PrepScholar

Choose Your Test

Sat / act prep online guides and tips, 113 great research paper topics.

author image

General Education

feature_pencilpaper

One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and cover a wide range of subjects so you can easily find the best topic for you.

In addition to the list of good research topics, we've included advice on what makes a good research paper topic and how you can use your topic to start writing a great paper.

What Makes a Good Research Paper Topic?

Not all research paper topics are created equal, and you want to make sure you choose a great topic before you start writing. Below are the three most important factors to consider to make sure you choose the best research paper topics.

#1: It's Something You're Interested In

A paper is always easier to write if you're interested in the topic, and you'll be more motivated to do in-depth research and write a paper that really covers the entire subject. Even if a certain research paper topic is getting a lot of buzz right now or other people seem interested in writing about it, don't feel tempted to make it your topic unless you genuinely have some sort of interest in it as well.

#2: There's Enough Information to Write a Paper

Even if you come up with the absolute best research paper topic and you're so excited to write about it, you won't be able to produce a good paper if there isn't enough research about the topic. This can happen for very specific or specialized topics, as well as topics that are too new to have enough research done on them at the moment. Easy research paper topics will always be topics with enough information to write a full-length paper.

Trying to write a research paper on a topic that doesn't have much research on it is incredibly hard, so before you decide on a topic, do a bit of preliminary searching and make sure you'll have all the information you need to write your paper.

#3: It Fits Your Teacher's Guidelines

Don't get so carried away looking at lists of research paper topics that you forget any requirements or restrictions your teacher may have put on research topic ideas. If you're writing a research paper on a health-related topic, deciding to write about the impact of rap on the music scene probably won't be allowed, but there may be some sort of leeway. For example, if you're really interested in current events but your teacher wants you to write a research paper on a history topic, you may be able to choose a topic that fits both categories, like exploring the relationship between the US and North Korea. No matter what, always get your research paper topic approved by your teacher first before you begin writing.

113 Good Research Paper Topics

Below are 113 good research topics to help you get you started on your paper. We've organized them into ten categories to make it easier to find the type of research paper topics you're looking for.

Arts/Culture

  • Discuss the main differences in art from the Italian Renaissance and the Northern Renaissance .
  • Analyze the impact a famous artist had on the world.
  • How is sexism portrayed in different types of media (music, film, video games, etc.)? Has the amount/type of sexism changed over the years?
  • How has the music of slaves brought over from Africa shaped modern American music?
  • How has rap music evolved in the past decade?
  • How has the portrayal of minorities in the media changed?

music-277279_640

Current Events

  • What have been the impacts of China's one child policy?
  • How have the goals of feminists changed over the decades?
  • How has the Trump presidency changed international relations?
  • Analyze the history of the relationship between the United States and North Korea.
  • What factors contributed to the current decline in the rate of unemployment?
  • What have been the impacts of states which have increased their minimum wage?
  • How do US immigration laws compare to immigration laws of other countries?
  • How have the US's immigration laws changed in the past few years/decades?
  • How has the Black Lives Matter movement affected discussions and view about racism in the US?
  • What impact has the Affordable Care Act had on healthcare in the US?
  • What factors contributed to the UK deciding to leave the EU (Brexit)?
  • What factors contributed to China becoming an economic power?
  • Discuss the history of Bitcoin or other cryptocurrencies  (some of which tokenize the S&P 500 Index on the blockchain) .
  • Do students in schools that eliminate grades do better in college and their careers?
  • Do students from wealthier backgrounds score higher on standardized tests?
  • Do students who receive free meals at school get higher grades compared to when they weren't receiving a free meal?
  • Do students who attend charter schools score higher on standardized tests than students in public schools?
  • Do students learn better in same-sex classrooms?
  • How does giving each student access to an iPad or laptop affect their studies?
  • What are the benefits and drawbacks of the Montessori Method ?
  • Do children who attend preschool do better in school later on?
  • What was the impact of the No Child Left Behind act?
  • How does the US education system compare to education systems in other countries?
  • What impact does mandatory physical education classes have on students' health?
  • Which methods are most effective at reducing bullying in schools?
  • Do homeschoolers who attend college do as well as students who attended traditional schools?
  • Does offering tenure increase or decrease quality of teaching?
  • How does college debt affect future life choices of students?
  • Should graduate students be able to form unions?

body_highschoolsc

  • What are different ways to lower gun-related deaths in the US?
  • How and why have divorce rates changed over time?
  • Is affirmative action still necessary in education and/or the workplace?
  • Should physician-assisted suicide be legal?
  • How has stem cell research impacted the medical field?
  • How can human trafficking be reduced in the United States/world?
  • Should people be able to donate organs in exchange for money?
  • Which types of juvenile punishment have proven most effective at preventing future crimes?
  • Has the increase in US airport security made passengers safer?
  • Analyze the immigration policies of certain countries and how they are similar and different from one another.
  • Several states have legalized recreational marijuana. What positive and negative impacts have they experienced as a result?
  • Do tariffs increase the number of domestic jobs?
  • Which prison reforms have proven most effective?
  • Should governments be able to censor certain information on the internet?
  • Which methods/programs have been most effective at reducing teen pregnancy?
  • What are the benefits and drawbacks of the Keto diet?
  • How effective are different exercise regimes for losing weight and maintaining weight loss?
  • How do the healthcare plans of various countries differ from each other?
  • What are the most effective ways to treat depression ?
  • What are the pros and cons of genetically modified foods?
  • Which methods are most effective for improving memory?
  • What can be done to lower healthcare costs in the US?
  • What factors contributed to the current opioid crisis?
  • Analyze the history and impact of the HIV/AIDS epidemic .
  • Are low-carbohydrate or low-fat diets more effective for weight loss?
  • How much exercise should the average adult be getting each week?
  • Which methods are most effective to get parents to vaccinate their children?
  • What are the pros and cons of clean needle programs?
  • How does stress affect the body?
  • Discuss the history of the conflict between Israel and the Palestinians.
  • What were the causes and effects of the Salem Witch Trials?
  • Who was responsible for the Iran-Contra situation?
  • How has New Orleans and the government's response to natural disasters changed since Hurricane Katrina?
  • What events led to the fall of the Roman Empire?
  • What were the impacts of British rule in India ?
  • Was the atomic bombing of Hiroshima and Nagasaki necessary?
  • What were the successes and failures of the women's suffrage movement in the United States?
  • What were the causes of the Civil War?
  • How did Abraham Lincoln's assassination impact the country and reconstruction after the Civil War?
  • Which factors contributed to the colonies winning the American Revolution?
  • What caused Hitler's rise to power?
  • Discuss how a specific invention impacted history.
  • What led to Cleopatra's fall as ruler of Egypt?
  • How has Japan changed and evolved over the centuries?
  • What were the causes of the Rwandan genocide ?

main_lincoln

  • Why did Martin Luther decide to split with the Catholic Church?
  • Analyze the history and impact of a well-known cult (Jonestown, Manson family, etc.)
  • How did the sexual abuse scandal impact how people view the Catholic Church?
  • How has the Catholic church's power changed over the past decades/centuries?
  • What are the causes behind the rise in atheism/ agnosticism in the United States?
  • What were the influences in Siddhartha's life resulted in him becoming the Buddha?
  • How has media portrayal of Islam/Muslims changed since September 11th?

Science/Environment

  • How has the earth's climate changed in the past few decades?
  • How has the use and elimination of DDT affected bird populations in the US?
  • Analyze how the number and severity of natural disasters have increased in the past few decades.
  • Analyze deforestation rates in a certain area or globally over a period of time.
  • How have past oil spills changed regulations and cleanup methods?
  • How has the Flint water crisis changed water regulation safety?
  • What are the pros and cons of fracking?
  • What impact has the Paris Climate Agreement had so far?
  • What have NASA's biggest successes and failures been?
  • How can we improve access to clean water around the world?
  • Does ecotourism actually have a positive impact on the environment?
  • Should the US rely on nuclear energy more?
  • What can be done to save amphibian species currently at risk of extinction?
  • What impact has climate change had on coral reefs?
  • How are black holes created?
  • Are teens who spend more time on social media more likely to suffer anxiety and/or depression?
  • How will the loss of net neutrality affect internet users?
  • Analyze the history and progress of self-driving vehicles.
  • How has the use of drones changed surveillance and warfare methods?
  • Has social media made people more or less connected?
  • What progress has currently been made with artificial intelligence ?
  • Do smartphones increase or decrease workplace productivity?
  • What are the most effective ways to use technology in the classroom?
  • How is Google search affecting our intelligence?
  • When is the best age for a child to begin owning a smartphone?
  • Has frequent texting reduced teen literacy rates?

body_iphone2

How to Write a Great Research Paper

Even great research paper topics won't give you a great research paper if you don't hone your topic before and during the writing process. Follow these three tips to turn good research paper topics into great papers.

#1: Figure Out Your Thesis Early

Before you start writing a single word of your paper, you first need to know what your thesis will be. Your thesis is a statement that explains what you intend to prove/show in your paper. Every sentence in your research paper will relate back to your thesis, so you don't want to start writing without it!

As some examples, if you're writing a research paper on if students learn better in same-sex classrooms, your thesis might be "Research has shown that elementary-age students in same-sex classrooms score higher on standardized tests and report feeling more comfortable in the classroom."

If you're writing a paper on the causes of the Civil War, your thesis might be "While the dispute between the North and South over slavery is the most well-known cause of the Civil War, other key causes include differences in the economies of the North and South, states' rights, and territorial expansion."

#2: Back Every Statement Up With Research

Remember, this is a research paper you're writing, so you'll need to use lots of research to make your points. Every statement you give must be backed up with research, properly cited the way your teacher requested. You're allowed to include opinions of your own, but they must also be supported by the research you give.

#3: Do Your Research Before You Begin Writing

You don't want to start writing your research paper and then learn that there isn't enough research to back up the points you're making, or, even worse, that the research contradicts the points you're trying to make!

Get most of your research on your good research topics done before you begin writing. Then use the research you've collected to create a rough outline of what your paper will cover and the key points you're going to make. This will help keep your paper clear and organized, and it'll ensure you have enough research to produce a strong paper.

What's Next?

Are you also learning about dynamic equilibrium in your science class? We break this sometimes tricky concept down so it's easy to understand in our complete guide to dynamic equilibrium .

Thinking about becoming a nurse practitioner? Nurse practitioners have one of the fastest growing careers in the country, and we have all the information you need to know about what to expect from nurse practitioner school .

Want to know the fastest and easiest ways to convert between Fahrenheit and Celsius? We've got you covered! Check out our guide to the best ways to convert Celsius to Fahrenheit (or vice versa).

These recommendations are based solely on our knowledge and experience. If you purchase an item through one of our links, PrepScholar may receive a commission.

author image

Christine graduated from Michigan State University with degrees in Environmental Biology and Geography and received her Master's from Duke University. In high school she scored in the 99th percentile on the SAT and was named a National Merit Finalist. She has taught English and biology in several countries.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

Follow us on Facebook (icon)

Get the latest articles and test prep tips!

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”
  • Discoveries
  • Right Journal
  • Journal Metrics
  • Journal Fit
  • Abbreviation
  • In-Text Citations
  • Bibliographies
  • Writing an Article
  • Peer Review Types
  • Acknowledgements
  • Withdrawing a Paper
  • Form Letter
  • ISO, ANSI, CFR
  • Google Scholar
  • Journal Manuscript Editing
  • Research Manuscript Editing

Book Editing

  • Manuscript Editing Services

Medical Editing

  • Bioscience Editing
  • Physical Science Editing
  • PhD Thesis Editing Services
  • PhD Editing
  • Master’s Proofreading
  • Bachelor’s Editing
  • Dissertation Proofreading Services
  • Best Dissertation Proofreaders
  • Masters Dissertation Proofreading
  • PhD Proofreaders
  • Proofreading PhD Thesis Price
  • Journal Article Editing
  • Book Editing Service
  • Editing and Proofreading Services
  • Research Paper Editing
  • Medical Manuscript Editing
  • Academic Editing
  • Social Sciences Editing
  • Academic Proofreading
  • PhD Theses Editing
  • Dissertation Proofreading
  • Proofreading Rates UK
  • Medical Proofreading
  • PhD Proofreading Services UK
  • Academic Proofreading Services UK

Medical Editing Services

  • Life Science Editing
  • Biomedical Editing
  • Environmental Science Editing
  • Pharmaceutical Science Editing
  • Economics Editing
  • Psychology Editing
  • Sociology Editing
  • Archaeology Editing
  • History Paper Editing
  • Anthropology Editing
  • Law Paper Editing
  • Engineering Paper Editing
  • Technical Paper Editing
  • Philosophy Editing
  • PhD Dissertation Proofreading
  • Lektorat Englisch
  • Akademisches Lektorat
  • Lektorat Englisch Preise
  • Wissenschaftliches Lektorat
  • Lektorat Doktorarbeit

PhD Thesis Editing

  • Thesis Proofreading Services
  • PhD Thesis Proofreading
  • Proofreading Thesis Cost
  • Proofreading Thesis
  • Thesis Editing Services
  • Professional Thesis Editing
  • Thesis Editing Cost
  • Proofreading Dissertation
  • Dissertation Proofreading Cost
  • Dissertation Proofreader
  • Correção de Artigos Científicos
  • Correção de Trabalhos Academicos
  • Serviços de Correção de Inglês
  • Correção de Dissertação
  • Correção de Textos Precos
  • 定額 ネイティブチェック
  • Copy Editing
  • FREE Courses
  • Revision en Ingles
  • Revision de Textos en Ingles
  • Revision de Tesis
  • Revision Medica en Ingles
  • Revision de Tesis Precio
  • Revisão de Artigos Científicos
  • Revisão de Trabalhos Academicos
  • Serviços de Revisão de Inglês
  • Revisão de Dissertação
  • Revisão de Textos Precos
  • Corrección de Textos en Ingles
  • Corrección de Tesis
  • Corrección de Tesis Precio
  • Corrección Medica en Ingles
  • Corrector ingles

Select Page

Examples of Research Paper Topics in Different Study Areas

Posted by Rene Tetzner | Sep 19, 2021 | How To Get Published | 0 |

Examples of Research Paper Topics in Different Study Areas

72 Examples of Research Paper Topics in 18 Different Study Areas The examples of research paper topics listed in this post range across disciplines and fields of study to help a wide range of academics, scientists and students choose and develop topics with true research potential that will prove engaging not only for those authors, but also for their readers. A topic of particular personal interest & relevance to the researcher & his or her life tends to make the research and writing processes more exciting and enjoyable. It can also be helpful to know a little about a topic in advance, but prior knowledge is never as important as a true passion for a topic.

example of research journal topic

The topic chosen for a research paper must be appropriate for the field of study and observe any specific guidelines or requirements associated with the intended paper. The editor of a literary journal, for instance, or the instructor of a literature course will want a paper exploring some aspect of literature, usually the literature of a particular period, genre, style or author, and the same kind of focus will also be required in other research areas. The length and scope of the paper as well as the time available to complete the research and writing should certainly be considered when choosing a topic, and it is always wise to preview recently published sources on a topic to determine how the topic has been treated in scholarship and whether there is enough material to enable the new research. Topics that are of concern to both specialists and more general readers tend to be particularly successful, so I have aimed for topics of this kind in the list below. Areas of interest appear in alphabetical order, and helpful tips are offered amidst the example topics.

example of research journal topic

ANIMALS & ANIMAL RIGHTS 1. Consider animal testing in relation to animal rights. Do the benefits of animal testing outweigh the suffering of laboratory animals or not? This topic could be wide and general or very closely focussed on one kind of animal or the testing that takes place in a single laboratory. 2. Should animals be used by humans as food? This could include a study of slaughterhouses and processing facilities and perhaps an argument for or against a vegetarian or vegan diet. 3. There should (or should not) be greater penalties for cruelty to animals. Specific instances and their legal ramifications could be described and discussed as meaningful case studies. 4. Is it right to use animals in sports and entertainment? Animals that become hunting trophies, captive cetaceans entertaining tourists, rodeo horses, circus elephants, animals in film, etc. – the possibilities for discussion are virtually endless. Tip: Always be sure to support whatever argument you pursue with convincing evidence acquired through sound research methods. Opinions and feelings may play a part in choosing a research topic and formulating ideas, but they are not enough on their own, no matter how strong or fashionable they may be.

example of research journal topic

ART & ART HISTORY 1. Art is (or is not) a vital aspect of a primary (or secondary) school education and should (or should not) be included in the curriculum. Discuss. Tip: Since most authors of research papers are well educated, this is the type of topic that could easily include evidence derived from the researcher’s own experiences, whether positive or negative. 2. The importance (or perhaps role) of illustrations in children’s books. A selection of different examples to compare and contrast or a close focus on a particular book, series or author would prove effective. Alternatively, the use of art in books written for adults could be considered. 3. Discuss a work of art in relation to a poem or story, a piece of music, a remarkable building or some other product of human creativity. This topic encourages an interdisciplinary approach that can be particularly interesting, but careful thought should be given to choosing the pieces for comparison. 4. Art history courses often define and describe art periods, styles, schools and the like, so exploring the characteristics, development or impact of any of those or of a particular artist makes a good topic. If specialised terminology is required for this topic, it should be carefully explained and used both accurately and consistently.

COMPUTERS & COMPUTER SCIENCE 1. Mac versus PC: which computer is better and why? Opinions tend to be strong and in many cases uninformed on this issue, which can be an important point for discussion, but it is essential in a research paper to investigate and discuss the facts about the two types of computer. 2. Do spell checkers, grammar checkers and autocorrect functions strengthen or weaken the writing skills of computer users? Consider more than one of these tools in the investigation. 3. Identify the next great development in computer science and discuss why you think it will be so very important. 4. What role or roles do you think artificial intelligence is now playing and/or will in the future play in human evolution?

ECONOMICS & BUSINESS STUDIES 1. Is the wealth of the world distributed equally among its people? What could be done to promote greater equality? 2. Consider the consequences of some aspect of salaries or pay that is currently in the news, such as early-career professionals working for free, promotions given without raises or unacceptably low minimum wages. 3. In what ways and to what degree do social media and networking sites function as instruments for business promotion? 4. Are large corporations able to break the law and get away with it in ways that small businesses and individuals cannot? Why or why not? Tip: Topic 4 here is the type of topic for which there may be far more opinions than actual facts available, so it is important to be especially careful about the quality of evidence used to support an argument.

EDUCATION & SCHOOLS 1. Explore the benefits and drawbacks of a ‘no child left behind’ educational policy. 2. Bullying occurs in the schools of many countries. How serious do you think the problem is in your area, and what, if anything, could be done to improve the situation? 3. Plagiarism is on the rise in modern universities, yet many accused students appear not to understand their error. Explore the concept of plagiarism in the twenty-first century and discuss its consequences. 4. Does religion have a valid place in public schools? If so, what might its role be? If not, why not?

ENGLISH LITERATURE 1. Compare and contrast two different literary texts or the writing of two different authors. Consider a number of aspects such as genre, style, character development, metaphor, imagery and word play in examining and discussing the texts. Tip: Comparing and contrasting two or more things, events or problems in a research paper can be a useful approach for initiating and focussing an investigation. The secret to success is to choose the items for comparison with care and to narrow the topic as much as necessary for the intended paper. 2. Discuss the role, suppression and/or rediscovery of pre-twentieth-century women authors in the English literary canon as it is usually taught in schools. 3. Investigate and discuss the sophisticated use of irony to establish character and communicate potentially unwelcome concepts to readers in the writing of a major author such as Chaucer, Shakespeare or Dickens. 4. Does quality literature have a positive effect on society? Does it make readers wiser, more perceptive, more empathetic or perhaps better writers? Views can be supported with both personal and research-based evidence.

ENVIRONMENTAL STUDIES & GLOBAL WARMING 1. Is global warming a reality or a hoax? If it really is happening, what are the primary causes? Can humanity make a difference? 2. Oil and mineral exploration has recently taken place in and very close to wildlife reserves and national parks. Consider whether this should be allowed or not. 3. Investigate power sources in your region or country. Are they environmentally sound? What sources of alternate energy might be especially well suited to the area and why? 4. Learn all you can about an endangered wildlife species or group in your locality. Consider the current state of the animals, the reasons why they have become endangered and the actions that have been used and could be used to increase their chances of survival. Tip: A great deal of propaganda is generated around certain issues of current concern, and environmental matters are certainly among them. It is therefore imperative to look for the signs of authoritative scientific reporting as you conduct your research and to be both specific and precise in discussing subjects and events.

FAMILIES, FOOD & NUTRITION 1. Explore the relationship between nutrition and family health. This topic could easily be narrowed to focus, for instance, on breastfeeding and baby health or perhaps the health and social benefits of a family sitting down together over a home-cooked meal. 2. How have fast-food restaurants affected family nutrition and health? Should the menus of such restaurants be regulated? 3. Investigate local family farms and food producers in your area to determine how much of your diet could be acquired from these sources. What would be missing? Would an attempt to purchase as much of your food from local sources as possible result in changes to your diet? 4. Should parents be able to spank their children? Why or why not?

HEALTH & MEDICINE 1. Explore one of the health problems that currently pose particular challenges for humanity and are under intense investigation in the published scholarship: depression, Alzheimer’s, cancer, AIDS and autism are good examples. Consider how the condition affects individuals and society and what might be done to alleviate suffering and cost. 2. Study a group of teenagers under treatment for depression to discover common predictors of the disease and suggest how this information could help in the prevention of teenage depression. Tip: As the first two topics here indicate, when writing a research paper about human health an author should usually dedicate part of the discussion to improving the lives of the people under investigation. 3. Do the benefits of vaccinating children outweigh the risks? Consider different types of vaccinations, the frequency and nature of complications, and the risks to society. 4. Should healthcare and medication be available free of charge to all people? Why or why not?

HISTORY 1. Investigate and discuss the importance of a major historical event, such as the first moon landing or the assassination of J.F. Kennedy, of some decisive battle or war, such as the Battle of Hastings or the American Civil War, or of some revolutionary document, such as Magna Carta or the Declaration of Independence. Why was it so very important? 2. Did Columbus really ‘discover’ America first? Consider other voyagers – the Vikings and Chinese, for instance – as well as native populations. 3. Explore the role and importance of salt in world history. This topic could be productively narrowed to focus on a particular region or period. 4. Learn about a historical individual, family or group through their books. The extensive devotional library of a twelfth-century monastery, the single anthology of romances owned by a fifteenth-century merchant family or the esoteric book collection cherished by a renaissance scholar could be considered in terms of content and examined for reader responses. The possibilities are endless as long as the books can be firmly connected with their historical readers.

