Statology

Statistics Made Easy

Introduction to Hypothesis Testing

A statistical hypothesis is an assumption about a population parameter .

For example, we may assume that the mean height of a male in the U.S. is 70 inches.

The assumption about the height is the statistical hypothesis and the true mean height of a male in the U.S. is the population parameter .

A hypothesis test is a formal statistical test we use to reject or fail to reject a statistical hypothesis.

The Two Types of Statistical Hypotheses

To test whether a statistical hypothesis about a population parameter is true, we obtain a random sample from the population and perform a hypothesis test on the sample data.

There are two types of statistical hypotheses:

The null hypothesis , denoted as H 0 , is the hypothesis that the sample data occurs purely from chance.

The alternative hypothesis , denoted as H 1 or H a , is the hypothesis that the sample data is influenced by some non-random cause.

Hypothesis Tests

A hypothesis test consists of five steps:

1. State the hypotheses. 

State the null and alternative hypotheses. These two hypotheses need to be mutually exclusive, so if one is true then the other must be false.

2. Determine a significance level to use for the hypothesis.

Decide on a significance level. Common choices are .01, .05, and .1. 

3. Find the test statistic.

Find the test statistic and the corresponding p-value. Often we are analyzing a population mean or proportion and the general formula to find the test statistic is: (sample statistic – population parameter) / (standard deviation of statistic)

4. Reject or fail to reject the null hypothesis.

Using the test statistic or the p-value, determine if you can reject or fail to reject the null hypothesis based on the significance level.

The p-value  tells us the strength of evidence in support of a null hypothesis. If the p-value is less than the significance level, we reject the null hypothesis.

5. Interpret the results. 

Interpret the results of the hypothesis test in the context of the question being asked. 

The Two Types of Decision Errors

There are two types of decision errors that one can make when doing a hypothesis test:

Type I error: You reject the null hypothesis when it is actually true. The probability of committing a Type I error is equal to the significance level, often called  alpha , and denoted as α.

Type II error: You fail to reject the null hypothesis when it is actually false. The probability of committing a Type II error is called the Power of the test or  Beta , denoted as β.

One-Tailed and Two-Tailed Tests

A statistical hypothesis can be one-tailed or two-tailed.

A one-tailed hypothesis involves making a “greater than” or “less than ” statement.

For example, suppose we assume the mean height of a male in the U.S. is greater than or equal to 70 inches. The null hypothesis would be H0: µ ≥ 70 inches and the alternative hypothesis would be Ha: µ < 70 inches.

A two-tailed hypothesis involves making an “equal to” or “not equal to” statement.

For example, suppose we assume the mean height of a male in the U.S. is equal to 70 inches. The null hypothesis would be H0: µ = 70 inches and the alternative hypothesis would be Ha: µ ≠ 70 inches.

Note: The “equal” sign is always included in the null hypothesis, whether it is =, ≥, or ≤.

Related:   What is a Directional Hypothesis?

Types of Hypothesis Tests

There are many different types of hypothesis tests you can perform depending on the type of data you’re working with and the goal of your analysis.

The following tutorials provide an explanation of the most common types of hypothesis tests:

Introduction to the One Sample t-test Introduction to the Two Sample t-test Introduction to the Paired Samples t-test Introduction to the One Proportion Z-Test Introduction to the Two Proportion Z-Test

Featured Posts

5 Tips for Interpreting P-Values Correctly in Hypothesis Testing

Hey there. My name is Zach Bobbitt. I have a Masters of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike.  My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Join the Statology Community

Sign up to receive Statology's exclusive study resource: 100 practice problems with step-by-step solutions. Plus, get our latest insights, tutorials, and data analysis tips straight to your inbox!

By subscribing you accept Statology's Privacy Policy.

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

1.2 - the 7 step process of statistical hypothesis testing.

We will cover the seven steps one by one.

Step 1: State the Null Hypothesis

The null hypothesis can be thought of as the opposite of the "guess" the researchers made. In the example presented in the previous section, the biologist "guesses" plant height will be different for the various fertilizers. So the null hypothesis would be that there will be no difference among the groups of plants. Specifically, in more statistical language the null for an ANOVA is that the means are the same. We state the null hypothesis as:

\(H_0 \colon \mu_1 = \mu_2 = ⋯ = \mu_T\)

for  T levels of an experimental treatment.

Step 2: State the Alternative Hypothesis

\(H_A \colon \text{ treatment level means not all equal}\)

The alternative hypothesis is stated in this way so that if the null is rejected, there are many alternative possibilities.

For example, \(\mu_1\ne \mu_2 = ⋯ = \mu_T\) is one possibility, as is \(\mu_1=\mu_2\ne\mu_3= ⋯ =\mu_T\). Many people make the mistake of stating the alternative hypothesis as \(\mu_1\ne\mu_2\ne⋯\ne\mu_T\) which says that every mean differs from every other mean. This is a possibility, but only one of many possibilities. A simple way of thinking about this is that at least one mean is different from all others. To cover all alternative outcomes, we resort to a verbal statement of "not all equal" and then follow up with mean comparisons to find out where differences among means exist. In our example, a possible outcome would be that fertilizer 1 results in plants that are exceptionally tall, but fertilizers 2, 3, and the control group may not differ from one another.

Step 3: Set \(\alpha\)

If we look at what can happen in a hypothesis test, we can construct the following contingency table:

You should be familiar with Type I and Type II errors from your introductory courses. It is important to note that we want to set \(\alpha\) before the experiment ( a-priori ) because the Type I error is the more grievous error to make. The typical value of \(\alpha\) is 0.05, establishing a 95% confidence level. For this course, we will assume \(\alpha\) =0.05, unless stated otherwise.

Step 4: Collect Data

Remember the importance of recognizing whether data is collected through an experimental design or observational study.

Step 5: Calculate a test statistic

For categorical treatment level means, we use an F- statistic, named after R.A. Fisher. We will explore the mechanics of computing the F- statistic beginning in Lesson 2. The F- value we get from the data is labeled \(F_{\text{calculated}}\).

Step 6: Construct Acceptance / Rejection regions

As with all other test statistics, a threshold (critical) value of F is established. This F- value can be obtained from statistical tables or software and is referred to as \(F_{\text{critical}}\) or \(F_\alpha\). As a reminder, this critical value is the minimum value of the test statistic (in this case \(F_{\text{calculated}}\)) for us to reject the null.

The F- distribution, \(F_\alpha\), and the location of acceptance/rejection regions are shown in the graph below:

Step 7: Based on Steps 5 and 6, draw a conclusion about \(H_0\)

If \(F_{\text{calculated}}\) is larger than \(F_\alpha\), then you are in the rejection region and you can reject the null hypothesis with \(\left(1-\alpha \right)\) level of confidence.

Note that modern statistical software condenses Steps 6 and 7 by providing a p -value. The p -value here is the probability of getting an \(F_{\text{calculated}}\) even greater than what you observe assuming the null hypothesis is true. If by chance, the \(F_{\text{calculated}} = F_\alpha\), then the p -value would be exactly equal to \(\alpha\). With larger \(F_{\text{calculated}}\) values, we move further into the rejection region and the p- value becomes less than \(\alpha\). So, the decision rule is as follows:

If the p- value obtained from the ANOVA is less than \(\alpha\), then reject \(H_0\) in favor of \(H_A\).

