News alert: UC Berkeley has announced its next university librarian

Secondary menu

  • Log in to your Library account
  • Hours and Maps
  • Connect from Off Campus
  • UC Berkeley Home

Search form

Research methods--quantitative, qualitative, and more: overview.

  • Quantitative Research
  • Qualitative Research
  • Data Science Methods (Machine Learning, AI, Big Data)
  • Text Mining and Computational Text Analysis
  • Evidence Synthesis/Systematic Reviews
  • Get Data, Get Help!

About Research Methods

This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. 

As Patten and Newhart note in the book Understanding Research Methods , "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge. The accumulation of knowledge through research is by its nature a collective endeavor. Each well-designed study provides evidence that may support, amend, refute, or deepen the understanding of existing knowledge...Decisions are important throughout the practice of research and are designed to help researchers collect evidence that includes the full spectrum of the phenomenon under study, to maintain logical rules, and to mitigate or account for possible sources of bias. In many ways, learning research methods is learning how to see and make these decisions."

The choice of methods varies by discipline, by the kind of phenomenon being studied and the data being used to study it, by the technology available, and more.  This guide is an introduction, but if you don't see what you need here, always contact your subject librarian, and/or take a look to see if there's a library research guide that will answer your question. 

Suggestions for changes and additions to this guide are welcome! 

START HERE: SAGE Research Methods

Without question, the most comprehensive resource available from the library is SAGE Research Methods.  HERE IS THE ONLINE GUIDE  to this one-stop shopping collection, and some helpful links are below:

  • SAGE Research Methods
  • Little Green Books  (Quantitative Methods)
  • Little Blue Books  (Qualitative Methods)
  • Dictionaries and Encyclopedias  
  • Case studies of real research projects
  • Sample datasets for hands-on practice
  • Streaming video--see methods come to life
  • Methodspace- -a community for researchers
  • SAGE Research Methods Course Mapping

Library Data Services at UC Berkeley

Library Data Services Program and Digital Scholarship Services

The LDSP offers a variety of services and tools !  From this link, check out pages for each of the following topics:  discovering data, managing data, collecting data, GIS data, text data mining, publishing data, digital scholarship, open science, and the Research Data Management Program.

Be sure also to check out the visual guide to where to seek assistance on campus with any research question you may have!

Library GIS Services

Other Data Services at Berkeley

D-Lab Supports Berkeley faculty, staff, and graduate students with research in data intensive social science, including a wide range of training and workshop offerings Dryad Dryad is a simple self-service tool for researchers to use in publishing their datasets. It provides tools for the effective publication of and access to research data. Geospatial Innovation Facility (GIF) Provides leadership and training across a broad array of integrated mapping technologies on campu Research Data Management A UC Berkeley guide and consulting service for research data management issues

General Research Methods Resources

Here are some general resources for assistance:

  • Assistance from ICPSR (must create an account to access): Getting Help with Data , and Resources for Students
  • Wiley Stats Ref for background information on statistics topics
  • Survey Documentation and Analysis (SDA) .  Program for easy web-based analysis of survey data.

Consultants

  • D-Lab/Data Science Discovery Consultants Request help with your research project from peer consultants.
  • Research data (RDM) consulting Meet with RDM consultants before designing the data security, storage, and sharing aspects of your qualitative project.
  • Statistics Department Consulting Services A service in which advanced graduate students, under faculty supervision, are available to consult during specified hours in the Fall and Spring semesters.

Related Resourcex

  • IRB / CPHS Qualitative research projects with human subjects often require that you go through an ethics review.
  • OURS (Office of Undergraduate Research and Scholarships) OURS supports undergraduates who want to embark on research projects and assistantships. In particular, check out their "Getting Started in Research" workshops
  • Sponsored Projects Sponsored projects works with researchers applying for major external grants.
  • Next: Quantitative Research >>
  • Last Updated: Apr 25, 2024 11:09 AM
  • URL: https://guides.lib.berkeley.edu/researchmethods
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Types of Research Designs
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection, measurement, and interpretation of information and data. Note that the research problem determines the type of design you choose, not the other way around!

De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Trochim, William M.K. Research Methods Knowledge Base. 2006.

General Structure and Writing Style

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem logically and as unambiguously as possible . In social sciences research, obtaining information relevant to the research problem generally entails specifying the type of evidence needed to test the underlying assumptions of a theory, to evaluate a program, or to accurately describe and assess meaning related to an observable phenomenon.

With this in mind, a common mistake made by researchers is that they begin their investigations before they have thought critically about what information is required to address the research problem. Without attending to these design issues beforehand, the overall research problem will not be adequately addressed and any conclusions drawn will run the risk of being weak and unconvincing. As a consequence, the overall validity of the study will be undermined.

The length and complexity of describing the research design in your paper can vary considerably, but any well-developed description will achieve the following :

  • Identify the research problem clearly and justify its selection, particularly in relation to any valid alternative designs that could have been used,
  • Review and synthesize previously published literature associated with the research problem,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem,
  • Effectively describe the information and/or data which will be necessary for an adequate testing of the hypotheses and explain how such information and/or data will be obtained, and
  • Describe the methods of analysis to be applied to the data in determining whether or not the hypotheses are true or false.

The research design is usually incorporated into the introduction of your paper . You can obtain an overall sense of what to do by reviewing studies that have utilized the same research design [e.g., using a case study approach]. This can help you develop an outline to follow for your own paper.

NOTE: Use the SAGE Research Methods Online and Cases and the SAGE Research Methods Videos databases to search for scholarly resources on how to apply specific research designs and methods . The Research Methods Online database contains links to more than 175,000 pages of SAGE publisher's book, journal, and reference content on quantitative, qualitative, and mixed research methodologies. Also included is a collection of case studies of social research projects that can be used to help you better understand abstract or complex methodological concepts. The Research Methods Videos database contains hours of tutorials, interviews, video case studies, and mini-documentaries covering the entire research process.

Creswell, John W. and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 5th edition. Thousand Oaks, CA: Sage, 2018; De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Leedy, Paul D. and Jeanne Ellis Ormrod. Practical Research: Planning and Design . Tenth edition. Boston, MA: Pearson, 2013; Vogt, W. Paul, Dianna C. Gardner, and Lynne M. Haeffele. When to Use What Research Design . New York: Guilford, 2012.

Action Research Design

Definition and Purpose

The essentials of action research design follow a characteristic cycle whereby initially an exploratory stance is adopted, where an understanding of a problem is developed and plans are made for some form of interventionary strategy. Then the intervention is carried out [the "action" in action research] during which time, pertinent observations are collected in various forms. The new interventional strategies are carried out, and this cyclic process repeats, continuing until a sufficient understanding of [or a valid implementation solution for] the problem is achieved. The protocol is iterative or cyclical in nature and is intended to foster deeper understanding of a given situation, starting with conceptualizing and particularizing the problem and moving through several interventions and evaluations.

What do these studies tell you ?

  • This is a collaborative and adaptive research design that lends itself to use in work or community situations.
  • Design focuses on pragmatic and solution-driven research outcomes rather than testing theories.
  • When practitioners use action research, it has the potential to increase the amount they learn consciously from their experience; the action research cycle can be regarded as a learning cycle.
  • Action research studies often have direct and obvious relevance to improving practice and advocating for change.
  • There are no hidden controls or preemption of direction by the researcher.

What these studies don't tell you ?

  • It is harder to do than conducting conventional research because the researcher takes on responsibilities of advocating for change as well as for researching the topic.
  • Action research is much harder to write up because it is less likely that you can use a standard format to report your findings effectively [i.e., data is often in the form of stories or observation].
  • Personal over-involvement of the researcher may bias research results.
  • The cyclic nature of action research to achieve its twin outcomes of action [e.g. change] and research [e.g. understanding] is time-consuming and complex to conduct.
  • Advocating for change usually requires buy-in from study participants.

Coghlan, David and Mary Brydon-Miller. The Sage Encyclopedia of Action Research . Thousand Oaks, CA:  Sage, 2014; Efron, Sara Efrat and Ruth Ravid. Action Research in Education: A Practical Guide . New York: Guilford, 2013; Gall, Meredith. Educational Research: An Introduction . Chapter 18, Action Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Kemmis, Stephen and Robin McTaggart. “Participatory Action Research.” In Handbook of Qualitative Research . Norman Denzin and Yvonna S. Lincoln, eds. 2nd ed. (Thousand Oaks, CA: SAGE, 2000), pp. 567-605; McNiff, Jean. Writing and Doing Action Research . London: Sage, 2014; Reason, Peter and Hilary Bradbury. Handbook of Action Research: Participative Inquiry and Practice . Thousand Oaks, CA: SAGE, 2001.

Case Study Design

A case study is an in-depth study of a particular research problem rather than a sweeping statistical survey or comprehensive comparative inquiry. It is often used to narrow down a very broad field of research into one or a few easily researchable examples. The case study research design is also useful for testing whether a specific theory and model actually applies to phenomena in the real world. It is a useful design when not much is known about an issue or phenomenon.

  • Approach excels at bringing us to an understanding of a complex issue through detailed contextual analysis of a limited number of events or conditions and their relationships.
  • A researcher using a case study design can apply a variety of methodologies and rely on a variety of sources to investigate a research problem.
  • Design can extend experience or add strength to what is already known through previous research.
  • Social scientists, in particular, make wide use of this research design to examine contemporary real-life situations and provide the basis for the application of concepts and theories and the extension of methodologies.
  • The design can provide detailed descriptions of specific and rare cases.
  • A single or small number of cases offers little basis for establishing reliability or to generalize the findings to a wider population of people, places, or things.
  • Intense exposure to the study of a case may bias a researcher's interpretation of the findings.
  • Design does not facilitate assessment of cause and effect relationships.
  • Vital information may be missing, making the case hard to interpret.
  • The case may not be representative or typical of the larger problem being investigated.
  • If the criteria for selecting a case is because it represents a very unusual or unique phenomenon or problem for study, then your interpretation of the findings can only apply to that particular case.

Case Studies. Writing@CSU. Colorado State University; Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 4, Flexible Methods: Case Study Design. 2nd ed. New York: Columbia University Press, 1999; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Greenhalgh, Trisha, editor. Case Study Evaluation: Past, Present and Future Challenges . Bingley, UK: Emerald Group Publishing, 2015; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Stake, Robert E. The Art of Case Study Research . Thousand Oaks, CA: SAGE, 1995; Yin, Robert K. Case Study Research: Design and Theory . Applied Social Research Methods Series, no. 5. 3rd ed. Thousand Oaks, CA: SAGE, 2003.

Causal Design

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association -- a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order -- to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness -- a relationship between two variables that is not due to variation in a third variable.
  • Causality research designs assist researchers in understanding why the world works the way it does through the process of proving a causal link between variables and by the process of eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.
  • Not all relationships are causal! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and, therefore, to establish which variable is the actual cause and which is the  actual effect.

Beach, Derek and Rasmus Brun Pedersen. Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing . Ann Arbor, MI: University of Michigan Press, 2016; Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed. Thousand Oaks, CA: Pine Forge Press, 2007; Brewer, Ernest W. and Jennifer Kubn. “Causal-Comparative Design.” In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 125-132; Causal Research Design: Experimentation. Anonymous SlideShare Presentation; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base. 2006.

Cohort Design

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, rather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors often relies upon cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Due to the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36; Glenn, Norval D, editor. Cohort Analysis . 2nd edition. Thousand Oaks, CA: Sage, 2005; Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Payne, Geoff. “Cohort Study.” In The SAGE Dictionary of Social Research Methods . Victor Jupp, editor. (Thousand Oaks, CA: Sage, 2006), pp. 31-33; Study Design 101. Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study. Wikipedia.