THE INTERNET 1. Has the internet affected the ways in which academic and scientific research is published and made available to readers? Consider factors such as open access, publisher paywalls, article retractions and scholarly blogs. 2. Does frequent use of the internet enhance or undermine a child’s health, development, education and/or social skills? Consider what children are doing online as well as what they might be doing were they not online. 3. How big an issue is online security or cyber security as far as you are concerned? What makes you feel safe and secure about your online activities? What might make you feel safer? 4. Examine one or more of the major problems associated with the internet such as child pornography, erroneous information or copyright infringement. Are there effective ways to prevent or eliminate such problems?

LAW 1. Look into the incarceration rates in your country. Are they higher or lower than the rates in other countries? Can you detect a reason for any significant differences? Do you think incarceration is an effective solution for managing crime and promoting the rehabilitation of criminals? 2. Gun control has been an issue of hot debate in recent years. Consider a variety of perspectives as you argue your view of the matter. 3. Should people be legally able to take their own lives when they are suffering from a debilitating terminal disease? Discuss. 4. Despite negative publicity and dire consequences, drivers continue to text while operating vehicles. Why do you think this happens and what would be the most effective way to prevent the problem?

MARKETING & COMMUNICATIONS 1. Marketing invades nearly every aspect of modern life. Based on your own experience and that of friends and family, do you think the impact of these impersonal communications is predominantly positive or negative? 2. What kind of regulations or limitations apply to marketing products to children in your country or region? Are they appropriate, inadequate or excessive? 3. Discuss the pros and cons of outsourcing customer services. Comparing the views of customers with that of businesses will no doubt prove enlightening. 4. Has all the communicating we do via text messaging, email, social media, blog sites and professional online platforms improved our ability to communicate in person? Be sure to share your reasoning and support your viewpoint.

POLITICS 1. Investigate and discuss the unique nature of the Trump presidency and its implications both within the United States and beyond. Tip: For many research paper topics, including the one above, it is essential to recognise your own national and political perspective (Republican American, Liberal Canadian, etc.), to achieve some level of objectivity and to support your argument with research-based evidence. 2. Examine the conditions and forces associated with the rise of Nazi Germany. Was WWII inevitable? The focus of this topic could be shifted to any major war, such as WWI, the Battle of Hastings or the American Civil War. Discussion of a war’s aftermath can be of interest as well. 3. An enormous amount of money is spent on political advertising during election campaigns, which usually leaves neighbourhoods cluttered with flyers and posters. Is this a legitimate expense? Should parties be responsible for cleaning up the litter after a campaign? 4. Choose a significant political scandal or event that has recently occurred in your country or region and discuss how it began or occurred, how news of it was spread and how it affected individuals and society in the area.

RELIGION & BELIEFS 1. Are dreams meaningful or simply games of the sleeping mind? Research a variety of perspectives on the matter and consider the possible functions and causes of dreams such as prophecy, therapy, eating before bed or falling asleep in an anxious or troubled state. 2. Why are religious cults so appealing and powerful? Consider individual cases in your discussion. 3. Does the regular attendance of citizens at formal religious services have an impact on crime in a region? This topic could be narrowed by choosing a specific type of crime or focussing on children, teenagers or families. 4. Education rather than indoctrination is an ideal for the role of religion in schools. How might this ideal be achieved? Tip: When discussing religion and beliefs, be sure to avoid unsubstantiated value judgements. Instead, base your interpretations firmly on the evidence gleaned from sound research practices.

SOCIOLOGY & SOCIAL CONCERNS 1. Should parents be allowed to engineer designer babies? Different situations and reasons for genetic manipulation should be considered along with a variety of perspectives on the matter. 2. The successful settlement of immigrants in a new country often depends upon the social services immediately available to them. What sort of financial, medical and educational assistance does your country provide for immigrants and refugees when they arrive? Should more or less be provided? 3. Terrorism creates a fear culture that can become a society’s own unintentional terrorist. Explore and discuss how this is true or false of the effects of terrorism in the twenty-first century. 4. Discuss gay rights in relation to your own community. Consider whether gay marriage is permitted, whether gay couples can adopt children, whether gay individuals are welcome at religious services and social events, whether gay pride is publicly displayed and other telltale signs. Could the situation be better?

TECHNOLOGY & INDUSTRIALISATION 1. How did the steel sword, the long bow, gunpowder, airplanes, biological warfare or the atomic bomb change the nature of warfare forever? The focus could be on one of these technological developments or two or more could be compared in a single paper. 2. Investigate how home computers, tablets and smart phones have changed human beings, their behaviours and their culture. Be sure to consult published scholarship on the topic as well as your own experience. Tip: The first of the topics above focuses on historical impacts, whereas the second investigates a current impact, but both should be approached in a research paper context with an equally formal and objective perspective. 3. Railroads and trains have been identified as primary forces in the exploitation, settlement and industrialisation of countries and continents. How is this true or not of your homeland? 4. How has the use of fossil fuels shaped the modern world? This topic could be narrowed to focus on a particular or local area or on one major effect of the predominance of fossil fuels, such as pollution from oil spills or the slow development of alternate energy sources.

WOMEN’S STUDIES 1. Many young women suffer from anorexia and bulimia. Learn all you can about these eating disorders, their causes and their symptoms. How significant is the impact and what might improve the situation? 2. Investigate a major event or development in women’s history, such as the suffrage movement, the admission of women to institutes of higher education, the Salem witch trials or the legalisation of birth control or abortion. What were the immediate and lasting implications of the event or development? 3. Women still tend to earn less money than men for performing the same jobs and duties. Consider specific examples as you discuss why this is the case and suggest how the problem might be realistically remedied. 4. Do beauty contests empower or objectify women? This topic might be shifted to focus instead on female strippers, nude centrefolds or the women who act in pornographic films.

Tip: When writing about research of the kind outlined in the last topic here, do remember to be tactful and professional when presenting evidence. The point is to persuade, not offend your readers.

You might be interested in Services offered by Proof-Reading-Service.com

Journal editing.

Journal article editing services

PhD thesis editing services

Scientific Editing

Scientific editing services

Manuscript Editing

Manuscript editing services

Expert Editing

Expert editing for all papers

Research Editing

Research paper editing services

Professional book editing services

Summary This post provides seventy-two examples of engaging research paper topics arranged in eighteen different study areas

Examples of Research Paper Topics

About the author.

Rene Tetzner

Rene Tetzner

Rene Tetzner's blog posts dedicated to academic and scientific writing and publishing. Although the focus is on publishing research papers in peer-reviewed journals, many other important aspects of research-based writing, editing and publishing are addressed in helpful detail.

Related Posts

Choosing the Right Journal

Choosing the Right Journal

September 10, 2021

Example of a Quantitative Research Paper

Example of a Quantitative Research Paper

September 4, 2021

What Is a Good H-Index Required for an Academic Position?

What Is a Good H-Index Required for an Academic Position?

September 3, 2021

Acknowledgements Example for an Academic Research Paper

Acknowledgements Example for an Academic Research Paper

September 1, 2021

Our Recent Posts

Examples of Research Paper Topics in Different Study Areas

Our review ratings

  • Examples of Research Paper Topics in Different Study Areas Score: 98%
  • Dealing with Language Problems – Journal Editor’s Feedback Score: 95%
  • Making Good Use of a Professional Proofreader Score: 92%
  • How To Format Your Journal Paper Using Published Articles Score: 95%
  • Journal Rejection as Inspiration for a New Perspective Score: 95%

Explore our Categories

  • Abbreviation in Academic Writing (4)
  • Career Advice for Academics (5)
  • Dealing with Paper Rejection (11)
  • Grammar in Academic Writing (5)
  • Help with Peer Review (7)
  • How To Get Published (146)
  • Paper Writing Advice (17)
  • Referencing & Bibliographies (16)

Frontiers | Science News

  • Science News

Research Topics

Top 10 research topics from 2021.

example of research journal topic

Find the answers to your biggest research questions from 2021. With collective views of over 3.7 million, researchers explored topics spanning from nutritional immunology and political misinformation to sustainable agriculture and the human-dog bond .

Research Topics:

example of research journal topic

1. Infectious disease

  • 1,643,000 views
  • 29 articles

example of research journal topic

2. Nutritional immunology

  • 768,000 views

example of research journal topic

3. Music therapy

  • 268,000 views
  • 44 articles

example of research journal topic

4. Political misinformation

  • 219,000 views
  • 11 articles

example of research journal topic

5. Plant science

  • 198,000 views
  • 15 articles

example of research journal topic

6. Sustainable agriculture

  • 168,000 views
  • 49 articles

example of research journal topic

7. Mental health

  • 136,000 views
  • 22 articles

example of research journal topic

8. Aging brains

  • 134,000 views
  • 18 articles

example of research journal topic

Benefits of human-dog interactions

  • 229,000 views
  • 13 articles

example of research journal topic

10. Mood disorders

  • 102,000 views
  • 12 articles

Shape the future of your field

Become a guest editor for an article collection around your own research theme. Benefit from increased impact and discoverability, a dedicated platform and support team, and rigorous peer review for every paper.

Suggest your topic

Post related info

January 17, 2022

Frontiers Communications

Frontiers Communications

Post categories, sustainability, related subjects, research topics, related content.

example of research journal topic

Pride Month 2021: Research Topics on Visibility, Unity, and Equality

example of research journal topic

International Earth Day 2021: Research Topics to Restore Our Earth

example of research journal topic

World Bee Day 2021: Research Topics to Build Back Better for Bees

Latest posts.

example of research journal topic

‘Extraordinary’ 4,000-year-old Egyptian skull may show signs of attempts to treat cancer

example of research journal topic

AI, open science, and the extreme weather pandemic: Takeaways from SXSW 2024

example of research journal topic

Registration open: Dr Eric Topol to explore how AI will shape the future of healthcare at Frontiers Forum virtual event

example of research journal topic

Big data, AI, and personalized medicine: scientists reveal playbook aiming to revolutionize healthcare

example of research journal topic

Babies in the womb exposed to two languages hear speech differently when born

Grad Coach (R)

Get Access To 1000+ Research Topic Ideas

If you’re trying to find a suitable research topic for your dissertation, thesis or research project, this is for you. Simply put, this mega list of research topic ideas will help stimulate your thinking and fast-track the topic ideation process.

The list provides 1000+ topic ideas across 25 research areas, including:

  • Accounting & finance
  • Artificial intelligence (AI) and machine learning
  • Biotech and genetic engineering
  • Blockchain and crypto
  • Business, management and leadership
  • Communication
  • Cybersecurity
  • Data science and analytics
  • Education and training
  • Engineering
  • Environmental science and climate change
  • Law and public policy
  • Materials science
  • Mental health
  • Neuroscience
  • Political science
  • Psychology and sociology
  • Public administration
  • Public health and epidemiology
  • Robotics and automation

Simply put, this is the largest single source of research topic inspiration you’ll find. Plus, you’ll get free access to our popular webinar , Research Topic Ideation 101, as well as our tried and trusted research proposal template . 

PS – You can also download our free dissertation template below 🙂

example of research journal topic

Research Paper Topics

Academic Writing Service

Choose your Topic Smart

What starts well, ends well, so you need to be really careful with research paper topics. The topic of a research paper defines the whole piece of writing. How often have you chosen the book by its title? First impression is often influential, so make sure your topic will attract the reader instantly. By choosing your topic smart, the half of your job is done. That is why we have singled out several secrets on how to pick the best topic for you. Also see the list of 1000 thesis topics .

Browse Research Paper Topics by Category:

  • Anthropology
  • Argumentative
  • Communication
  • Criminal Justice
  • Environmental
  • Political Science

What is the Key to a Perfect Topic for a Research Paper?

The key to a perfect topic includes three main secrets: interest, precision, and innovation.

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% off with 24start discount code.

It is impossible to do something great if you have no interest in what you are doing. For this reason, make sure you choose the topic that drives you. If you are bored by what you investigate, do not expect that your paper will be exciting. Right now, spend some minutes or even hours thinking about what interests you. Jot down all your preferences in life, science, politics, social issues etc. It will help you get the idea what you can write about.

After realizing what drives you, narrow this general idea to a more specific one. A research paper is not about beating around the bush. You will need clear facts and data. You will have to provide evidence to your ideas. You will need to be precise, specific and convincing.

Finally, the idea of any research is that it should be surprising and distinctive. Think what makes your perspective and approach special. What is the novelty of your research?

Use Technology

If you are still stuck, use technology. Today we have an opportunity to make our lives easier with a bit of technology used. You can find paper topic generators online. This software will examine the category you want to investigate and the keywords from your research. Within several seconds, this program generates paper topics, so you can try it yourself. It can help you get started with your assignment.

100% Effective Advice

We will now give you advice that is 100% effective when picking the topic. Firstly, forget about what others may think about your topic. This is your topic and this is your perception of the world. Stay personal and let your personal style get you the top grades. Secondly, never decide on the topic before analyzing the background for your research. By this we mean, investigate the topic before you start the research proper. It happens quite often that students choose the topic and later they realize there is no data or information to use. That is why conduct some research beforehand. Thirdly, read other researchers’ papers on the topic you want to write about. It will help you get the idea of the investigation. Moreover, it will help you understand whether you truly want to write a paper on this topic. Finally, when you have picked the topic, started your research, make sure you dedicate your time and energy. If you want to get high results, you need to study every little details of your research.

Examine Different Ideas

People often come up with genius ideas after analyzing thousands of other people’s ideas. This is how our brain works. That is why you can analyze other people’s ideas for research paper topics and think up your own. If you have never written any paper of that kind, it will help you understand the gist of this assignment, the style and the requirements. By comparing different topics, you can motivate yourself and get inspired with these ideas. Luckily, you have come to the right place. Here is our list of top 100 research paper topics.

Top 10 Argumentative Research Paper Topics:

Argumentative research papers examine some controversial issues. Your task is to provide your point of view, your argument, and support your idea with the evidence. This academic assignment requires appropriate structuring and formatting.

  • Does a College Education Pay?
  • Dual Career Families and Working Mothers
  • Electronic Copyright and Piracy
  • Drinking on Campus
  • Education for Homeless Children
  • Glass ceiling
  • Honor System at Colleges
  • Sex and Violence on TV
  • Word Population and Hunger
  • World Trade and Globalization

Top 10 Economics Research Paper Topics:

If you are studying economics, you can find various topics at our site. Check out topics of micro- and macroeconomics. See ideas for urgent economic problems, economic models and strategies. Get inspired and come up with your perfect topic.

  • Beyond Make-or-Buy: Advances in Transaction Cost Economics
  • Economic Aspects of Cultural Heritage
  • Economics of Energy Markets
  • Globalization and Inequality
  • International Trade and Trade Restrictions
  • Aggregate Expenditures Model and Equilibrium Output
  • Taxes Versus Standards
  • Predatory Pricing and Strategic Entry Barriers
  • Marxian and Institutional Industrial Relations in the United States
  • Twentieth-Century Economic Methodology

Top 10 Education Research Paper Topics:

Education has so many questions, and yet few answers. The list of education topic is endless. We have chosen the top 10 topics on the urgent issues in education. You can find ideas related to different approaches, methodology, classroom management, etc.

  • Teachers Thinking About Their Practice
  • Cognitive Approaches to Motivation in Education
  • Responsive Classroom Management
  • Ten Steps to Complex Learning
  • Economics and School-to-Work
  • Reading and Literacy in Adolescence
  • Diversifying the Teaching Force
  • Teacher-Student Relationships
  • Preparing for College and Graduate School
  • Role of Professional Learning

Top 10 History Research Paper Topics:

Choose your topic regarding cultural, economic, environmental, military, political or social history. See what other researchers investigated, compare their ideas and pick the topic that interests you.

  • European Expansion
  • Orientalism
  • Current trends in Historiography
  • Green Revolution
  • Religion and War
  • Women’s Emancipation Movements
  • History of Civilization

Top 10 Psychology Research Paper Topics:

The list of psychology categories and topics is enormous. We have singled out the most popular topics on psychology in 2019. It is mostly topics on modern psychology. Choose the topic the appeals to you the most or ask our professionals to help you come up with some original idea.

  • Imaging Techniques for the Localization of Brain Function
  • Memory and Eyewitness Testimony
  • Traditional Neuroscience Research Methods
  • Meditation and the Relaxation Response
  • Assessment of Mental Health in Older Adults
  • Cross-Cultural Psychology and Research
  • Industrial and Organizational Psychology
  • Diagnostic and Statistical Manual of Mental Disorders
  • Prejudice and Stereotyping
  • Nature Versus Nurture

Top 10 Biology Research Paper Topics:

Here you can find topics related to the science of all forms of life. Examine the topics from different fields in biology and choose the best one for you.

  • Biological Warfare
  • Clone and Cloning
  • Genetic Disorders
  • Genetic Engineering
  • Kangaroos and Wallabies
  • Mendelian Laws of Inheritance
  • Molecular Biology
  • Sexually Transmitted Diseases

Top 10 Chemistry Research Paper Topics:

The best way to understand chemistry is to write a paper on chemistry topic. Below you can see the topics from different fields of chemistry: organic, inorganic, physical, analytical and others.

  • Acids and Bases
  • Alkaline Earth Metals
  • Dyes and Pigments
  • Chemical Warfare
  • Industrial Minerals
  • Photochemistry
  • Soaps and Detergents
  • Transition Elements

Top 10 Physics Research Paper Topics:

Check out the topics on classical and modern physics. Find ideas for writing about interrelationships of physics to other sciences.

  • Aerodynamics
  • Atomic Theory
  • Celestial Mechanics
  • Fluid Dynamics
  • Magnetic recording
  • Microwave Communication
  • Quantum mechanics
  • Subatomic particles

Top 10 Sociology Research Paper Topics:

Find ideas related to different sociological theories, research and methodologies.

  • Feminist Methodologies and Epistemology
  • Quality-of-Life Research
  • Sociology of Men and Masculinity
  • Sociology of Leisure and Recreation
  • Environmental Sociology
  • Teaching and Learning in Sociology
  • The History of Sociology: The North American Perspective
  • The Sociology of Voluntary Associations
  • Marriage and Divorce in the United States
  • Urban Sociology in the 21 st Century

Top 10 Technology Research Paper Topics:

See topics related to the cutting-edge technology or dive into history of electronics, or even early advances in agriculture.

  • Food Preservation: Freeze Drying, Irradiation, and Vacuum Packing
  • Tissue Culturing
  • Digital Telephony
  • Computer-Aided Control Technology
  • Minerals Prospecting
  • Prefabricated Buildings
  • Timber Engineering
  • Quantum Electronic Devices
  • Thermal Water Moderated Nuclear Reactors
  • Long Range Radars and Early Warning Systems

What Makes a Good Topic for a Research Paper?

A good research paper topic is the one that is successful and manageable in your particular case. A successful research paper poses an interesting question you can actually answer. Just as important, it poses a question you can answer within the time available. The question should be one that interests you and deserves exploration. It might be an empirical question or a theoretical puzzle. In some fields, it might be a practical problem or policy issue. Whatever the question is, you need to mark off its boundaries clearly and intelligently so you can complete the research paper and not get lost in the woods. That means your topic should be manageable as well as interesting and important.

A topic is  manageable  if you can:

  • Master the relevant literature
  • Collect and analyze the necessary data
  • Answer the key questions you have posed
  • Do it all within the time available, with the skills you have

A topic is  important  if it:

  • Touches directly on major theoretical issues and debates, or
  • Addresses substantive topics of great interest in your field

Ideally, your topic can do both, engaging theoretical and substantive issues. In elementary education, for example, parents, teachers, scholars, and public officials all debate the effectiveness of charter schools, the impact of vouchers, and the value of different reading programs. A research paper on any of these would resonate within the university and well beyond it. Still, as you approach such topics, you need to limit the scope of your investigation so you can finish your research and writing on time. After all, to be a good research paper, it first has to be a completed one. A successful research paper poses an interesting question you can actually answer within the time available for the project. Some problems are simply too grand, too sweeping to master within the time limits. Some are too minor to interest you or anybody else.

The solution, however, is not to find a lukewarm bowl of porridge, a bland compromise. Nor is it to abandon your interest in larger, more profound issues such as the relationship between school organization and educational achievement or between immigration and poverty. Rather, the solution is to select a well-defined topic that is closely linked to some larger issue and then explore that link. Your research paper will succeed if you nail a well-defined topic. It will rise to excellence if you probe that topic deeply and show how it illuminates wider issues.The best theses deal with important issues, framed in manageable ways. The goal is to select a well-defined topic that is closely linked to some larger issue and can illuminate it.

You can begin your project with either a large issue or a narrowly defined topic, depending on your interests and the ideas you have generated. Whichever way you start, the goals are the same: to connect the two in meaningful ways and to explore your specific topic in depth.

Of course, the choice of a particular research paper topic depends on the course you’re taking. Our site can offer you the following research paper topics and example research papers:

Moving from a Research Paper Idea to a Research Paper Topic

Let’s begin as most students actually do, by going from a “big issue” to a more manageable research paper topic. Suppose you start with a big question such as, “Why has the United States fought so many wars since 1945?” That’s certainly a big, important question. Unfortunately, it’s too complex and sprawling to cover well in a research paper. Working with your professor or instructor, you could zero in on a related but feasible research topic, such as “Why did the Johnson administration choose to escalate the U.S. war in Vietnam?” By choosing this topic, your research paper can focus on a specific war and, within that, on a few crucial years in the mid-1960s.

You can draw on major works covering all aspects of the Vietnam War and the Johnson administration’s decision making. You have access to policy memos that were once stamped top secret. These primary documents have now been declassified, published by the State Department, and made available to research libraries. Many are readily available on the Web. You can also take advantage of top-quality secondary sources (that is, books and articles based on primary documents, interviews, and other research data).

Drawing on these primary and secondary sources, you can uncover and critique the reasons behind U.S. military escalation. As you answer this well-defined question about Vietnam, you can (and you should) return to the larger themes that interest you, namely, “What does the escalation in Southeast Asia tell us about the global projection of U.S. military power since 1945?” As one of America’s largest military engagements since World War II, the war in Vietnam should tell us a great deal about the more general question.