Hypothesis Testing (cont...)

Hypothesis testing, the null and alternative hypothesis.

In order to undertake hypothesis testing you need to express your research hypothesis as a null and alternative hypothesis. The null hypothesis and alternative hypothesis are statements regarding the differences or effects that occur in the population. You will use your sample to test which statement (i.e., the null hypothesis or alternative hypothesis) is most likely (although technically, you test the evidence against the null hypothesis). So, with respect to our teaching example, the null and alternative hypothesis will reflect statements about all statistics students on graduate management courses.

The null hypothesis is essentially the "devil's advocate" position. That is, it assumes that whatever you are trying to prove did not happen ( hint: it usually states that something equals zero). For example, the two different teaching methods did not result in different exam performances (i.e., zero difference). Another example might be that there is no relationship between anxiety and athletic performance (i.e., the slope is zero). The alternative hypothesis states the opposite and is usually the hypothesis you are trying to prove (e.g., the two different teaching methods did result in different exam performances). Initially, you can state these hypotheses in more general terms (e.g., using terms like "effect", "relationship", etc.), as shown below for the teaching methods example:

Depending on how you want to "summarize" the exam performances will determine how you might want to write a more specific null and alternative hypothesis. For example, you could compare the mean exam performance of each group (i.e., the "seminar" group and the "lectures-only" group). This is what we will demonstrate here, but other options include comparing the distributions , medians , amongst other things. As such, we can state:

Now that you have identified the null and alternative hypotheses, you need to find evidence and develop a strategy for declaring your "support" for either the null or alternative hypothesis. We can do this using some statistical theory and some arbitrary cut-off points. Both these issues are dealt with next.

Significance levels

The level of statistical significance is often expressed as the so-called p -value . Depending on the statistical test you have chosen, you will calculate a probability (i.e., the p -value) of observing your sample results (or more extreme) given that the null hypothesis is true . Another way of phrasing this is to consider the probability that a difference in a mean score (or other statistic) could have arisen based on the assumption that there really is no difference. Let us consider this statement with respect to our example where we are interested in the difference in mean exam performance between two different teaching methods. If there really is no difference between the two teaching methods in the population (i.e., given that the null hypothesis is true), how likely would it be to see a difference in the mean exam performance between the two teaching methods as large as (or larger than) that which has been observed in your sample?

So, you might get a p -value such as 0.03 (i.e., p = .03). This means that there is a 3% chance of finding a difference as large as (or larger than) the one in your study given that the null hypothesis is true. However, you want to know whether this is "statistically significant". Typically, if there was a 5% or less chance (5 times in 100 or less) that the difference in the mean exam performance between the two teaching methods (or whatever statistic you are using) is as different as observed given the null hypothesis is true, you would reject the null hypothesis and accept the alternative hypothesis. Alternately, if the chance was greater than 5% (5 times in 100 or more), you would fail to reject the null hypothesis and would not accept the alternative hypothesis. As such, in this example where p = .03, we would reject the null hypothesis and accept the alternative hypothesis. We reject it because at a significance level of 0.03 (i.e., less than a 5% chance), the result we obtained could happen too frequently for us to be confident that it was the two teaching methods that had an effect on exam performance.

Whilst there is relatively little justification why a significance level of 0.05 is used rather than 0.01 or 0.10, for example, it is widely used in academic research. However, if you want to be particularly confident in your results, you can set a more stringent level of 0.01 (a 1% chance or less; 1 in 100 chance or less).

Testimonials

One- and two-tailed predictions

When considering whether we reject the null hypothesis and accept the alternative hypothesis, we need to consider the direction of the alternative hypothesis statement. For example, the alternative hypothesis that was stated earlier is:

The alternative hypothesis tells us two things. First, what predictions did we make about the effect of the independent variable(s) on the dependent variable(s)? Second, what was the predicted direction of this effect? Let's use our example to highlight these two points.

Sarah predicted that her teaching method (independent variable: teaching method), whereby she not only required her students to attend lectures, but also seminars, would have a positive effect (that is, increased) students' performance (dependent variable: exam marks). If an alternative hypothesis has a direction (and this is how you want to test it), the hypothesis is one-tailed. That is, it predicts direction of the effect. If the alternative hypothesis has stated that the effect was expected to be negative, this is also a one-tailed hypothesis.

Alternatively, a two-tailed prediction means that we do not make a choice over the direction that the effect of the experiment takes. Rather, it simply implies that the effect could be negative or positive. If Sarah had made a two-tailed prediction, the alternative hypothesis might have been:

In other words, we simply take out the word "positive", which implies the direction of our effect. In our example, making a two-tailed prediction may seem strange. After all, it would be logical to expect that "extra" tuition (going to seminar classes as well as lectures) would either have a positive effect on students' performance or no effect at all, but certainly not a negative effect. However, this is just our opinion (and hope) and certainly does not mean that we will get the effect we expect. Generally speaking, making a one-tail prediction (i.e., and testing for it this way) is frowned upon as it usually reflects the hope of a researcher rather than any certainty that it will happen. Notable exceptions to this rule are when there is only one possible way in which a change could occur. This can happen, for example, when biological activity/presence in measured. That is, a protein might be "dormant" and the stimulus you are using can only possibly "wake it up" (i.e., it cannot possibly reduce the activity of a "dormant" protein). In addition, for some statistical tests, one-tailed tests are not possible.

Rejecting or failing to reject the null hypothesis

Let's return finally to the question of whether we reject or fail to reject the null hypothesis.

If our statistical analysis shows that the significance level is below the cut-off value we have set (e.g., either 0.05 or 0.01), we reject the null hypothesis and accept the alternative hypothesis. Alternatively, if the significance level is above the cut-off value, we fail to reject the null hypothesis and cannot accept the alternative hypothesis. You should note that you cannot accept the null hypothesis, but only find evidence against it.

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Unit 12: Significance tests (hypothesis testing)

About this unit.

Significance tests give us a formal process for using sample data to evaluate the likelihood of some claim about a population value. Learn how to conduct significance tests and calculate p-values to see how likely a sample result is to occur by random chance. You'll also see how we use p-values to make conclusions about hypotheses.

The idea of significance tests

  • Simple hypothesis testing (Opens a modal)
  • Idea behind hypothesis testing (Opens a modal)
  • Examples of null and alternative hypotheses (Opens a modal)
  • P-values and significance tests (Opens a modal)
  • Comparing P-values to different significance levels (Opens a modal)
  • Estimating a P-value from a simulation (Opens a modal)
  • Using P-values to make conclusions (Opens a modal)
  • Simple hypothesis testing Get 3 of 4 questions to level up!
  • Writing null and alternative hypotheses Get 3 of 4 questions to level up!
  • Estimating P-values from simulations Get 3 of 4 questions to level up!

Error probabilities and power

  • Introduction to Type I and Type II errors (Opens a modal)
  • Type 1 errors (Opens a modal)
  • Examples identifying Type I and Type II errors (Opens a modal)
  • Introduction to power in significance tests (Opens a modal)
  • Examples thinking about power in significance tests (Opens a modal)
  • Consequences of errors and significance (Opens a modal)
  • Type I vs Type II error Get 3 of 4 questions to level up!
  • Error probabilities and power Get 3 of 4 questions to level up!

