what is design research study

Research Design 101

Everything You Need To Get Started (With Examples)

By: Derek Jansen (MBA) | Reviewers: Eunice Rautenbach (DTech) & Kerryn Warren (PhD) | April 2023

Research design for qualitative and quantitative studies

Navigating the world of research can be daunting, especially if you’re a first-time researcher. One concept you’re bound to run into fairly early in your research journey is that of “ research design ”. Here, we’ll guide you through the basics using practical examples , so that you can approach your research with confidence.

Overview: Research Design 101

What is research design.

  • Research design types for quantitative studies
  • Video explainer : quantitative research design
  • Research design types for qualitative studies
  • Video explainer : qualitative research design
  • How to choose a research design
  • Key takeaways

Research design refers to the overall plan, structure or strategy that guides a research project , from its conception to the final data analysis. A good research design serves as the blueprint for how you, as the researcher, will collect and analyse data while ensuring consistency, reliability and validity throughout your study.

Understanding different types of research designs is essential as helps ensure that your approach is suitable  given your research aims, objectives and questions , as well as the resources you have available to you. Without a clear big-picture view of how you’ll design your research, you run the risk of potentially making misaligned choices in terms of your methodology – especially your sampling , data collection and data analysis decisions.

The problem with defining research design…

One of the reasons students struggle with a clear definition of research design is because the term is used very loosely across the internet, and even within academia.

Some sources claim that the three research design types are qualitative, quantitative and mixed methods , which isn’t quite accurate (these just refer to the type of data that you’ll collect and analyse). Other sources state that research design refers to the sum of all your design choices, suggesting it’s more like a research methodology . Others run off on other less common tangents. No wonder there’s confusion!

In this article, we’ll clear up the confusion. We’ll explain the most common research design types for both qualitative and quantitative research projects, whether that is for a full dissertation or thesis, or a smaller research paper or article.

Free Webinar: Research Methodology 101

Research Design: Quantitative Studies

Quantitative research involves collecting and analysing data in a numerical form. Broadly speaking, there are four types of quantitative research designs: descriptive , correlational , experimental , and quasi-experimental . 

Descriptive Research Design

As the name suggests, descriptive research design focuses on describing existing conditions, behaviours, or characteristics by systematically gathering information without manipulating any variables. In other words, there is no intervention on the researcher’s part – only data collection.

For example, if you’re studying smartphone addiction among adolescents in your community, you could deploy a survey to a sample of teens asking them to rate their agreement with certain statements that relate to smartphone addiction. The collected data would then provide insight regarding how widespread the issue may be – in other words, it would describe the situation.

The key defining attribute of this type of research design is that it purely describes the situation . In other words, descriptive research design does not explore potential relationships between different variables or the causes that may underlie those relationships. Therefore, descriptive research is useful for generating insight into a research problem by describing its characteristics . By doing so, it can provide valuable insights and is often used as a precursor to other research design types.

Correlational Research Design

Correlational design is a popular choice for researchers aiming to identify and measure the relationship between two or more variables without manipulating them . In other words, this type of research design is useful when you want to know whether a change in one thing tends to be accompanied by a change in another thing.

For example, if you wanted to explore the relationship between exercise frequency and overall health, you could use a correlational design to help you achieve this. In this case, you might gather data on participants’ exercise habits, as well as records of their health indicators like blood pressure, heart rate, or body mass index. Thereafter, you’d use a statistical test to assess whether there’s a relationship between the two variables (exercise frequency and health).

As you can see, correlational research design is useful when you want to explore potential relationships between variables that cannot be manipulated or controlled for ethical, practical, or logistical reasons. It is particularly helpful in terms of developing predictions , and given that it doesn’t involve the manipulation of variables, it can be implemented at a large scale more easily than experimental designs (which will look at next).

That said, it’s important to keep in mind that correlational research design has limitations – most notably that it cannot be used to establish causality . In other words, correlation does not equal causation . To establish causality, you’ll need to move into the realm of experimental design, coming up next…

Need a helping hand?

what is design research study

Experimental Research Design

Experimental research design is used to determine if there is a causal relationship between two or more variables . With this type of research design, you, as the researcher, manipulate one variable (the independent variable) while controlling others (dependent variables). Doing so allows you to observe the effect of the former on the latter and draw conclusions about potential causality.

For example, if you wanted to measure if/how different types of fertiliser affect plant growth, you could set up several groups of plants, with each group receiving a different type of fertiliser, as well as one with no fertiliser at all. You could then measure how much each plant group grew (on average) over time and compare the results from the different groups to see which fertiliser was most effective.

Overall, experimental research design provides researchers with a powerful way to identify and measure causal relationships (and the direction of causality) between variables. However, developing a rigorous experimental design can be challenging as it’s not always easy to control all the variables in a study. This often results in smaller sample sizes , which can reduce the statistical power and generalisability of the results.

Moreover, experimental research design requires random assignment . This means that the researcher needs to assign participants to different groups or conditions in a way that each participant has an equal chance of being assigned to any group (note that this is not the same as random sampling ). Doing so helps reduce the potential for bias and confounding variables . This need for random assignment can lead to ethics-related issues . For example, withholding a potentially beneficial medical treatment from a control group may be considered unethical in certain situations.

Quasi-Experimental Research Design

Quasi-experimental research design is used when the research aims involve identifying causal relations , but one cannot (or doesn’t want to) randomly assign participants to different groups (for practical or ethical reasons). Instead, with a quasi-experimental research design, the researcher relies on existing groups or pre-existing conditions to form groups for comparison.

For example, if you were studying the effects of a new teaching method on student achievement in a particular school district, you may be unable to randomly assign students to either group and instead have to choose classes or schools that already use different teaching methods. This way, you still achieve separate groups, without having to assign participants to specific groups yourself.

Naturally, quasi-experimental research designs have limitations when compared to experimental designs. Given that participant assignment is not random, it’s more difficult to confidently establish causality between variables, and, as a researcher, you have less control over other variables that may impact findings.

All that said, quasi-experimental designs can still be valuable in research contexts where random assignment is not possible and can often be undertaken on a much larger scale than experimental research, thus increasing the statistical power of the results. What’s important is that you, as the researcher, understand the limitations of the design and conduct your quasi-experiment as rigorously as possible, paying careful attention to any potential confounding variables .

The four most common quantitative research design types are descriptive, correlational, experimental and quasi-experimental.

Research Design: Qualitative Studies

There are many different research design types when it comes to qualitative studies, but here we’ll narrow our focus to explore the “Big 4”. Specifically, we’ll look at phenomenological design, grounded theory design, ethnographic design, and case study design.

Phenomenological Research Design

Phenomenological design involves exploring the meaning of lived experiences and how they are perceived by individuals. This type of research design seeks to understand people’s perspectives , emotions, and behaviours in specific situations. Here, the aim for researchers is to uncover the essence of human experience without making any assumptions or imposing preconceived ideas on their subjects.

For example, you could adopt a phenomenological design to study why cancer survivors have such varied perceptions of their lives after overcoming their disease. This could be achieved by interviewing survivors and then analysing the data using a qualitative analysis method such as thematic analysis to identify commonalities and differences.

Phenomenological research design typically involves in-depth interviews or open-ended questionnaires to collect rich, detailed data about participants’ subjective experiences. This richness is one of the key strengths of phenomenological research design but, naturally, it also has limitations. These include potential biases in data collection and interpretation and the lack of generalisability of findings to broader populations.

Grounded Theory Research Design

Grounded theory (also referred to as “GT”) aims to develop theories by continuously and iteratively analysing and comparing data collected from a relatively large number of participants in a study. It takes an inductive (bottom-up) approach, with a focus on letting the data “speak for itself”, without being influenced by preexisting theories or the researcher’s preconceptions.

As an example, let’s assume your research aims involved understanding how people cope with chronic pain from a specific medical condition, with a view to developing a theory around this. In this case, grounded theory design would allow you to explore this concept thoroughly without preconceptions about what coping mechanisms might exist. You may find that some patients prefer cognitive-behavioural therapy (CBT) while others prefer to rely on herbal remedies. Based on multiple, iterative rounds of analysis, you could then develop a theory in this regard, derived directly from the data (as opposed to other preexisting theories and models).

Grounded theory typically involves collecting data through interviews or observations and then analysing it to identify patterns and themes that emerge from the data. These emerging ideas are then validated by collecting more data until a saturation point is reached (i.e., no new information can be squeezed from the data). From that base, a theory can then be developed .

As you can see, grounded theory is ideally suited to studies where the research aims involve theory generation , especially in under-researched areas. Keep in mind though that this type of research design can be quite time-intensive , given the need for multiple rounds of data collection and analysis.

what is design research study

Ethnographic Research Design

Ethnographic design involves observing and studying a culture-sharing group of people in their natural setting to gain insight into their behaviours, beliefs, and values. The focus here is on observing participants in their natural environment (as opposed to a controlled environment). This typically involves the researcher spending an extended period of time with the participants in their environment, carefully observing and taking field notes .

All of this is not to say that ethnographic research design relies purely on observation. On the contrary, this design typically also involves in-depth interviews to explore participants’ views, beliefs, etc. However, unobtrusive observation is a core component of the ethnographic approach.

As an example, an ethnographer may study how different communities celebrate traditional festivals or how individuals from different generations interact with technology differently. This may involve a lengthy period of observation, combined with in-depth interviews to further explore specific areas of interest that emerge as a result of the observations that the researcher has made.

As you can probably imagine, ethnographic research design has the ability to provide rich, contextually embedded insights into the socio-cultural dynamics of human behaviour within a natural, uncontrived setting. Naturally, however, it does come with its own set of challenges, including researcher bias (since the researcher can become quite immersed in the group), participant confidentiality and, predictably, ethical complexities . All of these need to be carefully managed if you choose to adopt this type of research design.

Case Study Design

With case study research design, you, as the researcher, investigate a single individual (or a single group of individuals) to gain an in-depth understanding of their experiences, behaviours or outcomes. Unlike other research designs that are aimed at larger sample sizes, case studies offer a deep dive into the specific circumstances surrounding a person, group of people, event or phenomenon, generally within a bounded setting or context .

As an example, a case study design could be used to explore the factors influencing the success of a specific small business. This would involve diving deeply into the organisation to explore and understand what makes it tick – from marketing to HR to finance. In terms of data collection, this could include interviews with staff and management, review of policy documents and financial statements, surveying customers, etc.

While the above example is focused squarely on one organisation, it’s worth noting that case study research designs can have different variation s, including single-case, multiple-case and longitudinal designs. As you can see in the example, a single-case design involves intensely examining a single entity to understand its unique characteristics and complexities. Conversely, in a multiple-case design , multiple cases are compared and contrasted to identify patterns and commonalities. Lastly, in a longitudinal case design , a single case or multiple cases are studied over an extended period of time to understand how factors develop over time.

As you can see, a case study research design is particularly useful where a deep and contextualised understanding of a specific phenomenon or issue is desired. However, this strength is also its weakness. In other words, you can’t generalise the findings from a case study to the broader population. So, keep this in mind if you’re considering going the case study route.

Case study design often involves investigating an individual to gain an in-depth understanding of their experiences, behaviours or outcomes.

How To Choose A Research Design

Having worked through all of these potential research designs, you’d be forgiven for feeling a little overwhelmed and wondering, “ But how do I decide which research design to use? ”. While we could write an entire post covering that alone, here are a few factors to consider that will help you choose a suitable research design for your study.

Data type: The first determining factor is naturally the type of data you plan to be collecting – i.e., qualitative or quantitative. This may sound obvious, but we have to be clear about this – don’t try to use a quantitative research design on qualitative data (or vice versa)!

Research aim(s) and question(s): As with all methodological decisions, your research aim and research questions will heavily influence your research design. For example, if your research aims involve developing a theory from qualitative data, grounded theory would be a strong option. Similarly, if your research aims involve identifying and measuring relationships between variables, one of the experimental designs would likely be a better option.

Time: It’s essential that you consider any time constraints you have, as this will impact the type of research design you can choose. For example, if you’ve only got a month to complete your project, a lengthy design such as ethnography wouldn’t be a good fit.

Resources: Take into account the resources realistically available to you, as these need to factor into your research design choice. For example, if you require highly specialised lab equipment to execute an experimental design, you need to be sure that you’ll have access to that before you make a decision.

Keep in mind that when it comes to research, it’s important to manage your risks and play as conservatively as possible. If your entire project relies on you achieving a huge sample, having access to niche equipment or holding interviews with very difficult-to-reach participants, you’re creating risks that could kill your project. So, be sure to think through your choices carefully and make sure that you have backup plans for any existential risks. Remember that a relatively simple methodology executed well generally will typically earn better marks than a highly-complex methodology executed poorly.

what is design research study

Recap: Key Takeaways

We’ve covered a lot of ground here. Let’s recap by looking at the key takeaways:

  • Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data.
  • Research designs for quantitative studies include descriptive , correlational , experimental and quasi-experimenta l designs.
  • Research designs for qualitative studies include phenomenological , grounded theory , ethnographic and case study designs.
  • When choosing a research design, you need to consider a variety of factors, including the type of data you’ll be working with, your research aims and questions, your time and the resources available to you.

If you need a helping hand with your research design (or any other aspect of your research), check out our private coaching services .

what is design research study

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

12 Comments

Wei Leong YONG

Is there any blog article explaining more on Case study research design? Is there a Case study write-up template? Thank you.

Solly Khan

Thanks this was quite valuable to clarify such an important concept.

hetty

Thanks for this simplified explanations. it is quite very helpful.

Belz

This was really helpful. thanks

Imur

Thank you for your explanation. I think case study research design and the use of secondary data in researches needs to be talked about more in your videos and articles because there a lot of case studies research design tailored projects out there.

Please is there any template for a case study research design whose data type is a secondary data on your repository?

Sam Msongole

This post is very clear, comprehensive and has been very helpful to me. It has cleared the confusion I had in regard to research design and methodology.

Robyn Pritchard

This post is helpful, easy to understand, and deconstructs what a research design is. Thanks

Rachael Opoku

This post is really helpful.

kelebogile

how to cite this page

Peter

Thank you very much for the post. It is wonderful and has cleared many worries in my mind regarding research designs. I really appreciate .

ali

how can I put this blog as my reference(APA style) in bibliography part?

Joreme

This post has been very useful to me. Confusing areas have been cleared

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative approach Quantitative approach

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

Type of design Purpose and characteristics
Experimental
Quasi-experimental
Correlational
Descriptive

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Type of design Purpose and characteristics
Grounded theory
Phenomenology

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling Non-probability sampling

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Questionnaires Interviews

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Quantitative observation

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

Field Examples of data collection methods
Media & communication Collecting a sample of texts (e.g., speeches, articles, or social media posts) for data on cultural norms and narratives
Psychology Using technologies like neuroimaging, eye-tracking, or computer-based tasks to collect data on things like attention, emotional response, or reaction time
Education Using tests or assignments to collect data on knowledge and skills
Physical sciences Using scientific instruments to collect data on things like weight, blood pressure, or chemical composition

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

Reliability Validity

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

Approach Characteristics
Thematic analysis
Discourse analysis

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 21 August 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Root out friction in every digital experience, super-charge conversion rates, and optimize digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered to teams on the ground

Know how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Explore the platform powering Experience Management

  • Free Account
  • Product Demos
  • For Digital
  • For Customer Care
  • For Human Resources
  • For Researchers
  • Financial Services
  • All Industries

Popular Use Cases

  • Customer Experience
  • Employee Experience
  • Net Promoter Score
  • Voice of Customer
  • Customer Success Hub
  • Product Documentation
  • Training & Certification
  • XM Institute
  • Popular Resources
  • Customer Stories
  • Artificial Intelligence

Market Research

  • Partnerships
  • Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results, live in Salt Lake City.

  • English/AU & NZ
  • Español/Europa
  • Español/América Latina
  • Português Brasileiro
  • REQUEST DEMO

what is design research study

What is design research methodology and why is it important?

What is design research.

Design research is the process of gathering, analyzing and interpreting data and insights to inspire, guide and provide context for designs. It’s a research discipline that applies both quantitative and qualitative research methods to help make well-informed design decisions.

Not to be confused with user experience research – focused on the usability of primarily digital products and experiences – design research is a broader discipline that informs the entire design process across various design fields. Beyond focusing solely on researching with users, design research can also explore aesthetics, cultural trends, historical context and more.

Design research has become more important in business, as brands place greater emphasis on building high-quality customer experiences as a point of differentiation.

Elevate Your Brand's Potential with Qualtrics

Design research vs. market research

The two may seem like the same thing at face value, but really they use different methods, serve different purposes and produce different insights.

Design research focuses on understanding user needs, behaviors and experiences to inform and improve product or service design.  Market research , on the other hand, is more concerned with the broader market dynamics, identifying opportunities, and maximizing sales and profitability.

Both are essential for the success of a product or service, but cater to different aspects of its lifecycle.

Design research in action: A mini mock case study

A popular furniture brand, known for its sleek and simple designs, faced an unexpected challenge: dropping sales in some overseas markets. To address this, they turned to design research – using quantitative and qualitative methods – to build a holistic view of the issue.

Company researchers visited homes in these areas to interview members of their target audience and understand local living spaces and preferences. Through these visits, they realized that while the local customers appreciated quality, their choices in furniture were heavily influenced by traditions and regional aesthetics, which the company's portfolio wasn’t addressing.

To further their understanding, the company rolled out surveys, asking people about their favorite materials, colors and furniture functionalities. They discovered a consistent desire for versatile furniture pieces that could serve multiple purposes. Additionally, the preference leaned towards certain regional colors and patterns that echoed local culture.

Armed with these insights, the company took to the drawing board. They worked on combining their minimalist style with the elements people in those markets valued. The result was a refreshed furniture line that seamlessly blended the brand's signature simplicity with local tastes. As this new line hit the market, it resonated deeply with customers in the markets, leading to a notable recovery in sales and even attracting new buyers.

design research method image

When to use design research

Like most forms of research, design research should be used whenever there are gaps in your understanding of your audience’s needs, behaviors or preferences. It’s most valuable when used throughout the product development and design process.

When differing opinions within a team can derail a design process, design research provides concrete data and evidence-based insights, preventing decisions based on assumptions.

Design research brings value to any product development and design process, but it’s especially important in larger, resource intensive projects to minimize risk and create better outcomes for all.

The benefits of design research

Design research may be perceived as time-consuming, but in reality it’s often a time – and money – saver that can. easily prove to be the difference between strong product-market fit and a product with no real audience.

Deeper customer knowledge

Understanding your audience on a granular level is paramount – without tapping into the nuances of their desires, preferences and pain points, you run the risk of misalignment.

Design research dives deep into these intricacies, ensuring that products and services don't just meet surface level demands. Instead, they can resonate and foster a bond between the user and the brand, building foundations for lasting loyalty.

Efficiency and cost savings

More often than not, designing products or services based on assumptions or gut feelings leads to costly revisions, underwhelming market reception and wasted resources.

Design research offers a safeguard against these pitfalls by grounding decisions in real, tangible insights directly from the target market – streamlining the development process and ensuring that every dollar spent yields maximum value.

New opportunities

Design research often brings to light overlooked customer needs and emerging trends. The insights generated can shift the trajectory of product development, open doors to new and novel solutions, and carve out fresh market niches.

Sometimes it's not just about avoiding mistakes – it can be about illuminating new paths of innovation.

Enhanced competitive edge

In today’s world, one of the most powerful ways to stand out as a business is to be relentlessly user focused. By ensuring that products and services are continuously refined based on user feedback, businesses can maintain a step ahead of competitors.

Whether it’s addressing pain points competitors might overlook, or creating user experiences that are not just satisfactory but delightful, design research can be the foundations for a sharpened competitive edge.

Design research methods

The broad scope of design research means it demands a variety of research tools, with both numbers-driven and people-driven methods coming into play. There are many methods to choose from, so we’ve outlined those that are most common and can have the biggest impact.

four design research methods

This stage is about gathering initial insights to set a clear direction.

Literature review

Simply put, this research method involves investigating existing secondary research, like studies and articles, in your design area. It's a foundational method that helps you understand current knowledge and identify any gaps – think of it like surveying the landscape before navigating through it.

Field observations

By observing people's interactions in real-world settings, we gather genuine insights. Field observations are about connecting the dots between observed behaviors and your design's intended purpose. This method proves invaluable as it can reveal how design choices can impact everyday experiences.

Stakeholder interviews

Talking to those invested in the design's outcome, be it users or experts, is key. These discussions provide first-hand feedback that can clarify user expectations and illuminate the path towards a design that resonates with its audience.

This stage is about delving deeper and starting to shape your design concepts based on what you’ve already discovered.

Design review

This is a closer look at existing designs in the market or other related areas. Design reviews are very valuable because they can provide an understanding of current design trends and standards – helping you see where there's room for innovation or improvement.

Without a design review, you could be at risk of reinventing the wheel.

Persona building

This involves creating detailed profiles representing different groups in your target audience using real data and insights.

Personas help bring to life potential users, ensuring your designs address actual needs and scenarios. By having these "stand-in" users, you can make more informed design choices tailored to specific user experiences.

Putting your evolving design ideas to the test and gauging their effectiveness in the real world.

Usability testing

This is about seeing how real users interact with a design.

In usability testing you observe this process, note where they face difficulties and moments of satisfaction. It's a hands-on way to ensure that the design is intuitive and meets user needs.

Benchmark testing

Benchmark testing is about comparing your design's performance against set standards or competitor products.

Doing this gives a clearer idea of where your design stands in the broader context and highlights areas for improvement or differentiation. With these insights you can make informed decisions to either meet or exceed those benchmarks.

This final stage is about gathering feedback once your design is out in the world, ensuring it stays relevant and effective.

Feedback surveys

After users have interacted with the design for some time, use feedback surveys to gather their thoughts. The results of these surveys will help to ensure that you have your finger on the pulse of user sentiment – enabling iterative improvements.

Remember, simple questions can reveal a lot about what's working and where improvements might be needed.

Focus groups

These are structured, moderator-led discussions with a small group of users . The aim is for the conversation to dive deep into their experiences with the design and extract rich insights – not only capturing what users think but also why.

Start your free 30-day trial of DesignXM® today

Understanding what your market wants before they even know it can set your business apart in a saturated market. That's where DesignXM by Qualtrics® comes in – offering a top-tier platform designed for those who want to lead, not just follow.

Why dive into DesignXM?

  • Quick insights: Get to the heart of the matter faster and make informed decisions swiftly
  • Cost-effective research: Cut back on outsourced studies and get more bang for your buck, all while ensuring top-notch quality
  • Premium quality: Stand shoulder to shoulder with leading brands, using best-in-class research methods

Karen Goldstein

Karen brings over 25 years of experience in B2C and B2B research, cultivating deep experience in Innovation research methods and tools.

Related Articles

May 20, 2024

Best strategy & research books to read in 2024

May 13, 2024

Experience Management

X4 2024 Strategy & Research Showcase: Introducing the future of insights generation

November 7, 2023

Brand Experience

The 4 market research trends redefining insights in 2024

June 27, 2023

The fresh insights people: Scaling research at Woolworths Group

June 20, 2023

Bank less, delight more: How Bankwest built an engine room for customer obsession

April 1, 2023

Academic Experience

How to write great survey questions (with examples)

March 21, 2023

Sample size calculator

November 18, 2022

Statistical analysis software: your complete guide to getting started

Stay up to date with the latest xm thought leadership, tips and news., request demo.

Ready to learn more about Qualtrics?

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Types of Research Designs Compared | Guide & Examples

Types of Research Designs Compared | Guide & Examples

Published on June 20, 2019 by Shona McCombes . Revised on June 22, 2023.

When you start planning a research project, developing research questions and creating a  research design , you will have to make various decisions about the type of research you want to do.

There are many ways to categorize different types of research. The words you use to describe your research depend on your discipline and field. In general, though, the form your research design takes will be shaped by:

  • The type of knowledge you aim to produce
  • The type of data you will collect and analyze
  • The sampling methods , timescale and location of the research

This article takes a look at some common distinctions made between different types of research and outlines the key differences between them.

Table of contents

Types of research aims, types of research data, types of sampling, timescale, and location, other interesting articles.

The first thing to consider is what kind of knowledge your research aims to contribute.

Type of research What’s the difference? What to consider
Basic vs. applied Basic research aims to , while applied research aims to . Do you want to expand scientific understanding or solve a practical problem?
vs. Exploratory research aims to , while explanatory research aims to . How much is already known about your research problem? Are you conducting initial research on a newly-identified issue, or seeking precise conclusions about an established issue?
aims to , while aims to . Is there already some theory on your research problem that you can use to develop , or do you want to propose new theories based on your findings?

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

what is design research study

The next thing to consider is what type of data you will collect. Each kind of data is associated with a range of specific research methods and procedures.

Type of research What’s the difference? What to consider
Primary research vs secondary research Primary data is (e.g., through or ), while secondary data (e.g., in government or scientific publications). How much data is already available on your topic? Do you want to collect original data or analyze existing data (e.g., through a )?
, while . Is your research more concerned with measuring something or interpreting something? You can also create a research design that has elements of both.
vs Descriptive research gathers data , while experimental research . Do you want to identify characteristics, patterns and or test causal relationships between ?

Finally, you have to consider three closely related questions: how will you select the subjects or participants of the research? When and how often will you collect data from your subjects? And where will the research take place?

Keep in mind that the methods that you choose bring with them different risk factors and types of research bias . Biases aren’t completely avoidable, but can heavily impact the validity and reliability of your findings if left unchecked.