Cross-Sectional Design

Cross-sectional research designs have three distinctive features: no time dimension; a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure differences between or from among a variety of people, subjects, or phenomena rather than a process of change. As such, researchers using this design can only employ a relatively passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a clear 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike an experimental design, where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical or temporal contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • This design only provides a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Bethlehem, Jelke. "7: Cross-sectional Research." In Research Methodology in the Social, Behavioural and Life Sciences . Herman J Adèr and Gideon J Mellenbergh, editors. (London, England: Sage, 1999), pp. 110-43; Bourque, Linda B. “Cross-Sectional Design.” In  The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman, and Tim Futing Liao. (Thousand Oaks, CA: 2004), pp. 230-231; Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design Application, Strengths and Weaknesses of Cross-Sectional Studies. Healthknowledge, 2009. Cross-Sectional Study. Wikipedia.

Descriptive Design

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject [a.k.a., the Heisenberg effect whereby measurements of certain systems cannot be made without affecting the systems].
  • Descriptive research is often used as a pre-cursor to more quantitative research designs with the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations in practice.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research cannot be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999; Given, Lisa M. "Descriptive Research." In Encyclopedia of Measurement and Statistics . Neil J. Salkind and Kristin Rasmussen, editors. (Thousand Oaks, CA: Sage, 2007), pp. 251-254; McNabb, Connie. Descriptive Research Methodologies. Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design, September 26, 2008; Erickson, G. Scott. "Descriptive Research Design." In New Methods of Market Research and Analysis . (Northampton, MA: Edward Elgar Publishing, 2017), pp. 51-77; Sahin, Sagufta, and Jayanta Mete. "A Brief Study on Descriptive Research: Its Nature and Application in Social Science." International Journal of Research and Analysis in Humanities 1 (2021): 11; K. Swatzell and P. Jennings. “Descriptive Research: The Nuts and Bolts.” Journal of the American Academy of Physician Assistants 20 (2007), pp. 55-56; Kane, E. Doing Your Own Research: Basic Descriptive Research in the Social Sciences and Humanities . London: Marion Boyars, 1985.

Experimental Design

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “What causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter the behaviors or responses of participants.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to experimentally designed studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs. School of Psychology, University of New England, 2000; Chow, Siu L. "Experimental Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 448-453; "Experimental Design." In Social Research Methods . Nicholas Walliman, editor. (London, England: Sage, 2006), pp, 101-110; Experimental Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences . 4th edition. Thousand Oaks, CA: Sage, 2013; Trochim, William M.K. Experimental Design. Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research. Slideshare presentation.

Exploratory Design

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to or rely upon to predict an outcome . The focus is on gaining insights and familiarity for later investigation or undertaken when research problems are in a preliminary stage of investigation. Exploratory designs are often used to establish an understanding of how best to proceed in studying an issue or what methodology would effectively apply to gathering information about the issue.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings, and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumptions.
  • Development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • In the policy arena or applied to practice, exploratory studies help establish research priorities and where resources should be allocated.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings. They provide insight but not definitive conclusions.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value to decision-makers.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Streb, Christoph K. "Exploratory Case Study." In Encyclopedia of Case Study Research . Albert J. Mills, Gabrielle Durepos and Eiden Wiebe, editors. (Thousand Oaks, CA: Sage, 2010), pp. 372-374; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research. Wikipedia.

Field Research Design

Sometimes referred to as ethnography or participant observation, designs around field research encompass a variety of interpretative procedures [e.g., observation and interviews] rooted in qualitative approaches to studying people individually or in groups while inhabiting their natural environment as opposed to using survey instruments or other forms of impersonal methods of data gathering. Information acquired from observational research takes the form of “ field notes ” that involves documenting what the researcher actually sees and hears while in the field. Findings do not consist of conclusive statements derived from numbers and statistics because field research involves analysis of words and observations of behavior. Conclusions, therefore, are developed from an interpretation of findings that reveal overriding themes, concepts, and ideas. More information can be found HERE .

  • Field research is often necessary to fill gaps in understanding the research problem applied to local conditions or to specific groups of people that cannot be ascertained from existing data.
  • The research helps contextualize already known information about a research problem, thereby facilitating ways to assess the origins, scope, and scale of a problem and to gage the causes, consequences, and means to resolve an issue based on deliberate interaction with people in their natural inhabited spaces.
  • Enables the researcher to corroborate or confirm data by gathering additional information that supports or refutes findings reported in prior studies of the topic.
  • Because the researcher in embedded in the field, they are better able to make observations or ask questions that reflect the specific cultural context of the setting being investigated.
  • Observing the local reality offers the opportunity to gain new perspectives or obtain unique data that challenges existing theoretical propositions or long-standing assumptions found in the literature.

What these studies don't tell you

  • A field research study requires extensive time and resources to carry out the multiple steps involved with preparing for the gathering of information, including for example, examining background information about the study site, obtaining permission to access the study site, and building trust and rapport with subjects.
  • Requires a commitment to staying engaged in the field to ensure that you can adequately document events and behaviors as they unfold.
  • The unpredictable nature of fieldwork means that researchers can never fully control the process of data gathering. They must maintain a flexible approach to studying the setting because events and circumstances can change quickly or unexpectedly.
  • Findings can be difficult to interpret and verify without access to documents and other source materials that help to enhance the credibility of information obtained from the field  [i.e., the act of triangulating the data].
  • Linking the research problem to the selection of study participants inhabiting their natural environment is critical. However, this specificity limits the ability to generalize findings to different situations or in other contexts or to infer courses of action applied to other settings or groups of people.
  • The reporting of findings must take into account how the researcher themselves may have inadvertently affected respondents and their behaviors.

Historical Design

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute a hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is often no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistently to ensure access. This may especially challenging for digital or online-only sources.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It is rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Howell, Martha C. and Walter Prevenier. From Reliable Sources: An Introduction to Historical Methods . Ithaca, NY: Cornell University Press, 2001; Lundy, Karen Saucier. "Historical Research." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor. (Thousand Oaks, CA: Sage, 2008), pp. 396-400; Marius, Richard. and Melvin E. Page. A Short Guide to Writing about History . 9th edition. Boston, MA: Pearson, 2015; Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

Longitudinal Design

A longitudinal study follows the same sample over time and makes repeated observations. For example, with longitudinal surveys, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study sometimes referred to as a panel study.

  • Longitudinal data facilitate the analysis of the duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research data to explain fluctuations in the results.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Forgues, Bernard, and Isabelle Vandangeon-Derumez. "Longitudinal Analyses." In Doing Management Research . Raymond-Alain Thiétart and Samantha Wauchope, editors. (London, England: Sage, 2001), pp. 332-351; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Menard, Scott, editor. Longitudinal Research . Thousand Oaks, CA: Sage, 2002; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study. Wikipedia.

Meta-Analysis Design

Meta-analysis is an analytical methodology designed to systematically evaluate and summarize the results from a number of individual studies, thereby, increasing the overall sample size and the ability of the researcher to study effects of interest. The purpose is to not simply summarize existing knowledge, but to develop a new understanding of a research problem using synoptic reasoning. The main objectives of meta-analysis include analyzing differences in the results among studies and increasing the precision by which effects are estimated. A well-designed meta-analysis depends upon strict adherence to the criteria used for selecting studies and the availability of information in each study to properly analyze their findings. Lack of information can severely limit the type of analyzes and conclusions that can be reached. In addition, the more dissimilarity there is in the results among individual studies [heterogeneity], the more difficult it is to justify interpretations that govern a valid synopsis of results. A meta-analysis needs to fulfill the following requirements to ensure the validity of your findings:

  • Clearly defined description of objectives, including precise definitions of the variables and outcomes that are being evaluated;
  • A well-reasoned and well-documented justification for identification and selection of the studies;
  • Assessment and explicit acknowledgment of any researcher bias in the identification and selection of those studies;
  • Description and evaluation of the degree of heterogeneity among the sample size of studies reviewed; and,
  • Justification of the techniques used to evaluate the studies.
  • Can be an effective strategy for determining gaps in the literature.
  • Provides a means of reviewing research published about a particular topic over an extended period of time and from a variety of sources.
  • Is useful in clarifying what policy or programmatic actions can be justified on the basis of analyzing research results from multiple studies.
  • Provides a method for overcoming small sample sizes in individual studies that previously may have had little relationship to each other.
  • Can be used to generate new hypotheses or highlight research problems for future studies.
  • Small violations in defining the criteria used for content analysis can lead to difficult to interpret and/or meaningless findings.
  • A large sample size can yield reliable, but not necessarily valid, results.
  • A lack of uniformity regarding, for example, the type of literature reviewed, how methods are applied, and how findings are measured within the sample of studies you are analyzing, can make the process of synthesis difficult to perform.
  • Depending on the sample size, the process of reviewing and synthesizing multiple studies can be very time consuming.

Beck, Lewis W. "The Synoptic Method." The Journal of Philosophy 36 (1939): 337-345; Cooper, Harris, Larry V. Hedges, and Jeffrey C. Valentine, eds. The Handbook of Research Synthesis and Meta-Analysis . 2nd edition. New York: Russell Sage Foundation, 2009; Guzzo, Richard A., Susan E. Jackson and Raymond A. Katzell. “Meta-Analysis Analysis.” In Research in Organizational Behavior , Volume 9. (Greenwich, CT: JAI Press, 1987), pp 407-442; Lipsey, Mark W. and David B. Wilson. Practical Meta-Analysis . Thousand Oaks, CA: Sage Publications, 2001; Study Design 101. Meta-Analysis. The Himmelfarb Health Sciences Library, George Washington University; Timulak, Ladislav. “Qualitative Meta-Analysis.” In The SAGE Handbook of Qualitative Data Analysis . Uwe Flick, editor. (Los Angeles, CA: Sage, 2013), pp. 481-495; Walker, Esteban, Adrian V. Hernandez, and Micheal W. Kattan. "Meta-Analysis: It's Strengths and Limitations." Cleveland Clinic Journal of Medicine 75 (June 2008): 431-439.

Mixed-Method Design

  • Narrative and non-textual information can add meaning to numeric data, while numeric data can add precision to narrative and non-textual information.
  • Can utilize existing data while at the same time generating and testing a grounded theory approach to describe and explain the phenomenon under study.
  • A broader, more complex research problem can be investigated because the researcher is not constrained by using only one method.
  • The strengths of one method can be used to overcome the inherent weaknesses of another method.
  • Can provide stronger, more robust evidence to support a conclusion or set of recommendations.
  • May generate new knowledge new insights or uncover hidden insights, patterns, or relationships that a single methodological approach might not reveal.
  • Produces more complete knowledge and understanding of the research problem that can be used to increase the generalizability of findings applied to theory or practice.
  • A researcher must be proficient in understanding how to apply multiple methods to investigating a research problem as well as be proficient in optimizing how to design a study that coherently melds them together.
  • Can increase the likelihood of conflicting results or ambiguous findings that inhibit drawing a valid conclusion or setting forth a recommended course of action [e.g., sample interview responses do not support existing statistical data].
  • Because the research design can be very complex, reporting the findings requires a well-organized narrative, clear writing style, and precise word choice.
  • Design invites collaboration among experts. However, merging different investigative approaches and writing styles requires more attention to the overall research process than studies conducted using only one methodological paradigm.
  • Concurrent merging of quantitative and qualitative research requires greater attention to having adequate sample sizes, using comparable samples, and applying a consistent unit of analysis. For sequential designs where one phase of qualitative research builds on the quantitative phase or vice versa, decisions about what results from the first phase to use in the next phase, the choice of samples and estimating reasonable sample sizes for both phases, and the interpretation of results from both phases can be difficult.
  • Due to multiple forms of data being collected and analyzed, this design requires extensive time and resources to carry out the multiple steps involved in data gathering and interpretation.