Tests about a population proportion

  • Constructing hypotheses for a significance test about a proportion (Opens a modal)
  • Conditions for a z test about a proportion (Opens a modal)
  • Reference: Conditions for inference on a proportion (Opens a modal)
  • Calculating a z statistic in a test about a proportion (Opens a modal)
  • Calculating a P-value given a z statistic (Opens a modal)
  • Making conclusions in a test about a proportion (Opens a modal)
  • Writing hypotheses for a test about a proportion Get 3 of 4 questions to level up!
  • Conditions for a z test about a proportion Get 3 of 4 questions to level up!
  • Calculating the test statistic in a z test for a proportion Get 3 of 4 questions to level up!
  • Calculating the P-value in a z test for a proportion Get 3 of 4 questions to level up!
  • Making conclusions in a z test for a proportion Get 3 of 4 questions to level up!

Tests about a population mean

  • Writing hypotheses for a significance test about a mean (Opens a modal)
  • Conditions for a t test about a mean (Opens a modal)
  • Reference: Conditions for inference on a mean (Opens a modal)
  • When to use z or t statistics in significance tests (Opens a modal)
  • Example calculating t statistic for a test about a mean (Opens a modal)
  • Using TI calculator for P-value from t statistic (Opens a modal)
  • Using a table to estimate P-value from t statistic (Opens a modal)
  • Comparing P-value from t statistic to significance level (Opens a modal)
  • Free response example: Significance test for a mean (Opens a modal)
  • Writing hypotheses for a test about a mean Get 3 of 4 questions to level up!
  • Conditions for a t test about a mean Get 3 of 4 questions to level up!
  • Calculating the test statistic in a t test for a mean Get 3 of 4 questions to level up!
  • Calculating the P-value in a t test for a mean Get 3 of 4 questions to level up!
  • Making conclusions in a t test for a mean Get 3 of 4 questions to level up!

More significance testing videos

  • Hypothesis testing and p-values (Opens a modal)
  • One-tailed and two-tailed tests (Opens a modal)
  • Z-statistics vs. T-statistics (Opens a modal)
  • Small sample hypothesis test (Opens a modal)
  • Large sample proportion hypothesis testing (Opens a modal)

Hypothesis Testing

Hypothesis testing is a tool for making statistical inferences about the population data. It is an analysis tool that tests assumptions and determines how likely something is within a given standard of accuracy. Hypothesis testing provides a way to verify whether the results of an experiment are valid.

A null hypothesis and an alternative hypothesis are set up before performing the hypothesis testing. This helps to arrive at a conclusion regarding the sample obtained from the population. In this article, we will learn more about hypothesis testing, its types, steps to perform the testing, and associated examples.

What is Hypothesis Testing in Statistics?

Hypothesis testing uses sample data from the population to draw useful conclusions regarding the population probability distribution . It tests an assumption made about the data using different types of hypothesis testing methodologies. The hypothesis testing results in either rejecting or not rejecting the null hypothesis.

Hypothesis Testing Definition

Hypothesis testing can be defined as a statistical tool that is used to identify if the results of an experiment are meaningful or not. It involves setting up a null hypothesis and an alternative hypothesis. These two hypotheses will always be mutually exclusive. This means that if the null hypothesis is true then the alternative hypothesis is false and vice versa. An example of hypothesis testing is setting up a test to check if a new medicine works on a disease in a more efficient manner.

Null Hypothesis

The null hypothesis is a concise mathematical statement that is used to indicate that there is no difference between two possibilities. In other words, there is no difference between certain characteristics of data. This hypothesis assumes that the outcomes of an experiment are based on chance alone. It is denoted as \(H_{0}\). Hypothesis testing is used to conclude if the null hypothesis can be rejected or not. Suppose an experiment is conducted to check if girls are shorter than boys at the age of 5. The null hypothesis will say that they are the same height.

Alternative Hypothesis

The alternative hypothesis is an alternative to the null hypothesis. It is used to show that the observations of an experiment are due to some real effect. It indicates that there is a statistical significance between two possible outcomes and can be denoted as \(H_{1}\) or \(H_{a}\). For the above-mentioned example, the alternative hypothesis would be that girls are shorter than boys at the age of 5.

Hypothesis Testing P Value

In hypothesis testing, the p value is used to indicate whether the results obtained after conducting a test are statistically significant or not. It also indicates the probability of making an error in rejecting or not rejecting the null hypothesis.This value is always a number between 0 and 1. The p value is compared to an alpha level, \(\alpha\) or significance level. The alpha level can be defined as the acceptable risk of incorrectly rejecting the null hypothesis. The alpha level is usually chosen between 1% to 5%.

Hypothesis Testing Critical region

All sets of values that lead to rejecting the null hypothesis lie in the critical region. Furthermore, the value that separates the critical region from the non-critical region is known as the critical value.

Hypothesis Testing Formula

Depending upon the type of data available and the size, different types of hypothesis testing are used to determine whether the null hypothesis can be rejected or not. The hypothesis testing formula for some important test statistics are given below:

  • z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\). \(\overline{x}\) is the sample mean, \(\mu\) is the population mean, \(\sigma\) is the population standard deviation and n is the size of the sample.
  • t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\). s is the sample standard deviation.
  • \(\chi ^{2} = \sum \frac{(O_{i}-E_{i})^{2}}{E_{i}}\). \(O_{i}\) is the observed value and \(E_{i}\) is the expected value.

We will learn more about these test statistics in the upcoming section.

Types of Hypothesis Testing

Selecting the correct test for performing hypothesis testing can be confusing. These tests are used to determine a test statistic on the basis of which the null hypothesis can either be rejected or not rejected. Some of the important tests used for hypothesis testing are given below.

Hypothesis Testing Z Test

A z test is a way of hypothesis testing that is used for a large sample size (n ≥ 30). It is used to determine whether there is a difference between the population mean and the sample mean when the population standard deviation is known. It can also be used to compare the mean of two samples. It is used to compute the z test statistic. The formulas are given as follows:

  • One sample: z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\).
  • Two samples: z = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\).

Hypothesis Testing t Test

The t test is another method of hypothesis testing that is used for a small sample size (n < 30). It is also used to compare the sample mean and population mean. However, the population standard deviation is not known. Instead, the sample standard deviation is known. The mean of two samples can also be compared using the t test.

  • One sample: t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\).
  • Two samples: t = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}\).

Hypothesis Testing Chi Square

The Chi square test is a hypothesis testing method that is used to check whether the variables in a population are independent or not. It is used when the test statistic is chi-squared distributed.

One Tailed Hypothesis Testing

One tailed hypothesis testing is done when the rejection region is only in one direction. It can also be known as directional hypothesis testing because the effects can be tested in one direction only. This type of testing is further classified into the right tailed test and left tailed test.

Right Tailed Hypothesis Testing

The right tail test is also known as the upper tail test. This test is used to check whether the population parameter is greater than some value. The null and alternative hypotheses for this test are given as follows:

\(H_{0}\): The population parameter is ≤ some value

\(H_{1}\): The population parameter is > some value.

If the test statistic has a greater value than the critical value then the null hypothesis is rejected

Right Tail Hypothesis Testing

Left Tailed Hypothesis Testing

The left tail test is also known as the lower tail test. It is used to check whether the population parameter is less than some value. The hypotheses for this hypothesis testing can be written as follows:

\(H_{0}\): The population parameter is ≥ some value

\(H_{1}\): The population parameter is < some value.