The goal here is to pick a good case to study, one that is compelling in its own right and speaks to the larger issue. It need not be a typical example, but it does need to illuminate the larger question. Some cases are better than others precisely because they illuminate larger issues. That’s why choosing the best cases makes such a difference in your research paper.

Since you are interested in why the United States has fought so often since 1945, you probably shouldn’t focus on U.S. invasions of Grenada, Haiti, or Panama in the past two decades. Why? Because the United States has launched numerous military actions against small, weak states in the Caribbean for more than a century. That is important in its own right, but it doesn’t say much about what has changed so dramatically since 1945. The real change since 1945 is the projection of U.S. power far beyond the Western Hemisphere, to Europe and Asia. You cannot explain this change—or any change, for that matter—by looking at something that remains constant.

In this case, to analyze the larger pattern of U.S. war fighting and the shift it represents, you need to pick examples of distant conflicts, such as Korea, Vietnam, Kosovo, Afghanistan, or Iraq. That’s the noteworthy change since 1945: U.S. military intervention outside the Western Hemisphere. The United States has fought frequently in such areas since World War II but rarely before then. Alternatively, you could use statistics covering many cases of U.S. intervention around the world, perhaps supplemented with some telling cases studies.

Students in the humanities want to explore their own big ideas, and they, too, need to focus their research. In English literature, their big issue might be “masculinity” or, to narrow the range a bit, “masculinity in Jewish American literature.” Important as these issues are, they are too vast for anyone to read all the major novels plus all the relevant criticism and then frame a comprehensive research paper.

If you don’t narrow these sprawling topics and focus your work, you can only skim the surface. Skimming the surface is not what you want to do in a research paper. You want to understand your subject in depth and convey that understanding to your readers.

That does not mean you have to abandon your interest in major themes. It means you have to restrict their scope in sensible ways. To do that, you need to think about which aspects of masculinity really interest you and then find works that deal with them.

You may realize your central concern is how masculinity is defined in response to strong women. That focus would still leave you considerable flexibility, depending on your academic background and what you love to read. That might be anything from a reconsideration of Macbeth to an analysis of early twentieth-century American novels, where men must cope with women in assertive new roles. Perhaps you are interested in another aspect of masculinity: the different ways it is defined within the same culture at the same moment. That would lead you to novelists who explore these differences in their characters, perhaps contrasting men who come from different backgrounds, work in different jobs, or simply differ emotionally. Again, you would have considerable flexibility in choosing specific writers.

Connecting a Specific Research Paper Topic to a Bigger Idea

Not all students begin their research paper concerned with big issues such as masculinity or American wars over the past half century. Some start with very specific topics in mind. One example might be the decision to create NAFTA, the North American Free Trade Agreement encompassing Canada, the United States, and Mexico. Perhaps you are interested in NAFTA because you discussed it in a course, heard about it in a political campaign, or saw its effects firsthand on local workers, companies, and consumers. It intrigues you, and you would like to study it in a research paper. The challenge is to go from this clear-cut subject to a larger theme that will frame your paper.

Why do you even need to figure out a larger theme? Because NAFTA bears on several major topics, and you cannot explore all of them. Your challenge—and your opportunity—is to figure out which one captures your imagination.

One way to think about that is to finish this sentence: “For me, NAFTA is a case of ___________.” If you are mainly interested in negotiations between big and small countries, then your answer is, “For me, NAFTA is a case of a large country like the United States bargaining with a smaller neighbor.” Your answer would be different if you are mainly interested in decision making within the United States, Mexico, or Canada. In that case, you might say, “NAFTA seems to be a case where a strong U.S. president pushed a trade policy through Congress.” Perhaps you are more concerned with the role played by business lobbies. “For me, NAFTA is a case of undue corporate influence over foreign economic policy.” Or you could be interested in the role of trade unions, environmental groups, or public opinion.

The NAFTA decision is related to all these big issues and more. You cannot cover them all. There is not enough time, and even if there were, the resulting paper would be too diffuse, too scattershot. To make an impact, throw a rock, not a handful of pebbles.

Choosing one of these large issues will shape your research paper on NAFTA. If you are interested in U.S. decision making, for example, you might study the lobbying process or perhaps the differences between Democrats and Republicans. If you are interested in diplomacy, you would focus on negotiations between the United States, Canada, and Mexico. Either would make an interesting research paper, but they are different topics.

Although the subject matter and analysis are decidedly different in the humanities, many of the same considerations still apply to topic selection. In English or comparative literature, for example, you may be attracted to a very specific topic such as several poems by William Wordsworth. You are not trying, as a social scientist would, to test some generalizations that apply across time or space. Rather, you want to analyze these specific poems, uncover their multiple meanings, trace their allusions, and understand their form and beauty.

As part of the research paper, however, you may wish to say something bigger, something that goes beyond these particular poems. That might be about Wordsworth’s larger body of work. Are these poems representative or unusual? Do they break with his previous work or anticipate work yet to come? You may wish to comment on Wordsworth’s close ties to his fellow “Lake Poets,” Coleridge and Southey, underscoring some similarities in their work. Do they use language in shared ways? Do they use similar metaphors or explore similar themes? You may even wish to show how these particular poems are properly understood as part of the wider Romantic movement in literature and the arts. Any of these would connect the specific poems to larger themes.

How to Refine Your Research Paper Topic

One of your professor’s or instructor’s most valuable contributions to the success of your research paper is to help you refine your topic. She can help you select the best cases for detailed study or the best data and statistical techniques. S/he can help you find cases that shed light on larger questions, have good data available, and are discussed in a rich secondary literature. She may know valuable troves of documents to explore. That’s why it is so important to bring these issues up in early meetings. These discussions with your instructor are crucial in moving from a big but ill-defined idea to a smart, feasible topic.Some colleges supplement this advising process by offering special workshops and tutorial support for students. These are great resources, and you should take full advantage of them. They can improve your project in at least two ways.

First, tutors and workshop leaders are usually quite adept at helping you focus and shape your topic. That’s what they do best. Even if they are relatively new teachers, they have been writing research papers themselves for many years. They know how to do it well and how to avoid common mistakes. To craft their own papers, they have learned how to narrow their topics, gather data, interpret sources, and evaluate conjectures. They know how to use appropriate methods and how to mine the academic literature. In all these ways, they can assist you with their own hard-won experience. To avoid any confusion, just make sure your instructor knows what advice you are getting from workshop leaders and tutors. You want everyone to be pulling in the same direction.

Second, you will benefit enormously from batting around your research paper in workshops. The more you speak about your subject, the better you will understand it yourself. The better you understand it, the clearer your research and writing will be. You will learn about your project as you present your ideas; you will learn more as you listen to others discuss your work; and you will learn still more as you respond to their suggestions. Although you should do that in sessions with your instructor, you will also profit from doing it in workshops and tutorial sessions.

Secrets to Keep in Mind when Writing a Research Paper

As a bonus, we have prepared several secrets for you to make your paper perfect. Firstly, always write your paper from scratch. Do not copy the already existing materials, as it can lead to unsatisfactory mark or even expulsion. Secondly, start your research early; do not put off investigating the topic. The earlier you start, the easier it will be to meet the deadline. Thirdly, plan your work and create an outline for your task. A planned work will help you be systematic. Plus, it will help you avoid writer’s block, as you always have an outline to follow. Another secret is following all the requirements. A research paper is an academic assignment, so all these structural and formatting standards are important. Finally, make sure you proofread and edit your task. Check your paper for grammar and spelling mistakes, examine your choice of vocabulary. If it seems too much, you can always ask our professional editors and they will check the paper for you. A mistakes-free paper is essential to get high results.

Custom Research Paper Writing Service

If you still have concerns regarding your research paper, we are here to answer your questions. It is no secret that studying is becoming more and more difficult at college. Every week you have an overload of tasks and assignments. You work hard, sleep little. As a result, you can be at the edge of a nervous breakdown trying to finish all the tasks on time. That is why we are here helping thousands of students to study smart.

24/7 you can contact us and order your paper. We never miss the deadline and always provide our clients with a top-notch quality. When you feel that you cannot handle it on your own, a bit of assistance will do no harm. All our writers are experts with years of experience. They are aware of all the subtleties of academic writing and they know all the recent college requirements. You can turn to us for help any time and we will get down to work immediately. From choosing the topic to writing the whole paper – this is what we have to offer. Getting top grades is much easier when the real professionals help you.

ORDER HIGH QUALITY CUSTOM PAPER

example of research journal topic

example of research journal topic

Get science-backed answers as you write with Paperpal's Research feature

How to Write a Research Paper Introduction (with Examples)

How to Write a Research Paper Introduction (with Examples)

The research paper introduction section, along with the Title and Abstract, can be considered the face of any research paper. The following article is intended to guide you in organizing and writing the research paper introduction for a quality academic article or dissertation.

The research paper introduction aims to present the topic to the reader. A study will only be accepted for publishing if you can ascertain that the available literature cannot answer your research question. So it is important to ensure that you have read important studies on that particular topic, especially those within the last five to ten years, and that they are properly referenced in this section. 1 What should be included in the research paper introduction is decided by what you want to tell readers about the reason behind the research and how you plan to fill the knowledge gap. The best research paper introduction provides a systemic review of existing work and demonstrates additional work that needs to be done. It needs to be brief, captivating, and well-referenced; a well-drafted research paper introduction will help the researcher win half the battle.

The introduction for a research paper is where you set up your topic and approach for the reader. It has several key goals:

  • Present your research topic
  • Capture reader interest
  • Summarize existing research
  • Position your own approach
  • Define your specific research problem and problem statement
  • Highlight the novelty and contributions of the study
  • Give an overview of the paper’s structure

The research paper introduction can vary in size and structure depending on whether your paper presents the results of original empirical research or is a review paper. Some research paper introduction examples are only half a page while others are a few pages long. In many cases, the introduction will be shorter than all of the other sections of your paper; its length depends on the size of your paper as a whole.

  • Break through writer’s block. Write your research paper introduction with Paperpal Copilot

Table of Contents

What is the introduction for a research paper, why is the introduction important in a research paper, craft a compelling introduction section with paperpal. try now, 1. introduce the research topic:, 2. determine a research niche:, 3. place your research within the research niche:, craft accurate research paper introductions with paperpal. start writing now, frequently asked questions on research paper introduction, key points to remember.

The introduction in a research paper is placed at the beginning to guide the reader from a broad subject area to the specific topic that your research addresses. They present the following information to the reader

  • Scope: The topic covered in the research paper
  • Context: Background of your topic
  • Importance: Why your research matters in that particular area of research and the industry problem that can be targeted

The research paper introduction conveys a lot of information and can be considered an essential roadmap for the rest of your paper. A good introduction for a research paper is important for the following reasons:

  • It stimulates your reader’s interest: A good introduction section can make your readers want to read your paper by capturing their interest. It informs the reader what they are going to learn and helps determine if the topic is of interest to them.
  • It helps the reader understand the research background: Without a clear introduction, your readers may feel confused and even struggle when reading your paper. A good research paper introduction will prepare them for the in-depth research to come. It provides you the opportunity to engage with the readers and demonstrate your knowledge and authority on the specific topic.
  • It explains why your research paper is worth reading: Your introduction can convey a lot of information to your readers. It introduces the topic, why the topic is important, and how you plan to proceed with your research.
  • It helps guide the reader through the rest of the paper: The research paper introduction gives the reader a sense of the nature of the information that will support your arguments and the general organization of the paragraphs that will follow. It offers an overview of what to expect when reading the main body of your paper.

What are the parts of introduction in the research?

A good research paper introduction section should comprise three main elements: 2

  • What is known: This sets the stage for your research. It informs the readers of what is known on the subject.
  • What is lacking: This is aimed at justifying the reason for carrying out your research. This could involve investigating a new concept or method or building upon previous research.
  • What you aim to do: This part briefly states the objectives of your research and its major contributions. Your detailed hypothesis will also form a part of this section.

How to write a research paper introduction?

The first step in writing the research paper introduction is to inform the reader what your topic is and why it’s interesting or important. This is generally accomplished with a strong opening statement. The second step involves establishing the kinds of research that have been done and ending with limitations or gaps in the research that you intend to address. Finally, the research paper introduction clarifies how your own research fits in and what problem it addresses. If your research involved testing hypotheses, these should be stated along with your research question. The hypothesis should be presented in the past tense since it will have been tested by the time you are writing the research paper introduction.

The following key points, with examples, can guide you when writing the research paper introduction section:

  • Highlight the importance of the research field or topic
  • Describe the background of the topic
  • Present an overview of current research on the topic

Example: The inclusion of experiential and competency-based learning has benefitted electronics engineering education. Industry partnerships provide an excellent alternative for students wanting to engage in solving real-world challenges. Industry-academia participation has grown in recent years due to the need for skilled engineers with practical training and specialized expertise. However, from the educational perspective, many activities are needed to incorporate sustainable development goals into the university curricula and consolidate learning innovation in universities.

  • Reveal a gap in existing research or oppose an existing assumption
  • Formulate the research question

Example: There have been plausible efforts to integrate educational activities in higher education electronics engineering programs. However, very few studies have considered using educational research methods for performance evaluation of competency-based higher engineering education, with a focus on technical and or transversal skills. To remedy the current need for evaluating competencies in STEM fields and providing sustainable development goals in engineering education, in this study, a comparison was drawn between study groups without and with industry partners.

  • State the purpose of your study
  • Highlight the key characteristics of your study
  • Describe important results
  • Highlight the novelty of the study.
  • Offer a brief overview of the structure of the paper.

Example: The study evaluates the main competency needed in the applied electronics course, which is a fundamental core subject for many electronics engineering undergraduate programs. We compared two groups, without and with an industrial partner, that offered real-world projects to solve during the semester. This comparison can help determine significant differences in both groups in terms of developing subject competency and achieving sustainable development goals.

Write a Research Paper Introduction in Minutes with Paperpal

Paperpal Copilot is a generative AI-powered academic writing assistant. It’s trained on millions of published scholarly articles and over 20 years of STM experience. Paperpal Copilot helps authors write better and faster with:

  • Real-time writing suggestions
  • In-depth checks for language and grammar correction
  • Paraphrasing to add variety, ensure academic tone, and trim text to meet journal limits

With Paperpal Copilot, create a research paper introduction effortlessly. In this step-by-step guide, we’ll walk you through how Paperpal transforms your initial ideas into a polished and publication-ready introduction.

example of research journal topic

How to use Paperpal to write the Introduction section

Step 1: Sign up on Paperpal and click on the Copilot feature, under this choose Outlines > Research Article > Introduction

Step 2: Add your unstructured notes or initial draft, whether in English or another language, to Paperpal, which is to be used as the base for your content.

Step 3: Fill in the specifics, such as your field of study, brief description or details you want to include, which will help the AI generate the outline for your Introduction.

Step 4: Use this outline and sentence suggestions to develop your content, adding citations where needed and modifying it to align with your specific research focus.

Step 5: Turn to Paperpal’s granular language checks to refine your content, tailor it to reflect your personal writing style, and ensure it effectively conveys your message.

You can use the same process to develop each section of your article, and finally your research paper in half the time and without any of the stress.

The purpose of the research paper introduction is to introduce the reader to the problem definition, justify the need for the study, and describe the main theme of the study. The aim is to gain the reader’s attention by providing them with necessary background information and establishing the main purpose and direction of the research.

The length of the research paper introduction can vary across journals and disciplines. While there are no strict word limits for writing the research paper introduction, an ideal length would be one page, with a maximum of 400 words over 1-4 paragraphs. Generally, it is one of the shorter sections of the paper as the reader is assumed to have at least a reasonable knowledge about the topic. 2 For example, for a study evaluating the role of building design in ensuring fire safety, there is no need to discuss definitions and nature of fire in the introduction; you could start by commenting upon the existing practices for fire safety and how your study will add to the existing knowledge and practice.

When deciding what to include in the research paper introduction, the rest of the paper should also be considered. The aim is to introduce the reader smoothly to the topic and facilitate an easy read without much dependency on external sources. 3 Below is a list of elements you can include to prepare a research paper introduction outline and follow it when you are writing the research paper introduction. Topic introduction: This can include key definitions and a brief history of the topic. Research context and background: Offer the readers some general information and then narrow it down to specific aspects. Details of the research you conducted: A brief literature review can be included to support your arguments or line of thought. Rationale for the study: This establishes the relevance of your study and establishes its importance. Importance of your research: The main contributions are highlighted to help establish the novelty of your study Research hypothesis: Introduce your research question and propose an expected outcome. Organization of the paper: Include a short paragraph of 3-4 sentences that highlights your plan for the entire paper

Cite only works that are most relevant to your topic; as a general rule, you can include one to three. Note that readers want to see evidence of original thinking. So it is better to avoid using too many references as it does not leave much room for your personal standpoint to shine through. Citations in your research paper introduction support the key points, and the number of citations depend on the subject matter and the point discussed. If the research paper introduction is too long or overflowing with citations, it is better to cite a few review articles rather than the individual articles summarized in the review. A good point to remember when citing research papers in the introduction section is to include at least one-third of the references in the introduction.

The literature review plays a significant role in the research paper introduction section. A good literature review accomplishes the following: Introduces the topic – Establishes the study’s significance – Provides an overview of the relevant literature – Provides context for the study using literature – Identifies knowledge gaps However, remember to avoid making the following mistakes when writing a research paper introduction: Do not use studies from the literature review to aggressively support your research Avoid direct quoting Do not allow literature review to be the focus of this section. Instead, the literature review should only aid in setting a foundation for the manuscript.

Remember the following key points for writing a good research paper introduction: 4

  • Avoid stuffing too much general information: Avoid including what an average reader would know and include only that information related to the problem being addressed in the research paper introduction. For example, when describing a comparative study of non-traditional methods for mechanical design optimization, information related to the traditional methods and differences between traditional and non-traditional methods would not be relevant. In this case, the introduction for the research paper should begin with the state-of-the-art non-traditional methods and methods to evaluate the efficiency of newly developed algorithms.
  • Avoid packing too many references: Cite only the required works in your research paper introduction. The other works can be included in the discussion section to strengthen your findings.
  • Avoid extensive criticism of previous studies: Avoid being overly critical of earlier studies while setting the rationale for your study. A better place for this would be the Discussion section, where you can highlight the advantages of your method.
  • Avoid describing conclusions of the study: When writing a research paper introduction remember not to include the findings of your study. The aim is to let the readers know what question is being answered. The actual answer should only be given in the Results and Discussion section.

To summarize, the research paper introduction section should be brief yet informative. It should convince the reader the need to conduct the study and motivate him to read further. If you’re feeling stuck or unsure, choose trusted AI academic writing assistants like Paperpal to effortlessly craft your research paper introduction and other sections of your research article.

1. Jawaid, S. A., & Jawaid, M. (2019). How to write introduction and discussion. Saudi Journal of Anaesthesia, 13(Suppl 1), S18.

2. Dewan, P., & Gupta, P. (2016). Writing the title, abstract and introduction: Looks matter!. Indian pediatrics, 53, 235-241.

3. Cetin, S., & Hackam, D. J. (2005). An approach to the writing of a scientific Manuscript1. Journal of Surgical Research, 128(2), 165-167.

4. Bavdekar, S. B. (2015). Writing introduction: Laying the foundations of a research paper. Journal of the Association of Physicians of India, 63(7), 44-6.

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Scientific Writing Style Guides Explained
  • 5 Reasons for Rejection After Peer Review
  • Ethical Research Practices For Research with Human Subjects
  • 8 Most Effective Ways to Increase Motivation for Thesis Writing 

Practice vs. Practise: Learn the Difference

Academic paraphrasing: why paperpal’s rewrite should be your first choice , you may also like, mla works cited page: format, template & examples, how to write a high-quality conference paper, academic editing: how to self-edit academic text with..., measuring academic success: definition & strategies for excellence, phd qualifying exam: tips for success , ai in education: it’s time to change the..., is it ethical to use ai-generated abstracts without..., what are journal guidelines on using generative ai..., quillbot review: features, pricing, and free alternatives, what is an academic paper types and elements .

Banner

  • UNO Criss Library

Social Work Research Guide

What is a research journal.

  • Find Articles
  • Find E-Books and Books

Reading an Academic Article

  • Free Online Resources
  • Reference and Writing
  • Citation Help This link opens in a new window

Anatomy of a Scholarly Article

TIP: When possible, keep your research question(s) in mind when reading scholarly articles. It will help you to focus your reading.

Title : Generally are straightforward and describe what the article is about. Titles often include relevant key words.

Abstract : A summary of the author(s)'s research findings and tells what to expect when you read the full article. It is often a good idea to read the abstract first, in order to determine if you should even bother reading the whole article.

Discussion and Conclusion : Read these after the Abstract (even though they come at the end of the article). These sections can help you see if this article will meet your research needs. If you don’t think that it will, set it aside.

Introduction : Describes the topic or problem researched. The authors will present the thesis of their argument or the goal of their research.

Literature Review : May be included in the introduction or as its own separate section. Here you see where the author(s) enter the conversation on this topic. That is to say, what related research has come before, and how do they hope to advance the discussion with their current research?

Methods : This section explains how the study worked. In this section, you often learn who and how many participated in the study and what they were asked to do. You will need to think critically about the methods and whether or not they make sense given the research question.

Results : Here you will often find numbers and tables. If you aren't an expert at statistics this section may be difficult to grasp. However you should attempt to understand if the results seem reasonable given the methods.

Works Cited (also be called References or Bibliography ): This section comprises the author(s)’s sources. Always be sure to scroll through them. Good research usually cites many different kinds of sources (books, journal articles, etc.). As you read the Works Cited page, be sure to look for sources that look like they will help you to answer your own research question.

Adapted from http://library.hunter.cuny.edu/research-toolkit/how-do-i-read-stuff/anatomy-of-a-scholarly-article

A research journal is a periodical that contains articles written by experts in a particular field of study who report the results of research in that field. The articles are intended to be read by other experts or students of the field, and they are typically much more sophisticated and advanced than the articles found in general magazines. This guide offers some tips to help distinguish scholarly journals from other periodicals.