Burch, Patricia and Carolyn J. Heinrich. Mixed Methods for Policy Research and Program Evaluation . Thousand Oaks, CA: Sage, 2016; Creswell, John w. et al. Best Practices for Mixed Methods Research in the Health Sciences . Bethesda, MD: Office of Behavioral and Social Sciences Research, National Institutes of Health, 2010Creswell, John W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 4th edition. Thousand Oaks, CA: Sage Publications, 2014; Domínguez, Silvia, editor. Mixed Methods Social Networks Research . Cambridge, UK: Cambridge University Press, 2014; Hesse-Biber, Sharlene Nagy. Mixed Methods Research: Merging Theory with Practice . New York: Guilford Press, 2010; Niglas, Katrin. “How the Novice Researcher Can Make Sense of Mixed Methods Designs.” International Journal of Multiple Research Approaches 3 (2009): 34-46; Onwuegbuzie, Anthony J. and Nancy L. Leech. “Linking Research Questions to Mixed Methods Data Analysis Procedures.” The Qualitative Report 11 (September 2006): 474-498; Tashakorri, Abbas and John W. Creswell. “The New Era of Mixed Methods.” Journal of Mixed Methods Research 1 (January 2007): 3-7; Zhanga, Wanqing. “Mixed Methods Application in Health Intervention Research: A Multiple Case Study.” International Journal of Multiple Research Approaches 8 (2014): 24-35 .

Observational Design

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe [data is emergent rather than pre-existing].
  • The researcher is able to collect in-depth information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation research designs account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and are difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possibility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is knowingly studied is altered to some degree by the presence of the researcher, therefore, potentially skewing any data collected.

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Payne, Geoff and Judy Payne. "Observation." In Key Concepts in Social Research . The SAGE Key Concepts series. (London, England: Sage, 2004), pp. 158-162; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010;Williams, J. Patrick. "Nonparticipant Observation." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor.(Thousand Oaks, CA: Sage, 2008), pp. 562-563.

Philosophical Design

Understood more as an broad approach to examining a research problem than a methodological design, philosophical analysis and argumentation is intended to challenge deeply embedded, often intractable, assumptions underpinning an area of study. This approach uses the tools of argumentation derived from philosophical traditions, concepts, models, and theories to critically explore and challenge, for example, the relevance of logic and evidence in academic debates, to analyze arguments about fundamental issues, or to discuss the root of existing discourse about a research problem. These overarching tools of analysis can be framed in three ways:

  • Ontology -- the study that describes the nature of reality; for example, what is real and what is not, what is fundamental and what is derivative?
  • Epistemology -- the study that explores the nature of knowledge; for example, by what means does knowledge and understanding depend upon and how can we be certain of what we know?
  • Axiology -- the study of values; for example, what values does an individual or group hold and why? How are values related to interest, desire, will, experience, and means-to-end? And, what is the difference between a matter of fact and a matter of value?
  • Can provide a basis for applying ethical decision-making to practice.
  • Functions as a means of gaining greater self-understanding and self-knowledge about the purposes of research.
  • Brings clarity to general guiding practices and principles of an individual or group.
  • Philosophy informs methodology.
  • Refine concepts and theories that are invoked in relatively unreflective modes of thought and discourse.
  • Beyond methodology, philosophy also informs critical thinking about epistemology and the structure of reality (metaphysics).
  • Offers clarity and definition to the practical and theoretical uses of terms, concepts, and ideas.
  • Limited application to specific research problems [answering the "So What?" question in social science research].
  • Analysis can be abstract, argumentative, and limited in its practical application to real-life issues.
  • While a philosophical analysis may render problematic that which was once simple or taken-for-granted, the writing can be dense and subject to unnecessary jargon, overstatement, and/or excessive quotation and documentation.
  • There are limitations in the use of metaphor as a vehicle of philosophical analysis.
  • There can be analytical difficulties in moving from philosophy to advocacy and between abstract thought and application to the phenomenal world.

Burton, Dawn. "Part I, Philosophy of the Social Sciences." In Research Training for Social Scientists . (London, England: Sage, 2000), pp. 1-5; Chapter 4, Research Methodology and Design. Unisa Institutional Repository (UnisaIR), University of South Africa; Jarvie, Ian C., and Jesús Zamora-Bonilla, editors. The SAGE Handbook of the Philosophy of Social Sciences . London: Sage, 2011; Labaree, Robert V. and Ross Scimeca. “The Philosophical Problem of Truth in Librarianship.” The Library Quarterly 78 (January 2008): 43-70; Maykut, Pamela S. Beginning Qualitative Research: A Philosophic and Practical Guide . Washington, DC: Falmer Press, 1994; McLaughlin, Hugh. "The Philosophy of Social Research." In Understanding Social Work Research . 2nd edition. (London: SAGE Publications Ltd., 2012), pp. 24-47; Stanford Encyclopedia of Philosophy . Metaphysics Research Lab, CSLI, Stanford University, 2013.

Sequential Design

  • The researcher has a limitless option when it comes to sample size and the sampling schedule.
  • Due to the repetitive nature of this research design, minor changes and adjustments can be done during the initial parts of the study to correct and hone the research method.
  • This is a useful design for exploratory studies.
  • There is very little effort on the part of the researcher when performing this technique. It is generally not expensive, time consuming, or workforce intensive.
  • Because the study is conducted serially, the results of one sample are known before the next sample is taken and analyzed. This provides opportunities for continuous improvement of sampling and methods of analysis.
  • The sampling method is not representative of the entire population. The only possibility of approaching representativeness is when the researcher chooses to use a very large sample size significant enough to represent a significant portion of the entire population. In this case, moving on to study a second or more specific sample can be difficult.
  • The design cannot be used to create conclusions and interpretations that pertain to an entire population because the sampling technique is not randomized. Generalizability from findings is, therefore, limited.
  • Difficult to account for and interpret variation from one sample to another over time, particularly when using qualitative methods of data collection.

Betensky, Rebecca. Harvard University, Course Lecture Note slides; Bovaird, James A. and Kevin A. Kupzyk. "Sequential Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 1347-1352; Cresswell, John W. Et al. “Advanced Mixed-Methods Research Designs.” In Handbook of Mixed Methods in Social and Behavioral Research . Abbas Tashakkori and Charles Teddle, eds. (Thousand Oaks, CA: Sage, 2003), pp. 209-240; Henry, Gary T. "Sequential Sampling." In The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman and Tim Futing Liao, editors. (Thousand Oaks, CA: Sage, 2004), pp. 1027-1028; Nataliya V. Ivankova. “Using Mixed-Methods Sequential Explanatory Design: From Theory to Practice.” Field Methods 18 (February 2006): 3-20; Bovaird, James A. and Kevin A. Kupzyk. “Sequential Design.” In Encyclopedia of Research Design . Neil J. Salkind, ed. Thousand Oaks, CA: Sage, 2010; Sequential Analysis. Wikipedia.

Systematic Review

  • A systematic review synthesizes the findings of multiple studies related to each other by incorporating strategies of analysis and interpretation intended to reduce biases and random errors.
  • The application of critical exploration, evaluation, and synthesis methods separates insignificant, unsound, or redundant research from the most salient and relevant studies worthy of reflection.
  • They can be use to identify, justify, and refine hypotheses, recognize and avoid hidden problems in prior studies, and explain data inconsistencies and conflicts in data.
  • Systematic reviews can be used to help policy makers formulate evidence-based guidelines and regulations.
  • The use of strict, explicit, and pre-determined methods of synthesis, when applied appropriately, provide reliable estimates about the effects of interventions, evaluations, and effects related to the overarching research problem investigated by each study under review.
  • Systematic reviews illuminate where knowledge or thorough understanding of a research problem is lacking and, therefore, can then be used to guide future research.
  • The accepted inclusion of unpublished studies [i.e., grey literature] ensures the broadest possible way to analyze and interpret research on a topic.
  • Results of the synthesis can be generalized and the findings extrapolated into the general population with more validity than most other types of studies .
  • Systematic reviews do not create new knowledge per se; they are a method for synthesizing existing studies about a research problem in order to gain new insights and determine gaps in the literature.
  • The way researchers have carried out their investigations [e.g., the period of time covered, number of participants, sources of data analyzed, etc.] can make it difficult to effectively synthesize studies.
  • The inclusion of unpublished studies can introduce bias into the review because they may not have undergone a rigorous peer-review process prior to publication. Examples may include conference presentations or proceedings, publications from government agencies, white papers, working papers, and internal documents from organizations, and doctoral dissertations and Master's theses.

Denyer, David and David Tranfield. "Producing a Systematic Review." In The Sage Handbook of Organizational Research Methods .  David A. Buchanan and Alan Bryman, editors. ( Thousand Oaks, CA: Sage Publications, 2009), pp. 671-689; Foster, Margaret J. and Sarah T. Jewell, editors. Assembling the Pieces of a Systematic Review: A Guide for Librarians . Lanham, MD: Rowman and Littlefield, 2017; Gough, David, Sandy Oliver, James Thomas, editors. Introduction to Systematic Reviews . 2nd edition. Los Angeles, CA: Sage Publications, 2017; Gopalakrishnan, S. and P. Ganeshkumar. “Systematic Reviews and Meta-analysis: Understanding the Best Evidence in Primary Healthcare.” Journal of Family Medicine and Primary Care 2 (2013): 9-14; Gough, David, James Thomas, and Sandy Oliver. "Clarifying Differences between Review Designs and Methods." Systematic Reviews 1 (2012): 1-9; Khan, Khalid S., Regina Kunz, Jos Kleijnen, and Gerd Antes. “Five Steps to Conducting a Systematic Review.” Journal of the Royal Society of Medicine 96 (2003): 118-121; Mulrow, C. D. “Systematic Reviews: Rationale for Systematic Reviews.” BMJ 309:597 (September 1994); O'Dwyer, Linda C., and Q. Eileen Wafford. "Addressing Challenges with Systematic Review Teams through Effective Communication: A Case Report." Journal of the Medical Library Association 109 (October 2021): 643-647; Okoli, Chitu, and Kira Schabram. "A Guide to Conducting a Systematic Literature Review of Information Systems Research."  Sprouts: Working Papers on Information Systems 10 (2010); Siddaway, Andy P., Alex M. Wood, and Larry V. Hedges. "How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-analyses, and Meta-syntheses." Annual Review of Psychology 70 (2019): 747-770; Torgerson, Carole J. “Publication Bias: The Achilles’ Heel of Systematic Reviews?” British Journal of Educational Studies 54 (March 2006): 89-102; Torgerson, Carole. Systematic Reviews . New York: Continuum, 2003.

  • << Previous: Purpose of Guide
  • Next: Design Flaws to Avoid >>
  • Last Updated: May 30, 2024 9:38 AM
  • URL: https://libguides.usc.edu/writingguide

Research Methods/Types of Research

The term Research is related to seek out the information and knowledge on a particular topic or subject. In other words, research is an art of systematic investigation. Research can be classified in many different ways on the basis of the methodology of research, the knowledge it creates, the user group, the research problem it investigates etc.

Objectives of Research

The objectives of research can be grouped into the following categories :

1. To achieve skillfulness with a trend or to get novel opinions into it (research with this objective can be termed as exploratory or formulative). 2. To find out the characteristics of a particular character, condition or a grouping (research with this objective can be termed as descriptive research). 3. To establish the relationship with which something occur or with which it is related with something else (research with this objective are known as diagnostic research). 4. To test a hypothesis of a reasonable liaison between different variables (this type of research can be grouped into hypothesis-testing research ).

  • 1 Basic research
  • 2 Applied Research
  • 3 Problem oriented research
  • 4 Problem solving
  • 5 Quantitative Research
  • 6 Qualitative Research

Basic research

This research is conducted largely for the enhancement of knowledge and is research which does not have immediate commercial potential. The research is done for human welfare, animal welfare, and plant kingdom welfare. It is called basic, pure, fundamental research. The main motivation here is to expand man's knowledge, not to create or invent something. According to Travers, “Basic Research is designed to add to an organized body of scientific knowledge and does not necessarily produce results of immediate practical value.” Such research is time and cost intensive (Example: An experimental research that may not be or will be helpful in human progress). It is used to solve a problem by adding to the field of application of discipline.

Applied Research

Applied research is designed to solve practical problems of the modern world, rather than to acquire knowledge for knowledge's sake. The goal of applied research is to improve the human condition. It focuses on analysis and solving social and real-life problems. This research is generally conducted on a large scale basis and is expensive. As such, it is often conducted with the support of some financing agency like the national government, public corporation, world bank, UNICEF, UGC, Etc. According to Hunt, “applied research is an investigation for ways of using scientific knowledge to solve practical problems” for example:- improve agriculture crop production, treat or cure a specific disease, improve the energy efficiency of homes, offices, how can communication among workers in large companies be improved. This type of research can also be called Action Research.

