness: a complete guide for managers in 2024, 5 proven ways managers can build collaboration in a team.

real life problems using problem solving

  • Reference Manager
  • Simple TEXT file

People also looked at

Hypothesis and theory article, real world problem-solving.

real life problems using problem solving

  • Human-Robot Interaction Laboratory, Department of Computer Science, Tufts University, Medford, MA, United States

Real world problem-solving (RWPS) is what we do every day. It requires flexibility, resilience, resourcefulness, and a certain degree of creativity. A crucial feature of RWPS is that it involves continuous interaction with the environment during the problem-solving process. In this process, the environment can be seen as not only a source of inspiration for new ideas but also as a tool to facilitate creative thinking. The cognitive neuroscience literature in creativity and problem-solving is extensive, but it has largely focused on neural networks that are active when subjects are not focused on the outside world, i.e., not using their environment. In this paper, I attempt to combine the relevant literature on creativity and problem-solving with the scattered and nascent work in perceptually-driven learning from the environment. I present my synthesis as a potential new theory for real world problem-solving and map out its hypothesized neural basis. I outline some testable predictions made by the model and provide some considerations and ideas for experimental paradigms that could be used to evaluate the model more thoroughly.

1. Introduction

In the Apollo 13 space mission, astronauts together with ground control had to overcome several challenges to bring the team safely back to Earth ( Lovell and Kluger, 2006 ). One of these challenges was controlling carbon dioxide levels onboard the space craft: “For 2 days straight [they] had worked on how to jury-rig the Odysseys canisters to the Aquarius's life support system. Now, using materials known to be available onboard the spacecraft—a sock, a plastic bag, the cover of a flight manual, lots of duct tape, and so on—the crew assembled a strange contraption and taped it into place. Carbon dioxide levels immediately began to fall into the safe range” ( Team, 1970 ; Cass, 2005 ).

The success of Apollo 13's recovery from failure is often cited as a glowing example of human resourcefulness and inventiveness alongside more well-known inventions and innovations over the course of human history. However, this sort of inventive capability is not restricted to a few creative geniuses, but an ability present in all of us, and exemplified in the following mundane example. Consider a situation when your only suit is covered in lint and you do not own a lint remover. You see a roll of duct tape, and being resourceful you reason that it might be a good substitute. You then solve the problem of lint removal by peeling a full turn's worth of tape and re-attaching it backwards onto the roll to expose the sticky side all around the roll. By rolling it over your suit, you can now pick up all the lint.

In both these examples (historic as well as everyday), we see evidence for our innate ability to problem-solve in the real world. Solving real world problems in real time given constraints posed by one's environment are crucial for survival. At the core of this skill is our mental capability to get out of “sticky situations” or impasses, i.e., difficulties that appear unexpectedly as impassable roadblocks to solving the problem at hand. But, what are the cognitive processes that enable a problem solver to overcome such impasses and arrive at a solution, or at least a set of promising next steps?

A central aspect of this type of real world problem solving, is the role played by the solver's surrounding environment during the problem-solving process. Is it possible that interaction with one's environment can facilitate creative thinking? The answer to this question seems somewhat obvious when one considers the most famous anecdotal account of creative problem solving, namely that of Archimedes of Syracuse. During a bath, he found a novel way to check if the King's crown contained non-gold impurities. The story has traditionally been associated with the so-called “Eureka moment,” the sudden affective experience when a solution to a particularly thorny problem emerges. In this paper, I want to temporarily turn our attention away from the specific “aha!” experience itself and take particular note that Archimedes made this discovery, not with his eyes closed at a desk, but in a real-world context of a bath 1 . The bath was not only a passive, relaxing environment for Archimedes, but also a specific source of inspiration. Indeed it was his noticing the displacement of water that gave him a specific methodology for measuring the purity of the crown; by comparing how much water a solid gold bar of the same weight would displace as compared with the crown. This sort of continuous environmental interaction was present when the Apollo 13 engineers discovered their life-saving solution, and when you solved the suit-lint-removal problem with duct tape.

The neural mechanisms underlying problem-solving have been extensively studied in the literature, and there is general agreement about the key functional networks and nodes involved in various stages of problem-solving. In addition, there has been a great deal of work in studying the neural basis for creativity and insight problem solving, which is associated with the sudden emergence of solutions. However, in the context of problem-solving, creativity, and insight have been researched as largely an internal process without much interaction with and influence from the external environment ( Wegbreit et al., 2012 ; Abraham, 2013 ; Kounios and Beeman, 2014 ) 2 . Thus, there are open questions of what role the environment plays during real world problem-solving (RWPS) and how the brain enables the assimilation of novel items during these external interactions.

In this paper, I synthesize the literature on problem-solving, creativity and insight, and particularly focus on how the environment can inform RWPS. I explore three environmentally-informed mechanisms that could play a critical role: (1) partial-cue driven context-shifting, (2) heuristic prototyping and learning novel associations, and (3) learning novel physical inferences. I begin first with some intuitions about real world problem solving, that might help ground this discussion and providing some key distinctions from more traditional problem solving research. Then, I turn to a review of the relevant literature on problem-solving, creativity, and insight first, before discussing the three above-mentioned environmentally-driven mechanisms. I conclude with a potential new model and map out its hypothesized neural basis.

2. Problem Solving, Creativity, and Insight

2.1. what is real world problem-solving.

Archimedes was embodied in the real world when he found his solution. In fact, the real world helped him solve the problem. Whether or not these sorts of historic accounts of creative inspiration are accurate 3 , they do correlate with some of our own key intuitions about how problem solving occurs “in the wild.” Real world problem solving (RWPS) is different from those that occur in a classroom or in a laboratory during an experiment. They are often dynamic and discontinuous, accompanied by many starts and stops. Solvers are never working on just one problem. Instead, they are simultaneously juggling several problems of varying difficulties and alternating their attention between them. Real world problems are typically ill-defined, and even when they are well-defined, often have open-ended solutions. Coupled with that is the added aspect of uncertainty associated with the solver's problem solving strategies. As introduced earlier, an important dimension of RWPS is the continuous interaction between the solver and their environment. During these interactions, the solver might be inspired or arrive at an “aha!” moment. However, more often than not, the solver experiences dozens of minor discovery events— “hmmm, interesting…” or “wait, what?…” moments. Like discovery events, there's typically never one singular impasse or distraction event. The solver must iterate through the problem solving process experiencing and managing these sorts of intervening events (including impasses and discoveries). In summary, RWPS is quite messy and involves a tight interplay between problem solving, creativity, and insight. Next, I explore each of these processes in more detail and explicate a possible role of memory, attention, conflict management and perception.

2.2. Analytical Problem-Solving

In psychology and neuroscience, problem-solving broadly refers to the inferential steps taken by an agent 4 that leads from a given state of affairs to a desired goal state ( Barbey and Barsalou, 2009 ). The agent does not immediately know how this goal can be reached and must perform some mental operations (i.e., thinking) to determine a solution ( Duncker, 1945 ).

The problem solving literature divides problems based on clarity (well-defined vs. ill-defined) or on the underlying cognitive processes (analytical, memory retrieval, and insight) ( Sprugnoli et al., 2017 ). While memory retrieval is an important process, I consider it as a sub-process to problem solving more generally. I first focus on analytical problem-solving process, which typically involves problem-representation and encoding, and the process of forming and executing a solution plan ( Robertson, 2016 ).

2.2.1. Problem Definition and Representation

An important initial phase of problem-solving involves defining the problem and forming a representation in the working memory. During this phase, components of the prefrontal cortex (PFC), default mode network (DMN), and the dorsal anterior cingulate cortex (dACC) have been found to be activated. If the problem is familiar and well-structured, top-down executive control mechanisms are engaged and the left prefrontal cortex including the frontopolar, dorso-lateral (dlPFC), and ventro-lateral (vlPFC) are activated ( Barbey and Barsalou, 2009 ). The DMN along with the various structures in the medial temporal lobe (MTL) including the hippocampus (HF), parahippocampal cortex, perirhinal and entorhinal cortices are also believed to have limited involvement, especially in episodic memory retrieval activities during this phase ( Beaty et al., 2016 ). The problem representation requires encoding problem information for which certain visual and parietal areas are also involved, although the extent of their involvement is less clear ( Anderson and Fincham, 2014 ; Anderson et al., 2014 ).

2.2.1.1. Working memory

An important aspect of problem representation is the engagement and use of working memory (WM). The WM allows for the maintenance of relevant problem information and description in the mind ( Gazzaley and Nobre, 2012 ). Research has shown that WM tasks consistently recruit the dlPFC and left inferior frontal cortex (IC) for encoding an manipulating information; dACC for error detection and performance adjustment; and vlPFC and the anterior insula (AI) for retrieving, selecting information and inhibitory control ( Chung and Weyandt, 2014 ; Fang et al., 2016 ).

2.2.1.2. Representation

While we generally have a sense for the brain regions that are functionally influential in problem definition, less is known about how exactly events are represented within these regions. One theory for how events are represented in the PFC is the structured event complex theory (SEC), in which components of the event knowledge are represented by increasingly higher-order convergence zones localized within the PFC, akin to the convergence zones (from posterior to anterior) that integrate sensory information in the brain ( Barbey et al., 2009 ). Under this theory, different zones in the PFC (left vs. right, anterior vs. posterior, lateral vs. medial, and dorsal vs. ventral) represent different aspects of the information contained in the events (e.g., number of events to be integrated together, the complexity of the event, whether planning, and action is needed). Other studies have also suggested the CEN's role in tasks requiring cognitive flexibility, and functions to switch thinking modes, levels of abstraction of thought and consider multiple concepts simultaneously ( Miyake et al., 2000 ).

Thus, when the problem is well-structured, problem representation is largely an executive control activity coordinated by the PFC in which problem information from memory populates WM in a potentially structured representation. Once the problem is defined and encoded, planning and execution of a solution can begin.

2.2.2. Planning

The central executive network (CEN), particularly the PFC, is largely involved in plan formation and in plan execution. Planning is the process of generating a strategy to advance from the current state to a goal state. This in turn involves retrieving a suitable solution strategy from memory and then coordinating its execution.

2.2.2.1. Plan formation

The dlPFC supports sequential planning and plan formation, which includes the generation of hypothesis and construction of plan steps ( Barbey and Barsalou, 2009 ). Interestingly, the vlPFC and the angular gyrus (AG), implicated in a variety of functions including memory retrieval, are also involved in plan formation ( Anderson et al., 2014 ). Indeed, the AG together with the regions in the MTL (including the HF) and several other regions form a what is known as the “core” network. The core network is believed to be activated when recalling past experiences, imagining fictitious, and future events and navigating large-scale spaces ( Summerfield et al., 2010 ), all key functions for generating plan hypotheses. A recent study suggests that the AG is critical to both episodic simulation, representation, and episodic memory ( Thakral et al., 2017 ). One possibility for how plans are formulated could involve a dynamic process of retrieving an optimal strategy from memory. Research has shown significant interaction between striatal and frontal regions ( Scimeca and Badre, 2012 ; Horner et al., 2015 ). The striatum is believed to play a key role in declarative memory retrieval, and specifically helping retrieve optimal (or previously rewarded) memories ( Scimeca and Badre, 2012 ). Relevant to planning and plan formation, Scimeca & Badre have suggested that the striatum plays two important roles: (1) in mapping acquired value/utility to action selection, and thereby helping plan formation, and (2) modulation and re-encoding of actions and other plan parameters. Different types of problems require different sets of specialized knowledge. For example, the knowledge needed to solve mathematical problems might be quite different (albeit overlapping) from the knowledge needed to select appropriate tools in the environment.

Thus far, I have discussed planning and problem representation as being domain-independent, which has allowed me to outline key areas of the PFC, MTL, and other regions relevant to all problem-solving. However, some types of problems require domain-specific knowledge for which other regions might need to be recruited. For example, when planning for tool-use, the superior parietal lobe (SPL), supramarginal gyrus (SMG), anterior inferior parietal lobe (AIPL), and certain portions of the temporal and occipital lobe involved in visual and spatial integration have been found to be recruited ( Brandi et al., 2014 ). It is believed that domain-specific information stored in these regions is recovered and used for planning.

2.2.2.2. Plan execution

Once a solution plan has been recruited from memory and suitably tuned for the problem on hand, the left-rostral PFC, caudate nucleus (CN), and bilateral posterior parietal cortices (PPC) are responsible for translating the plan into executable form ( Stocco et al., 2012 ). The PPC stores and maintains “mental template” of the executable form. Hemispherical division of labor is particularly relevant in planning where it was shown that when planning to solve a Tower of Hanoi (block moving) problem, the right PFC is involved in plan construction whereas the left PFC is involved in controlling processes necessary to supervise the execution of the plan ( Newman and Green, 2015 ). On a separate note and not the focus of this paper, plan execution and problem-solving can require the recruitment of affective and motivational processing in order to supply the agent with the resolve to solve problems, and the vmPFC has been found to be involved in coordinating this process ( Barbey and Barsalou, 2009 ).

2.3. Creativity

During the gestalt movement in the 1930s, Maier noted that “most instances of “real” problem solving involves creative thinking” ( Maier, 1930 ). Maier performed several experiments to study mental fixation and insight problem solving. This close tie between insight and creativity continues to be a recurring theme, one that will be central to the current discussion. If creativity and insight are linked to RWPS as noted by Maier, then it is reasonable to turn to the creativity and insight literature for understanding the role played by the environment. A large portion of the creativity literature has focused on viewing creativity as an internal process, one in which the solvers attention is directed inwards, and toward internal stimuli, to facilitate the generation of novel ideas and associations in memory ( Beaty et al., 2016 ). Focusing on imagination, a number of researchers have looked at blinking, eye fixation, closing eyes, and looking nowhere behavior and suggested that there is a shift of attention from external to internal stimuli during creative problem solving ( Salvi and Bowden, 2016 ). The idea is that shutting down external stimuli reduces cognitive load and focuses attention internally. Other experiments studying sleep behavior have also noted the beneficial role of internal stimuli in problem solving. The notion of ideas popping into ones consciousness, suddenly, during a shower is highly intuitive for many and researchers have attempted to study this phenomena through the lens of incubation, and unconscious thought that is internally-driven. There have been several theories and counter-theories proposed to account specifically for the cognitive processes underlying incubation ( Ritter and Dijksterhuis, 2014 ; Gilhooly, 2016 ), but none of these theories specifically address the role of the external environment.

The neuroscience of creativity has also been extensively studied and I do not focus on an exhaustive literature review in this paper (a nice review can be found in Sawyer, 2011 ). From a problem-solving perspective, it has been found that unlike well-structured problems, ill-structured problems activate the right dlPFC. Most of the past work on creativity and creative problem-solving has focused on exploring memory structures and performing internally-directed searches. Creative idea generation has primarily been viewed as internally directed attention ( Jauk et al., 2012 ; Benedek et al., 2016 ) and a primary mechanism involved is divergent thinking , which is the ability to produce a variety of responses in a given situation ( Guilford, 1962 ). Divergent thinking is generally thought to involve interactions between the DMN, CEN, and the salience network ( Yoruk and Runco, 2014 ; Heinonen et al., 2016 ). One psychological model of creative cognition is the Geneplore model that considers two major phases of generation (memory retrieval and mental synthesis) and exploration (conceptual interpretation and functional inference) ( Finke et al., 1992 ; Boccia et al., 2015 ). It has been suggested that the associative mode of processing to generate new creative association is supported by the DMN, which includes the medial PFC, posterior cingulate cortex (PCC), tempororparietal juntion (TPJ), MTL, and IPC ( Beaty et al., 2014 , 2016 ).

That said, the creativity literature is not completely devoid of acknowledging the role of the environment. In fact, it is quite the opposite. Researchers have looked closely at the role played by externally provided hints from the time of the early gestalt psychologists and through to present day studies ( Öllinger et al., 2017 ). In addition to studying how hints can help problem solving, researchers have also looked at how directed action can influence subsequent problem solving—e.g., swinging arms prior to solving the two-string puzzle, which requires swinging the string ( Thomas and Lleras, 2009 ). There have also been numerous studies looking at how certain external perceptual cues are correlated with creativity measures. Vohs et al. suggested that untidiness in the environment and the increased number of potential distractions helps with creativity ( Vohs et al., 2013 ). Certain colors such as blue have been shown to help with creativity and attention to detail ( Mehta and Zhu, 2009 ). Even environmental illumination, or lack thereof, have been shown to promote creativity ( Steidle and Werth, 2013 ). However, it is important to note that while these and the substantial body of similar literature show the relationship of the environment to creative problem solving, they do not specifically account for the cognitive processes underlying the RWPS when external stimuli are received.

2.4. Insight Problem Solving

Analytical problem solving is believed to involve deliberate and conscious processing that advances step by step, allowing solvers to be able to explain exactly how they solved it. Inability to solve these problems is often associated with lack of required prior knowledge, which if provided, immediately makes the solution tractable. Insight, on the other hand, is believed to involve a sudden and unexpected emergence of an obvious solution or strategy sometimes accompanied by an affective aha! experience. Solvers find it difficult to consciously explain how they generated a solution in a sequential manner. That said, research has shown that having an aha! moment is neither necessary nor sufficient to insight and vice versa ( Danek et al., 2016 ). Generally, it is believed that insight solvers acquire a full and deep understanding of the problem when they have solved it ( Chu and Macgregor, 2011 ). There has been an active debate in the problem solving community about whether insight is something special. Some have argued that it is not, and that there are no special or spontaneous processes, but simply a good old-fashioned search of a large problem space ( Kaplan and Simon, 1990 ; MacGregor et al., 2001 ; Ash and Wiley, 2006 ; Fleck, 2008 ). Others have argued that insight is special and suggested that it is likely a different process ( Duncker, 1945 ; Metcalfe, 1986 ; Kounios and Beeman, 2014 ). This debate lead to two theories for insight problem solving. MacGregor et al. proposed the Criterion for Satisfactory Progress Theory (CSPT), which is based on Newell and Simons original notion of problem solving as being a heuristic search through the problem space ( MacGregor et al., 2001 ). The key aspect of CSPT is that the solver is continually monitoring their progress with some set of criteria. Impasses arise when there is a criterion failure, at which point the solver tries non-maximal but promising states. The representational change theory (RCT) proposed by Ohlsson et al., on the other hand, suggests that impasses occur when the goal state is not reachable from an initial problem representation (which may have been generated through unconscious spreading activation) ( Ohlsson, 1992 ). In order to overcome an impasse, the solver needs to restructure the problem representation, which they can do by (1) elaboration (noticing new features of a problem), (2) re-encoding fixing mistaken or incomplete representations of the problem, and by (3) changing constraints. Changing constraints is believed to involve two sub-processes of constraint relaxation and chunk-decomposition.