Type of research What’s the difference? What to consider
allows you to , while allows you to draw conclusions . Do you want to produce  knowledge that applies to many contexts or detailed knowledge about a specific context (e.g. in a )?
vs Cross-sectional studies , while longitudinal studies . Is your research question focused on understanding the current situation or tracking changes over time?
Field research vs laboratory research Field research takes place in , while laboratory research takes place in . Do you want to find out how something occurs in the real world or draw firm conclusions about cause and effect? Laboratory experiments have higher but lower .
Fixed design vs flexible design In a fixed research design the subjects, timescale and location are begins, while in a flexible design these aspects may . Do you want to test hypotheses and establish generalizable facts, or explore concepts and develop understanding? For measuring, testing and making generalizations, a fixed research design has higher .

Choosing between all these different research types is part of the process of creating your research design , which determines exactly how your research will be conducted. But the type of research is only the first step: next, you have to make more concrete decisions about your research methods and the details of the study.

Read more about creating a research design

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, June 22). Types of Research Designs Compared | Guide & Examples. Scribbr. Retrieved August 21, 2024, from https://www.scribbr.com/methodology/types-of-research/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is a research design | types, guide & examples, qualitative vs. quantitative research | differences, examples & methods, what is a research methodology | steps & tips, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

what is design research study

What Is a Research Design? | Definition, Types & Guide

what is design research study

Introduction

Parts of a research design, types of research methodology in qualitative research, narrative research designs, phenomenological research designs, grounded theory research designs.

  • Ethnographic research designs

Case study research design

Important reminders when designing a research study.

A research design in qualitative research is a critical framework that guides the methodological approach to studying complex social phenomena. Qualitative research designs determine how data is collected, analyzed, and interpreted, ensuring that the research captures participants' nuanced and subjective perspectives. Research designs also recognize ethical considerations and involve informed consent, ensuring confidentiality, and handling sensitive topics with the utmost respect and care. These considerations are crucial in qualitative research and other contexts where participants may share personal or sensitive information. A research design should convey coherence as it is essential for producing high-quality qualitative research, often following a recursive and evolving process.

what is design research study

Theoretical concepts and research question

The first step in creating a research design is identifying the main theoretical concepts. To identify these concepts, a researcher should ask which theoretical keywords are implicit in the investigation. The next step is to develop a research question using these theoretical concepts. This can be done by identifying the relationship of interest among the concepts that catch the focus of the investigation. The question should address aspects of the topic that need more knowledge, shed light on new information, and specify which aspects should be prioritized before others. This step is essential in identifying which participants to include or which data collection methods to use. Research questions also put into practice the conceptual framework and make the initial theoretical concepts more explicit. Once the research question has been established, the main objectives of the research can be specified. For example, these objectives may involve identifying shared experiences around a phenomenon or evaluating perceptions of a new treatment.

Methodology

After identifying the theoretical concepts, research question, and objectives, the next step is to determine the methodology that will be implemented. This is the lifeline of a research design and should be coherent with the objectives and questions of the study. The methodology will determine how data is collected, analyzed, and presented. Popular qualitative research methodologies include case studies, ethnography , grounded theory , phenomenology, and narrative research . Each methodology is tailored to specific research questions and facilitates the collection of rich, detailed data. For example, a narrative approach may focus on only one individual and their story, while phenomenology seeks to understand participants' lived common experiences. Qualitative research designs differ significantly from quantitative research, which often involves experimental research, correlational designs, or variance analysis to test hypotheses about relationships between two variables, a dependent variable and an independent variable while controlling for confounding variables.

what is design research study

Literature review

After the methodology is identified, conducting a thorough literature review is integral to the research design. This review identifies gaps in knowledge, positioning the new study within the larger academic dialogue and underlining its contribution and relevance. Meta-analysis, a form of secondary research, can be particularly useful in synthesizing findings from multiple studies to provide a clear picture of the research landscape.

Data collection

The sampling method in qualitative research is designed to delve deeply into specific phenomena rather than to generalize findings across a broader population. The data collection methods—whether interviews, focus groups, observations, or document analysis—should align with the chosen methodology, ethical considerations, and other factors such as sample size. In some cases, repeated measures may be collected to observe changes over time.

Data analysis

Analysis in qualitative research typically involves methods such as coding and thematic analysis to distill patterns from the collected data. This process delineates how the research results will be systematically derived from the data. It is recommended that the researcher ensures that the final interpretations are coherent with the observations and analyses, making clear connections between the data and the conclusions drawn. Reporting should be narrative-rich, offering a comprehensive view of the context and findings.

Overall, a coherent qualitative research design that incorporates these elements facilitates a study that not only adds theoretical and practical value to the field but also adheres to high quality. This methodological thoroughness is essential for achieving significant, insightful findings. Examples of well-executed research designs can be valuable references for other researchers conducting qualitative or quantitative investigations. An effective research design is critical for producing robust and impactful research outcomes.

Each qualitative research design is unique, diverse, and meticulously tailored to answer specific research questions, meet distinct objectives, and explore the unique nature of the phenomenon under investigation. The methodology is the wider framework that a research design follows. Each methodology in a research design consists of methods, tools, or techniques that compile data and analyze it following a specific approach.

The methods enable researchers to collect data effectively across individuals, different groups, or observations, ensuring they are aligned with the research design. The following list includes the most commonly used methodologies employed in qualitative research designs, highlighting how they serve different purposes and utilize distinct methods to gather and analyze data.

what is design research study

The narrative approach in research focuses on the collection and detailed examination of life stories, personal experiences, or narratives to gain insights into individuals' lives as told from their perspectives. It involves constructing a cohesive story out of the diverse experiences shared by participants, often using chronological accounts. It seeks to understand human experience and social phenomena through the form and content of the stories. These can include spontaneous narrations such as memoirs or diaries from participants or diaries solicited by the researcher. Narration helps construct the identity of an individual or a group and can rationalize, persuade, argue, entertain, confront, or make sense of an event or tragedy. To conduct a narrative investigation, it is recommended that researchers follow these steps:

Identify if the research question fits the narrative approach. Its methods are best employed when a researcher wants to learn about the lifestyle and life experience of a single participant or a small number of individuals.

Select the best-suited participants for the research design and spend time compiling their stories using different methods such as observations, diaries, interviewing their family members, or compiling related secondary sources.

Compile the information related to the stories. Narrative researchers collect data based on participants' stories concerning their personal experiences, for example about their workplace or homes, their racial or ethnic culture, and the historical context in which the stories occur.

Analyze the participant stories and "restore" them within a coherent framework. This involves collecting the stories, analyzing them based on key elements such as time, place, plot, and scene, and then rewriting them in a chronological sequence (Ollerenshaw & Creswell, 2000). The framework may also include elements such as a predicament, conflict, or struggle; a protagonist; and a sequence with implicit causality, where the predicament is somehow resolved (Carter, 1993).

Collaborate with participants by actively involving them in the research. Both the researcher and the participant negotiate the meaning of their stories, adding a credibility check to the analysis (Creswell & Miller, 2000).

A narrative investigation includes collecting a large amount of data from the participants and the researcher needs to understand the context of the individual's life. A keen eye is needed to collect particular stories that capture the individual experiences. Active collaboration with the participant is necessary, and researchers need to discuss and reflect on their own beliefs and backgrounds. Multiple questions could arise in the collection, analysis, and storytelling of individual stories that need to be addressed, such as: Whose story is it? Who can tell it? Who can change it? Which version is compelling? What happens when narratives compete? In a community, what do the stories do among them? (Pinnegar & Daynes, 2006).

what is design research study

Make the most of your data with ATLAS.ti

Powerful tools in an intuitive interface, ready for you with a free trial today.

A research design based on phenomenology aims to understand the essence of the lived experiences of a group of people regarding a particular concept or phenomenon. Researchers gather deep insights from individuals who have experienced the phenomenon, striving to describe "what" they experienced and "how" they experienced it. This approach to a research design typically involves detailed interviews and aims to reach a deep existential understanding. The purpose is to reduce individual experiences to a description of the universal essence or understanding the phenomenon's nature (van Manen, 1990). In phenomenology, the following steps are usually followed:

Identify a phenomenon of interest . For example, the phenomenon might be anger, professionalism in the workplace, or what it means to be a fighter.

Recognize and specify the philosophical assumptions of phenomenology , for example, one could reflect on the nature of objective reality and individual experiences.

Collect data from individuals who have experienced the phenomenon . This typically involves conducting in-depth interviews, including multiple sessions with each participant. Additionally, other forms of data may be collected using several methods, such as observations, diaries, art, poetry, music, recorded conversations, written responses, or other secondary sources.

Ask participants two general questions that encompass the phenomenon and how the participant experienced it (Moustakas, 1994). For example, what have you experienced in this phenomenon? And what contexts or situations have typically influenced your experiences within the phenomenon? Other open-ended questions may also be asked, but these two questions particularly focus on collecting research data that will lead to a textural description and a structural description of the experiences, and ultimately provide an understanding of the common experiences of the participants.

Review data from the questions posed to participants . It is recommended that researchers review the answers and highlight "significant statements," phrases, or quotes that explain how participants experienced the phenomenon. The researcher can then develop meaningful clusters from these significant statements into patterns or key elements shared across participants.

Write a textual description of what the participants experienced based on the answers and themes of the two main questions. The answers are also used to write about the characteristics and describe the context that influenced the way the participants experienced the phenomenon, called imaginative variation or structural description. Researchers should also write about their own experiences and context or situations that influenced them.

Write a composite description from the structural and textural description that presents the "essence" of the phenomenon, called the essential and invariant structure.

A phenomenological approach to a research design includes the strict and careful selection of participants in the study where bracketing personal experiences can be difficult to implement. The researcher decides how and in which way their knowledge will be introduced. It also involves some understanding and identification of the broader philosophical assumptions.

what is design research study

Grounded theory is used in a research design when the goal is to inductively develop a theory "grounded" in data that has been systematically gathered and analyzed. Starting from the data collection, researchers identify characteristics, patterns, themes, and relationships, gradually forming a theoretical framework that explains relevant processes, actions, or interactions grounded in the observed reality. A grounded theory study goes beyond descriptions and its objective is to generate a theory, an abstract analytical scheme of a process. Developing a theory doesn't come "out of nothing" but it is constructed and based on clear data collection. We suggest the following steps to follow a grounded theory approach in a research design:

Determine if grounded theory is the best for your research problem . Grounded theory is a good design when a theory is not already available to explain a process.

Develop questions that aim to understand how individuals experienced or enacted the process (e.g., What was the process? How did it unfold?). Data collection and analysis occur in tandem, so that researchers can ask more detailed questions that shape further analysis, such as: What was the focal point of the process (central phenomenon)? What influenced or caused this phenomenon to occur (causal conditions)? What strategies were employed during the process? What effect did it have (consequences)?

Gather relevant data about the topic in question . Data gathering involves questions that are usually asked in interviews, although other forms of data can also be collected, such as observations, documents, and audio-visual materials from different groups.

Carry out the analysis in stages . Grounded theory analysis begins with open coding, where the researcher forms codes that inductively emerge from the data (rather than preconceived categories). Researchers can thus identify specific properties and dimensions relevant to their research question.

Assemble the data in new ways and proceed to axial coding . Axial coding involves using a coding paradigm or logic diagram, such as a visual model, to systematically analyze the data. Begin by identifying a central phenomenon, which is the main category or focus of the research problem. Next, explore the causal conditions, which are the categories of factors that influence the phenomenon. Specify the strategies, which are the actions or interactions associated with the phenomenon. Then, identify the context and intervening conditions—both narrow and broad factors that affect the strategies. Finally, delineate the consequences, which are the outcomes or results of employing the strategies.

Use selective coding to construct a "storyline" that links the categories together. Alternatively, the researcher may formulate propositions or theory-driven questions that specify predicted relationships among these categories.

Develop and visually present a matrix that clarifies the social, historical, and economic conditions influencing the central phenomenon. This optional step encourages viewing the model from the narrowest to the broadest perspective.

Write a substantive-level theory that is closely related to a specific problem or population. This step is optional but provides a focused theoretical framework that can later be tested with quantitative data to explore its generalizability to a broader sample.

Allow theory to emerge through the memo-writing process, where ideas about the theory evolve continuously throughout the stages of open, axial, and selective coding.

The researcher should initially set aside any preconceived theoretical ideas to allow for the emergence of analytical and substantive theories. This is a systematic research approach, particularly when following the methodological steps outlined by Strauss and Corbin (1990). For those seeking more flexibility in their research process, the approach suggested by Charmaz (2006) might be preferable.

One of the challenges when using this method in a research design is determining when categories are sufficiently saturated and when the theory is detailed enough. To achieve saturation, discriminant sampling may be employed, where additional information is gathered from individuals similar to those initially interviewed to verify the applicability of the theory to these new participants. Ultimately, its goal is to develop a theory that comprehensively describes the central phenomenon, causal conditions, strategies, context, and consequences.

what is design research study

Ethnographic research design

An ethnographic approach in research design involves the extended observation and data collection of a group or community. The researcher immerses themselves in the setting, often living within the community for long periods. During this time, they collect data by observing and recording behaviours, conversations, and rituals to understand the group's social dynamics and cultural norms. We suggest following these steps for ethnographic methods in a research design:

Assess whether ethnography is the best approach for the research design and questions. It's suitable if the goal is to describe how a cultural group functions and to delve into their beliefs, language, behaviours, and issues like power, resistance, and domination, particularly if there is limited literature due to the group’s marginal status or unfamiliarity to mainstream society.

Identify and select a cultural group for your research design. Choose one that has a long history together, forming distinct languages, behaviours, and attitudes. This group often might be marginalized within society.

Choose cultural themes or issues to examine within the group. Analyze interactions in everyday settings to identify pervasive patterns such as life cycles, events, and overarching cultural themes. Culture is inferred from the group members' words, actions, and the tension between their actual and expected behaviours, as well as the artifacts they use.

Conduct fieldwork to gather detailed information about the group’s living and working environments. Visit the site, respect the daily lives of the members, and collect a diverse range of materials, considering ethical aspects such as respect and reciprocity.

Compile and analyze cultural data to develop a set of descriptive and thematic insights. Begin with a detailed description of the group based on observations of specific events or activities over time. Then, conduct a thematic analysis to identify patterns or themes that illustrate how the group functions and lives. The final output should be a comprehensive cultural portrait that integrates both the participants (emic) and the researcher’s (etic) perspectives, potentially advocating for the group’s needs or suggesting societal changes to better accommodate them.

Researchers engaging in ethnography need a solid understanding of cultural anthropology and the dynamics of sociocultural systems, which are commonly explored in ethnographic research. The data collection phase is notably extensive, requiring prolonged periods in the field. Ethnographers often employ a literary, quasi-narrative style in their narratives, which can pose challenges for those accustomed to more conventional social science writing methods.

Another potential issue is the risk of researchers "going native," where they become overly assimilated into the community under study, potentially jeopardizing the objectivity and completion of their research. It's crucial for researchers to be aware of their impact on the communities and environments they are studying.

The case study approach in a research design focuses on a detailed examination of a single case or a small number of cases. Cases can be individuals, groups, organizations, or events. Case studies are particularly useful for research designs that aim to understand complex issues in real-life contexts. The aim is to provide a thorough description and contextual analysis of the cases under investigation. We suggest following these steps in a case study design:

Assess if a case study approach suits your research questions . This approach works well when you have distinct cases with defined boundaries and aim to deeply understand these cases or compare multiple cases.

Choose your case or cases. These could involve individuals, groups, programs, events, or activities. Decide whether an individual or collective, multi-site or single-site case study is most appropriate, focusing on specific cases or themes (Stake, 1995; Yin, 2003).

Gather data extensively from diverse sources . Collect information through archival records, interviews, direct and participant observations, and physical artifacts (Yin, 2003).

Analyze the data holistically or in focused segments . Provide a comprehensive overview of the entire case or concentrate on specific aspects. Start with a detailed description including the history of the case and its chronological events then narrow down to key themes. The aim is to delve into the case's complexity rather than generalize findings.

Interpret and report the significance of the case in the final phase . Explain what insights were gained, whether about the subject of the case in an instrumental study or an unusual situation in an intrinsic study (Lincoln & Guba, 1985).

The investigator must carefully select the case or cases to study, recognizing that multiple potential cases could illustrate a chosen topic or issue. This selection process involves deciding whether to focus on a single case for deeper analysis or multiple cases, which may provide broader insights but less depth per case. Each choice requires a well-justified rationale for the selected cases. Researchers face the challenge of defining the boundaries of a case, such as its temporal scope and the events and processes involved. This decision in a research design is crucial as it affects the depth and value of the information presented in the study, and therefore should be planned to ensure a comprehensive portrayal of the case.

what is design research study

Qualitative and quantitative research designs are distinct in their approach to data collection and data analysis. Unlike quantitative research, which focuses on numerical data and statistical analysis, qualitative research prioritizes understanding the depth and richness of human experiences, behaviours, and interactions.

Qualitative methods in a research design have to have internal coherence, meaning that all elements of the research project—research question, data collection, data analysis, findings, and theory—are well-aligned and consistent with each other. This coherence in the research study is especially crucial in inductive qualitative research, where the research process often follows a recursive and evolving path. Ensuring that each component of the research design fits seamlessly with the others enhances the clarity and impact of the study, making the research findings more robust and compelling. Whether it is a descriptive research design, explanatory research design, diagnostic research design, or correlational research design coherence is an important element in both qualitative and quantitative research.

Finally, a good research design ensures that the research is conducted ethically and considers the well-being and rights of participants when managing collected data. The research design guides researchers in providing a clear rationale for their methodologies, which is crucial for justifying the research objectives to the scientific community. A thorough research design also contributes to the body of knowledge, enabling researchers to build upon past research studies and explore new dimensions within their fields. At the core of the design, there is a clear articulation of the research objectives. These objectives should be aligned with the underlying concepts being investigated, offering a concise method to answer the research questions and guiding the direction of the study with proper qualitative methods.

Carter, K. (1993). The place of a story in the study of teaching and teacher education. Educational Researcher, 22(1), 5-12, 18.

Charmaz, K. (2006). Constructing grounded theory. London: Sage.

Creswell, J. W., & Miller, D. L. (2000). Determining validity in qualitative inquiry. Theory Into Practice, 39(3), 124-130.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Newbury Park, CA: Sage.

Moustakas, C. (1994). Phenomenological research methods. Thousand Oaks, CA: Sage.

Ollerenshaw, J. A., & Creswell, J. W. (2000, April). Data analysis in narrative research: A comparison of two “restoring” approaches. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA.

Stake, R. E. (1995). The art of case study research. Thousand Oaks, CA: Sage.

Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Newbury Park, CA: Sage.

van Manen, M. (1990). Researching lived experience: Human science for an action sensitive pedagogy. Ontario, Canada: University of Western Ontario.

Yin, R. K. (2003). Case study research: Design and methods (3rd ed.). Thousand Oaks, CA: Sage

what is design research study

Whatever your research objectives, make it happen with ATLAS.ti!

Download a free trial today.

what is design research study

  • En español – ExME
  • Em português – EME

An introduction to different types of study design

Posted on 6th April 2021 by Hadi Abbas

""

Study designs are the set of methods and procedures used to collect and analyze data in a study.

Broadly speaking, there are 2 types of study designs: descriptive studies and analytical studies.

Descriptive studies

  • Describes specific characteristics in a population of interest
  • The most common forms are case reports and case series
  • In a case report, we discuss our experience with the patient’s symptoms, signs, diagnosis, and treatment
  • In a case series, several patients with similar experiences are grouped.

Analytical Studies

Analytical studies are of 2 types: observational and experimental.

Observational studies are studies that we conduct without any intervention or experiment. In those studies, we purely observe the outcomes.  On the other hand, in experimental studies, we conduct experiments and interventions.

Observational studies

Observational studies include many subtypes. Below, I will discuss the most common designs.

Cross-sectional study:

  • This design is transverse where we take a specific sample at a specific time without any follow-up
  • It allows us to calculate the frequency of disease ( p revalence ) or the frequency of a risk factor
  • This design is easy to conduct
  • For example – if we want to know the prevalence of migraine in a population, we can conduct a cross-sectional study whereby we take a sample from the population and calculate the number of patients with migraine headaches.

Cohort study:

  • We conduct this study by comparing two samples from the population: one sample with a risk factor while the other lacks this risk factor
  • It shows us the risk of developing the disease in individuals with the risk factor compared to those without the risk factor ( RR = relative risk )
  • Prospective : we follow the individuals in the future to know who will develop the disease
  • Retrospective : we look to the past to know who developed the disease (e.g. using medical records)
  • This design is the strongest among the observational studies
  • For example – to find out the relative risk of developing chronic obstructive pulmonary disease (COPD) among smokers, we take a sample including smokers and non-smokers. Then, we calculate the number of individuals with COPD among both.

Case-Control Study:

  • We conduct this study by comparing 2 groups: one group with the disease (cases) and another group without the disease (controls)
  • This design is always retrospective
  •  We aim to find out the odds of having a risk factor or an exposure if an individual has a specific disease (Odds ratio)
  •  Relatively easy to conduct
  • For example – we want to study the odds of being a smoker among hypertensive patients compared to normotensive ones. To do so, we choose a group of patients diagnosed with hypertension and another group that serves as the control (normal blood pressure). Then we study their smoking history to find out if there is a correlation.

Experimental Studies

  • Also known as interventional studies
  • Can involve animals and humans
  • Pre-clinical trials involve animals
  • Clinical trials are experimental studies involving humans
  • In clinical trials, we study the effect of an intervention compared to another intervention or placebo. As an example, I have listed the four phases of a drug trial:

I:  We aim to assess the safety of the drug ( is it safe ? )

II: We aim to assess the efficacy of the drug ( does it work ? )

III: We want to know if this drug is better than the old treatment ( is it better ? )

IV: We follow-up to detect long-term side effects ( can it stay in the market ? )

  • In randomized controlled trials, one group of participants receives the control, while the other receives the tested drug/intervention. Those studies are the best way to evaluate the efficacy of a treatment.

Finally, the figure below will help you with your understanding of different types of study designs.

A visual diagram describing the following. Two types of epidemiological studies are descriptive and analytical. Types of descriptive studies are case reports, case series, descriptive surveys. Types of analytical studies are observational or experimental. Observational studies can be cross-sectional, case-control or cohort studies. Types of experimental studies can be lab trials or field trials.

References (pdf)

You may also be interested in the following blogs for further reading:

An introduction to randomized controlled trials

Case-control and cohort studies: a brief overview

Cohort studies: prospective and retrospective designs

Prevalence vs Incidence: what is the difference?

' src=

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

No Comments on An introduction to different types of study design

' src=

you are amazing one!! if I get you I’m working with you! I’m student from Ethiopian higher education. health sciences student

' src=

Very informative and easy understandable

' src=

You are my kind of doctor. Do not lose sight of your objective.

' src=

Wow very erll explained and easy to understand

' src=

I’m Khamisu Habibu community health officer student from Abubakar Tafawa Balewa university teaching hospital Bauchi, Nigeria, I really appreciate your write up and you have make it clear for the learner. thank you

' src=

well understood,thank you so much

' src=

Well understood…thanks

' src=

Simply explained. Thank You.

' src=

Thanks a lot for this nice informative article which help me to understand different study designs that I felt difficult before

' src=

That’s lovely to hear, Mona, thank you for letting the author know how useful this was. If there are any other particular topics you think would be useful to you, and are not already on the website, please do let us know.

' src=

it is very informative and useful.

thank you statistician

Fabulous to hear, thank you John.

' src=

Thanks for this information

Thanks so much for this information….I have clearly known the types of study design Thanks

That’s so good to hear, Mirembe, thank you for letting the author know.

' src=

Very helpful article!! U have simplified everything for easy understanding

' src=

I’m a health science major currently taking statistics for health care workers…this is a challenging class…thanks for the simified feedback.

That’s good to hear this has helped you. Hopefully you will find some of the other blogs useful too. If you see any topics that are missing from the website, please do let us know!

' src=

Hello. I liked your presentation, the fact that you ranked them clearly is very helpful to understand for people like me who is a novelist researcher. However, I was expecting to read much more about the Experimental studies. So please direct me if you already have or will one day. Thank you

Dear Ay. My sincere apologies for not responding to your comment sooner. You may find it useful to filter the blogs by the topic of ‘Study design and research methods’ – here is a link to that filter: https://s4be.cochrane.org/blog/topic/study-design/ This will cover more detail about experimental studies. Or have a look on our library page for further resources there – you’ll find that on the ‘Resources’ drop down from the home page.

However, if there are specific things you feel you would like to learn about experimental studies, that are missing from the website, it would be great if you could let me know too. Thank you, and best of luck. Emma

' src=

Great job Mr Hadi. I advise you to prepare and study for the Australian Medical Board Exams as soon as you finish your undergrad study in Lebanon. Good luck and hope we can meet sometime in the future. Regards ;)

' src=

You have give a good explaination of what am looking for. However, references am not sure of where to get them from.

Subscribe to our newsletter

You will receive our monthly newsletter and free access to Trip Premium.

Related Articles

""

Cluster Randomized Trials: Concepts

This blog summarizes the concepts of cluster randomization, and the logistical and statistical considerations while designing a cluster randomized controlled trial.

""

Expertise-based Randomized Controlled Trials

This blog summarizes the concepts of Expertise-based randomized controlled trials with a focus on the advantages and challenges associated with this type of study.

what is design research study

A well-designed cohort study can provide powerful results. This blog introduces prospective and retrospective cohort studies, discussing the advantages, disadvantages and use of these type of study designs.