Problem oriented research

Research is done by industry apex body for sorting out problems faced by all the companies. Eg:- WTO does problem oriented research for developing countries, in India agriculture and processed food export development authority (APEDA) conduct regular research for the benefit of agri-industry.

• As the name indicates, Problem identifying researches are undertaken to know the exact nature of problem that is required to be solved.

• Here, one clarification is needed when we use the term ‘Problem’, it is not a problem in true sense. It is usually a decision making dilemma or it is a need to tackle a particular business situation.

• It could be a difficulty or an opportunity.

For e.g.:-Revenue of Mobile company has decreased by 25% in the last year. The cause of the problem can be any one of the following:

• Poor quality of the product. • Lack of continuous availability. • Not so effective advertising campaign. • High price. • Poor calibre / lack of motivation in sales people/marketing team. • Tough competition from imported brands. • Depressed economic conditions

• In the same case, suppose the prime cause of problem is poor advertising campaign & secondary cause is higher pricing. • To tackle the problem of poor advertising, we have to answer questions like, what can be the new advertising campaign, who can be the brand ambassador, which media, which channel, at what time & during which programme advertisements will be broadcast.

Problem solving

This type of research is done by an individual company for the problem faced by it. Marketing research and market research are the applied research. For eg:- Videocon International conducts research to study customer satisfaction level, it will be problem solving research. In short, the main aim of problem solving research is to discover some solution for some pressing practical problem.

Quantitative Research

This research is based on numeric figures or numbers. Quantitative research aim to measure the quantity or amount and compares it with past records and tries to project for future period. In social sciences, “quantitative research refers to the systematic empirical investigation of quantitative properties and phenomena and their relationships”. The objective of quantitative research is to develop and employ mathematical models, theories or hypothesis pertaining to phenomena.

The process of measurement is central to quantitative research because it provides fundamental connection between empirical observation and mathematical expression of quantitative relationships. Statistics is the most widely used branch of mathematics in quantitative research. Statistical methods are used extensively with in fields such as economics and commerce.

In sum, the research using the normative approach conducts why may be called quantitative research as the inferences from it are largely based on quantitative data. Moreover, objectivity is the primary guard so that the research may be replicated by others, if necessary. Quantitative can also be called Analytical Research.

Qualitative Research

Qualitative research presents a non-quantitative type of analysis. Qualitative research is collecting, analyzing and interpreting data by observing what people do and say. Qualitative research refers to the meanings, definitions, characteristics, symbols, metaphors, and description of things. Qualitative research is much more subjective and uses very different methods of collecting information, mainly individual, in-depth interviews and focus groups.

The nature of this type of research is exploratory and open ended. Small number of people are interviewed in depth and or a relatively small number of focus groups are conducted. Qualitative research can be further classified in the following type.

I. Phenomenology:-a form of research in which the researcher attempts to understand how one or more individuals experience a phenomenon. Eg:-we might interview 20 victims of bhopal tragedy.

II. Ethnography:- this type of research focuses on describing the culture of a group of people. A culture is the shared attributes, values, norms, practices, language, and material things of a group of people. Eg:-the researcher might decide to go and live with the tribal in Andaman island and study the culture and the educational practices.

III. Case study:-is a form of qualitative research that is focused on providing a detailed account of one or more cases. Eg:-we may study a classroom that was given a new curriculum for technology use.

IV. Grounded theory:- it is an inductive type of research, based or grounded in the observations of data from which it was developed; it uses a variety of data sources, including quantitative data, review of records, interviews, observation and surveys

V. Historical research:-it allows one to discuss past and present events in the context of the present condition, and allows one to reflect and provide possible answers to current issues and problems. Eg:-the lending pattern of business in the 19th century.

In addition to the above, we also have the descriptive research. Fundamental research, of which this is based on establishing various theories

Also the research is classified into:

  • Descriptive research
  • Analytical research
  • Fundamental research
  • Conceptual research
  • Empirical research
  • One time research or longitudinal research
  • Field-setting research or laboratory research or simulation research
  • Clinical or diagnostic research
  • Exploratory research
  • Historical research
  • Conclusion oriented research
  • Case study research
  • Short term research
.

research types wikipedia

  • Book:Research Methods

Navigation menu

Banner

Research Basics

  • What Is Research?
  • Types of Research
  • Secondary Research | Literature Review
  • Developing Your Topic
  • Primary vs. Secondary Sources
  • Evaluating Sources
  • Responsible Conduct of Research
  • More Information

When most people think of research, they usually think of what’s known as primary research or bench research—research that is conducted in a laboratory to discover new things. While this is an important part of research, it is only a small part. The majority of research consists of what's called secondary research. Research also breaks down along other lines besides just primary or secondary.

How Many Types of Research Are There?

In addition to primary/secondary, research is usually categorized as quantitative/qualitative, descriptive/analytical, or basic/applied. Because there are many subtle differences between how different disciplines conduct research, the following table provides only a brief summary of these concepts.

 


 

 

 

 

 

There are, however, many other types of research, often used only in certain narrow fields of research. Further complicating things, many of the types overlap, go by different names depending on the subject area, or are differentiated only by very subtle differences. For more detailed explanations of the types of research commonly used in your field, please consult references related to research in your specific subject area.

Because secondary research is so widely used, even by non-researchers, and because its practice is relatively consistent between disciplines, we will cover it in more detail on other pages of this guide.

Creative Commons License

  • << Previous: What Is Research?
  • Next: Secondary Research | Literature Review >>
  • Last Updated: May 21, 2024 9:38 AM
  • URL: https://guides.library.iit.edu/research_basics

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is Qualitative Research? | Methods & Examples

What Is Qualitative Research? | Methods & Examples

Published on June 19, 2020 by Pritha Bhandari . Revised on June 22, 2023.

Qualitative research involves collecting and analyzing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights into a problem or generate new ideas for research.

Qualitative research is the opposite of quantitative research , which involves collecting and analyzing numerical data for statistical analysis.

Qualitative research is commonly used in the humanities and social sciences, in subjects such as anthropology, sociology, education, health sciences, history, etc.

  • How does social media shape body image in teenagers?
  • How do children and adults interpret healthy eating in the UK?
  • What factors influence employee retention in a large organization?
  • How is anxiety experienced around the world?
  • How can teachers integrate social issues into science curriculums?

Table of contents

Approaches to qualitative research, qualitative research methods, qualitative data analysis, advantages of qualitative research, disadvantages of qualitative research, other interesting articles, frequently asked questions about qualitative research.

Qualitative research is used to understand how people experience the world. While there are many approaches to qualitative research, they tend to be flexible and focus on retaining rich meaning when interpreting data.

Common approaches include grounded theory, ethnography , action research , phenomenological research, and narrative research. They share some similarities, but emphasize different aims and perspectives.

Qualitative research approaches
Approach What does it involve?
Grounded theory Researchers collect rich data on a topic of interest and develop theories .
Researchers immerse themselves in groups or organizations to understand their cultures.
Action research Researchers and participants collaboratively link theory to practice to drive social change.
Phenomenological research Researchers investigate a phenomenon or event by describing and interpreting participants’ lived experiences.
Narrative research Researchers examine how stories are told to understand how participants perceive and make sense of their experiences.

Note that qualitative research is at risk for certain research biases including the Hawthorne effect , observer bias , recall bias , and social desirability bias . While not always totally avoidable, awareness of potential biases as you collect and analyze your data can prevent them from impacting your work too much.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Each of the research approaches involve using one or more data collection methods . These are some of the most common qualitative methods:

  • Observations: recording what you have seen, heard, or encountered in detailed field notes.
  • Interviews:  personally asking people questions in one-on-one conversations.
  • Focus groups: asking questions and generating discussion among a group of people.
  • Surveys : distributing questionnaires with open-ended questions.
  • Secondary research: collecting existing data in the form of texts, images, audio or video recordings, etc.
  • You take field notes with observations and reflect on your own experiences of the company culture.
  • You distribute open-ended surveys to employees across all the company’s offices by email to find out if the culture varies across locations.
  • You conduct in-depth interviews with employees in your office to learn about their experiences and perspectives in greater detail.

Qualitative researchers often consider themselves “instruments” in research because all observations, interpretations and analyses are filtered through their own personal lens.

For this reason, when writing up your methodology for qualitative research, it’s important to reflect on your approach and to thoroughly explain the choices you made in collecting and analyzing the data.

Qualitative data can take the form of texts, photos, videos and audio. For example, you might be working with interview transcripts, survey responses, fieldnotes, or recordings from natural settings.

Most types of qualitative data analysis share the same five steps:

  • Prepare and organize your data. This may mean transcribing interviews or typing up fieldnotes.
  • Review and explore your data. Examine the data for patterns or repeated ideas that emerge.
  • Develop a data coding system. Based on your initial ideas, establish a set of codes that you can apply to categorize your data.
  • Assign codes to the data. For example, in qualitative survey analysis, this may mean going through each participant’s responses and tagging them with codes in a spreadsheet. As you go through your data, you can create new codes to add to your system if necessary.
  • Identify recurring themes. Link codes together into cohesive, overarching themes.

There are several specific approaches to analyzing qualitative data. Although these methods share similar processes, they emphasize different concepts.

Qualitative data analysis
Approach When to use Example
To describe and categorize common words, phrases, and ideas in qualitative data. A market researcher could perform content analysis to find out what kind of language is used in descriptions of therapeutic apps.
To identify and interpret patterns and themes in qualitative data. A psychologist could apply thematic analysis to travel blogs to explore how tourism shapes self-identity.
To examine the content, structure, and design of texts. A media researcher could use textual analysis to understand how news coverage of celebrities has changed in the past decade.
To study communication and how language is used to achieve effects in specific contexts. A political scientist could use discourse analysis to study how politicians generate trust in election campaigns.

Qualitative research often tries to preserve the voice and perspective of participants and can be adjusted as new research questions arise. Qualitative research is good for:

  • Flexibility

The data collection and analysis process can be adapted as new ideas or patterns emerge. They are not rigidly decided beforehand.

  • Natural settings

Data collection occurs in real-world contexts or in naturalistic ways.

  • Meaningful insights

Detailed descriptions of people’s experiences, feelings and perceptions can be used in designing, testing or improving systems or products.

  • Generation of new ideas

Open-ended responses mean that researchers can uncover novel problems or opportunities that they wouldn’t have thought of otherwise.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

research types wikipedia

Researchers must consider practical and theoretical limitations in analyzing and interpreting their data. Qualitative research suffers from:

  • Unreliability

The real-world setting often makes qualitative research unreliable because of uncontrolled factors that affect the data.

  • Subjectivity

Due to the researcher’s primary role in analyzing and interpreting data, qualitative research cannot be replicated . The researcher decides what is important and what is irrelevant in data analysis, so interpretations of the same data can vary greatly.

  • Limited generalizability

Small samples are often used to gather detailed data about specific contexts. Despite rigorous analysis procedures, it is difficult to draw generalizable conclusions because the data may be biased and unrepresentative of the wider population .

  • Labor-intensive

Although software can be used to manage and record large amounts of text, data analysis often has to be checked or performed manually.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square goodness of fit test
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Inclusion and exclusion criteria

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organization to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). What Is Qualitative Research? | Methods & Examples. Scribbr. Retrieved June 8, 2024, from https://www.scribbr.com/methodology/qualitative-research/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, qualitative vs. quantitative research | differences, examples & methods, how to do thematic analysis | step-by-step guide & examples, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

  • Privacy Policy

Research Method

Home » Scientific Research – Types, Purpose and Guide

Scientific Research – Types, Purpose and Guide

Table of Contents

Scientific Research

Scientific Research

Definition:

Scientific research is the systematic and empirical investigation of phenomena, theories, or hypotheses, using various methods and techniques in order to acquire new knowledge or to validate existing knowledge.