The current position is that these two theories do not compete with each other, but instead complement each other by addressing different stages of problem solving: pre- and post-impasse. Along these lines, Ollinger et al. proposed an extended RCT (eRCT) in which revising the search space and using heuristics was suggested as being a dynamic and iterative and recursive process that involves repeated instances of search, impasse and representational change ( Öllinger et al., 2014 , 2017 ). Under this theory, a solver first forms a problem representation and begins searching for solutions, presumably using analytical problem solving processes as described earlier. When a solution cannot be found, the solver encounters an impasse, at which point the solver must restructure or change the problem representation and once again search for a solution. The model combines both analytical problem solving (through heuristic searches, hill climbing and progress monitoring), and creative mechanisms of constraint relaxation and chunk decomposition to enable restructuring.

Ollingers model appears to comprehensively account for both analytical and insight problem solving and, therefore, could be a strong candidate to model RWPS. However, while compelling, it is nevertheless an insufficient model of RWPS for many reasons, of which two are particularly significant for the current paper. First, the model does explicitly address mechanisms by which external stimuli might be assimilated. Second, the model is not sufficiently flexible to account for other events (beyond impasse) occurring during problem solving, such as distraction, mind-wandering and the like.

So, where does this leave us? I have shown the interplay between problem solving, creativity and insight. In particular, using Ollinger's proposal, I have suggested (maybe not quite explicitly up until now) that RWPS involves some degree of analytical problem solving as well as the post-impasse more creative modes of problem restructuring. I have also suggested that this model might need to be extended for RWPS along two dimensions. First, events such as impasses might just be an instance of a larger class of events that intervene during problem solving. Thus, there needs to be an accounting of the cognitive mechanisms that are potentially influenced by impasses and these other intervening events. It is possible that these sorts of events are crucial and trigger a switch in attentional focus, which in turn facilitates switching between different problem solving modes. Second, we need to consider when and how externally-triggered stimuli from the solver's environment can influence the problem solving process. I detail three different mechanisms by which external knowledge might influence problem solving. I address each of these ideas in more detail in the next two sections.

3. Event-Triggered Mode Switching During Problem-Solving

3.1. impasse.

When solving certain types of problems, the agent might encounter an impasse, i.e., some block in its ability to solve the problem ( Sprugnoli et al., 2017 ). The impasse may arise because the problem may have been ill-defined to begin with causing incomplete and unduly constrained representations to have been formed. Alternatively, impasses can occur when suitable solution strategies cannot be retrieved from memory or fail on execution. In certain instances, the solution strategies may not exist and may need to be generated from scratch. Regardless of the reason, an impasse is an interruption in the problem solving process; one that was running conflict-free up until the point when a seemingly unresolvable issue or an error in the predicted solution path was encountered. Seen as a conflict encountered in the problem-solving process it activates the anterior cingulate cortex (ACC). It is believed that the ACC not only helps detect the conflict, but also switch modes from one of “exploitation” (planning) to “exploration” (search) ( Quilodran et al., 2008 ; Tang et al., 2012 ), and monitors progress during resolution ( Chu and Macgregor, 2011 ). Some mode switching duties are also found to be shared with the AI (the ACC's partner in the salience network), however, it is unclear exactly the extent of this function-sharing.

Even though it is debatable if impasses are a necessary component of insight, they are still important as they provide a starting point for the creativity ( Sprugnoli et al., 2017 ). Indeed, it is possible that around the moment of impasse, the AI and ACC together, as part of the salience network play a crucial role in switching thought modes from analytical planning mode to creative search and discovery mode. In the latter mode, various creative mechanisms might be activated allowing for a solution plan to emerge. Sowden et al. and many others have suggested that the salience network is potentially a candidate neurobiological mechanism for shifting between thinking processes, more generally ( Sowden et al., 2015 ). When discussing various dual-process models as they relate to creative cognition, Sowden et al. have even noted that the ACC activation could be useful marker to identify shifting as participants work creative problems.

3.2. Defocused Attention

As noted earlier, in the presence of an impasse there is a shift from an exploitative (analytical) thinking mode to an exploratory (creative) thinking mode. This shift impacts several networks including, for example, the attention network. It is believed attention can switch between a focused mode and a defocused mode. Focused attention facilitates analytic thought by constraining activation such that items are considered in a compact form that is amenable to complex mental operations. In the defocused mode, agents expand their attention allowing new associations to be considered. Sowden et al. (2015) note that the mechanism responsible for adjustments in cognitive control may be linked to the mechanisms responsible for attentional focus. The generally agreed position is that during generative thinking, unconscious cognitive processes activated through defocused attention are more prevalent, whereas during exploratory thinking, controlled cognition activated by focused attention becomes more prevalent ( Kaufman, 2011 ; Sowden et al., 2015 ).

Defocused attention allows agents to not only process different aspects of a situation, but to also activate additional neural structures in long term memory and find new associations ( Mendelsohn, 1976 ; Yoruk and Runco, 2014 ). It is believed that cognitive material attended to and cued by positive affective state results in defocused attention, allowing for more complex cognitive contexts and therefore a greater range of interpretation and integration of information ( Isen et al., 1987 ). High attentional levels are commonly considered a typical feature of highly creative subjects ( Sprugnoli et al., 2017 ).

4. Role of the Environment

In much of the past work the focus has been on treating creativity as largely an internal process engaging the DMN to assist in making novel connections in memory. The suggestion has been that “individual needs to suppress external stimuli and concentrate on the inner creative process during idea generation” ( Heinonen et al., 2016 ). These ideas can then function as seeds for testing and problem-solving. While true of many creative acts, this characterization does not capture how creative ideas arise in many real-world creative problems. In these types of problems, the agent is functioning and interacting with its environment before, during and after problem-solving. It is natural then to expect that stimuli from the environment might play a role in problem-solving. More specifically, it can be expected that through passive and active involvement with the environment, the agent is (1) able to trigger an unrelated, but potentially useful memory relevant for problem-solving, (2) make novel connections between two events in memory with the environmental cue serving as the missing link, and (3) incorporate a completely novel information from events occuring in the environment directly into the problem-solving process. I explore potential neural mechanisms for these three types of environmentally informed creative cognition, which I hypothesize are enabled by defocused attention.

4.1. Partial Cues Trigger Relevant Memories Through Context-Shifting

I have previously discussed the interaction between the MTL and PFC in helping select task-relevant and critical memories for problem-solving. It is well-known that pattern completion is an important function of the MTL and one that enables memory retrieval. Complementary Learning Theory (CLS) and its recently updated version suggest that the MTL and related structures support initial storage as well as retrieval of item and context-specific information ( Kumaran et al., 2016 ). According to CLS theory, the dentate gyrus (DG) and the CA3 regions of the HF are critical to selecting neural activity patterns that correspond to particular experiences ( Kumaran et al., 2016 ). These patterns might be distinct even if experiences are similar and are stabilized through increases in connection strengths between the DG and CA3. Crucially, because of the connection strengths, reactivation of part of the pattern can activate the rest of it (i.e., pattern completion). Kumaran et al. have further noted that if consistent with existing knowledge, these new experiences can be quickly replayed and interleaved into structured representations that form part of the semantic memory.

Cues in the environment provided by these experiences hold partial information about past stimuli or events and this partial information converges in the MTL. CLS accounts for how these cues might serve to reactivate partial patterns, thereby triggering pattern completion. When attention is defocused I hypothesize that (1) previously unnoticed partial cues are considered, and (2) previously noticed partial cues are decomposed to produce previously unnoticed sub-cues, which in turn are considered. Zabelina et al. (2016) have shown that real-world creativity and creative achievement is associated with “leaky attention,” i.e., attention that allows for irrelevant information to be noticed. In two experiments they systematically explored the relationship between two notions of creativity— divergent thinking and real-world creative achievement—and the use of attention. They found that attentional use is associated in different ways for each of the two notions of creativity. While divergent thinking was associated with flexible attention, it does not appear to be leaky. Instead, selective focus and inhibition components of attention were likely facilitating successful performance on divergent thinking tasks. On the other hand, real-world creative achievement was linked to leaky attention. RWPS involves elements of both divergent thinking and of real-world creative achievement, thus I would expect some amount of attentional leaks to be part of the problem solving process.

Thus, it might be the case that a new set of cues or sub-cues “leak” in and activate memories that may not have been previously considered. These cues serve to reactivate a diverse set of patterns that then enable accessing a wide range of memories. Some of these memories are extra-contextual, in that they consider the newly noticed cues in several contexts. For example, when unable to find a screwdriver, we might consider using a coin. It is possible that defocused attention allows us to consider the coin's edge as being a potentially relevant cue that triggers uses for the thin edge outside of its current context in a coin. The new cues (or contexts) may allow new associations to emerge with cues stored in memory, which can occur during incubation. Objects and contexts are integrated into memory automatically into a blended representation and changing contexts disrupts this recognition ( Hayes et al., 2007 ; Gabora, 2016 ). Cue-triggered context shifting allows an agent to break-apart a memory representation, which can then facilitate problem-solving in new ways.

4.2. Heuristic Prototyping Facilitates Novel Associations

It has long been the case that many scientific innovations have been inspired by events in nature and the surrounding environment. As noted earlier, Archimedes realized the relationship between the volume of an irregularly shaped object and the volume of water it displaced. This is an example of heuristic prototyping where the problem-solver notices an event in the environment, which then triggers the automatic activation of a heuristic prototype and the formation of novel associations (between the function of the prototype and the problem) which they can then use to solve the problem ( Luo et al., 2013 ). Although still in its relative infancy, there has been some recent research into the neural basis for heuristic prototyping. Heuristic prototype has generally been defined as an enlightening prototype event with a similar element to the current problem and is often composed of a feature and a function ( Hao et al., 2013 ). For example, in designing a faster and more efficient submarine hull, a heuristic prototype might be a shark's skin, while an unrelated prototype might be a fisheye camera ( Dandan et al., 2013 ).

Research has shown that activating the feature function of the right heuristic prototype and linking it by way of semantic similarity to the required function of the problem was the key mechanism people used to solve several scienitific insight problems ( Yang et al., 2016 ). A key region activated during heuristic prototyping is the dlPFC and it is believed to be generally responsible for encoding the events into memory and may play an important role in selecting and retrieving the matched unsolved technical problem from memory ( Dandan et al., 2013 ). It is also believed that the precuneus plays a role in automatic retrieval of heuristic information allowing the heuristic prototype and the problem to combine ( Luo et al., 2013 ). In addition to semantic processing, certain aspects of visual imagery have also been implicated in heuristic prototyping leading to the suggestion of the involvement of Broadman's area BA 19 in the occipital cortex.

There is some degree of overlap between the notions of heuristic prototyping and analogical transfer (the mapping of relations from one domain to another). Analogical transfer is believed to activate regions in the left medial fronto-parietal system (dlPFC and the PPC) ( Barbey and Barsalou, 2009 ). I suggest here that analogical reasoning is largely an internally-guided process that is aided by heuristic prototyping which is an externally-guided process. One possible way this could work is if heuristic prototyping mechanisms help locate the relevant memory with which to then subsequently analogize.

4.3. Making Physical Inferences to Acquire Novel Information

The agent might also be able to learn novel facts about their environment through passive observation as well as active experimentation. There has been some research into the neural basis for causal reasoning ( Barbey and Barsalou, 2009 ; Operskalski and Barbey, 2016 ), but beyond its generally distributed nature, we do not know too much more. Beyond abstract causal reasoning, some studies looked into the cortical regions that are activated when people watch and predict physical events unfolding in real-time and in the real-world ( Fischer et al., 2016 ). It was found that certain regions were associated with representing types of physical concepts, with the left intraparietal sulcus (IPS) and left middle frontal gyrus (MFG) shown to play a role in attributing causality when viewing colliding objects ( Mason and Just, 2013 ). The parahippocampus (PHC) was associated with linking causal theory to observed data and the TPJ was involved in visualizing movement of objects and actions in space ( Mason and Just, 2013 ).

5. Proposed Theory

I noted earlier that Ollinger's model for insight problem solving, while serving as a good candidate for RWPS, requires extension. In this section, I propose a candidate model that includes some necessary extensions to Ollinger's framework. I begin by laying out some preliminary notions that underlie the proposed model.

5.1. Dual Attentional Modes

I propose that the attention-switching mechanism described earlier is at the heart of RWPS and enables two modes of operation: focused and defocused mode. In the focused mode, the problem representation is more or less fixed, and problem solving proceeds in a focused and goal directed manner through search, planning, and execution mechanisms. In the defocused mode, problem solving is not necessarily goal directed, but attempts to generate ideas, driven by both internal and external items.

At first glance, these modes might seem similar to convergent and divergent thinking modes postulated by numerous others to account for creative problem solving. Divergent thinking allows for the generation of new ideas and convergent thinking allows for verification and selection of generated ideas. So, it might seem that focused mode and convergent thinking are similar and likewise divergent and defocused mode. They are, however, quite different. The modes relate less to idea generation and verification, and more to the specific mechanisms that are operating with regard to a particular problem at a particular moment in time. Convergent and divergent processes may be occurring during both defocused and focused modes. Some degree of divergent processes may be used to search and identify specific solution strategies in focused mode. Also, there might be some degree of convergent idea verification occuring in defocused mode as candidate items are evaluated for their fit with the problem and goal. Thus, convergent and divergent thinking are one amongst many mechanisms that are utilized in focused and defocused mode. Each of these two modes has to do with degree of attention placed on a particular problem.

There have been numerous dual-process and dual-systems models of cognition proposed over the years. To address criticisms raised against these models and to unify some of the terminology, Evans & Stanovich proposed a dual-process model comprising Type 1 and Type 2 thought ( Evans and Stanovich, 2013 ; Sowden et al., 2015 ). Type 1 processes are those that are believed to be autonomous and do not require working memory. Type 2 processes, on the other hand, are believed to require working memory and are cognitively decoupled to prevent real-world representations from becoming confused with mental simulations ( Sowden et al., 2015 ). While acknowledging various other attributes that are often used to describe dual process models (e.g., fast/slow, associative/rule-based, automatic/controlled), Evans & Stanovich note that these attributes are merely frequent correlates and not defining characteristics of Type 1 or Type 2 processes. The proposed dual attentional modes share some similarities with the Evans & Stanovich Type 1 and 2 models. Specifically, Type 2 processes might occur in focused attentional mode in the proposed model as they typically involve the working memory and certain amount of analytical thought and planning. Similarly, Type 1 processes are likely engaged in defocused attentional mode as there are notions of associative and generative thinking that might be facilitated when attention has been defocused. The crucial difference between the proposed model and other dual-process models is that the dividing line between focused and defocused attentional modes is the degree of openness to internal and external stimuli (by various networks and functional units in the brain) when problem solving. Many dual process models were designed to classify the “type” of thinking process or a form of cognitive processing. In some sense, the “processes” in dual process theories are characterized by the type of mechanism of operation or the type of output they produced. Here, I instead characterize and differentiate the modes of thinking by the receptivity of different functional units in the brain to input during problem solving.

This, however, raises a different question of the relationship between these attentional modes and conscious vs. unconscious thinking. It is clear that both the conscious and unconscious are involved in problem solving, as well as in RWPS. Here, I claim that a problem being handled is, at any given point in time, in either a focused mode or in a defocused mode. When in the focused mode, problem solving primarily proceeds in a manner that is available for conscious deliberation. More specifically, problem space elements and representations are tightly managed and plans and strategies are available in the working memory and consciously accessible. There are, however, secondary unconscious operations in the focused modes that includes targeted memory retrieval and heuristic-based searches. In the defocused mode, the problem is primarily managed in an unconscious way. The problem space elements are broken apart and loosely managed by various mechanisms that do not allow for conscious deliberation. That said, it is possible that some problem parameters remain accessible. For example, it is possible that certain goal information is still maintained consciously. It is also possible that indexes to all the problems being considered by the solver are maintained and available to conscious awareness.

5.2. RWPS Model

Returning to Ollinger's model for insight problem solving, it now becomes readily apparent how this model can be modified to incorporate environmental effects as well as generalizing the notion of intervening events beyond that of impasses. I propose a theory for RWPS that begins with standard analytical problem-solving process (See Figures 1 , 2 ).

www.frontiersin.org

Figure 1 . Summary of neural activations during focused problem-solving (Left) and defocused problem-solving (Right) . During defocused problem-solving, the salience network (insula and ACC) coordinates the switching of several networks into a defocused attention mode that permits the reception of a more varied set of stimuli and interpretations via both the internally-guided networks (default mode network DMN) and externally guided networks (Attention). PFC, prefrontal cortex; ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; IPC, inferior parietal cortex; PPC, posterior parietal cortex; IPS, intra-parietal sulcus; TPJ, temporoparietal junction; MTL, medial temporal lobe; FEF, frontal eye field.

www.frontiersin.org

Figure 2 . Proposed Model for Real World Problem Solving (RWPS). The corresponding neural correlates are shown in italics. During problem-solving, an initial problem representation is formed based on prior knowledge and available perceptual information. The problem-solving then proceeds in a focused, goal-directed mode until the goal is achieved or a defocusing event (e.g., impasse or distraction) occurs. During focused mode operation, the solver interacts with the environment in directed manner, executing focused plans, and allowing for predicted items to be activated by the environment. When a defocusing event occurs, the problem-solving then switches into a defocused mode until a focusing event (e.g., discovery) occurs. In defocused mode, the solver performs actions unrelated to the problem (or is inactive) and is receptive to a set of environmental triggers that activate novel aspects using the three mechanisms discussed in this paper. When a focusing event occurs, the diffused problem elements cohere into a restructured representation and problem-solving returns into a focused mode.

5.2.1. Focused Problem Solving Mode

Initially, both prior knowledge and perceptual entities help guide the creation of problem representations in working memory. Prior optimal or rewarding solution strategies are obtained from LTM and encoded in the working memory as well. This process is largely analytical and the solver interacts with their environment through focused plan or idea execution, targeted observation of prescribed entities, and estimating prediction error of these known entities. More specifically, when a problem is presented, the problem representations are activated and populated into working memory in the PFC, possibly in structured representations along convergence zones. The PFC along with the Striatum and the MTL together attempt at retrieving an optimal or previously rewarded solution strategy from long term memory. If successfully retrieved, the solution strategy is encoded into the PPC as a mental template, which then guides relevant motor control regions to execute the plan.

5.2.2. Defocusing Event-Triggered Mode Switching

The search and solve strategy then proceeds analytically until a “defocusing event” is encountered. The salience network (AI and ACC) monitor for conflicts and attempt to detect any such events in the problem-solving process. As long as no conflicts are detected, the salience network focuses on recruiting networks to achieve goals and suppresses the DMN ( Beaty et al., 2016 ). If the plan execution or retrieval of the solution strategy fails, then a defocusing event is detected and the salience network performs mode switching. The salience network dynamically switches from the focused problem-solving mode to a defocused problem-solving mode ( Menon, 2015 ). Ollinger's current model does not account for other defocusing events beyond an impasse, but it is not inconceivable that there could be other such events triggered by external stimuli (e.g., distraction or an affective event) or by internal stimuli (e.g., mind wandering).