Educational resources and simple solutions for your research journey

What is research design? Types, elements, and examples

What is Research Design? Understand Types of Research Design, with Examples

Have you been wondering “ what is research design ?” or “what are some research design examples ?” Are you unsure about the research design elements or which of the different types of research design best suit your study? Don’t worry! In this article, we’ve got you covered!   

Table of Contents

What is research design?  

Have you been wondering “ what is research design ?” or “what are some research design examples ?” Don’t worry! In this article, we’ve got you covered!  

A research design is the plan or framework used to conduct a research study. It involves outlining the overall approach and methods that will be used to collect and analyze data in order to answer research questions or test hypotheses. A well-designed research study should have a clear and well-defined research question, a detailed plan for collecting data, and a method for analyzing and interpreting the results. A well-thought-out research design addresses all these features.  

Research design elements  

Research design elements include the following:  

  • Clear purpose: The research question or hypothesis must be clearly defined and focused.  
  • Sampling: This includes decisions about sample size, sampling method, and criteria for inclusion or exclusion. The approach varies for different research design types .  
  • Data collection: This research design element involves the process of gathering data or information from the study participants or sources. It includes decisions about what data to collect, how to collect it, and the tools or instruments that will be used.  
  • Data analysis: All research design types require analysis and interpretation of the data collected. This research design element includes decisions about the statistical tests or methods that will be used to analyze the data, as well as any potential confounding variables or biases that may need to be addressed.  
  • Type of research methodology: This includes decisions about the overall approach for the study.  
  • Time frame: An important research design element is the time frame, which includes decisions about the duration of the study, the timeline for data collection and analysis, and follow-up periods.  
  • Ethical considerations: The research design must include decisions about ethical considerations such as informed consent, confidentiality, and participant protection.  
  • Resources: A good research design takes into account decisions about the budget, staffing, and other resources needed to carry out the study.  

The elements of research design should be carefully planned and executed to ensure the validity and reliability of the study findings. Let’s go deeper into the concepts of research design .    

what is design research study

Characteristics of research design  

Some basic characteristics of research design are common to different research design types . These characteristics of research design are as follows:  

  • Neutrality : Right from the study assumptions to setting up the study, a neutral stance must be maintained, free of pre-conceived notions. The researcher’s expectations or beliefs should not color the findings or interpretation of the findings. Accordingly, a good research design should address potential sources of bias and confounding factors to be able to yield unbiased and neutral results.   
  •   Reliability : Reliability is one of the characteristics of research design that refers to consistency in measurement over repeated measures and fewer random errors. A reliable research design must allow for results to be consistent, with few errors due to chance.   
  •   Validity : Validity refers to the minimization of nonrandom (systematic) errors. A good research design must employ measurement tools that ensure validity of the results.  
  •   Generalizability: The outcome of the research design should be applicable to a larger population and not just a small sample . A generalized method means the study can be conducted on any part of a population with similar accuracy.   
  •   Flexibility: A research design should allow for changes to be made to the research plan as needed, based on the data collected and the outcomes of the study  

A well-planned research design is critical for conducting a scientifically rigorous study that will generate neutral, reliable, valid, and generalizable results. At the same time, it should allow some level of flexibility.  

Different types of research design  

A research design is essential to systematically investigate, understand, and interpret phenomena of interest. Let’s look at different types of research design and research design examples .  

Broadly, research design types can be divided into qualitative and quantitative research.  

Qualitative research is subjective and exploratory. It determines relationships between collected data and observations. It is usually carried out through interviews with open-ended questions, observations that are described in words, etc.  

Quantitative research is objective and employs statistical approaches. It establishes the cause-and-effect relationship among variables using different statistical and computational methods. This type of research is usually done using surveys and experiments.  

Qualitative research vs. Quantitative research  

   
Deals with subjective aspects, e.g., experiences, beliefs, perspectives, and concepts.  Measures different types of variables and describes frequencies, averages, correlations, etc. 
Deals with non-numerical data, such as words, images, and observations.  Tests hypotheses about relationships between variables. Results are presented numerically and statistically. 
In qualitative research design, data are collected via direct observations, interviews, focus groups, and naturally occurring data. Methods for conducting qualitative research are grounded theory, thematic analysis, and discourse analysis. 

 

Quantitative research design is empirical. Data collection methods involved are experiments, surveys, and observations expressed in numbers. The research design categories under this are descriptive, experimental, correlational, diagnostic, and explanatory. 
Data analysis involves interpretation and narrative analysis.  Data analysis involves statistical analysis and hypothesis testing. 
The reasoning used to synthesize data is inductive. 

 

The reasoning used to synthesize data is deductive. 

 

Typically used in fields such as sociology, linguistics, and anthropology.  Typically used in fields such as economics, ecology, statistics, and medicine. 
Example: Focus group discussions with women farmers about climate change perception. 

 

Example: Testing the effectiveness of a new treatment for insomnia. 

Qualitative research design types and qualitative research design examples  

The following will familiarize you with the research design categories in qualitative research:  

  • Grounded theory: This design is used to investigate research questions that have not previously been studied in depth. Also referred to as exploratory design , it creates sequential guidelines, offers strategies for inquiry, and makes data collection and analysis more efficient in qualitative research.   

Example: A researcher wants to study how people adopt a certain app. The researcher collects data through interviews and then analyzes the data to look for patterns. These patterns are used to develop a theory about how people adopt that app.  

  •   Thematic analysis: This design is used to compare the data collected in past research to find similar themes in qualitative research.  

Example: A researcher examines an interview transcript to identify common themes, say, topics or patterns emerging repeatedly.  

  • Discourse analysis : This research design deals with language or social contexts used in data gathering in qualitative research.   

Example: Identifying ideological frameworks and viewpoints of writers of a series of policies.  

Quantitative research design types and quantitative research design examples  

Note the following research design categories in quantitative research:  

  • Descriptive research design : This quantitative research design is applied where the aim is to identify characteristics, frequencies, trends, and categories. It may not often begin with a hypothesis. The basis of this research type is a description of an identified variable. This research design type describes the “what,” “when,” “where,” or “how” of phenomena (but not the “why”).   

Example: A study on the different income levels of people who use nutritional supplements regularly.  

  • Correlational research design : Correlation reflects the strength and/or direction of the relationship among variables. The direction of a correlation can be positive or negative. Correlational research design helps researchers establish a relationship between two variables without the researcher controlling any of them.  

Example : An example of correlational research design could be studying the correlation between time spent watching crime shows and aggressive behavior in teenagers.  

  •   Diagnostic research design : In diagnostic design, the researcher aims to understand the underlying cause of a specific topic or phenomenon (usually an area of improvement) and find the most effective solution. In simpler terms, a researcher seeks an accurate “diagnosis” of a problem and identifies a solution.  

Example : A researcher analyzing customer feedback and reviews to identify areas where an app can be improved.    

  • Explanatory research design : In explanatory research design , a researcher uses their ideas and thoughts on a topic to explore their theories in more depth. This design is used to explore a phenomenon when limited information is available. It can help increase current understanding of unexplored aspects of a subject. It is thus a kind of “starting point” for future research.  

Example : Formulating hypotheses to guide future studies on delaying school start times for better mental health in teenagers.  

  •   Causal research design : This can be considered a type of explanatory research. Causal research design seeks to define a cause and effect in its data. The researcher does not use a randomly chosen control group but naturally or pre-existing groupings. Importantly, the researcher does not manipulate the independent variable.   

Example : Comparing school dropout levels and possible bullying events.  

  •   Experimental research design : This research design is used to study causal relationships . One or more independent variables are manipulated, and their effect on one or more dependent variables is measured.  

Example: Determining the efficacy of a new vaccine plan for influenza.  

Benefits of research design  

 T here are numerous benefits of research design . These are as follows:  

  • Clear direction: Among the benefits of research design , the main one is providing direction to the research and guiding the choice of clear objectives, which help the researcher to focus on the specific research questions or hypotheses they want to investigate.  
  • Control: Through a proper research design , researchers can control variables, identify potential confounding factors, and use randomization to minimize bias and increase the reliability of their findings.
  • Replication: Research designs provide the opportunity for replication. This helps to confirm the findings of a study and ensures that the results are not due to chance or other factors. Thus, a well-chosen research design also eliminates bias and errors.  
  • Validity: A research design ensures the validity of the research, i.e., whether the results truly reflect the phenomenon being investigated.  
  • Reliability: Benefits of research design also include reducing inaccuracies and ensuring the reliability of the research (i.e., consistency of the research results over time, across different samples, and under different conditions).  
  • Efficiency: A strong research design helps increase the efficiency of the research process. Researchers can use a variety of designs to investigate their research questions, choose the most appropriate research design for their study, and use statistical analysis to make the most of their data. By effectively describing the data necessary for an adequate test of the hypotheses and explaining how such data will be obtained, research design saves a researcher’s time.   

Overall, an appropriately chosen and executed research design helps researchers to conduct high-quality research, draw meaningful conclusions, and contribute to the advancement of knowledge in their field.

what is design research study

Frequently Asked Questions (FAQ) on Research Design

Q: What are th e main types of research design?

Broadly speaking there are two basic types of research design –

qualitative and quantitative research. Qualitative research is subjective and exploratory; it determines relationships between collected data and observations. It is usually carried out through interviews with open-ended questions, observations that are described in words, etc. Quantitative research , on the other hand, is more objective and employs statistical approaches. It establishes the cause-and-effect relationship among variables using different statistical and computational methods. This type of research design is usually done using surveys and experiments.

Q: How do I choose the appropriate research design for my study?

Choosing the appropriate research design for your study requires careful consideration of various factors. Start by clarifying your research objectives and the type of data you need to collect. Determine whether your study is exploratory, descriptive, or experimental in nature. Consider the availability of resources, time constraints, and the feasibility of implementing the different research designs. Review existing literature to identify similar studies and their research designs, which can serve as a guide. Ultimately, the chosen research design should align with your research questions, provide the necessary data to answer them, and be feasible given your own specific requirements/constraints.

Q: Can research design be modified during the course of a study?

Yes, research design can be modified during the course of a study based on emerging insights, practical constraints, or unforeseen circumstances. Research is an iterative process and, as new data is collected and analyzed, it may become necessary to adjust or refine the research design. However, any modifications should be made judiciously and with careful consideration of their impact on the study’s integrity and validity. It is advisable to document any changes made to the research design, along with a clear rationale for the modifications, in order to maintain transparency and allow for proper interpretation of the results.

Q: How can I ensure the validity and reliability of my research design?

Validity refers to the accuracy and meaningfulness of your study’s findings, while reliability relates to the consistency and stability of the measurements or observations. To enhance validity, carefully define your research variables, use established measurement scales or protocols, and collect data through appropriate methods. Consider conducting a pilot study to identify and address any potential issues before full implementation. To enhance reliability, use standardized procedures, conduct inter-rater or test-retest reliability checks, and employ appropriate statistical techniques for data analysis. It is also essential to document and report your methodology clearly, allowing for replication and scrutiny by other researchers.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

research funding sources

What are the Best Research Funding Sources

inductive research

Inductive vs. Deductive Research Approach

what is design research study

  • Get new issue alerts Get alerts
  • Submit a Manuscript

Secondary Logo

Journal logo.

Colleague's E-mail is Invalid

Your message has been successfully sent to your colleague.

Save my selection

Study designs

Part 1 – an overview and classification.

Ranganathan, Priya; Aggarwal, Rakesh 1

Department of Anaesthesiology, Tata Memorial Centre, Mumbai, Maharashtra, India

1 Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Address for correspondence: Dr. Priya Ranganathan, Department of Anaesthesiology, Tata Memorial Centre, Ernest Borges Road, Parel, Mumbai - 400 012, Maharashtra, India. E-mail: [email protected]

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

There are several types of research study designs, each with its inherent strengths and flaws. The study design used to answer a particular research question depends on the nature of the question and the availability of resources. In this article, which is the first part of a series on “study designs,” we provide an overview of research study designs and their classification. The subsequent articles will focus on individual designs.

INTRODUCTION

Research study design is a framework, or the set of methods and procedures used to collect and analyze data on variables specified in a particular research problem.

Research study designs are of many types, each with its advantages and limitations. The type of study design used to answer a particular research question is determined by the nature of question, the goal of research, and the availability of resources. Since the design of a study can affect the validity of its results, it is important to understand the different types of study designs and their strengths and limitations.

There are some terms that are used frequently while classifying study designs which are described in the following sections.

A variable represents a measurable attribute that varies across study units, for example, individual participants in a study, or at times even when measured in an individual person over time. Some examples of variables include age, sex, weight, height, health status, alive/dead, diseased/healthy, annual income, smoking yes/no, and treated/untreated.

Exposure (or intervention) and outcome variables

A large proportion of research studies assess the relationship between two variables. Here, the question is whether one variable is associated with or responsible for change in the value of the other variable. Exposure (or intervention) refers to the risk factor whose effect is being studied. It is also referred to as the independent or the predictor variable. The outcome (or predicted or dependent) variable develops as a consequence of the exposure (or intervention). Typically, the term “exposure” is used when the “causative” variable is naturally determined (as in observational studies – examples include age, sex, smoking, and educational status), and the term “intervention” is preferred where the researcher assigns some or all participants to receive a particular treatment for the purpose of the study (experimental studies – e.g., administration of a drug). If a drug had been started in some individuals but not in the others, before the study started, this counts as exposure, and not as intervention – since the drug was not started specifically for the study.

Observational versus interventional (or experimental) studies

Observational studies are those where the researcher is documenting a naturally occurring relationship between the exposure and the outcome that he/she is studying. The researcher does not do any active intervention in any individual, and the exposure has already been decided naturally or by some other factor. For example, looking at the incidence of lung cancer in smokers versus nonsmokers, or comparing the antenatal dietary habits of mothers with normal and low-birth babies. In these studies, the investigator did not play any role in determining the smoking or dietary habit in individuals.

For an exposure to determine the outcome, it must precede the latter. Any variable that occurs simultaneously with or following the outcome cannot be causative, and hence is not considered as an “exposure.”

Observational studies can be either descriptive (nonanalytical) or analytical (inferential) – this is discussed later in this article.

Interventional studies are experiments where the researcher actively performs an intervention in some or all members of a group of participants. This intervention could take many forms – for example, administration of a drug or vaccine, performance of a diagnostic or therapeutic procedure, and introduction of an educational tool. For example, a study could randomly assign persons to receive aspirin or placebo for a specific duration and assess the effect on the risk of developing cerebrovascular events.

Descriptive versus analytical studies

Descriptive (or nonanalytical) studies, as the name suggests, merely try to describe the data on one or more characteristics of a group of individuals. These do not try to answer questions or establish relationships between variables. Examples of descriptive studies include case reports, case series, and cross-sectional surveys (please note that cross-sectional surveys may be analytical studies as well – this will be discussed in the next article in this series). Examples of descriptive studies include a survey of dietary habits among pregnant women or a case series of patients with an unusual reaction to a drug.

Analytical studies attempt to test a hypothesis and establish causal relationships between variables. In these studies, the researcher assesses the effect of an exposure (or intervention) on an outcome. As described earlier, analytical studies can be observational (if the exposure is naturally determined) or interventional (if the researcher actively administers the intervention).

Directionality of study designs

Based on the direction of inquiry, study designs may be classified as forward-direction or backward-direction. In forward-direction studies, the researcher starts with determining the exposure to a risk factor and then assesses whether the outcome occurs at a future time point. This design is known as a cohort study. For example, a researcher can follow a group of smokers and a group of nonsmokers to determine the incidence of lung cancer in each. In backward-direction studies, the researcher begins by determining whether the outcome is present (cases vs. noncases [also called controls]) and then traces the presence of prior exposure to a risk factor. These are known as case–control studies. For example, a researcher identifies a group of normal-weight babies and a group of low-birth weight babies and then asks the mothers about their dietary habits during the index pregnancy.

Prospective versus retrospective study designs

The terms “prospective” and “retrospective” refer to the timing of the research in relation to the development of the outcome. In retrospective studies, the outcome of interest has already occurred (or not occurred – e.g., in controls) in each individual by the time s/he is enrolled, and the data are collected either from records or by asking participants to recall exposures. There is no follow-up of participants. By contrast, in prospective studies, the outcome (and sometimes even the exposure or intervention) has not occurred when the study starts and participants are followed up over a period of time to determine the occurrence of outcomes. Typically, most cohort studies are prospective studies (though there may be retrospective cohorts), whereas case–control studies are retrospective studies. An interventional study has to be, by definition, a prospective study since the investigator determines the exposure for each study participant and then follows them to observe outcomes.

The terms “prospective” versus “retrospective” studies can be confusing. Let us think of an investigator who starts a case–control study. To him/her, the process of enrolling cases and controls over a period of several months appears prospective. Hence, the use of these terms is best avoided. Or, at the very least, one must be clear that the terms relate to work flow for each individual study participant, and not to the study as a whole.

Classification of study designs

Figure 1 depicts a simple classification of research study designs. The Centre for Evidence-based Medicine has put forward a useful three-point algorithm which can help determine the design of a research study from its methods section:[ 1 ]

F1-8

  • Does the study describe the characteristics of a sample or does it attempt to analyze (or draw inferences about) the relationship between two variables? – If no, then it is a descriptive study, and if yes, it is an analytical (inferential) study
  • If analytical, did the investigator determine the exposure? – If no, it is an observational study, and if yes, it is an experimental study
  • If observational, when was the outcome determined? – at the start of the study (case–control study), at the end of a period of follow-up (cohort study), or simultaneously (cross sectional).

In the next few pieces in the series, we will discuss various study designs in greater detail.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Epidemiologic methods; research design; research methodology

  • + Favorites
  • View in Gallery

Readers Of this Article Also Read

Study designs: part 2 – descriptive studies, study designs: part 3 - analytical observational studies, research studies on screening tests, introduction to qualitative research methods – part i, investigator-initiated studies: challenges and solutions.

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Types of Research Designs
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection, measurement, and interpretation of information and data. Note that the research problem determines the type of design you choose, not the other way around!

De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Trochim, William M.K. Research Methods Knowledge Base. 2006.

General Structure and Writing Style

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem logically and as unambiguously as possible . In social sciences research, obtaining information relevant to the research problem generally entails specifying the type of evidence needed to test the underlying assumptions of a theory, to evaluate a program, or to accurately describe and assess meaning related to an observable phenomenon.

With this in mind, a common mistake made by researchers is that they begin their investigations before they have thought critically about what information is required to address the research problem. Without attending to these design issues beforehand, the overall research problem will not be adequately addressed and any conclusions drawn will run the risk of being weak and unconvincing. As a consequence, the overall validity of the study will be undermined.

The length and complexity of describing the research design in your paper can vary considerably, but any well-developed description will achieve the following :

  • Identify the research problem clearly and justify its selection, particularly in relation to any valid alternative designs that could have been used,
  • Review and synthesize previously published literature associated with the research problem,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem,
  • Effectively describe the information and/or data which will be necessary for an adequate testing of the hypotheses and explain how such information and/or data will be obtained, and
  • Describe the methods of analysis to be applied to the data in determining whether or not the hypotheses are true or false.

The research design is usually incorporated into the introduction of your paper . You can obtain an overall sense of what to do by reviewing studies that have utilized the same research design [e.g., using a case study approach]. This can help you develop an outline to follow for your own paper.

NOTE: Use the SAGE Research Methods Online and Cases and the SAGE Research Methods Videos databases to search for scholarly resources on how to apply specific research designs and methods . The Research Methods Online database contains links to more than 175,000 pages of SAGE publisher's book, journal, and reference content on quantitative, qualitative, and mixed research methodologies. Also included is a collection of case studies of social research projects that can be used to help you better understand abstract or complex methodological concepts. The Research Methods Videos database contains hours of tutorials, interviews, video case studies, and mini-documentaries covering the entire research process.

Creswell, John W. and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 5th edition. Thousand Oaks, CA: Sage, 2018; De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Leedy, Paul D. and Jeanne Ellis Ormrod. Practical Research: Planning and Design . Tenth edition. Boston, MA: Pearson, 2013; Vogt, W. Paul, Dianna C. Gardner, and Lynne M. Haeffele. When to Use What Research Design . New York: Guilford, 2012.

Action Research Design

Definition and Purpose

The essentials of action research design follow a characteristic cycle whereby initially an exploratory stance is adopted, where an understanding of a problem is developed and plans are made for some form of interventionary strategy. Then the intervention is carried out [the "action" in action research] during which time, pertinent observations are collected in various forms. The new interventional strategies are carried out, and this cyclic process repeats, continuing until a sufficient understanding of [or a valid implementation solution for] the problem is achieved. The protocol is iterative or cyclical in nature and is intended to foster deeper understanding of a given situation, starting with conceptualizing and particularizing the problem and moving through several interventions and evaluations.

What do these studies tell you ?

  • This is a collaborative and adaptive research design that lends itself to use in work or community situations.
  • Design focuses on pragmatic and solution-driven research outcomes rather than testing theories.
  • When practitioners use action research, it has the potential to increase the amount they learn consciously from their experience; the action research cycle can be regarded as a learning cycle.
  • Action research studies often have direct and obvious relevance to improving practice and advocating for change.
  • There are no hidden controls or preemption of direction by the researcher.

What these studies don't tell you ?

  • It is harder to do than conducting conventional research because the researcher takes on responsibilities of advocating for change as well as for researching the topic.
  • Action research is much harder to write up because it is less likely that you can use a standard format to report your findings effectively [i.e., data is often in the form of stories or observation].
  • Personal over-involvement of the researcher may bias research results.
  • The cyclic nature of action research to achieve its twin outcomes of action [e.g. change] and research [e.g. understanding] is time-consuming and complex to conduct.
  • Advocating for change usually requires buy-in from study participants.

Coghlan, David and Mary Brydon-Miller. The Sage Encyclopedia of Action Research . Thousand Oaks, CA:  Sage, 2014; Efron, Sara Efrat and Ruth Ravid. Action Research in Education: A Practical Guide . New York: Guilford, 2013; Gall, Meredith. Educational Research: An Introduction . Chapter 18, Action Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Kemmis, Stephen and Robin McTaggart. “Participatory Action Research.” In Handbook of Qualitative Research . Norman Denzin and Yvonna S. Lincoln, eds. 2nd ed. (Thousand Oaks, CA: SAGE, 2000), pp. 567-605; McNiff, Jean. Writing and Doing Action Research . London: Sage, 2014; Reason, Peter and Hilary Bradbury. Handbook of Action Research: Participative Inquiry and Practice . Thousand Oaks, CA: SAGE, 2001.

Case Study Design

A case study is an in-depth study of a particular research problem rather than a sweeping statistical survey or comprehensive comparative inquiry. It is often used to narrow down a very broad field of research into one or a few easily researchable examples. The case study research design is also useful for testing whether a specific theory and model actually applies to phenomena in the real world. It is a useful design when not much is known about an issue or phenomenon.

  • Approach excels at bringing us to an understanding of a complex issue through detailed contextual analysis of a limited number of events or conditions and their relationships.
  • A researcher using a case study design can apply a variety of methodologies and rely on a variety of sources to investigate a research problem.
  • Design can extend experience or add strength to what is already known through previous research.
  • Social scientists, in particular, make wide use of this research design to examine contemporary real-life situations and provide the basis for the application of concepts and theories and the extension of methodologies.
  • The design can provide detailed descriptions of specific and rare cases.
  • A single or small number of cases offers little basis for establishing reliability or to generalize the findings to a wider population of people, places, or things.
  • Intense exposure to the study of a case may bias a researcher's interpretation of the findings.
  • Design does not facilitate assessment of cause and effect relationships.
  • Vital information may be missing, making the case hard to interpret.
  • The case may not be representative or typical of the larger problem being investigated.
  • If the criteria for selecting a case is because it represents a very unusual or unique phenomenon or problem for study, then your interpretation of the findings can only apply to that particular case.

Case Studies. Writing@CSU. Colorado State University; Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 4, Flexible Methods: Case Study Design. 2nd ed. New York: Columbia University Press, 1999; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Greenhalgh, Trisha, editor. Case Study Evaluation: Past, Present and Future Challenges . Bingley, UK: Emerald Group Publishing, 2015; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Stake, Robert E. The Art of Case Study Research . Thousand Oaks, CA: SAGE, 1995; Yin, Robert K. Case Study Research: Design and Theory . Applied Social Research Methods Series, no. 5. 3rd ed. Thousand Oaks, CA: SAGE, 2003.

Causal Design

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association -- a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order -- to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness -- a relationship between two variables that is not due to variation in a third variable.
  • Causality research designs assist researchers in understanding why the world works the way it does through the process of proving a causal link between variables and by the process of eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.
  • Not all relationships are causal! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and, therefore, to establish which variable is the actual cause and which is the  actual effect.

Beach, Derek and Rasmus Brun Pedersen. Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing . Ann Arbor, MI: University of Michigan Press, 2016; Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed. Thousand Oaks, CA: Pine Forge Press, 2007; Brewer, Ernest W. and Jennifer Kubn. “Causal-Comparative Design.” In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 125-132; Causal Research Design: Experimentation. Anonymous SlideShare Presentation; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base. 2006.

Cohort Design

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, rather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors often relies upon cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Due to the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36; Glenn, Norval D, editor. Cohort Analysis . 2nd edition. Thousand Oaks, CA: Sage, 2005; Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Payne, Geoff. “Cohort Study.” In The SAGE Dictionary of Social Research Methods . Victor Jupp, editor. (Thousand Oaks, CA: Sage, 2006), pp. 31-33; Study Design 101. Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study. Wikipedia.