It involves the collection, analysis, interpretation, and presentation of data, as well as the formulation and testing of hypotheses. Scientific research can be conducted in various fields, such as natural sciences, social sciences, and engineering, and may involve experiments, observations, surveys, or other forms of data collection. The goal of scientific research is to advance knowledge, improve understanding, and contribute to the development of solutions to practical problems.

Types of Scientific Research

There are different types of scientific research, which can be classified based on their purpose, method, and application. In this response, we will discuss the four main types of scientific research.

Descriptive Research

Descriptive research aims to describe or document a particular phenomenon or situation, without altering it in any way. This type of research is usually done through observation, surveys, or case studies. Descriptive research is useful in generating ideas, understanding complex phenomena, and providing a foundation for future research. However, it does not provide explanations or causal relationships between variables.

Exploratory Research

Exploratory research aims to explore a new area of inquiry or develop initial ideas for future research. This type of research is usually conducted through observation, interviews, or focus groups. Exploratory research is useful in generating hypotheses, identifying research questions, and determining the feasibility of a larger study. However, it does not provide conclusive evidence or establish cause-and-effect relationships.

Experimental Research

Experimental research aims to test cause-and-effect relationships between variables by manipulating one variable and observing the effects on another variable. This type of research involves the use of an experimental group, which receives a treatment, and a control group, which does not receive the treatment. Experimental research is useful in establishing causal relationships, replicating results, and controlling extraneous variables. However, it may not be feasible or ethical to manipulate certain variables in some contexts.

Correlational Research

Correlational research aims to examine the relationship between two or more variables without manipulating them. This type of research involves the use of statistical techniques to determine the strength and direction of the relationship between variables. Correlational research is useful in identifying patterns, predicting outcomes, and testing theories. However, it does not establish causation or control for confounding variables.

Scientific Research Methods

Scientific research methods are used in scientific research to investigate phenomena, acquire knowledge, and answer questions using empirical evidence. Here are some commonly used scientific research methods:

Observational Studies

This method involves observing and recording phenomena as they occur in their natural setting. It can be done through direct observation or by using tools such as cameras, microscopes, or sensors.

Experimental Studies

This method involves manipulating one or more variables to determine the effect on the outcome. This type of study is often used to establish cause-and-effect relationships.

Survey Research

This method involves collecting data from a large number of people by asking them a set of standardized questions. Surveys can be conducted in person, over the phone, or online.

Case Studies

This method involves in-depth analysis of a single individual, group, or organization. Case studies are often used to gain insights into complex or unusual phenomena.

Meta-analysis

This method involves combining data from multiple studies to arrive at a more reliable conclusion. This technique can be used to identify patterns and trends across a large number of studies.

Qualitative Research

This method involves collecting and analyzing non-numerical data, such as interviews, focus groups, or observations. This type of research is often used to explore complex phenomena and to gain an understanding of people’s experiences and perspectives.

Quantitative Research

This method involves collecting and analyzing numerical data using statistical techniques. This type of research is often used to test hypotheses and to establish cause-and-effect relationships.

Longitudinal Studies

This method involves following a group of individuals over a period of time to observe changes and to identify patterns and trends. This type of study can be used to investigate the long-term effects of a particular intervention or exposure.

Data Analysis Methods

There are many different data analysis methods used in scientific research, and the choice of method depends on the type of data being collected and the research question. Here are some commonly used data analysis methods:

  • Descriptive statistics: This involves using summary statistics such as mean, median, mode, standard deviation, and range to describe the basic features of the data.
  • Inferential statistics: This involves using statistical tests to make inferences about a population based on a sample of data. Examples of inferential statistics include t-tests, ANOVA, and regression analysis.
  • Qualitative analysis: This involves analyzing non-numerical data such as interviews, focus groups, and observations. Qualitative analysis may involve identifying themes, patterns, or categories in the data.
  • Content analysis: This involves analyzing the content of written or visual materials such as articles, speeches, or images. Content analysis may involve identifying themes, patterns, or categories in the content.
  • Data mining: This involves using automated methods to analyze large datasets to identify patterns, trends, or relationships in the data.
  • Machine learning: This involves using algorithms to analyze data and make predictions or classifications based on the patterns identified in the data.

Application of Scientific Research

Scientific research has numerous applications in many fields, including:

  • Medicine and healthcare: Scientific research is used to develop new drugs, medical treatments, and vaccines. It is also used to understand the causes and risk factors of diseases, as well as to develop new diagnostic tools and medical devices.
  • Agriculture : Scientific research is used to develop new crop varieties, to improve crop yields, and to develop more sustainable farming practices.
  • Technology and engineering : Scientific research is used to develop new technologies and engineering solutions, such as renewable energy systems, new materials, and advanced manufacturing techniques.
  • Environmental science : Scientific research is used to understand the impacts of human activity on the environment and to develop solutions for mitigating those impacts. It is also used to monitor and manage natural resources, such as water and air quality.
  • Education : Scientific research is used to develop new teaching methods and educational materials, as well as to understand how people learn and develop.
  • Business and economics: Scientific research is used to understand consumer behavior, to develop new products and services, and to analyze economic trends and policies.
  • Social sciences : Scientific research is used to understand human behavior, attitudes, and social dynamics. It is also used to develop interventions to improve social welfare and to inform public policy.

How to Conduct Scientific Research

Conducting scientific research involves several steps, including:

  • Identify a research question: Start by identifying a question or problem that you want to investigate. This question should be clear, specific, and relevant to your field of study.
  • Conduct a literature review: Before starting your research, conduct a thorough review of existing research in your field. This will help you identify gaps in knowledge and develop hypotheses or research questions.
  • Develop a research plan: Once you have a research question, develop a plan for how you will collect and analyze data to answer that question. This plan should include a detailed methodology, a timeline, and a budget.
  • Collect data: Depending on your research question and methodology, you may collect data through surveys, experiments, observations, or other methods.
  • Analyze data: Once you have collected your data, analyze it using appropriate statistical or qualitative methods. This will help you draw conclusions about your research question.
  • Interpret results: Based on your analysis, interpret your results and draw conclusions about your research question. Discuss any limitations or implications of your findings.
  • Communicate results: Finally, communicate your findings to others in your field through presentations, publications, or other means.

Purpose of Scientific Research

The purpose of scientific research is to systematically investigate phenomena, acquire new knowledge, and advance our understanding of the world around us. Scientific research has several key goals, including:

  • Exploring the unknown: Scientific research is often driven by curiosity and the desire to explore uncharted territory. Scientists investigate phenomena that are not well understood, in order to discover new insights and develop new theories.
  • Testing hypotheses: Scientific research involves developing hypotheses or research questions, and then testing them through observation and experimentation. This allows scientists to evaluate the validity of their ideas and refine their understanding of the phenomena they are studying.
  • Solving problems: Scientific research is often motivated by the desire to solve practical problems or address real-world challenges. For example, researchers may investigate the causes of a disease in order to develop new treatments, or explore ways to make renewable energy more affordable and accessible.
  • Advancing knowledge: Scientific research is a collective effort to advance our understanding of the world around us. By building on existing knowledge and developing new insights, scientists contribute to a growing body of knowledge that can be used to inform decision-making, solve problems, and improve our lives.

Examples of Scientific Research

Here are some examples of scientific research that are currently ongoing or have recently been completed:

  • Clinical trials for new treatments: Scientific research in the medical field often involves clinical trials to test new treatments for diseases and conditions. For example, clinical trials may be conducted to evaluate the safety and efficacy of new drugs or medical devices.
  • Genomics research: Scientists are conducting research to better understand the human genome and its role in health and disease. This includes research on genetic mutations that can cause diseases such as cancer, as well as the development of personalized medicine based on an individual’s genetic makeup.
  • Climate change: Scientific research is being conducted to understand the causes and impacts of climate change, as well as to develop solutions for mitigating its effects. This includes research on renewable energy technologies, carbon capture and storage, and sustainable land use practices.
  • Neuroscience : Scientists are conducting research to understand the workings of the brain and the nervous system, with the goal of developing new treatments for neurological disorders such as Alzheimer’s disease and Parkinson’s disease.
  • Artificial intelligence: Researchers are working to develop new algorithms and technologies to improve the capabilities of artificial intelligence systems. This includes research on machine learning, computer vision, and natural language processing.
  • Space exploration: Scientific research is being conducted to explore the cosmos and learn more about the origins of the universe. This includes research on exoplanets, black holes, and the search for extraterrestrial life.

When to use Scientific Research

Some specific situations where scientific research may be particularly useful include:

  • Solving problems: Scientific research can be used to investigate practical problems or address real-world challenges. For example, scientists may investigate the causes of a disease in order to develop new treatments, or explore ways to make renewable energy more affordable and accessible.
  • Decision-making: Scientific research can provide evidence-based information to inform decision-making. For example, policymakers may use scientific research to evaluate the effectiveness of different policy options or to make decisions about public health and safety.
  • Innovation : Scientific research can be used to develop new technologies, products, and processes. For example, research on materials science can lead to the development of new materials with unique properties that can be used in a range of applications.
  • Knowledge creation : Scientific research is an important way of generating new knowledge and advancing our understanding of the world around us. This can lead to new theories, insights, and discoveries that can benefit society.

Advantages of Scientific Research

There are many advantages of scientific research, including:

  • Improved understanding : Scientific research allows us to gain a deeper understanding of the world around us, from the smallest subatomic particles to the largest celestial bodies.
  • Evidence-based decision making: Scientific research provides evidence-based information that can inform decision-making in many fields, from public policy to medicine.
  • Technological advancements: Scientific research drives technological advancements in fields such as medicine, engineering, and materials science. These advancements can improve quality of life, increase efficiency, and reduce costs.
  • New discoveries: Scientific research can lead to new discoveries and breakthroughs that can advance our knowledge in many fields. These discoveries can lead to new theories, technologies, and products.
  • Economic benefits : Scientific research can stimulate economic growth by creating new industries and jobs, and by generating new technologies and products.
  • Improved health outcomes: Scientific research can lead to the development of new medical treatments and technologies that can improve health outcomes and quality of life for people around the world.
  • Increased innovation: Scientific research encourages innovation by promoting collaboration, creativity, and curiosity. This can lead to new and unexpected discoveries that can benefit society.

Limitations of Scientific Research

Scientific research has some limitations that researchers should be aware of. These limitations can include:

  • Research design limitations : The design of a research study can impact the reliability and validity of the results. Poorly designed studies can lead to inaccurate or inconclusive results. Researchers must carefully consider the study design to ensure that it is appropriate for the research question and the population being studied.
  • Sample size limitations: The size of the sample being studied can impact the generalizability of the results. Small sample sizes may not be representative of the larger population, and may lead to incorrect conclusions.
  • Time and resource limitations: Scientific research can be costly and time-consuming. Researchers may not have the resources necessary to conduct a large-scale study, or may not have sufficient time to complete a study with appropriate controls and analysis.
  • Ethical limitations : Certain types of research may raise ethical concerns, such as studies involving human or animal subjects. Ethical concerns may limit the scope of the research that can be conducted, or require additional protocols and procedures to ensure the safety and well-being of participants.
  • Limitations of technology: Technology may limit the types of research that can be conducted, or the accuracy of the data collected. For example, certain types of research may require advanced technology that is not yet available, or may be limited by the accuracy of current measurement tools.
  • Limitations of existing knowledge: Existing knowledge may limit the types of research that can be conducted. For example, if there is limited knowledge in a particular field, it may be difficult to design a study that can provide meaningful results.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Artistic Research

Artistic Research – Methods, Types and Examples

Original Research

Original Research – Definition, Examples, Guide

Humanities Research

Humanities Research – Types, Methods and Examples

Historical Research

Historical Research – Types, Methods and Examples

Documentary Research

Documentary Research – Types, Methods and...

  • Research types

Three basic types of research can be identified:

  • Experimental - Characterised by random assignment to groups, with full control over extraneous variables, and manipulation of independent variables
  • Quasi-experimental - Characterised by the study and comparison of naturally-occurring groups
  • Non-experimental - Characterised by study of a single sample, without comparison between groups

For some examples, and to test your knowledge, see the quiz .