5.2.3. Defocused Problem Solving Mode

In defocused mode, the problem is operated on by mechanisms that allow for the generation and testing of novel ideas. Several large-scale brain networks are recruited to explore and generate new ideas. The search for novel ideas is facilitated by generally defocused attention, which in turn allows for creative idea generation from both internal as well as external sources. The salience network switches operations from defocused event detection to focused event or discovery detection, whereby for example, environmental events or ideas that are deemed interesting can be detected. During this idea exploration phase, internally, the DMN is no longer suppressed and attempts to generate new ideas for problem-solving. It is known that the IPC is involved in the generation of new ideas ( Benedek et al., 2014 ) and together with the PPC in coupling different information together ( Simone Sandkühler, 2008 ; Stocco et al., 2012 ). Beaty et al. (2016) have proposed that even this internal idea-generation process can be goal directed, thereby allowing for a closer working relationship between the CEN and the DMN. They point to neuroimaging evidence that support the possibility that the executive control network (comprising the lateral prefrontal and inferior parietal regions) can constrain and direct the DMN in its process of generating ideas to meet task-specific goals via top down monitoring and executive control ( Beaty et al., 2016 ). The control network is believed to maintain an “internal train of thought” by keeping the task goal activated, thereby allowing for strategic and goal-congruent searches for ideas. Moreover, they suggest that the extent of CEN involvement in the DMN idea-generation may depend on the extent to which the creative task is constrained. In the RWPS setting, I would suspect that the internal search for creative solutions is not entirely unconstrained, even in the defocused mode. Instead, the solver is working on a specified problem and thus, must maintain the problem-thread while searching for solutions. Moreover, self-generated ideas must be evaluated against the problem parameters and thereby might need some top-down processing. This would suggest that in such circumstances, we would expect to see an increased involvement of the CEN in constraining the DMN.

On the external front, several mechanisms are operating in this defocused mode. Of particular note are the dorsal attention network, composed of the visual cortex (V), IPS and the frontal eye field (FEF) along with the precuneus and the caudate nucleus allow for partial cues to be considered. The MTL receives synthesized cue and contextual information and populates the WM in the PFC with a potentially expanded set of information that might be relevant for problem-solving. The precuneus, dlPFC and PPC together trigger the activation and use of a heuristic prototype based on an event in the environment. The caudate nucleus facilitates information routing between the PFC and PPC and is involved in learning and skill acquisition.

5.2.4. Focusing Event-Triggered Mode Switching

The problem's life in this defocused mode continues until a focusing event occurs, which could be triggered by either external (e.g., notification of impending deadline, discovery of a novel property in the environment) or internal items (e.g., goal completion, discovery of novel association or updated relevancy of a previously irrelevant item). As noted earlier, an internal train of thought may be maintained that facilitates top-down evaluation of ideas and tracking of these triggers ( Beaty et al., 2016 ). The salience network switches various networks back to the focused problem-solving mode, but not without the potential for problem restructuring. As noted earlier, problem space elements are maintained somewhat loosely in the defocused mode. Thus, upon a focusing event, a set or subset of these elements cohere into a tight (restructured) representation suitable for focused mode problem solving. The process then repeats itself until the goal has been achieved.

5.3. Model Predictions

5.3.1. single-mode operation.

The proposed RWPS model provides several interesting hypotheses, which I discuss next. First, the model assumes that any given problem being worked on is in one mode or another, but not both. Thus, the model predicts that there cannot be focused plan execution on a problem that is in defocused mode. The corollary prediction is that novel perceptual cues (as those discussed in section 4) cannot help the solver when in focused mode. The corollary prediction, presumably has some support from the inattentional blindness literature. Inattentional blindness is when perceptual cues are not noticed during a task (e.g., counting the number of basketball passes between several people, but not noticing a gorilla in the scene) ( Simons and Chabris, 1999 ). It is possible that during focused problem solving, that external and internally generated novel ideas are simply not considered for problem solving. I am not claiming that these perceptual cues are always ignored, but that they are not considered within the problem. Sometimes external cues (like distracting occurrences) can serve as defocusing events, but the model predicts that the actual content of these cues are not themselves useful for solving the specific problem at hand.

When comparing dual-process models Sowden et al. (2015) discuss shifting from one type of thinking to another and explore how this shift relates to creativity. In this regard, they weigh the pros and cons of serial vs. parallel shifts. In dual-process models that suggest serial shifts, it is necessary to disengage one type of thought prior to engaging the other or to shift along a continuum. Whereas, in models that suggest parallel shifts, each of the thinking types can operate in parallel. Per this construction, the proposed RWPS model is serial, however, not quite in the same sense. As noted earlier, the RWPS model is not a dual-process model in the same sense as other dual process model. Instead, here, the thrust is on when the brain is receptive or not receptive to certain kinds of internal and external stimuli that can influence problem solving. Thus, while the modes may be serial with respect to a certain problem, it does not preclude the possibility of serial and parallel thinking processes that might be involved within these modes.

5.3.2. Event-Driven Transitions

The model requires an event (defocusing or focusing) to transition from one mode to another. After all why else would a problem that is successfully being resolved in the focused mode (toward completion) need to necessarily be transferred to defocused mode? These events are interpreted as conflicts in the brain and therefore the mode-switching is enabled by the saliency network and the ACC. Thus, the model predicts that there can be no transition from one mode to another without an event. This is a bit circular, as an event is really what triggers the transition in the first place. But, here I am suggesting that an external or internal cue triggered event is what drives the transition, and that transitions cannot happen organically without such an event. In some sense, the argument is that the transition is discontinuous, rather than a smooth one. Mind-wandering is good example of when we might drift into defocused mode, which I suggest is an example of an internally driven event caused by an alternative thought that takes attention away from the problem.

A model assumption underlying RWPS is that events such as impasses have a similar effect to other events such as distraction or mind wandering. Thus, it is crucial to be able to establish that there exists of class of such events and they have a shared effect on RWPS, which is to switch attentional modes.

5.3.3. Focused Mode Completion

The model also predicts that problems cannot be solved (i.e., completed) within the defocused mode. A problem can be considered solved when a goal is reached. However, if a goal is reached and a problem is completed in the defocused mode, then there must have not been any converging event or coherence of problem elements. While it is possible that the solver arbitrarily arrived at the goal in a diffused problem space and without conscious awareness of completing the task or even any converging event or problem recompiling, it appears somewhat unlikely. It is true that there are many tasks that we complete without actively thinking about it. We do not think about what foot to place in front of another while walking, but this is not an instance of problem solving. Instead, this is an instance of unconscious task completion.

5.3.4. Restructuring Required

The model predicts that a problem cannot return to a focused mode without some amount of restructuring. That is, once defocused, the problem is essentially never the same again. The problem elements begin interacting with other internally and externally-generated items, which in turn become absorbed into the problem representation. This prediction can potentially be tested by establishing some preliminary knowledge, and then showing one group of subjects the same knowledge as before, while showing the another group of subjects different stimuli. If the model's predictions hold, the problem representation will be restructured in some way for both groups.

There are numerous other such predictions, which are beyond the scope of this paper. One of the biggest challenges then becomes evaluating the model to set up suitable experiments aimed at testing the predictions and falsifying the theory, which I address next.

6. Experimental Challenges and Paradigms

One of challenges in evaluating the RWPS is that real world factors cannot realistically be accounted for and sufficiently controlled within a laboratory environment. So, how can one controllably test the various predictions and model assumptions of “real world” problem solving, especially given that by definition RWPS involves the external environment and unconscious processing? At the expense of ecological validity, much of insight problem solving research has employed an experimental paradigm that involves providing participants single instances of suitably difficult problems as stimuli and observing various physiological, neurological and behavioral measures. In addition, through verbal protocols, experimenters have been able to capture subjective accounts and problem solving processes that are available to the participants' conscious. These experiments have been made more sophisticated through the use of timed-hints and/or distractions. One challenge with this paradigm has been the selection of a suitable set of appropriately difficult problems. The classic insight problems (e.g., Nine-dot, eight-coin) can be quite difficult, requiring complicated problem solving processes, and also might not generalize to other problems or real world problems. Some in the insight research community have moved in the direction of verbal tasks (e.g., riddles, anagrams, matchstick rebus, remote associates tasks, and compound remote associates tasks). Unfortunately, these puzzles, while providing a great degree of controllability and repeatability, are even less realistic. These problems are not entirely congruent with the kinds of problems that humans are solving every day.

The other challenge with insight experiments is the selection of appropriate performance and process tracking measures. Most commonly, insight researchers use measures such as time to solution, probability of finding solution, and the like for performance measures. For process tracking, verbal protocols, coded solution attempts, and eye tracking are increasingly common. In neuroscientific studies of insight various neurological measures using functional magnetic resonance imaging (fMRI), electroencephalography (EEGs), transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation (tMS) are popular and allow for spatially and temporally localizing an insight event.

Thus, the challenge for RWPS is two-fold: (1) selection of stimuli (real world problems) that are generalizable, and (2) selection of measures (or a set of measures) that can capture key aspects of the problem solving process. Unfortunately, these two challenges are somewhat at odds with each other. While fMRI and various neuroscientific measures can capture the problem solving process in real time, it is practically difficult to provide participants a realistic scenario while they are laying flat on their back in an fMRI machine and allowed to move nothing more than a finger. To begin addressing this conundrum, I suggest returning to object manipulation problems (not all that different from those originally introduced by Maier and Duncker nearly a century ago), but using modern computing and user-interface technologies.

One pseudo-realistic approach is to generate challenging object manipulation problems in Virtual Reality (VR). VR has been used to describe 3-D environment displays that allows participants to interact with artificially projected, but experientially realistic scenarios. It has been suggested that virtual environments (VE) invoke the same cognitive modules as real equivalent environmental experience ( Foreman, 2010 ). Crucially, since VE's can be scaled and designed as desired, they provide a unique opportunity to study pseudo-RWPS. However, a VR-based research approach has its limitations, one of which is that it is nearly impossible to track participant progress through a virtual problem using popular neuroscientific measures such as fMRI because of the limited mobility of connected participants.

Most of the studies cited in this paper utilized an fMRI-based approach in conjunction with a verbal or visual task involving problem-solving or creative thinking. Very few, if any, studies involved the use physical manipulation, and those physical manipulations were restricted to limited finger movements. Thus, another pseudo-realistic approach is allowing subjects to teleoperate robotic arms and legs from inside the fMRI machine. This paradigm has seen limited usage in psychology and robotics, in studies focused on Human-Robot interaction ( Loth et al., 2015 ). It could be an invaluable tool in studying real-time dynamic problem-solving through the control of a robotic arm. In this paradigm a problem solving task involving physical manipulation is presented to the subject via the cameras of a robot. The subject (in an fMRI) can push buttons to operate the robot and interact with its environment. While the subjects are not themselves moving, they can still manipulate objects in the real world. What makes this paradigm all the more interesting is that the subject's manipulation-capabilities can be systematically controlled. Thus, for a particular problem, different robotic perceptual and manipulation capabilities can be exposed, allowing researchers to study solver-problem dynamics in a new way. For example, even simple manipulation problems (e.g., re-arranging and stacking blocks on a table) can be turned into challenging problems when the robotic movements are restricted. Here, the problem space restrictions are imposed not necessarily on the underlying problem, but on the solver's own capabilities. Problems of this nature, given their simple structure, may enable studying everyday practical creativity without the burden of devising complex creative puzzles. Crucial to note, both these pseudo-realistic paradigms proposed demonstrate a tight interplay between the solver's own capabilities and their environment.

7. Conclusion

While the neural basis for problem-solving, creativity and insight have been studied extensively in the past, there is still a lack of understanding of the role of the environment in informing the problem-solving process. Current research has primarily focused on internally-guided mental processes for idea generation and evaluation. However, the type of real world problem-solving (RWPS) that is often considered a hallmark of human intelligence has involved both a dynamic interaction with the environment and the ability to handle intervening and interrupting events. In this paper, I have attempted to synthesize the literature into a unified theory of RWPS, with a specific focus on ways in which the environment can help problem-solve and the key neural networks involved in processing and utilizing relevant and useful environmental information. Understanding the neural basis for RWPS will allow us to be better situated to solve difficult problems. Moreover, for researchers in computer science and artificial intelligence, clues into the neural underpinnings of the computations taking place during creative RWPS, can inform the design the next generation of helper and exploration robots which need these capabilities in order to be resourceful and resilient in the open-world.

Author Contributions

The author confirms being the sole contributor of this work and approved it for publication.

The research for this Hypothesis/Theory Article was funded by the authors private means. Publication costs will be covered by my institution: Tufts University, Medford, MA, USA.

Conflict of Interest Statement

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

I am indebted to Professor Matthias Scheutz, Professor Elizabeth Race, Professor Ayanna Thomas, and Professor. Shaun Patel for providing guidance with the research and the manuscript. I am also grateful for the facilities provided by Tufts University, Medford, MA, USA.

1. ^ My intention is not to ignore the benefits of a concentrated internal thought process which likely occurred as well, but merely to acknowledge the possibility that the environment might have also helped.

2. ^ The research in insight does extensively use “hints” which are, arguably, a form of external influence. But these hints are highly targeted and might not be available in this explicit form when solving problems in the real world.

3. ^ The accuracy of these accounts has been placed in doubt. They often are recounted years later, with inaccuracies, and embellished for dramatic effect.

4. ^ I use the term “agent” to refer to the problem-solver. The term agent is more general than “creature” or “person” or “you" and is intentionally selected to broadly reference humans, animals as well as artificial agents. I also selectively use the term “solver.”

Abraham, A. (2013). The promises and perils of the neuroscience of creativity. Front. Hum. Neurosci. 7:246. doi: 10.3389/fnhum.2013.00246

PubMed Abstract | CrossRef Full Text | Google Scholar

Anderson, J. R., and Fincham, J. M. (2014). Discovering the sequential structure of thought. Cogn. Sci. 38, 322–352. doi: 10.1111/cogs.12068

Anderson, J. R., Seung, H., and Fincham, J. M. (2014). Neuroimage discovering the structure of mathematical problem solving. Neuroimage 97, 163–177. doi: 10.1016/j.neuroimage.2014.04.031

CrossRef Full Text | Google Scholar

Ash, I. K., and Wiley, J. (2006). The nature of restructuring in insight: an individual-differences approach. Psychon. Bull. Rev. 13, 66–73. doi: 10.3758/BF03193814

Barbey, A. K., and Barsalou, L. W. (2009). “Reasoning and problem solving : models,” in Encyclopedia of Neuroscience , ed L. Squire (Oxford: Academic Press), 35–43.

Google Scholar

Barbey, A. K., Krueger, F., and Grafman, J. (2009). Structured event complexes in the medial prefrontal cortex support counterfactual representations for future planning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1291–1300. doi: 10.1098/rstb.2008.0315

Beaty, R. E., Benedek, M., Silvia, P. J., and Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends Cogn. Sci. 20, 87–95. doi: 10.1016/j.tics.2015.10.004

Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., et al. (2014). Creativity and the default network: a functional connectivity analysis of the creative brain at rest. Neuropsychologia 64, 92–98. doi: 10.1016/j.neuropsychologia.2014.09.019

Benedek, M., Jauk, E., Beaty, R. E., Fink, A., Koschutnig, K., and Neubauer, A. C. (2016). Brain mechanisms associated with internally directed attention and self-generated thought. Sci. Rep. 6:22959. doi: 10.1038/srep22959

Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F., et al. (2014). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. Neuroimage 88, 125–133. doi: 10.1016/j.neuroimage.2013.11.021

Boccia, M., Piccardi, L., Palermo, L., Nori, R., and Palmiero, M. (2015). Where do bright ideas occur in ourbrain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Front. Psychol. 6:1195. doi: 10.3389/fpsyg.2015.01195

Brandi, M. l., Wohlschläger, A., Sorg, C., and Hermsdörfer, J. (2014). The neural correlates of planning and executing actual tool use. J. Neurosci. 34, 13183–13194. doi: 10.1523/JNEUROSCI.0597-14.2014

Cass, S. (2005). “Apollo 13, we have a solution,” in IEEE Spectrum On-line, 04 , 1. Available online at: https://spectrum.ieee.org/tech-history/space-age/apollo-13-we-have-a-solution

Chu, Y., and Macgregor, J. N. (2011). Human performance on insight problem solving : a review J. Probl. Solv. 3, 119–150. doi: 10.7771/1932-6246.1094

Chung, H. J., and Weyandt, L. L. (2014). “The physiology of executive functioning,” Handbook of Executive Functioning (Springer), 13–28.

Dandan, T., Haixue, Z., Wenfu, L., Wenjing, Y., Jiang, Q., and Qinglin, Z. (2013). Brain activity in using heuristic prototype to solve insightful problems. Behav. Brain Res. 253, 139–144. doi: 10.1016/j.bbr.2013.07.017

Danek, A. H., Wiley, J., and Öllinger, M. (2016). Solving classical insight problems without aha! experience: 9 dot, 8 coin, and matchstick arithmetic problems. J. Probl. Solv. 9:4. doi: 10.7771/1932-6246.1183

Duncker, K. (1945). On problem-solving. Psychol. Monogr. 58, i–113.

Evans, J. S., and Stanovich, K. E. (2013). Dual-process theories of higher cognition: advancing the debate. Perspect. Psychol. Sci. 8, 223–241. doi: 10.1177/1745691612460685

Fang, X., Zhang, Y., Zhou, Y., Cheng, L., Li, J., Wang, Y., et al. (2016). Resting-state coupling between core regions within the central-executive and salience networks contributes to working memory performance. Front. Behav. Neurosci. 10:27. doi: 10.3389/fnbeh.2016.00027

Finke, R. A., Ward, T. B., and Smith, S. M. (1992). Creative Cognition: Theory, Research, and Applications . Cambridge, MA: MIT press.

Fischer, J., Mikhael, J. G., Tenenbaum, J. B., and Kanwisher, N. (2016). Functional neuroanatomy of intuitive physical inference. Proc. Natl. Acad. Sci. U.S.A. 113, E5072–E5081. doi: 10.1073/pnas.1610344113

Fleck, J. I. (2008). Working memory demands in insight versus analytic problem solving. Eur. J. Cogn. Psychol. 20, 139–176. doi: 10.1080/09541440601016954

Foreman, N. (2010). Virtual reality in psychology. Themes Sci. Technol. Educ. 2, 225–252. Available online at: http://earthlab.uoi.gr/theste/index.php/theste/article/view/33

Gabora, L. (2016). The neural basis and evolution of divergent and convergent thought. arXiv preprint arXiv:1611.03609 .

