• USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Reading Research Effectively
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Reading a Scholarly Article or Research Paper

Identifying a research problem to investigate requires a preliminary search for and critical review of the literature in order to gain an understanding about how scholars have examined a topic. Scholars rarely structure research studies in a way that can be followed like a story; they are complex and detail-intensive and often written in a descriptive and conclusive narrative form. However, in the social and behavioral sciences, journal articles and stand-alone research reports are generally organized in a consistent format that makes it easier to compare and contrast studies and to interpret their contents.

General Reading Strategies

W hen you first read an article or research paper, focus on asking specific questions about each section. This strategy can help with overall comprehension and with understanding how the content relates [or does not relate] to the problem you want to investigate. As you review more and more studies, the process of understanding and critically evaluating the research will become easier because the content of what you review will begin to coalescence around common themes and patterns of analysis. Below are recommendations on how to read each section of a research paper effectively. Note that the sections to read are out of order from how you will find them organized in a journal article or research paper.

1.  Abstract

The abstract summarizes the background, methods, results, discussion, and conclusions of a scholarly article or research paper. Use the abstract to filter out sources that may have appeared useful when you began searching for information but, in reality, are not relevant. Questions to consider when reading the abstract are:

  • Is this study related to my question or area of research?
  • What is this study about and why is it being done ?
  • What is the working hypothesis or underlying thesis?
  • What is the primary finding of the study?
  • Are there words or terminology that I can use to either narrow or broaden the parameters of my search for more information?

2.  Introduction

If, after reading the abstract, you believe the paper may be useful, focus on examining the research problem and identifying the questions the author is trying to address. This information is usually located within the first few paragraphs of the introduction or in the concluding paragraph. Look for information about how and in what way this relates to what you are investigating. In addition to the research problem, the introduction should provide the main argument and theoretical framework of the study and, in the last paragraphs of the introduction, describe what the author(s) intend to accomplish. Questions to consider when reading the introduction include:

  • What is this study trying to prove or disprove?
  • What is the author(s) trying to test or demonstrate?
  • What do we already know about this topic and what gaps does this study try to fill or contribute a new understanding to the research problem?
  • Why should I care about what is being investigated?
  • Will this study tell me anything new related to the research problem I am investigating?

3.  Literature Review

The literature review describes and critically evaluates what is already known about a topic. Read the literature review to obtain a big picture perspective about how the topic has been studied and to begin the process of seeing where your potential study fits within the domain of prior research. Questions to consider when reading the literature review include:

  • W hat other research has been conducted about this topic and what are the main themes that have emerged?
  • What does prior research reveal about what is already known about the topic and what remains to be discovered?
  • What have been the most important past findings about the research problem?
  • How has prior research led the author(s) to conduct this particular study?
  • Is there any prior research that is unique or groundbreaking?
  • Are there any studies I could use as a model for designing and organizing my own study?

4.  Discussion/Conclusion

The discussion and conclusion are usually the last two sections of text in a scholarly article or research report. They reveal how the author(s) interpreted the findings of their research and presented recommendations or courses of action based on those findings. Often in the conclusion, the author(s) highlight recommendations for further research that can be used to develop your own study. Questions to consider when reading the discussion and conclusion sections include:

  • What is the overall meaning of the study and why is this important? [i.e., how have the author(s) addressed the " So What? " question].
  • What do you find to be the most important ways that the findings have been interpreted?
  • What are the weaknesses in their argument?
  • Do you believe conclusions about the significance of the study and its findings are valid?
  • What limitations of the study do the author(s) describe and how might this help formulate my own research?
  • Does the conclusion contain any recommendations for future research?

5.  Methods/Methodology

The methods section describes the materials, techniques, and procedures for gathering information used to examine the research problem. If what you have read so far closely supports your understanding of the topic, then move on to examining how the author(s) gathered information during the research process. Questions to consider when reading the methods section include:

  • Did the study use qualitative [based on interviews, observations, content analysis], quantitative [based on statistical analysis], or a mixed-methods approach to examining the research problem?
  • What was the type of information or data used?
  • Could this method of analysis be repeated and can I adopt the same approach?
  • Is enough information available to repeat the study or should new data be found to expand or improve understanding of the research problem?