Cross-Sectional Design

Cross-sectional research designs have three distinctive features: no time dimension; a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure differences between or from among a variety of people, subjects, or phenomena rather than a process of change. As such, researchers using this design can only employ a relatively passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a clear 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike an experimental design, where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical or temporal contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • This design only provides a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Bethlehem, Jelke. "7: Cross-sectional Research." In Research Methodology in the Social, Behavioural and Life Sciences . Herman J Adèr and Gideon J Mellenbergh, editors. (London, England: Sage, 1999), pp. 110-43; Bourque, Linda B. “Cross-Sectional Design.” In  The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman, and Tim Futing Liao. (Thousand Oaks, CA: 2004), pp. 230-231; Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design Application, Strengths and Weaknesses of Cross-Sectional Studies. Healthknowledge, 2009. Cross-Sectional Study. Wikipedia.

Descriptive Design

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject [a.k.a., the Heisenberg effect whereby measurements of certain systems cannot be made without affecting the systems].
  • Descriptive research is often used as a pre-cursor to more quantitative research designs with the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations in practice.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research cannot be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999; Given, Lisa M. "Descriptive Research." In Encyclopedia of Measurement and Statistics . Neil J. Salkind and Kristin Rasmussen, editors. (Thousand Oaks, CA: Sage, 2007), pp. 251-254; McNabb, Connie. Descriptive Research Methodologies. Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design, September 26, 2008; Erickson, G. Scott. "Descriptive Research Design." In New Methods of Market Research and Analysis . (Northampton, MA: Edward Elgar Publishing, 2017), pp. 51-77; Sahin, Sagufta, and Jayanta Mete. "A Brief Study on Descriptive Research: Its Nature and Application in Social Science." International Journal of Research and Analysis in Humanities 1 (2021): 11; K. Swatzell and P. Jennings. “Descriptive Research: The Nuts and Bolts.” Journal of the American Academy of Physician Assistants 20 (2007), pp. 55-56; Kane, E. Doing Your Own Research: Basic Descriptive Research in the Social Sciences and Humanities . London: Marion Boyars, 1985.

Experimental Design

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “What causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter the behaviors or responses of participants.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to experimentally designed studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs. School of Psychology, University of New England, 2000; Chow, Siu L. "Experimental Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 448-453; "Experimental Design." In Social Research Methods . Nicholas Walliman, editor. (London, England: Sage, 2006), pp, 101-110; Experimental Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences . 4th edition. Thousand Oaks, CA: Sage, 2013; Trochim, William M.K. Experimental Design. Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research. Slideshare presentation.

Exploratory Design

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to or rely upon to predict an outcome . The focus is on gaining insights and familiarity for later investigation or undertaken when research problems are in a preliminary stage of investigation. Exploratory designs are often used to establish an understanding of how best to proceed in studying an issue or what methodology would effectively apply to gathering information about the issue.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings, and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumptions.
  • Development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • In the policy arena or applied to practice, exploratory studies help establish research priorities and where resources should be allocated.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings. They provide insight but not definitive conclusions.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value to decision-makers.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Streb, Christoph K. "Exploratory Case Study." In Encyclopedia of Case Study Research . Albert J. Mills, Gabrielle Durepos and Eiden Wiebe, editors. (Thousand Oaks, CA: Sage, 2010), pp. 372-374; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research. Wikipedia.

Field Research Design

Sometimes referred to as ethnography or participant observation, designs around field research encompass a variety of interpretative procedures [e.g., observation and interviews] rooted in qualitative approaches to studying people individually or in groups while inhabiting their natural environment as opposed to using survey instruments or other forms of impersonal methods of data gathering. Information acquired from observational research takes the form of “ field notes ” that involves documenting what the researcher actually sees and hears while in the field. Findings do not consist of conclusive statements derived from numbers and statistics because field research involves analysis of words and observations of behavior. Conclusions, therefore, are developed from an interpretation of findings that reveal overriding themes, concepts, and ideas. More information can be found HERE .

  • Field research is often necessary to fill gaps in understanding the research problem applied to local conditions or to specific groups of people that cannot be ascertained from existing data.
  • The research helps contextualize already known information about a research problem, thereby facilitating ways to assess the origins, scope, and scale of a problem and to gage the causes, consequences, and means to resolve an issue based on deliberate interaction with people in their natural inhabited spaces.
  • Enables the researcher to corroborate or confirm data by gathering additional information that supports or refutes findings reported in prior studies of the topic.
  • Because the researcher in embedded in the field, they are better able to make observations or ask questions that reflect the specific cultural context of the setting being investigated.
  • Observing the local reality offers the opportunity to gain new perspectives or obtain unique data that challenges existing theoretical propositions or long-standing assumptions found in the literature.

What these studies don't tell you

  • A field research study requires extensive time and resources to carry out the multiple steps involved with preparing for the gathering of information, including for example, examining background information about the study site, obtaining permission to access the study site, and building trust and rapport with subjects.
  • Requires a commitment to staying engaged in the field to ensure that you can adequately document events and behaviors as they unfold.
  • The unpredictable nature of fieldwork means that researchers can never fully control the process of data gathering. They must maintain a flexible approach to studying the setting because events and circumstances can change quickly or unexpectedly.
  • Findings can be difficult to interpret and verify without access to documents and other source materials that help to enhance the credibility of information obtained from the field  [i.e., the act of triangulating the data].
  • Linking the research problem to the selection of study participants inhabiting their natural environment is critical. However, this specificity limits the ability to generalize findings to different situations or in other contexts or to infer courses of action applied to other settings or groups of people.
  • The reporting of findings must take into account how the researcher themselves may have inadvertently affected respondents and their behaviors.

Historical Design

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute a hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is often no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistently to ensure access. This may especially challenging for digital or online-only sources.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It is rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Howell, Martha C. and Walter Prevenier. From Reliable Sources: An Introduction to Historical Methods . Ithaca, NY: Cornell University Press, 2001; Lundy, Karen Saucier. "Historical Research." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor. (Thousand Oaks, CA: Sage, 2008), pp. 396-400; Marius, Richard. and Melvin E. Page. A Short Guide to Writing about History . 9th edition. Boston, MA: Pearson, 2015; Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

Longitudinal Design

A longitudinal study follows the same sample over time and makes repeated observations. For example, with longitudinal surveys, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study sometimes referred to as a panel study.

  • Longitudinal data facilitate the analysis of the duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research data to explain fluctuations in the results.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Forgues, Bernard, and Isabelle Vandangeon-Derumez. "Longitudinal Analyses." In Doing Management Research . Raymond-Alain Thiétart and Samantha Wauchope, editors. (London, England: Sage, 2001), pp. 332-351; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Menard, Scott, editor. Longitudinal Research . Thousand Oaks, CA: Sage, 2002; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study. Wikipedia.

Meta-Analysis Design

Meta-analysis is an analytical methodology designed to systematically evaluate and summarize the results from a number of individual studies, thereby, increasing the overall sample size and the ability of the researcher to study effects of interest. The purpose is to not simply summarize existing knowledge, but to develop a new understanding of a research problem using synoptic reasoning. The main objectives of meta-analysis include analyzing differences in the results among studies and increasing the precision by which effects are estimated. A well-designed meta-analysis depends upon strict adherence to the criteria used for selecting studies and the availability of information in each study to properly analyze their findings. Lack of information can severely limit the type of analyzes and conclusions that can be reached. In addition, the more dissimilarity there is in the results among individual studies [heterogeneity], the more difficult it is to justify interpretations that govern a valid synopsis of results. A meta-analysis needs to fulfill the following requirements to ensure the validity of your findings:

  • Clearly defined description of objectives, including precise definitions of the variables and outcomes that are being evaluated;
  • A well-reasoned and well-documented justification for identification and selection of the studies;
  • Assessment and explicit acknowledgment of any researcher bias in the identification and selection of those studies;
  • Description and evaluation of the degree of heterogeneity among the sample size of studies reviewed; and,
  • Justification of the techniques used to evaluate the studies.
  • Can be an effective strategy for determining gaps in the literature.
  • Provides a means of reviewing research published about a particular topic over an extended period of time and from a variety of sources.
  • Is useful in clarifying what policy or programmatic actions can be justified on the basis of analyzing research results from multiple studies.
  • Provides a method for overcoming small sample sizes in individual studies that previously may have had little relationship to each other.
  • Can be used to generate new hypotheses or highlight research problems for future studies.
  • Small violations in defining the criteria used for content analysis can lead to difficult to interpret and/or meaningless findings.
  • A large sample size can yield reliable, but not necessarily valid, results.
  • A lack of uniformity regarding, for example, the type of literature reviewed, how methods are applied, and how findings are measured within the sample of studies you are analyzing, can make the process of synthesis difficult to perform.
  • Depending on the sample size, the process of reviewing and synthesizing multiple studies can be very time consuming.

Beck, Lewis W. "The Synoptic Method." The Journal of Philosophy 36 (1939): 337-345; Cooper, Harris, Larry V. Hedges, and Jeffrey C. Valentine, eds. The Handbook of Research Synthesis and Meta-Analysis . 2nd edition. New York: Russell Sage Foundation, 2009; Guzzo, Richard A., Susan E. Jackson and Raymond A. Katzell. “Meta-Analysis Analysis.” In Research in Organizational Behavior , Volume 9. (Greenwich, CT: JAI Press, 1987), pp 407-442; Lipsey, Mark W. and David B. Wilson. Practical Meta-Analysis . Thousand Oaks, CA: Sage Publications, 2001; Study Design 101. Meta-Analysis. The Himmelfarb Health Sciences Library, George Washington University; Timulak, Ladislav. “Qualitative Meta-Analysis.” In The SAGE Handbook of Qualitative Data Analysis . Uwe Flick, editor. (Los Angeles, CA: Sage, 2013), pp. 481-495; Walker, Esteban, Adrian V. Hernandez, and Micheal W. Kattan. "Meta-Analysis: It's Strengths and Limitations." Cleveland Clinic Journal of Medicine 75 (June 2008): 431-439.

Mixed-Method Design

  • Narrative and non-textual information can add meaning to numeric data, while numeric data can add precision to narrative and non-textual information.
  • Can utilize existing data while at the same time generating and testing a grounded theory approach to describe and explain the phenomenon under study.
  • A broader, more complex research problem can be investigated because the researcher is not constrained by using only one method.
  • The strengths of one method can be used to overcome the inherent weaknesses of another method.
  • Can provide stronger, more robust evidence to support a conclusion or set of recommendations.
  • May generate new knowledge new insights or uncover hidden insights, patterns, or relationships that a single methodological approach might not reveal.
  • Produces more complete knowledge and understanding of the research problem that can be used to increase the generalizability of findings applied to theory or practice.
  • A researcher must be proficient in understanding how to apply multiple methods to investigating a research problem as well as be proficient in optimizing how to design a study that coherently melds them together.
  • Can increase the likelihood of conflicting results or ambiguous findings that inhibit drawing a valid conclusion or setting forth a recommended course of action [e.g., sample interview responses do not support existing statistical data].
  • Because the research design can be very complex, reporting the findings requires a well-organized narrative, clear writing style, and precise word choice.
  • Design invites collaboration among experts. However, merging different investigative approaches and writing styles requires more attention to the overall research process than studies conducted using only one methodological paradigm.
  • Concurrent merging of quantitative and qualitative research requires greater attention to having adequate sample sizes, using comparable samples, and applying a consistent unit of analysis. For sequential designs where one phase of qualitative research builds on the quantitative phase or vice versa, decisions about what results from the first phase to use in the next phase, the choice of samples and estimating reasonable sample sizes for both phases, and the interpretation of results from both phases can be difficult.
  • Due to multiple forms of data being collected and analyzed, this design requires extensive time and resources to carry out the multiple steps involved in data gathering and interpretation.

Burch, Patricia and Carolyn J. Heinrich. Mixed Methods for Policy Research and Program Evaluation . Thousand Oaks, CA: Sage, 2016; Creswell, John w. et al. Best Practices for Mixed Methods Research in the Health Sciences . Bethesda, MD: Office of Behavioral and Social Sciences Research, National Institutes of Health, 2010Creswell, John W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 4th edition. Thousand Oaks, CA: Sage Publications, 2014; Domínguez, Silvia, editor. Mixed Methods Social Networks Research . Cambridge, UK: Cambridge University Press, 2014; Hesse-Biber, Sharlene Nagy. Mixed Methods Research: Merging Theory with Practice . New York: Guilford Press, 2010; Niglas, Katrin. “How the Novice Researcher Can Make Sense of Mixed Methods Designs.” International Journal of Multiple Research Approaches 3 (2009): 34-46; Onwuegbuzie, Anthony J. and Nancy L. Leech. “Linking Research Questions to Mixed Methods Data Analysis Procedures.” The Qualitative Report 11 (September 2006): 474-498; Tashakorri, Abbas and John W. Creswell. “The New Era of Mixed Methods.” Journal of Mixed Methods Research 1 (January 2007): 3-7; Zhanga, Wanqing. “Mixed Methods Application in Health Intervention Research: A Multiple Case Study.” International Journal of Multiple Research Approaches 8 (2014): 24-35 .

Observational Design

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe [data is emergent rather than pre-existing].
  • The researcher is able to collect in-depth information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation research designs account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and are difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possibility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is knowingly studied is altered to some degree by the presence of the researcher, therefore, potentially skewing any data collected.

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Payne, Geoff and Judy Payne. "Observation." In Key Concepts in Social Research . The SAGE Key Concepts series. (London, England: Sage, 2004), pp. 158-162; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010;Williams, J. Patrick. "Nonparticipant Observation." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor.(Thousand Oaks, CA: Sage, 2008), pp. 562-563.

Philosophical Design

Understood more as an broad approach to examining a research problem than a methodological design, philosophical analysis and argumentation is intended to challenge deeply embedded, often intractable, assumptions underpinning an area of study. This approach uses the tools of argumentation derived from philosophical traditions, concepts, models, and theories to critically explore and challenge, for example, the relevance of logic and evidence in academic debates, to analyze arguments about fundamental issues, or to discuss the root of existing discourse about a research problem. These overarching tools of analysis can be framed in three ways:

  • Ontology -- the study that describes the nature of reality; for example, what is real and what is not, what is fundamental and what is derivative?
  • Epistemology -- the study that explores the nature of knowledge; for example, by what means does knowledge and understanding depend upon and how can we be certain of what we know?
  • Axiology -- the study of values; for example, what values does an individual or group hold and why? How are values related to interest, desire, will, experience, and means-to-end? And, what is the difference between a matter of fact and a matter of value?
  • Can provide a basis for applying ethical decision-making to practice.
  • Functions as a means of gaining greater self-understanding and self-knowledge about the purposes of research.
  • Brings clarity to general guiding practices and principles of an individual or group.
  • Philosophy informs methodology.
  • Refine concepts and theories that are invoked in relatively unreflective modes of thought and discourse.
  • Beyond methodology, philosophy also informs critical thinking about epistemology and the structure of reality (metaphysics).
  • Offers clarity and definition to the practical and theoretical uses of terms, concepts, and ideas.
  • Limited application to specific research problems [answering the "So What?" question in social science research].
  • Analysis can be abstract, argumentative, and limited in its practical application to real-life issues.
  • While a philosophical analysis may render problematic that which was once simple or taken-for-granted, the writing can be dense and subject to unnecessary jargon, overstatement, and/or excessive quotation and documentation.
  • There are limitations in the use of metaphor as a vehicle of philosophical analysis.
  • There can be analytical difficulties in moving from philosophy to advocacy and between abstract thought and application to the phenomenal world.

Burton, Dawn. "Part I, Philosophy of the Social Sciences." In Research Training for Social Scientists . (London, England: Sage, 2000), pp. 1-5; Chapter 4, Research Methodology and Design. Unisa Institutional Repository (UnisaIR), University of South Africa; Jarvie, Ian C., and Jesús Zamora-Bonilla, editors. The SAGE Handbook of the Philosophy of Social Sciences . London: Sage, 2011; Labaree, Robert V. and Ross Scimeca. “The Philosophical Problem of Truth in Librarianship.” The Library Quarterly 78 (January 2008): 43-70; Maykut, Pamela S. Beginning Qualitative Research: A Philosophic and Practical Guide . Washington, DC: Falmer Press, 1994; McLaughlin, Hugh. "The Philosophy of Social Research." In Understanding Social Work Research . 2nd edition. (London: SAGE Publications Ltd., 2012), pp. 24-47; Stanford Encyclopedia of Philosophy . Metaphysics Research Lab, CSLI, Stanford University, 2013.

Sequential Design

  • The researcher has a limitless option when it comes to sample size and the sampling schedule.
  • Due to the repetitive nature of this research design, minor changes and adjustments can be done during the initial parts of the study to correct and hone the research method.
  • This is a useful design for exploratory studies.
  • There is very little effort on the part of the researcher when performing this technique. It is generally not expensive, time consuming, or workforce intensive.
  • Because the study is conducted serially, the results of one sample are known before the next sample is taken and analyzed. This provides opportunities for continuous improvement of sampling and methods of analysis.
  • The sampling method is not representative of the entire population. The only possibility of approaching representativeness is when the researcher chooses to use a very large sample size significant enough to represent a significant portion of the entire population. In this case, moving on to study a second or more specific sample can be difficult.
  • The design cannot be used to create conclusions and interpretations that pertain to an entire population because the sampling technique is not randomized. Generalizability from findings is, therefore, limited.
  • Difficult to account for and interpret variation from one sample to another over time, particularly when using qualitative methods of data collection.

Betensky, Rebecca. Harvard University, Course Lecture Note slides; Bovaird, James A. and Kevin A. Kupzyk. "Sequential Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 1347-1352; Cresswell, John W. Et al. “Advanced Mixed-Methods Research Designs.” In Handbook of Mixed Methods in Social and Behavioral Research . Abbas Tashakkori and Charles Teddle, eds. (Thousand Oaks, CA: Sage, 2003), pp. 209-240; Henry, Gary T. "Sequential Sampling." In The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman and Tim Futing Liao, editors. (Thousand Oaks, CA: Sage, 2004), pp. 1027-1028; Nataliya V. Ivankova. “Using Mixed-Methods Sequential Explanatory Design: From Theory to Practice.” Field Methods 18 (February 2006): 3-20; Bovaird, James A. and Kevin A. Kupzyk. “Sequential Design.” In Encyclopedia of Research Design . Neil J. Salkind, ed. Thousand Oaks, CA: Sage, 2010; Sequential Analysis. Wikipedia.

Systematic Review

  • A systematic review synthesizes the findings of multiple studies related to each other by incorporating strategies of analysis and interpretation intended to reduce biases and random errors.
  • The application of critical exploration, evaluation, and synthesis methods separates insignificant, unsound, or redundant research from the most salient and relevant studies worthy of reflection.
  • They can be use to identify, justify, and refine hypotheses, recognize and avoid hidden problems in prior studies, and explain data inconsistencies and conflicts in data.
  • Systematic reviews can be used to help policy makers formulate evidence-based guidelines and regulations.
  • The use of strict, explicit, and pre-determined methods of synthesis, when applied appropriately, provide reliable estimates about the effects of interventions, evaluations, and effects related to the overarching research problem investigated by each study under review.
  • Systematic reviews illuminate where knowledge or thorough understanding of a research problem is lacking and, therefore, can then be used to guide future research.
  • The accepted inclusion of unpublished studies [i.e., grey literature] ensures the broadest possible way to analyze and interpret research on a topic.
  • Results of the synthesis can be generalized and the findings extrapolated into the general population with more validity than most other types of studies .
  • Systematic reviews do not create new knowledge per se; they are a method for synthesizing existing studies about a research problem in order to gain new insights and determine gaps in the literature.
  • The way researchers have carried out their investigations [e.g., the period of time covered, number of participants, sources of data analyzed, etc.] can make it difficult to effectively synthesize studies.
  • The inclusion of unpublished studies can introduce bias into the review because they may not have undergone a rigorous peer-review process prior to publication. Examples may include conference presentations or proceedings, publications from government agencies, white papers, working papers, and internal documents from organizations, and doctoral dissertations and Master's theses.

Denyer, David and David Tranfield. "Producing a Systematic Review." In The Sage Handbook of Organizational Research Methods .  David A. Buchanan and Alan Bryman, editors. ( Thousand Oaks, CA: Sage Publications, 2009), pp. 671-689; Foster, Margaret J. and Sarah T. Jewell, editors. Assembling the Pieces of a Systematic Review: A Guide for Librarians . Lanham, MD: Rowman and Littlefield, 2017; Gough, David, Sandy Oliver, James Thomas, editors. Introduction to Systematic Reviews . 2nd edition. Los Angeles, CA: Sage Publications, 2017; Gopalakrishnan, S. and P. Ganeshkumar. “Systematic Reviews and Meta-analysis: Understanding the Best Evidence in Primary Healthcare.” Journal of Family Medicine and Primary Care 2 (2013): 9-14; Gough, David, James Thomas, and Sandy Oliver. "Clarifying Differences between Review Designs and Methods." Systematic Reviews 1 (2012): 1-9; Khan, Khalid S., Regina Kunz, Jos Kleijnen, and Gerd Antes. “Five Steps to Conducting a Systematic Review.” Journal of the Royal Society of Medicine 96 (2003): 118-121; Mulrow, C. D. “Systematic Reviews: Rationale for Systematic Reviews.” BMJ 309:597 (September 1994); O'Dwyer, Linda C., and Q. Eileen Wafford. "Addressing Challenges with Systematic Review Teams through Effective Communication: A Case Report." Journal of the Medical Library Association 109 (October 2021): 643-647; Okoli, Chitu, and Kira Schabram. "A Guide to Conducting a Systematic Literature Review of Information Systems Research."  Sprouts: Working Papers on Information Systems 10 (2010); Siddaway, Andy P., Alex M. Wood, and Larry V. Hedges. "How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-analyses, and Meta-syntheses." Annual Review of Psychology 70 (2019): 747-770; Torgerson, Carole J. “Publication Bias: The Achilles’ Heel of Systematic Reviews?” British Journal of Educational Studies 54 (March 2006): 89-102; Torgerson, Carole. Systematic Reviews . New York: Continuum, 2003.

  • << Previous: Purpose of Guide
  • Next: Design Flaws to Avoid >>
  • Last Updated: Aug 21, 2024 8:54 AM
  • URL: https://libguides.usc.edu/writingguide
  • Privacy Policy

Research Method

Home » Research Design – Types, Methods and Examples

Research Design – Types, Methods and Examples

Table of Contents

Research Design

Research Design

Definition:

Research design refers to the overall strategy or plan for conducting a research study. It outlines the methods and procedures that will be used to collect and analyze data, as well as the goals and objectives of the study. Research design is important because it guides the entire research process and ensures that the study is conducted in a systematic and rigorous manner.

Types of Research Design

Types of Research Design are as follows:

Descriptive Research Design

This type of research design is used to describe a phenomenon or situation. It involves collecting data through surveys, questionnaires, interviews, and observations. The aim of descriptive research is to provide an accurate and detailed portrayal of a particular group, event, or situation. It can be useful in identifying patterns, trends, and relationships in the data.

Correlational Research Design

Correlational research design is used to determine if there is a relationship between two or more variables. This type of research design involves collecting data from participants and analyzing the relationship between the variables using statistical methods. The aim of correlational research is to identify the strength and direction of the relationship between the variables.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This type of research design involves manipulating one variable and measuring the effect on another variable. It usually involves randomly assigning participants to groups and manipulating an independent variable to determine its effect on a dependent variable. The aim of experimental research is to establish causality.

Quasi-experimental Research Design

Quasi-experimental research design is similar to experimental research design, but it lacks one or more of the features of a true experiment. For example, there may not be random assignment to groups or a control group. This type of research design is used when it is not feasible or ethical to conduct a true experiment.

Case Study Research Design

Case study research design is used to investigate a single case or a small number of cases in depth. It involves collecting data through various methods, such as interviews, observations, and document analysis. The aim of case study research is to provide an in-depth understanding of a particular case or situation.

Longitudinal Research Design

Longitudinal research design is used to study changes in a particular phenomenon over time. It involves collecting data at multiple time points and analyzing the changes that occur. The aim of longitudinal research is to provide insights into the development, growth, or decline of a particular phenomenon over time.

Structure of Research Design

The format of a research design typically includes the following sections:

  • Introduction : This section provides an overview of the research problem, the research questions, and the importance of the study. It also includes a brief literature review that summarizes previous research on the topic and identifies gaps in the existing knowledge.
  • Research Questions or Hypotheses: This section identifies the specific research questions or hypotheses that the study will address. These questions should be clear, specific, and testable.
  • Research Methods : This section describes the methods that will be used to collect and analyze data. It includes details about the study design, the sampling strategy, the data collection instruments, and the data analysis techniques.
  • Data Collection: This section describes how the data will be collected, including the sample size, data collection procedures, and any ethical considerations.
  • Data Analysis: This section describes how the data will be analyzed, including the statistical techniques that will be used to test the research questions or hypotheses.
  • Results : This section presents the findings of the study, including descriptive statistics and statistical tests.
  • Discussion and Conclusion : This section summarizes the key findings of the study, interprets the results, and discusses the implications of the findings. It also includes recommendations for future research.
  • References : This section lists the sources cited in the research design.

Example of Research Design

An Example of Research Design could be:

Research question: Does the use of social media affect the academic performance of high school students?