CHARACTERISTICS OF RESEARCH JOURNALS

PURPOSE : Research journals communicate the results of research in the field of study covered by the journal. Research articles reflect a systematic and thorough study of a single topic, often involving experiments or surveys. Research journals may also publish review articles and book reviews that summarize the current state of knowledge on a topic.

APPEARANCE : Research journals lack the slick advertising, classified ads, coupons, etc., found in popular magazines. Articles are often printed one column to a page, as in books, and there are often graphs, tables, or charts referring to specific points in the articles.

AUTHORITY : Research articles are written by the person(s) who did the research being reported. When more than two authors are listed for a single article, the first author listed is often the primary researcher who coordinated or supervised the work done by the other authors. The most highly‑regarded scholarly journals are typically those sponsored by professional associations, such as the American Psychological Association or the American Chemical Society.

VALIDITY AND RELIABILITY : Articles submitted to research journals are evaluated by an editorial board and other experts before they are accepted for publication. This evaluation, called peer review, is designed to ensure that the articles published are based on solid research that meets the normal standards of the field of study covered by the journal. Professors sometimes use the term "refereed" to describe peer-reviewed journals.

WRITING STYLE : Articles in research journals usually contain an advanced vocabulary, since the authors use the technical language or jargon of their field of study. The authors assume that the reader already possesses a basic understanding of the field of study.

REFERENCES : The authors of research articles always indicate the sources of their information. These references are usually listed at the end of an article, but they may appear in the form of footnotes, endnotes, or a bibliography.

PERIODICALS THAT ARE NOT RESEARCH JOURNALS

POPULAR MAGAZINES : These are periodicals that one typically finds at grocery stores, airport newsstands, or bookstores at a shopping mall. Popular magazines are designed to appeal to a broad audience, and they usually contain relatively brief articles written in a readable, non‑technical language.

Examples include: Car and Driver , Cosmopolitan , Esquire , Essence , Gourmet , Life , People Weekly , Readers' Digest , Rolling Stone , Sports Illustrated , Vanity Fair , and Vogue .

NEWS MAGAZINES : These periodicals, which are usually issued weekly, provide information on topics of current interest, but their articles seldom have the depth or authority of scholarly articles.

Examples include: Newsweek , Time , U.S. News and World Report .

OPINION MAGAZINES : These periodicals contain articles aimed at an educated audience interested in keeping up with current events or ideas, especially those pertaining to topical issues. Very often their articles are written from a particular political, economic, or social point of view.

Examples include: Catholic World , Christianity Today , Commentary , Ms. , The Militant , Mother Jones , The Nation , National Review , The New Republic , The Progressive , and World Marxist Review .

TRADE MAGAZINES : People who need to keep up with developments in a particular industry or occupation read these magazines. Many trade magazines publish one or more special issues each year that focus on industry statistics, directory lists, or new product announcements.

Examples include: Beverage World , Progressive Grocer , Quick Frozen Foods International , Rubber World , Sales and Marketing Management , Skiing Trade News , and Stores .

Literature Reviews

  • Literature Review Guide General information on how to organize and write a literature review.
  • The Literature Review: A Few Tips On Conducting It Contains two sets of questions to help students review articles, and to review their own literature reviews.
  • << Previous: Find E-Books and Books
  • Next: Statistics >>
  • Last Updated: Mar 8, 2024 11:27 AM
  • URL: https://libguides.unomaha.edu/social_work

Find top journals in a research field: a step-by-step guide

example of research journal topic

Joanna Wilkinson

This blog about how to find top journals is part of our Research Smarter series. Download our cheat sheet, which brings together top tips for finding relevant journals, papers, and authors in your field, sign up for our webinar on the same topic or read the related blog posts for each, here .

Finding relevant journals can be a challenging task for researchers both new and experienced. The myriad tools and technologies can be difficult to navigate. This is frustrating when many databases vary in the reliability, relevancy and organization of their data. Beyond that, the rise of open access, preprint repositories and transparent peer review (to name a few) have had a transformative impact on academic journals in recent years. It has reshaped the way journals are shared, used and valued by scholars across all disciplines.

Web of Science™ delivers unique journal insight at any given time. The comprehensive and complete citation network provides all the data you need to understand a journal’s value and impact. Web of Science Core Collection™ titles are all carefully selected for quality. Furthermore, the tools and features we outline in this guide help you quickly and accurately assess them for your own research.

Journal Citation Reports™: Discover quality research journals

Journal Citation Reports  (JCR) is the most powerful product for journal intelligence. It provides researchers with a definitive list and guide to discover and select the most appropriate journals to read and publish findings. JCR delivers a rich array of publisher-independent data, metrics and analysis throughout tens of thousands of journal profile pages. The research community powers these pages via meaningful citation connections.

Researchers and organizations use this comprehensive and trusted subscription-based product to confidently find and assess journals. Head over to JCR now or watch the video below to learn more.

example of research journal topic

“Journal Citation Reports is the most powerful product for journal intelligence.”

Master Journal List: Quickly assess top journals

Master Journal List (MJL) is a free and trusted resource that supports researchers to find and compare reputable journals, books and conference proceedings indexed in Web of Science. MJL is not as comprehensive as Journal Citation Reports. However, its profile pages help researchers assess the quality of individual journals at a glance. Each journal page lists its publication details and Web of Science coverage and journal metrics. It also as lists open access and peer review characteristics. A range of filters are available to sort and group results, and you can also take advantage of EndNote’s free Manuscript Matcher tool to find the best match for your manuscript. Watch the video below to learn more.

example of research journal topic

“Master Journal List profile pages help researchers assess the quality of individual journals at a glance.”

Web of Science: Explore influential and emerging journals

The Analyze Results feature in Web of Science identifies the journals publishing the greatest number of papers on any given topic. It helps you dig deep into your specific subject area and identify any trends. Furthermore, it reveals all the influential and emerging journals that can be further analyzed using the products above. The Analyze Results feature can also find trends among the top institutions, funding agencies and authors publishing research. Learn more about Analyze Results here,  in the video below, or visit  the Web of Science search page to try this out today.

example of research journal topic

Stay connected

Interested in discovering more tips to really understand your research field? You can d ownload our cheat sheet , which brings together top tips for finding relevant journals, papers and authors in your field, or sign up for our webinar on the same topic. You can also read the related blog posts in our Research Smarter series, here .

Related posts

Journal citation reports 2024 preview: unified rankings for more inclusive journal assessment.

example of research journal topic

Introducing the Clarivate Academic AI Platform

example of research journal topic

Reimagining research impact: Introducing Web of Science Research Intelligence

example of research journal topic

  • Privacy Policy

Research Method

Home » Research Paper – Structure, Examples and Writing Guide

Research Paper – Structure, Examples and Writing Guide

Table of Contents

Research Paper

Research Paper

Definition:

Research Paper is a written document that presents the author’s original research, analysis, and interpretation of a specific topic or issue.

It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new knowledge or insights to a particular field of study, and to demonstrate the author’s understanding of the existing literature and theories related to the topic.

Structure of Research Paper

The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. The following is a detailed explanation of the structure of a research paper:

The title page contains the title of the paper, the name(s) of the author(s), and the affiliation(s) of the author(s). It also includes the date of submission and possibly, the name of the journal or conference where the paper is to be published.

The abstract is a brief summary of the research paper, typically ranging from 100 to 250 words. It should include the research question, the methods used, the key findings, and the implications of the results. The abstract should be written in a concise and clear manner to allow readers to quickly grasp the essence of the research.

Introduction

The introduction section of a research paper provides background information about the research problem, the research question, and the research objectives. It also outlines the significance of the research, the research gap that it aims to fill, and the approach taken to address the research question. Finally, the introduction section ends with a clear statement of the research hypothesis or research question.

Literature Review

The literature review section of a research paper provides an overview of the existing literature on the topic of study. It includes a critical analysis and synthesis of the literature, highlighting the key concepts, themes, and debates. The literature review should also demonstrate the research gap and how the current study seeks to address it.

The methods section of a research paper describes the research design, the sample selection, the data collection and analysis procedures, and the statistical methods used to analyze the data. This section should provide sufficient detail for other researchers to replicate the study.

The results section presents the findings of the research, using tables, graphs, and figures to illustrate the data. The findings should be presented in a clear and concise manner, with reference to the research question and hypothesis.

The discussion section of a research paper interprets the findings and discusses their implications for the research question, the literature review, and the field of study. It should also address the limitations of the study and suggest future research directions.

The conclusion section summarizes the main findings of the study, restates the research question and hypothesis, and provides a final reflection on the significance of the research.

The references section provides a list of all the sources cited in the paper, following a specific citation style such as APA, MLA or Chicago.

How to Write Research Paper

You can write Research Paper by the following guide:

  • Choose a Topic: The first step is to select a topic that interests you and is relevant to your field of study. Brainstorm ideas and narrow down to a research question that is specific and researchable.
  • Conduct a Literature Review: The literature review helps you identify the gap in the existing research and provides a basis for your research question. It also helps you to develop a theoretical framework and research hypothesis.
  • Develop a Thesis Statement : The thesis statement is the main argument of your research paper. It should be clear, concise and specific to your research question.
  • Plan your Research: Develop a research plan that outlines the methods, data sources, and data analysis procedures. This will help you to collect and analyze data effectively.
  • Collect and Analyze Data: Collect data using various methods such as surveys, interviews, observations, or experiments. Analyze data using statistical tools or other qualitative methods.
  • Organize your Paper : Organize your paper into sections such as Introduction, Literature Review, Methods, Results, Discussion, and Conclusion. Ensure that each section is coherent and follows a logical flow.
  • Write your Paper : Start by writing the introduction, followed by the literature review, methods, results, discussion, and conclusion. Ensure that your writing is clear, concise, and follows the required formatting and citation styles.
  • Edit and Proofread your Paper: Review your paper for grammar and spelling errors, and ensure that it is well-structured and easy to read. Ask someone else to review your paper to get feedback and suggestions for improvement.
  • Cite your Sources: Ensure that you properly cite all sources used in your research paper. This is essential for giving credit to the original authors and avoiding plagiarism.

Research Paper Example

Note : The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors. Students should always consult with their professors or supervisors for specific guidelines and expectations for their research papers.

Research Paper Example sample for Students:

Title: The Impact of Social Media on Mental Health among Young Adults

Abstract: This study aims to investigate the impact of social media use on the mental health of young adults. A literature review was conducted to examine the existing research on the topic. A survey was then administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO (Fear of Missing Out) are significant predictors of mental health problems among young adults.

Introduction: Social media has become an integral part of modern life, particularly among young adults. While social media has many benefits, including increased communication and social connectivity, it has also been associated with negative outcomes, such as addiction, cyberbullying, and mental health problems. This study aims to investigate the impact of social media use on the mental health of young adults.

Literature Review: The literature review highlights the existing research on the impact of social media use on mental health. The review shows that social media use is associated with depression, anxiety, stress, and other mental health problems. The review also identifies the factors that contribute to the negative impact of social media, including social comparison, cyberbullying, and FOMO.

Methods : A survey was administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The survey included questions on social media use, mental health status (measured using the DASS-21), and perceived impact of social media on their mental health. Data were analyzed using descriptive statistics and regression analysis.

Results : The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO are significant predictors of mental health problems among young adults.

Discussion : The study’s findings suggest that social media use has a negative impact on the mental health of young adults. The study highlights the need for interventions that address the factors contributing to the negative impact of social media, such as social comparison, cyberbullying, and FOMO.

Conclusion : In conclusion, social media use has a significant impact on the mental health of young adults. The study’s findings underscore the need for interventions that promote healthy social media use and address the negative outcomes associated with social media use. Future research can explore the effectiveness of interventions aimed at reducing the negative impact of social media on mental health. Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health.

Limitations : The study has some limitations, including the use of self-report measures and a cross-sectional design. The use of self-report measures may result in biased responses, and a cross-sectional design limits the ability to establish causality.

Implications: The study’s findings have implications for mental health professionals, educators, and policymakers. Mental health professionals can use the findings to develop interventions that address the negative impact of social media use on mental health. Educators can incorporate social media literacy into their curriculum to promote healthy social media use among young adults. Policymakers can use the findings to develop policies that protect young adults from the negative outcomes associated with social media use.

References :

  • Twenge, J. M., & Campbell, W. K. (2019). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 15, 100918.
  • Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., … & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among US young adults. Computers in Human Behavior, 69, 1-9.
  • Van der Meer, T. G., & Verhoeven, J. W. (2017). Social media and its impact on academic performance of students. Journal of Information Technology Education: Research, 16, 383-398.

Appendix : The survey used in this study is provided below.

Social Media and Mental Health Survey

  • How often do you use social media per day?
  • Less than 30 minutes
  • 30 minutes to 1 hour
  • 1 to 2 hours
  • 2 to 4 hours
  • More than 4 hours
  • Which social media platforms do you use?
  • Others (Please specify)
  • How often do you experience the following on social media?
  • Social comparison (comparing yourself to others)
  • Cyberbullying
  • Fear of Missing Out (FOMO)
  • Have you ever experienced any of the following mental health problems in the past month?
  • Do you think social media use has a positive or negative impact on your mental health?
  • Very positive
  • Somewhat positive
  • Somewhat negative
  • Very negative
  • In your opinion, which factors contribute to the negative impact of social media on mental health?
  • Social comparison
  • In your opinion, what interventions could be effective in reducing the negative impact of social media on mental health?
  • Education on healthy social media use
  • Counseling for mental health problems caused by social media
  • Social media detox programs
  • Regulation of social media use

Thank you for your participation!

Applications of Research Paper

Research papers have several applications in various fields, including:

  • Advancing knowledge: Research papers contribute to the advancement of knowledge by generating new insights, theories, and findings that can inform future research and practice. They help to answer important questions, clarify existing knowledge, and identify areas that require further investigation.
  • Informing policy: Research papers can inform policy decisions by providing evidence-based recommendations for policymakers. They can help to identify gaps in current policies, evaluate the effectiveness of interventions, and inform the development of new policies and regulations.
  • Improving practice: Research papers can improve practice by providing evidence-based guidance for professionals in various fields, including medicine, education, business, and psychology. They can inform the development of best practices, guidelines, and standards of care that can improve outcomes for individuals and organizations.
  • Educating students : Research papers are often used as teaching tools in universities and colleges to educate students about research methods, data analysis, and academic writing. They help students to develop critical thinking skills, research skills, and communication skills that are essential for success in many careers.
  • Fostering collaboration: Research papers can foster collaboration among researchers, practitioners, and policymakers by providing a platform for sharing knowledge and ideas. They can facilitate interdisciplinary collaborations and partnerships that can lead to innovative solutions to complex problems.

When to Write Research Paper

Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share with the academic or professional community. Research papers are usually written in academic settings, such as universities, but they can also be written in professional settings, such as research organizations, government agencies, or private companies.

Here are some common situations where a person might need to write a research paper:

  • For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities. Writing research papers helps students to develop research skills, critical thinking skills, and academic writing skills.
  • For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing research papers is an important way to disseminate research findings to the academic community and to establish oneself as an expert in a particular field.
  • To inform policy or practice : Researchers may write research papers to inform policy decisions or to improve practice in various fields. Research findings can be used to inform the development of policies, guidelines, and best practices that can improve outcomes for individuals and organizations.
  • To share new insights or ideas: Researchers may write research papers to share new insights or ideas with the academic or professional community. They may present new theories, propose new research methods, or challenge existing paradigms in their field.

Purpose of Research Paper

The purpose of a research paper is to present the results of a study or investigation in a clear, concise, and structured manner. Research papers are written to communicate new knowledge, ideas, or findings to a specific audience, such as researchers, scholars, practitioners, or policymakers. The primary purposes of a research paper are:

  • To contribute to the body of knowledge : Research papers aim to add new knowledge or insights to a particular field or discipline. They do this by reporting the results of empirical studies, reviewing and synthesizing existing literature, proposing new theories, or providing new perspectives on a topic.
  • To inform or persuade: Research papers are written to inform or persuade the reader about a particular issue, topic, or phenomenon. They present evidence and arguments to support their claims and seek to persuade the reader of the validity of their findings or recommendations.
  • To advance the field: Research papers seek to advance the field or discipline by identifying gaps in knowledge, proposing new research questions or approaches, or challenging existing assumptions or paradigms. They aim to contribute to ongoing debates and discussions within a field and to stimulate further research and inquiry.
  • To demonstrate research skills: Research papers demonstrate the author’s research skills, including their ability to design and conduct a study, collect and analyze data, and interpret and communicate findings. They also demonstrate the author’s ability to critically evaluate existing literature, synthesize information from multiple sources, and write in a clear and structured manner.

Characteristics of Research Paper

Research papers have several characteristics that distinguish them from other forms of academic or professional writing. Here are some common characteristics of research papers:

  • Evidence-based: Research papers are based on empirical evidence, which is collected through rigorous research methods such as experiments, surveys, observations, or interviews. They rely on objective data and facts to support their claims and conclusions.
  • Structured and organized: Research papers have a clear and logical structure, with sections such as introduction, literature review, methods, results, discussion, and conclusion. They are organized in a way that helps the reader to follow the argument and understand the findings.
  • Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal opinions and instead rely on objective data and analysis to support their arguments.
  • Citations and references: Research papers include citations and references to acknowledge the sources of information and ideas used in the paper. They use a specific citation style, such as APA, MLA, or Chicago, to ensure consistency and accuracy.
  • Peer-reviewed: Research papers are often peer-reviewed, which means they are evaluated by other experts in the field before they are published. Peer-review ensures that the research is of high quality, meets ethical standards, and contributes to the advancement of knowledge in the field.
  • Objective and unbiased: Research papers strive to be objective and unbiased in their presentation of the findings. They avoid personal biases or preconceptions and instead rely on the data and analysis to draw conclusions.

Advantages of Research Paper

Research papers have many advantages, both for the individual researcher and for the broader academic and professional community. Here are some advantages of research papers:

  • Contribution to knowledge: Research papers contribute to the body of knowledge in a particular field or discipline. They add new information, insights, and perspectives to existing literature and help advance the understanding of a particular phenomenon or issue.
  • Opportunity for intellectual growth: Research papers provide an opportunity for intellectual growth for the researcher. They require critical thinking, problem-solving, and creativity, which can help develop the researcher’s skills and knowledge.
  • Career advancement: Research papers can help advance the researcher’s career by demonstrating their expertise and contributions to the field. They can also lead to new research opportunities, collaborations, and funding.
  • Academic recognition: Research papers can lead to academic recognition in the form of awards, grants, or invitations to speak at conferences or events. They can also contribute to the researcher’s reputation and standing in the field.
  • Impact on policy and practice: Research papers can have a significant impact on policy and practice. They can inform policy decisions, guide practice, and lead to changes in laws, regulations, or procedures.
  • Advancement of society: Research papers can contribute to the advancement of society by addressing important issues, identifying solutions to problems, and promoting social justice and equality.

Limitations of Research Paper

Research papers also have some limitations that should be considered when interpreting their findings or implications. Here are some common limitations of research papers:

  • Limited generalizability: Research findings may not be generalizable to other populations, settings, or contexts. Studies often use specific samples or conditions that may not reflect the broader population or real-world situations.
  • Potential for bias : Research papers may be biased due to factors such as sample selection, measurement errors, or researcher biases. It is important to evaluate the quality of the research design and methods used to ensure that the findings are valid and reliable.
  • Ethical concerns: Research papers may raise ethical concerns, such as the use of vulnerable populations or invasive procedures. Researchers must adhere to ethical guidelines and obtain informed consent from participants to ensure that the research is conducted in a responsible and respectful manner.
  • Limitations of methodology: Research papers may be limited by the methodology used to collect and analyze data. For example, certain research methods may not capture the complexity or nuance of a particular phenomenon, or may not be appropriate for certain research questions.
  • Publication bias: Research papers may be subject to publication bias, where positive or significant findings are more likely to be published than negative or non-significant findings. This can skew the overall findings of a particular area of research.
  • Time and resource constraints: Research papers may be limited by time and resource constraints, which can affect the quality and scope of the research. Researchers may not have access to certain data or resources, or may be unable to conduct long-term studies due to practical limitations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Loading metrics

Open Access

Peer-reviewed

Meta-Research Article

Meta-Research Articles feature data-driven examinations of the methods, reporting, verification, and evaluation of scientific research.

See Journal Information »

Assessing the evolution of research topics in a biological field using plant science as an example

Roles Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing

* E-mail: [email protected]

Affiliations Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America, Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan, United States of America, DOE-Great Lake Bioenergy Research Center, Michigan State University, East Lansing, Michigan, United States of America

ORCID logo

Roles Conceptualization, Investigation, Project administration, Supervision, Writing – review & editing

Affiliation Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America

  • Shin-Han Shiu, 
  • Melissa D. Lehti-Shiu

PLOS

  • Published: May 23, 2024
  • https://doi.org/10.1371/journal.pbio.3002612
  • Peer Review
  • Reader Comments

Fig 1

Scientific advances due to conceptual or technological innovations can be revealed by examining how research topics have evolved. But such topical evolution is difficult to uncover and quantify because of the large body of literature and the need for expert knowledge in a wide range of areas in a field. Using plant biology as an example, we used machine learning and language models to classify plant science citations into topics representing interconnected, evolving subfields. The changes in prevalence of topical records over the last 50 years reflect shifts in major research trends and recent radiation of new topics, as well as turnover of model species and vastly different plant science research trajectories among countries. Our approaches readily summarize the topical diversity and evolution of a scientific field with hundreds of thousands of relevant papers, and they can be applied broadly to other fields.

Citation: Shiu S-H, Lehti-Shiu MD (2024) Assessing the evolution of research topics in a biological field using plant science as an example. PLoS Biol 22(5): e3002612. https://doi.org/10.1371/journal.pbio.3002612

Academic Editor: Ulrich Dirnagl, Charite Universitatsmedizin Berlin, GERMANY

Received: October 16, 2023; Accepted: April 4, 2024; Published: May 23, 2024

Copyright: © 2024 Shiu, Lehti-Shiu. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The plant science corpus data are available through Zenodo ( https://zenodo.org/records/10022686 ). The codes for the entire project are available through GitHub ( https://github.com/ShiuLab/plant_sci_hist ) and Zenodo ( https://doi.org/10.5281/zenodo.10894387 ).