  • Research purposes

External Links

  • Types of research (alzheimer-europe.org)
  • Research types (heart.org)
  • Types of Research within qualitative and quantitative (wisc.edu)

research types wikipedia

  • Survey research and design in psychology

Navigation menu

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research types wikipedia

Home Market Research

What is Research: Definition, Methods, Types & Examples

What is Research

The search for knowledge is closely linked to the object of study; that is, to the reconstruction of the facts that will provide an explanation to an observed event and that at first sight can be considered as a problem. It is very human to seek answers and satisfy our curiosity. Let’s talk about research.

Content Index

What is Research?

What are the characteristics of research.

  • Comparative analysis chart

Qualitative methods

Quantitative methods, 8 tips for conducting accurate research.

Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, “research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.”

Inductive methods analyze an observed event, while deductive methods verify the observed event. Inductive approaches are associated with qualitative research , and deductive methods are more commonly associated with quantitative analysis .

Research is conducted with a purpose to:

  • Identify potential and new customers
  • Understand existing customers
  • Set pragmatic goals
  • Develop productive market strategies
  • Address business challenges
  • Put together a business expansion plan
  • Identify new business opportunities
  • Good research follows a systematic approach to capture accurate data. Researchers need to practice ethics and a code of conduct while making observations or drawing conclusions.
  • The analysis is based on logical reasoning and involves both inductive and deductive methods.
  • Real-time data and knowledge is derived from actual observations in natural settings.
  • There is an in-depth analysis of all data collected so that there are no anomalies associated with it.
  • It creates a path for generating new questions. Existing data helps create more research opportunities.
  • It is analytical and uses all the available data so that there is no ambiguity in inference.
  • Accuracy is one of the most critical aspects of research. The information must be accurate and correct. For example, laboratories provide a controlled environment to collect data. Accuracy is measured in the instruments used, the calibrations of instruments or tools, and the experiment’s final result.

What is the purpose of research?

There are three main purposes:

  • Exploratory: As the name suggests, researchers conduct exploratory studies to explore a group of questions. The answers and analytics may not offer a conclusion to the perceived problem. It is undertaken to handle new problem areas that haven’t been explored before. This exploratory data analysis process lays the foundation for more conclusive data collection and analysis.

LEARN ABOUT: Descriptive Analysis

  • Descriptive: It focuses on expanding knowledge on current issues through a process of data collection. Descriptive research describe the behavior of a sample population. Only one variable is required to conduct the study. The three primary purposes of descriptive studies are describing, explaining, and validating the findings. For example, a study conducted to know if top-level management leaders in the 21st century possess the moral right to receive a considerable sum of money from the company profit.

LEARN ABOUT: Best Data Collection Tools

  • Explanatory: Causal research or explanatory research is conducted to understand the impact of specific changes in existing standard procedures. Running experiments is the most popular form. For example, a study that is conducted to understand the effect of rebranding on customer loyalty.

Here is a comparative analysis chart for a better understanding:

 
Approach used Unstructured Structured Highly structured
Conducted throughAsking questions Asking questions By using hypotheses.
TimeEarly stages of decision making Later stages of decision makingLater stages of decision making

It begins by asking the right questions and choosing an appropriate method to investigate the problem. After collecting answers to your questions, you can analyze the findings or observations to draw reasonable conclusions.

When it comes to customers and market studies, the more thorough your questions, the better the analysis. You get essential insights into brand perception and product needs by thoroughly collecting customer data through surveys and questionnaires . You can use this data to make smart decisions about your marketing strategies to position your business effectively.

To make sense of your study and get insights faster, it helps to use a research repository as a single source of truth in your organization and manage your research data in one centralized data repository .

Types of research methods and Examples

what is research

Research methods are broadly classified as Qualitative and Quantitative .

Both methods have distinctive properties and data collection methods .

Qualitative research is a method that collects data using conversational methods, usually open-ended questions . The responses collected are essentially non-numerical. This method helps a researcher understand what participants think and why they think in a particular way.

Types of qualitative methods include:

  • One-to-one Interview
  • Focus Groups
  • Ethnographic studies
  • Text Analysis

Quantitative methods deal with numbers and measurable forms . It uses a systematic way of investigating events or data. It answers questions to justify relationships with measurable variables to either explain, predict, or control a phenomenon.

Types of quantitative methods include:

  • Survey research
  • Descriptive research
  • Correlational research

LEARN MORE: Descriptive Research vs Correlational Research

Remember, it is only valuable and useful when it is valid, accurate, and reliable. Incorrect results can lead to customer churn and a decrease in sales.

It is essential to ensure that your data is:

  • Valid – founded, logical, rigorous, and impartial.
  • Accurate – free of errors and including required details.
  • Reliable – other people who investigate in the same way can produce similar results.
  • Timely – current and collected within an appropriate time frame.
  • Complete – includes all the data you need to support your business decisions.

Gather insights

What is a research - tips

  • Identify the main trends and issues, opportunities, and problems you observe. Write a sentence describing each one.
  • Keep track of the frequency with which each of the main findings appears.
  • Make a list of your findings from the most common to the least common.
  • Evaluate a list of the strengths, weaknesses, opportunities, and threats identified in a SWOT analysis .
  • Prepare conclusions and recommendations about your study.
  • Act on your strategies
  • Look for gaps in the information, and consider doing additional inquiry if necessary
  • Plan to review the results and consider efficient methods to analyze and interpret results.

Review your goals before making any conclusions about your study. Remember how the process you have completed and the data you have gathered help answer your questions. Ask yourself if what your analysis revealed facilitates the identification of your conclusions and recommendations.

LEARN MORE ABOUT OUR SOFTWARE         FREE TRIAL

MORE LIKE THIS

Life@QuestionPro: The Journey of Kristie Lawrence

Life@QuestionPro: The Journey of Kristie Lawrence

Jun 7, 2024

We are on the front end of an innovation that can help us better predict how to transform our customer interactions.

How Can I Help You? — Tuesday CX Thoughts

Jun 5, 2024

research types wikipedia

Why Multilingual 360 Feedback Surveys Provide Better Insights

Jun 3, 2024

Raked Weighting

Raked Weighting: A Key Tool for Accurate Survey Results

May 31, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Research Tutorial

  • Library Research Tutorial
  • What Is a Thesis Statement?
  • Topic Development
  • Improve Your Research Question
  • Good and Bad Research Questions
  • Video Review
  • Sources for Background Reading
  • What about Wikipedia?
  • Related Terms
  • Subject Terms
  • Boolean Searching
  • Advanced Searching Techniques
  • Definition of "Scholarly"
  • Subject Guides
  • Individual Databases
  • Open Access Resources
  • Google Scholar
  • USMAI Book Search
  • Evaluation of Sources
  • Academic Writing
  • Writing Resources
  • Citing Sources
  • Citation Formats
  • Citation Resources
  • Academic Integrity
  • Research on the Job

When Is Wikipedia Useful?

  • Can be a useful place to start when you don't know much about a topic.  It can be great for background information,  but for the type of academic research you will be doing at UMGC, it is better to use an academic subject encyclopedia from one of the library’s databases already mentioned (Gale, SAGE, or Oxford Reference).
  • Can be written and edited by anyone . However, unlike the library’s subject encyclopedias, this means the content is dynamic, and can change at any time, and there is no way to guarantee the author’s expertise.

Wikipedia can be safely used in the following ways:

  • As a Starting Point - Wikipedia can give you background information on a topic, as well as perspectives you can use when formulating a research topic. You should not cite Wikipedia as a source for your research. You should always validate anything you use for research in a reliable source.
  • Finding Sources - The reference list at the bottom of a Wikipedia page allows you to access many types of sources on the topic, including academic journal articles, news sources, and even primary sources. Even if there are no actual links to these sources, you can search the library databases, or Google for full-text copies of articles or books listed.

For more information on contributing to Wikipedia, see Editing and Contributing to Wikipedia , from Cornell University.

For more information on Wikipedia inaccuracies, see: List of Wikipedia controversies

  • << Previous: Sources for Background Reading
  • Next: Video Review >>
  • Last Updated: Jun 7, 2024 11:53 PM
  • URL: https://libguides.umgc.edu/research-tutorial

What is cloud computing?

Group of white spheres on light blue background

With cloud computing, organizations essentially buy a range of services offered by cloud service providers (CSPs). The CSP’s servers host all the client’s applications. Organizations can enhance their computing power more quickly and cheaply via the cloud than by purchasing, installing, and maintaining their own servers.

The cloud-computing model is helping organizations to scale new digital solutions with greater speed and agility—and to create value more quickly. Developers use cloud services to build and run custom applications and to maintain infrastructure and networks for companies of virtually all sizes—especially large global ones. CSPs offer services, such as analytics, to handle and manipulate vast amounts of data. Time to market accelerates, speeding innovation to deliver better products and services across the world.

What are examples of cloud computing’s uses?

Get to know and directly engage with senior mckinsey experts on cloud computing.

Brant Carson is a senior partner in McKinsey’s Vancouver office; Chandra Gnanasambandam and Anand Swaminathan are senior partners in the Bay Area office; William Forrest is a senior partner in the Chicago office; Leandro Santos is a senior partner in the Atlanta office; Kate Smaje is a senior partner in the London office.

Cloud computing came on the scene well before the global pandemic hit, in 2020, but the ensuing digital dash  helped demonstrate its power and utility. Here are some examples of how businesses and other organizations employ the cloud:

  • A fast-casual restaurant chain’s online orders multiplied exponentially during the 2020 pandemic lockdowns, climbing to 400,000 a day, from 50,000. One pleasant surprise? The company’s online-ordering system could handle the volume—because it had already migrated to the cloud . Thanks to this success, the organization’s leadership decided to accelerate its five-year migration plan to less than one year.
  • A biotech company harnessed cloud computing to deliver the first clinical batch of a COVID-19 vaccine candidate for Phase I trials in just 42 days—thanks in part to breakthrough innovations using scalable cloud data storage and computing  to facilitate processes ensuring the drug’s safety and efficacy.
  • Banks use the cloud for several aspects of customer-service management. They automate transaction calls using voice recognition algorithms and cognitive agents (AI-based online self-service assistants directing customers to helpful information or to a human representative when necessary). In fraud and debt analytics, cloud solutions enhance the predictive power of traditional early-warning systems. To reduce churn, they encourage customer loyalty through holistic retention programs managed entirely in the cloud.
  • Automakers are also along for the cloud ride . One company uses a common cloud platform that serves 124 plants, 500 warehouses, and 1,500 suppliers to consolidate real-time data from machines and systems and to track logistics and offer insights on shop floor processes. Use of the cloud could shave 30 percent off factory costs by 2025—and spark innovation at the same time.

That’s not to mention experiences we all take for granted: using apps on a smartphone, streaming shows and movies, participating in videoconferences. All of these things can happen in the cloud.

Learn more about our Cloud by McKinsey , Digital McKinsey , and Technology, Media, & Telecommunications  practices.

How has cloud computing evolved?

Going back a few years, legacy infrastructure dominated IT-hosting budgets. Enterprises planned to move a mere 45 percent of their IT-hosting expenditures to the cloud by 2021. Enter COVID-19, and 65 percent of the decision makers surveyed by McKinsey increased their cloud budgets . An additional 55 percent ended up moving more workloads than initially planned. Having witnessed the cloud’s benefits firsthand, 40 percent of companies expect to pick up the pace of implementation.

The cloud revolution has actually been going on for years—more than 20, if you think the takeoff point was the founding of Salesforce, widely seen as the first software as a service (SaaS) company. Today, the next generation of cloud, including capabilities such as serverless computing, makes it easier for software developers to tweak software functions independently, accelerating the pace of release, and to do so more efficiently. Businesses can therefore serve customers and launch products in a more agile fashion. And the cloud continues to evolve.

Circular, white maze filled with white semicircles.