Gazzaley, A., and Nobre, A. C. (2012). Top-down modulation: bridging selective attention and working memory. Trends Cogn. Sci. 60, 830–846. doi: 10.1016/j.tics.2011.11.014

Gilhooly, K. J. (2016). Incubation and intuition in creative problem solving. Front. Psychol. 7:1076. doi: 10.3389/fpsyg.2016.01076

Guilford, J. P. (1962). “Creativity: its measurement and development,” in A Source Book for Creative Thinking (New York, NY: Charles Scribner's Sons), 151–167.

Hao, X., Cui, S., Li, W., Yang, W., Qiu, J., and Zhang, Q. (2013). Enhancing insight in scientific problem solving by highlighting the functional features of prototypes: an fMRI study. Brain Res. 1534, 46–54. doi: 10.1016/j.brainres.2013.08.041

Hayes, S. M., Nadel, L., and Ryan, L. (2007). The effect of scene context on episodic object recognition: parahippocampal cortex mediates memory encoding and retrieval success. Hippocampus 9, 19–22. doi: 10.1002/hipo.20319

Heinonen, J., Numminen, J., Hlushchuk, Y., Antell, H., Taatila, V., and Suomala, J. (2016). Default mode and executive networks areas: association with the serial order in divergent thinking. PLoS ONE 11:e0162234. doi: 10.1371/journal.pone.0162234

Horner, A. J., Bisby, J. A., Bush, D., Lin, W.-J., and Burgess, N. (2015). Evidence for holistic episodic recollection via hippocampal pattern completion. Nat. Commun. 6:7462. doi: 10.1038/ncomms8462

Isen, A. M., Daubman, K. A., and Nowicki, G. P. (1987). Positive affect facilitates creative problem solving. J. Pers. Soc. Psychol. 52, 1122–1131. doi: 10.1037/0022-3514.52.6.1122

Jauk, E., Benedek, M., and Neubauer, A. C. (2012). Tackling creativity at its roots: evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. Int. J. Psychophysiol. 84, 219–225. doi: 10.1016/j.ijpsycho.2012.02.012

Kaplan, C. A., and Simon, H. A. (1990). In search of insight. Cogn. Psychol. 22, 374–419.

Kaufman, S. B. (2011). “Intelligence and the cognitive unconscious,” in The Cambridge Handbook of Intelligence (New York, NY: Cambridge University Press), 442–467.

Kounios, J., and Beeman, M. (2014). The cognitive neuroscience of insight. Annu. Rev. Psychol. 65, 71–93. doi: 10.1146/annurev-psych-010213-115154

Kumaran, D., Hassabis, D., and McClelland, J. L. (2016). What learning systems do intelligent agents need? complementary learning systems theory updated. Trends Cogn. Sci. 20, 512–534. doi: 10.1016/j.tics.2016.05.004

Loth, S., Jettka, K., Giuliani, M., and De Ruiter, J. P. (2015). Ghost-in-the-machine reveals human social signals for human–robot interaction. Front. Psychol. 6:1641. doi: 10.3389/fpsyg.2015.01641

Lovell, J., and Kluger, J. (2006). Apollo 13 . New York, NY: Houghton Mifflin Harcourt.

Luo, J., Li, W., Qiu, J., Wei, D., Liu, Y., and Zhang, Q. (2013). Neural basis of scientific innovation induced by heuristic prototype. PLoS ONE 8:e49231. doi: 10.1371/journal.pone.0049231

MacGregor, J. N., Ormerod, T. C., and Chronicle, E. P. (2001). Information processing and insight: a process model of performance on the nine-dot and related problems. J. Exp. Psychol. Learn. Mem. Cogn. 27:176. doi: 10.1037/0278-7393.27.1.176

Maier, N. R. (1930). Reasoning in humans. i. on direction. J. Comp. Psychol. 10:115.

Mason, R. A., and Just, M. A. (2013). Neural representations of physics concepts. Psychol. Sci. 27, 904–913. doi: 10.1177/0956797616641941

Mehta, R., and Zhu, R. J. (2009). Blue or red? exploring the effect of color on cognitive task performances. Science 323, 1226–1229. doi: 10.1126/science.1169144

Mendelsohn, G. (1976). Associative and attentional processes in creative performance. J. Pers. 44, 341–369.

Menon, V. (2015). “Salience network,” in Brain Mapping: An Encyclopedic Reference, Vol. 2 , ed A. W. Toga (London: Academic Press; Elsevier), 597–611.

Metcalfe, J. (1986). Premonitions of insight predict impending error. J. Exp. Psychol. Learn. Mem. Cogn. 12, 623.

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., and Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100. doi: 10.1006/cogp.1999.0734

Newman, S. D., and Green, S. R. (2015). Complex problem solving. Brain Mapp. 3, 543–549. doi: 10.1016/B978-0-12-397025-1.00282-7

CrossRef Full Text

Ohlsson, S. (1992). Information-processing explanations of insight and related phenomena. Adv. Psychol. Think. 1, 1–44.

Öllinger, M., Fedor, A., Brodt, S., and Szathmáry, E. (2017). Insight into the ten-penny problem: guiding search by constraints and maximization. Psychol. Res. 81, 925–938. doi: 10.1007/s00426-016-0800-3

Öllinger, M., Jones, G., and Knoblich, G. (2014). The dynamics of search, impasse, and representational change provide a coherent explanation of difficulty in the nine-dot problem. Psychol. Res. 78, 266–275. doi: 10.1007/s00426-013-0494-8

Operskalski, J. T., and Barbey, A. K. (2016). “Cognitive neuroscience of causal reasoning,” in Oxford Handbook of Causal Reasoning , ed M. R. Waldmann (New York, NY: Oxford University Press), 217–242.

Quilodran, R., Rothé, M., and Procyk, E. (2008). Behavioral shifts and action valuation in the anterior cingulate cortex. Neuron 57, 314–325. doi: 10.1016/j.neuron.2007.11.031

Ritter, S. M., and Dijksterhuis, A. (2014). Creativity the unconscious foundations of the incubation period. Front. Hum. Neurosci. 8:215. doi: 10.3389/fnhum.2014.00215

Robertson, S. (2016). Problem Solving: Perspectives from Cognition and Neuroscience . New York, NY: Psychology Press.

Salvi, C., and Bowden, E. M. (2016). Looking for creativity: where do we look when we look for new ideas? Front. Psychol. 7:161. doi: 10.3389/fpsyg.2016.00161

Sawyer, K. (2011). The cognitive neuroscience of creativity: a critical review. Creat. Res. J. 23, 137–154. doi: 10.1080/10400419.2011.571191

Scimeca, J. M., and Badre, D. (2012). Striatal contributions to declarative memory retrieval Jason. Neuron 75, 380–392. doi: 10.1016/j.neuron.2012.07.014

Simone Sandkühler, J. B. (2008). Deconstructing insight: EEG correlates of insightful problem solving. PLoS ONE 3:e1459. doi: 10.1371/journal.pone.0001459

Simons, D. J., and Chabris, C. F. (1999). Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception 28, 1059–1074.

PubMed Abstract | Google Scholar

Sowden, P. T., Pringle, A., and Gabora, L. (2015). The shifting sands of creative thinking: connections to dual-process theory. Think. Reason. 21, 40–60. doi: 10.1080/13546783.2014.885464

Sprugnoli, G., Rossi, S., Emmendorfer, A., Rossi, A., Liew, S.-L., Tatti, E., et al. (2017). Neural correlates of Eureka moment. Intelligence 62, 99–118. doi: 10.1016/j.intell.2017.03.004

Steidle, A., and Werth, L. (2013). Freedom from constraints: darkness and dim illumination promote creativity. J. Environ. Psychol. 35, 67–80. doi: 10.1016/j.jenvp.2013.05.003

Stocco, A., Lebiere, C., O'Reilly, R. C., and Anderson, J. R. (2012). Distinct contributions of the caudate nucleus, rostral prefrontal cortex, and parietal cortex to the execution of instructed tasks. Cogn. Affect. Behav. Neurosci. 12, 611–628. doi: 10.3758/s13415-012-0117-7

Summerfield, J. J., Hassabis, D., and Maguire, E. A. (2010). Differential engagement of brain regions within a corenetwork during scene construction. Neuropsychologia 48, 1501–1509. doi: 10.1016/j.neuropsychologia.2010.01.022

Tang, Y.-Y., Rothbart, M. K., and Posner, M. I. (2012). Neural Correlates of stablishing, maintaining and switching brain states. Trends Cogn. Sci. 16, 330–337. doi: 10.1016/j.tics.2012.05.001

Team, M. E. (1970). Mission Operations Report apollo 13 .

Thakral, P. P., Madore, K. P., and Schacter, D. L. (2017). A role for the left angular gyrus in episodic simulation and memory. J. Neurosci. 37, 8142–8149. doi: 10.1523/JNEUROSCI.1319-17.2017

Thomas, L. E., and Lleras, A. (2009). Swinging into thought: directed movement guides insight in problem solving. Psychon. Bull. Rev. 16, 719–723. doi: 10.3758/PBR.16.4.719

Vohs, K. D., Redden, J. P., and Rahinel, R. (2013). Physical order produces healthy choices, generosity, and conventionality, whereas disorder produces creativity. Psychol. Sci. 24, 1860–1867. doi: 10.1177/0956797613480186

Wegbreit, E., Suzuki, S., Grabowecky, M., Kounios, J., and Beeman, M. (2012). Visual attention modulates insight versus analytic solving of verbal problems. J. Probl. Solv. 144, 724–732. doi: 10.7771/1932-6246.1127

Yang, W., Dietrich, A., Liu, P., Ming, D., Jin, Y., Nusbaum, H. C., et al. (2016). Prototypes are key heuristic information in insight problem solving. Creat. Res. J. 28, 67–77. doi: 10.1080/10400419.2016.1125274

Yoruk, S., and Runco, M. A. (2014). Neuroscience of divergent thinking. Activ. Nervosa Superior 56, 1–16. doi: 10.1007/BF03379602

Zabelina, D., Saporta, A., and Beeman, M. (2016). Flexible or leaky attention in creative people? Distinct patterns of attention for different types of creative thinking. Mem Cognit . 44, 488–498. doi: 10.3758/s13421-015-0569-4

Keywords: creativity, problem-solving, insight, attention network, salience network, default mode network

Citation: Sarathy V (2018) Real World Problem-Solving. Front. Hum. Neurosci . 12:261. doi: 10.3389/fnhum.2018.00261

Received: 03 August 2017; Accepted: 06 June 2018; Published: 26 June 2018.

Reviewed by:

Copyright © 2018 Sarathy. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Vasanth Sarathy, [email protected]

Therapy in a Nutshell

Solving Actual Problems (Instead of Just Coping Skills) – Break the Anxiety Cycle 26/30

  • Emma McAdam, LMFT
  • May 11, 2024

Share This Post

In this post, you’ll learn more about solving actual problems instead of just coping skills . 

I recently got an email from a woman who said that she was diagnosed with severe anxiety and depression. She tried yoga, mindfulness, self-compassion, grounding skills , and some DBT skills. She saw doctors, she tried multiple medications, but still, she had so much anxiety it made it hard to function in life. 

But, she said, something did work. Leaving her abusive husband. 

You see, the problem wasn’t the anxiety in her head, the problem was the situation. She was married to an abusive man. He was physically abusive, emotionally abusive and financially abusive for 17 years. 

In that situation, you could do all the therapy in the world, but the anxiety probably wouldn’t go away, because Anxiety wasn’t the problem, anxiety was a messenger. And in this situation, it was delivering a truthful message- “you aren’t safe”. And no matter how much coping she could do, how much yoga and positive thinking, it wasn’t going to change the situation for her. She said that when she finally left the abusive relationship all of her symptoms greatly decreased. She continues to get support from her family, friends and professionals, but she doesn’t experience severe anxiety and depression any more. 

Sometimes the best treatment for anxiety isn’t psychological. It’s not mindfulness or grounding skills, it’s actually taking action to solve a problem . 

In this video we’re going to explore how to manage anxiety by solving problems instead of just cope with them. 

And in this section of the course, we’re going to talk about how to listen to anxiety as a messenger , how to take action that gets to the root of the issue, instead of just trying to change how we feel- with the surprising outcome being that it often changes how we feel. 

Anxiety Is A Messenger

OK, remember the function of anxiety? It’s our body’s alerting system, it’s like a smoke alarm. It sometimes goes off when there’s no danger.  But when there is a real danger, when there is actually a fire, it doesn’t do any good to just keep silencing the alarm, you need to put the fire out or leave the house, and make plans for fire prevention in the future. Anxiety is a messenger. 

So one of the biggest problems is that people put all their energy into making their anxiety go away or making their stress go away, but the emotion was never the problem. Avoiding the emotion, or avoiding the problem is usually the problem 

So the question you need to ask is: Is there a real problem? What is Anxiety trying to tell me? Am I actually in danger? Or am I feeling in danger when I’m actually safe? If it’s the latter- the previous two sections of the course- changing how we think and turning on the parasympathetic response are a good way to deal with it, but when there’s an actual problem to be solved, facing the problem is the absolute best solution. 

One of the biggest problems with popular stress management advice is that it’s all focused on reducing the stress response, on relaxation. Instead of actually addressing the stressor. 

  • If I’m worried about finances , maybe that’s because I need to create a budget and a long term financial plan, not just practice some breathing techniques. 
  • Stressed about your email inbox ? Don’t just do a meditation- set some boundaries- delegate, unsubscribe, determine which emails are essential to your role and which ones aren’t, take your work email off your phone or stop checking it at night. 
  • Does that one person drive you crazy? Instead of just using a relaxation technique, Perhaps you need to learn a new skill- be more assertive, set better boundaries, learn to communicate better or deal with conflict appropriately. The anxiety around that relationship might be a sign that something needs to change, and you may need to level up. 

These may sound like trite solutions, I understand that the lasting solution might be more complicated, but the idea is- you can’t just manage anxiety by managing your response, we have to look at the stressors, not by avoiding them, but by facing and resolving them. 

And I want to emphasize this, resolving problems is not the same as avoiding them. You can’t just cut people off – and use that as your only tool, you’ll end up very lonely. You can’t just avoid everything that makes you anxious. Because 1- that shrinks your life down and 2- it feeds the anxiety cycle. Avoidance increases anxiety.

So if anxiety is a messenger, and sometimes anxiety is trying to tell you that something is wrong, what do we do about that? We need to face problems and resolve them. Let’s talk about how to solve problems like a therapist. 

Step One. Write down the problem to clarify it.

Nick Wignall says “Never worry in your head.”

You might be amazed at how much good that simple step actually does. Be specific and concrete. Don’t say “Work is too stressful” say “I get stressed out because we have so many projects at once and I don’t know which ones I should focus on so I feel like I’m never doing good enough because there’s always more to do”. By being more specific, writing down each project, exploring that feeling of “Never good enough” you’ll give yourself something tangible to work on. 

Step Two. Visualize what a positive outcome would look like. Be solution oriented

What would it look like when that problem is solved? 

  • I would be clear on my responsibilities at work and excuse myself from email conversations that don’t apply to me. I would have clear set- hours each week when I do and don’t answer emails. 
  • I would know how much money I can spend, I would have a backup fund, I would be out of debt. I wouldn’t feel worried about money all the time because I would feel confident that I knew what to do and was doing it. 
  • I would communicate more directly with my mother in law. I would tell her what I do and don’t like inside my own home. I would ask her to call before showing up. 

And you’ll notice that I focus on what you can change, not what you can’t change. We don’t waste time imagining that we didn’t need to work or that your mother in law magically transformed overnight, we focus on the steps we can take. 

Three: Overcoming mental blocks

I bet when I brought up these solutions, you had an automatic resistance to one of these answers- you thought “That’s not realistic!” or “That will never work” so this is the third thing therapists do when they solve problems- we know how to identify and work around mental blocks. 

Most of us have a default way of dealing with obstacles. We all have a hammer, but when all you have is a hammer, every problem looks like a nail, and suddenly you’re surprised when a hammer won’t drive a bolt. So let’s identify your mental blocks? What’s your default response to problems?   

The biggest challenges I see in therapy are:

  • People don’t have the skills to solve a problem (ie they don’t know how to have crucial conversations, they are too scared to speak up, they don’t know how to set boundaries)
  • They are too scared to do what they need to do, they’re letting their emotions make their decisions, instead of their values. We’re scared of change , our nervous system prefers a familiar hell to an unfamiliar heaven.
  • They don’t know what they really want – their values.
  • They need support organizing a big complex emotional problem .  They need someone to help them get clarity- essentially a sounding board, with a whiteboard. I think one of the most effective skills is learning to break a problem down into small steps. We may know how to do this at work, but few people know how to do this with emotional or mental problems. 

And here are some other common mental blocks. 

  • We can’t see the real problem- we’re lacking perspective
  • Do you avoid, ignore or procrastinate when dealing with difficult issues in their life?
  • Do you wait until things are in crisis before addressing them?
  • Do you “Just think positive ” to suppress or control your feelings and just “Hope it all blows over”??
  • Maybe you revert to helplessness – Maybe you think “but my boss will never change” or “I’m just a bad problem solver, I’ll never figure this out” or “This problem is impossible to solve” your thoughts are justifying you in your helplessness, they aren’t true, they’re comforting thoughts that you choose to believe because they excuse you from effort.

Do you blame everyone else for your problems? Well, my boss is just a narcissist, he’ll never change. Or ‘the economy’ forces me to be poor.

Four: Ask for help, get an outside perspective.

A lot of the time, we don’t even realize that our habitual mental blocks are what’s stopping us from solving a problem, because we can rarely see our own blindspots. So this is a great time to get some support and another perspective. An honest friend, helpful family member or therapist can help you get a new perspective on the problem and break through your mental blocks. 

Get other people involved- if an individual comes into therapy complaining about their spouse/child/parent I try to see if they’ll both come to therapy. So much of the time, the people we are struggling with are the exact same people we are unwilling to have a real conversation with.

Five: Use a growth mindset.

Instead see problems as an opportunity to grow and learn new skills, to level up. If your problem is not getting along with coworkers, the opportunity might be that it is a chance to improve your communication skills and possibly resolve some arguments with your coworkers.

  • What is the situation? (e.g. my boss gives me too much work)
  • What would I like the situation to be? (e.g. I would like my boss to give me less work)
  • What is the obstacle that is keeping me from my desired situation? (e.g. I’m unsure how to talk to my boss about my work obligations)

If you take every problem and ask- what is a skill that I could learn from this situation, you’ll almost always find something that will help you improve as a human being, make your life better. 

I need to learn how to have better self-control with my budget, I need to learn the skill of assertiveness, I need to learn how to say no to people or how to clarify which tasks take priority. When you look at a problem as an opportunity to learn, you’ll feel a sense of hopefulness. 