6.  Results

After reading the above sections, you should have a clear understanding of the general findings of the study. Therefore, read the results section to identify how key findings were discussed in relation to the research problem. If any non-textual elements [e.g., graphs, charts, tables, etc.] are confusing, focus on the explanations about them in the text. Questions to consider when reading the results section include:

  • W hat did the author(s) find and how did they find it?
  • Does the author(s) highlight any findings as most significant?
  • Are the results presented in a factual and unbiased way?
  • Does the analysis of results in the discussion section agree with how the results are presented?
  • Is all the data present and did the author(s) adequately address gaps?
  • What conclusions do you formulate from this data and does it match with the author's conclusions?

7.  References

The references list the sources used by the author(s) to document what prior research and information was used when conducting the study. After reviewing the article or research paper, use the references to identify additional sources of information on the topic and to examine critically how these sources supported the overall research agenda. Questions to consider when reading the references include:

  • Do the sources cited by the author(s) reflect a diversity of disciplinary viewpoints, i.e., are the sources all from a particular field of study or do the sources reflect multiple areas of study?
  • Are there any unique or interesting sources that could be incorporated into my study?
  • What other authors are respected in this field, i.e., who has multiple works cited or is cited most often by others?
  • What other research should I review to clarify any remaining issues or that I need more information about?

NOTE:   A final strategy in reviewing research is to copy and paste the title of the source [journal article, book, research report] into Google Scholar . If it appears, look for a "cited by" followed by a hyperlinked number [e.g., Cited by 45]. This number indicates how many times the study has been subsequently cited in other, more recently published works. This strategy, known as citation tracking, can be an effective means of expanding your review of pertinent literature based on a study you have found useful and how scholars have cited it. The same strategies described above can be applied to reading articles you find in the list of cited by references.

Reading Tip

Specific Reading Strategies

Effectively reading scholarly research is an acquired skill that involves attention to detail and an ability to comprehend complex ideas, data, and theoretical concepts in a way that applies logically to the research problem you are investigating. Here are some specific reading strategies to consider.

As You are Reading

  • Focus on information that is most relevant to the research problem; skim over the other parts.
  • As noted above, read content out of order! This isn't a novel; you want to start with the spoiler to quickly assess the relevance of the study.
  • Think critically about what you read and seek to build your own arguments; not everything may be entirely valid, examined effectively, or thoroughly investigated.
  • Look up the definitions of unfamiliar words, concepts, or terminology. A good scholarly source is Credo Reference .

Taking notes as you read will save time when you go back to examine your sources. Here are some suggestions:

  • Mark or highlight important text as you read [e.g., you can use the highlight text  feature in a PDF document]
  • Take notes in the margins [e.g., Adobe Reader offers pop-up sticky notes].
  • Highlight important quotations; consider using different colors to differentiate between quotes and other types of important text.
  • Summarize key points about the study at the end of the paper. To save time, these can be in the form of a concise bulleted list of statements [e.g., intro has provides historical background; lit review has important sources; good conclusions].

Write down thoughts that come to mind that may help clarify your understanding of the research problem. Here are some examples of questions to ask yourself:

  • Do I understand all of the terminology and key concepts?
  • Do I understand the parts of this study most relevant to my topic?
  • What specific problem does the research address and why is it important?
  • Are there any issues or perspectives the author(s) did not consider?
  • Do I have any reason to question the validity or reliability of this research?
  • How do the findings relate to my research interests and to other works which I have read?

Adapted from text originally created by Holly Burt, Behavioral Sciences Librarian, USC Libraries, April 2018.

Another Reading Tip

When is it Important to Read the Entire Article or Research Paper

Laubepin argues, "Very few articles in a field are so important that every word needs to be read carefully." However, this implies that some studies are worth reading carefully. As painful and time-consuming as it may seem, there are valid reasons for reading a study from beginning to end. Here are some examples:

  • Studies Published Very Recently .  The author(s) of a recent, well written study will provide a survey of the most important or impactful prior research in the literature review section. This can establish an understanding of how scholars in the past addressed the research problem. In addition, the most recently published sources will highlight what is currently known and what gaps in understanding currently exist about a topic, usually in the form of the need for further research in the conclusion .
  • Surveys of the Research Problem .  Some papers provide a comprehensive analytical overview of the research problem. Reading this type of study can help you understand underlying issues and discover why scholars have chosen to investigate the topic. This is particularly important if the study was published very recently because the author(s) should cite all or most of the key prior research on the topic. Note that, if it is a long-standing problem, there may be studies that specifically review the literature to identify gaps that remain. These studies often include the word "review" in their title [e.g., Hügel, Stephan, and Anna R. Davies. "Public Participation, Engagement, and Climate Change Adaptation: A Review of the Research Literature." Wiley Interdisciplinary Reviews: Climate Change 11 (July-August 2020): https://doi.org/10.1002/ wcc.645].
  • Highly Cited .  If you keep coming across the same citation to a study while you are reviewing the literature, this implies it was foundational in establishing an understanding of the research problem or the study had a significant impact within the literature [either positive or negative]. Carefully reading a highly cited source can help you understand how the topic emerged and how it motivated scholars to further investigate the problem. It also could be a study you need to cite as foundational in your own paper to demonstrate to the reader that you understand the roots of the problem.
  • Historical Overview .  Knowing the historical background of a research problem may not be the focus of your analysis. Nevertheless, carefully reading a study that provides a thorough description and analysis of the history behind an event, issue, or phenomenon can add important context to understanding the topic and what aspect of the problem you may want to examine further.
  • Innovative Methodological Design .  Some studies are significant and should be read in their entirety because the author(s) designed a unique or innovative approach to researching the problem. This may justify reading the entire study because it can motivate you to think creatively about pursuing an alternative or non-traditional approach to examining your topic of interest. These types of studies are generally easy to identify because they are often cited in others works because of their unique approach to investigating the research problem.
  • Cross-disciplinary Approach .  R eviewing studies produced outside of your discipline is an essential component of investigating research problems in the social and behavioral sciences. Consider reading a study that was conducted by author(s) based in a different discipline [e.g., an anthropologist studying political cultures; a study of hiring practices in companies published in a sociology journal]. This approach can generate a new understanding or a unique perspective about the topic . If you are not sure how to search for studies published in a discipline outside of your major or of the course you are taking, contact a librarian for assistance.

Laubepin, Frederique. How to Read (and Understand) a Social Science Journal Article . Inter-University Consortium for Political and Social Research (ISPSR), 2013; Shon, Phillip Chong Ho. How to Read Journal Articles in the Social Sciences: A Very Practical Guide for Students . 2nd edition. Thousand Oaks, CA: Sage, 2015; Lockhart, Tara, and Mary Soliday. "The Critical Place of Reading in Writing Transfer (and Beyond): A Report of Student Experiences." Pedagogy 16 (2016): 23-37; Maguire, Moira, Ann Everitt Reynolds, and Brid Delahunt. "Reading to Be: The Role of Academic Reading in Emergent Academic and Professional Student Identities." Journal of University Teaching and Learning Practice 17 (2020): 5-12.

  • << Previous: 1. Choosing a Research Problem
  • Next: Narrowing a Topic Idea >>
  • Last Updated: May 25, 2024 4:09 PM
  • URL: https://libguides.usc.edu/writingguide

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

How the Science of Reading Informs 21st‐Century Education

The science of reading should be informed by an evolving evidence base built upon the scientific method. Decades of basic research and randomized controlled trials of interventions and instructional routines have formed a substantial evidence base to guide best practices in reading instruction, reading intervention, and the early identification of at-risk readers. The recent resurfacing of questions about what constitutes the science of reading is leading to misinformation in the public space that may be viewed by educational stakeholders as merely differences of opinion among scientists. Our goals in this paper are to revisit the science of reading through an epistemological lens to clarify what constitutes evidence in the science of reading and to offer a critical evaluation of the evidence provided by the science of reading. To this end, we summarize those things that we believe have compelling evidence, promising evidence, or a lack of compelling evidence. We conclude with a discussion of areas of focus that we believe will advance the science of reading to meet the needs of all children in the 21st century.

For more than 100 years, the question of how best to teach children to read has been debated in what has been termed the “reading wars”. The debate cyclically fades into the background only to reemerge, often with the same points of conflict. We believe that this cycle is not helpful for promoting the best outcomes for children’s educational success. Our goal in this paper is to make an honest and critical appraisal of the science of reading, defining what it is, how we build a case for evidence, summarizing those things for which the science of reading has provided unequivocal answers, providing a discussion of things we do not know but that may have been “oversold,” identifying areas for which evidence is promising but not yet compelling, and thinking ahead about how the science of reading can better serve all stakeholders in children’s educational achievements.