Introducing McKinsey Explainers : Direct answers to complex questions

Cost savings are commonly seen as the primary reason for moving to the cloud but managing those costs requires a different and more dynamic approach focused on OpEx rather than CapEx. Financial-operations (or FinOps) capabilities  can indeed enable the continuous management and optimization of cloud costs . But CSPs have developed their offerings so that the cloud’s greatest value opportunity is primarily through business innovation and optimization. In 2020, the top-three CSPs reached $100 billion  in combined revenues—a minor share of the global $2.4 trillion market for enterprise IT services—leaving huge value to be captured. To go beyond merely realizing cost savings, companies must activate three symbiotic rings of cloud value creation : strategy and management, business domain adoption, and foundational capabilities.

What’s the main reason to move to the cloud?

The pandemic demonstrated that the digital transformation can no longer be delayed—and can happen much more quickly than previously imagined. Nothing is more critical to a corporate digital transformation than becoming a cloud-first business. The benefits are faster time to market, simplified innovation and scalability, and reduced risk when effectively managed. The cloud lets companies provide customers with novel digital experiences—in days, not months—and delivers analytics absent on legacy platforms. But to transition to a cloud-first operating model, organizations must make a collective effort that starts at the top. Here are three actions CEOs can take to increase the value their companies get from cloud computing :

  • Establish a sustainable funding model.
  • Develop a new business technology operating model.
  • Set up policies to attract and retain the right engineering talent.

How much value will the cloud create?

Fortune 500 companies adopting the cloud could realize more than $1 trillion in value  by 2030, and not from IT cost reductions alone, according to McKinsey’s analysis of 700 use cases.

For example, the cloud speeds up design, build, and ramp-up, shortening time to market when companies have strong DevOps (the combination of development and operations) processes in place; groups of software developers customize and deploy software for operations that support the business. The cloud’s global infrastructure lets companies scale products almost instantly to reach new customers, geographies, and channels. Finally, digital-first companies use the cloud to adopt emerging technologies and innovate aggressively, using digital capabilities as a competitive differentiator to launch and build businesses .

If companies pursue the cloud’s vast potential in the right ways, they will realize huge value. Companies across diverse industries have implemented the public cloud and seen promising results. The successful ones defined a value-oriented strategy across IT and the business, acquired hands-on experience operating in the cloud, adopted a technology-first approach, and developed a cloud-literate workforce.

Learn more about our Cloud by McKinsey and Digital McKinsey practices.

What is the cloud cost/procurement model?

Some cloud services, such as server space, are leased. Leasing requires much less capital up front than buying, offers greater flexibility to switch and expand the use of services, cuts the basic cost of buying hardware and software upfront, and reduces the difficulties of upkeep and ownership. Organizations pay only for the infrastructure and computing services that meet their evolving needs. But an outsourcing model  is more apt than other analogies: the computing business issues of cloud customers are addressed by third-party providers that deliver innovative computing services on demand to a wide variety of customers, adapt those services to fit specific needs, and work to constantly improve the offering.

What are cloud risks?

The cloud offers huge cost savings and potential for innovation. However, when companies migrate to the cloud, the simple lift-and-shift approach doesn’t reduce costs, so companies must remediate their existing applications to take advantage of cloud services.

For instance, a major financial-services organization  wanted to move more than 50 percent of its applications to the public cloud within five years. Its goals were to improve resiliency, time to market, and productivity. But not all its business units needed to transition at the same pace. The IT leadership therefore defined varying adoption archetypes to meet each unit’s technical, risk, and operating-model needs.

Legacy cybersecurity architectures and operating models can also pose problems when companies shift to the cloud. The resulting problems, however, involve misconfigurations rather than inherent cloud security vulnerabilities. One powerful solution? Securing cloud workloads for speed and agility : automated security architectures and processes enable workloads to be processed at a much faster tempo.

What kind of cloud talent is needed?

The talent demands of the cloud differ from those of legacy IT. While cloud computing can improve the productivity of your technology, it requires specialized and sometimes hard-to-find talent—including full-stack developers, data engineers, cloud-security engineers, identity- and access-management specialists, and cloud engineers. The cloud talent model  should thus be revisited as you move forward.

Six practical actions can help your organization build the cloud talent you need :

  • Find engineering talent with broad experience and skills.
  • Balance talent maturity levels and the composition of teams.
  • Build an extensive and mandatory upskilling program focused on need.
  • Build an engineering culture that optimizes the developer experience.
  • Consider using partners to accelerate development and assign your best cloud leaders as owners.
  • Retain top talent by focusing on what motivates them.

How do different industries use the cloud?

Different industries are expected to see dramatically different benefits from the cloud. High-tech, retail, and healthcare organizations occupy the top end of the value capture continuum. Electronics and semiconductors, consumer-packaged-goods, and media companies make up the middle. Materials, chemicals, and infrastructure organizations cluster at the lower end.

Nevertheless, myriad use cases provide opportunities to unlock value across industries , as the following examples show:

  • a retailer enhancing omnichannel  fulfillment, using AI to optimize inventory across channels and to provide a seamless customer experience
  • a healthcare organization implementing remote heath monitoring to conduct virtual trials and improve adherence
  • a high-tech company using chatbots to provide premier-level support combining phone, email, and chat
  • an oil and gas company employing automated forecasting to automate supply-and-demand modeling and reduce the need for manual analysis
  • a financial-services organization implementing customer call optimization using real-time voice recognition algorithms to direct customers in distress to experienced representatives for retention offers
  • a financial-services provider moving applications in customer-facing business domains to the public cloud to penetrate promising markets more quickly and at minimal cost
  • a health insurance carrier accelerating the capture of billions of dollars in new revenues by moving systems to the cloud to interact with providers through easier onboarding

The cloud is evolving  to meet the industry-specific needs of companies. From 2021 to 2024, public-cloud spending on vertical applications (such as warehouse management in retailing and enterprise risk management in banking) is expected to grow by more than 40 percent annually. Spending on horizontal workloads (such as customer relationship management) is expected to grow by 25 percent. Healthcare and manufacturing organizations, for instance, plan to spend around twice as much on vertical applications as on horizontal ones.

Learn more about our Cloud by McKinsey , Digital McKinsey , Financial Services , Healthcare Systems & Services , Retail , and Technology, Media, & Telecommunications  practices.

What are the biggest cloud myths?

Views on cloud computing can be clouded by misconceptions. Here are seven common myths about the cloud —all of which can be debunked:

  • The cloud’s value lies primarily in reducing costs.
  • Cloud computing costs more than in-house computing.
  • On-premises data centers are more secure than the cloud.
  • Applications run more slowly in the cloud.
  • The cloud eliminates the need for infrastructure.
  • The best way to move to the cloud is to focus on applications or data centers.
  • You must lift and shift applications as-is or totally refactor them.

How large must my organization be to benefit from the cloud?

Here’s one more huge misconception: the cloud is just for big multinational companies. In fact, cloud can help make small local companies become multinational. A company’s benefits from implementing the cloud are not constrained by its size. In fact, the cloud shifts barrier to entry skill rather than scale, making it possible for a company of any size to compete if it has people with the right skills. With cloud, highly skilled small companies can take on established competitors. To realize the cloud’s immense potential value fully, organizations must take a thoughtful approach, with IT and the businesses working together.

For more in-depth exploration of these topics, see McKinsey’s Cloud Insights collection. Learn more about Cloud by McKinsey —and check out cloud-related job opportunities if you’re interested in working at McKinsey.

Articles referenced include:

  • “ Six practical actions for building the cloud talent you need ,” January 19, 2022, Brant Carson , Dorian Gärtner , Keerthi Iyengar, Anand Swaminathan , and Wayne Vest
  • “ Cloud-migration opportunity: Business value grows, but missteps abound ,” October 12, 2021, Tara Balakrishnan, Chandra Gnanasambandam , Leandro Santos , and Bhargs Srivathsan
  • “ Cloud’s trillion-dollar prize is up for grabs ,” February 26, 2021, Will Forrest , Mark Gu, James Kaplan , Michael Liebow, Raghav Sharma, Kate Smaje , and Steve Van Kuiken
  • “ Unlocking value: Four lessons in cloud sourcing and consumption ,” November 2, 2020, Abhi Bhatnagar , Will Forrest , Naufal Khan , and Abdallah Salami
  • “ Three actions CEOs can take to get value from cloud computing ,” July 21, 2020, Chhavi Arora , Tanguy Catlin , Will Forrest , James Kaplan , and Lars Vinter

Group of white spheres on light blue background

Want to know more about cloud computing?

Related articles.

Cloud’s trillion-dollar prize is up for grabs

Cloud’s trillion-dollar prize is up for grabs

The cloud transformation engine

The cloud transformation engine

Cloud calculator

Cloud cost-optimization simulator

Appointments at Mayo Clinic

Diabetes treatment: medications for type 2 diabetes.

Lifestyle choices, including eating a healthy diet, exercising and staying at a healthy weight, are key to managing type 2 diabetes. But you also might need to take medication to keep your blood sugar, also called glucose, at a healthy level. Sometimes one medication is enough. In other cases, taking several medications works better.

The list of medications for type 2 diabetes is long and can be confusing. Take time to learn about these medicines — how they're taken, what they do and what side effects they may cause. That can help you get ready to talk to your health care provider about diabetes treatment choices that are right for you.

Diabetes treatment: Lowering blood sugar

Several classes of type 2 diabetes medicines exist. Each class of medicine works in a different way to lower blood sugar. A medication may work by:

  • Causing the pancreas to make and release more insulin.
  • Limiting the liver's ability to make and release sugar.
  • Blocking the action of enzymes in the intestines that break down carbohydrates, slowing how quickly cells take in carbohydrates.
  • Improving cells' sensitivity to insulin.
  • Limiting the kidneys' ability to take in sugar, which increases the amount of sugar that leaves the body in urine.
  • Slowing how quickly food moves through the stomach.

Each class of medicine has one or more medications. Some of these medications are taken by mouth, while others must be taken as a shot.

Compare diabetes medications

Below is a list of common diabetes medications. Other medications are available too. Ask your health care provider about your choices and the pros and cons of each.

Medications you take by mouth

Meglitinides

Medications

  • Repaglinide
  • Nateglinide
  • Trigger the release of insulin from the pancreas
  • Work quickly

Possible side effects

  • Blood sugar levels drop too low — a condition called hypoglycemia
  • Weight gain

Sulfonylureas

  • Glipizide (Glucotrol XL)
  • Glimepiride (Amaryl)
  • Glyburide (DiaBeta, Glynase)
  • Effective in lowering blood sugar
  • Blood sugar levels drop too low
  • Nausea or vomiting if you drink alcohol

Dipeptidyl-peptidase 4 (DPP-4) inhibitors

  • Saxagliptin (Onglyza)
  • Sitagliptin (Januvia)
  • Linagliptin (Tradjenta)
  • Alogliptin (Nesina)
  • Cause the release of insulin when blood sugar is rising
  • Limit the liver's ability to release glucose
  • Don't cause weight gain
  • Don't cause blood sugar levels to drop too low when used alone or with metformin
  • Upper respiratory tract infection
  • Sore throat
  • Metformin (Fortamet, Glumetza, others)
  • Limit the liver's ability to release sugar
  • Improve cells' sensitivity to insulin
  • Very effective
  • May lead to minor weight loss
  • Stomach pain
  • Very rarely, the harmful buildup of lactic acid — a condition called lactic acidosis —in people with kidney failure or liver failure

Thiazolidinediones

  • Rosiglitazone (Avandia)
  • Pioglitazone (Actos)
  • Limit the liver's ability to make and release sugar
  • May slightly increase high-density lipoprotein (HDL) cholesterol, the "good" cholesterol
  • Fluid retention
  • Increased risk of broken bones
  • Increased risk of heart problems, including heart failure
  • Possible increased risk of bladder cancer with pioglitazone

People with liver problems or a history of heart failure shouldn't take this kind of diabetes medicine.