The null hypothesis is rejected if the test statistic has a value lesser than the critical value.

Left Tail Hypothesis Testing

Two Tailed Hypothesis Testing

In this hypothesis testing method, the critical region lies on both sides of the sampling distribution. It is also known as a non - directional hypothesis testing method. The two-tailed test is used when it needs to be determined if the population parameter is assumed to be different than some value. The hypotheses can be set up as follows:

\(H_{0}\): the population parameter = some value

\(H_{1}\): the population parameter ≠ some value

The null hypothesis is rejected if the test statistic has a value that is not equal to the critical value.

Two Tail Hypothesis Testing

Hypothesis Testing Steps

Hypothesis testing can be easily performed in five simple steps. The most important step is to correctly set up the hypotheses and identify the right method for hypothesis testing. The basic steps to perform hypothesis testing are as follows:

  • Step 1: Set up the null hypothesis by correctly identifying whether it is the left-tailed, right-tailed, or two-tailed hypothesis testing.
  • Step 2: Set up the alternative hypothesis.
  • Step 3: Choose the correct significance level, \(\alpha\), and find the critical value.
  • Step 4: Calculate the correct test statistic (z, t or \(\chi\)) and p-value.
  • Step 5: Compare the test statistic with the critical value or compare the p-value with \(\alpha\) to arrive at a conclusion. In other words, decide if the null hypothesis is to be rejected or not.

Hypothesis Testing Example

The best way to solve a problem on hypothesis testing is by applying the 5 steps mentioned in the previous section. Suppose a researcher claims that the mean average weight of men is greater than 100kgs with a standard deviation of 15kgs. 30 men are chosen with an average weight of 112.5 Kgs. Using hypothesis testing, check if there is enough evidence to support the researcher's claim. The confidence interval is given as 95%.

Step 1: This is an example of a right-tailed test. Set up the null hypothesis as \(H_{0}\): \(\mu\) = 100.

Step 2: The alternative hypothesis is given by \(H_{1}\): \(\mu\) > 100.

Step 3: As this is a one-tailed test, \(\alpha\) = 100% - 95% = 5%. This can be used to determine the critical value.

1 - \(\alpha\) = 1 - 0.05 = 0.95

0.95 gives the required area under the curve. Now using a normal distribution table, the area 0.95 is at z = 1.645. A similar process can be followed for a t-test. The only additional requirement is to calculate the degrees of freedom given by n - 1.

Step 4: Calculate the z test statistic. This is because the sample size is 30. Furthermore, the sample and population means are known along with the standard deviation.

z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\).

\(\mu\) = 100, \(\overline{x}\) = 112.5, n = 30, \(\sigma\) = 15

z = \(\frac{112.5-100}{\frac{15}{\sqrt{30}}}\) = 4.56

Step 5: Conclusion. As 4.56 > 1.645 thus, the null hypothesis can be rejected.

Hypothesis Testing and Confidence Intervals

Confidence intervals form an important part of hypothesis testing. This is because the alpha level can be determined from a given confidence interval. Suppose a confidence interval is given as 95%. Subtract the confidence interval from 100%. This gives 100 - 95 = 5% or 0.05. This is the alpha value of a one-tailed hypothesis testing. To obtain the alpha value for a two-tailed hypothesis testing, divide this value by 2. This gives 0.05 / 2 = 0.025.

Related Articles:

  • Probability and Statistics
  • Data Handling

Important Notes on Hypothesis Testing

  • Hypothesis testing is a technique that is used to verify whether the results of an experiment are statistically significant.
  • It involves the setting up of a null hypothesis and an alternate hypothesis.
  • There are three types of tests that can be conducted under hypothesis testing - z test, t test, and chi square test.
  • Hypothesis testing can be classified as right tail, left tail, and two tail tests.

Examples on Hypothesis Testing

  • Example 1: The average weight of a dumbbell in a gym is 90lbs. However, a physical trainer believes that the average weight might be higher. A random sample of 5 dumbbells with an average weight of 110lbs and a standard deviation of 18lbs. Using hypothesis testing check if the physical trainer's claim can be supported for a 95% confidence level. Solution: As the sample size is lesser than 30, the t-test is used. \(H_{0}\): \(\mu\) = 90, \(H_{1}\): \(\mu\) > 90 \(\overline{x}\) = 110, \(\mu\) = 90, n = 5, s = 18. \(\alpha\) = 0.05 Using the t-distribution table, the critical value is 2.132 t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\) t = 2.484 As 2.484 > 2.132, the null hypothesis is rejected. Answer: The average weight of the dumbbells may be greater than 90lbs
  • Example 2: The average score on a test is 80 with a standard deviation of 10. With a new teaching curriculum introduced it is believed that this score will change. On random testing, the score of 38 students, the mean was found to be 88. With a 0.05 significance level, is there any evidence to support this claim? Solution: This is an example of two-tail hypothesis testing. The z test will be used. \(H_{0}\): \(\mu\) = 80, \(H_{1}\): \(\mu\) ≠ 80 \(\overline{x}\) = 88, \(\mu\) = 80, n = 36, \(\sigma\) = 10. \(\alpha\) = 0.05 / 2 = 0.025 The critical value using the normal distribution table is 1.96 z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\) z = \(\frac{88-80}{\frac{10}{\sqrt{36}}}\) = 4.8 As 4.8 > 1.96, the null hypothesis is rejected. Answer: There is a difference in the scores after the new curriculum was introduced.
  • Example 3: The average score of a class is 90. However, a teacher believes that the average score might be lower. The scores of 6 students were randomly measured. The mean was 82 with a standard deviation of 18. With a 0.05 significance level use hypothesis testing to check if this claim is true. Solution: The t test will be used. \(H_{0}\): \(\mu\) = 90, \(H_{1}\): \(\mu\) < 90 \(\overline{x}\) = 110, \(\mu\) = 90, n = 6, s = 18 The critical value from the t table is -2.015 t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\) t = \(\frac{82-90}{\frac{18}{\sqrt{6}}}\) t = -1.088 As -1.088 > -2.015, we fail to reject the null hypothesis. Answer: There is not enough evidence to support the claim.

go to slide go to slide go to slide

example ng hypothesis testing

Book a Free Trial Class

FAQs on Hypothesis Testing

What is hypothesis testing.

Hypothesis testing in statistics is a tool that is used to make inferences about the population data. It is also used to check if the results of an experiment are valid.

What is the z Test in Hypothesis Testing?

The z test in hypothesis testing is used to find the z test statistic for normally distributed data . The z test is used when the standard deviation of the population is known and the sample size is greater than or equal to 30.

What is the t Test in Hypothesis Testing?

The t test in hypothesis testing is used when the data follows a student t distribution . It is used when the sample size is less than 30 and standard deviation of the population is not known.

What is the formula for z test in Hypothesis Testing?

The formula for a one sample z test in hypothesis testing is z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\) and for two samples is z = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\).

What is the p Value in Hypothesis Testing?

The p value helps to determine if the test results are statistically significant or not. In hypothesis testing, the null hypothesis can either be rejected or not rejected based on the comparison between the p value and the alpha level.