At its core, scientific inquiry is the same in all fields. Scientific research, whether in education, physics, anthropology, molecular biology, or economics, is a continual process of rigorous reasoning supported by a dynamic interplay among methods, theories, and findings. It builds understandings in the form of models or theories that can be tested. Advances in scientific knowledge are achieved by the self-regulating norms of the scientific community over time, not, as sometimes believed, by the mechanistic application of a particular scientific method to a static set of questions (National Research Council, 2002, p. 2).

What is the Science of Reading and Why are we Still Debating it?

The “science of reading” is a phrase representing the accumulated knowledge about reading, reading development, and best practices for reading instruction obtained by the use of the scientific method. We recognize that the accrual of scientific knowledge related to reading is ever evolving, at times circuitous, and not without controversy. Nonetheless, the knowledge base on the science of reading is vast. In the last decade alone, over 14,000 peer-reviewed articles have been published in journals that included the keyword “reading” based on a PsycINFO search. Although many of these studies likely focused on a sliver of the reading process individually, collectively, research studies with a focus on reading have yielded a substantial knowledge base of stable findings based on the science of reading. Taken together, the science of reading helps a diverse set of educational shareholders across institutions (e.g., preschools, schools, universities), communities, and families to make informed choices about how to effectively promote literacy skills that foster healthy and productive lives ( DeWalt & Hink, 2009 ; Rayner et al., 2001 ).

An interesting question concerning the science of reading is “Why is there a debate surrounding the science of reading?” Although there are certainly disputes within the scientific community regarding best practices and new areas of research inquiry, most of the current debate seems to settle upon what constitutes scientific evidence, how much value we should place on scientific evidence as opposed to other forms of knowledge, and how preservice teachers should be instructed to teach reading ( Brady, 2020 ). The current disagreement in what constitutes the scientific evidence of reading (e.g., Calkins, 2020 ) is not new. During the last round of the “reading wars” in the late 1990’s and early 2000’s these same issues were discussed and debated. Much of the debate focused on conflicting views in epistemology between constructivists and positivists on the basic mechanisms associated with reading development. Constructivists, such as Goodman (1967) and Smith (1971) , believed that reading was a “natural act” akin to learning language and thus emphasized giving children the opportunity to discover meaning through experiences in a literacy-rich environment. In contrast, positivists, such as Chall (1967) and Flesch (1955) , made strong distinctions between innate language learning and the effortful learning required to acquire reading skills. Positivists argued for explicit instruction to help foster understanding of how the written code mapped onto language, whereas constructivists encouraged children to engage in a “psycholinguistic guessing game” in which readers use their graphic, semantic, and syntactic knowledge (known as the three cuing system) to guess the meaning of a printed word.

Research clearly indicates that skilled reading involves the consolidation of orthographic and phonological word forms ( Dehene, 2011 ). Work in cognitive neuroscience indicates that a small region of the left ventral visual cortex becomes specialized for this purpose. As children learn to read, they recruit neurons from a small region of the left ventral visual cortex within the left occipitotemporal cortex region (i.e., visual word form area) that are tuned to language-dependent parameters through connectivity to perisylvian language areas ( Dehaene-Lambertz et al., 2018 ). This provides an efficient circuit for grapheme-phoneme conversion and lexical access allowing efficient word-reading skills to develop. These studies provide direct evidence for how teaching alters the human brain by repurposing some visual regions toward the shapes of letters, suggesting that cultural inventions, such as written language, modify evolutionarily older brain regions. Furthermore, studies suggest that instruction focusing on the link between orthography and phonology promote this brain reorganization (e.g., Dehaene, 2011 ). Yet, arguments between philosophical constructivists and philosophical positivists on what constitutes the science of reading and how it informs instruction remain active today (e.g., Castles et al., 2018 ). In a recent interview with Emily Hanford, Ken Goodman defended his advocacy for the three cuing system saying that the three-cueing theory is based on years of observational research. In his view, three cueing is perfectly valid, drawn from a different kind of evidence than what scientists collect in their lab and later he stated that “my science is different” ( Hanford, 2019 ).