Alpha-glucosidase inhibitors

  • Miglitol (Glyset)
  • Slow the body's ability to breakdown starches and some sugars
  • Don't cause blood sugar levels to drop too low unless you take them with insulin or a sulfonylurea

Sodium-glucose transporter 2 (SGLT2) inhibitors

  • Canagliflozin (Invokana)
  • Dapagliflozin (Farxiga)
  • Empagliflozin (Jardiance)
  • Ertugliflozin (Steglatro)
  • Limit the kidneys' ability to take in sugar, which increases the amount of sugar that leaves the body in urine
  • May lead to weight loss
  • May lower blood pressure
  • Urinary tract infections
  • Yeast infections

Bile acid sequestrants

  • Colesevelam (Welchol)
  • Lower cholesterol and have a small effect in lowering blood sugar when used with other diabetes medications
  • Likely safe for people with liver problems
  • Constipation
  • Indigestion
  • Rise in blood fats called triglycerides

Medications you take as a shot

Amylin mimetics

  • Pramlintide (Symlin)
  • Help regulate blood sugar
  • Slow food moving through the stomach
  • Used with insulin shots
  • May decrease hunger
  • Abdominal pain

Incretin mimetic (GLP-1 receptor agonists)

  • Dulaglutide (Trulicity)
  • Exenatide (Byetta, Bydureon Bcise)
  • Liraglutide (Saxenda, Victoza)
  • Lixisenatide (Adlyxin)
  • Semaglutide (Ozempic, Rybelsus, Wegovy)
  • Cause the release of insulin as blood sugar levels are rising
  • May be used with metformin, basal insulin or a sulfonylurea
  • Increased risk of inflamed pancreas — a condition called pancreatitis

How to choose your diabetes medication

No one diabetes treatment is best for everyone. What works for one person may not work for another. Your health care provider can explain how one medication or multiple medications may fit into your diabetes treatment plan. Sometimes combining medicines may increase the effectiveness of each individual medicine to lower blood sugar. Talk to your provider about the pros and cons of specific diabetes medications for you.

There is a problem with information submitted for this request. Review/update the information highlighted below and resubmit the form.

From Mayo Clinic to your inbox

Sign up for free and stay up to date on research advancements, health tips, current health topics, and expertise on managing health. Click here for an email preview.

Error Email field is required

Error Include a valid email address

To provide you with the most relevant and helpful information, and understand which information is beneficial, we may combine your email and website usage information with other information we have about you. If you are a Mayo Clinic patient, this could include protected health information. If we combine this information with your protected health information, we will treat all of that information as protected health information and will only use or disclose that information as set forth in our notice of privacy practices. You may opt-out of email communications at any time by clicking on the unsubscribe link in the e-mail.

Thank you for subscribing!

You'll soon start receiving the latest Mayo Clinic health information you requested in your inbox.

Sorry something went wrong with your subscription

Please, try again in a couple of minutes

  • Papadakis MA, et al., eds. Diabetes mellitus and hypoglycemia. In: Current Medical Diagnosis & Treatment 2023. 62nd ed. McGraw-Hill; 2023. https://accessmedicine.mhmedical.com. Accessed Sept. 22, 2022.
  • Wexler DJ. Overview of general medical care in nonpregnant adults with diabetes mellitus. https://www.uptodate.com/contents/search. Accessed Sept. 22, 2022.
  • Oral medication: What are my options? American Diabetes Association. https://diabetes.org/healthy-living/medication-treatments/oral-medication/what-are-my-options. Accessed Sept. 22, 2022.
  • Wexler DJ. Sulfonylureas and meglitinides in the treatment of diabetes mellitus. https://www.uptodate.com/contents/search. Accessed Sept. 22, 2022.
  • Melmed S, et al., eds. Therapeutics of type 2 diabetes mellitus. In: Williams Textbook of Endocrinology. 14th ed. Elsevier; 2016. https://www.clinicalkey.com. Accessed Sept. 22, 2022.
  • Castro MR (expert opinion). Mayo Clinic. Sept. 22, 2022.

Products and Services

  • A Book: The Mayo Clinic Diabetes Diet
  • Assortment of Health Products from Mayo Clinic Store
  • A Book: The Essential Diabetes Book
  • Health foods
  • Acanthosis nigricans
  • Amputation and diabetes
  • Atkins Diet
  • Bariatric surgery
  • Caffeine: Does it affect blood sugar?
  • Can medicine help prevent diabetic macular edema?
  • Diabetes foods: Can I substitute honey for sugar?
  • Diabetes prevention: 5 tips for taking control
  • Types of diabetic neuropathy
  • Does keeping a proper blood sugar level prevent diabetic macular edema and other eye problems?
  • Prickly pear cactus
  • Endoscopic sleeve gastroplasty
  • Endoscopic Sleeve Gastroplasty (Gastric Sleeve)
  • Exercise and chronic disease
  • Fasting diet: Can it improve my heart health?
  • Frequent urination
  • Gastric bypass (Roux-en-Y)
  • Gastric Bypass Complications
  • Gastric bypass diet
  • Gastric Bypass Surgery: One Patient's Journey
  • GLP-1 agonists: Diabetes drugs and weight loss
  • Glucose tolerance test
  • Weight-loss surgery
  • Hyperinsulinemia: Is it diabetes?
  • What is insulin resistance? A Mayo Clinic expert explains
  • Intermittent fasting
  • Kidney disease FAQs
  • Living with diabetic macular edema
  • Low-glycemic index diet
  • Reducing your risks of diabetic macular edema
  • Screening for diabetic macular edema: How often?
  • Spotting symptoms of diabetic macular edema
  • Symptom Checker
  • Type 2 diabetes
  • Unexplained weight loss
  • Biliopancreatic diversion with duodenal switch
  • Weight Loss Surgery Options
  • What is diabetic macular edema?
  • Mayo Clinic Minute: Out of shape kids and diabetes

Mayo Clinic does not endorse companies or products. Advertising revenue supports our not-for-profit mission.

  • Opportunities

Mayo Clinic Press

Check out these best-sellers and special offers on books and newsletters from Mayo Clinic Press .

  • Mayo Clinic on Incontinence - Mayo Clinic Press Mayo Clinic on Incontinence
  • The Essential Diabetes Book - Mayo Clinic Press The Essential Diabetes Book
  • Mayo Clinic on Hearing and Balance - Mayo Clinic Press Mayo Clinic on Hearing and Balance
  • FREE Mayo Clinic Diet Assessment - Mayo Clinic Press FREE Mayo Clinic Diet Assessment
  • Mayo Clinic Health Letter - FREE book - Mayo Clinic Press Mayo Clinic Health Letter - FREE book
  • Diabetes treatment Medications for type 2 diabetes

We’re transforming healthcare

Make a gift now and help create new and better solutions for more than 1.3 million patients who turn to Mayo Clinic each year.

IMAGES

  1. Wikipedia, Research, http://en.wikipedia.org/wiki/What is research?

    research types wikipedia

  2. Types Of Research Presentation

    research types wikipedia

  3. Different Types of Research

    research types wikipedia

  4. Types of Research

    research types wikipedia

  5. Using Wikipedia for Research

    research types wikipedia

  6. Understanding Types of Research

    research types wikipedia

VIDEO

  1. 1-3- Types of Clinical Research

  2. 3.Three type of main Research in education

  3. Research methodology... Meaning of Research, Types of Research

  4. Research Design, Research Method: What's the Difference?

  5. Exegetic Research|| Types of Research|| Paper 1|| UGC NET JRF 2024

  6. Basic and Applied Research

COMMENTS

  1. Research

    Types of Research Method 1. Observatory Research Method 2. Correlation Research Method . Non-empirical research. Non-empirical (theoretical) research is an approach that involves the development of theory as opposed to using observation and experimentation. As such, non-empirical research seeks solutions to problems using existing knowledge as ...

  2. Qualitative research

    Qualitative research is a type of research that aims to gather and analyse non-numerical (descriptive) data in order to gain an understanding of individuals' social reality, including understanding their attitudes, beliefs, and motivation. This type of research typically involves in-depth interviews, focus groups, or observations in order to collect data that is rich in detail and context.

  3. Methodology

    In its most common sense, methodology is the study of research methods. However, the term can also refer to the methods themselves or to the philosophical discussion of associated background assumptions. A method is a structured procedure for bringing about a certain goal, like acquiring knowledge or verifying knowledge claims. This normally involves various steps, like choosing a sample ...

  4. Descriptive research

    Descriptive research is mainly done when a researcher wants to gain a better understanding of a topic. That is, analysis of the past as opposed to the future. Descriptive research is the exploration of the existing certain phenomena. The details of the facts won't be known. The existing phenomena's facts are not known to the person.

  5. Research Methods--Quantitative, Qualitative, and More: Overview

    About Research Methods. This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. As Patten and Newhart note in the book Understanding Research Methods, "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge.

  6. Research

    Research. Research is a way of looking for new information, new understanding, and new facts. A person who does research is called a researcher. Some researchers work in academia. Other researchers work for businesses, for organisations, or for the government. Research is often used for solving problems or increasing available knowledge.

  7. What Is a Research Design

    Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Other interesting articles.

  8. Types of Research Designs Compared

    Types of Research Designs Compared | Guide & Examples. Published on June 20, 2019 by Shona McCombes.Revised on June 22, 2023. When you start planning a research project, developing research questions and creating a research design, you will have to make various decisions about the type of research you want to do.. There are many ways to categorize different types of research.

  9. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  10. Types of Research Designs

    This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. ... 2377-2394; Exploratory Research. Wikipedia. Field Research Design. Definition and Purpose. Sometimes referred to as ethnography or participant ...

  11. Research Methods/Types of Research

    Qualitative research refers to the meanings, definitions, characteristics, symbols, metaphors, and description of things. Qualitative research is much more subjective and uses very different methods of collecting information, mainly individual, in-depth interviews and focus groups. The nature of this type of research is exploratory and open ended.

  12. Types of Research

    Expands human knowledge. Similar to analytical or basic research. Secondary. Consolidates existing knowledge. Establishes what's already known. Proves the need for primary research. Discovers methods and protocols for primary research. Similar to descriptive research. There are, however, many other types of research, often used only in ...

  13. What Is Qualitative Research?

    Qualitative research involves collecting and analyzing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights into a problem or generate new ideas for research. Qualitative research is the opposite of quantitative research, which involves collecting and ...

  14. Research

    Contents. Research is defined as human activity based on intellectual application in the investigation of matter. The primary purpose for applied research is discovering, interpreting, and the development of methods and systems for the advancement of human knowledge on a wide variety of scientific matters of our world and the universe.

  15. Scientific Research

    Scientific research is the systematic and empirical investigation of phenomena, theories, or hypotheses, using various methods and techniques in order to acquire new knowledge or to validate existing knowledge. It involves the collection, analysis, interpretation, and presentation of data, as well as the formulation and testing of hypotheses.

  16. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study.

  17. Research types

    Three basic types of research can be identified: Experimental - Characterised by random assignment to groups, with full control over extraneous variables, and manipulation of independent variables. Quasi-experimental - Characterised by the study and comparison of naturally-occurring groups. Non-experimental - Characterised by study of a single ...

  18. What is Research

    Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, "research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.".

  19. 19 Types of Research (With Definitions and Examples)

    Example: A researcher examines if and how employee satisfaction changes in the same employees after one year, three years and five years with the same company. 16. Mixed research. Mixed research includes both qualitative and quantitative data. The results are often presented as a mix of graphs, words and images.

  20. UMGC Library: Research Tutorial: What about Wikipedia?

    Wikipedia: Can be a useful place to start when you don't know much about a topic. It can be great for background information, but for the type of academic research you will be doing at UMGC, it is better to use an academic subject encyclopedia from one of the library's databases already mentioned (Gale, SAGE, or Oxford Reference).

  21. What is cloud computing: Its uses and benefits

    Cloud computing is the use of comprehensive digital capabilities delivered via the internet for organizations to operate, innovate, and serve customers. It eliminates the need for organizations to host digital applications on their own servers. Group of white spheres on light blue background.

  22. Diabetes treatment: Medications for type 2 diabetes

    Diarrhea. Sodium-glucose transporter 2 (SGLT2) inhibitors. Medications. Canagliflozin (Invokana) Dapagliflozin (Farxiga) Empagliflozin (Jardiance) Ertugliflozin (Steglatro) Action. Limit the kidneys' ability to take in sugar, which increases the amount of sugar that leaves the body in urine.