What is One Tail Hypothesis Testing?

When the rejection region is only on one side of the distribution curve then it is known as one tail hypothesis testing. The right tail test and the left tail test are two types of directional hypothesis testing.

What is the Alpha Level in Two Tail Hypothesis Testing?

To get the alpha level in a two tail hypothesis testing divide \(\alpha\) by 2. This is done as there are two rejection regions in the curve.

Module 8: Inference for One Proportion

Hypothesis testing (5 of 5), learning outcomes.

  • Recognize type I and type II errors.

What Can Go Wrong: Two Types of Errors

Statistical investigations involve making decisions in the face of uncertainty, so there is always some chance of making a wrong decision. In hypothesis testing, two types of wrong decisions can occur.

If the null hypothesis is true, but we reject it, the error is a type I error.

If the null hypothesis is false, but we fail to reject it, the error is a type II error.

The following table summarizes type I and II errors.

Hypothesis testing matrices. If we reject H null and H null is false, when we have correctly rejected the null hypothesis. If we reject H null and H null is tue, we have made a Type I error. If we accept H null and H null is trie, we have correct accepted the null hypothesis. If we accept H null and H null is false, we have made a Type II error.

Type I and type II errors are not caused by mistakes. These errors are the result of random chance. The data provide evidence for a conclusion that is false. It’s no one’s fault!

Data Use on Smart Phones

Teens using smartphones

In a previous example, we looked at a hypothesis test about data usage on smart phones. The researcher investigated the claim that the mean data usage for all teens is greater than 62 MBs. The sample mean was 75 MBs. The P-value was approximately 0.023. In this situation, the P-value is the probability that we will get a sample mean of 75 MBs or higher if the true mean is 62 MBs.

Notice that the result (75 MBs) isn’t impossible, only very unusual. The result is rare enough that we question whether the null hypothesis is true. This is why we reject the null hypothesis. But it is possible that the null hypothesis hypothesis is true and the researcher happened to get a very unusual sample mean. In this case, the result is just due to chance, and the data have led to a type I error: rejecting the null hypothesis when it is actually true.

White Male Support for Obama in 2012

In a previous example, we conducted a hypothesis test using poll results to determine if white male support for Obama in 2012 will be less than 40%. Our poll of white males showed 35% planning to vote for Obama in 2012. Based on the sampling distribution, we estimated the P-value as 0.078. In this situation, the P-value is the probability that we will get a sample proportion of 0.35 or less if 0.40 of the population of white males support Obama.

At the 5% level, the poll did not give strong enough evidence for us to conclude that less than 40% of white males will vote for Obama in 2012.

Which type of error is possible in this situation? If, in fact, it is true that less than 40% of this population support Obama, then the data led to a type II error: failing to reject a null hypothesis that is false. In other words, we failed to accept an alternative hypothesis that is true.

We definitely did not make a type I error here because a type I error requires that we reject the null hypothesis.

What Is the Probability That We Will Make a Type I Error?

If the significance level is 5% (α = 0.05), then 5% of the time we will reject the null hypothesis (when it is true!). Of course we will not know if the null is true. But if it is, the natural variability that we expect in random samples will produce rare results 5% of the time. This makes sense because we assume the null hypothesis is true when we create the sampling distribution. We look at the variability in random samples selected from the population described by the null hypothesis.

Similarly, if the significance level is 1%, then 1% of the time sample results will be rare enough for us to reject the null hypothesis hypothesis. So if the null hypothesis is actually true, then by chance alone, 1% of the time we will reject a true null hypothesis. The probability of a type I error is therefore 1%.

In general, the probability of a type I error is α.

What Is the Probability That We Will Make a Type II Error?

The probability of a type I error, if the null hypothesis is true, is equal to the significance level. The probability of a type II error is much more complicated to calculate. We can reduce the risk of a type I error by using a lower significance level. The best way to reduce the risk of a type II error is by increasing the sample size. In theory, we could also increase the significance level, but doing so would increase the likelihood of a type I error at the same time. We discuss these ideas further in a later module.

A Fair Coin

In the long run, a fair coin lands heads up half of the time. (For this reason, a weighted coin is not fair.) We conducted a simulation in which each sample consists of 40 flips of a fair coin. Here is a simulated sampling distribution for the proportion of heads in 2,000 samples. Results ranged from 0.25 to 0.75.

A distribution bar graph with results ranging from 0.25 to 0.75. The center at 0.5 has the highest bar, and on either side the bars get lower. The graph is in the traditional bell curve shape, but with a slightly smaller slope on the left side of the peak.

In general, if the null hypothesis is true, the significance level gives the probability of making a type I error. If we conduct a large number of hypothesis tests using the same null hypothesis, then, a type I error will occur in a predictable percentage (α) of the hypothesis tests. This is a problem! If we run one hypothesis test and the data is significant at the 5% level, we have reasonably good evidence that the alternative hypothesis is true. If we run 20 hypothesis tests and the data in one of the tests is significant at the 5% level, it doesn’t tell us anything! We expect 5% of the tests (1 in 20) to show significant results just due to chance.

Cell Phones and Brain Cancer

A man using a cell phone

The following is an excerpt from a 1999 New York Times article titled “Cell phones: questions but no answers,” as referenced by David S. Moore in Basic Practice of Statistics (4th ed., New York: W. H. Freeman, 2007):

  • A hospital study that compared brain cancer patients and a similar group without brain cancer found no statistically significant association between cell phone use and a group of brain cancers known as gliomas. But when 20 types of glioma were considered separately, an association was found between cell phone use and one rare form. Puzzlingly, however, this risk appeared to decrease rather than increase with greater mobile phone use.

This is an example of a probable type I error. Suppose we conducted 20 hypotheses tests with the null hypothesis “Cell phone use is not associated with cancer” at the 5% level. We expect 1 in 20 (5%) to give significant results by chance alone when there is no association between cell phone use and cancer. So the conclusion that this one type of cancer is related to cell phone use is probably just a result of random chance and not an indication of an association.

Click here to see a fun cartoon that illustrates this same idea.

How Many People Are Telepathic?

Telepathy is the ability to read minds. Researchers used Zener cards in the early 1900s for experimental research into telepathy.

5 Zener cards. The first has a circle, the second a +, the third three wavy lines, the fourth a square, and the fifth a star.

In a telepathy experiment, the “sender” looks at 1 of 5 Zener cards while the “receiver” guesses the symbol. This is repeated 40 times, and the proportion of correct responses is recorded. Because there are 5 cards, we expect random guesses to be right 20% of the time (1 out of 5) in the long run. So in 40 tries, 8 correct guesses, a proportion of 0.20, is common. But of course there will be variability even when someone is just guessing. Thirteen or more correct in 40 tries, a proportion of 0.325, is statistically significant at the 5% level. When people perform this well on the telepathy test, we conclude their performance is not due to chance and take it as an indication of the ability to read minds.

In the next section, “Hypothesis Test for a Population Proportion,” we learn the details of hypothesis testing for claims about a population proportion. Before we get into the details, we want to step back and think more generally about hypothesis testing. We close our introduction to hypothesis testing with a helpful analogy.

Courtroom Analogy for Hypothesis Tests

When a defendant stands trial for a crime, he or she is innocent until proven guilty. It is the job of the prosecution to present evidence showing that the defendant is guilty beyond a reasonable doubt . It is the job of the defense to challenge this evidence to establish a reasonable doubt. The jury weighs the evidence and makes a decision.