Six: Get creative

Be honest, we get pretty lazy in solving problems, we like to try the same thing that worked in the past. If the only tool you have is a hammer, every problem seems like a nail. You may think that a hammer is your only option, but there’s actually thousands of tools, some of which you’ve probably never heard of. So this is where it can be helpful to Brainstorm solutions. Make a list of at least 10 options, even “ridiculous” ways, that you could potentially solve a problem. Write down any possibilities. don’t judge any of them, get a bunch of variety. Let’s try this with the overbearing mother-in-law

  • Cut her off entirely
  • Have a dance party with her
  • Print out a list of rules for your home and read them with her
  • Have a conversation with your husband and ask him to talk to her
  • Never talk to her again (I didn’t say these were good options) 
  • Move out of the country
  • Take a class on assertiveness
  • Read a book or 10 articles on mother-in-laws
  • Ask your friends how they would proactively handle the situation
  • Have a really difficult conversation, make a list of talking points and sit down with her and your husband and really do it. 
  • Send her a passive aggressive text
  • Send her a carefully thought-out email
  • Read a book on setting boundaries and set a boundary with your MIL (You may not see the kids if you undermine my rules at my house) 
  • Find a way to be funny and crack jokes with her
  • Do something she really likes, bond with her
  • Schedule in her specific time, let her know that she’s wanted- but you decide when
  • Give her more responsibilities- include her in plans and ask her to contribute- make her feel wanted and loved-
  • Ask her to go to therapy with you, or mediation, or the climbing gym
  • Positive reinforcement- tell her what you really like when she does it. 

I mean, I get it, some of these are really bad ideas. But one of them might be helpful. And if nothing else, you wouldn’t be stuck doing the same thing all the time and feeling crappy about the situation. You’d be learning something with each experiment. 

Seven: Select one to act on. 

Do it! Stop overthinking it. But actually. Most people are afraid that they might have picked the wrong solution, or that perhaps there is a better solution if they just think about the problem more. This is not helpful thinking: it is better to act than to do nothing at all.

Sometimes the attempts to fix a problem don’t work- you just learned something- this is forward progress, this is iteration. Don’t be a perfectionist. If you really want to overcome decision paralysis you could try this:

Rank the possible solutions in order, from best to worst. Rank each on “how likely is it for this approach to work?” Pick the most reasonable plan and put the plan into action. If it doesn’t work, go to the next best solution and try that one. Continue to try until you solve the problem

So, there’s my approach to working through problems, this is how I solve problems as a therapist. 

  • I help people get really clear on the problem 
  • We visualize what they do want
  • We work through mental blocks
  • We get support
  • We see every problem as an opportunity to learn
  • We get creative
  • We just try stuff, one thing at a time and learn from each experiment. 

So often, with anxiety, anxiety isn’t the problem. When we shift our attention away from a hyperfocus on our feelings and instead focus on working toward the life we dream of, we can solve problems and actually resolve the root of the anxiety. 

K, I hope this is helpful, in the next video we’ll talk about how to face our fears using exposure therapy. 

Click below to learn more about the course, Break the Anxiety Cycle in 30 Days. 

real life problems using problem solving

Learn more about the full course here.

More to explore.

real life problems using problem solving

In this post, you’ll learn more about solving actual problems instead of just coping skills.  I recently got an email from a woman who said

real life problems using problem solving

How Menopause Impacts Anxiety, Depression and Panic Attacks 

In this post, you’ll learn how menopause impacts anxiety, depression and panic attacks.  Menopause can have a huge impact on women’s mental health. Let me

real life problems using problem solving

Breathing Exercise for Anxiety: Calming Anxiety in the Nervous System Using the VAGAL BRAKE 

In this video, you can explore an effective breathing exercise for anxiety. You’ll learn a deep breathing technique to combat anxiety. OK, so anxiety is

real life problems using problem solving

Mr. Beast Accidentally Teaches a Depression Skill: Behavioral Activation

In this post, Emma talks about about behavioral activation. So I was watching Mr. Beast with my kids the other day and he made this

Get Weekly Tips Sent Directly to Your Inbox

web analytics

Business Inquiry

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

real life problems using problem solving

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

What Is Creative Problem-Solving & Why Is It Important?

Business team using creative problem-solving

  • 01 Feb 2022

One of the biggest hindrances to innovation is complacency—it can be more comfortable to do what you know than venture into the unknown. Business leaders can overcome this barrier by mobilizing creative team members and providing space to innovate.

There are several tools you can use to encourage creativity in the workplace. Creative problem-solving is one of them, which facilitates the development of innovative solutions to difficult problems.

Here’s an overview of creative problem-solving and why it’s important in business.

Access your free e-book today.

What Is Creative Problem-Solving?

Research is necessary when solving a problem. But there are situations where a problem’s specific cause is difficult to pinpoint. This can occur when there’s not enough time to narrow down the problem’s source or there are differing opinions about its root cause.

In such cases, you can use creative problem-solving , which allows you to explore potential solutions regardless of whether a problem has been defined.

Creative problem-solving is less structured than other innovation processes and encourages exploring open-ended solutions. It also focuses on developing new perspectives and fostering creativity in the workplace . Its benefits include:

  • Finding creative solutions to complex problems : User research can insufficiently illustrate a situation’s complexity. While other innovation processes rely on this information, creative problem-solving can yield solutions without it.
  • Adapting to change : Business is constantly changing, and business leaders need to adapt. Creative problem-solving helps overcome unforeseen challenges and find solutions to unconventional problems.
  • Fueling innovation and growth : In addition to solutions, creative problem-solving can spark innovative ideas that drive company growth. These ideas can lead to new product lines, services, or a modified operations structure that improves efficiency.

Design Thinking and Innovation | Uncover creative solutions to your business problems | Learn More

Creative problem-solving is traditionally based on the following key principles :

1. Balance Divergent and Convergent Thinking

Creative problem-solving uses two primary tools to find solutions: divergence and convergence. Divergence generates ideas in response to a problem, while convergence narrows them down to a shortlist. It balances these two practices and turns ideas into concrete solutions.

2. Reframe Problems as Questions

By framing problems as questions, you shift from focusing on obstacles to solutions. This provides the freedom to brainstorm potential ideas.

3. Defer Judgment of Ideas

When brainstorming, it can be natural to reject or accept ideas right away. Yet, immediate judgments interfere with the idea generation process. Even ideas that seem implausible can turn into outstanding innovations upon further exploration and development.

4. Focus on "Yes, And" Instead of "No, But"

Using negative words like "no" discourages creative thinking. Instead, use positive language to build and maintain an environment that fosters the development of creative and innovative ideas.

Creative Problem-Solving and Design Thinking

Whereas creative problem-solving facilitates developing innovative ideas through a less structured workflow, design thinking takes a far more organized approach.

Design thinking is a human-centered, solutions-based process that fosters the ideation and development of solutions. In the online course Design Thinking and Innovation , Harvard Business School Dean Srikant Datar leverages a four-phase framework to explain design thinking.

The four stages are:

The four stages of design thinking: clarify, ideate, develop, and implement

  • Clarify: The clarification stage allows you to empathize with the user and identify problems. Observations and insights are informed by thorough research. Findings are then reframed as problem statements or questions.
  • Ideate: Ideation is the process of coming up with innovative ideas. The divergence of ideas involved with creative problem-solving is a major focus.
  • Develop: In the development stage, ideas evolve into experiments and tests. Ideas converge and are explored through prototyping and open critique.
  • Implement: Implementation involves continuing to test and experiment to refine the solution and encourage its adoption.

Creative problem-solving primarily operates in the ideate phase of design thinking but can be applied to others. This is because design thinking is an iterative process that moves between the stages as ideas are generated and pursued. This is normal and encouraged, as innovation requires exploring multiple ideas.

Creative Problem-Solving Tools

While there are many useful tools in the creative problem-solving process, here are three you should know:

Creating a Problem Story

One way to innovate is by creating a story about a problem to understand how it affects users and what solutions best fit their needs. Here are the steps you need to take to use this tool properly.

1. Identify a UDP

Create a problem story to identify the undesired phenomena (UDP). For example, consider a company that produces printers that overheat. In this case, the UDP is "our printers overheat."

2. Move Forward in Time

To move forward in time, ask: “Why is this a problem?” For example, minor damage could be one result of the machines overheating. In more extreme cases, printers may catch fire. Don't be afraid to create multiple problem stories if you think of more than one UDP.

3. Move Backward in Time

To move backward in time, ask: “What caused this UDP?” If you can't identify the root problem, think about what typically causes the UDP to occur. For the overheating printers, overuse could be a cause.

Following the three-step framework above helps illustrate a clear problem story:

  • The printer is overused.
  • The printer overheats.
  • The printer breaks down.

You can extend the problem story in either direction if you think of additional cause-and-effect relationships.

4. Break the Chains

By this point, you’ll have multiple UDP storylines. Take two that are similar and focus on breaking the chains connecting them. This can be accomplished through inversion or neutralization.

  • Inversion: Inversion changes the relationship between two UDPs so the cause is the same but the effect is the opposite. For example, if the UDP is "the more X happens, the more likely Y is to happen," inversion changes the equation to "the more X happens, the less likely Y is to happen." Using the printer example, inversion would consider: "What if the more a printer is used, the less likely it’s going to overheat?" Innovation requires an open mind. Just because a solution initially seems unlikely doesn't mean it can't be pursued further or spark additional ideas.
  • Neutralization: Neutralization completely eliminates the cause-and-effect relationship between X and Y. This changes the above equation to "the more or less X happens has no effect on Y." In the case of the printers, neutralization would rephrase the relationship to "the more or less a printer is used has no effect on whether it overheats."

Even if creating a problem story doesn't provide a solution, it can offer useful context to users’ problems and additional ideas to be explored. Given that divergence is one of the fundamental practices of creative problem-solving, it’s a good idea to incorporate it into each tool you use.

Brainstorming

Brainstorming is a tool that can be highly effective when guided by the iterative qualities of the design thinking process. It involves openly discussing and debating ideas and topics in a group setting. This facilitates idea generation and exploration as different team members consider the same concept from multiple perspectives.

Hosting brainstorming sessions can result in problems, such as groupthink or social loafing. To combat this, leverage a three-step brainstorming method involving divergence and convergence :

  • Have each group member come up with as many ideas as possible and write them down to ensure the brainstorming session is productive.
  • Continue the divergence of ideas by collectively sharing and exploring each idea as a group. The goal is to create a setting where new ideas are inspired by open discussion.
  • Begin the convergence of ideas by narrowing them down to a few explorable options. There’s no "right number of ideas." Don't be afraid to consider exploring all of them, as long as you have the resources to do so.

Alternate Worlds

The alternate worlds tool is an empathetic approach to creative problem-solving. It encourages you to consider how someone in another world would approach your situation.

For example, if you’re concerned that the printers you produce overheat and catch fire, consider how a different industry would approach the problem. How would an automotive expert solve it? How would a firefighter?

Be creative as you consider and research alternate worlds. The purpose is not to nail down a solution right away but to continue the ideation process through diverging and exploring ideas.

Which HBS Online Entrepreneurship and Innovation Course is Right for You? | Download Your Free Flowchart

Continue Developing Your Skills

Whether you’re an entrepreneur, marketer, or business leader, learning the ropes of design thinking can be an effective way to build your skills and foster creativity and innovation in any setting.

If you're ready to develop your design thinking and creative problem-solving skills, explore Design Thinking and Innovation , one of our online entrepreneurship and innovation courses. If you aren't sure which course is the right fit, download our free course flowchart to determine which best aligns with your goals.

real life problems using problem solving

About the Author

  • Our Mission

5 Strategies for Aligning PBL to Real-World Problem-Solving

The closer project-based learning comes to the messy, complicated problems of our world today, the more students benefit.

Student paint an outdoor wall mural

In March 2020, I faced a number of challenges as a school superintendent. Earlier in the month, I had read about a virus that was sweeping the world, and while American schools had not shuttered, the challenge seemed both eminent and far off.

Over the next several weeks, months, and years, I, and every other leader, faced a series of problems, including closing schools, redesigning in-person instruction, developing virtual learning programs, and working in partnership with public health organizations.

Interestingly, I learned that authentic, real-world problem-solving has a few key features:

  • I was never given one problem but was presented with a number of problem situations in which I and my team needed to derive key questions that drove our decision-making.
  • The problems we faced continued to change, requiring us to go back and learn new content, prepare for multiple contingencies, and communicate up-to-date information and our plans for multiple scenarios.

Contemporary learning frameworks and related methodologies can learn a lot from what we are experiencing with Covid-19. Applying the two features above to project-based learning (PBL) by using a more fluid rather than static, linear model may best prepare students for what the future of learning and work actually looks and feels like.

5 Strategies to Make PBL More Authentic

1: Students derive the driving question from multiple contexts or multiple issues within a context. In one third-grade class, students read the book We Are Water Protectors and discuss the challenges Native Americans face with the introduction of the Keystone pipeline. Next, the teacher presents two problems:

  • The extraction of cobalt to build electric cars and the negative impact on rural African communities
  • The development of wind farms and the decline of the golden eagle

Students then work together in this strategy to determine the key challenges facing Indigenous people and native species. Next, they develop core questions they want to answer and determine what they need to learn to answer those questions.

2: Students face changes in the problem(s) they are contemplating. Problem environments are fluid, not static. In an AP economics class, students are analyzing supply and demand of a new video game system and preparing to advise the company on what it should do to improve profits.

Every day at the beginning of class, their teacher asks them to scan reliable news sources to report any changes to supply chains, governmental restrictions such as embargoes, or any other factor that would influence their solutions to the client.

The students found out that there were major supply chain issues with essential parts needed to create the video game console. Moreover, some of the ships carrying current consoles are sitting in Asia awaiting passage to the United States because of a political dispute.

The students worked together in small groups and discussed the key factors that were impacting the company they were advising, along with what the students needed to learn and understand before meeting with the client, and finally developed multiple recommendations based on multiple contingencies.

The general strategy looks like this:

  • Students learn about changes to the problem content (this could be via reading multiple news reports, listening to daily podcasts, or engaging with actual people in the field).
  • In small groups, students share their key understanding of the changes and how that impacts their current understanding and strategy.
  • Students determine key “need-to-knows” they have and work with the teacher and peers to gain competencies.
  • Students plan for multiple contingencies and tentative solutions.

3: Presentations are short bursts of what students think and propose during the project with dollops of feedback to make adjustments. Seventh-grade students are sending in their persuasive essay on one of a number of topics (e.g., addressing the homelessness crisis, engaging with politicians on critical race theory).

As they are drafting their papers, students are randomly assigned to present their ideas and current drafts to other students and receive feedback on their writing as well as their persuasiveness to opposing views.

The strategy looks like this:

  • Students have a mid-lesson stop in which they have 5 minutes to prepare to present their current work.
  • Students conduct a feedback protocol (tuning or critical friends) in which one or two students receive feedback.
  • Students who received feedback share what they have changed in a reflective journal or exit ticket.
  • This process is repeated daily.

4: Authentic audiences engage with students throughout the project rather than just at the beginning and/or end. In a fifth-grade art class, students have been commissioned by the local town council to paint murals that represent voices that are largely marginalized in their community. During their work, students meet with a number of artists and community members who share their stories, offer feedback, and address questions.

In this strategy, students engage with people outside the classroom at the beginning, middle, and end of a project to hear stories that relate to the problem context, receive guidance on the technical aspects of the content they are learning, and ask questions.

5: Groups work together in small bursts of time to solve problems. Students in Algebra II are working with logarithms to solve a number of problems related to stomach acid, algae-filled hot tubs, soil composition, and buffalo teeth.

While each student may be solving a different problem, students form small groups to share their learning, evaluate the connections between each context, and give each other feedback. After approximately two weeks of solving complex math tasks, the teacher presents three new problems and forms new groups for students to solve the problem in one or two days.

In this strategy, students form temporary groups of two to three to solve a new challenge and work together for one to two days without forming task-specific roles.

  • Grades 6-12
  • School Leaders

Free end-of-year letter templates to your students 📝!

26 Snappy Answers to the Question “When Are We Ever Going to Use This Math in Real Life?”

Next time they ask, you’ll be ready.

real life problems using problem solving

As a math teacher, how many times have you heard frustrated students ask, “When are we ever going to use this math in real life!?” We know, it’s maddening! Especially for those of us who love math so much we’ve devoted our lives to sharing it with others.

It may very well be true that students won’t use some of the more abstract mathematical concepts they learn in school unless they choose to work in specific fields. But the underlying skills they develop in math class—like taking risks, thinking logically and solving problems—will last a lifetime and help them solve work-related and real-world problems.

Here are 26 images and accompanying comebacks to share with your students to get them thinking about all the different and unexpected ways they might use math in their futures!

1. If you go bungee jumping, you might want to know a thing or two about trajectories.

https://giphy.com/gifs/funny-fail-5OuUiP0we57b2

Source: GIPHY

2. When you invest your money, you’ll do better if you understand concepts such as interest rates, risk vs. reward, and probability.

3. once you’re a driver, you’ll need to be able to calculate things like reaction time and stopping distance., 4. in case of a zombie apocalypse, you’re going to want to explore geometric progressions, interpret data and make predictions in order to stay human..

Trigger an outbreak of learning and infectious fun in your classroom with this Zombie Apocalypse activity from TI’s STEM Behind Hollywood series.

5. Before you tackle that home wallpaper project, you’ll need to calculate just how much wall paper glue you need per square foot.

6. when you buy your first house and apply for a 30-year mortgage, you may be shocked by the reality of what interest compounded over 30 years looks like., 7. to be a responsible pet owner, you’ll need to calculate how much hamster food to have on hand., 8. even if you’re just an armchair athlete, you can’t believe the math involved in kicking field goals.

Check out this Field Goal for the Win activity that encourages students to model, explore and explain the dynamics of kicking a football through the uprights.

9. When you double a recipe, you’re going to need to understand ratios so your dinner guests don’t look like this.

10. before you take that family road trip , you’re going to want to calculate time and distance., 11. before you go candy shopping, you’re going to have to figure out x trick or treaters times x pieces of candy equals…, 12. if  you grow up to be an ice cream scientist, you’re going to have to understand the effect of temperature and pressure at the molecular level..

https://giphy.com/gifs/ice-lick-cream-3Z1kRYmLRQm5y

Explore states of matter and the processes that change cow milk into a cone of delicious decadence with this Ice Cream, Cool Science activity .

13. Once you have little ones, you’ll need to know how many diapers to buy for the month.

14. because what if it’s your turn to organize the annual ping pong tournament, and there are 7 players at a club with 4 tables, where each player plays against each other player, 15. when dressing for the day, you might want to consider the percent likelihood of rain., 16. if you go into medical research, you’re going to have to know how to solve equations..