Funding: This work was supported by the National Science Foundation (IOS-2107215 and MCB-2210431 to MDL and SHS; DGE-1828149 and IOS-2218206 to SHS), Department of Energy grant Great Lakes Bioenergy Research Center (DE-SC0018409 to SHS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Abbreviations: BERT, Bidirectional Encoder Representations from Transformers; br, brassinosteroid; ccTLD, country code Top Level Domain; c-Tf-Idf, class-based Tf-Idf; ChatGPT, Chat Generative Pretrained Transformer; ga, gibberellic acid; LOWESS, locally weighted scatterplot smoothing; MeSH, Medical Subject Heading; SHAP, SHapley Additive exPlanations; SJR, SCImago Journal Rank; Tf-Idf, Term frequency-Inverse document frequency; UMAP, Uniform Manifold Approximation and Projection

Introduction

The explosive growth of scientific data in recent years has been accompanied by a rapidly increasing volume of literature. These records represent a major component of our scientific knowledge and embody the history of conceptual and technological advances in various fields over time. Our ability to wade through these records is important for identifying relevant literature for specific topics, a crucial practice of any scientific pursuit [ 1 ]. Classifying the large body of literature into topics can provide a useful means to identify relevant literature. In addition, these topics offer an opportunity to assess how scientific fields have evolved and when major shifts in took place. However, such classification is challenging because the relevant articles in any topic or domain can number in the tens or hundreds of thousands, and the literature is in the form of natural language, which takes substantial effort and expertise to process [ 2 , 3 ]. In addition, even if one could digest all literature in a field, it would still be difficult to quantify such knowledge.

In the last several years, there has been a quantum leap in natural language processing approaches due to the feasibility of building complex deep learning models with highly flexible architectures [ 4 , 5 ]. The development of large language models such as Bidirectional Encoder Representations from Transformers (BERT; [ 6 ]) and Chat Generative Pretrained Transformer (ChatGPT; [ 7 ]) has enabled the analysis, generation, and modeling of natural language texts in a wide range of applications. The success of these applications is, in large part, due to the feasibility of considering how the same words are used in different contexts when modeling natural language [ 6 ]. One such application is topic modeling, the practice of establishing statistical models of semantic structures underlying a document collection. Topic modeling has been proposed for identifying scientific hot topics over time [ 1 ], for example, in synthetic biology [ 8 ], and it has also been applied to, for example, automatically identify topical scenes in images [ 9 ] and social network topics [ 10 ], discover gene programs highly correlated with cancer prognosis [ 11 ], capture “chromatin topics” that define cell-type differences [ 12 ], and investigate relationships between genetic variants and disease risk [ 13 ]. Here, we use topic modeling to ask how research topics in a scientific field have evolved and what major changes in the research trends have taken place, using plant science as an example.

Plant science corpora allow classification of major research topics

Plant science, broadly defined, is the study of photosynthetic species, their interactions with biotic/abiotic environments, and their applications. For modeling plant science topical evolution, we first identified a collection of plant science documents (i.e., corpus) using a text classification approach. To this end, we first collected over 30 million PubMed records and narrowed down candidate plant science records by searching for those with plant-related terms and taxon names (see Materials and methods ). Because there remained a substantial number of false positives (i.e., biomedical records mentioning plants in passing), a set of positive plant science examples from the 17 plant science journals with the highest numbers of plant science publications covering a wide range of subfields and a set of negative examples from journals with few candidate plant science records were used to train 4 types of text classification models (see Materials and methods ). The best text classification model performed well (F1 = 0.96, F1 of a naïve model = 0.5, perfect model = 1) where the positive and negative examples were clearly separated from each other based on prediction probability of the hold-out testing dataset (false negative rate = 2.6%, false positive rate = 5.2%, S1A and S1B Fig ). The false prediction rate for documents from the 17 plant science journals annotated with the Medical Subject Heading (MeSH) term “Plants” in NCBI was 11.7% (see Materials and methods ). The prediction probability distribution of positive instances with the MeSH term has an expected left-skew to lower values ( S1C Fig ) compared with the distributions of all positive instances ( S1A Fig ). Thus, this subset with the MeSH term is a skewed representation of articles from these 17 major plant science journals. To further benchmark the validity of the plant science records, we also conducted manual annotation of 100 records where the false positive and false negative rates were 14.6% and 10.6%, respectively (see Materials and methods ). Using 12 other plant science journals not included as positive examples as benchmarks, the false negative rate was 9.9% (see Materials and methods ). Considering the range of false prediction rate estimates with different benchmarks, we should emphasize that the model built with the top 17 plant science journals represents a substantial fraction of plant science publications but with biases. Applying the model to the candidate plant science record led to 421,658 positive predictions, hereafter referred to as “plant science records” ( S1D Fig and S1 Data ).

To better understand how the models classified plant science articles, we identified important terms from a more easily interpretable model (Term frequency-Inverse document frequency (Tf-Idf) model; F1 = 0.934) using Shapley Additive Explanations [ 14 ]; 136 terms contributed to predicting plant science records (e.g., Arabidopsis, xylem, seedling) and 138 terms contributed to non-plant science record predictions (e.g., patients, clinical, mice; Tf-Idf feature sheet, S1 Data ). Plant science records as well as PubMed articles grew exponentially from 1950 to 2020 ( Fig 1A ), highlighting the challenges of digesting the rapidly expanding literature. We used the plant science records to perform topic modeling, which consisted of 4 steps: representing each record as a BERT embedding, reducing dimensionality, clustering, and identifying the top terms by calculating class (i.e., topic)-based Tf-Idf (c-Tf-Idf; [ 15 ]). The c-Tf-Idf represents the frequency of a term in the context of how rare the term is to reduce the influence of common words. SciBERT [ 16 ] was the best model among those tested ( S2 Data ) and was used for building the final topic model, which classified 372,430 (88.3%) records into 90 topics defined by distinct combinations of terms ( S3 Data ). The topics contained 620 to 16,183 records and were named after the top 4 to 5 terms defining the topical areas ( Fig 1B and S3 Data ). For example, the top 5 terms representing the largest topic, topic 61 (16,183 records), are “qtl,” “resistance,” “wheat,” “markers,” and “traits,” which represent crop improvement studies using quantitative genetics.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

(A) Numbers of PubMed (magenta) and plant science (green) records between 1950 and 2020. (a, b, c) Coefficients of the exponential function, y = ae b . Data for the plot are in S1 Data . (B) Numbers of documents for the top 30 plant science topics. Each topic is designated by an index number (left) and the top 4–6 terms with the highest cTf-Idf values (right). Data for the plot are in S3 Data . (C) Two-dimensional representation of the relationships between plant science records generated by Uniform Manifold Approximation and Projection (UMAP, [ 17 ]) using SciBERT embeddings of plant science records. All topics panel: Different topics are assigned different colors. Outlier panel: UMAP representation of all records (gray) with outlier records in red. Blue dotted circles: areas with relatively high densities indicating topics that are below the threshold for inclusion in a topic. In the 8 UMAP representations on the right, records for example topics are in red and the remaining records in gray. Blue dotted circles indicate the relative position of topic 48.

https://doi.org/10.1371/journal.pbio.3002612.g001

Records with assigned topics clustered into distinct areas in a two-dimensional (2D) space ( Fig 1C , for all topics, see S4 Data ). The remaining 49,228 outlier records not assigned to any topic (11.7%, middle panel, Fig 1C ) have 3 potential sources. First, some outliers likely belong to unique topics but have fewer records than the threshold (>500, blue dotted circles, Fig 1C ). Second, some of the many outliers dispersed within the 2D space ( Fig 1C ) were not assigned to any single topic because they had relatively high prediction scores for multiple topics ( S2 Fig ). These likely represent studies across subdisciplines in plant science. Third, some outliers are likely interdisciplinary studies between plant science and other domains, such as chemistry, mathematics, and physics. Such connections can only be revealed if records from other domains are included in the analyses.

Topical clusters reveal closely related topics but with distinct key term usage

Related topics tend to be located close together in the 2D representation (e.g., topics 48 and 49, Fig 1C ). We further assessed intertopical relationships by determining the cosine similarities between topics using cTf-Idfs ( Figs 2A and S3 ). In this topic network, some topics are closely related and form topic clusters. For example, topics 25, 26, and 27 collectively represent a more general topic related to the field of plant development (cluster a , lower left in Fig 2A ). Other topic clusters represent studies of stress, ion transport, and heavy metals ( b ); photosynthesis, water, and UV-B ( c ); population and community biology (d); genomics, genetic mapping, and phylogenetics ( e , upper right); and enzyme biochemistry ( f , upper left in Fig 2A ).

thumbnail

(A) Graph depicting the degrees of similarity (edges) between topics (nodes). Between each topic pair, a cosine similarity value was calculated using the cTf-Idf values of all terms. A threshold similarity of 0.6 was applied to illustrate the most related topics. For the full matrix presented as a heatmap, see S4 Fig . The nodes are labeled with topic index numbers and the top 4–6 terms. The colors and width of the edges are defined based on cosine similarity. Example topic clusters are highlighted in yellow and labeled a through f (blue boxes). (B, C) Relationships between the cTf-Idf values (see S3 Data ) of the top terms for topics 26 and 27 (B) and for topics 25 and 27 (C) . Only terms with cTf-Idf ≥ 0.6 are labeled. Terms with cTf-Idf values beyond the x and y axis limit are indicated by pink arrows and cTf-Idf values. (D) The 2D representation in Fig 1C is partitioned into graphs for different years, and example plots for every 5-year period since 1975 are shown. Example topics discussed in the text are indicated. Blue arrows connect the areas occupied by records of example topics across time periods to indicate changes in document frequencies.

https://doi.org/10.1371/journal.pbio.3002612.g002

Topics differed in how well they were connected to each other, reflecting how general the research interests or needs are (see Materials and methods ). For example, topic 24 (stress mechanisms) is the most well connected with median cosine similarity = 0.36, potentially because researchers in many subfields consider aspects of plant stress even though it is not the focus. The least connected topics include topic 21 (clock biology, 0.12), which is surprising because of the importance of clocks in essentially all aspects of plant biology [ 18 ]. This may be attributed, in part, to the relatively recent attention in this area.

Examining topical relationships and the cTf-Idf values of terms also revealed how related topics differ. For example, topic 26 is closely related to topics 27 and 25 (cluster a on the lower left of Fig 2A ). Topics 26 and 27 both contain records of developmental process studies mainly in Arabidopsis ( Fig 2B ); however, topic 26 is focused on the impact of light, photoreceptors, and hormones such as gibberellic acids (ga) and brassinosteroids (br), whereas topic 27 is focused on flowering and floral development. Topic 25 is also focused on plant development but differs from topic 27 because it contains records of studies mainly focusing on signaling and auxin with less emphasis on Arabidopsis ( Fig 2C ). These examples also highlight the importance of using multiple top terms to represent the topics. The similarities in cTf-Idfs between topics were also useful for measuring the editorial scope (i.e., diverse, or narrow) of journals publishing plant science papers using a relative topic diversity measure (see Materials and methods ). For example, Proceedings of the National Academy of Sciences , USA has the highest diversity, while Theoretical and Applied Genetics has the lowest ( S4 Fig ). One surprise is the relatively low diversity of American Journal of Botany , which focuses on plant ecology, systematics, development, and genetics. The low diversity is likely due to the relatively larger number of cellular and molecular science records in PubMed, consistent with the identification of relatively few topical areas relevant to studies at the organismal, population, community, and ecosystem levels.

Investigation of the relative prevalence of topics over time reveals topical succession

We next asked whether relationships between topics reflect chronological progression of certain subfields. To address this, we assessed how prevalent topics were over time using dynamic topic modeling [ 19 ]. As shown in Fig 2D , there is substantial fluctuation in where the records are in the 2D space over time. For example, topic 44 (light, leaves, co, synthesis, photosynthesis) is among the topics that existed in 1975 but has diminished gradually since. In 1985, topic 39 (Agrobacterium-based transformation) became dense enough to be visualized. Additional examples include topics 79 (soil heavy metals), 42 (differential expression), and 82 (bacterial community metagenomics), which became prominent in approximately 2005, 2010, and 2020, respectively ( Fig 2D ). In addition, animating the document occupancy in the 2D space over time revealed a broad change in patterns over time: Some initially dense areas became sparse over time and a large number of topics in areas previously only loosely occupied at the turn of the century increased over time ( S5 Data ).

While the 2D representations reveal substantial details on the evolution of topics, comparison over time is challenging because the number of plant science records has grown exponentially ( Fig 1A ). To address this, the records were divided into 50 chronological bins each with approximately 8,400 records to make cross-bin comparisons feasible ( S6 Data ). We should emphasize that, because of the way the chronological bins were split, the number of records for each topic in each bin should be treated as a normalized value relative to all other topics during the same period. Examining this relative prevalence of topics across bins revealed a clear pattern of topic succession over time (one topic evolved into another) and the presence of 5 topical categories ( Fig 3 ). The topics were categorized based on their locally weighted scatterplot smoothing (LOWESS) fits and ordered according to timing of peak frequency ( S7 and S8 Data , see Materials and methods ). In Fig 3 , the relative decrease in document frequency does not mean that research output in a topic is dwindling. Because each row in the heatmap is normalized based on the minimum and maximum values within each topic, there still can be substantial research output in terms of numbers of publications even when the relative frequency is near zero. Thus, a reduced relative frequency of a topic reflects only a below-average growth rate compared with other topical areas.

thumbnail

(A-E) A heat map of relative topic frequency over time reveals 5 topical categories: (A) stable, (B) early, (C) transitional, (D) sigmoidal, and (E) rising. The x axis denotes different time bins with each bin containing a similar number of documents to account for the exponential growth of plant science records over time. The sizes of all bins except the first are drawn to scale based on the beginning and end dates. The y axis lists different topics denoted by the label and top 4 to 5 terms. In each cell, the prevalence of a topic in a time bin is colored according to the min-max normalized cTf-Idf values for that topic. Light blue dotted lines delineate different decades. The arrows left of a subset of topic labels indicate example relationships between topics in topic clusters. Blue boxes with labels a–f indicate topic clusters, which are the same as those in Fig 2 . Connecting lines indicate successional trends. Yellow circles/lines 1 – 3: 3 major transition patterns. The original data are in S5 Data .

https://doi.org/10.1371/journal.pbio.3002612.g003

The first topical category is a stable category with 7 topics mostly established before the 1980s that have since remained stable in terms of prevalence in the plant science records (top of Fig 3A ). These topics represent long-standing plant science research foci, including studies of plant physiology (topics 4, 58, and 81), genetics (topic 61), and medicinal plants (topic 53). The second category contains 8 topics established before the 1980s that have mostly decreased in prevalence since (the early category, Fig 3B ). Two examples are physiological and morphological studies of hormone action (topic 45, the second in the early category) and the characterization of protein, DNA, and RNA (topic 18, the second to last). Unlike other early topics, topic 78 (paleobotany and plant evolution studies, the last topic in Fig 3B ) experienced a resurgence in the early 2000s due to the development of new approaches and databases and changes in research foci [ 20 ].

The 33 topics in the third, transitional category became prominent in the 1980s, 1990s, or even 2000s but have clearly decreased in prevalence ( Fig 3C ). In some cases, the early and the transitional topics became less prevalent because of topical succession—refocusing of earlier topics led to newer ones that either show no clear sign of decrease (the sigmoidal category, Fig 3D ) or continue to increase in prevalence (the rising category, Fig 3E ). Consistent with the notion of topical succession, topics within each topic cluster ( Fig 2 ) were found across topic categories and/or were prominent at different time periods (indicated by colored lines linking topics, Fig 3 ). One example is topics in topic cluster b (connected with light green lines and arrows, compare Figs 2 and 3 ); the study of cation transport (topic 47, the third in the transitional category), prominent in the 1980s and early 1990s, is connected to 5 other topics, namely, another transitional topic 29 (cation channels and their expression) peaking in the 2000s and early 2010s, sigmoidal topics 24 and 28 (stress response, tolerance mechanisms) and 30 (heavy metal transport), which rose to prominence in mid-2000s, and the rising topic 42 (stress transcriptomic studies), which increased in prevalence in the mid-2010s.

The rise and fall of topics can be due to a combination of technological or conceptual breakthroughs, maturity of the field, funding constraints, or publicity. The study of transposable elements (topic 62) illustrates the effect of publicity; the rise in this field coincided with Barbara McClintock’s 1983 Nobel Prize but not with the publication of her studies in the 1950s [ 21 ]. The reduced prevalence in early 2000 likely occurred in part because analysis of transposons became a central component of genome sequencing and annotation studies, rather than dedicated studies. In addition, this example indicates that our approaches, while capable of capturing topical trends, cannot be used to directly infer major papers leading to the growth of a topic.

Three major topical transition patterns signify shifts in research trends

Beyond the succession of specific topics, 3 major transitions in the dynamic topic graph should be emphasized: (1) the relative decreasing trend of early topics in the late 1970s and early 1980s; (2) the rise of transitional topics in late 1980s; and (3) the relative decreasing trend of transitional topics in the late 1990s and early 2000s, which coincided with a radiation of sigmoidal and rising topics (yellow circles, Fig 3 ). The large numbers of topics involved in these transitions suggest major shifts in plant science research. In transition 1, early topics decreased in relative prevalence in the late 1970s to early 1980s, which coincided with the rise of transitional topics over the following decades (circle 1, Fig 3 ). For example, there was a shift from the study of purified proteins such as enzymes (early topic 48, S5A Fig ) to molecular genetic dissection of genes, proteins, and RNA (transitional topic 35, S5B Fig ) enabled by the wider adoption of recombinant DNA and molecular cloning technologies in late 1970s [ 22 ]. Transition 2 (circle 2, Fig 3 ) can be explained by the following breakthroughs in the late 1980s: better approaches to create transgenic plants and insertional mutants [ 23 ], more efficient creation of mutant plant libraries through chemical mutagenesis (e.g., [ 24 ]), and availability of gene reporter systems such as β-glucuronidase [ 25 ]. Because of these breakthroughs, molecular genetics studies shifted away from understanding the basic machinery to understanding the molecular underpinnings of specific processes, such as molecular mechanisms of flower and meristem development and the action of hormones such as auxin (topic 27, S5C Fig ); this type of research was discussed as a future trend in 1988 [ 26 ] and remains prevalent to this date. Another example is gene silencing (topic 12), which became a focal area of study along with the widespread use of transgenic plants [ 27 ].

Transition 3 is the most drastic: A large number of transitional, sigmoidal, and rising topics became prevalent nearly simultaneously at the turn of the century (circle 3, Fig 3 ). This period also coincides with a rapid increase in plant science citations ( Fig 1A ). The most notable breakthroughs included the availability of the first plant genome in 2000 [ 28 ], increasing ease and reduced cost of high-throughput sequencing [ 29 ], development of new mass spectrometry–based platforms for analyzing proteins [ 30 ], and advancements in microscopic and optical imaging approaches [ 31 ]. Advances in genomics and omics technology also led to an increase in stress transcriptomics studies (42, S5D Fig ) as well as studies in many other topics such as epigenetics (topic 11), noncoding RNA analysis (13), genomics and phylogenetics (80), breeding (41), genome sequencing and assembly (60), gene family analysis (23), and metagenomics (82 and 55).

In addition to the 3 major transitions across all topics, there were also transitions within topics revealed by examining the top terms for different time bins (heatmaps, S5 Fig ). Taken together, these observations demonstrate that knowledge about topical evolution can be readily revealed through topic modeling. Such knowledge is typically only available to experts in specific areas and is difficult to summarize manually, as no researcher has a command of the entire plant science literature.

Analysis of taxa studied reveals changes in research trends

Changes in research trends can also be illustrated by examining changes in the taxa being studied over time ( S9 Data ). There is a strong bias in the taxa studied, with the record dominated by research models and economically important taxa ( S6 Fig ). Flowering plants (Magnoliopsida) are found in 93% of records ( S6A Fig ), and the mustard family Brassicaceae dominates at the family level ( S6B Fig ) because the genus Arabidopsis contributes to 13% of plant science records ( Fig 4A ). When examining the prevalence of taxa being studied over time, clear patterns of turnover emerged similar to topical succession ( Figs 4B , S6C, and S6D ; Materials and methods ). Given that Arabidopsis is mentioned in more publications than other species we analyzed, we further examined the trends for Arabidopsis publications. The increase in the normalized number (i.e., relative to the entire plant science corpus) of Arabidopsis records coincided with advocacy of its use as a model system in the late 1980s [ 32 ]. While it remains a major plant model, there has been a decrease in overall Arabidopsis publications relative to all other plant science publications since 2011 (blue line, normalized total, Fig 4C ). Because the same chronological bins, each with same numbers of records, from the topic-over-time analysis ( Fig 3 ) were used, the decrease here does not mean that there were fewer Arabidopsis publications—in fact, the number of Arabidopsis papers has remained steady since 2011. This decrease means that Arabidopsis-related publications represent a relatively smaller proportion of plant science records. Interestingly, this decrease took place much earlier (approximately 2005) and was steeper in the United States (red line, Fig 4C ) than in all countries combined (blue line, Fig 4C ).

thumbnail

(A) Percentage of records mentioning specific genera. (B) Change in the prevalence of genera in plant science records over time. (C) Changes in the normalized numbers of all records (blue) and records from the US (red) mentioning Arabidopsis over time. The lines are LOWESS fits with fraction parameter = 0.2. (D) Topical over (red) and under (blue) representation among 5 genera with the most plant science records. LLR: log 2 likelihood ratios of each topic in each genus. Gray: topic-species combination not significantly enriched at the 5% level based on enrichment p -values adjusted for multiple testing with the Benjamini–Hochberg method [ 33 ]. The data used for plotting are in S9 Data . The statistics for all topics are in S10 Data .

https://doi.org/10.1371/journal.pbio.3002612.g004

Assuming that the normalized number of publications reflects the relative intensity of research activities, one hypothesis for the relative decrease in focus on Arabidopsis is that advances in, for example, plant transformation, genetic manipulation, and genome research have allowed the adoption of more previously nonmodel taxa. Consistent with this, there was a precipitous increase in the number of genera being published in the mid-90s to early 2000s during which approaches for plant transgenics became established [ 34 ], but the number has remained steady since then ( S7A Fig ). The decrease in the proportion of Arabidopsis papers is also negatively correlated with the timing of an increase in the number of draft genomes ( S7B Fig and S9 Data ). It is plausible that genome availability for other species may have contributed to a shift away from Arabidopsis. Strikingly, when we analyzed US National Science Foundation records, we found that the numbers of funded grants mentioning Arabidopsis ( S7C Fig ) have risen and fallen in near perfect synchrony with the normalized number of Arabidopsis publication records (red line, Fig 4C ). This finding likely illustrates the impact of funding on Arabidopsis research.