When a jury makes a decision, it has only two possible verdicts:

  • Guilty: The jury concludes that there is enough evidence to convict the defendant. The evidence is so strong that there is not a reasonable doubt that the defendant is guilty.
  • Not Guilty: The jury concludes that there is not enough evidence to conclude beyond a reasonable doubt that the person is guilty. Notice that they do not conclude that the person is innocent. This verdict says only that there is not enough evidence to return a guilty verdict.

How is this example like a hypothesis test?

The null hypothesis is “The person is innocent.” The alternative hypothesis is “The person is guilty.” The evidence is the data. In a courtroom, the person is assumed innocent until proven guilty. In a hypothesis test, we assume the null hypothesis is true until the data proves otherwise.

The two possible verdicts are similar to the two conclusions that are possible in a hypothesis test.

Reject the null hypothesis: When we reject a null hypothesis, we accept the alternative hypothesis. This is like a guilty verdict. The evidence is strong enough for the jury to reject the assumption of innocence. In a hypothesis test, the data is strong enough for us to reject the assumption that the null hypothesis is true.

Fail to reject the null hypothesis: When we fail to reject the null hypothesis, we are delivering a “not guilty” verdict. The jury concludes that the evidence is not strong enough to reject the assumption of innocence, so the evidence is too weak to support a guilty verdict. We conclude the data is not strong enough to reject the null hypothesis, so the data is too weak to accept the alternative hypothesis.

How does the courtroom analogy relate to type I and type II errors?

Type I error: The jury convicts an innocent person. By analogy, we reject a true null hypothesis and accept a false alternative hypothesis.

Type II error: The jury says a person is not guilty when he or she really is. By analogy, we fail to reject a null hypothesis that is false. In other words, we do not accept an alternative hypothesis when it is really true.

Let’s Summarize

In this section, we introduced the four-step process of hypothesis testing:

Step 1: Determine the hypotheses.

  • The hypotheses are claims about the population(s).
  • The null hypothesis is a hypothesis that the parameter equals a specific value.
  • The alternative hypothesis is the competing claim that the parameter is less than, greater than, or not equal to the parameter value in the null. The claim that drives the statistical investigation is usually found in the alternative hypothesis.

Step 2: Collect the data.

Because the hypothesis test is based on probability, random selection or assignment is essential in data production.

Step 3: Assess the evidence.

  • Use the data to find a P-value.
  • The P-value is a probability statement about how unlikely the data is if the null hypothesis is true.
  • More specifically, the P-value gives the probability of sample results at least as extreme as the data if the null hypothesis is true.

Step 4: Give the conclusion.

  • A small P-value says the data is unlikely to occur if the null hypothesis is true. We therefore conclude that the null hypothesis is probably not true and that the alternative hypothesis is true instead.
  • We often choose a significance level as a benchmark for judging if the P-value is small enough. If the P-value is less than or equal to the significance level, we reject the null hypothesis and accept the alternative hypothesis instead.
  • If the P-value is greater than the significance level, we say we “fail to reject” the null hypothesis. We never say that we “accept” the null hypothesis. We just say that we don’t have enough evidence to reject it. This is equivalent to saying we don’t have enough evidence to support the alternative hypothesis.
  • Our conclusion will respond to the research question, so we often state the conclusion in terms of the alternative hypothesis.

Inference is based on probability, so there is always uncertainty. Although we may have strong evidence against it, the null hypothesis may still be true. If this is the case, we have a type I error. Similarly, even if we fail to reject the null hypothesis, it does not mean the alternative hypothesis is false. In this case, we have a type II error. These errors are not the result of a mistake in conducting the hypothesis test. They occur because of random chance.

Contribute!

Improve this page Learn More

  • Concepts in Statistics. Provided by : Open Learning Initiative. Located at : http://oli.cmu.edu . License : CC BY: Attribution
  • Inferential Statistics Decision Making Table. Authored by : Wikimedia Commons: Adapted by Lumen Learning. Located at : https://upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Inferential_Statistics_Decision_Making_Table.png/120px-Inferential_Statistics_Decision_Making_Table.png . License : CC BY: Attribution

Footer Logo Lumen Waymaker

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

8.2: Hypothesis Testing of Single Proportion

  • Last updated
  • Save as PDF
  • Page ID 25674

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Learning Objectives

  • To learn how to apply the five-step critical value test procedure for test of hypotheses concerning a population proportion.
  • To learn how to apply the five-step \(p\)-value test procedure for test of hypotheses concerning a population proportion.

Both the critical value approach and the p-value approach can be applied to test hypotheses about a population proportion p. The null hypothesis will have the form \(H_0 : p = p_0\) for some specific number \(p_0\) between \(0\) and \(1\). The alternative hypothesis will be one of the three inequalities

  • \(p <p_0\),
  • \(p>p_0\), or
  • \(p≠p_0\)

for the same number \(p_0\) that appears in the null hypothesis.

The information in Section 6.3 gives the following formula for the test statistic and its distribution. In the formula \(p_0\) is the numerical value of \(p\) that appears in the two hypotheses, \(q_0=1−p_0, \hat{p}\) is the sample proportion, and \(n\) is the sample size. Remember that the condition that the sample be large is not that \(n\) be at least 30 but that the interval

\[ \left[ \hat{p} −3 \sqrt{ \dfrac{\hat{p} (1−\hat{p} )}{n}} , \hat{p} + 3 \sqrt{ \dfrac{\hat{p} (1−\hat{p} )}{n}} \right] \nonumber \]

lie wholly within the interval \([0,1]\).

Standardized Test Statistic for Large Sample Hypothesis Tests Concerning a Single Population Proportion

\[ Z = \dfrac{\hat{p} - p_0}{\sqrt{\dfrac{p_0q_o}{n}}} \label{eq2} \]

The test statistic has the standard normal distribution.

The distribution of the standardized test statistic and the corresponding rejection region for each form of the alternative hypothesis (left-tailed, right-tailed, or two-tailed), is shown in Figure \(\PageIndex{1}\).

01fe19537789cf83979f79f172b522c5.jpg

Example \(\PageIndex{1}\)

A soft drink maker claims that a majority of adults prefer its leading beverage over that of its main competitor’s. To test this claim \(500\) randomly selected people were given the two beverages in random order to taste. Among them, \(270\) preferred the soft drink maker’s brand, \(211\) preferred the competitor’s brand, and \(19\) could not make up their minds. Determine whether there is sufficient evidence, at the \(5\%\) level of significance, to support the soft drink maker’s claim against the default that the population is evenly split in its preference.

We will use the critical value approach to perform the test. The same test will be performed using the \(p\)-value approach in Example \(\PageIndex{3}\).

We must check that the sample is sufficiently large to validly perform the test. Since \(\hat{p} =270/500=0.54\),

\[\begin{align} & \left[ \hat{p} −3\sqrt{ \dfrac{\hat{p} (1−\hat{p} )}{n}} ,\hat{p} +3\sqrt{ \dfrac{\hat{p} (1−\hat{p} )}{n}} \right] \\ &=[0.54−(3)(0.02),0.54+(3)(0.02)] \\ &=[0.48, 0.60] ⊂[0,1] \end{align} \nonumber \]

so the sample is sufficiently large.