Learn more about inspiring careers that improve lives with STEM Behind Health , a series of free activities from TI.

17. Understanding percentages will help you get the best deal at the mall. For example, how much will something cost with 40% off? What about once the 8% tax is added? What if it’s advertised as half-off?

https://giphy.com/gifs/blue-kawaii-pink-5aplc3D2G0IrC

18. Budgeting for vacation will require figuring out how many hours at your pay rate you’ll have to work to afford the trip you want.

19. when you volunteer to host the company holiday party, you’ll need to figure out how much food to get., 20. if you grow up to be a super villain, you’re going to need to use math to determine the most effective way to slow down the superhero and keep him from saving the day..

Put your students in the role of an arch-villain’s minions with Science Friction, a STEM Behind Hollywood activity .

21. You’ll definitely want to understand how to budget your money so you don’t look like this at the grocery checkout.

22. if you don’t work the numbers out in advance, you might at some point regret choosing that expensive out-of-state college., 23. before taking on a building project, remember the old saying—measure twice, cut once., 24. if have aspirations of being a fashion designer, you’ll have to understand geometry in order to make the perfect twirling skirt.

https://giphy.com/gifs/loop-bunny-ballet-yarFJggnH24da

Geometry and fashion design intersect in this STEM Behind Cool Careers activity .

25. Everyone loves a good bargain! Figuring out the best deal is not only fun, it’s smart!

26. if you can’t manage calculations, running the numbers at the car dealership might leave you feeling like this:, you might also like.

Examples of math strategies such as playing addition tic tac toe and emphasizing hands-on learning with manipulatives like dice, play money, dominoes and base ten blocks.

21 Essential Strategies in Teaching Math

Even veteran teachers need to read these. Continue Reading

Copyright © 2024. All rights reserved. 5335 Gate Parkway, Jacksonville, FL 32256

MBTP Logo

5 Real Life Algebra Problems That You Solve Everyday

Algebra has a reputation for not being very useful in daily life. In fact, in my experience as a high school math teacher, the complaint that I get the most often is that we don’t spend enough time solving real life algebra problems.

You might be surprised to hear that I understand the frustration that my students experience. Unless we are solving real life algebra problems related to money in some way, algebra can feel very “artificial” or disconnected from real life.

My goal here is to walk you through 5 real life algebra problems that will give you a whole new appreciation for the application of algebra to the real-world. I am excited to help you see how many algebraic equations and algebraic concepts are applicable beyond just algebra word problems in your math class!

What is an Example of Algebra in Real Life?

While it is often seen as an abstract branch of mathematics, there are many real-life applications of algebra in everyday life. Now, it is unlikely that you will be solving quadratic equations while walking your dog, or solving real-world problems with linear equations while you play video games. But you can see examples of real life algebra problems all around you!

A simple example is when you want to quickly determine the total cost of a product including taxes, or the total cost after a discount from the original price. Knowing the total amount of money something will cost is a real-life scenario that everyone can relate to!

Depending on your chosen career path, you may see the use of algebra more often than others (I know I see it a lot in my daily life as a math teacher…!).

For example, if you are a business owner, you may use algebra to determine the number of labor hours to spread amongst your staff, or the lowest price you can sell your product for to break even.

For more uses of algebra, check out my list of 20  examples of algebra in real life !

What is an Example of an Algebra Problem in Real Life?

An algebra problem is a mathematical problem that requires the use of algebraic concepts and strategies to determine unknown values or unknown variables. Much like how the order of operations are required to evaluate numerical expressions, algebra problems require the problem solver to apply a set of rules in order to arrive at a solution.

Real world problems that require the use of algebra usually involve modelling real-life situations with  algebraic formulas . A formula is a specific equation that can be applied to solve a problem. Formulas make it possible to make predictions about a given real-life scenario.

For example, consider the following problem:

You are saving up for a new smartphone and currently have $200 in your savings account. Your plan is to save a certain amount of money each week from your allowance. If the smartphone costs $600, and you want to have enough money to buy it in 8 weeks, how much money should you save each week?

cell phone pixel art

To solve this problem, we first need to use the information provided in the problem to create an equation that models the real-life scenario. Thinking about the problem in terms of variables, we can define T as the total of the savings, and variable x as the amount saved each week.

Since we know that we have a fixed value of 200, we can use the following equation to model this real world problem:

$$T=200+8x$$

This equation says “the total saved is equal to the original $200 plus whatever amount is saved per week, for 8 weeks”.

Substituting the total of the smartphone allows us to begin solving for the unknown variable x. Remember, when solving algebraic equations, you must apply the same operation to both sides of the equation.

$$ \begin{split} T&=200+8x  \\ \\ 600&=200+8x  \\ \\ 600-200 &= 8x \\ \\ 400 &= 8x \\ \\ \frac{400}{8} &= \frac{8x}{8} \\\\ 50 &= x \end{split} $$

Therefore, since x = 50, you should save $50 each week in order to save enough money for the smartphone. For more practice with the algebra used in this solution, check out this free collection of  solving two step equations worksheets !

5 Real Life Algebra Problems with Step-By-Step Solutions

There are so many real-life examples of algebra problems, but I want to focus on 5 here that I believe will convince you of just how applicable algebra is to the real-world! So let’s dig into these 5 real-world algebraic word problems!

Example #1: Comparing Cell Phone Plans

Link is considering two different cell phone plans. Plan A charges a monthly fee of $30 and an additional $0.10 per minute of talk time. Plan B charges a monthly fee of $45 regardless of how much time is used talking. How many minutes of total time talking will make the plans equal in cost?

The best way to start this problem is by writing two equations to represent each scenario. If C represents total cost, and x represents minutes of talk time used, the equations can be written as follows:

  • Plan A: \(C=30+0.1x\)
  • Plan B: \(C=45\)

Setting the first equation equal to the second equation will allow us to employ algebra to solve for the number of minutes that makes the two plans equal.

$$ \begin{split}  30+0.1x&=45 \\ \\ 30-30+0.1x&=45-30 \\ \\ 0.1x&=15 \\ \\ \frac{0.1x}{0.1}&=\frac{15}{0.1} \\ \\ x&=150 \end{split} $$

Therefore, the two cell phone plans are equal when 150 minutes of total time talking are used.

Example #2: Calculating Gallons of Gas

Zelda is driving from Hyrule to the Mushroom Kingdom, which are 180 miles apart. Her car can travel 30 miles per gallon of gas. Write an equation to represent the number of gallons of gas, G, that Zelda needs for the trip in terms of the distance, d, she needs to travel. Then calculate how many gallons of gas she needs for this trip.

jerry can pixel art

The number of gallons of gas (G) Zelda needs for any trip can be represented by the equation \(G = \frac{d}{30}\). Since the distance between Hyrule and the Mushroom Kingdom is 180 miles, we can substitute 180 into the equation for  d  to determine the number of gallons of gas needed:

$$G=\frac{180}{30}=6$$

Therefore, Zelda needs 6 gallons of gas for her trip.

Example #3: Basketball Players in Action!

A basketball player shoots a basketball from a height of 6 feet above the ground. Unfortunately he completely misses the net and the ball bounces off court. A sports analyst models the path of the basketball using the equation \(h(t) = -16t^2 + 16t + 6\), where h(t) represents the height of the basketball above the ground in feet at time t seconds after the shot. Determine the time it takes for the basketball to hit the ground.

basketball pixel art

Since we are asked for when the ball hits the ground and  h(t)  is given as the height above the ground, we know that we are looking for the x-intercepts of this quadratic function. We therefore set the equation equal to zero and solve for x. 

Note that we cannot use  trinomial factoring  here since the quadratic is not factorable! Thankfully quadratic equations are solvable using the quadratic formula!

$$ \begin{split}  x&=\frac{-b \pm \sqrt{b^2-4ac}}{2a} \\\\ &=\frac{-16 \pm \sqrt{16^2-4(-16)(6)}}{2(-16)}\\\\ &=\frac{-16 \pm \sqrt{640}}{-32}\\\\ x&=-0.291 \\\\ x&=1.291 \end{split}$$

Therefore, the ball hits the ground after approximately 1.3 seconds. Remember that time cannot be negative, so the first answer is inadmissible and rejected!

Example #4: Saving for a Computer Game

You are saving to buy a new computer game that costs $90. You decide to save up for the computer game by depositing some money into a savings account that earns an annual interest rate of 5% (compounded monthly). You start with an initial deposit of $30 and plan to save for 22 months. Will you have enough to purchase the computer game?

pixel art cd

This is an example of a math problem that connects to financial problems people encounter everyday! Since the account you chose earns  interest , we can apply a compound interest formula to help us out here:

$$A=P(1+i)^n$$

In this formula:

  • A(t)  is the total amount of money.
  • P  is the initial deposit (which is $30 in this case).
  • i  is the monthly interest rate (5% annual interest, compounded monthly means that  i  is approximately 0.004167).
  • n  is the time that has elapsed (since we are working with months, we multiply by 12)

We can set up our equation and see if our total amount of money is greater than $90:

$$\begin{split}  A(22)&=30(1.004167)^{22 \times 12} \\\\ &=$89.93 \end{split} $$

Remember to always include a dollar sign in your answer and to round to two decimal places when working with money!

Since our answer is approximately equal to $90, we can say that you will have enough money after 22 months! It’s time to get saving!

Example #5: How Many Tickets Did the Movie Theater Sell?

A movie theater charges $10 per ticket for adults and $6 per ticket for children. On a particular day, the theater sold a total of 150 tickets, and the total revenue for the day was $1350. Write a system of equations to represent this real-life scenario and then solve for the number of adult and child tickets sold.

movie tickets pixel art

Let’s assume that variable  x  represents the number of adult tickets sold and variable  y  represents the number of child tickets sold. We can set up two linear equations as follows:

  • First Equation (the total number of tickets sold): \(x+y=150\) 
  • Second Equation (the total revenue from ticket sales is 1350): \(10x+6y=1350\) 

We can use substitution to solve this linear system by rearranging the first equation and substituting it into the second equation. You can catch a quick overview of the substitution process by checking out  this substitution video  on my YouTube channel!

Rearranging the first equation into a different form to solve for  y  results in \(y=-x+150\). Substituting this expression for  y  into the second equation results in: 

$$ \begin{split}  10x+6(-x+150)&=1350 \\ \\ 10x-6x+900&=1350 \\ \\ 4x&=450\\ \\ x&=112.5\\ \\ \end{split}  $$

We then substitute this value for  x  into our expression for  y: 

$$ \begin{split}  y&=-x+150 \\ \\ &=-112.50+150 \\ \\ &=37.5\\ \\ \end{split}  $$

Since we can’t have fractional ticket sales, we can say that approximately 112 adult tickets were sold and 38 child tickets were sold.

Appreciating Real Life Algebra Problems

While algebra is often seen as an abstract topic, I am hopeful that I have shown you just how applicable it can be to real-life situations! Some of these examples you may have even encountered in your own life!

Even if you aren’t drawing up complex equations and solving them while you are playing basketball, combining basic math and problem solving is one of the most important skills people can have in both their work and their lives. 

I hope that I have helped you further your understanding of algebra, while growing an appreciation for the different ways it can be used in your own life!

Did you find this guide to real life algebra problems helpful? Share this post and subscribe to Math By The Pixel on YouTube for more helpful mathematics content!

RECOMMENDED FOR YOU

Examples of One Solution Equations, zero solution equations, and infinite solutions equations

Examples of One Solution Equations, Zero, and Infinite

Linear EquatIons Word Problems worksheet with solutIons

Linear Equations Word Problems Worksheet with Solutions

' src=

cognitive cardio math logo

Math Wheels for Note-taking?

cognitive cardio math logo

How to Teach Real Life Math Problem Solving Activities

Use these fun activities to help teach real life math to your middle school students this year.

Growing up, I vividly recall a moment when a classmate questioned our teacher about the relevance of a math concept. You know the questions he asked already. “Why do we need to know this, and when will we ever use this?” The teacher’s response, delivered with a hint of exhaustion, was a curt, “You’ll use it someday, and you need to know it because you just do.” Since I’ve been teaching, I understand her exhaustion with those questions, but I knew I wanted to create a different classroom dynamic. I wanted to create an environment where questions were welcomed and explored. That’s why I make it a point to infuse real-life math problems into lessons. I want to provide an authentic learning experience that has students applying concepts in relevant situations. Today, we explore real-life math problems, why they’re important, and ways to bring them into your classroom!

What Are Real Life Math Problems?

I love using real life math problems because instead of just teaching math concepts from a textbook, I get to guide my students through challenges that directly relate to their lives outside of the classroom. Real-life math problems are exactly what they sound like. They are math problems that have a direct connection to the world around us.

Real life math problems will help students navigate the world around them with confidence as they approach adulthood.

Have you ever opened up a textbook, looked down at a problem, and thought to yourself, “Gosh, what does this EVEN mean?” I know I have, which is humbling since, as teachers, we are expected to have the answers. That was a huge signal to me that if I’m not understanding these abstract scenarios, then my students aren’t either. With middle schoolers, in particular, we have a small window to catch their attention and create buy-in. These abstract, hypothetical, and wordy problems weren’t cutting it for me to do that and make math approachable.

I turned to the experts, my students. If you want your middle schoolers engaged, you have to meet them where they are. By presenting math in the context of situations they encounter, I show my students the practical applications of what they’re learning.

From budgeting their allowance to measuring ingredients for a recipe, and from calculating distances for a road trip to determining the best deals at the grocery store, these are examples of real-life math problems that I incorporate into my lessons. These are just a few examples, but really, they are endless. By engaging with these real-life math problems, my students master math concepts. They’re also developing critical thinking skills and problem solving abilities that will serve them well beyond the walls of our classroom.

Benefits to Real Life Math Problems

Using real-life math problems makes learning math more engaging and meaningful for our students. By connecting math concepts to their everyday experiences, we capture their interest. We can then show them the relevance of what they’re learning. No more asking why and when we will need to know. Instead, they’re eager to dive into each problem, knowing that the skills will directly be used in their lives.

Giving your students the opportunity to practice real life math problems will help them feel excited about practicing practical math concepts they will need to use in their every day lives.

Engaging with real-life math problems creates a deeper understanding of math concepts. When students see how math applies to real-world situations, they’re able to grasp abstract concepts and make connections. It’s not just about memorizing formulas and algorithms. It’s about understanding the underlying principles and their role in the world around us.

Using real-life math problems promotes cross-curricular learning. Math doesn’t exist in a vacuum, which surprises some of our students. It intersects with various other subjects and topics. By including real-life scenarios in our math lessons, we’re able to integrate concepts from science, technology, engineering, life skills, and more. Our students learn to approach problems from multiple perspectives. This prepares them for the diverse challenges they’ll encounter in their academic and professional lives.

We can’t forget about the joy of discovery that comes with solving real-life math problems! There’s nothing quite like the satisfaction of cracking a tough problem or finding a creative solution to a real-world challenge. By immersing ourselves in these math adventures, we’re experiencing the thrill of exploration and the joy of discovery firsthand.

Real Life Math Problem Solving Activities

Below are just a few examples of real life math problem-solving activities that bring math to life in your classroom. By engaging our students in hands-on, practical challenges that relate to their everyday experiences, we ignite their curiosity, deepen their understanding, and empower them to see the world through a mathematical lens.

Grocery Store Math

First, let’s go on a grocery run without leaving our classroom! Start by assigning each student a budget and providing them with a list of grocery items to purchase. In the past, I printed out pictures of items and laminated them for use the following year. If you have access to pretend play food , middle schoolers will get a kick out of it, too! Then, challenge them to navigate the desks and rows of tables, scouring for the best deals while sticking to their budget.

Grocery store math is a great real life math students can start putting into action almost immediately and will give them a better understanding of how to plan and budget for the cost of food.

Students will explore various math concepts. First, they’ll use addition and subtraction skills to track their spending and ensure they stay within their budget constraints. Then, they’ll flex their multiplication muscles as they calculate prices and compare sales to identify the most cost-effective options.

But it doesn’t stop there! This activity also encourages students to make strategic decisions about what to buy based on their budget and nutritional needs. They’ll practice critical thinking as they weigh the pros and cons of different purchasing options, considering factors such as price, quantity, and nutritional value.

By actively participating in budgeting and decision-making processes, students develop financial literacy and responsible consumer habits. They learn the value of money, the importance of budgeting, and the significance of making informed choices. Skills that will serve them well both now and in the future.

You can take this grocery store math to the next level with some small changes.

  • Instead of a grocery list, provide them with a recipe and have them buy enough of the ingredients to make the recipe.
  • Place a few items on sale and tell students they must buy the item with the largest discount.
  • Don’t forget tax. Making students account for sales tax without going over their budget is another real life challenge.

Measurement Madness

Who says math can’t be delicious? Get ready to whip up a storm and turn baking into a mouthwatering math lesson! You may need access to a kitchen or similar tools to help with baking. I provide students with a treat recipe, usually a simple cookie recipe, and challenge them to adjust ingredient quantities based on different serving sizes.

As students roll up their sleeves and don their aprons, they’ll dive into a world of fractions, multiplication, and division. First, they’ll practice fractions as they scale the recipe up or down to accommodate different serving sizes. Need to double the batch for a larger crowd? No problem! Students will use their fraction skills to adjust ingredient quantities accordingly.

real life problems using problem solving

As students tackle multiplication and division, they’ll calculate ingredient quantities with precision, ensuring that each batch of goodies turns out just right. Whether they halve the recipe for a smaller gathering or triple it for a bake sale, students will practice their math skills while whipping up delectable delights.

As they savor the results of their labor, students will not only enjoy the delicious results but also gain a deeper appreciation for the role of math in the culinary arts. They’ll see firsthand how math concepts can be applied in practical, real-life math situations!

This real life math activity fosters important life skills such as following instructions, measuring accurately, and working collaboratively. Our students learn the importance of precision and attention to detail. These qualities are essential both in the kitchen and beyond.

Ready to step this challenge up? Turn your students into chefs and bakery owners and have them calculate the cost to make the recipe, how much they would sell the item for, and how much profit they would make.

Travel Time Trials

If you ask your students where they would love to travel, they’ll shout out places far away and expensive. Most of the time, they aren’t factoring in cost. They just know the place looks cool and famous people have been there! So, in this real life math problem-solving activity, I’m also giving them a little reality check. I task my students with planning a hypothetical road trip to their dream destination, whether it’s a coastal getaway, a mountain retreat, or a bustling city excursion. Then, I challenge them to calculate travel times and distances between each stop along the way.

real life problems using problem solving

As students plot their route and map out their itinerary, they’ll dive into a world of multiplication and division. First, they’ll practice multiplication as they calculate the total distance to be traveled, breaking it down into manageable segments between each destination. Need to cover 300 miles in one day? For example, students will use their multiplication skills to determine how many hours of driving that entails.