By considering both taxa information and research topics, we can identify clear differences in the topical areas preferred by researchers using different plant taxa ( Fig 4D and S10 Data ). For example, studies of auxin/light signaling, the circadian clock, and flowering tend to be carried out in Arabidopsis, while quantitative genetic studies of disease resistance tend to be done in wheat and rice, glyphosate research in soybean, and RNA virus research in tobacco. Taken together, joint analyses of topics and species revealed additional details about changes in preferred models over time, and the preferred topical areas for different taxa.

Countries differ in their contributions to plant science and topical preference

We next investigated whether there were geographical differences in topical preference among countries by inferring country information from 330,187 records (see Materials and methods ). The 10 countries with the most records account for 73% of the total, with China and the US contributing to approximately 18% each ( Fig 5A ). The exponential growth in plant science records (green line, Fig 1A ) was in large part due to the rapid rise in annual record numbers in China and India ( Fig 5B ). When we examined the publication growth rates using the top 17 plant science journals, the general patterns remained the same ( S7D Fig ). On the other hand, the US, Japan, Germany, France, and Great Britain had slower rates of growth compared with all non-top 10 countries. The rapid increase in records from China and India was accompanied by a rapid increase in metrics measuring journal impact ( Figs 5C and S8 and S9 Data ). For example, using citation score ( Fig 5C , see Materials and methods ), we found that during a 22-year period China (dark green) and India (light green) rapidly approached the global average (y = 0, yellow), whereas some of the other top 10 countries, particularly the US (red) and Japan (yellow green), showed signs of decrease ( Fig 5C ). It remains to be determined whether these geographical trends reflect changes in priority, investment, and/or interest in plant science research.

thumbnail

(A) Numbers of plant science records for countries with the 10 highest numbers. (B) Percentage of all records from each of the top 10 countries from 1980 to 2020. (C) Difference in citation scores from 1999 to 2020 for the top 10 countries. (D) Shown for each country is the relationship between the citation scores averaged from 1999 to 2020 and the slope of linear fit with year as the predictive variable and citation score as the response variable. The countries with >400 records and with <10% missing impact values are included. Data used for plots (A–D) are in S11 Data . (E) Correlation in topic enrichment scores between the top 10 countries. PCC, Pearson’s correlation coefficient, positive in red, negative in blue. Yellow rectangle: countries with more similar topical preferences. (F) Enrichment scores (LLR, log likelihood ratio) of selected topics among the top 10 countries. Red: overrepresentation, blue: underrepresentation. Gray: topic-country combination that is not significantly enriched at the 5% level based on enrichment p -values adjusted for multiple testing with the Benjamini–Hochberg method (for all topics and plotting data, see S12 Data ).

https://doi.org/10.1371/journal.pbio.3002612.g005

Interestingly, the relative growth/decline in citation scores over time (measured as the slope of linear fit of year versus citation score) was significantly and negatively correlated with average citation score ( Fig 5D ); i.e., countries with lower overall metrics tended to experience the strongest increase in citation scores over time. Thus, countries that did not originally have a strong influence on plant sciences now have increased impact. These patterns were also observed when using H-index or journal rank as metrics ( S8 Fig and S11 Data ) and were not due to increased publication volume, as the metrics were normalized against numbers of records from each country (see Materials and methods ). In addition, the fact that different metrics with different caveats and assumptions yielded consistent conclusions indicates the robustness of our observations. We hypothesize that this may be a consequence of the ease in scientific communication among geographically isolated research groups. It could also be because of the prevalence of online journals that are open access, which makes scientific information more readily accessible. Or it can be due to the increasing international collaboration. In any case, the causes for such regression toward the mean are not immediately clear and should be addressed in future studies.

We also assessed how the plant research foci of countries differ by comparing topical preference (i.e., the degree of enrichment of plant science records in different topics) between countries. For example, Italy and Spain cluster together (yellow rectangle, Fig 5E ) partly because of similar research focusing on allergens (topic 0) and mycotoxins (topic 54) and less emphasis on gene family (topic 23) and stress tolerance (topic 28) studies ( Fig 5F , for the fold enrichment and corrected p -values of all topics, see S12 Data ). There are substantial differences in topical focus between countries ( S9 Fig ). For example, research on new plant compounds associated with herbal medicine (topic 69) is a focus in China but not in the US, but the opposite is true for population genetics and evolution (topic 86) ( Fig 5F ). In addition to revealing how plant science research has evolved over time, topic modeling provides additional insights into differences in research foci among different countries, which are informative for science policy considerations.

In this study, topic modeling revealed clear transitions among research topics, which represent shifts in research trends in plant sciences. One limitation of our study is the bias in the PubMed-based corpus. The cellular, molecular, and physiological aspects of plant sciences are well represented, but there are many fewer records related to evolution, ecology, and systematics. Our use of titles/abstracts from the top 17 plant science journals as positive examples allowed us to identify papers we typically see in these journals, but this may have led to us missing “outlier” articles, which may be the most exciting. Another limitation is the need to assign only one topic to a record when a study is interdisciplinary and straddles multiple topics. Furthermore, a limited number of large, inherently heterogeneous topics were summarized to provide a more concise interpretation, which undoubtedly underrepresents the diversity of plant science research. Despite these limitations, dynamic topic modeling revealed changes in plant science research trends that coincide with major shifts in biological science. While we were interested in identifying conceptual advances, our approach can identify the trend but the underlying causes for such trends, particularly key records leading to the growth in certain topics, still need to be identified. It also remains to be determined which changes in research trends lead to paradigm shifts as defined by Kuhn [ 35 ].

The key terms defining the topics frequently describe various technologies (e.g., topic 38/39: transformation, 40: genome editing, 59: genetic markers, 65: mass spectrometry, 69: nuclear magnetic resonance) or are indicative of studies enabled through molecular genetics and omics technologies (e.g., topic 8/60: genome, 11: epigenetic modifications, 18: molecular biological studies of macromolecules, 13: small RNAs, 61: quantitative genetics, 82/84: metagenomics). Thus, this analysis highlights how technological innovation, particularly in the realm of omics, has contributed to a substantial number of research topics in the plant sciences, a finding that likely holds for other scientific disciplines. We also found that the pattern of topic evolution is similar to that of succession, where older topics have mostly decreased in relative prevalence but appear to have been superseded by newer ones. One example is the rise of transcriptome-related topics and the correlated, reduced focus on regulation at levels other than transcription. This raises the question of whether research driven by technology negatively impacts other areas of research where high-throughput studies remain challenging.

One observation on the overall trends in plant science research is the approximately 10-year cycle in major shifts. One hypothesis is related to not only scientific advances but also to the fashion-driven aspect of science. Nonetheless, given that there were only 3 major shifts and the sample size is small, it is difficult to speculate as to why they happened. By analyzing the country of origin, we found that China and India have been the 2 major contributors to the growth in the plant science records in the last 20 years. Our findings also show an equalizing trend in global plant science where countries without a strong plant science publication presence have had an increased impact over the last 20 years. In addition, we identified significant differences in research topics between countries reflecting potential differences in investment and priorities. Such information is important for discerning differences in research trends across countries and can be considered when making policy decisions about research directions.

Materials and methods

Collection and preprocessing of a candidate plant science corpus.

For reproducibility purposes, a random state value of 20220609 was used throughout the study. The PubMed baseline files containing citation information ( ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline/ ) were downloaded on November 11, 2021. To narrow down the records to plant science-related citations, a candidate citation was identified as having, within the titles and/or abstracts, at least one of the following words: “plant,” “plants,” “botany,” “botanical,” “planta,” and “plantarum” (and their corresponding upper case and plural forms), or plant taxon identifiers from NCBI Taxonomy ( https://www.ncbi.nlm.nih.gov/taxonomy ) or USDA PLANTS Database ( https://plants.sc.egov.usda.gov/home ). Note the search terms used here have nothing to do with the values of the keyword field in PubMed records. The taxon identifiers include all taxon names including and at taxonomic levels below “Viridiplantae” till the genus level (species names not used). This led to 51,395 search terms. After looking for the search terms, qualified entries were removed if they were duplicated, lacked titles and/or abstracts, or were corrections, errata, or withdrawn articles. This left 1,385,417 citations, which were considered the candidate plant science corpus (i.e., a collection of texts). For further analysis, the title and abstract for each citation were combined into a single entry. Text was preprocessed by lowercasing, removing stop-words (i.e., common words), removing non-alphanumeric and non-white space characters (except Greek letters, dashes, and commas), and applying lemmatization (i.e., grouping inflected forms of a word as a single word) for comparison. Because lemmatization led to truncated scientific terms, it was not included in the final preprocessing pipeline.

Definition of positive/negative examples

Upon closer examination, a large number of false positives were identified in the candidate plant science records. To further narrow down citations with a plant science focus, text classification was used to distinguish plant science and non-plant science articles (see next section). For the classification task, a negative set (i.e., non-plant science citations) was defined as entries from 7,360 journals that appeared <20 times in the filtered data (total = 43,329, journal candidate count, S1 Data ). For the positive examples (i.e., true plant science citations), 43,329 plant science citations (positive examples) were sampled from 17 established plant science journals each with >2,000 entries in the filtered dataset: “Plant physiology,” “Frontiers in plant science,” “Planta,” “The Plant journal: for cell and molecular biology,” “Journal of experimental botany,” “Plant molecular biology,” “The New phytologist,” “The Plant cell,” “Phytochemistry,” “Plant & cell physiology,” “American journal of botany,” “Annals of botany,” “BMC plant biology,” “Tree physiology,” “Molecular plant-microbe interactions: MPMI,” “Plant biology,” and “Plant biotechnology journal” (journal candidate count, S1 Data ). Plant biotechnology journal was included, but only 1,894 records remained after removal of duplicates, articles with missing info, and/or withdrawn articles. The positive and negative sets were randomly split into training and testing subsets (4:1) while maintaining a 1:1 positive-to-negative ratio.

Text classification based on Tf and Tf-Idf

Instead of using the preprocessed text as features for building classification models directly, text embeddings (i.e., representations of texts in vectors) were used as features. These embeddings were generated using 4 approaches (model summary, S1 Data ): Term-frequency (Tf), Tf-Idf [ 36 ], Word2Vec [ 37 ], and BERT [ 6 ]. The Tf- and Tf-Idf-based features were generated with CountVectorizer and TfidfVectorizer, respectively, from Scikit-Learn [ 38 ]. Different maximum features (1e4 to 1e5) and n-gram ranges (uni-, bi-, and tri-grams) were tested. The features were selected based on the p- value of chi-squared tests testing whether a feature had a higher-than-expected value among the positive or negative classes. Four different p- value thresholds were tested for feature selection. The selected features were then used to retrain vectorizers with the preprocessed training texts to generate feature values for classification. The classification model used was XGBoost [ 39 ] with 5 combinations of the following hyperparameters tested during 5-fold stratified cross-validation: min_child_weight = (1, 5, 10), gamma = (0.5, 1, 1.5, 2.5), subsample = (0.6, 0.8, 1.0), colsample_bytree = (0.6, 0.8, 1.0), and max_depth = (3, 4, 5). The rest of the hyperparameters were held constant: learning_rate = 0.2, n_estimators = 600, objective = binary:logistic. RandomizedSearchCV from Scikit-Learn was used for hyperparameter tuning and cross-validation with scoring = F1-score.

Because the Tf-Idf model had a relatively high model performance and was relatively easy to interpret (terms are frequency-based, instead of embedding-based like those generated by Word2Vec and BERT), the Tf-Idf model was selected as input to SHapley Additive exPlanations (SHAP; [ 14 ]) to assess the importance of terms. Because the Tf-Idf model was based on XGBoost, a tree-based algorithm, the TreeExplainer module in SHAP was used to determine a SHAP value for each entry in the training dataset for each Tf-Idf feature. The SHAP value indicates the degree to which a feature positively or negatively affects the underlying prediction. The importance of a Tf-Idf feature was calculated as the average SHAP value of that feature among all instances. Because a Tf-Idf feature is generated based on a specific term, the importance of the Tf-Idf feature indicates the importance of the associated term.

Text classification based on Word2Vec

The preprocessed texts were first split into train, validation, and test subsets (8:1:1). The texts in each subset were converted to 3 n-gram lists: a unigram list obtained by splitting tokens based on the space character, or bi- and tri-gram lists built with Gensim [ 40 ]. Each n-gram list of the training subset was next used to fit a Skip-gram Word2Vec model with vector_size = 300, window = 8, min_count = (5, 10, or 20), sg = 1, and epochs = 30. The Word2Vec model was used to generate word embeddings for train, validate, and test subsets. In the meantime, a tokenizer was trained with train subset unigrams using Tensorflow [ 41 ] and used to tokenize texts in each subset and turn each token into indices to use as features for training text classification models. To ensure all citations had the same number of features (500), longer texts were truncated, and shorter ones were zero-padded. A deep learning model was used to train a text classifier with an input layer the same size as the feature number, an attention layer incorporating embedding information for each feature, 2 bidirectional Long-Short-Term-Memory layers (15 units each), a dense layer (64 units), and a final, output layer with 2 units. During training, adam, accuracy, and sparse_categorical_crossentropy were used as the optimizer, evaluation metric, and loss function, respectively. The training process lasted 30 epochs with early stopping if validation loss did not improve in 5 epochs. An F1 score was calculated for each n-gram list and min_count parameter combination to select the best model (model summary, S1 Data ).

Text classification based on BERT models

Two pretrained models were used for BERT-based classification: DistilBERT (Hugging face repository [ 42 ] model name and version: distilbert-base-uncased [ 43 ]) and SciBERT (allenai/scibert-scivocab-uncased [ 16 ]). In both cases, tokenizers were retrained with the training data. BERT-based models had the following architecture: the token indices (512 values for each token) and associated masked values as input layers, pretrained BERT layer (512 × 768) excluding outputs, a 1D pooling layer (768 units), a dense layer (64 units), and an output layer (2 units). The rest of the training parameters were the same as those for Word2Vec-based models, except training lasted for 20 epochs. Cross-validation F1-scores for all models were compared and used to select the best model for each feature extraction method, hyperparameter combination, and modeling algorithm or architecture (model summary, S1 Data ). The best model was the Word2Vec-based model (min_count = 20, window = 8, ngram = 3), which was applied to the candidate plant science corpus to identify a set of plant science citations for further analysis. The candidate plant science records predicted as being in the positive class (421,658) by the model were collectively referred to as the “plant science corpus.”

Plant science record classification

In PubMed, 1,384,718 citations containing “plant” or any plant taxon names (from the phylum to genus level) were considered candidate plant science citations. To further distinguish plant science citations from those in other fields, text classification models were trained using titles and abstracts of positive examples consisting of citations from 17 plant science journals, each with >2,000 entries in PubMed, and negative examples consisting of records from journals with fewer than 20 entries in the candidate set. Among 4 models tested the best model (built with Word2Vec embeddings) had a cross validation F1 of 0.964 (random guess F1 = 0.5, perfect model F1 = 1, S1 Data ). When testing the model using 17,330 testing set citations independent from the training set, the F1 remained high at 0.961.

We also conducted another analysis attempting to use the MeSH term “Plants” as a benchmark. Records with the MeSH term “Plants” also include pharmaceutical studies of plants and plant metabolites or immunological studies of plants as allergens in journals that are not generally considered plant science journals (e.g., Acta astronautica , International journal for parasitology , Journal of chromatography ) or journals from local scientific societies (e.g., Acta pharmaceutica Hungarica , Huan jing ke xue , Izvestiia Akademii nauk . Seriia biologicheskaia ). Because we explicitly labeled papers from such journals as negative examples, we focused on 4,004 records with the “Plants” MeSH term published in the 17 plant science journals that were used as positive instances and found that 88.3% were predicted as the positive class. Thus, based on the MeSH term, there is an 11.7% false prediction rate.

We also enlisted 5 plant science colleagues (3 advanced graduate students in plant biology and genetic/genome science graduate programs, 1 postdoctoral breeder/quantitative biologist, and 1 postdoctoral biochemist/geneticist) to annotate 100 randomly selected abstracts as a reviewer suggested. Each record was annotated by 2 colleagues. Among 85 entries where the annotations are consistent between annotators, 48 were annotated as negative but with 7 predicted as positive (false positive rate = 14.6%) and 37 were annotated as positive but with 4 predicted as negative (false negative rate = 10.8%). To further benchmark the performance of the text classification model, we identified another 12 journals that focus on plant science studies to use as benchmarks: Current opinion in plant biology (number of articles: 1,806), Trends in plant science (1,723), Functional plant biology (1,717), Molecular plant pathology (1,573), Molecular plant (1,141), Journal of integrative plant biology (1,092), Journal of plant research (1,032), Physiology and molecular biology of plants (830), Nature plants (538), The plant pathology journal (443). Annual review of plant biology (417), and The plant genome (321). Among the 12,611 candidate plant science records, 11,386 were predicted as positive. Thus, there is a 9.9% false negative rate.

Global topic modeling

BERTopic [ 15 ] was used for preliminary topic modeling with n-grams = (1,2) and with an embedding initially generated by DistilBERT, SciBERT, or BioBERT (dmis-lab/biobert-base-cased-v1.2; [ 44 ]). The embedding models converted preprocessed texts to embeddings. The topics generated based on the 3 embeddings were similar ( S2 Data ). However, SciBERT-, BioBERT-, and distilBERT-based embedding models had different numbers of outlier records (268,848, 293,790, and 323,876, respectively) with topic index = −1. In addition to generating the fewest outliers, the SciBERT-based model led to the highest number of topics. Therefore, SciBERT was chosen as the embedding model for the final round of topic modeling. Modeling consisted of 3 steps. First, document embeddings were generated with SentenceTransformer [ 45 ]. Second, a clustering model to aggregate documents into clusters using hdbscan [ 46 ] was initialized with min_cluster_size = 500, metric = euclidean, cluster_selection_method = eom, min_samples = 5. Third, the embedding and the initialized hdbscan model were used in BERTopic to model topics with neighbors = 10, nr_topics = 500, ngram_range = (1,2). Using these parameters, 90 topics were identified. The initial topic assignments were conservative, and 241,567 records were considered outliers (i.e., documents not assigned to any of the 90 topics). After assessing the prediction scores of all records generated from the fitted topic models, the 95-percentile score was 0.0155. This score was used as the threshold for assigning outliers to topics: If the maximum prediction score was above the threshold and this maximum score was for topic t , then the outlier was assigned to t . After the reassignment, 49,228 records remained outliers. To assess if some of the outliers were not assigned because they could be assigned to multiple topics, the prediction scores of the records were used to put records into 100 clusters using k- means. Each cluster was then assessed to determine if the outlier records in a cluster tended to have higher prediction scores across multiple topics ( S2 Fig ).

Topics that are most and least well connected to other topics

The most well-connected topics in the network include topic 24 (stress mechanisms, median cosine similarity = 0.36), topic 42 (genes, stress, and transcriptomes, 0.34), and topic 35 (molecular genetics, 0.32, all t test p -values < 1 × 10 −22 ). The least connected topics include topic 0 (allergen research, median cosine similarity = 0.12), topic 21 (clock biology, 0.12), topic 1 (tissue culture, 0.15), and topic 69 (identification of compounds with spectroscopic methods, 0.15; all t test p- values < 1 × 10 −24 ). Topics 0, 1, and 69 are specialized topics; it is surprising that topic 21 is not as well connected as explained in the main text.

Analysis of documents based on the topic model

example of research journal topic

Topical diversity among top journals with the most plant science records

Using a relative topic diversity measure (ranging from 0 to 10), we found that there was a wide range of topical diversity among 20 journals with the largest numbers of plant science records ( S3 Fig ). The 4 journals with the highest relative topical diversities are Proceedings of the National Academy of Sciences , USA (9.6), Scientific Reports (7.1), Plant Physiology (6.7), and PLOS ONE (6.4). The high diversities are consistent with the broad, editorial scopes of these journals. The 4 journals with the lowest diversities are American Journal of Botany (1.6), Oecologia (0.7), Plant Disease (0.7), and Theoretical and Applied Genetics (0.3), which reflects their discipline-specific focus and audience of classical botanists, ecologists, plant pathologists, and specific groups of geneticists.

Dynamic topic modeling

The codes for dynamic modeling were based on _topic_over_time.py in BERTopics and modified to allow additional outputs for debugging and graphing purposes. The plant science citations were binned into 50 subsets chronologically (for timestamps of bins, see S5 Data ). Because the numbers of documents increased exponentially over time, instead of dividing them based on equal-sized time intervals, which would result in fewer records at earlier time points and introduce bias, we divided them into time bins of similar size (approximately 8,400 documents). Thus, the earlier time subsets had larger time spans compared with later time subsets. If equal-size time intervals were used, the numbers of documents between the intervals would differ greatly; the earlier time points would have many fewer records, which may introduce bias. Prior to binning the subsets, the publication dates were converted to UNIX time (timestamp) in seconds; the plant science records start in 1917-11-1 (timestamp = −1646247600.0) and end in 2021-1-1 (timestamp = 1609477201). The starting dates and corresponding timestamps for the 50 subsets including the end date are in S6 Data . The input data included the preprocessed texts, topic assignments of records from global topic modeling, and the binned timestamps of records. Three additional parameters were set for topics_over_time, namely, nr_bin = 50 (number of bins), evolution_tuning = True, and global_tuning = False. The evolution_tuning parameter specified that averaged c-Tf-Idf values for a topic be calculated in neighboring time bins to reduce fluctuation in c-Tf-Idf values. The global_tuning parameter was set to False because of the possibility that some nonexisting terms could have a high c-Tf-Idf for a time bin simply because there was a high global c-Tf-Idf value for that term.