  • Step 1. The relevant test is

\[H_0 : p = 0.50  \nonumber \]

\[vs. \nonumber \]

\[H_a : p > 0.50\, @ \,\alpha =0.05 \nonumber \]

where \(p\) denotes the proportion of all adults who prefer the company’s beverage over that of its competitor’s beverage.

  • Step 2. The test statistic (Equation \ref{eq2}) is

\[Z=\dfrac{\hat{p} −p_0}{\sqrt{ \dfrac{p_0q_0}{n}}} \nonumber \]

and has the standard normal distribution.

  • Step 3. The value of the test statistic is

\[ \begin{align} Z &=\dfrac{\hat{p} −p_0}{\sqrt{ \dfrac{p_0q_0}{n}}} \\[6pt] &= \dfrac{0.54−0.50}{\sqrt{\dfrac{(0.50)(0.50)}{500}}} \\[6pt] &=1.789 \end{align} \nonumber \]

  • Step 4. Since the symbol in \(H_a\) is “\(>\)” this is a right-tailed test, so there is a single critical value, \(z_{α}=z_{0.05}\). Reading from the last line in Figure 7.1.6 its value is \(1.645\). The rejection region is \([1.645,∞)\).
  • Step 5. As shown in Figure \(\PageIndex{2}\) the test statistic falls in the rejection region. The decision is to reject \(H_0\). In the context of the problem our conclusion is:

The data provide sufficient evidence, at the \(5\%\) level of significance, to conclude that a majority of adults prefer the company’s beverage to that of their competitor’s.

alt

Example \(\PageIndex{2}\)

Globally the long-term proportion of newborns who are male is \(51.46\%\). A researcher believes that the proportion of boys at birth changes under severe economic conditions. To test this belief randomly selected birth records of \(5,000\) babies born during a period of economic recession were examined. It was found in the sample that \(52.55\%\) of the newborns were boys. Determine whether there is sufficient evidence, at the \(10\%\) level of significance, to support the researcher’s belief.

We will use the critical value approach to perform the test. The same test will be performed using the \(p\)-value approach in Example \(\PageIndex{1}\).

The sample is sufficiently large to validly perform the test since

\[\sqrt{ \dfrac{\hat{p} (1−\hat{p} )}{n}} =\sqrt{ \dfrac{(0.5255)(0.4745)}{5000}} ≈0.01 \nonumber \]

\[\begin{align} & \left[ \hat{p} −3\sqrt{ \dfrac{\hat{p} (1−\hat{p} )}{n}} ,\hat{p} +3\sqrt{ \dfrac{\hat{p} (1−\hat{p} )}{n}} \right] \\ &=[0.5255−0.03,0.5255+0.03] \\ &=[0.4955,0.5555] ⊂[0,1] \end{align} \nonumber \]

  • Step 1 . Let \(p\) be the true proportion of boys among all newborns during the recession period. The burden of proof is to show that severe economic conditions change it from the historic long-term value of \(0.5146\) rather than to show that it stays the same, so the hypothesis test is

\[H_0 : p = 0.5146  \nonumber \]

\[H_a : p \neq 0.5146\, @ \,\alpha =0.10 \nonumber \]

\[ \begin{align} Z &=\dfrac{\hat{p} −p_0}{\sqrt{ \dfrac{p_0q_0}{n}}} \\[6pt] &= \dfrac{0.5255−0.5146}{\sqrt{\dfrac{(0.5146)(0.4854)}{5000}}} \\[6pt] &=1.542 \end{align} \nonumber \]

  • Step 4. Since the symbol in \(H_a\) is “\(\neq\)” this is a two-tailed test, so there are a pair of critical values, \(\pm z_{\alpha /2}=\pm z_{0.05}=\pm 1.645\). The rejection region is \((-\infty ,-1.645]\cup [1.645,\infty )\).
  • Step 5. As shown in Figure \(\PageIndex{3}\) the test statistic does not fall in the rejection region. The decision is not to reject \(H_0\). In the context of the problem our conclusion is:

The data do not provide sufficient evidence, at the \(10\%\) level of significance, to conclude that the proportion of newborns who are male differs from the historic proportion in times of economic recession.

alt

Example \(\PageIndex{3}\)

Perform the test of Example \(\PageIndex{1}\) using the \(p\)-value approach.

We already know that the sample size is sufficiently large to validly perform the test.

  • Steps 1–3 of the five-step procedure described in Section 8.3 have already been done in Example \(\PageIndex{1}\) so we will not repeat them here, but only say that we know that the test is right-tailed and that value of the test statistic is \(Z = 1.789\).
  • Step 4. Since the test is right-tailed the p-value is the area under the standard normal curve cut off by the observed test statistic, \(Z = 1.789\), as illustrated in Figure \(\PageIndex{4}\). By Figure 7.1.5 that area and therefore the p-value is \(1−0.9633=0.0367\).
  • Step 5. Since the \(p\)-value is less than \(α=0.05\) the decision is to reject \(H_0\).

alt

Example \(\PageIndex{4}\)

Perform the test of Example \(\PageIndex{2}\) using the \(p\)-value approach.

  • Steps 1–3 of the five-step procedure described in Section 8.3 have already been done in Example \(\PageIndex{2}\). They tell us that the test is two-tailed and that value of the test statistic is \(Z = 1.542\).
  • Step 4. Since the test is two-tailed the \(p\)-value is the double of the area under the standard normal curve cut off by the observed test statistic, \(Z = 1.542\). By Figure 7.1.5 that area is \(1-0.9382=0.0618\), as illustrated in Figure \(\PageIndex{5}\), hence the \(p\)-value is \(2\times 0.0618=0.1236\).
  • Step 5. Since the \(p\)-value is greater than \(\alpha =0.10\) the decision is not to reject \(H_0\).

alt

Key Takeaway

  • There is one formula for the test statistic in testing hypotheses about a population proportion. The test statistic follows the standard normal distribution.
  • Either five-step procedure, critical value or \(p\)-value approach, can be used.

IMAGES

  1. Hypothesis Testing- Meaning, Types & Steps

    example ng hypothesis testing

  2. Hypothesis Testing Solved Examples(Questions and Solutions)

    example ng hypothesis testing

  3. Hypothesis Testing Solved Problems

    example ng hypothesis testing

  4. PPT

    example ng hypothesis testing

  5. Hypothesis Testing: 4 Steps and Example

    example ng hypothesis testing

  6. Statistical Hypothesis Testing: Step by Step

    example ng hypothesis testing

VIDEO

  1. QUESTION 2 What statistical ssue does hypothesis testing attempt to manage? Confirmation bias Uncon…

  2. Part(2) : Hypothesis Space Dissected!

  3. #5 Testing of Hypothesis and Large Sample Test TY BCom Sem 6 Statistics Gujarat Uni

  4. Beautiful Minds

  5. Hypothesis Testing of Normal Variables- examples

  6. General procedure for testing hypothesis ch 16 lec 5

COMMENTS

  1. Hypothesis Testing

    Hypothesis testing example. You want to test whether there is a relationship between gender and height. Based on your knowledge of human physiology, you formulate a hypothesis that men are, on average, taller than women. To test this hypothesis, you restate it as: H 0: Men are, on average, not taller than women. H a: Men are, on average, taller ...