As students tackle division, they’ll calculate travel times based on average speeds and estimated distances between stops. Whether it’s dividing the total distance by average speed to determine travel time or breaking down the journey into hourly increments, students will hone their division skills while planning their epic road trip.

While researching, students will keep track of the cost of different types of transportation and compare different companies or methods to find the most cost-effective choice. As they research attractions, landmarks, and points of interest along their route, students will sharpen their math skills and gain valuable insights into geography, culture, and planning. They’ll learn about important life skills such as time management, budgeting, and decision-making.

Take these trip planning skills to the next level by giving students a budget for their trip and a time limit. After all, there aren’t many jobs where you can just take off for an unlimited amount of time. Challenge them to fit their road trip into the budget and time constraints.

Be Your Own Architect – A Real Life Math Problem Solving Activity

This real life math problem-solving activity has our students putting on their creative architect hats! Here’s the blueprint for success: I give them the task of designing their dream home or crafting a futuristic cityscape using graph paper or digital design tools you may have access to at school.

As students sketch out their vision, they’ll dive deep into the world of geometry and measurement. They’ll practice calculating the dimensions of rooms and buildings, exploring concepts like area, perimeter, and scale in a hands-on, creative way. As they craft their designs, they’ll consider factors such as proportion, symmetry, and aesthetics. This activity has them practicing their spatial reasoning skills and unleashing their creativity in the process. Whether it’s picturing an open-concept living space or designing a sleek skyscraper, our students will have the opportunity to bring their architectural dreams to life.

real life problems using problem solving

This activity helps our students understand the principles of architecture and how math plays a crucial role in the design process. By exploring concepts like scale and proportion, students gain a deeper appreciation for the art and science of architecture and learn how mathematical concepts translate into real-world structures. They’ll learn important life skills such as problem-solving, collaboration, and attention to detail.

Students can work with partners, small groups, or individually. When working alongside peers, they learn to collaborate to overcome design challenges. Communicating their ideas effectively and refining their designs based on feedback is essential in the world of school and career fields.

Connect even more math by having students figure out the cost to build their creations. They can price out their finished building or just one room. You can also give them a budget to work within. It’s a great math lesson that also weaves in learning to prioritize options and make decisions.

Real Life Math Word Problem Scenarios

Sometimes these project based learning lessons just don’t fit well into the available time. Don’t worry – you don’t have to ditch real world math problem solving. Instead, take your real world situations and turn them into word problems. Don’t worry—they’re not my students’ favorite either. However word problems are a great tool for applying math concepts to real-life scenarios. They provide a bridge between abstract math concepts and practical applications in everyday life. By tackling real life word problems, our students develop critical thinking skills and learn to apply mathematical concepts in context, making learning both relevant and engaging.

In my Math Problem Solving Word Problems resource, your students will have access to real life math problem scenarios that are relatable. Topics cover making necklaces, school shopping, fundraising, and going to the movies, to name a few. They’ll be applying math concepts ranging from ratios to algebraic equations to coordinate planes.

real life problems using problem solving

I use this resource in my math centers, group work, homework, and test prep. Each of the ten sheets is designed to engage our students while sharpening their math skills, making learning both meaningful and enjoyable.

Looking for real life math on the topic of fractions? My Comparing and Ordering Fractions resource is just what you need. Your students will have a chance to apply real life math concepts focused on fractions through various scenarios like runners, garden fence planning, and pizza sharing.

Data Analysis Delights

Data analysis is way more than just crunching numbers. It’s about uncovering insights and making informed decisions based on real-life data. To kickstart this real life math problem-solving activity, my students start by collecting and analyzing real-life data from a variety of sources. They may look at weather patterns, sports statistics, or survey responses. Whether they’re tracking temperature trends, analyzing batting averages, or surveying classmates about their favorite hobbies, I make sure they have a chance to gather data that sparks their curiosity and relates to topics that interest them.

real life problems using problem solving

Once they have their data, it’s time to roll up our sleeves and dive into analysis. We’ll practice graphing our data in different ways, from bar graphs and dot plots to pie charts and box plots. Then, we’ll learn how to choose the most appropriate graph for our data. We’ll also learn to label and interpret the axes to convey our findings effectively.

We’ll learn how to extract meaningful insights from the data, identify trends, patterns, and outliers in our data, and draw conclusions based on our observations. Whether we’re spotting correlations between variables or making predictions based on past trends, we’ll sharpen our analytical skills as we delve deeper into the data. Based on this information, we will even work with mean, median, and mode.

Working with data provides an opportunity for cross-curricular learning. We’ll explore how data analysis is used in various fields. We’ll see how data-driven decision-making plays a crucial role in solving real-world problems and shaping our understanding of the world around us.

To help guide your statistics unit, I’ve created a complete Statistics unit with teacher notes, student assessments, and more!

Make Math Relevant with Real Life Math Problem Solving Activities

As we wrap up our exploration of real-life math problem-solving activities, I’m reminded of these experiences’ transformative power for our students. By infusing our lessons with authentic, real-world scenarios, we’re not just teaching math. We’re empowering our students to become confident problem solvers equipped with the skills they need to navigate the world around them.

real life problems using problem solving

From grocery store adventures to architectural masterpieces, each activity provides a unique opportunity for our students to engage with math in meaningful ways, fostering curiosity, creativity, and critical thinking along the way. Let’s continue to make math relevant, accessible, and exciting for our students. Together, we can inspire a new generation of mathematicians ready to tackle any challenge that comes their way!

Save for Later

Remember to save this post to your favorite math Pinterest board so you can bring real life math problem activities into your classroom!

read next...

Get all of your math wheel questions answered here with fun and easy tips to get you started using these incredible resources in your classroom today.

Math Wheel Questions Answered to Help You Get Started

Help your 3rd grade math students master key concepts and learn important note-taking skills in the process.

Master 3rd Grade Math Concepts and More With Math Wheels

Use these helpful tips and tricks to tell if executive function skills impact math performance in your classroom this year.

How To Tell If Executive Function Skills Impact Math Performance

Help keep your easily distracted students engaged in learning with these tips and tricks using math wheels.

How to Help Easily Distracted Students by Using Math Wheels

real life problems using problem solving

Welcome to Cognitive Cardio Math! I’m Ellie, a wife, mom, grandma, and dog ‘mom,’ and I’ve spent just about my whole life in school! With nearly 30 years in education, I’ve taught:

  • All subject areas in 4 th  and 5 th  grades
  • Math, ELA, and science in 6th grade (middle school)

I’ve been creating resources for teachers since 2012 and have worked in the elearning industry for about five years as well!

FIND IT FAST

Let's connect.

real life problems using problem solving

Select the image above to learn more!

real life problems using problem solving

Get FIVE days of free math lessons!

real life problems using problem solving

Terms of Use        Privacy Policy

COPYRIGHT © 2022 COGNITIVE CARDIO MATH • ALL RIGHTS RESERVED. SITE DESIGN BY LAINE SUTHERLAND DESIGNS

Decision Tree Examples: Problems With Solutions

On this page:

  • What is decision tree? Definition.
  • 5 solved simple examples of decision tree diagram (for business, financial, personal, and project management needs).
  • Steps to creating a decision tree.

Let’s define it.

A decision tree is a diagram representation of possible solutions to a decision. It shows different outcomes from a set of decisions. The diagram is a widely used decision-making tool for analysis and planning.

The diagram starts with a box (or root), which branches off into several solutions. That’s way, it is called decision tree.

Decision trees are helpful for a variety of reasons. Not only they are easy-to-understand diagrams that support you ‘see’ your thoughts, but also because they provide a framework for estimating all possible alternatives.

In addition, decision trees help you manage the brainstorming process so you are able to consider the potential outcomes of a given choice.

Example 1: The Structure of Decision Tree

Let’s explain the decision tree structure with a simple example.

Each decision tree has 3 key parts:

  • a root node
  • leaf nodes, and

No matter what type is the decision tree, it starts with a specific decision. This decision is depicted with a box – the root node.

Root and leaf nodes hold questions or some criteria you have to answer. Commonly, nodes appear as a squares or circles. Squares depict decisions, while circles represent uncertain outcomes.

As you see in the example above, branches are lines that connect nodes, indicating the flow from question to answer.

Each node normally carries two or more nodes extending from it. If the leaf node results in the solution to the decision, the line is left empty.

How long should the decision trees be?

Now we are going to give more simple decision tree examples.

Example 2: Simple Personal Decision Tree Example

Let’s say you are wondering whether to quit your job or not. You have to consider some important points and questions. Here is an example of a decision tree in this case.

Download  the following decision tree in PDF

Now, let’s deep further and see decision tree examples in business and finance.

Example 3: Project Management Decision Tree Example

Imagine you are an IT project manager and you need to decide whether to start a particular project or not. You need to take into account important possible outcomes and consequences.

The decision tree examples, in this case, might look like the diagram below.

Download  the following decision tree diagram in PDF.

Don’t forget that in each decision tree, there is always a choice to do nothing!

Example 4: Financial Decision Tree Example

When it comes to the finance area, decision trees are a great tool to help you organize your thoughts and to consider different scenarios.

Let’s say you are wondering whether it’s worth to invest in new or old expensive machines. This is a classical financial situation. See the decision tree diagram example below.

Download it.

The above decision tree example representing the financial consequences of investing in old or new machines. It is quite obvious that buying new machines will bring us much more profit than buying old ones.

Need more decision tree diagram examples?

Example 5: Very Simple Desicion Tree Example

As we have the basis, let’ sum the steps for creating decision tree diagrams.

Steps for Creating Decision Trees:

1. Write the main decision.

Begin the decision tree by drawing a box (the root node) on 1 edge of your paper. Write the main decision on the box.

2. Draw the lines 

Draw line leading out from the box for each possible solution or action. Make at least 2, but better no more than 4 lines. Keep the lines as far apart as you can to enlarge the tree later.

3. Illustrate the outcomes of the solution at the end of each line.

A tip: It is a good practice here to draw a circle if the outcome is uncertain and to draw a square if the outcome leads to another problem.

4. Continue adding boxes and lines.

Continue until there are no more problems, and all lines have either uncertain outcome or blank ending.

5. Finish the tree.

The boxes that represent uncertain outcomes remain as they are.

A tip: A very good practice is to assign a score or a percentage chance of an outcome happening. For example, if you know for a certain situation there is 50% chance to happen, place that 50 % on the appropriate branch.

When you finish your decision tree, you’re ready to start analyzing the decisions and problems you face.

How to Create a Decision Tree?

In our IT world, it is a piece of cake to create decision trees. You have a plenty of different options. For example, you can use paid or free graphing software or free mind mapping software solutions such as:

  • Silverdecisions

The above tools are popular online chart creators that allow you to build almost all types of graphs and diagrams from scratch.

Of course, you also might want to use Microsoft products such as:

And finally, you can use a piece of paper and a pen or a writing board.

Advantages and Disadvantages of Decision Trees:

Decision trees are powerful tools that can support decision making in different areas such as business, finance, risk management, project management, healthcare and etc. The trees are also widely used as root cause analysis tools and solutions.

As any other thing in this world, the decision tree has some pros and cons you should know.

Advantages:

  • It is very easy to understand and interpret.
  • The data for decision trees require minimal preparation.
  • They force you to find many possible outcomes of a decision.
  • Can be easily used with many other decision tools.
  • Helps you to make the best decisions and best guesses on the basis of the information you have.
  • Helps you to see the difference between controlled and uncontrolled events.
  • Helps you estimate the likely results of one decision against another.

Disadvantages:

  • Sometimes decision trees can become too complex.
  • The outcomes of decisions may be based mainly on your expectations. This can lead to unrealistic decision trees.
  • The diagrams can narrow your focus to critical decisions and objectives.

Conclusion:

The above decision tree examples aim to make you understand better the whole idea behind. As you see, the decision tree is a kind of probability tree that helps you to make a personal or business decision.

In addition, they show you a balanced picture of the risks and opportunities related to each possible decision.

If you need more examples, our posts fishbone diagram examples and Venn diagram examples might be of help.

About The Author

real life problems using problem solving

Silvia Valcheva

Silvia Valcheva is a digital marketer with over a decade of experience creating content for the tech industry. She has a strong passion for writing about emerging software and technologies such as big data, AI (Artificial Intelligence), IoT (Internet of Things), process automation, etc.

Leave a Reply Cancel Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed .

real life problems using problem solving

Creative thinking skills help children overcome real-life problems

A new study from The Ohio State University demonstrates that promoting creative thinking in children can prepare them to become more resilient to real-life problems.

The researchers trained third, fourth and fifth graders to use literary techniques such as perspective shifting, counterfactual (what if) thinking and causal (why) thinking to improve creativity in dealing with everyday challenges.

New ways to solve problems

Professor Angus Fletcher said the techniques helped kids come up with new, creative and practical ways to solve problems.

"There are concerns about the resiliency of American children in the wake of COVID-19 and this sense that many kids are having a hard time in school and in life," noted Professor Fletcher. "Creativity training can help kids come up with a second plan when things aren't working out for them."

Professor Fletcher said the program used in this study was similar to one he and his colleagues used successfully with the U.S. Army. That particular work earned Professor Fletcher the Public Service Commendation Medal, the fourth-highest public service decoration that the Army can grant a civilian.

How the study was conducted 

The research involved two separate studies focused on students attending a summer camp in a Columbus suburb. In the first study, students were split into two groups - a control group and a creative group.

The control group was asked to identify a special quality about themselves. They were told this was their special power that could help them solve any problem.

In the creative group, students were asked to think of a friend who did something special and think of them as their "creative friend" who could help them solve any problem. When children view a problem or challenge through the eyes of someone else, it is a creative process known as perspective-shifting.

"When you ask people to shift their perspective and imagine receiving advice from a friend, you get a lot more creative and effective solutions to problems than just trying to solve the problem yourself," explained Professor Fletcher. This is exactly what the study demonstrated.

Anticipating everyday challenges 

As part of the study, teachers identified a problem that may be challenging for their students, such as not being able to attend a friend's birthday party because they will be out of town. 

Students also thought about a challenging problem in their own lives, such as "my sister bullies me" or "my dad has to be away for two months."

What the researchers discovered 

The results of the study showed that without the perspective-shift training, less than half of the students were able to provide a solution to an age-typical problem, and almost none were able to provide a solution to their own problems.

On the other hand, 94 percent of students who were trained in perspective-shifting provided a solution to both types of problems. 

According to Professor Fletcher, these results showed how creativity training could boost children's sense of self-efficacy – the belief that they had some control and power over their own lives.

"Step back and say why does this matter? We often find that if you think more broadly about what you are trying to accomplish, and why it is so important, then you can see there are other ways of getting what you want."

Testing resilience 

After the training was completed, students were presented with age-typical problems and also examined one of their own problems. 

In an effort to test resilience, the researchers had an expected response when the children presented their proposed solutions. They told the students that their solution would not work. 

Every student in the creative thinking group was able to provide a second solution to both the age-typical and personal problems.

"With this training, the children were unfazed by being told their first solution didn't work. They came up with a second plan, which is a good test of resilience."

Helping children cope with problems 

Professor Fletcher said this study provides a hopeful message: There are things we can do to help children cope with their problems.

"We are at this moment in our society where our kids need help. We found that before this training, kids had this propensity to just give up when faced with problems. That could lead them to get angry, or embarrassed that they can't solve their problems, or look for adults to offer solutions."

"What narrative creativity training can do is teach children there are ways to approach real-life problems that don't have easy answers."

Teaching creative thinking through the arts

Professor Fletcher explained that kids can learn creative thinking through the arts, such as literature and theater, if they are presented in the right way. 

For example, rather than just asking students to analyze works of art, teachers could have students imagine themselves as different characters, explore new perspectives, and engage in why and what-if thinking.

"The ability to use this type of thinking can't be assessed via standardized tests. But it is still very important and can help children use and grow their creativity to solve real-world challenges."

Professor Fletcher conducted the research with Ohio State colleagues Professor Patricia Enciso and Mike Benveniste, also of Project Narrative.

The study is published in the Journal of Creativity .

Check us out on EarthSnap , a free app brought to you by Eric Ralls and Earth.com .

Creative thinking skills help children overcome real-life problems

Author Talks: How to interrupt bias in the workplace

In this edition of Author Talks , McKinsey’s Mona Hamouly chats with Joan C. Williams, distinguished professor of law, chair of the Hastings Foundation, and director of the Center for WorkLife Law at UC Hastings Law. In Bias Interrupted: Creating Inclusion for Real and for Good (Harvard Business Review Press, November 2021), Williams explains how leaders can use standard business tools—data, metrics, and persistence—to interrupt the bias that is continually transmitted through formal systems in the workplace. That will lead to enhanced diversity, equity, and inclusion (DEI) in the workplace. An edited version of the interview follows.

What problem were you trying to solve with this book?

In writing this book, I was trying to solve a really simple problem, which is that companies have been spending about $8 billion a year on DEI initiatives, and unfortunately, not moving the needle very much, if at all. The simple message of the book is that companies have been using the wrong tools.

If a company had a problem with sales, you wouldn’t hold a deep, sincere conversation about how much everybody values sales, dedicate a “National Celebrate Sales Month,” and expect anything to change. Unfortunately, that’s a lot of what we’ve been doing in the DEI context.

Businesses need to use basic business tools to solve this business problem—the same ones they use to solve any business problem: evidence, metrics, and persistence, until they achieve their concrete, measurable goals.

If a company had a problem with sales, you wouldn’t hold a deep, sincere conversation about how much everybody values sales, dedicate a ‘National Celebrate Sales Month,’ and expect anything to change. Unfortunately, that’s a lot of what we’ve been doing in the diversity, equity, and inclusion context.

What surprised you when writing this book?

Not much. I’ve been studying this stuff for over 15 years. I’ll go back and tell you what did surprise me the first time these findings began to emerge—the findings that are now well documented.

One of the very first projects I did was write a book, actually with my daughter, called What Works for Women at Work: Four Patterns Working Women Need to Know [New York University Press, 2014]. For that book, we interviewed highly successful women, and I just told them, “Here are the patterns of gender bias that show up in the literature. Any of that sound familiar?”

I knew a lot of these had happened to me, but I didn’t know how common they were. I was completely shocked to find that 96 percent of the women I interviewed had encountered these commonly documented forms of gender bias.

When I started to study racial bias very intensively, I was really shocked at the level of disrespect that professionals of color report in the workplace. As a White woman, a lot of stuff happens. A lot of it’s great; a lot of it’s not so great. But the kind of raw disrespect reported by people of color, especially by African Americans, I found deeply, deeply shocking.

Describe the five patterns of bias.

One of the things we find with dazzling consistency is that there are five basic patterns of bias. The first is “prove it again.” Some groups have to prove themselves more than others. The second we call the “tightrope,” and that refers to the idea that office politics is more complicated for some groups than others.