The binning strategy based on similar document numbers per bin allowed us to increase signal particularly for publications prior to the 90s. This strategy, however, may introduce more noise for bins with smaller time durations (i.e., more recent bins) because of publication frequencies (there can be seasonal differences in the number of papers published, biased toward, e.g., the beginning of the year or the beginning of a quarter). To address this, we examined the relative frequencies of each topic over time ( S7 Data ), but we found that recent time bins had similar variances in relative frequencies as other time bins. We also moderated the impact of variation using LOWESS (10% to 30% of the data points were used for fitting the trend lines) to determine topical trends for Fig 3 . Thus, the influence of the noise introduced via our binning strategy is expected to be minimal.

Topic categories and ordering

The topics were classified into 5 categories with contrasting trends: stable, early, transitional, sigmoidal, and rising. To define which category a topic belongs to, the frequency of documents over time bins for each topic was analyzed using 3 regression methods. We first tried 2 forecasting methods: recursive autoregressor (the ForecasterAutoreg class in the skforecast package) and autoregressive integrated moving average (ARIMA implemented in the pmdarima package). In both cases, the forecasting results did not clearly follow the expected trend lines, likely due to the low numbers of data points (relative frequency values), which resulted in the need to extensively impute missing data. Thus, as a third approach, we sought to fit the trendlines with the data points using LOWESS (implemented in the statsmodels package) and applied additional criteria for assigning topics to categories. When fitting with LOWESS, 3 fraction parameters (frac, the fraction of the data used when estimating each y-value) were evaluated (0.1, 0.2, 0.3). While frac = 0.3 had the smallest errors for most topics, in situations where there were outliers, frac = 0.2 or 0.1 was chosen to minimize mean squared errors ( S7 Data ).

The topics were classified into 5 categories based on the slopes of the fitted line over time: (1) stable: topics with near 0 slopes over time; (2) early: topics with negative (<−0.5) slopes throughout (with the exception of topic 78, which declined early on but bounced back by the late 1990s); (3) transitional: early positive (>0.5) slopes followed by negative slopes at later time points; (4) sigmoidal: early positive slopes followed by zero slopes at later time points; and (5) rising: continuously positive slopes. For each topic, the LOWESS fits were also used to determine when the relative document frequency reached its peak, first reaching a threshold of 0.6 (chosen after trial and error for a range of 0.3 to 0.9), and the overall trend. The topics were then ordered based on (1) whether they belonged to the stable category or not; (2) whether the trends were decreasing, stable, or increasing; (3) the time the relative document frequency first reached 0.6; and (4) the time that the overall peak was reached ( S8 Data ).

Taxa information

To identify a taxon or taxa in all plant science records, NCBI Taxonomy taxdump datasets were downloaded from the NCBI FTP site ( https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/new_taxdump/ ) on September 20, 2022. The highest-level taxon was Viridiplantae, and all its child taxa were parsed and used as queries in searches against the plant science corpus. In addition, a species-over-time analysis was conducted using the same time bins as used for dynamic topic models. The number of records in different time bins for top taxa are in the genus, family, order, and additional species level sheet in S9 Data . The degree of over-/underrepresentation of a taxon X in a research topic T was assessed using the p -value of a Fisher’s exact test for a 2 × 2 table consisting of the numbers of records in both X and T, in X but not T, in T but not X, and in neither ( S10 Data ).

For analysis of plant taxa with genome information, genome data of taxa in Viridiplantae were obtained from the NCBI Genome data-hub ( https://www.ncbi.nlm.nih.gov/data-hub/genome ) on October 28, 2022. There were 2,384 plant genome assemblies belonging to 1,231 species in 559 genera (genome assembly sheet, S9 Data ). The date of the assembly was used as a proxy for the time when a genome was sequenced. However, some species have updated assemblies and have more recent data than when the genome first became available.

Taxa being studied in the plant science records

Flowering plants (Magnoliopsida) are found in 93% of records, while most other lineages are discussed in <1% of records, with conifers and related species being exceptions (Acrogynomsopermae, 3.5%, S6A Fig ). At the family level, the mustard (Brassicaceae), grass (Poaceae), pea (Fabaceae), and nightshade (Solanaceae) families are in 51% of records ( S6B Fig ). The prominence of the mustard family in plant science research is due to the Brassica and Arabidopsis genera ( Fig 4A ). When examining the prevalence of taxa being studied over time, clear patterns of turnovers emerged ( Figs 4B , S6C, and S6D ). While the study of monocot species (Liliopsida) has remained steady, there was a significant uptick in the prevalence of eudicot (eudicotyledon) records in the late 90s ( S6C Fig ), which can be attributed to the increased number of studies in the mustard, myrtle (Myrtaceae), and mint (Lamiaceae) families among others ( S6D Fig ). At the genus level, records mentioning Gossypium (cotton), Phaseolus (bean), Hordeum (wheat), and Zea (corn), similar to the topics in the early category, were prevalent till the 1980s or 1990s but have mostly decreased in number since ( Fig 4B ). In contrast, Capsicum , Arabidopsis , Oryza , Vitus , and Solanum research has become more prevalent over the last 20 years.

Geographical information for the plant science corpus

The geographical information (country) of authors in the plant science corpus was obtained from the address (AD) fields of first authors in Medline XML records accessible through the NCBI EUtility API ( https://www.ncbi.nlm.nih.gov/books/NBK25501/ ). Because only first author affiliations are available for records published before December 2014, only the first author’s location was considered to ensure consistency between records before and after that date. Among the 421,658 records in the plant science corpus, 421,585 had Medline records and 421,276 had unique PMIDs. Among the records with unique PMIDs, 401,807 contained address fields. For each of the remaining records, the AD field content was split into tokens with a “,” delimiter, and the token likely containing geographical info (referred to as location tokens) was selected as either the last token or the second to last token if the last token contained “@” indicating the presence of an email address. Because of the inconsistency in how geographical information was described in the location tokens (e.g., country, state, city, zip code, name of institution, and different combinations of the above), the following 4 approaches were used to convert location tokens into countries.

The first approach was a brute force search where full names and alpha-3 codes of current countries (ISO 3166–1), current country subregions (ISO 3166–2), and historical country (i.e., country that no longer exists, ISO 3166–3) were used to search the address fields. To reduce false positives using alpha-3 codes, a space prior to each code was required for the match. The first approach allowed the identification of 361,242, 16,573, and 279,839 records with current country, historical country, and subregion information, respectively. The second method was the use of a heuristic based on common address field structures to identify “location strings” toward the end of address fields that likely represent countries, then the use of the Python pycountry module to confirm the presence of country information. This approach led to 329,025 records with country information. The third approach was to parse first author email addresses (90,799 records), recover top-level domain information, and use country code Top Level Domain (ccTLD) data from the ISO 3166 Wikipedia page to define countries (72,640 records). Only a subset of email addresses contains country information because some are from companies (.com), nonprofit organizations (.org), and others. Because a large number of records with address fields still did not have country information after taking the above 3 approaches, another approach was implemented to query address fields against a locally installed Nominatim server (v.4.2.3, https://github.com/mediagis/nominatim-docker ) using OpenStreetMap data from GEOFABRIK ( https://www.geofabrik.de/ ) to find locations. Initial testing indicated that the use of full address strings led to false positives, and the computing resource requirement for running the server was high. Thus, only location strings from the second approach that did not lead to country information were used as queries. Because multiple potential matches were returned for each query, the results were sorted based on their location importance values. The above steps led to an additional 72,401 records with country information.

Examining the overlap in country information between approaches revealed that brute force current country and pycountry searches were consistent 97.1% of the time. In addition, both approaches had high consistency with the email-based approach (92.4% and 93.9%). However, brute force subregion and Nominatim-based predictions had the lowest consistencies with the above 3 approaches (39.8% to 47.9%) and each other. Thus, a record’s country information was finalized if the information was consistent between any 2 approaches, except between the brute force subregion and Nominatim searches. This led to 330,328 records with country information.

Topical and country impact metrics

example of research journal topic

To determine annual country impact, impact scores were determined in the same way as that for annual topical impact, except that values for different countries were calculated instead of topics ( S8 Data ).

Topical preferences by country

To determine topical preference for a country C , a 2 × 2 table was established with the number of records in topic T from C , the number of records in T but not from C , the number of non- T records from C , and the number of non- T records not from C . A Fisher’s exact test was performed for each T and C combination, and the resulting p -values were corrected for multiple testing with the Bejamini–Hochberg method (see S12 Data ). The preference of T in C was defined as the degree of enrichment calculated as log likelihood ratio of values in the 2 × 2 table. Topic 5 was excluded because >50% of the countries did not have records for this topic.

The top 10 countries could be classified into a China–India cluster, an Italy–Spain cluster, and remaining countries (yellow rectangles, Fig 5E ). The clustering of Italy and Spain is partly due to similar research focusing on allergens (topic 0) and mycotoxins (topic 54) and less emphasis on gene family (topic 23) and stress tolerance (topic 28) studies ( Figs 5F and S9 ). There are also substantial differences in topical focus between countries. For example, plant science records from China tend to be enriched in hyperspectral imaging and modeling (topic 9), gene family studies (topic 23), stress biology (topic 28), and research on new plant compounds associated with herbal medicine (topic 69), but less emphasis on population genetics and evolution (topic 86, Fig 5F ). In the US, there is a strong focus on insect pest resistance (topic 75), climate, community, and diversity (topic 83), and population genetics and evolution but less focus on new plant compounds. In summary, in addition to revealing how plant science research has evolved over time, topic modeling provides additional insights into differences in research foci among different countries.

Supporting information

S1 fig. plant science record classification model performance..

(A–C) Distributions of prediction probabilities (y_prob) of (A) positive instances (plant science records), (B) negative instances (non-plant science records), and (C) positive instances with the Medical Subject Heading “Plants” (ID = D010944). The data are color coded in blue and orange if they are correctly and incorrectly predicted, respectively. The lower subfigures contain log10-transformed x axes for the same distributions as the top subfigure for better visualization of incorrect predictions. (D) Prediction probability distribution for candidate plant science records. Prediction probabilities plotted here are available in S13 Data .

https://doi.org/10.1371/journal.pbio.3002612.s001

S2 Fig. Relationships between outlier clusters and the 90 topics.

(A) Heatmap demonstrating that some outlier clusters tend to have high prediction scores for multiple topics. Each cell shows the average prediction score of a topic for records in an outlier cluster. (B) Size of outlier clusters.

https://doi.org/10.1371/journal.pbio.3002612.s002

S3 Fig. Cosine similarities between topics.

(A) Heatmap showing cosine similarities between topic pairs. Top-left: hierarchical clustering of the cosine similarity matrix using the Ward algorithm. The branches are colored to indicate groups of related topics. (B) Topic labels and names. The topic ordering was based on hierarchical clustering of topics. Colored rectangles: neighboring topics with >0.5 cosine similarities.

https://doi.org/10.1371/journal.pbio.3002612.s003

S4 Fig. Relative topical diversity for 20 journals.

The 20 journals with the most plant science records are shown. The journal names were taken from the journal list in PubMed ( https://www.nlm.nih.gov/bsd/serfile_addedinfo.html ).

https://doi.org/10.1371/journal.pbio.3002612.s004

S5 Fig. Topical frequency and top terms during different time periods.

(A-D) Different patterns of topical frequency distributions for example topics (A) 48, (B) 35, (C) 27, and (D) 42. For each topic, the top graph shows the frequency of topical records in each time bin, which are the same as those in Fig 3 (green line), and the end date for each bin is indicated. The heatmap below each line plot depicts whether a term is among the top terms in a time bin (yellow) or not (blue). Blue dotted lines delineate different decades (see S5 Data for the original frequencies, S6 Data for the LOWESS fitted frequencies and the top terms for different topics/time bins).

https://doi.org/10.1371/journal.pbio.3002612.s005

S6 Fig. Prevalence of records mentioning different taxonomic groups in Viridiplantae.

(A, B) Percentage of records mentioning specific taxa at the ( A) major lineage and (B) family levels. (C, D) The prevalence of taxon mentions over time at the (C) major lineage and (E) family levels. The data used for plotting are available in S9 Data .

https://doi.org/10.1371/journal.pbio.3002612.s006

S7 Fig. Changes over time.

(A) Number of genera being mentioned in plant science records during different time bins (the date indicates the end date of that bin, exclusive). (B) Numbers of genera (blue) and organisms (salmon) with draft genomes available from National Center of Biotechnology Information in different years. (C) Percentage of US National Science Foundation (NSF) grants mentioning the genus Arabidopsis over time with peak percentage and year indicated. The data for (A–C) are in S9 Data . (D) Number of plant science records in the top 17 plant science journals from the USA (red), Great Britain (GBR) (orange), India (IND) (light green), and China (CHN) (dark green) normalized against the total numbers of publications of each country over time in these 17 journals. The data used for plotting can be found in S11 Data .

https://doi.org/10.1371/journal.pbio.3002612.s007

S8 Fig. Change in country impact on plant science over time.

(A, B) Difference in 2 impact metrics from 1999 to 2020 for the 10 countries with the highest number of plant science records. (A) H-index. (B) SCImago Journal Rank (SJR). (C, D) Plots show the relationships between the impact metrics (H-index in (C) , SJR in (D) ) averaged from 1999 to 2020 and the slopes of linear fits with years as the predictive variable and impact metric as the response variable for different countries (A3 country codes shown). The countries with >400 records and with <10% missing impact values are included. The data used for plotting can be found in S11 Data .

https://doi.org/10.1371/journal.pbio.3002612.s008

S9 Fig. Country topical preference.

Enrichment scores (LLR, log likelihood ratio) of topics for each of the top 10 countries. Red: overrepresentation, blue: underrepresentation. The data for plotting can be found in S12 Data .

https://doi.org/10.1371/journal.pbio.3002612.s009

S1 Data. Summary of source journals for plant science records, prediction models, and top Tf-Idf features.

Sheet–Candidate plant sci record j counts: Number of records from each journal in the candidate plant science corpus (before classification). Sheet—Plant sci record j count: Number of records from each journal in the plant science corpus (after classification). Sheet–Model summary: Model type, text used (txt_flag), and model parameters used. Sheet—Model performance: Performance of different model and parameter combinations on the validation data set. Sheet–Tf-Idf features: The average SHAP values of Tf-Idf (Term frequency-Inverse document frequency) features associated with different terms. Sheet–PubMed number per year: The data for PubMed records in Fig 1A . Sheet–Plant sci record num per yr: The data for the plant science records in Fig 1A .

https://doi.org/10.1371/journal.pbio.3002612.s010

S2 Data. Numbers of records in topics identified from preliminary topic models.

Sheet–Topics generated with a model based on BioBERT embeddings. Sheet–Topics generated with a model based on distilBERT embeddings. Sheet–Topics generated with a model based on SciBERT embeddings.

https://doi.org/10.1371/journal.pbio.3002612.s011

S3 Data. Final topic model labels and top terms for topics.

Sheet–Topic label: The topic index and top 10 terms with the highest cTf-Idf values. Sheets– 0 to 89: The top 50 terms and their c-Tf-Idf values for topics 0 to 89.

https://doi.org/10.1371/journal.pbio.3002612.s012

S4 Data. UMAP representations of different topics.

For a topic T , records in the UMAP graph are colored red and records not in T are colored gray.

https://doi.org/10.1371/journal.pbio.3002612.s013

S5 Data. Temporal relationships between published documents projected onto 2D space.

The 2D embedding generated with UMAP was used to plot document relationships for each year. The plots from 1975 to 2020 were compiled into an animation.

https://doi.org/10.1371/journal.pbio.3002612.s014

S6 Data. Timestamps and dates for dynamic topic modeling.

Sheet–bin_timestamp: Columns are: (1) order index; (2) bin_idx–relative positions of bin labels; (3) bin_timestamp–UNIX time in seconds; and (4) bin_date–month/day/year. Sheet–Topic frequency per timestamp: The number of documents in each time bin for each topic. Sheets–LOWESS fit 0.1/0.2/0.3: Topic frequency per timestamp fitted with the fraction parameter of 0.1, 0.2, or 0.3. Sheet—Topic top terms: The top 5 terms for each topic in each time bin.

https://doi.org/10.1371/journal.pbio.3002612.s015

S7 Data. Locally weighted scatterplot smoothing (LOWESS) of topical document frequencies over time.

There are 90 scatter plots, one for each topic, where the x axis is time, and the y axis is the document frequency (blue dots). The LOWESS fit is shown as orange points connected with a green line. The category a topic belongs to and its order in Fig 3 are labeled on the top left corner. The data used for plotting are in S6 Data .

https://doi.org/10.1371/journal.pbio.3002612.s016

S8 Data. The 4 criteria used for sorting topics.

Peak: the time when the LOWESS fit of the frequencies of a topic reaches maximum. 1st_reach_thr: the time when the LOWESS fit first reaches a threshold of 60% maximal frequency (peak value). Trend: upward (1), no change (0), or downward (−1). Stable: whether a topic belongs to the stable category (1) or not (0).

https://doi.org/10.1371/journal.pbio.3002612.s017

S9 Data. Change in taxon record numbers and genome assemblies available over time.

Sheet–Genus: Number of records mentioning a genus during different time periods (in Unix timestamp) for the top 100 genera. Sheet–Genus: Number of records mentioning a family during different time periods (in Unix timestamp) for the top 100 families. Sheet–Genus: Number of records mentioning an order during different time periods (in Unix timestamp) for the top 20 orders. Sheet–Species levels: Number of records mentioning 12 selected taxonomic levels higher than the order level during different time periods (in Unix timestamp). Sheet–Genome assembly: Plant genome assemblies available from NCBI as of October 28, 2022. Sheet–Arabidopsis NSF: Absolute and normalized numbers of US National Science Foundation funded proposals mentioning Arabidopsis in proposal titles and/or abstracts.

https://doi.org/10.1371/journal.pbio.3002612.s018

S10 Data. Taxon topical preference.

Sheet– 5 genera LLR: The log likelihood ratio of each topic in each of the top 5 genera with the highest numbers of plant science records. Sheets– 5 genera: For each genus, the columns are: (1) topic; (2) the Fisher’s exact test p -value (Pvalue); (3–6) numbers of records in topic T and in genus X (n_inT_inX), in T but not in X (n_inT_niX), not in T but in X (n_niT_inX), and not in T and X (n_niT_niX) that were used to construct 2 × 2 tables for the tests; and (7) the log likelihood ratio generated with the 2 × 2 tables. Sheet–corrected p -value: The 4 values for generating LLRs were used to conduct Fisher’s exact test. The p -values obtained for each country were corrected for multiple testing.

https://doi.org/10.1371/journal.pbio.3002612.s019

S11 Data. Impact metrics of countries in different years.

Sheet–country_top25_year_count: number of total publications and publications per year from the top 25 countries with the most plant science records. Sheet—country_top25_year_top17j: number of total publications and publications per year from the top 25 countries with the highest numbers of plant science records in the 17 plant science journals used as positive examples. Sheet–prank: Journal percentile rank scores for countries (3-letter country codes following https://www.iban.com/country-codes ) in different years from 1999 to 2020. Sheet–sjr: Scimago Journal rank scores. Sheet–hidx: H-Index scores. Sheet–cite: Citation scores.

https://doi.org/10.1371/journal.pbio.3002612.s020

S12 Data. Topical enrichment for the top 10 countries with the highest numbers of plant science publications.

Sheet—Log likelihood ratio: For each country C and topic T, it is defined as log((a/b)/(c/d)) where a is the number of papers from C in T, b is the number from C but not in T, c is the number not from C but in T, d is the number not from C and not in T. Sheet: corrected p -value: The 4 values, a, b, c, and d, were used to conduct Fisher’s exact test. The p -values obtained for each country were corrected for multiple testing.

https://doi.org/10.1371/journal.pbio.3002612.s021

S13 Data. Text classification prediction probabilities.

This compressed file contains the PubMed ID (PMID) and the prediction probabilities (y_pred) of testing data with both positive and negative examples (pred_prob_testing), plant science candidate records with the MeSH term “Plants” (pred_prob_candidates_with_mesh), and all plant science candidate records (pred_prob_candidates_all). The prediction probability was generated using the Word2Vec text classification models for distinguishing positive (plant science) and negative (non-plant science) records.

https://doi.org/10.1371/journal.pbio.3002612.s022

Acknowledgments

We thank Maarten Grootendorst for discussions on topic modeling. We also thank Stacey Harmer, Eva Farre, Ning Jiang, and Robert Last for discussion on their respective research fields and input on how to improve this study and Rudiger Simon for the suggestion to examine differences between countries. We also thank Mae Milton, Christina King, Edmond Anderson, Jingyao Tang, Brianna Brown, Kenia Segura Abá, Eleanor Siler, Thilanka Ranaweera, Huan Chen, Rajneesh Singhal, Paulo Izquierdo, Jyothi Kumar, Daniel Shiu, Elliott Shiu, and Wiggler Catt for their good ideas, personal and professional support, collegiality, fun at parties, as well as the trouble they have caused, which helped us improve as researchers, teachers, mentors, and parents.

  • View Article
  • PubMed/NCBI
  • Google Scholar
  • 2. Blei DM, Lafferty JD. Topic Models. In: Srivastava A, Sahami M, editors. Text Mining. Cambridge: Chapman and Hall/CRC; 2009. pp. 71–93.
  • 7. ChatGPT. [cited 2023 Aug 25]. Available from: https://chat.openai.com
  • 9. Fei-Fei L, Perona P. A Bayesian hierarchical model for learning natural scene categories. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05); 2005. pp. 524–531 vol. 2. https://doi.org/10.1109/CVPR.2005.16
  • 19. Blei DM, Lafferty JD. Dynamic topic models. Proceedings of the 23rd International Conference on Machine learning. New York, NY, USA: Association for Computing Machinery; 2006. pp. 113–120. https://doi.org/10.1145/1143844.1143859
  • 35. Kuhn T. The Structure of Scientific Revolution. Chicago: University of Chicago Press; 1962.
  • 36. CiteSeer | Proceedings of the second international conference on Autonomous agents. [cited 2023 Aug 23]. Available from: https://dl.acm.org/doi/10.1145/280765.280786
  • 39. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM; 2016. pp. 785–794. https://doi.org/10.1145/2939672.2939785
  • 40. Řehůřek R, Sojka P. Software Framework for Topic Modelling with Large Corpora. Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. Valletta, Malta: ELRA; 2010. pp. 45–50.
  • 42. Hugging Face–The AI community building the future. 2023 Aug 19 [cited 2023 Aug 25]. Available from: https://huggingface.co/

Case Study Research Method in Psychology

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews).