  2. A Complete Guide to Hypothesis Testing

    Photo from StepUp Analytics. Hypothesis testing is a method of statistical inference that considers the null hypothesis H₀ vs. the alternative hypothesis Ha, where we are typically looking to assess evidence against H₀. Such a test is used to compare data sets against one another, or compare a data set against some external standard. The former being a two sample test (independent or ...

  3. 9.E: Hypothesis Testing with One Sample (Exercises)

    Registered nurses earned an average annual salary of $69,110. For that same year, a survey was conducted of 41 California registered nurses to determine if the annual salary is higher than $69,110 for California nurses. The sample average was $71,121 with a sample standard deviation of $7,489. Conduct a hypothesis test.

  4. 4 Examples of Hypothesis Testing in Real Life

    Example 1: Biology. Hypothesis tests are often used in biology to determine whether some new treatment, fertilizer, pesticide, chemical, etc. causes increased growth, stamina, immunity, etc. in plants or animals. For example, suppose a biologist believes that a certain fertilizer will cause plants to grow more during a one-month period than ...

  5. S.3.3 Hypothesis Testing Examples

    If the engineer used the P -value approach to conduct his hypothesis test, he would determine the area under a tn - 1 = t24 curve and to the right of the test statistic t * = 1.22: In the output above, Minitab reports that the P -value is 0.117. Since the P -value, 0.117, is greater than \ (\alpha\) = 0.05, the engineer fails to reject the null ...

  6. Mastering Hypothesis Testing: A Comprehensive Guide for ...

    7. Hypothesis Testing in the Age of Big Data - Challenges and opportunities with large datasets. - The role of software and automation in hypothesis testing. 8. Conclusion - Summarising key takeaways.

  7. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  8. 3.1: The Fundamentals of Hypothesis Testing

    Components of a Formal Hypothesis Test. The null hypothesis is a statement about the value of a population parameter, such as the population mean (µ) or the population proportion (p).It contains the condition of equality and is denoted as H 0 (H-naught).. H 0: µ = 157 or H0 : p = 0.37. The alternative hypothesis is the claim to be tested, the opposite of the null hypothesis.

  9. Introduction to Hypothesis Testing

    A statistical hypothesis is an assumption about a population parameter.. For example, we may assume that the mean height of a male in the U.S. is 70 inches. The assumption about the height is the statistical hypothesis and the true mean height of a male in the U.S. is the population parameter.. A hypothesis test is a formal statistical test we use to reject or fail to reject a statistical ...

  10. 1.2

    Step 7: Based on Steps 5 and 6, draw a conclusion about H 0. If F calculated is larger than F α, then you are in the rejection region and you can reject the null hypothesis with ( 1 − α) level of confidence. Note that modern statistical software condenses Steps 6 and 7 by providing a p -value. The p -value here is the probability of getting ...

  11. 1.4: Basic Concepts of Hypothesis Testing

    Learning Objectives. One of the main goals of statistical hypothesis testing is to estimate the P P value, which is the probability of obtaining the observed results, or something more extreme, if the null hypothesis were true. If the observed results are unlikely under the null hypothesis, reject the null hypothesis.

  12. Hypothesis Testing

    Let's return finally to the question of whether we reject or fail to reject the null hypothesis. If our statistical analysis shows that the significance level is below the cut-off value we have set (e.g., either 0.05 or 0.01), we reject the null hypothesis and accept the alternative hypothesis. Alternatively, if the significance level is above ...

  13. Significance tests (hypothesis testing)

    Unit test. Significance tests give us a formal process for using sample data to evaluate the likelihood of some claim about a population value. Learn how to conduct significance tests and calculate p-values to see how likely a sample result is to occur by random chance. You'll also see how we use p-values to make conclusions about hypotheses.

  14. Null & Alternative Hypotheses

    The null hypothesis (H 0) answers "No, there's no effect in the population." The alternative hypothesis (H a) answers "Yes, there is an effect in the population." The null and alternative are always claims about the population. That's because the goal of hypothesis testing is to make inferences about a population based on a sample.

  15. Hypothesis Testing

    Hypothesis testing is a technique that is used to verify whether the results of an experiment are statistically significant. It involves the setting up of a null hypothesis and an alternate hypothesis. There are three types of tests that can be conducted under hypothesis testing - z test, t test, and chi square test.

  16. Hypothesis Testing t-test (Tagalog-Explained)

    A step-by-step guide in solving Hypothesis Testing t-testT-test table: https://www.statology.org/wp-content/uploads/2018/09/t_dist.pngI. Introduction: 00:42I...

  17. Hypothesis Testing with Python: Step by step hands-on tutorial with

    It tests the null hypothesis that the population variances are equal (called homogeneity of variance or homoscedasticity). Suppose the resulting p-value of Levene's test is less than the significance level (typically 0.05).In that case, the obtained differences in sample variances are unlikely to have occurred based on random sampling from a population with equal variances.

  18. PDF Hypothesis Testing

    Sample proportion is: 233/518 = 0.45. The standard deviation = (0.50) × (1 - 0.50) = 0.022. 518 Test statistic: z = (0.45 - 0.50)/0.022 = -2.27. Step 3. Determine the p-value. Recall the alternative hypothesis was one-sided. p-value = proportion of bell-shaped curve below -2.27 Exact p-value = 0.0116. Step 4.

  19. Hypothesis Testing (5 of 5)

    Step 1: Determine the hypotheses. The hypotheses are claims about the population (s). The null hypothesis is a hypothesis that the parameter equals a specific value. The alternative hypothesis is the competing claim that the parameter is less than, greater than, or not equal to the parameter value in the null.

  20. PDF Hypothesis Testing: Basic Concepts

    A hypothesis test allows us to test the claim about the population and find out how likely it is to be true. The hypothesis test consists of several components; two statements, the null hypothesis and the alternative hypothesis, the test statistic and the critical value, which in turn give us the P-value and the rejection region ...

  21. 8.2: Hypothesis Testing of Single Proportion

    where p p denotes the proportion of all adults who prefer the company's beverage over that of its competitor's beverage. Step 2. The test statistic (Equation 8.2.1 8.2.1) is. Z = p^ −p0 p0q0 n− −−−√ Z = p ^ − p 0 p 0 q 0 n. and has the standard normal distribution. Step 3.

  22. PDF Statistical Hypothesis Tests

    March 24, 2013. In this lecture note, we discuss the fundamentals of statistical hypothesis tests. Any statistical hypothesis test, no matter how complex it is, is based on the following logic of stochastic proof by contradiction. In mathematics, proof by contradiction is a proof technique where we begin by assuming the validity of a hypothesis ...

  23. Hypothesis Testing for Beginners

    Step 6 : Make a Decision. After calculating the test statistic and determining the p-value, the next step in hypothesis testing is to make a decision. This involves comparing the p-value to the level of significance (α) set at the beginning of the test. If the p-value is less than α, then we reject the null hypothesis and conclude that there ...

  24. 8

    will vary about the population mean, and the distribution of the sample means, for sample sizes of 30 or more, will be approximately normal. Even if the weight loss is exactly 8.2 pounds and the null hypothesis is true, the mean of the weight loss for a sample of people will not, in most cases, be exactly equal to the population mean of 8.2 pounds.