Research design:

  • Research approach : The research approach will be quantitative as it involves collecting numerical data to test the hypothesis.
  • Research design : The research design will be a quasi-experimental design, with a pretest-posttest control group design.
  • Sample : The sample will be 200 high school students from two schools, with 100 students in the experimental group and 100 students in the control group.
  • Data collection : The data will be collected through surveys administered to the students at the beginning and end of the academic year. The surveys will include questions about their social media usage and academic performance.
  • Data analysis : The data collected will be analyzed using statistical software. The mean scores of the experimental and control groups will be compared to determine whether there is a significant difference in academic performance between the two groups.
  • Limitations : The limitations of the study will be acknowledged, including the fact that social media usage can vary greatly among individuals, and the study only focuses on two schools, which may not be representative of the entire population.
  • Ethical considerations: Ethical considerations will be taken into account, such as obtaining informed consent from the participants and ensuring their anonymity and confidentiality.

How to Write Research Design

Writing a research design involves planning and outlining the methodology and approach that will be used to answer a research question or hypothesis. Here are some steps to help you write a research design:

  • Define the research question or hypothesis : Before beginning your research design, you should clearly define your research question or hypothesis. This will guide your research design and help you select appropriate methods.
  • Select a research design: There are many different research designs to choose from, including experimental, survey, case study, and qualitative designs. Choose a design that best fits your research question and objectives.
  • Develop a sampling plan : If your research involves collecting data from a sample, you will need to develop a sampling plan. This should outline how you will select participants and how many participants you will include.
  • Define variables: Clearly define the variables you will be measuring or manipulating in your study. This will help ensure that your results are meaningful and relevant to your research question.
  • Choose data collection methods : Decide on the data collection methods you will use to gather information. This may include surveys, interviews, observations, experiments, or secondary data sources.
  • Create a data analysis plan: Develop a plan for analyzing your data, including the statistical or qualitative techniques you will use.
  • Consider ethical concerns : Finally, be sure to consider any ethical concerns related to your research, such as participant confidentiality or potential harm.

When to Write Research Design

Research design should be written before conducting any research study. It is an important planning phase that outlines the research methodology, data collection methods, and data analysis techniques that will be used to investigate a research question or problem. The research design helps to ensure that the research is conducted in a systematic and logical manner, and that the data collected is relevant and reliable.

Ideally, the research design should be developed as early as possible in the research process, before any data is collected. This allows the researcher to carefully consider the research question, identify the most appropriate research methodology, and plan the data collection and analysis procedures in advance. By doing so, the research can be conducted in a more efficient and effective manner, and the results are more likely to be valid and reliable.

Purpose of Research Design

The purpose of research design is to plan and structure a research study in a way that enables the researcher to achieve the desired research goals with accuracy, validity, and reliability. Research design is the blueprint or the framework for conducting a study that outlines the methods, procedures, techniques, and tools for data collection and analysis.

Some of the key purposes of research design include:

  • Providing a clear and concise plan of action for the research study.
  • Ensuring that the research is conducted ethically and with rigor.
  • Maximizing the accuracy and reliability of the research findings.
  • Minimizing the possibility of errors, biases, or confounding variables.
  • Ensuring that the research is feasible, practical, and cost-effective.
  • Determining the appropriate research methodology to answer the research question(s).
  • Identifying the sample size, sampling method, and data collection techniques.
  • Determining the data analysis method and statistical tests to be used.
  • Facilitating the replication of the study by other researchers.
  • Enhancing the validity and generalizability of the research findings.

Applications of Research Design

There are numerous applications of research design in various fields, some of which are:

  • Social sciences: In fields such as psychology, sociology, and anthropology, research design is used to investigate human behavior and social phenomena. Researchers use various research designs, such as experimental, quasi-experimental, and correlational designs, to study different aspects of social behavior.
  • Education : Research design is essential in the field of education to investigate the effectiveness of different teaching methods and learning strategies. Researchers use various designs such as experimental, quasi-experimental, and case study designs to understand how students learn and how to improve teaching practices.
  • Health sciences : In the health sciences, research design is used to investigate the causes, prevention, and treatment of diseases. Researchers use various designs, such as randomized controlled trials, cohort studies, and case-control studies, to study different aspects of health and healthcare.
  • Business : Research design is used in the field of business to investigate consumer behavior, marketing strategies, and the impact of different business practices. Researchers use various designs, such as survey research, experimental research, and case studies, to study different aspects of the business world.
  • Engineering : In the field of engineering, research design is used to investigate the development and implementation of new technologies. Researchers use various designs, such as experimental research and case studies, to study the effectiveness of new technologies and to identify areas for improvement.

Advantages of Research Design

Here are some advantages of research design:

  • Systematic and organized approach : A well-designed research plan ensures that the research is conducted in a systematic and organized manner, which makes it easier to manage and analyze the data.
  • Clear objectives: The research design helps to clarify the objectives of the study, which makes it easier to identify the variables that need to be measured, and the methods that need to be used to collect and analyze data.
  • Minimizes bias: A well-designed research plan minimizes the chances of bias, by ensuring that the data is collected and analyzed objectively, and that the results are not influenced by the researcher’s personal biases or preferences.
  • Efficient use of resources: A well-designed research plan helps to ensure that the resources (time, money, and personnel) are used efficiently and effectively, by focusing on the most important variables and methods.
  • Replicability: A well-designed research plan makes it easier for other researchers to replicate the study, which enhances the credibility and reliability of the findings.
  • Validity: A well-designed research plan helps to ensure that the findings are valid, by ensuring that the methods used to collect and analyze data are appropriate for the research question.
  • Generalizability : A well-designed research plan helps to ensure that the findings can be generalized to other populations, settings, or situations, which increases the external validity of the study.

Research Design Vs Research Methodology

Research DesignResearch Methodology
The plan and structure for conducting research that outlines the procedures to be followed to collect and analyze data.The set of principles, techniques, and tools used to carry out the research plan and achieve research objectives.
Describes the overall approach and strategy used to conduct research, including the type of data to be collected, the sources of data, and the methods for collecting and analyzing data.Refers to the techniques and methods used to gather, analyze and interpret data, including sampling techniques, data collection methods, and data analysis techniques.
Helps to ensure that the research is conducted in a systematic, rigorous, and valid way, so that the results are reliable and can be used to make sound conclusions.Includes a set of procedures and tools that enable researchers to collect and analyze data in a consistent and valid manner, regardless of the research design used.
Common research designs include experimental, quasi-experimental, correlational, and descriptive studies.Common research methodologies include qualitative, quantitative, and mixed-methods approaches.
Determines the overall structure of the research project and sets the stage for the selection of appropriate research methodologies.Guides the researcher in selecting the most appropriate research methods based on the research question, research design, and other contextual factors.
Helps to ensure that the research project is feasible, relevant, and ethical.Helps to ensure that the data collected is accurate, valid, and reliable, and that the research findings can be interpreted and generalized to the population of interest.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Problem statement

Problem Statement – Writing Guide, Examples and...

Data Analysis

Data Analysis – Process, Methods and Types

Thesis Statement

Thesis Statement – Examples, Writing Guide

Research Paper Citation

How to Cite Research Paper – All Formats and...

Research Project

Research Project – Definition, Writing Guide and...

Data Interpretation

Data Interpretation – Process, Methods and...

Leave a comment x.

Save my name, email, and website in this browser for the next time I comment.

  • University Libraries
  • Research Guides
  • Topic Guides
  • Research Methods Guide
  • Research Design & Method

Research Methods Guide: Research Design & Method

  • Introduction
  • Survey Research
  • Interview Research
  • Data Analysis
  • Resources & Consultation

Tutorial Videos: Research Design & Method

Research Methods (sociology-focused)

Qualitative vs. Quantitative Methods (intro)

Qualitative vs. Quantitative Methods (advanced)

what is design research study

FAQ: Research Design & Method

What is the difference between Research Design and Research Method?

Research design is a plan to answer your research question.  A research method is a strategy used to implement that plan.  Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively.

Which research method should I choose ?

It depends on your research goal.  It depends on what subjects (and who) you want to study.  Let's say you are interested in studying what makes people happy, or why some students are more conscious about recycling on campus.  To answer these questions, you need to make a decision about how to collect your data.  Most frequently used methods include:

  • Observation / Participant Observation
  • Focus Groups
  • Experiments
  • Secondary Data Analysis / Archival Study
  • Mixed Methods (combination of some of the above)

One particular method could be better suited to your research goal than others, because the data you collect from different methods will be different in quality and quantity.   For instance, surveys are usually designed to produce relatively short answers, rather than the extensive responses expected in qualitative interviews.

What other factors should I consider when choosing one method over another?

Time for data collection and analysis is something you want to consider.  An observation or interview method, so-called qualitative approach, helps you collect richer information, but it takes time.  Using a survey helps you collect more data quickly, yet it may lack details.  So, you will need to consider the time you have for research and the balance between strengths and weaknesses associated with each method (e.g., qualitative vs. quantitative).

  • << Previous: Introduction
  • Next: Survey Research >>
  • Last Updated: Aug 21, 2023 10:42 AM

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • My Bibliography
  • Collections
  • Citation manager

Save citation to file

Email citation, add to collections.

  • Create a new collection
  • Add to an existing collection

Add to My Bibliography

Your saved search, create a file for external citation management software, your rss feed.

  • Search in PubMed
  • Search in NLM Catalog
  • Add to Search

How to choose your study design

Affiliation.

  • 1 Department of Medicine, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.
  • PMID: 32479703
  • DOI: 10.1111/jpc.14929

Research designs are broadly divided into observational studies (i.e. cross-sectional; case-control and cohort studies) and experimental studies (randomised control trials, RCTs). Each design has a specific role, and each has both advantages and disadvantages. Moreover, while the typical RCT is a parallel group design, there are now many variants to consider. It is important that both researchers and paediatricians are aware of the role of each study design, their respective pros and cons, and the inherent risk of bias with each design. While there are numerous quantitative study designs available to researchers, the final choice is dictated by two key factors. First, by the specific research question. That is, if the question is one of 'prevalence' (disease burden) then the ideal is a cross-sectional study; if it is a question of 'harm' - a case-control study; prognosis - a cohort and therapy - a RCT. Second, by what resources are available to you. This includes budget, time, feasibility re-patient numbers and research expertise. All these factors will severely limit the choice. While paediatricians would like to see more RCTs, these require a huge amount of resources, and in many situations will be unethical (e.g. potentially harmful intervention) or impractical (e.g. rare diseases). This paper gives a brief overview of the common study types, and for those embarking on such studies you will need far more comprehensive, detailed sources of information.

Keywords: experimental studies; observational studies; research method.

© 2020 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

PubMed Disclaimer

Similar articles

  • Observational Studies. Hess DR. Hess DR. Respir Care. 2023 Nov;68(11):1585-1597. doi: 10.4187/respcare.11170. Epub 2023 Jun 20. Respir Care. 2023. PMID: 37339891
  • Observational designs in clinical multiple sclerosis research: Particulars, practices and potentialities. Jongen PJ. Jongen PJ. Mult Scler Relat Disord. 2019 Oct;35:142-149. doi: 10.1016/j.msard.2019.07.006. Epub 2019 Jul 20. Mult Scler Relat Disord. 2019. PMID: 31394404 Review.
  • Study designs in clinical research. Noordzij M, Dekker FW, Zoccali C, Jager KJ. Noordzij M, et al. Nephron Clin Pract. 2009;113(3):c218-21. doi: 10.1159/000235610. Epub 2009 Aug 18. Nephron Clin Pract. 2009. PMID: 19690439 Review.
  • Study Types in Orthopaedics Research: Is My Study Design Appropriate for the Research Question? Zaniletti I, Devick KL, Larson DR, Lewallen DG, Berry DJ, Maradit Kremers H. Zaniletti I, et al. J Arthroplasty. 2022 Oct;37(10):1939-1944. doi: 10.1016/j.arth.2022.05.028. Epub 2022 Sep 6. J Arthroplasty. 2022. PMID: 36162926 Free PMC article.
  • Design choices for observational studies of the effect of exposure on disease incidence. Gail MH, Altman DG, Cadarette SM, Collins G, Evans SJ, Sekula P, Williamson E, Woodward M. Gail MH, et al. BMJ Open. 2019 Dec 9;9(12):e031031. doi: 10.1136/bmjopen-2019-031031. BMJ Open. 2019. PMID: 31822541 Free PMC article.
  • Effects of Electronic Serious Games on Older Adults With Alzheimer's Disease and Mild Cognitive Impairment: Systematic Review With Meta-Analysis of Randomized Controlled Trials. Zuo X, Tang Y, Chen Y, Zhou Z. Zuo X, et al. JMIR Serious Games. 2024 Jul 31;12:e55785. doi: 10.2196/55785. JMIR Serious Games. 2024. PMID: 39083796 Free PMC article. Review.
  • Nurses' Adherence to the Portuguese Standard to Prevent Catheter-Associated Urinary Tract Infections (CAUTIs): An Observational Study. Paiva-Santos F, Santos-Costa P, Bastos C, Graveto J. Paiva-Santos F, et al. Nurs Rep. 2023 Oct 10;13(4):1432-1441. doi: 10.3390/nursrep13040120. Nurs Rep. 2023. PMID: 37873827 Free PMC article.
  • Effects of regional anaesthesia on mortality in patients undergoing lower extremity amputation: A retrospective pooled analysis. Quak SM, Pillay N, Wong SN, Karthekeyan RB, Chan DXH, Liu CWY. Quak SM, et al. Indian J Anaesth. 2022 Jun;66(6):419-430. doi: 10.4103/ija.ija_917_21. Epub 2022 Jun 21. Indian J Anaesth. 2022. PMID: 35903599 Free PMC article.
  • Peat J, Mellis CM, Williams K, Xuan W. Health Science Research: A Handbook of Quantitative Methods Chapter 2, Planning the Study. Sydney: Allen & Unwin; 2001.
  • Guyatt G, Rennie D, Meade MO, Cook DJ. Users Guide to the Medical Literature: A Manual for Evidence-Based Clinical Practice, 3rd edn; Chapter 14, Harm (observational studies). New York, NY: McGraw-Hill; 2015.
  • Centre for Evidence Based Medicine. Oxford EBM ‘Critical Appraisal tools’. Oxford University, UK. Available from: cebm.net [Accessed March 2020].
  • Kahlert J, Bjerge Gribsholt S, Gammelager H, Dekkers OMet al. Control of confounding in the analysis phase - An overview for clinicians. Clin. Epidemiol. 2017; 9: 195-204.
  • Sedgwick P. Cross sectional studies: Advantages and disadvantages. BMJ 2014; 348: g2276.
  • Search in MeSH

LinkOut - more resources

Full text sources.

  • Ovid Technologies, Inc.

Miscellaneous

  • NCI CPTAC Assay Portal

full text provider logo

  • Citation Manager

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Anaesth
  • v.60(9); 2016 Sep

Types of studies and research design

Mukul chandra kapoor.

Department of Anesthesiology, Max Smart Super Specialty Hospital, New Delhi, India

Medical research has evolved, from individual expert described opinions and techniques, to scientifically designed methodology-based studies. Evidence-based medicine (EBM) was established to re-evaluate medical facts and remove various myths in clinical practice. Research methodology is now protocol based with predefined steps. Studies were classified based on the method of collection and evaluation of data. Clinical study methodology now needs to comply to strict ethical, moral, truth, and transparency standards, ensuring that no conflict of interest is involved. A medical research pyramid has been designed to grade the quality of evidence and help physicians determine the value of the research. Randomised controlled trials (RCTs) have become gold standards for quality research. EBM now scales systemic reviews and meta-analyses at a level higher than RCTs to overcome deficiencies in the randomised trials due to errors in methodology and analyses.

INTRODUCTION

Expert opinion, experience, and authoritarian judgement were the norm in clinical medical practice. At scientific meetings, one often heard senior professionals emphatically expressing ‘In my experience,…… what I have said is correct!’ In 1981, articles published by Sackett et al . introduced ‘critical appraisal’ as they felt a need to teach methods of understanding scientific literature and its application at the bedside.[ 1 ] To improve clinical outcomes, clinical expertise must be complemented by the best external evidence.[ 2 ] Conversely, without clinical expertise, good external evidence may be used inappropriately [ Figure 1 ]. Practice gets outdated, if not updated with current evidence, depriving the clientele of the best available therapy.

An external file that holds a picture, illustration, etc.
Object name is IJA-60-626-g001.jpg

Triad of evidence-based medicine

EVIDENCE-BASED MEDICINE

In 1971, in his book ‘Effectiveness and Efficiency’, Archibald Cochrane highlighted the lack of reliable evidence behind many accepted health-care interventions.[ 3 ] This triggered re-evaluation of many established ‘supposed’ scientific facts and awakened physicians to the need for evidence in medicine. Evidence-based medicine (EBM) thus evolved, which was defined as ‘the conscientious, explicit and judicious use of the current best evidence in making decisions about the care of individual patients.’[ 2 ]

The goal of EBM was scientific endowment to achieve consistency, efficiency, effectiveness, quality, safety, reduction in dilemma and limitation of idiosyncrasies in clinical practice.[ 4 ] EBM required the physician to diligently assess the therapy, make clinical adjustments using the best available external evidence, ensure awareness of current research and discover clinical pathways to ensure best patient outcomes.[ 5 ]

With widespread internet use, phenomenally large number of publications, training and media resources are available but determining the quality of this literature is difficult for a busy physician. Abstracts are available freely on the internet, but full-text articles require a subscription. To complicate issues, contradictory studies are published making decision-making difficult.[ 6 ] Publication bias, especially against negative studies, makes matters worse.

In 1993, the Cochrane Collaboration was founded by Ian Chalmers and others to create and disseminate up-to-date review of randomised controlled trials (RCTs) to help health-care professionals make informed decisions.[ 7 ] In 1995, the American College of Physicians and the British Medical Journal Publishing Group collaborated to publish the journal ‘Evidence-based medicine’, leading to the evolution of EBM in all spheres of medicine.

MEDICAL RESEARCH

Medical research needs to be conducted to increase knowledge about the human species, its social/natural environment and to combat disease/infirmity in humans. Research should be conducted in a manner conducive to and consistent with dignity and well-being of the participant; in a professional and transparent manner; and ensuring minimal risk.[ 8 ] Research thus must be subjected to careful evaluation at all stages, i.e., research design/experimentation; results and their implications; the objective of the research sought; anticipated benefits/dangers; potential uses/abuses of the experiment and its results; and on ensuring the safety of human life. Table 1 lists the principles any research should follow.[ 8 ]

General principles of medical research

An external file that holds a picture, illustration, etc.
Object name is IJA-60-626-g002.jpg

Types of study design

Medical research is classified into primary and secondary research. Clinical/experimental studies are performed in primary research, whereas secondary research consolidates available studies as reviews, systematic reviews and meta-analyses. Three main areas in primary research are basic medical research, clinical research and epidemiological research [ Figure 2 ]. Basic research includes fundamental research in fields shown in Figure 2 . In almost all studies, at least one independent variable is varied, whereas the effects on the dependent variables are investigated. Clinical studies include observational studies and interventional studies and are subclassified as in Figure 2 .

An external file that holds a picture, illustration, etc.
Object name is IJA-60-626-g003.jpg

Classification of types of medical research

Interventional clinical study is performed with the purpose of studying or demonstrating clinical or pharmacological properties of drugs/devices, their side effects and to establish their efficacy or safety. They also include studies in which surgical, physical or psychotherapeutic procedures are examined.[ 9 ] Studies on drugs/devices are subject to legal and ethical requirements including the Drug Controller General India (DCGI) directives. They require the approval of DCGI recognized Ethics Committee and must be performed in accordance with the rules of ‘Good Clinical Practice’.[ 10 ] Further details are available under ‘Methodology for research II’ section in this issue of IJA. In 2004, the World Health Organization advised registration of all clinical trials in a public registry. In India, the Clinical Trials Registry of India was launched in 2007 ( www.ctri.nic.in ). The International Committee of Medical Journal Editors (ICMJE) mandates its member journals to publish only registered trials.[ 11 ]

Observational clinical study is a study in which knowledge from treatment of persons with drugs is analysed using epidemiological methods. In these studies, the diagnosis, treatment and monitoring are performed exclusively according to medical practice and not according to a specified study protocol.[ 9 ] They are subclassified as per Figure 2 .

Epidemiological studies have two basic approaches, the interventional and observational. Clinicians are more familiar with interventional research, whereas epidemiologists usually perform observational research.

Interventional studies are experimental in character and are subdivided into field and group studies, for example, iodine supplementation of cooking salt to prevent hypothyroidism. Many interventions are unsuitable for RCTs, as the exposure may be harmful to the subjects.

Observational studies can be subdivided into cohort, case–control, cross-sectional and ecological studies.

  • Cohort studies are suited to detect connections between exposure and development of disease. They are normally prospective studies of two healthy groups of subjects observed over time, in which one group is exposed to a specific substance, whereas the other is not. The occurrence of the disease can be determined in the two groups. Cohort studies can also be retrospective
  • Case–control studies are retrospective analyses performed to establish the prevalence of a disease in two groups exposed to a factor or disease. The incidence rate cannot be calculated, and there is also a risk of selection bias and faulty recall.

Secondary research

Narrative review.

An expert senior author writes about a particular field, condition or treatment, including an overview, and this information is fortified by his experience. The article is in a narrative format. Its limitation is that one cannot tell whether recommendations are based on author's clinical experience, available literature and why some studies were given more emphasis. It can be biased, with selective citation of reports that reinforce the authors' views of a topic.[ 12 ]

Systematic review

Systematic reviews methodically and comprehensively identify studies focused on a specified topic, appraise their methodology, summate the results, identify key findings and reasons for differences across studies, and cite limitations of current knowledge.[ 13 ] They adhere to reproducible methods and recommended guidelines.[ 14 ] The methods used to compile data are explicit and transparent, allowing the reader to gauge the quality of the review and the potential for bias.[ 15 ]

A systematic review can be presented in text or graphic form. In graphic form, data of different trials can be plotted with the point estimate and 95% confidence interval for each study, presented on an individual line. A properly conducted systematic review presents the best available research evidence for a focused clinical question. The review team may obtain information, not available in the original reports, from the primary authors. This ensures that findings are consistent and generalisable across populations, environment, therapies and groups.[ 12 ] A systematic review attempts to reduce bias identification and studies selection for review, using a comprehensive search strategy and specifying inclusion criteria. The strength of a systematic review lies in the transparency of each phase and highlighting the merits of each decision made, while compiling information.

Meta-analysis

A review team compiles aggregate-level data in each primary study, and in some cases, data are solicited from each of the primary studies.[ 16 , 17 ] Although difficult to perform, individual patient meta-analyses offer advantages over aggregate-level analyses.[ 18 ] These mathematically pooled results are referred to as meta-analysis. Combining data from well-conducted primary studies provide a precise estimate of the “true effect.”[ 19 ] Pooling the samples of individual studies increases overall sample size, enhances statistical analysis power, reduces confidence interval and thereby improves statistical value.

The structured process of Cochrane Collaboration systematic reviews has contributed to the improvement of their quality. For the meta-analysis to be definitive, the primary RCTs should have been conducted methodically. When the existing studies have important scientific and methodological limitations, such as smaller sized samples, the systematic review may identify where gaps exist in the available literature.[ 20 ] RCTs and systematic review of several randomised trials are less likely to mislead us, and thereby help judge whether an intervention is better.[ 2 ] Practice guidelines supported by large RCTs and meta-analyses are considered as ‘gold standard’ in EBM. This issue of IJA is accompanied by an editorial on Importance of EBM on research and practice (Guyat and Sriganesh 471_16).[ 21 ] The EBM pyramid grading the value of different types of research studies is shown in Figure 3 .

An external file that holds a picture, illustration, etc.
Object name is IJA-60-626-g004.jpg

The evidence-based medicine pyramid

In the last decade, a number of studies and guidelines brought about path-breaking changes in anaesthesiology and critical care. Some guidelines such as the ‘Surviving Sepsis Guidelines-2004’[ 22 ] were later found to be flawed and biased. A number of large RCTs were rejected as their findings were erroneous. Another classic example is that of ENIGMA-I (Evaluation of Nitrous oxide In the Gas Mixture for Anaesthesia)[ 23 ] which implicated nitrous oxide for poor outcomes, but ENIGMA-II[ 24 , 25 ] conducted later, by the same investigators, declared it as safe. The rise and fall of the ‘tight glucose control’ regimen was similar.[ 26 ]

Although RCTs are considered ‘gold standard’ in research, their status is at crossroads today. RCTs have conflicting interests and thus must be evaluated with careful scrutiny. EBM can promote evidence reflected in RCTs and meta-analyses. However, it cannot promulgate evidence not reflected in RCTs. Flawed RCTs and meta-analyses may bring forth erroneous recommendations. EBM thus should not be restricted to RCTs and meta-analyses but must involve tracking down the best external evidence to answer our clinical questions.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

  • Reviews / Why join our community?
  • For companies
  • Frequently asked questions

Design Research

What is design research.

Design research is the practice of gaining insights by observing users and understanding industry and market shifts. For example, in service design it involves designers’ using ethnography—an area of anthropology—to access study participants, to gain the best insights and so be able to start to design popular services.

“We think we listen, but very rarely do we listen with real understanding, true empathy. Yet listening, of this very special kind, is one of the most potent forces for change that I know.” — Carl Rogers, Psychologist and founding father of the humanistic approach & psychotherapy research

Service design expert and Senior Director of User Research at Twitch Kendra Shimmell explains what goes into good design research in this video.