The case study research method originated in clinical medicine (the case history, i.e., the patient’s personal history). In psychology, case studies are often confined to the study of a particular individual.

The information is mainly biographical and relates to events in the individual’s past (i.e., retrospective), as well as to significant events that are currently occurring in his or her everyday life.

The case study is not a research method, but researchers select methods of data collection and analysis that will generate material suitable for case studies.

Freud (1909a, 1909b) conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

This makes it clear that the case study is a method that should only be used by a psychologist, therapist, or psychiatrist, i.e., someone with a professional qualification.

There is an ethical issue of competence. Only someone qualified to diagnose and treat a person can conduct a formal case study relating to atypical (i.e., abnormal) behavior or atypical development.

case study

 Famous Case Studies

  • Anna O – One of the most famous case studies, documenting psychoanalyst Josef Breuer’s treatment of “Anna O” (real name Bertha Pappenheim) for hysteria in the late 1800s using early psychoanalytic theory.
  • Little Hans – A child psychoanalysis case study published by Sigmund Freud in 1909 analyzing his five-year-old patient Herbert Graf’s house phobia as related to the Oedipus complex.
  • Bruce/Brenda – Gender identity case of the boy (Bruce) whose botched circumcision led psychologist John Money to advise gender reassignment and raise him as a girl (Brenda) in the 1960s.
  • Genie Wiley – Linguistics/psychological development case of the victim of extreme isolation abuse who was studied in 1970s California for effects of early language deprivation on acquiring speech later in life.
  • Phineas Gage – One of the most famous neuropsychology case studies analyzes personality changes in railroad worker Phineas Gage after an 1848 brain injury involving a tamping iron piercing his skull.

Clinical Case Studies

  • Studying the effectiveness of psychotherapy approaches with an individual patient
  • Assessing and treating mental illnesses like depression, anxiety disorders, PTSD
  • Neuropsychological cases investigating brain injuries or disorders

Child Psychology Case Studies

  • Studying psychological development from birth through adolescence
  • Cases of learning disabilities, autism spectrum disorders, ADHD
  • Effects of trauma, abuse, deprivation on development

Types of Case Studies

  • Explanatory case studies : Used to explore causation in order to find underlying principles. Helpful for doing qualitative analysis to explain presumed causal links.
  • Exploratory case studies : Used to explore situations where an intervention being evaluated has no clear set of outcomes. It helps define questions and hypotheses for future research.
  • Descriptive case studies : Describe an intervention or phenomenon and the real-life context in which it occurred. It is helpful for illustrating certain topics within an evaluation.
  • Multiple-case studies : Used to explore differences between cases and replicate findings across cases. Helpful for comparing and contrasting specific cases.
  • Intrinsic : Used to gain a better understanding of a particular case. Helpful for capturing the complexity of a single case.
  • Collective : Used to explore a general phenomenon using multiple case studies. Helpful for jointly studying a group of cases in order to inquire into the phenomenon.

Where Do You Find Data for a Case Study?

There are several places to find data for a case study. The key is to gather data from multiple sources to get a complete picture of the case and corroborate facts or findings through triangulation of evidence. Most of this information is likely qualitative (i.e., verbal description rather than measurement), but the psychologist might also collect numerical data.

1. Primary sources

  • Interviews – Interviewing key people related to the case to get their perspectives and insights. The interview is an extremely effective procedure for obtaining information about an individual, and it may be used to collect comments from the person’s friends, parents, employer, workmates, and others who have a good knowledge of the person, as well as to obtain facts from the person him or herself.
  • Observations – Observing behaviors, interactions, processes, etc., related to the case as they unfold in real-time.
  • Documents & Records – Reviewing private documents, diaries, public records, correspondence, meeting minutes, etc., relevant to the case.

2. Secondary sources

  • News/Media – News coverage of events related to the case study.
  • Academic articles – Journal articles, dissertations etc. that discuss the case.
  • Government reports – Official data and records related to the case context.
  • Books/films – Books, documentaries or films discussing the case.

3. Archival records

Searching historical archives, museum collections and databases to find relevant documents, visual/audio records related to the case history and context.

Public archives like newspapers, organizational records, photographic collections could all include potentially relevant pieces of information to shed light on attitudes, cultural perspectives, common practices and historical contexts related to psychology.

4. Organizational records

Organizational records offer the advantage of often having large datasets collected over time that can reveal or confirm psychological insights.

Of course, privacy and ethical concerns regarding confidential data must be navigated carefully.

However, with proper protocols, organizational records can provide invaluable context and empirical depth to qualitative case studies exploring the intersection of psychology and organizations.

  • Organizational/industrial psychology research : Organizational records like employee surveys, turnover/retention data, policies, incident reports etc. may provide insight into topics like job satisfaction, workplace culture and dynamics, leadership issues, employee behaviors etc.
  • Clinical psychology : Therapists/hospitals may grant access to anonymized medical records to study aspects like assessments, diagnoses, treatment plans etc. This could shed light on clinical practices.
  • School psychology : Studies could utilize anonymized student records like test scores, grades, disciplinary issues, and counseling referrals to study child development, learning barriers, effectiveness of support programs, and more.

How do I Write a Case Study in Psychology?

Follow specified case study guidelines provided by a journal or your psychology tutor. General components of clinical case studies include: background, symptoms, assessments, diagnosis, treatment, and outcomes. Interpreting the information means the researcher decides what to include or leave out. A good case study should always clarify which information is the factual description and which is an inference or the researcher’s opinion.

1. Introduction

  • Provide background on the case context and why it is of interest, presenting background information like demographics, relevant history, and presenting problem.
  • Compare briefly to similar published cases if applicable. Clearly state the focus/importance of the case.

2. Case Presentation

  • Describe the presenting problem in detail, including symptoms, duration,and impact on daily life.
  • Include client demographics like age and gender, information about social relationships, and mental health history.
  • Describe all physical, emotional, and/or sensory symptoms reported by the client.
  • Use patient quotes to describe the initial complaint verbatim. Follow with full-sentence summaries of relevant history details gathered, including key components that led to a working diagnosis.
  • Summarize clinical exam results, namely orthopedic/neurological tests, imaging, lab tests, etc. Note actual results rather than subjective conclusions. Provide images if clearly reproducible/anonymized.
  • Clearly state the working diagnosis or clinical impression before transitioning to management.

3. Management and Outcome

  • Indicate the total duration of care and number of treatments given over what timeframe. Use specific names/descriptions for any therapies/interventions applied.
  • Present the results of the intervention,including any quantitative or qualitative data collected.
  • For outcomes, utilize visual analog scales for pain, medication usage logs, etc., if possible. Include patient self-reports of improvement/worsening of symptoms. Note the reason for discharge/end of care.

4. Discussion

  • Analyze the case, exploring contributing factors, limitations of the study, and connections to existing research.
  • Analyze the effectiveness of the intervention,considering factors like participant adherence, limitations of the study, and potential alternative explanations for the results.
  • Identify any questions raised in the case analysis and relate insights to established theories and current research if applicable. Avoid definitive claims about physiological explanations.
  • Offer clinical implications, and suggest future research directions.

5. Additional Items

  • Thank specific assistants for writing support only. No patient acknowledgments.
  • References should directly support any key claims or quotes included.
  • Use tables/figures/images only if substantially informative. Include permissions and legends/explanatory notes.
  • Provides detailed (rich qualitative) information.
  • Provides insight for further research.
  • Permitting investigation of otherwise impractical (or unethical) situations.

Case studies allow a researcher to investigate a topic in far more detail than might be possible if they were trying to deal with a large number of research participants (nomothetic approach) with the aim of ‘averaging’.

Because of their in-depth, multi-sided approach, case studies often shed light on aspects of human thinking and behavior that would be unethical or impractical to study in other ways.

Research that only looks into the measurable aspects of human behavior is not likely to give us insights into the subjective dimension of experience, which is important to psychoanalytic and humanistic psychologists.

Case studies are often used in exploratory research. They can help us generate new ideas (that might be tested by other methods). They are an important way of illustrating theories and can help show how different aspects of a person’s life are related to each other.

The method is, therefore, important for psychologists who adopt a holistic point of view (i.e., humanistic psychologists ).

Limitations

  • Lacking scientific rigor and providing little basis for generalization of results to the wider population.
  • Researchers’ own subjective feelings may influence the case study (researcher bias).
  • Difficult to replicate.
  • Time-consuming and expensive.
  • The volume of data, together with the time restrictions in place, impacted the depth of analysis that was possible within the available resources.

Because a case study deals with only one person/event/group, we can never be sure if the case study investigated is representative of the wider body of “similar” instances. This means the conclusions drawn from a particular case may not be transferable to other settings.

Because case studies are based on the analysis of qualitative (i.e., descriptive) data , a lot depends on the psychologist’s interpretation of the information she has acquired.

This means that there is a lot of scope for Anna O , and it could be that the subjective opinions of the psychologist intrude in the assessment of what the data means.

For example, Freud has been criticized for producing case studies in which the information was sometimes distorted to fit particular behavioral theories (e.g., Little Hans ).

This is also true of Money’s interpretation of the Bruce/Brenda case study (Diamond, 1997) when he ignored evidence that went against his theory.

Breuer, J., & Freud, S. (1895).  Studies on hysteria . Standard Edition 2: London.

Curtiss, S. (1981). Genie: The case of a modern wild child .

Diamond, M., & Sigmundson, K. (1997). Sex Reassignment at Birth: Long-term Review and Clinical Implications. Archives of Pediatrics & Adolescent Medicine , 151(3), 298-304

Freud, S. (1909a). Analysis of a phobia of a five year old boy. In The Pelican Freud Library (1977), Vol 8, Case Histories 1, pages 169-306

Freud, S. (1909b). Bemerkungen über einen Fall von Zwangsneurose (Der “Rattenmann”). Jb. psychoanal. psychopathol. Forsch ., I, p. 357-421; GW, VII, p. 379-463; Notes upon a case of obsessional neurosis, SE , 10: 151-318.

Harlow J. M. (1848). Passage of an iron rod through the head.  Boston Medical and Surgical Journal, 39 , 389–393.

Harlow, J. M. (1868).  Recovery from the Passage of an Iron Bar through the Head .  Publications of the Massachusetts Medical Society. 2  (3), 327-347.

Money, J., & Ehrhardt, A. A. (1972).  Man & Woman, Boy & Girl : The Differentiation and Dimorphism of Gender Identity from Conception to Maturity. Baltimore, Maryland: Johns Hopkins University Press.

Money, J., & Tucker, P. (1975). Sexual signatures: On being a man or a woman.

Further Information

  • Case Study Approach
  • Case Study Method
  • Enhancing the Quality of Case Studies in Health Services Research
  • “We do things together” A case study of “couplehood” in dementia
  • Using mixed methods for evaluating an integrative approach to cancer care: a case study

Print Friendly, PDF & Email

Related Articles

Qualitative Data Coding

Research Methodology

Qualitative Data Coding

What Is a Focus Group?

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

What Is Internal Validity In Research?

What Is Internal Validity In Research?

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

Criterion Validity: Definition & Examples

Criterion Validity: Definition & Examples

Is college worth it? The answer for half of Americans is striking.

example of research journal topic

A college degree has often been sold as the key to a higher-quality, affluent life. But a new survey from the Pew Research Center suggests Americans have mixed views about that narrative – and data shows people without degrees have seen their earnings increase in the last decade.

Just 1 in 4 U.S. adults said it was extremely or very important to have a four-year degree if you want a well-paying job in the current economy. Forty percent of respondents said it wasn’t too important or important at all. 

Mirroring those trends, just 22% of adults said the cost of getting a bachelor’s is worth it even if it means taking out student loans. Nearly half said the cost is only worth it when students don’t have to go into debt. 

Graphics explain: How are college costs adding up these days and how much has tuition risen?

Given trends in the labor and economy – combined with skyrocketing tuition and student debt levels – the lackluster confidence among Americans isn’t surprising. For several decades until about 2014, for example, the earnings for young men without a degree trended downward. But the past decade “has marked a turning point,” according to the Pew analysis.

Workforce participation for these young men has stabilized and their earnings have risen. The share of them living in poverty has also fallen significantly. In 2011, for example, 17% of young men with just a high school diploma were living in poverty; in 2023, that rate dropped to 12%. Young women’s outcomes also improved in recent years.

The changing circumstances help explain why people's mindsets about the value of college have shifted. Roughly half of Americans, according to the Pew report, say a four-year degree is less important today than it was in the past to secure a well-paying job. A smaller percentage – about a third – say it’s more important now. 

The skepticism is more pronounced among conservative Americans than people who identify as Democrats or somewhat Democrat. Most Republicans (57%) said it was less important to have a four-year degree. Still, Americans from both parties are more likely to say the importance of a college degree has declined than to say it's increased.

The findings come as the Biden administration works to forgive certain borrowers’ federal student loan debt, which now totals more than $1.6 trillion. On top of barriers to covering tuition, college life has been altered this year by an uptick in culture war tensions on campus, from bans on diversity, equity and inclusion programming to student protests prompted by the Israel-Hamas war. These challenges have fueled debates about whether college is worth it.

Still, the research shows that earnings for degree holders have also trended upward. The income gaps between college graduates and those with just high school degrees or incomplete credentials have persisted. 

And while employment prospects for young men without a degree improved in the past decade, their median annual earnings remain below their 1973 adjusted levels.

Financial aid crisis: How FAFSA 'fixes' have turned College Decision Day into chaos

IMAGES

  1. (PDF) How To Write A Scientific Article For A Medical Journal?

    example of research journal topic

  2. (PDF) Writing a journal article from your thesis or research project

    example of research journal topic

  3. FREE 15+ Journal Article Samples in Word, Google Docs, PDF

    example of research journal topic

  4. Research Topic Examples For Senior High School Students

    example of research journal topic

  5. This all new set of 35 topics for journal writing is designed to serve

    example of research journal topic

  6. Research Topic Template

    example of research journal topic

VIDEO

  1. Introduction to Research and how to choose a research topic

  2. How to Select a Topic for Journal Article [Urdu / Hindi]

  3. What is research topic? Criteria for selecting topic, components and examples #health #research

  4. Choosing the Best Research Topic

  5. Research Methodology Lecture # 04

  6. Insider Secrets: The Three Types of Research!

COMMENTS

  1. 113 Great Research Paper Topics

    113 Great Research Paper Topics. One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and cover a wide range of subjects so you can easily ...

  2. 1000+ Research Topics & Research Title Examples For Students

    A strong research topic comprises three important qualities: originality, value and feasibility.. Originality - a good topic explores an original area or takes a novel angle on an existing area of study.; Value - a strong research topic provides value and makes a contribution, either academically or practically.; Feasibility - a good research topic needs to be practical and manageable ...

  3. Examples of Research Paper Topics in Different Study Areas

    1. Compare and contrast two different literary texts or the writing of two different authors. Consider a number of aspects such as genre, style, character development, metaphor, imagery and word play in examining and discussing the texts. Tip: Comparing and contrasting two or more things, events or problems in a research paper can be a useful ...

  4. 100 Science Topics for Research Papers

    How to Start Your Science Research Paper. Science papers are interesting to write and easy to research because there are so many current and reputable journals online. Start by browsing through the STEM research topics below, which are written in the form of prompts. Then, look at some of the linked articles at the end for further ideas.

  5. How To Choose A Research Topic: FULL TUTORIAL & Examples

    To recap, the "Big 5" assessment criteria include: Topic originality and novelty. Value and significance. Access to data and equipment. Time requirements. Ethical compliance. Be sure to grab a copy of our free research topic evaluator sheet here to fast-track your topic selection process.

  6. Top 10 Research Topics from 2021

    Find the answers to your biggest research questions from 2021. With collective views of over 3.7 million, researchers explored topics spanning from nutritional

  7. Good Research Paper Topics You Can Really Use, With Examples and Ideas

    Research Topic Examples You Can Use. Let's say the topic example is: Abortion Dilemmas Faced by Adults. Keep the overall structure of the topic example, but make significant changes in both of the main ideas. Examples of adaptations for this topic might include: Life-Stage Dilemmas Faced by Older Adults. or.

  8. How to Write a Literature Review

    A literature review is a survey of scholarly sources (such as books, journal articles, and theses) related to a specific topic or research question. It is often written as part of a thesis, dissertation, or research paper, in order to situate your work in relation to existing knowledge.

  9. The Ultimate Research Topic Mega List (1000+ Research Topics)

    The list provides 1000+ topic ideas across 25 research areas, including: Accounting & finance. Artificial intelligence (AI) and machine learning. Biotech and genetic engineering. Blockchain and crypto. Business, management and leadership. Communication. Cybersecurity. Data science and analytics.

  10. Top 100 Research Paper Topics: Start Smart

    Top 10 Technology Research Paper Topics: See topics related to the cutting-edge technology or dive into history of electronics, or even early advances in agriculture. Food Preservation: Freeze Drying, Irradiation, and Vacuum Packing. Tissue Culturing.

  11. The top 10 journal articles of 2020

    Amachine learning algorithm can identify which patients would derive more benefit from cognitive behavioral therapy (CBT) versus counseling for depression, suggests research in this Journal of Consulting and Clinical Psychology (Vol. 88, No. 1) article. Researchers retrospectively explored data from 1,085 patients in the United Kingdom treated ...

  12. 35 Good Research Topics for High School Students

    This time, the topics have a historical angle to them. Encourage your writers to determine the specifics of their chosen research topic from this list of ideas: Suffrage Movement. Affirmative Action. Regulations in the workplace over the past 100 years. Salem Witch Trials. Great Depression.

  13. Writing Strong Research Questions

    A good research question is essential to guide your research paper, dissertation, or thesis. All research questions should be: Focused on a single problem or issue. Researchable using primary and/or secondary sources. Feasible to answer within the timeframe and practical constraints. Specific enough to answer thoroughly.

  14. The top 10 journal articles

    1: Journal Article Reporting Standards for Qualitative Research in Psychology. This American Psychologist open-access article lays out—for the first time—journal article reporting standards for qualitative research in psychology (Levitt, H.M., et al., Vol. 73, No. 1). The voluntary guidelines are designed to help authors communicate their work clearly, accurately and transparently.

  15. Sample articles

    February 2015. by Erin E. Toolis and Phillip L. Hammack. Lifetime Activism, Marginality, and Psychology: Narratives of Lifelong Feminist Activists Committed to Social Change (PDF, 93KB) August 2014. by Anjali Dutt and Shelly Grabe. Qualitative Inquiry in the History of Psychology (PDF, 82KB) February 2014. by Frederick J. Wertz.

  16. How to Write a Research Paper Introduction (with Examples)

    1. Introduce the research topic: Highlight the importance of the research field or topic; Describe the background of the topic; Present an overview of current research on the topic; Example: The inclusion of experiential and competency-based learning has benefitted electronics engineering education. Industry partnerships provide an excellent ...

  17. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  18. What is a Research Journal?

    PURPOSE: Research journals communicate the results of research in the field of study covered by the journal. Research articles reflect a systematic and thorough study of a single topic, often involving experiments or surveys. Research journals may also publish review articles and book reviews that summarize the current state of knowledge on a ...

  19. Find top journals in a research field: a step-by-step guide

    This blog about how to find top journals is part of our Research Smarter series. Download our cheat sheet, which brings together top tips for finding relevant journals, papers, and authors in your field, sign up for our webinar on the same topic or read the related blog posts for each, here. Finding relevant journals can be a challenging task ...

  20. Research Paper

    Definition: Research Paper is a written document that presents the author's original research, analysis, and interpretation of a specific topic or issue. It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new ...

  21. Assessing the evolution of research topics in a biological field using

    For example, plant science records from China tend to be enriched in hyperspectral imaging and modeling (topic 9), gene family studies (topic 23), stress biology (topic 28), and research on new plant compounds associated with herbal medicine (topic 69), but less emphasis on population genetics and evolution (topic 86, Fig 5F). In the US, there ...

  22. Case Study Research Method in Psychology

    Provides insight for further research. Permitting investigation of otherwise impractical (or unethical) situations. Case studies allow a researcher to investigate a topic in far more detail than might be possible if they were trying to deal with a large number of research participants (nomothetic approach) with the aim of 'averaging'.

  23. School leadership and student outcomes: What do we know?

    Journal portfolios in each of our subject areas. ... The impact of school leadership on student outcomes is an important aspect of educational research, policy and practice. The assumption that high-quality leadership contributes significantly to enhanced school and student outcomes is well supported by research. ... The sample comprised 20 ...

  24. <em>Child Development</em>

    Child Development , the flagship journal of the SRCD, publishes research on various topics in the field of child development, including psychology, education, and speech. Abstract This study examined the development of empathic care across three generations in a sample of 184 adolescents in the United States (99 female, 85 male; 58% White, 29% ...

  25. Cow's Milk Containing Avian Influenza A(H5N1) Virus

    To further assess the risk that HPAI A(H5N1)-positive milk poses to animals and humans, we orally inoculated BALB/cJ mice with 50 μl (3×10 6 pfu) of sample NM#93. The animals showed signs of ...

  26. Is college worth it? Americans are split about cost and debt.

    In 2011, for example, 17% of young men with just a high school diploma were living in poverty; in 2023, that rate dropped to 12%. Young women's outcomes also improved in recent years.

  27. Free APA Journal Articles

    Journal of Abnormal Psychology February 2016 by Erica D. Musser, Sarah L. Karalunas, Nathan Dieckmann, Tara S. Peris, and Joel T. Nigg; The Integrated Scientist-Practitioner: A New Model for Combining Research and Clinical Practice in Fee-For-Service Settings (PDF, 58KB) Professional Psychology: Research and Practice December 2015

  28. The Problem With Nudging People to Make a Better Choice

    The benefits of steering people toward making better decisions has become conventional wisdom. But the evidence suggests it doesn't work quite as well as we hoped.

  29. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  30. Sustainability

    We report on the XPS analysis of degraded surfaces inside San Pietro Barisano, the rupestrian church carved into the calcarenite rock of ancient Matera, which has been a UNESCO World Heritage Site since 1993. As reported in previous works, the "Sassi" district and the park of rupestrian churches were available as open laboratories for the National Smart Cities SCN_00520 research project ...