Short description: White men just need to be authoritative and ambitious, but other groups need to find a way of being authoritative and ambitious in a way that’s seen as appropriate for their groups. So a woman who is being very hard driving may be seen as difficult or having “sharp elbows.” An African American man, for example, who’s being very assertive in a business context—in a way that, in a White man, might be seen as showing a career-enhancing passion for the business—might be written off as intimidating or angry.

We find, particularly in tech, that Latinas—often when, again, they’re being authoritative in the context of a business disagreement—are seen as being emotional or even feisty. And “feisty” is such an interesting word because it basically says, “You are displaying authoritativeness in a way that I am coding as merely cute.”

The third pattern, which is also triggered both by race and by gender, we call the “tug of war.” That’s when bias against a group fuels conflicts within the group. That syndrome often happens when women are pitted against each other for the one “woman’s slot.” And this can happen if people of color are pitted against each other for the one “diversity slot.” So that’s when bias against a group really freights the relationships within the group.

The fourth pattern, which is actually the strongest pattern of gender bias, is the “maternal wall”: gender bias triggered by motherhood. Mothers are stereotyped as less competent and committed than other people.

The final pattern comprises the racial stereotypes and experiences that differ by group and that haven’t been picked up by these other four patterns. For example, as I mentioned, African Americans often experience very high levels of social isolation and disrespect. Asian Americans are stereotyped by White people as good for technical matters but not having leadership potential.

These are the five patterns that show up with just remarkable consistency in our data sets, which are now approaching 20,000 people.

Is hiring more women and people of color enough?

One of the standard approaches to DEI is to say, “We just need to hire more women and people of color.” That’s a really important initiative; I totally endorse it. But it’s not the answer.

What we have seen over the past 25 years is many organizations hiring women and hiring people of color and then having them leave. The really important message is that you have to interrupt bias in your basic business systems, not only in hiring, but in performance evaluations, where these five patterns of bias very commonly play out.

We’ve done studies and worked with organizations to correct this. If we keep hiring women and people of color, and then they don’t see a future for themselves, because they’re not getting fair access to career-enhancing opportunities, the handwriting is on the wall. They will leave.

What our studies show is that White men report really high levels of fair access to career-enhancing opportunity, sometimes as high as 87 percent. In one data set, we found that only 53 percent of Black women reported fair access to career-enhancing assignments. For far too long, organizations have focused on hiring, but they haven’t focused on changing the conditions once people have been hired.

For far too long, organizations have focused on hiring, but they haven’t focused on changing the conditions once people have been hired.

How can CEOs reach DEI goals?

I have a very reassuring message, first of all, to CFOs. Here’s an invitation to stop throwing money at the problem and not solving it. The reassuring message to CEOs is that all you need to do is use basic business tools.

Very often, in recent years, the solution has been to have a deep, sincere conversation about how much we all value inclusion. Those conversations are not useless. They are helpful. But a sincere conversation is not an effective organizational-change strategy; it just isn’t. What you need to do as a CEO and as a company is to use this 40 years of research on exactly how bias plays out on the ground, to go back in your business systems, and to begin to correct for these various biases.

That really highlights another reason why we’ve seen so little progress. The solution recently has been, “We have a problem; let’s hire a head of DEI.” But often, the heads of DEI are not set up to succeed, because you hire a head of DEI, and then you put on programming. That’s what they have a budget for.

But in order to be successful, that head of DEI needs authority to be able to change the performance-evaluation system. You need very close authority between DEI and HR. Also, the head of DEI needs to be able to change access and equalize access to plum assignments. So the head of DEI, in order to be successful, needs the ability to provide input on who gets that flow of career-enhancing assignments.

How has the COVID-19 pandemic affected this?

The COVID-19 pandemic has made all of this better, and the COVID-19 pandemic has made all of this worse. Both are true.

One of the things that the pandemic did was finally normalize workplace flexibility. I was part of the generation that literally invented those arrangements back in the ’90s, and we knew that the only thing holding them back was a failure of imagination. That failure of imagination was remedied in three weeks’ time in March 2020. Now we have remote and hybrid work that’s been normalized, and that could really enhance opportunities for mothers—and opportunities for people of color because families of color are less likely to have a sole, dominant breadwinner than White families are.

On the other hand, just as the transition to hybrid work could really enhance DEI, it could really corrode DEI goals, as well, if it’s not handled well. For example, if you have a situation where more White men are coming back and working full time on site, and you have on-site favoritism going on, then the people who are working remotely are not going to thrive. They are going to leave, and that’s going to be predominantly women and people of color.

If you start out from the evidence, and you use these very concrete tools, you can make progress on DEI in short order, which I think is welcome news to a lot of people. On the Bias Interrupters website, we have lots of open-access tools. I would really urge people to go to biasinterrupters.org and, please, steal our stuff.

Watch the full interview

Author Talks

Visit Author Talks to see the full series.

Joan C. Williams is a distinguished professor of law, chair of the Hastings Foundation, and director of the Center for WorkLife Law at UC Hastings Law. Mona Hamouly is a manager of social-media content in McKinsey’s New York office.

Comments and opinions expressed by interviewees are their own and do not represent or reflect the opinions, policies, or positions of McKinsey & Company or have its endorsement.

Explore a career with us

Related articles.

Indra Nooyi

Author Talks: Indra Nooyi on leadership, life, and crafting a better future

Author Talks: Ella Bell Smith on why race and class are wedges between women

Author Talks: Ella Bell Smith on why race and class are wedges between women

  • Share full article

For more audio journalism and storytelling, download New York Times Audio , a new iOS app available for news subscribers.

The Daily logo

  • May 15, 2024   •   25:48 The Possible Collapse of the U.S. Home Insurance System
  • May 14, 2024   •   35:20 Voters Want Change. In Our Poll, They See It in Trump.
  • May 13, 2024   •   27:46 How Biden Adopted Trump’s Trade War With China
  • May 10, 2024   •   27:42 Stormy Daniels Takes the Stand
  • May 9, 2024   •   34:42 One Strongman, One Billion Voters, and the Future of India
  • May 8, 2024   •   28:28 A Plan to Remake the Middle East
  • May 7, 2024   •   27:43 How Changing Ocean Temperatures Could Upend Life on Earth
  • May 6, 2024   •   29:23 R.F.K. Jr.’s Battle to Get on the Ballot
  • May 3, 2024   •   25:33 The Protesters and the President
  • May 2, 2024   •   29:13 Biden Loosens Up on Weed
  • May 1, 2024   •   35:16 The New Abortion Fight Before the Supreme Court
  • April 30, 2024   •   27:40 The Secret Push That Could Ban TikTok

The Possible Collapse of the U.S. Home Insurance System

A times investigation found climate change may now be a concern for every homeowner in the country..

Hosted by Sabrina Tavernise

Featuring Christopher Flavelle

Produced by Nina Feldman ,  Shannon M. Lin and Jessica Cheung

Edited by MJ Davis Lin

With Michael Benoist

Original music by Dan Powell ,  Marion Lozano and Rowan Niemisto

Engineered by Alyssa Moxley

Listen and follow The Daily Apple Podcasts | Spotify | Amazon Music | YouTube

Across the United States, more frequent extreme weather is starting to cause the home insurance market to buckle, even for those who have paid their premiums dutifully year after year.

Christopher Flavelle, a climate reporter, discusses a Times investigation into one of the most consequential effects of the changes.

On today’s episode

real life problems using problem solving

Christopher Flavelle , a climate change reporter for The New York Times.

A man in glasses, dressed in black, leans against the porch in his home on a bright day.

Background reading

As American insurers bleed cash from climate shocks , homeowners lose.

See how the home insurance crunch affects the market in each state .

Here are four takeaways from The Times’s investigation.

There are a lot of ways to listen to The Daily. Here’s how.

We aim to make transcripts available the next workday after an episode’s publication. You can find them at the top of the page.

Christopher Flavelle contributed reporting.

The Daily is made by Rachel Quester, Lynsea Garrison, Clare Toeniskoetter, Paige Cowett, Michael Simon Johnson, Brad Fisher, Chris Wood, Jessica Cheung, Stella Tan, Alexandra Leigh Young, Lisa Chow, Eric Krupke, Marc Georges, Luke Vander Ploeg, M.J. Davis Lin, Dan Powell, Sydney Harper, Mike Benoist, Liz O. Baylen, Asthaa Chaturvedi, Rachelle Bonja, Diana Nguyen, Marion Lozano, Corey Schreppel, Rob Szypko, Elisheba Ittoop, Mooj Zadie, Patricia Willens, Rowan Niemisto, Jody Becker, Rikki Novetsky, John Ketchum, Nina Feldman, Will Reid, Carlos Prieto, Ben Calhoun, Susan Lee, Lexie Diao, Mary Wilson, Alex Stern, Dan Farrell, Sophia Lanman, Shannon Lin, Diane Wong, Devon Taylor, Alyssa Moxley, Summer Thomad, Olivia Natt, Daniel Ramirez and Brendan Klinkenberg.

Our theme music is by Jim Brunberg and Ben Landsverk of Wonderly. Special thanks to Sam Dolnick, Paula Szuchman, Lisa Tobin, Larissa Anderson, Julia Simon, Sofia Milan, Mahima Chablani, Elizabeth Davis-Moorer, Jeffrey Miranda, Renan Borelli, Maddy Masiello, Isabella Anderson and Nina Lassam.

Christopher Flavelle is a Times reporter who writes about how the United States is trying to adapt to the effects of climate change. More about Christopher Flavelle

Advertisement

IMAGES

  1. 18 Real World Life Problems with Examples: How to Solve

    real life problems using problem solving

  2. real life problem solver math

    real life problems using problem solving

  3. 39 Best Problem-Solving Examples (2024)

    real life problems using problem solving

  4. Problem-Solving Strategies: Definition and 5 Techniques to Try

    real life problems using problem solving

  5. 5 step problem solving method

    real life problems using problem solving

  6. 7 Steps to Problem Solving

    real life problems using problem solving

VIDEO

  1. Magnetic anisotropy of alkenes, NMR spectroscopy

  2. Overcoming Life's Challenges: How to Solve Any Problem

  3. A Real Life Problem Solving Idea ❤️ Hard to believe it's possible 🔥 #shorts

  4. Strong Number : Problem solving

  5. Showcasing Your Problem-Solving Abilities in Technical Interviews

  6. What is a Friend and How Do I Possibly Make One? Read Aloud

COMMENTS

  1. From Dilemmas to Solutions: Problem-Solving Examples ...

    Moreover, problem-solving can contribute to your overall mental well-being. It can give you a sense of control and agency, reduce feelings of stress and anxiety, and foster a positive attitude. It's also a key component of resilience, the ability to bounce back from adversity. In conclusion, problem-solving is a fundamental skill in life.

  2. Problem-Solving Strategies and Obstacles

    Problem-solving is a vital skill for coping with various challenges in life. This webpage explains the different strategies and obstacles that can affect how you solve problems, and offers tips on how to improve your problem-solving skills. Learn how to identify, analyze, and overcome problems with Verywell Mind.

  3. Workplace Problem-Solving Examples: Real Scenarios, Practical Solutions

    Problem-solving in the workplace is a complex and multifaceted skill that requires a combination of analytical thinking, creativity, and effective communication. It goes beyond simply identifying problems and extends to finding innovative solutions that address the root causes. Essential Problem-Solving Skills for the Workplace

  4. 50 Problem-Solving and Critical Thinking Examples

    These skills enable individuals to analyze complex situations, make informed decisions, and find innovative solutions. Here, we present 25 examples of problem-solving and critical thinking. problem-solving scenarios to help you cultivate and enhance these skills. Ethical dilemma: A company faces a situation where a client asks for a product ...

  5. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In insight problem-solving, the cognitive processes that help you solve a problem happen outside your conscious awareness. 4. Working backward. Working backward is a problem-solving approach often ...

  6. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  7. 35 problem-solving techniques and methods for solving complex problems

    6. Discovery & Action Dialogue (DAD) One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions. With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so.

  8. 10 Problem-solving strategies to turn challenges on their head

    One of the best ways to improve your problem-solving skills is to learn from experts. Consider enrolling in organizational training, shadowing a mentor, or working with a coach. 2. Practice. Practice using your new problem-solving skills by applying them to smaller problems you might encounter in your daily life.

  9. It's OK You Can't Solve Every Problem

    I encourage you to increase your comfort around the following three truths: 1. You can't always solve everyone else's problems. 2. You can't always solve all of your own problems. 3. You are ...

  10. 17 Smart Problem-Solving Strategies: Master Complex Problems

    Step 1: Identify the Problem. The problem-solving process starts with identifying the problem. This step involves understanding the issue's nature, its scope, and its impact. Once the problem is clearly defined, it sets the foundation for finding effective solutions.

  11. Finding Real-World Problems for STEM Lessons

    In the Greening STEM section on this site you'll find ideas for relevant problems. Most environmental topics can fit under standards for either life or physical science, so these may provide you with some real "kid-catchers," or ideas that snag students' interest. Topics include areas such as: • Oil spills.

  12. Research does solve real-world problems: experts must work together to

    Try to solve a problem with the tools of a single discipline alone, and it's as if you have a hammer - everything starts to look like a nail. It's usually obvious when expertise from more than ...

  13. 26 Expert-Backed Problem Solving Examples

    The example interview responses are structured using the STAR method and are categorized into the top 5 key problem-solving skills recruiters look for in a candidate. 1. Analytical Thinking. Situation: In my previous role as a data analyst, our team encountered a significant drop in website traffic.

  14. Creative Problem-Solving Approach: Skills, Framework, 3 Real-life

    Creative problem-solving is breaking down problems to understand them, generate solutions, and evaluate them to find an effective solution. Alex Osborn and Sydney Parnes originated the creative problem-solving approach in the 1940s. ... 3 Real-life Examples of Creative Problem Solving: Netflix: The company revolutionized how we watch TV shows ...

  15. 104 Examples of Real World Problems

    An overview of real world problems with examples. Real world problems are issues and risks that are causing losses or are likely to cause losses in the near future. This term is commonly used in science, mathematics, engineering, design, coding and other fields whereby students may be asked to propose solutions to problems that are currently relevant to people and planet as opposed to ...

  16. Frontiers

    Real world problem-solving (RWPS) is what we do every day. It requires flexibility, resilience, resourcefulness, and a certain degree of creativity. A crucial feature of RWPS is that it involves continuous interaction with the environment during the problem-solving process. In this process, the environment can be seen as not only a source of inspiration for new ideas but also as a tool to ...

  17. Empowering Kids to Be Part of the Solution

    Crellin teachers suggest three main ways of finding real-world problems for students to solve: 1. Keep Your Eyes Open for Problems. Crellin teachers are always looking for real-world problems -- either in the school or the surrounding community -- from which students can learn. When they first began using local problems as fodder for learning ...

  18. Solving Actual Problems (Instead of Just Coping Skills)

    Rank each on "how likely is it for this approach to work?" Pick the most reasonable plan and put the plan into action. If it doesn't work, go to the next best solution and try that one. Continue to try until you solve the problem. So, there's my approach to working through problems, this is how I solve problems as a therapist.

  19. What Is Creative Problem-Solving & Why Is It Important?

    Its benefits include: Finding creative solutions to complex problems: User research can insufficiently illustrate a situation's complexity. While other innovation processes rely on this information, creative problem-solving can yield solutions without it. Adapting to change: Business is constantly changing, and business leaders need to adapt.

  20. 5 Strategies for Aligning PBL to Real-World Problem-Solving

    In this strategy, students engage with people outside the classroom at the beginning, middle, and end of a project to hear stories that relate to the problem context, receive guidance on the technical aspects of the content they are learning, and ask questions. 5: Groups work together in small bursts of time to solve problems.

  21. Using Math to Solve Real World Problems

    But the underlying skills they develop in math class—like taking risks, thinking logically and solving problems—will last a lifetime and help them solve work-related and real-world problems. Here are 26 images and accompanying comebacks to share with your students to get them thinking about all the different and unexpected ways they might ...

  22. 5 Real Life Algebra Problems That You Solve Everyday

    Plan B: C = 45. Setting the first equation equal to the second equation will allow us to employ algebra to solve for the number of minutes that makes the two plans equal. 30 + 0.1x 30 − 30 + 0.1x 0.1x 0.1x 0.1 x = 45 = 45 − 30 = 15 = 15 0.1 = 150. Therefore, the two cell phone plans are equal when 150 minutes of total time talking are used.

  23. How to Teach Real Life Math Problem Solving Activities

    In my Math Problem Solving Word Problems resource, your students will have access to real life math problem scenarios that are relatable. Topics cover making necklaces, school shopping, fundraising, and going to the movies, to name a few. They'll be applying math concepts ranging from ratios to algebraic equations to coordinate planes.

  24. Decision Tree Examples: Simple Real Life Problems and Solutions

    Example 1: The Structure of Decision Tree. Let's explain the decision tree structure with a simple example. Each decision tree has 3 key parts: a root node. leaf nodes, and. branches. No matter what type is the decision tree, it starts with a specific decision. This decision is depicted with a box - the root node.

  25. 15 Real-Life Case Study Examples & Best Practices

    1. Georgia Tech Athletics Increase Season Ticket Sales by 80%. Georgia Tech Athletics, with its 8,000 football season ticket holders, sought for a way to increase efficiency and customer engagement. Their initial sales process involved making multiple outbound phone calls per day with no real targeting or guidelines.

  26. Business Ideas That Solve Problems: 14 Real-Life Examples

    14 businesses that were founded to solve a problem. 1. The ADU Guide. Startup story: "My journey began when I came across the widespread issue of limited housing options. Recognizing the need for ...

  27. Creative thinking skills help children overcome real-life problems

    A new study from The Ohio State University demonstrates that promoting creative thinking in children can prepare them to become more resilient to real-life problems. The researchers trained third ...

  28. Seven Common Work Problems AI Helps Me Solve

    7 Everyday Work Problems AI Helps Me Solve. It's hard to get your head around all the things artificial intelligence will do, someday. So instead focus on how it can make your life better right ...

  29. Author Talks: How to interrupt bias in the workplace

    In this edition of Author Talks, McKinsey's Mona Hamouly chats with Joan C. Williams, distinguished professor of law, chair of the Hastings Foundation, and director of the Center for WorkLife Law at UC Hastings Law.In Bias Interrupted: Creating Inclusion for Real and for Good (Harvard Business Review Press, November 2021), Williams explains how leaders can use standard business tools—data ...

  30. The Possible Collapse of the U.S. Home Insurance System

    68. Hosted by Sabrina Tavernise. Featuring Christopher Flavelle. Produced by Nina Feldman , Shannon M. Lin and Jessica Cheung. Edited by MJ Davis Lin. With Michael Benoist. Original music by Dan ...