  • Transcript loading…

Get Powerful Insights with Proper Design Research

When you do user research well, you can fuel your design process with rich insights into how your target users interact—or might interact—in contexts to do the things they must do to achieve their goals using whatever they need on the way. That’s why it’s essential to choose the right research methods and execute them properly. Then, you’ll be able to reach those participants who agree to be test users/customers, so they’ll be comfortable enough to give you accurate, truthful insights about their needs, desires, pain points and much more. As service design can involve highly intricate user journeys , things can be far more complex than in “regular” user experience (UX) design . That’s where design research comes in, with its two main ingredients:

Qualitative research – to understand core human behaviors, habits and tasks/goals

Industry and Market research – to understand shifts in technology and in business models and design-relevant signs

An ideal situation—where you have enough resources and input from experts—is to combine the above to obtain the clearest view of the target customers of your proposed—or improved—service and get the most accurate barometer reading of what your market wants and why. In any case, ethnography is essential. It’s your key to decoding this very human economy of habits, motivations, pain points, values and other hard-to-spot factors that influence what people think, feel, say and do on their user journeys. It’s your pathway to creating personas —fictitious distillations that prove you empathize with your target users as customers—and to gain the best insights means you carefully consider how to access these people on their level. When you do ethnographic field studies, you strive for accurate observations of your users/customers in the context of using a service .

what is design research study

© Interaction Design Foundation, CC BY-SA 4.0

How to Leverage Ethnography to Do Proper Design Research

Whatever your method or combination of methods (e.g., semi-structured interviews and video ethnography), the “golden rules” are:

Build rapport – Your “test users” will only open up in trusting, relaxed, informal, natural settings. Simple courtesies such as thanking them and not pressuring them to answer will go a long way. Remember, human users want a human touch, and as customers they will have the final say on a design’s success.

Hide/Forget your own bias – This is a skill that will show in how you ask questions, which can subtly tell users what you might want to hear. Instead of asking (e.g.) “The last time you used a pay app on your phone, what was your worst security concern?”, try “Can you tell me about the last time you used an app on your phone to pay for something?”. Questions that betray how you might view things can make people distort their answers.

Embrace the not-knowing mindset and a blank-slate approach – to help you find users’ deep motivations and why they’ve created workarounds. Trying to forget—temporarily—everything you’ve learned about one or more things can be challenging. However, it can pay big dividends if you can ignore the assumptions that naturally creep into our understanding of our world.

Accept ambiguity – Try to avoid imposing a rigid binary (black-and-white/“yes”-or-“no”) scientific framework over your users’ human world.

Don’t jump to conclusions – Try to stay objective. The patterns we tend to establish to help us make sense of our world more easily can work against you as an observer if you let them. It’s perfectly human to rely on these patterns so we can think on our feet. But your users/customers already will be doing this with what they encounter. If you add your own subjectivity, you’ll distort things.

Keep an open mind to absorb the users’ world as present it – hence why it’s vital to get some proper grounding in user research. It takes a skilled eye, ear and mouth to zero in on everything there is to observe, without losing sight of anything by catering to your own agendas, etc.

Gentle encouragement helps; Silence is golden – a big part of keeping a naturalistic setting means letting your users stay comfortable at their own pace (within reason). Your “Mm-mmhs” of encouragement and appropriate silent stretches can keep your research safe from users’ suddenly putting politeness ahead of honesty if they feel (or feel that you’re) uncomfortable.

Overall, remember that two people can see the same thing very differently, and it takes an open-minded, inquisitive, informal approach to find truly valuable insights to understand users’ real problems.

Learn More about Design Research

Take our Service Design course, featuring many helpful templates: Service Design: How to Design Integrated Service Experiences

This Smashing Magazine piece nicely explores the human dimensions of design research: How To Get To Know Your Users

Let Invision expand your understanding of design research’s value, here: 4 types of research methods all designers should know .

Answer a Short Quiz to Earn a Gift

What is the main goal of design research?

  • To increase the speed of the design process
  • To learn what informs design decisions
  • To lower the cost of production

Why are ethnographic studies important in design research?

  • They focus on quantitative data collection.
  • They help understand user behavior in natural contexts.
  • They prioritize technological advancements.

What are the two main types of research methods used in design research?

  • Qualitative and market research
  • Qualitative and quantitative research
  • Quantitative and user experience design

What is a key aspect of empathy in design research?

  • Focus on aesthetic design
  • Prioritize designers' ideas and needs
  • Understand users' perspectives and needs

Why is it important to avoid bias in design research?

  • To decrease the overall research costs
  • To make sure insights are objective and accurate
  • To speed up the research process

Better luck next time!

Do you want to improve your UX / UI Design skills? Join us now

Congratulations! You did amazing

You earned your gift with a perfect score! Let us send it to you.

Check Your Inbox

We’ve emailed your gift to [email protected] .

Literature on Design Research

Here’s the entire UX literature on Design Research by the Interaction Design Foundation, collated in one place:

Learn more about Design Research

Take a deep dive into Design Research with our course Service Design: How to Design Integrated Service Experiences .

Services are everywhere! When you get a new passport, order a pizza or make a reservation on AirBnB, you're engaging with services. How those services are designed is crucial to whether they provide a pleasant experience or an exasperating one. The experience of a service is essential to its success or failure no matter if your goal is to gain and retain customers for your app or to design an efficient waiting system for a doctor’s office.

In a service design process, you use an in-depth understanding of the business and its customers to ensure that all the touchpoints of your service are perfect and, just as importantly, that your organization can deliver a great service experience every time . It’s not just about designing the customer interactions; you also need to design the entire ecosystem surrounding those interactions.

In this course, you’ll learn how to go through a robust service design process and which methods to use at each step along the way. You’ll also learn how to create a service design culture in your organization and set up a service design team . We’ll provide you with lots of case studies to learn from as well as interviews with top designers in the field. For each practical method, you’ll get downloadable templates that guide you on how to use the methods in your own work.

This course contains a series of practical exercises that build on one another to create a complete service design project . The exercises are optional, but you’ll get invaluable hands-on experience with the methods you encounter in this course if you complete them, because they will teach you to take your first steps as a service designer. What’s equally important is that you can use your work as a case study for your portfolio to showcase your abilities to future employers! A portfolio is essential if you want to step into or move ahead in a career in service design.

Your primary instructor in the course is Frank Spillers . Frank is CXO of award-winning design agency Experience Dynamics and a service design expert who has consulted with companies all over the world. Much of the written learning material also comes from John Zimmerman and Jodi Forlizzi , both Professors in Human-Computer Interaction at Carnegie Mellon University and highly influential in establishing design research as we know it today.

You’ll earn a verifiable and industry-trusted Course Certificate once you complete the course. You can highlight it on your resume, CV, LinkedIn profile or on your website.

All open-source articles on Design Research

Adding quality to your design research with an ssqs checklist.

what is design research study

  • 8 years ago

Open Access—Link to us!

We believe in Open Access and the  democratization of knowledge . Unfortunately, world-class educational materials such as this page are normally hidden behind paywalls or in expensive textbooks.

If you want this to change , cite this page , link to us, or join us to help us democratize design knowledge !

Privacy Settings

Our digital services use necessary tracking technologies, including third-party cookies, for security, functionality, and to uphold user rights. Optional cookies offer enhanced features, and analytics.

Experience the full potential of our site that remembers your preferences and supports secure sign-in.

Governs the storage of data necessary for maintaining website security, user authentication, and fraud prevention mechanisms.

Enhanced Functionality

Saves your settings and preferences, like your location, for a more personalized experience.

Referral Program

We use cookies to enable our referral program, giving you and your friends discounts.

Error Reporting

We share user ID with Bugsnag and NewRelic to help us track errors and fix issues.

Optimize your experience by allowing us to monitor site usage. You’ll enjoy a smoother, more personalized journey without compromising your privacy.

Analytics Storage

Collects anonymous data on how you navigate and interact, helping us make informed improvements.

Differentiates real visitors from automated bots, ensuring accurate usage data and improving your website experience.

Lets us tailor your digital ads to match your interests, making them more relevant and useful to you.

Advertising Storage

Stores information for better-targeted advertising, enhancing your online ad experience.

Personalization Storage

Permits storing data to personalize content and ads across Google services based on user behavior, enhancing overall user experience.

Advertising Personalization

Allows for content and ad personalization across Google services based on user behavior. This consent enhances user experiences.

Enables personalizing ads based on user data and interactions, allowing for more relevant advertising experiences across Google services.

Receive more relevant advertisements by sharing your interests and behavior with our trusted advertising partners.

Enables better ad targeting and measurement on Meta platforms, making ads you see more relevant.

Allows for improved ad effectiveness and measurement through Meta’s Conversions API, ensuring privacy-compliant data sharing.

LinkedIn Insights

Tracks conversions, retargeting, and web analytics for LinkedIn ad campaigns, enhancing ad relevance and performance.

LinkedIn CAPI

Enhances LinkedIn advertising through server-side event tracking, offering more accurate measurement and personalization.

Google Ads Tag

Tracks ad performance and user engagement, helping deliver ads that are most useful to you.

Share Knowledge, Get Respect!

or copy link

Cite according to academic standards

Simply copy and paste the text below into your bibliographic reference list, onto your blog, or anywhere else. You can also just hyperlink to this page.

New to UX Design? We’re Giving You a Free ebook!

The Basics of User Experience Design

Download our free ebook The Basics of User Experience Design to learn about core concepts of UX design.

In 9 chapters, we’ll cover: conducting user interviews, design thinking, interaction design, mobile UX design, usability, UX research, and many more!

what is design research study

How to... Design a research study

The design of a piece of research refers to the practical way in which the research was conducted according to a systematic attempt to generate evidence to answer the research question. The term "research methodology" is often used to mean something similar, however different writers use both terms in slightly different ways: some writers, for example, use the term "methodology" to describe the tools used for data collection, which others (more properly) refer to as methods.

On this page

What is research design, sampling techniques, quantitative approaches to research design, qualitative approaches to research design, planning your research design.

The following are some definitions of research design by researchers:

Design is the deliberately planned 'arrangement of conditions for analysis and collection of data in a manner that aims to combine relevance to the research purpose with economy of procedure'.

Selltiz C.S., Wrightsman L.S. and Cook S.W. 1981  Research Methods in Social Relations, Holt, Rinehart & Winston, London, quoted in Jankowicz, A.D.,  Business Research Methods , Thomson Learning, p.190.)

The idea behind a design is that different kinds of issues logically demand different kinds of data-gathering arrangement so that the data will be:

  • relevant to your thesis or the argument you wish to present;
  • an adequate test of your thesis (i.e. unbiased and reliable);
  • accurate in establishing causality, in situations where you wish to go beyond description to provide explanations for whatever is happening around you;
  • capable of providing findings that can be generalised to situations other than those of your immediate organisation.

(Jankowicz, A.D.,  Business Research Methods  , Thomson Learning, p. 190)

The design of the research involves consideration of the best method of collecting data to provide a relevant and accurate test of your thesis, one that can establish causality if required (see  What type of study are you undertaking? ), and one that will enable you to generalise your findings.

Design of the research should take account of the following factors, which are briefly discussed below with links to subsequent pages or other parts of the site where there is fuller information.

What is your theoretical and epistemological perspective?

Although management research is much concerned with observation of humans and their behaviour, to a certain extent the epistemological framework derives from that of science. Positivism assumes the independent existence of measurable facts in the social world, and researchers who assume this perspective will want to have a fairly exact system of measurement. On the other hand, interpretivism assumes that humans interpret events and researchers employing this method will adopt a more subjective approach.

What type of study are you undertaking?

Are you conducting an exploratory study, obtaining an initial grasp of a phenomenon, a descriptive study, providing a profile of a topic or institution:

Karin Klenke provides an exploratory study of issues of gender in management decisions in  Gender influences in decision-making processes in top management teams  ( Management Decision , Volume 41 Number 10)

Damien McLoughlin provides a descriptive study of action learning as a case study in  There can be no learning without action and no action without learning  in ( European Journal of Marketing , Volume 38 Number 3/4)

Or it can be explanatory, examining the causal relationship between variables: this can include the testing of hypotheses or examination of causes:

Martin  et al.  examined ad zipping and repetition in  Remote control marketing: how ad fast-forwarding and ad repetition affect consumers  ( Marketing Intelligence & Planning , Volume 20 Number 1) with a number of hypotheses e.g. that people are more likely to remember an ad that they have seen repeatedly.

What is your research question?

The most important issue here is that the design you use should be appropriate to your initial question. Implicit within your question will be issues of size, breadth, relationship between variables, how easy is it to measure variables etc.

The two different questions below call for very different types of design:

The example  Dimensions of library anxiety and social interdependence: implications for library services  (Jiao and Onwuegbuzie,  Library Review , Volume 51 Number 2) looks at attitudes and the relationship between variables, and uses very precise measurement instruments in the form of two questionnaires, with 43 and 22 items respectively.

In the example  Equity in Corporate Co-branding  (Judy Motion  et al. ,  European Journal of Marketing , Volume 37 Number 7),  the RQs posit a need to describe rather than to link variables, and the methodology used is one of discourse theory, which involves looking at material within the context of its use by the company.

What sample size will you base your data on?

The sample is the source of your data, and it is important to decide how you are going to select it.

See  Sampling techniques .

What research methods will you use and why?

We referred above to the distinction between methods and methodology. There are two main approaches to methodology – qualitative and quantitative.

The two main approaches to methodology
 
typically use  typically use 
are  are 
involve the researcher as ideally an  require more   and   on the part of the researcher.
may focus on cause and effect focuses on understanding of phenomena in their social, institutional, political and economic context
require a   require a 
have the   that they may force people into categories, also it cannot go into much depth about subjects and issues. have the   that they focus on a few individuals, and may therefore be difficult to generalise.

For more detail on each of the approaches,  Quantitative approaches to design  and  Qualitative approaches to design  later in this feature.

Note, you do not have to stick to one methodology (although some writers recommend that you do). Combining methodologies is a matter of seeing which part of the design of your research is better suited to which methodology.

How will you triangulate your research?

Triangulation refers to the process of ensuring that any defects in a particular methodology are compensated by use of another at appropriate points in the design. For example, if you carry out a quantitative survey and need more in depth information about particular aspects of the survey you may decide to use in-depth interviews, a qualitative method.

Here are a couple of useful articles to read which cover the issue of triangulation:

  • Combining quantitative and qualitative methodologies in logistics research  by John Mangan, Chandra Lalwani and Bernard Gardner ( International Journal of Physical Distribution & Logistics Management , Volume 34 Number 7) looks at ways of combining methodologies in a particular area of research, but much of what they say is generally applicable.
  • Quantitative and qualitative research in the built environment: application of "mixed" research approach  by Dilanthi Amaratunga, David Baldry, Marjan Sarshar and Rita Newton ( Work Study , Volume 51 Number 1) looks at the relative merits of the two research approaches, and despite reference to the built environment in the title acts as a very good introduction to quantitative and qualitative methodology and their relative research literatures. The section on triangulation comes under the heading 'The mixed (or balanced) approach'. 

What steps will you take to ensure that your research is ethical?

Ethics in research is a very important issue. You should design the research in such a way that you take account of such ethical issues as:

  • informed consent (have the participants had the nature of the research explained to them)?
  • checking whether you have permission to transcribe conversations with a tape recorder
  • always treating people with respect, consideration and concern.

How will you ensure the reliability of your research?

Reliability

This is about the replicability of your research and the accuracy of the procedures and research techniques. Will the same results be repeated if the research is repeated? Are the measurements of the research methods accurate and consistent? Could they be used in other similar contexts with equivalent results? Would the same results be achieved by another researcher using the same instruments? Is the research free from error or bias on the part of the researcher, or the participants? (E.g. do the participants say what they believe the management, or the researcher, wants? For example, in a survey done on some course material, that on a mathematical module received glowing reports – which led the researcher to wonder whether this was anything to do with the author being the Head of Department!)

How successfully has the research actually achieved what it set out to achieve? Can the results of the study be transferred to other situations? Does x really cause y, in other words is the researcher correct in maintaining a causal link between these two variables? Is the research design sufficiently rigorous, have alternative explanations been considered? Have the findings really be accurately interpreted? Have other events intervened which might impact on the study, e.g. a large scale redundancy programme? (For example, in an evaluation of the use of CDs for self study with a world-wide group of students, it was established that some groups had not had sufficient explanation from the tutors as to how to use the CD. This could have affected their rather negative views.)

Generalisability

Are the findings applicable in other research settings? Can a theory be developed that can apply to other populations? For example, can a particular study about dissatisfaction amongst lecturers in a particular university be applied generally? This is particularly applicable to research which has a relatively wide sample, as in a questionnaire, or which adopts a scientific technique, as with the experiment.

Transferability

Can the research be applied to other situations? Particularly relevant when applied to case studies.

In addition, each of the sections in this feature on quantitative and qualitative approaches to research design contain notes on how to ensure that the research is reliable.

Some basic definitions

In order to answer a particular research question, the researcher needs to investigate a particular area or group, to which the conclusions from the research will apply. The former may comprise a geographical location such as a city, an industry (for example the clothing industry), an organisation/group of organisations such as a particular firm/type of firm, a particular group of people defined by occupation (e.g. student, manager etc.), consumption of a particular product or service (e.g. users of a shopping mall, new library system etc.), gender etc. This group is termed the  research population .

The  unit of analysis  is the level at which the data is aggregated: for example, it could be a study of individuals as in a study of women managers, of dyads, as in a study of mentor/mentee relationships, of groups (as in studies of departments in an organisation), of organisations, or of industries.

Unless the research population is very small, we need to study a subset of it, which needs to be general enough to be applicable to the whole. This is known as a  sample , and the selection of components of the sample that will give a representative view of the whole is known as  sampling technique  . It is from this sample that you will collect your data.

In order to draw up a sample, you need first to identify the total number of people in the research population. This information may be available in a telephone directory, a list of company members, or a list of companies in the area. It is known as a  sampling frame .

In  Networking for female managers' career development  (Margaret Linehan,  Journal of Management Development , Volume 20 Number 10), he sampling technique is described as follows:

"A total of 50 senior female managers were selected for inclusion in this study. Two sources were used for targeting interviewees, the first was a listing of Fortune 500 top companies in England, Belgium, France and Germany, and, second, The Marketing Guide to Ireland. The 50 managers who participated in the study were representative of a broad range of industries and service sectors including: mining, software engineering, pharmaceutical manufacturing, financial services, car manufacturing, tourism, oil refining, medical and state-owned enterprises."

Sampling may be done either a  probability  or a  non-probability  basis. This is an important research design decision, and one which will depend on such factors as whether the theory behind the research is positivist or idealist, whether qualitative or quantitative methods are used etc. Note that the two methods are not mutually exclusive, and may be used for different purposes at different points in the research, say purposive sampling to find out key attitudes, followed by a more general, random approach.

Note that there is a very good section from an online textbook on sampling: see William Trochim's  Research Methods Knowledge Base .

Probability sampling

In  probability  sampling, each member of a given research population has an equal chance of being selected. It involves, literally, the selection of respondents at random from the sampling frame, having decided on the sample size. This type of sampling is more likely if the theoretical orientation of the research is  positivist , and the methodology used is likely to be  quantitative .

Probability sampling can be:

  • random  – the selection is completely arbitrary, and a given number of the total population is selected completely at random.
  • systematic  – every  nth element  of the population is selected. This can cause a problem if the interval of selection means that the elements share a characteristic: for example, if every fourth seat of a coach is selected it is likely that all the seats will be beside a window.
  • stratified   random  – the population is divided into segments, for example, in a University, you could divide the population into academic, administrators, and academic related (related professional staff). A random number of each group is then selected. It has the advantage of allowing you to categorise your population according to particular features. A.D. Jankowicz provides useful advice (Business Research Methods,Thomson Learning, 2000, p.197).

The concept of fit in services flexibility and research: an empirical approach  (Antonio J Verdú-Jover  et al. ,  International Journal of Service Industry Management , Volume 15 Number 5) uses stratified sampling: the study concentrates on three sectors within the EU, chemicals, electronics and vehicles, with the sample being stratified within this sector.

  • cluster  – a particular subgroup is chosen at random. The subgroup may be based on a particular geographical area, say you may decide to sample particular areas of the country.

Non probability sampling

Here, the population does not have an equal chance of being selected; instead, selection happens according to some factor such as:

  • convenience/accidental  – being present at a particular time e.g. at lunch in the canteen. This is an easy way of getting a sample, but may not be strictly accurate, because the factor you have chosen is based on your convenience rather than on a true understanding of the characteristics of the sample.

In  "Saying is one thing; doing is another": the role of observation in marketing research  ( Qualitative Market Research: An International Journal , Volume 2 Number 1), Matthews and Boote use a two-stage sampling process, with convenience sampling followed by time sampling: see their methodology.

  • "key informant technique" – i.e. people with specialist knowledge
  • using people at selected points in the organisational hierarchy 
  • snowball, with one person being approached and then suggesting others.

In "The benefits of the implementation of the ISO 9000 standard: empirical research in 288 Spanish companies", a sample was selected based on all certified companies in a particular area, because this was where the highest number of certified companies could be found.

  • quota  – the assumption is made that there are subgroups in the population, and a quota of respondents is chosen to reflect this diversity. This subgroup should be reasonably representative of the whole, but care should be taken in drawing conclusions for the whole population. For example, a quota sample taken in New York State would not be representative of the whole of the United States.

Monitoring consumer confidence in food safety: an exploratory study , de Jonge  et al . use quota sampling using age, gender, household size and region as selection variables in a food safety survey. Read about the methodology under Materials and methods.

Non probability sampling methods are more likely to be used in qualitative research, with the greater degree of collaboration with the respondents affording the opportunity of greater detail of data gathering. The researcher is more likely to be involved in the process and be adopting an  interpretivist theoretical  stance.

Calculating the sample size

In purposive sampling, this will be determined by judgement; in other more random types of sample it is calculated as a  proportion  of the sampling frame, the key criterion being to ensure that it is representative of the whole. (E.g. 10 per cent is fine for a large population, say over 1000, but for a small population you would want a larger proportion.)

If you are using stratified sampling you may need to adjust your strata and collapse into smaller strata if you find that some of your sample sizes are too small.

The response rate

It is important to keep track of the response rate against your sample frame. If you are depending on postal questionnaires, you will need to plan into your design time to follow up the questionnaires. What is considered to be a good response rate varies according to the type of survey: if you are, say, surveying managers, then a good response would be 50 per cent; for consumer surveys, the response rate is likely to be lower, say 10 to 20 per cent.

The thing that characterises quantitative research is that it is objective. The assumption is that facts exist totally independently and the researcher is a totally  objective  observer of situations, and has no power to influence them. At such, it probably starts from a positivist or empiricist position.

The research design is based on one iteration in collection of the data: the categories are isolated prior to the study, and the design is planned out and generally not changed during the study (as it may be in qualitative research).

What is my research question? What variables am I interested in exploring?

It is usual to start your research by carrying out a  literature review , which should help you formulate a research question.

Part of the task of the above is to help you determine what  variables  you are considering. What are the key variables for your research and what is the relationship between them – are you looking to  explore  issues, to  compare  two variables or to look at  cause and effect ?

The Dutch heart health community intervention "Hartslag Limburg": evaluation design and baseline data  (Gaby Ronda  et al. ,  Health Education , Volume 103 Number 6) describes a trial of a cardiovascular prevention programme which indicated the importance of its further implementation. The key variables are the types of health related behaviours which affect a person's chance of heart disease.

The following studies compare variables:

Service failures away from home: benefits in intercultural service encounters  (Clyde A Warden  et al. ,  International Journal of Service Industry Management , Volume 14 Number 4) compares service encounters (the independent variable) inside and outside Taiwan (the dependent variable) in order to look at certain aspects of 'critical incidents' in intercultural service encounters.

The concept of fit in services flexibility and research: an empirical approach  (Antonio J Verdú-Jover  et al. ,  International Journal of Service Industry Management , Volume 15 Number 5) looks at managerial flexibility in relation to different types of business, service and manufacturing.

They can also look at cause and effect:

In  Remote control marketing: how ad fast-forwarding and ad repetition affect consumers  (Brett A.S. Martin  et al. ,  Marketing Intelligence & Planning , Volume 20 Number 1), the authors look at two variables associated with advertising, notably zipping and fast forwarding, and in their effect on a third variable, consumer behaviour - i.e. ability to remember ads. Furthermore, it looks at the interaction between the first two variables - i.e. whether they interact on one another to help increase recall.

What is the hypothesis?

It is usual with quantitative research to proceed from a particular hypothesis. The object of research would then be to test the hypothesis.

In the example quoted above,  Remote control marketing: how ad fast-forwarding and ad repetition affect consumers , the researchers decided to explore a neglected area of the literature: the interaction between ad zipping and repetition, and came up with three hypotheses:

The influence of zipping H1 . Individuals viewing advertisements played at normal speed will exhibit higher ad recall and recognition than those who view zipped advertisements.

Ad repetition effects H2 . Individuals viewing a repeated advertisement will exhibit higher ad recall and recognition than those who see an advertisement once.

Zipping and ad repetition H3 . Individuals viewing zipped, repeated advertisements will exhibit higher ad recall and recognition than those who see a normal speed advertisement that is played once.

What are the appropriate measures to use

It is very important, when designing your research, to understand  what  you are measuring. This will call for a close examination of the issues involved: is your measure suitable to the hypothesis and research question under consideration? The type of scale you will use will dictate the statistical procedure which you can use to analyse your data, and it is important to have an understanding of the latter at the outset in order to obtain the correct level of analysis, and one that will throw the best light on your research question, and help test your hypothesis.

It is also important to understand what type of data you are trying to collect. Are you wanting to collect data that relates simply to different types of categories, for example, men and women (as in, say, differences in decision-making between men and women managers), or do you want to rank the data in some way? Choices as far as the nature of data are concerned again dictate the type of statistical analysis.

Data can be categorised as follows:

  • Nominal – Representing particular categories, e.g. men or women.
  • Ordinal – Ranked in some way such as order of passing a particular point in a shopping centre.
  • Interval – Ranked according to the interval between the data, which remains the same. Most typical of this type of data is temperature.
  • Ratio – Where it is possible to measure the difference between different types of data - for example applying a measurement.
  • Scalar – This type of data has intervals between it, which are not quantifiable.

Note that some of the above categories, especially 'interval' and 'ratio' are drawn from a scientific model which assumes exact measurement of data (temperature, length etc.). In management research, you are unlikely to want to or be able to apply such a high degree of exactitude, and are more likely to be measuring less exact criteria which do not have an exact interval between them.

Here are some examples of use of data in management research. This one illustrates the use of different categories:

The concept of fit in services flexibility and research: an empirical approach  (see above) uses an approach which itemises the different aspects which the researchers wished to measure flexibility mix, performance and the form's general data. 

This one looks at categories and also at ranked data (ordinal):

In  Remote control marketing: how ad fast-forwarding and ad repetition affect consumers  (also see above), the measure involved 2 (speed of ad presentation: normal, fast-forwarded) ×\ 2 (repetition: none, one repetition) between-subjects factorial design.

The following examples look at measures on a scale, which may relate to tangible factors such as frequency, or more intangible ones which relate to attitude or opinion:

How many holidays do you take in a year?

One __  Between 2 and 5 __  Between 5 and 10 __  More than 10 __

Tick the option which most agrees with your views.

Navigating my way around the CD was:

Very easy __  Easy __  Neither easy nor hard __  Hard __  Very hard __

The later type of data are very common in management research, and are known as scalar data. A very common measure for such data is known as the Likert scale:

Strongly agree __________ Agree __________ Neither agree nor disagree __________ Disagree __________ Strongly disagree __________

How will I analyse the data?

Quantitative data are invariably analysed by some sort of statistical means, such as a t-test, a chi test, cluster analysis etc. It is very important to decide at the planning stage what your method of analysis will be: this will in turn affect your choice of measure. Both your analysis and measure should be suitable to test your hypothesis.

You need also to consider what type of package will you need to analyse your data. It may be sufficient to enter it into an Excel spreadsheet, or you may wish to use a statistical package such as SPSS or Mintab.

What are the instruments used in quantitative research?

Or, put more simply, what methods will you use to collect your data?

In scientific research, it is possible to be reasonably precise by generating experiments in laboratory conditions. Whilst the  field experiment  has a place in management research, as does  observation , the most usual instrument for producing quantitative data is the  survey , most often carried out by means of a  questionnaire .

You will find numerous examples of questionnaires and surveys in research published by Emerald, as you will in any database of management research. Questionnaires will be discussed at a later stage but here are some key issues:

  • It is important to know exactly what questions you want answers to. A common failing is to realise, once you have got the questionnaire back, that you really need answers to a question which you never asked. Thus the questionnaire should be rigorously researched and the questions phrased as precisely as possible.
  • You are more likely to get a response if you give people a reason to respond - commercial companies sometimes offer a prize, which may not be possible or appropriate if you are a researcher in a university, but it is usual in that case to give the reason behind your research, which gives your respondent a context. Even more motivational is the ease with which the questionnaire can be filled in.
  • How many responses will I need? This concerns the eventual size of your dataset and depends upon the degree of complexity of your planned analysis, how you are treating your variables (for example, if you are wanting to show the effect of a variable, you will need a larger response size, likewise if you are showing changes in variables).

Other instruments that are used in quantitative research to generate data are experiments, historical records and documents, and observation.

Note that some authors claim that for a design to be a  true experiment , items must be randomly assigned to groups; if there is some sort of control group or multiple measures, then it may be  quasi experimental . If your survey fits neither of these descriptions, it may according to these authors be sufficient for descriptive purposes, but not if you seek to establish a causal relationship.

For more information on types of design, see William Trochim's Research Methods Knowledge Base section on  types of design .

What are the advantages and drawbacks of quantitative research?

The main advantage of quantitative research is that it is easy to determine its rigour: because of the objectivity of quantitative studies, it is easy to replicate them in another situation. For example, a well-constructed questionnaire can be used to analyse job satisfaction in two different companies; likewise, an observation studying consumer behaviour in a shopping centre can take place in two different such centres.

Quantitative methods are also good at obtaining a good deal of reliable data from a large number of sources. Their drawback is that they are heavily dependent on the reliability of the instrument: that is, in the case of the questionnaire, it is vital to ask the right questions in the right way. This in turn is dependent upon having sufficient information about a situation, which is not always possible. In addition, quantitative studies may generate a large amount of data, but the data may lack depth and fail to explain complex human processes such as attitudes to organisational change, or how how learning takes place.

For example, a quantitative study on a piece of educational software may show that on the whole people felt that they had learnt something, but may not necessarily show how they learnt, which an observation could.

For this reason, quantitative methods are often used in conjunction with qualitative methods: for example, qualitative methods of interviewing may be used as a way of finding out more about a situation in order to draw up an informed quantitative instrument; or to explore certain issues which have appeared in the quantitative study in greater depth.

Qualitative research operates from a different epistemological perspective than quantitative, which is essentially objective. It is a perspective that acknowledges the essential difference between the social world and the scientific one, recognising that people do not always observe the laws of nature, but rather comprise a whole range of feelings, observations, attitudes which are essentially subjective in nature. The theoretical framework is thus likely to be interpretivist or realist. Indeed, the researcher and the research instrument are often combined, with the former being the interviewer, or observer – as opposed to quantitative studies where the research instrument may be a survey and the subjects may never see the researcher.

In an  interview for Emerald ,  Professor Slawomir Magala , Editor of the  Journal of Organizational Change Management , has this to say about qualitative methods:

"We follow the view that the social construction of reality is personal, experienced by individuals and between individuals – in fact, the interactions which connect us are the building blocks of reality, and there is much meaning in the space between individuals."

As opposed to the statistical reliance of quantitative research, data from qualitative research is based on observation and words, and analysis is based on interpretation and pattern recognition rather than statistical analysis.

Miles and Huberman list the following as typical criteria of qualitative research:

  • Intense and prolonged contact in the field.
  • Designed to achieve a holistic or systemic picture.
  • Perception is gained from the inside based on actors' understanding.
  • Little standardised instrumentation is used.
  • Most analysis is done with words.
  • There are multiple interpretations available in the data.

Miles, M. and Huberman, A.M. (1994) Qualitative Data Analysis: An Expanded Sourcebook , Sage, London

To what types of research questions is qualitative research relevant?

Qualitative research is best suited to the types of questions which require exploration of data  in depth  over a not particularly large sample. For example, it would be too time consuming to ask questions such as "Please describe in detail your reaction to colour x" to a large number of people, it would be more appropriate to simply ask "Do you like colour x" and give people a "yes/no" option. By asking the former question to a smaller number of people, you would get a more detailed result.

Qualitative research is also best suited to  exploratory  and  comparative  studies; to a more limited extent, it can also be used for  "cause-effect"  type questions, providing these are fairly limited in scope.

One of the strengths of qualitative research is that it allows the researcher to gain an in-depth perspective, and to grapple with complexity and ambiguity. This is what makes it suitable to analysis of  particular  groups or situations, or unusual events.

What is the relationship of qualitative research to hypotheses?

Qualitative research is usually inductive: that is, researchers gather data, and then formulate a hypothesis which can be applied to other situations.

In fact, one of the strengths of qualitative research is that it can proceed from a relatively small understanding of a particular situation, and generate new questions during the course of data collection as opposed to needing to have all the questions set out beforehand. Indeed, it is good practice in quantitative research to go into a situation as free from preconceptions as possible.

How will you analyse the data?

There is not the same need with qualitative research to determine the measure and the method of analysis at an early stage of the research process, mainly because there are no standard ways of analysing data as there are for quantitative research: it is usual to go with whatever is appropriate for the research question. However, because qualitative data usually involves a large amount of transcription (e.g. of taped interviews, videos of focus groups etc.) it is a good idea to have a plan of how this should be done, and to allow time for the transcription process.

There are a couple of attested methods of qualitative data analysis:  content analysis , which involves looking at emerging patterns, and  grounded analysis , which involves going through a number of guided stages and which is closely linked to  grounded theory .

What are the main instruments of qualitative research?

Or put another way, what are the main methods used to collect data? These can be organised according to their methodology (note, the following is not an exhaustive list, for which you should consult a good book on qualitative research):

Ethnographic methods

As the name suggests, this methodology derives from anthropology and involves observing people as a participant within their social and cultural system. Most common methods of data collection are:

  • Interviewing, which means discussions with people either on the phone, by email or in person when the purpose is to collect data which is by its nature unquantifiable and more difficult to analyse by statistical means, but which provides in-depth information. The interview can be either:  Structured , which means that the interviewer has a set number of questions.  Semi-structured , which means that the interviewer has a number of questions or a purpose, but the interview can still go off in unanticipated directions.
  • Focus groups, which is where a group of people are assembled at one time to give their reaction to a product, or to discuss an issue. There is usually some sort of facilitation which involves either guided discussion or some sort of product demonstration.
  • Participant observation – the researcher observes behaviour of people in the organisation, their language, actions, behaviour etc.

For some examples of participant observation, see Methods of empirical research ,  and for examples of interview technique, see  Techniques of data collection and analysis .

Historical analysis

This is literally, the analysis of historical documents of a particular company, industry etc. It is important to understand exactly what your focus is, and also which historical school or theoretical perspective you are drawing on.

Grounded theory

This is an essentially inductive approach, and is applied when the understanding of a particular phenomenen is sought. A feature is that the design of the research has several iterations: there is initial exploration followed by a theory which is then tested.

In  Grounded theory methodology and practitioner reflexivity in TQM research  ( International Journal of Quality & Reliability Management  , Volume 18 Number 2), Leonard and McAdam use grounded theory to explore TQM, on the grounds that quantitative methods "fail to give deep insights and rich data into TQM in practice within organizations", and that it is much more appropriate to listen to the individual experiences of participants. 

Action research

This is a highly participative form of research where the research is carried out in collaboration with those involved in a particular process, which is often concerned with some sort of change.

Narrative methods

This is when the researcher listens to the stories of people in the organisation and triangulates them against official documents.

Discourse theory

This methodology draws on a theory which allows language to have a meaning that is not set but is negotiated through social context.

Helen Francis in  The power of "talk" in HRM-based change  ( Personnel Review , Volume 31 Number 4) describes her use of discourse theory as follows:

"The approach to discourse analysis drew upon Fairclough's seminal work in which discourse is treated as a form of social practice and meaning is something that is essentially fluid and negotiated rather than being authored individually (Fairclough, 1992, 1995).

"For Fairclough (1992, 1995) the analysis of discursive events is three dimensional and includes simultaneously a piece of text, an instance of discursive practice, and an instance of social practice. Text refers to written and spoken language in use, while "discursive practices" allude to the processes by which texts are produced and interpreted. The social practice dimension refers to the institutional and organisational factors surrounding the discursive event and how they might shape the nature of the discursive practice.

"For the purposes of this research, the method of analysis included a description of the language text and how it was produced or interpreted amongst managers and their subordinates. Particular emphasis was placed on investigating the import of metaphors that are characteristic of HRM, and the introduction of HRM-based techniques adopted by change leaders in their attempt to privilege certain themes and issues over others."

Fairclough, N., 1992,  Discourse and Social Change , Polity Press, Cambridge.

Fairclough, N., 1995,  Critical Discourse Analysis: Papers in the Critical Study of Language , Longman, London.

Discourse theory can be applied to the written as well as the spoken word and can be used to analyse marketing literature as in the following example:

Equity in corporate co-branding: the case of Adidas and the all-blacks  by Judy Motion  et al.  ( European Journal of Marketing , Volume 37 Number 7), where discourse theory is used to analyse branding messages.

How rigorous is qualitative research?

It is often considered harder to demonstrate the rigour of qualitative research, simply because it may be harder to replicate the conditions of the study, and apply the data in other similar circumstances. The rigour may partly lie in the ability to generate a theory which can be applied in other situations, and which takes our understanding of a particular area further.

Rigour in qualitative research is greatly aided by:

  • confirmability - which does not necessarily mean that someone else would adopt the same conclusion, but rather there is a clear audit trail between your data and your interpretation; and that interpretations are based on a wide range of data (for example, from several interviews rather than just one). (This is related to  triangulation , see below.)
  • authenticity - are you drawing on a sufficiently wide range of rich data, do the interpretations ring true, have you considered rival interpretations, do your informants agree with your interpretation?

In  Cultural assumptions in career management: practice implications from Germany;  (Hansen and Willcox,  Career Development International , Volume 2 Number 4), the main method used is ethnographic interviews, and findings are verified by comparing data from the two samples.

Reliability is also enhanced if you can triangulate your data from a number of different sources or methods of data collection, at different times and from different participants.

Dennis Cahill, in  When to use qualitative methods: a new approach  ( Marketing Intelligence & Planning , Volume 14 Number 6), has this to say about the reliability of qualitative research:

"While there are times when qualitative techniques are inappropriate to the research goal, or appropriate only in certain portions of a research project, quantitative techniques do not have universal applicability, either. Although these techniques may be used to measure "reality" rather precisely, they often suffer from a lack of good descriptive material of the type which brings the information to life. This lack is particularly felt in corporate applications where implementation of the results is sought. Therefore, whether one has any interest in the specific research described above, if one is involved in implementation of research results – something we all should be involved in – the use of qualitative research at midpoint is a technique with which we should become familiar.

"It is at this point that some qualitative follow up – interviews or focus groups for example – can serve to flesh out the results, making it possible for people at the firm to understand and internalize those results."

Can qualitative research be used in with quantitative research?

Whereas some researchers only use either qualitative or quantitative methodologies, the two are frequently combined, as when for example qualitative methods are used exploratatively in order to obtain further information prior to developing a quantitative research instrument. In other cases, qualitative methods are used to complement quantitative methods and obtain a greater degree of descriptive richness:

In  When to use qualitative methods: a new approach , Dennis Cahill describes how qualitative methods were used after an extensive questionnaire used to carry out research for a new publication dedicated to the needs of the real estate market. The analysis for the questionnaire produced a five-segment typology (winners, authentics, heartlanders, wannabes and maintainers), which was tested by means of an EYE-TRAC test, when a selected sample was videotaped looking at a magazine of houses for sale.

Once you have established the key features of your design, you need to create an outline project plan which will include a budget and a timetable. In order to do this you need to think first about the activities of your data collection: how much data are you collecting, where etc. (See the section on  Sampling techniques .) You also need to consider your time period for data collection.

Over what time period will you collect your data?

This refers to two types of issues:

Type of study

Should the research be a 'snapshot', examining a particular phenomenon at a particular time, or should it be  longitutinal , examining an issue over a time period? If the latter, the object will be to explore changes over the period.

A longitudinal study of corporate social reporting in Singapore  (Eric W K Tsang,  Accounting, Auditing & Accountability Journal , Volume 11 Number 5) examines social reporting in that country from 1986 to 1995.

Methodology

Sometimes, you may have 'one shot' at the collection of your data - in other words, you plan your sample, your method of data collection, and then analyse the result. This is more likely to be the case if your research approach is more quantitative.

However, other types of research approach involve stages in the collection of data. For example, in  grounded theory  research, data is collected and analysed and then the process is repeated as more is discovered about the subject. Likewise in  action research , there is a cyclical process of data collection, reflection and more collection and analysis.

If you adopt an approach where you  combine quantitative and qualitative methods , then this methodology will dictate that you do a series of studies, whether qualitative followed by quantitative, or vice versa, or qualitative/quantitative/qualitative.

Grounded theory methodology and practitioner reflexivity in TQM research  (Leonard and McAdam,  International Journal of Quality & Reliability Management , Volume 18 Number 2) adopts a three-stage approach to the collection of data.

Doing the plan

The following are some of the costs which need to be considered:

  • Travel to interview people.
  • Postal surveys, including follow-up.
  • The design and printing of the questionnaire, especially if there is use of Optical Mark Reader (OMR) and Optical Character Recognition (OCR) technology.
  • Programming to "read" the above.
  • Programming the data into meaningful results.
  • Transcription of any tape recorded interviews.
  • Cost of design of any internet survey.
  • Employment of a research assistant.

Timetabling

Make a list of the key stages of your research. Does it have several phases, for example, a questionnaire, then interviews?

How long will each phase take? Take account of factors such as:

  • Sourcing your sampling frame
  • Determining the sample
  • Approaching interview subjects
  • Preparations for interviews
  • Writing questionnaires
  • Response time for questionnaires (include a follow-up stage)
  • Analysing the responses
  • Writing the report

When doing a schedule, it's tempting to make it as short as possible in the belief that you actually can achieve more in the time than you think. However, it's very important to be as accurate as possible in your scheduling.

Planning is particularly important if you are working to a specific budget and timetable as for example if you are doing a PhD, or if you are working on a funded research project, which has a specific amount of money available and probably also specific deadlines.

  • Usability testing

Run remote usability tests on any digital product to deep dive into your key user flows

  • Product analytics

Learn how users are behaving on your website in real time and uncover points of frustration

  • Research repository

A tool for collaborative analysis of qualitative data and for building your research repository and database.

  • Trymata Blog

How-to articles, expert tips, and the latest news in user testing & user experience

  • Knowledge Hub

Detailed explainers of Trymata’s features & plans, and UX research terms & topics

  • Plans & Pricing

Get paid to test

  • User Experience (UX) testing
  • User Interface (UI) testing
  • Ecommerce testing
  • Remote usability testing
  • Plans & Pricing
  • Customer Stories

How do you want to use Trymata?

Conduct user testing, desktop usability video.

You’re on a business trip in Oakland, CA. You've been working late in downtown and now you're looking for a place nearby to grab a late dinner. You decided to check Zomato to try and find somewhere to eat. (Don't begin searching yet).

  • Look around on the home page. Does anything seem interesting to you?
  • How would you go about finding a place to eat near you in Downtown Oakland? You want something kind of quick, open late, not too expensive, and with a good rating.
  • What do the reviews say about the restaurant you've chosen?
  • What was the most important factor for you in choosing this spot?
  • You're currently close to the 19th St Bart station, and it's 9PM. How would you get to this restaurant? Do you think you'll be able to make it before closing time?
  • Your friend recommended you to check out a place called Belly while you're in Oakland. Try to find where it is, when it's open, and what kind of food options they have.
  • Now go to any restaurant's page and try to leave a review (don't actually submit it).

What was the worst thing about your experience?

It was hard to find the bart station. The collections not being able to be sorted was a bit of a bummer

What other aspects of the experience could be improved?

Feedback from the owners would be nice

What did you like about the website?

The flow was good, lots of bright photos

What other comments do you have for the owner of the website?

I like that you can sort by what you are looking for and i like the idea of collections

You're going on a vacation to Italy next month, and you want to learn some basic Italian for getting around while there. You decided to try Duolingo.

  • Please begin by downloading the app to your device.
  • Choose Italian and get started with the first lesson (stop once you reach the first question).
  • Now go all the way through the rest of the first lesson, describing your thoughts as you go.
  • Get your profile set up, then view your account page. What information and options are there? Do you feel that these are useful? Why or why not?
  • After a week in Italy, you're going to spend a few days in Austria. How would you take German lessons on Duolingo?
  • What other languages does the app offer? Do any of them interest you?

I felt like there could have been a little more of an instructional component to the lesson.

It would be cool if there were some feature that could allow two learners studying the same language to take lessons together. I imagine that their screens would be synced and they could go through lessons together and chat along the way.

Overall, the app was very intuitive to use and visually appealing. I also liked the option to connect with others.

Overall, the app seemed very helpful and easy to use. I feel like it makes learning a new language fun and almost like a game. It would be nice, however, if it contained more of an instructional portion.

All accounts, tests, and data have been migrated to our new & improved system!

Use the same email and password to log in:

Legacy login: Our legacy system is still available in view-only mode, login here >

What’s the new system about? Read more about our transition & what it-->

What is Qualitative Research Design? Definition, Types, Examples and Best Practices

' src=

What is Qualitative Research Design?

Qualitative research design is defined as a systematic and flexible approach to conducting research that focuses on understanding and interpreting the complexity of human phenomena. 

Unlike quantitative research, which seeks to measure and quantify variables, qualitative research is concerned with exploring the underlying meanings, patterns, and perspectives that shape individuals’ experiences and behaviors. This type of research design is particularly useful when studying social and cultural phenomena, as it allows researchers to delve deeply into the context and nuances of a particular subject.

In qualitative research, data is often collected through methods such as interviews, focus groups, participant observation, and document analysis. These methods aim to gather rich, detailed information that can provide insights into the subjective experiences of individuals or groups. 

Researchers employing qualitative design are often interested in exploring social processes, cultural norms, and the lived experiences of participants. The emphasis is on understanding the depth and context of the phenomena under investigation, rather than generating statistical generalizations.

One key characteristic of qualitative research design is its iterative nature. The research process is dynamic and may evolve as new insights emerge. Researchers continually engage with the data, refining their questions and methods based on ongoing analysis. 

This flexibility allows for a more organic and responsive exploration of the research topic, making it well-suited for complex and multifaceted inquiries.

Qualitative research design also involves careful consideration of ethical concerns, as researchers often work closely with participants to gather personal and sensitive information. 

Establishing trust, maintaining confidentiality, and ensuring participants’ autonomy are critical aspects of ethical practice in qualitative research. In summary, qualitative research design is a holistic and interpretive approach that prioritizes understanding the intricacies of human experience, offering depth and context to our comprehension of social and cultural phenomena.

Key Characteristics of Qualitative Research Design

Qualitative research design is characterized by several key features that distinguish it from quantitative approaches. Here are some of the essential characteristics:

  • Open-ended Nature: Qualitative research is open-ended and flexible, allowing for the exploration of complex social phenomena without preconceived hypotheses. Researchers often start with broad questions and adapt their focus based on emerging insights.
  • Rich Descriptions: Qualitative research emphasizes rich and detailed descriptions of the subject under investigation. This depth helps capture the context, nuances, and subtleties of human experiences, behaviors, and social phenomena.
  • Subjective Understanding: Qualitative researchers acknowledge the role of the researcher in shaping the study. The subjective interpretations and perspectives of both researchers and participants are considered valuable for understanding the phenomena being studied.
  • Interpretive Approach: Rather than seeking universal laws or generalizations, qualitative research aims to interpret and make sense of the meanings and patterns inherent in the data. Interpretation is often context-dependent and involves understanding the social and cultural context in which the study takes place.
  • Non-probability Sampling: Qualitative studies typically use non-probability sampling methods, such as purposeful or snowball sampling, to select participants deliberately chosen for their relevance to the research question. Sample sizes are often small but information-rich, allowing for a deep understanding of the selected cases.
  • Inductive Reasoning: Qualitative data analysis is often inductive, meaning that it involves identifying patterns, themes, and categories that emerge from the data itself. Researchers let the data shape the analysis, rather than fitting it into preconceived categories.
  • Coding and Categorization: Researchers use coding techniques to systematically organize and categorize data. This involves assigning labels or codes to segments of data based on recurring themes or patterns.
  • Flexible Design: Qualitative research design is adaptable and allows for changes in research questions, methods, and strategies as the study progresses. This flexibility accommodates the evolving nature of the research process.
  • Iterative Nature: Researchers engage in an iterative process of data collection, analysis, and refinement. As new insights emerge, researchers may revisit previous stages of the research, leading to a deeper and more nuanced understanding of the subject.

By embracing these key characteristics, qualitative research design offers a holistic and contextualized approach to studying the complexities of human behavior, culture, and social phenomena.

Key Components of Qualitative Research Design

Qualitative research design involves several key components that shape the overall framework and methodology of the study. These components help guide researchers in conducting in-depth investigations into the complexities of human experiences, behaviors, and social phenomena. Here are the key components of qualitative research design:

  • Central Inquiry: Qualitative research begins with a well-defined central research question or objective. This question guides the entire study and determines the focus of data collection and analysis. The question is often broad and open-ended to allow for exploration and discovery.
  • Rationale: Researchers provide a clear rationale for why the study is being conducted, outlining its significance and relevance. This may involve identifying gaps in existing literature, addressing practical problems, or contributing to theoretical debates.
  • Theoretical Framework: Qualitative studies often draw on existing theories or conceptual frameworks to guide their inquiry. The theoretical lens helps shape the research design and provides a basis for interpreting findings.
  • Study Design: Researchers decide on the overall approach to the study, whether it’s a case study, ethnography, grounded theory, phenomenology, or another qualitative design. The choice depends on the research question and the nature of the phenomenon under investigation.
  • Sampling Strategy: Qualitative research employs purposeful or theoretical sampling to select participants who can provide rich and relevant information related to the research question. Sampling decisions are made to ensure diversity and depth in the data.
  • Interviews: In-depth interviews are a common method in qualitative research. These interviews are typically semi-structured, allowing for flexibility while ensuring key topics are covered.
  • Observation: Researchers may engage in direct observation of participants in natural settings. This can involve participant observation, where the researcher becomes part of the environment, or non-participant observation, where the researcher remains separate.
  • Document Analysis: Researchers analyze existing documents, artifacts, or texts relevant to the study, such as diaries, letters, organizational records, or media content.
  • Thematic Analysis: Researchers identify and analyze recurring themes or patterns in the data. This involves coding and categorizing data to uncover underlying meanings and concepts.
  • Constant Comparative Analysis: Common in grounded theory, this method involves comparing data as it is collected, allowing researchers to refine categories and theories iteratively.
  • Narrative Analysis: Focuses on the stories people tell, examining the structure and content of narratives to understand the meaning-making process.
  • Informed Consent: Researchers obtain informed consent from participants, explaining the purpose of the study, potential risks, and ensuring participants have the right to withdraw at any time.
  • Confidentiality and Anonymity: Researchers take measures to protect the privacy of participants by ensuring that their identities and personal information are kept confidential or anonymized.
  • Credibility: Establishing credibility involves demonstrating that the study accurately represents participants’ perspectives. Techniques such as member checking, peer debriefing, and prolonged engagement contribute to credibility.
  • Transferability: Researchers aim to make the study findings applicable to similar contexts. Detailed descriptions and thick descriptions enhance the transferability of qualitative research.
  • Dependability and Confirmability: Ensuring dependability involves maintaining consistency in data collection and analysis, while confirmability ensures that findings are rooted in the data rather than researcher bias.
  • Reflexivity: Researchers acknowledge their role in shaping the study and consider how their background, experiences, and biases may influence the research process and interpretation of findings. Reflexivity enhances transparency and the researcher’s self-awareness.

By carefully considering and integrating these key components, qualitative researchers can design studies that yield rich, contextually grounded insights into the social phenomena they aim to explore.

Types of Qualitative Research Design

Qualitative research design encompasses various approaches, each suited to different research questions and objectives. Here are some common types of qualitative research designs:

  • Focus: Ethnography involves immersing the researcher in the natural environment of the participants to observe and understand their behaviors, practices, and cultural context.
  • Data Collection: Researchers often use participant observation, interviews, and document analysis to gather data.
  • Example: An anthropologist immersed in a remote tribe might live with the community for an extended period, participating in their daily activities, conducting interviews, and documenting observations. By doing so, the researcher gains a deep understanding of the tribe’s cultural practices, social relationships, and the significance of rituals in their way of life.
  • Focus: Phenomenology explores the lived experiences of individuals to uncover the essence of a phenomenon.
  • Data Collection: In-depth interviews and sometimes participant observation are common methods.
  • Purpose: It seeks to understand the subjective meaning individuals attribute to an experience.
  • In a study on the lived experiences of cancer survivors, researchers might conduct in-depth interviews to explore the subjective meaning individuals attach to their diagnosis, treatment, and recovery. Phenomenology seeks to uncover the essence of these experiences, capturing the emotional, psychological, and social dimensions that shape survivors’ perspectives on their journey through cancer.
  • Focus: Grounded theory aims to develop a theory grounded in the data, allowing patterns and concepts to emerge organically.
  • Data Collection: It involves constant comparative analysis of interviews or observations, with coding and categorization.
  • Purpose: This approach is used when researchers want to generate theories or concepts based on the data itself.
  • Research on retirement transitions using grounded theory might involve interviewing retirees from various backgrounds. Through constant comparison and iterative analysis, researchers may identify emerging themes and categories, ultimately developing a theory that explains the commonalities and variations in retirees’ experiences as they navigate this life stage.
  • Focus: Case studies delve deeply into a specific case or context to understand it in detail.
  • Data Collection: Multiple sources of data, such as interviews, observations, and documents, are used to provide a comprehensive view.
  • Purpose: Case studies are useful for exploring complex phenomena within their real-life context.
  • A case study on a company’s crisis response could involve a detailed examination of communication strategies, decision-making processes, and the organizational dynamics during a specific crisis. By analyzing the case in-depth, researchers gain insights into how the company’s actions and decisions influenced the outcome of the crisis and what lessons can be learned for future situations.
  • Focus: Narrative research examines the stories people tell to understand how individuals construct meaning and identity.
  • Data Collection: It involves collecting and analyzing narratives through interviews, personal accounts, or written documents.
  • Purpose: Narrative research is often used to explore personal or cultural stories and their implications.
  • Examining the life stories of refugees may involve collecting and analyzing personal narratives through interviews or written accounts. Researchers explore how displacement has shaped the refugees’ identities, relationships, and perceptions of home, providing a nuanced understanding of their experiences through the lens of storytelling.
  • Focus: Action research involves collaboration between researchers and participants to identify and solve practical problems.
  • Data Collection: Researchers collect data through cycles of planning, acting, observing, and reflecting.
  • Purpose: It is geared towards facilitating positive change in a particular context or community.
  • In an educational setting, action research might involve teachers and researchers collaborating to address a specific classroom challenge. Through cycles of planning, implementing interventions, and reflecting, the aim is to improve teaching practices and student learning outcomes, with the findings contributing to both practical solutions and the broader understanding of effective pedagogy.
  • Focus: Content analysis examines the content of written, visual, or audio materials to identify patterns or themes.
  • Data Collection: Researchers systematically analyze texts, images, or media content using coding and categorization.
  • Purpose: It is often used to study communication, media, or cultural artifacts.
  • A content analysis of news articles covering a specific social issue, such as climate change, could involve systematically coding and categorizing language and themes. This approach allows researchers to identify patterns in media discourse, explore public perceptions, and understand how the issue is framed in the media.
  • Focus: Critical ethnography combines ethnographic methods with a critical perspective to examine power structures and social inequalities.
  • Data Collection: Researchers engage in participant observation, interviews, and document analysis with a focus on social justice issues.
  • Purpose: This approach aims to explore and challenge existing power dynamics and social structures.
  • A critical ethnography examining gender dynamics in a workplace might involve observing daily interactions, conducting interviews, and analyzing policies. Researchers, guided by a critical perspective, aim to uncover power imbalances, stereotypes, and systemic inequalities within the organizational culture, contributing to a deeper understanding of gender dynamics in the workplace.
  • Focus: Similar to grounded theory, constructivist grounded theory acknowledges the role of the researcher in shaping interpretations.
  • Data Collection: It involves a flexible approach to data collection, including interviews, observations, or documents.
  • Purpose: This approach recognizes the co-construction of meaning between researchers and participants.
  • In a study on the experiences of individuals with chronic illness, researchers employing constructivist grounded theory might engage in open-ended interviews and data collection. The focus is on co-constructing meanings with participants, acknowledging the dynamic relationship between the researcher and those being studied, ultimately leading to a theory that reflects the collaborative nature of knowledge creation.

These qualitative research designs offer diverse methods for exploring and understanding the complexities of human experiences, behaviors, and social phenomena. The choice of design depends on the research question, the context of the study, and the desired depth of understanding.

Best practices for Qualitative Research Design

Qualitative research design requires careful planning and execution to ensure the credibility, reliability, and richness of the findings. Here are some best practices to consider when designing qualitative research:

  • Clearly articulate the research questions or objectives to guide the study. Ensure they are specific, open-ended, and aligned with the qualitative research approach.
  • Select a qualitative research design that aligns with the research questions and objectives. Consider approaches such as ethnography, phenomenology, grounded theory, or case study based on the nature of the study.
  • Conduct a comprehensive literature review to understand existing theories, concepts, and research related to the study. This helps situate the research within the broader scholarly context.
  • Use purposeful or theoretical sampling to select participants who can provide rich information related to the research questions. Aim for diversity in participants to capture a range of perspectives.
  • Clearly outline the data collection methods, such as interviews, observations, or document analysis. Develop detailed protocols, guides, or questionnaires to maintain consistency across data collection sessions.
  • Prioritize building trust and rapport with participants. Clearly communicate the study’s purpose, obtain informed consent, and establish a comfortable environment for open and honest discussions.
  • Adhere to ethical guidelines throughout the research process. Protect participant confidentiality, respect their autonomy, and obtain ethical approval from relevant review boards.
  • Pilot the data collection instruments and procedures with a small sample to identify and address any ambiguities, refine questions, and enhance the overall quality of data collection.
  • Use a systematic approach to analyze data, such as thematic analysis, constant comparison, or narrative analysis. Maintain transparency in the coding process, and consider inter-coder reliability if multiple researchers are involved.
  • Acknowledge and document the researcher’s background, biases, and perspectives. Practice reflexivity by continually reflecting on how the researcher’s positionality may influence the study.
  • Enhance the credibility of findings by using multiple data sources and methods. Triangulation helps validate results and provides a more comprehensive understanding of the research topic.
  • Consider member checking, where researchers share preliminary findings with participants to validate interpretations. This process enhances the credibility and trustworthiness of the study.
  • Keep a detailed journal documenting decisions, reflections, and insights throughout the research process. This journal helps provide transparency and can contribute to the rigor of the study.
  • Aim for data saturation, the point at which new data no longer provide additional insights. Saturation ensures thorough exploration of the research questions and increases the robustness of the findings.
  • Clearly document the research process, from design to findings. Provide a detailed and transparent account of the study methodology, facilitating the reproducibility and evaluation of the research.

By incorporating these best practices, qualitative researchers can enhance the rigor, credibility, and relevance of their studies, ultimately contributing valuable insights to the field.

Interested in learning more about the fields of product, research, and design? Search our articles here for helpful information spanning a wide range of topics!

Usability Testing Questions for Improving User’s Experience

14 best performance testing tools for application reliability, a complete guide to usability testing methods for better ux, ux mapping methods and how to create effective maps.

  • UB Directory
  • Clinical and Translational Science Institute >
  • Workforce Development >
  • Core Competency Workshop Series >
  • Qualitative Study Design and Data Analysis >

Qualitative Study Design

This workshop provides an overview of types of qualitative designs: in-depth interviews, focus groups, content analysis, observation, sampling strategies, participant recruitment, constructing an interview guide, field notes, transcription, integrating mixed-methods and survey questionnaires, putting together a study team, and IRB considerations.

Participants are invited to bring questions and ideas to share with the group during the session, offering an opportunity for collaborative learning as well as questions about individual projects.

DATE: Wednesday, October 16, 2024 TIME: 9:00 a.m. – 10:30 a.m. LOCATION: Room 7002, Clinical and Translational Research Center, 875 Ellicott St., Buffalo

*Attendance will be limited to the first 35 registrants (waitlist available).

Elizabeth Gage Bouchard, PhD.

Elizabeth Gage Bouchard, PhD Senior Vice President for Community Outreach and Engagement Professor of Oncology, Department of Cancer Prevention and Control  Roswell Park Comprehensive Cancer Center Associate Director, Community Engagement Core UB Clinical and Translational Science Institute (CTSI)

For more information, contact [email protected] or 716-844-9282. 

what is design research study

Practical Clinical Research Design and Application

A Primer for Physicians, Surgeons, and Clinical Healthcare Professionals

  • © 2024
  • Peter D. Fabricant 0

Orthopedic Surgery, Hospital for Special Surgery, New York, USA

You can also search for this author in PubMed   Google Scholar

  • A concise, practical guide for health care clinicians to optimize clinical research design and study execution
  • Maximizes clinicians’ ability to engage with data analysts and statisticians when designing clinical research projects
  • Research methodology primer written by a clinician, for clinicians who wish to perform and read clinical research

122 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

Every practicing physician, surgeon, advanced practice provider, and allied health professional interacts regularly with peer-reviewed literature: either while creating it, or consuming it. Despite the countless hours over many years spent in formal clinical training, many clinicians and clinician-authors lack advanced training or a working nuanced knowledge of research methodology and study design. Institutions have responded to this gap by reinforcing their ranks with statistical and methodological support in the form of data analysts, epidemiologists, and biostatisticians. However, clinicians are often unable to “talk the methodological talk” to guide them. This ultimately results in a stark disconnect between clinically relevant aspects of research and appropriate study design.

Existing research methodology texts are largely written by statisticians, epidemiologists, and other academic public health experts. These are not easily digestible by practicing clinicians who need practical knowledge of this content to design their own research or enhance their understanding of the medical literature. Furthermore, these texts are often too detailed or “in the weeds” with regard to mathematics and statistical mechanics. Practical knowledge is not centrally located; rather, it is spread out among multiple books, articles, and other sources.

This book is a concise, accessible, and practical guide for clinicians to read and reference when designing and reviewing clinical research. It is designed to be a standalone text, written “by a clinician, for clinicians” by a practicing clinical research expert who has had advanced formal training in research methodology, biostatistics, and epidemiology. Topics covered include descriptive and comparative statistics, power and sample size calculations, diagnostic tests, bias, and study design. In each chapter, consideration is given to study mechanics, advantages and disadvantages of each design, and illustrative analytical reviews of existing literature.

  • case reports
  • case-control studies
  • categorical data
  • cohort studies
  • continuous data
  • cost effectiveness
  • decision analysis
  • epidemiology
  • methodology
  • outcome scale
  • patient reported outcome measure
  • power calculation
  • propensity score
  • randomized controlled trials
  • reliability
  • research design
  • sensitivity
  • specificity

Table of contents (15 chapters)

Front matter, foundational basics, descriptive statistics.

Peter D. Fabricant

Comparative Statistics: Categorical Data

Comparative statistics: continuous data, statistical power and power calculations, characteristics of a diagnostic test: sensitivity, specificity, positive predictive value, and negative predictive value, statistical bias, the iterative process of designing successful clinical research, choosing and executing an appropriate clinical study design, randomized controlled trials, case-control studies, cohort studies, cross-sectional studies, case series and case reports, specialized study designs, propensity score-matched studies, interrater and intrarater reliability studies, clinical outcome scale development and validation, back matter, authors and affiliations, about the author.

Peter D. Fabricant, MD, MPH

Attending Orthopedic Surgeon and Education Director, Pediatric Orthopedic Surgery Service

Associate Scientist, Research Division

Hospital for Special Surgery

Associate Professor of Orthopedic Surgery

Weill Cornell Medical College

New York, NY, USA

Dr. Peter Fabricant is an attending orthopedic surgeon on the Pediatric Orthopedic Surgery Service at Hospital for Special Surgery (HSS) and Associate Professor of Orthopedic Surgery at Weill Cornell Medical College in New York, NY. He holds a dual appointment in the Research Division at HSS and serves as the Education Director for the Pediatric Orthopedic Surgery Service. He is a clinician-scientist specializing in pediatric and adolescent sports injuries, trauma, clinical outcomes, and quality improvement research.

Dr. Fabricant completed his undergraduate studies with honors at University of Rochester, and then attended Yale University School of Medicine. During his orthopedic surgery residency training at HSS, he earned a Master of Public Health Degree from Columbia University Mailman School of Public Health.

Dr. Fabricant has an extensive publication and speaking record in pediatric and adolescent orthopedic surgery, sports medicine, and trauma. He has developed a reputation as a clinical and research mentor to medical students and orthopedic surgery residents and fellows, and spends considerable time lecturing and consulting on clinical research and study design locally, regionally, and internationally. 

Dr. Fabricant’s recent investigations have spanned several areas including clinical outcomes, quality improvement, cost-effectiveness, health policy and economics, outcomes metrics and their psychometric properties, basic science, anatomy, and biomechanics. He lives in New York City with his wife, Dr. Son McLaren, their daughter, Avery, and their cat, Bruin.

Bibliographic Information

Book Title : Practical Clinical Research Design and Application

Book Subtitle : A Primer for Physicians, Surgeons, and Clinical Healthcare Professionals

Authors : Peter D. Fabricant

DOI : https://doi.org/10.1007/978-3-031-58380-3

Publisher : Springer Cham

eBook Packages : Medicine , Medicine (R0)

Copyright Information : The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

Hardcover ISBN : 978-3-031-58379-7 Published: 21 August 2024

Softcover ISBN : 978-3-031-58382-7 Due: 04 September 2025

eBook ISBN : 978-3-031-58380-3 Published: 20 August 2024

Edition Number : 1

Number of Pages : XV, 118

Number of Illustrations : 22 b/w illustrations, 15 illustrations in colour

Topics : Medicine/Public Health, general , Biomedicine, general

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Banner Image

Nursing Research (NURS 3321/4325/5366)

  • Introduction
  • Understand What Quantitative Research Is
  • Understand What Qualitative Research Is
  • Sage Methods Map
  • Step 1: Accessing CINAHL
  • Step 2: Create a Keyword Search
  • Step 3: Create a Subject Heading Search
  • Step 4: Repeat Steps 1-3 for Second Concept
  • Step 5: Repeat Steps 1-3 for Quantitative Terms
  • Step 6: Combining All Searches
  • Step 7: Adding Limiters
  • Step 8: Save Your Search!
  • What Kind of Article is This?
  • PICO Keyword Search Strategy
  • PICO Keyword Search
  • PICO Subject Heading Search
  • Combining Keyword and Subject Heading Searches
  • Adding Filters/Limiters
  • Finding Health Statistics
  • Find Clinical Guidelines This link opens in a new window
  • APA Format & Citations This link opens in a new window

What is Quantitative Research?

Quantitative methodology is the dominant research framework in the social sciences. it refers to a set of strategies, techniques and assumptions used to study psychological, social and economic processes through the exploration of numeric patterns . quantitative research gathers a range of numeric data. some of the numeric data is intrinsically quantitative (e.g. personal income), while in other cases the numeric structure is  imposed (e.g. ‘on a scale from 1 to 10, how depressed did you feel last week’). the collection of quantitative information allows researchers to conduct simple to extremely sophisticated statistical analyses that aggregate the data (e.g. averages, percentages), show relationships among the data (e.g. ‘students with lower grade point averages tend to score lower on a depression scale’) or compare across aggregated data (e.g. the usa has a higher gross domestic product than spain). quantitative research includes methodologies such as questionnaires, structured observations or experiments and stands in contrast to qualitative research. qualitative research involves the collection and analysis of narratives and/or open-ended observations through methodologies such as interviews, focus groups or ethnographies..

Coghlan, D., Brydon-Miller, M. (2014).  The SAGE encyclopedia of action research  (Vols. 1-2). London, : SAGE Publications Ltd doi: 10.4135/9781446294406

What is the purpose of quantitative research?

The purpose of quantitative research is to generate knowledge and create understanding about the social world. Quantitative research is used by social scientists, including communication researchers, to observe phenomena or occurrences affecting individuals. Social scientists are concerned with the study of people. Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population.

Allen, M. (2017).  The SAGE encyclopedia of communication research methods  (Vols. 1-4). Thousand Oaks, CA: SAGE Publications, Inc doi: 10.4135/9781483381411

How do I know if the study is a quantitative design?  What type of quantitative study is it?

Quantitative Research Designs: Descriptive non-experimental, Quasi-experimental or Experimental?

Studies do not always explicitly state what kind of research design is being used.  You will need to know how to decipher which design type is used.  The following video will help you determine the quantitative design type.

  • << Previous: Introduction
  • Next: Understand What Qualitative Research Is >>
  • Last Updated: Aug 21, 2024 9:49 AM
  • URL: https://libguides.uta.edu/nursingresearch

University of Texas Arlington Libraries 702 Planetarium Place · Arlington, TX 76019 · 817-272-3000

  • Internet Privacy
  • Accessibility
  • Problems with a guide? Contact Us.

IMAGES

  1. PPT

    what is design research study

  2. 25 Types of Research Designs (2024)

    what is design research study

  3. How to Create a Strong Research Design: 2-Minute Summary

    what is design research study

  4. Research Design in Qualitative Research

    what is design research study

  5. Types of Research Design

    what is design research study

  6. Research Design: Definition, Types & Characteristics

    what is design research study

COMMENTS

  1. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  2. Study designs: Part 1

    Research study design is a framework, or the set of methods and procedures used to collect and analyze data on variables specified in a particular research problem. Research study designs are of many types, each with its advantages and limitations. The type of study design used to answer a particular research question is determined by the ...

  3. What is a Research Design? Definition, Types, Methods and Examples

    A research design is defined as the overall plan or structure that guides the process of conducting research. It is a critical component of the research process and serves as a blueprint for how a study will be carried out, including the methods and techniques that will be used to collect and analyze data.

  4. What Is Research Design? 8 Types + Examples

    Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data. Research designs for quantitative studies include descriptive, correlational, experimental and quasi-experimenta l designs. Research designs for qualitative studies include phenomenological ...

  5. Clinical research study designs: The essentials

    Introduction. In clinical research, our aim is to design a study, which would be able to derive a valid and meaningful scientific conclusion using appropriate statistical methods that can be translated to the "real world" setting. 1 Before choosing a study design, one must establish aims and objectives of the study, and choose an appropriate target population that is most representative of ...

  6. Understanding Research Study Designs

    Ranganathan P. Understanding Research Study Designs. Indian J Crit Care Med 2019;23 (Suppl 4):S305-S307. Keywords: Clinical trials as topic, Observational studies as topic, Research designs. We use a variety of research study designs in biomedical research. In this article, the main features of each of these designs are summarized. Go to:

  7. Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall aims and approach; ... For practical reasons, many studies use non-probability sampling, but it's important to be aware of the limitations and carefully consider potential biases. ...

  8. What is design research methodology and why is it important?

    Design research is the process of gathering, analyzing and interpreting data and insights to inspire, guide and provide context for designs. It's a research discipline that applies both quantitative and qualitative research methods to help make well-informed design decisions. Not to be confused with user experience research - focused on the ...

  9. Types of Research Designs Compared

    Types of Research Designs Compared | Guide & Examples. Published on June 20, 2019 by Shona McCombes.Revised on June 22, 2023. When you start planning a research project, developing research questions and creating a research design, you will have to make various decisions about the type of research you want to do.. There are many ways to categorize different types of research.

  10. What Is a Research Design?

    A research design in qualitative research is a critical framework that guides the methodological approach to studying complex social phenomena. Qualitative research designs determine how data is collected, analyzed, and interpreted, ensuring that the research captures participants' nuanced and subjective perspectives.

  11. An introduction to different types of study design

    We may approach this study by 2 longitudinal designs: Prospective: we follow the individuals in the future to know who will develop the disease. Retrospective: we look to the past to know who developed the disease (e.g. using medical records) This design is the strongest among the observational studies. For example - to find out the relative ...

  12. What is Research Design? Types, Elements and Examples

    A research design is the plan or framework used to conduct a research study. It involves outlining the overall approach and methods that will be used to collect and analyze data in order to answer research questions or test hypotheses.

  13. Study designs: Part 1

    Research study design is a framework, or the set of methods and procedures used to collect and analyze data on variables specified in a particular research problem. Research study designs are of many types, each with its advantages and limitations. The type of study design used to answer a particular research question is determined by the ...

  14. Organizing Your Social Sciences Research Paper

    The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection, measurement, and interpretation of ...

  15. Research Design

    The purpose of research design is to plan and structure a research study in a way that enables the researcher to achieve the desired research goals with accuracy, validity, and reliability. Research design is the blueprint or the framework for conducting a study that outlines the methods, procedures, techniques, and tools for data collection ...

  16. Research Methods Guide: Research Design & Method

    Research design is a plan to answer your research question. A research method is a strategy used to implement that plan. Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively. Which research method should I choose?

  17. Design research

    The National Science Foundation initiative on design theory and methods led to substantial growth in engineering design research in the late-1980s. A particularly significant development was the emergence of the first journals of design research: Design Studies in 1979, Design Issues in 1984, and Research in Engineering Design in 1989.

  18. How to choose your study design

    First, by the specific research question. That is, if the question is one of 'prevalence' (disease burden) then the ideal is a cross-sectional study; if it is a question of 'harm' - a case-control study; prognosis - a cohort and therapy - a RCT. Second, by what resources are available to you. This includes budget, time, feasibility re-patient ...

  19. Full article: Design-based research: What it is and why it matters to

    Conclusion. Design-based research methods are a thirty-year old tradition from the learning sciences that have been taken up in many domains as a way to study designed interventions that challenge the traditional relationship between research and design, as is the case with online learning.

  20. Types of studies and research design

    Types of study design. Medical research is classified into primary and secondary research. Clinical/experimental studies are performed in primary research, whereas secondary research consolidates available studies as reviews, systematic reviews and meta-analyses. Three main areas in primary research are basic medical research, clinical research ...

  21. What is Qualitative Research Design? Definition, Types, Methods and

    When conducting qualitative research, it is important to follow best practices to ensure the rigor, validity, and trustworthiness of your study. Here are some top best practices for qualitative research design: 1. Clearly Define Research Questions: Begin by clearly defining your research questions or objectives.

  22. What is Design Research?

    What is Design Research? Design research is the practice of gaining insights by observing users and understanding industry and market shifts. For example, in service design it involves designers' using ethnography—an area of anthropology—to access study participants, to gain the best insights and so be able to start to design popular ...

  23. Design a research study

    The design of a piece of research refers to the practical way in which the research was conducted according to a systematic attempt to generate evidence to answer the research question. The term "research methodology" is often used to mean something similar, however different writers use both terms in slightly different ways: some writers, for ...

  24. What is Qualitative Research Design? Definition, Types, Examples and

    Qualitative research design is defined as a systematic and flexible approach to conducting research that focuses on understanding and interpreting the complexity of human phenomena. ... Study Design: Researchers decide on the overall approach to the study, whether it's a case study, ethnography, grounded theory, phenomenology, or another ...

  25. Qualitative Study Design

    This workshop provides an overview of types of qualitative designs: in-depth interviews, focus groups, content analysis, observation, sampling strategies, participant recruitment, constructing an interview guide, field notes, transcription, integrating mixed-methods and survey questionnaires, putting together a study team, and IRB considerations.

  26. Practical Clinical Research Design and Application

    A concise, practical guide for health care clinicians to optimize clinical research design and study execution; Maximizes clinicians' ability to engage with data analysts and statisticians when designing clinical research projects; Research methodology primer written by a clinician, for clinicians who wish to perform and read clinical research

  27. Nursing Research (NURS 3321/4325/5366)

    What is Quantitative Research? Quantitative methodology is the dominant research framework in the social sciences. It refers to a set of strategies, techniques and assumptions used to study psychological, social and economic processes through the exploration of numeric patterns.Quantitative research gathers a range of numeric data.