As scientists at the Florida Center for Reading Research, we are often frustrated when what we view to be the empirically supported evidence base about the reading process are distorted or denied in communications directed to the public and to teachers. However, Stanovich (2003) posited that “in many cases, the facts are secondary—what is being denied are the styles of reasoning that gave rise to the facts; what is being denied is closer to a worldview than an empirical finding. Many of these styles are implicit; we are not conscious of them as explicit rules of behavior” (pp. 106-107). Stanovich proposed five different dimensions that represent “styles” of generating knowledge about reading. For our purposes, here, we focus on the first dimension: the correspondence versus coherence theory of truth. It hits at the heart of how people believe something to be true. People who believe that a real world exists independent of their beliefs, and that interrogating this world using rigorous principles to gain knowledge is a fruitful activity are said to subscribe to the correspondence theory of truth. In contrast, those who subscribe to the coherence theory of truth believe that something is “true” if the beliefs about something fit together in a logical way. In essence, something is true if it makes sense.

Stanovich believed these differing truth systems might lie at the heart of the disagreements surrounding the science of reading. One side shouting, “Look at this mountain of evidence! How can you not believe it?” and the other side shouting, “It doesn’t make sense! It doesn’t match up with our experiences! Why should we value your knowledge above our own?!” By approaching the science of reading from the perspective of the correspondence theory of truth, we consider how compelling evidence can be generated, what we believe is the compelling evidence, what we think lacks evidence, and what we think is promising evidence.

How We Build a Case for Compelling Evidence

Research is the means by which we acquire and understand knowledge about the world ( Dane, 1990 ) to create scientific principles. Relatively few scientists would argue with the importance of using research evidence to support a principle or to make claims about reading development and the quality of reading instruction. Where significant divergence often occurs is in response to policy statements that categorize research claims and instructional strategies into those with greater or lesser levels of evidence. This divergence is typically rooted in applied epistemology, which can be understood as the study of whether the means by which we study evidence are themselves well designed to lead to valid conclusions. Researchers often frame the science of reading from divergent applied epistemological perspectives. Thus, two scientists who approach the science of reading with different epistemologies will both suggest that they have principled understandings and explanations for how children learn to read; yet, the means by which those understandings and explanations were derived are often distinct.

The correspondence and coherence theories of truth described above are examples of explanations from contrasting epistemological perspectives. Consistent with these perspectives, researchers approaching the science of reading using a correspondence theory typically prioritize deductive methods, which embed hypothesis testing, precise operationalization of constructs, and efforts to decouple the researchers’ beliefs from their interpretation and generalization of empirical evidence. Researchers approaching the science of reading using a coherence theory of truth typically prioritize more inductive methods, such as phenomenological, ethnographic, and grounded theory approaches that embed focus on the meaning and understanding that comes through a person’s lived experience and where the scientist’s own observations shape meaning and principles (e.g., Israel & Duffy, 2014 ).

When the National Research Council published Scientific Research in Education (2002), a significant amount of criticism levied against the report boiled down to differences in epistemological perspectives. Yet, these genuine contrasts can often obscure contributions to the science of reading that derive from multiple applied epistemologies. Observational research, using both inductive (e.g., case studies) and deductive (e.g., correlational studies) approaches, substantively informs the development of theories and of novel instructional approaches (e.g., Scruggs et al., 2007 ). Public health research offers a useful parallel. As it would be unethical to establish a causal link from smoking cigarettes to lung cancer through a randomized controlled trial, that field instead used well-designed observational studies to derive claims and principles. These findings then informed later stages in the broader program of research, including randomized controlled trials of interventions for smoking cessation.

In the science of reading, principles and instructional strategies should indeed capitalize on a program of research inclusive of multiple methodologies. Yet, as the public health domain ultimately takes direction from the efficacy of smoking cessation programs, so too must the science of reading take direction from theoretically informed and well-designed experimental and quasi-experimental studies of promising strategies when the intention is to evaluate instructional practices. The use of experimental (i.e., randomized trials) and quasi-experimental (e.g., regression discontinuity, propensity score matching, interrupted time series) designs, in which an intervention is competed against counterfactual conditions, such as typical practice or alternative interventions, provides the strongest causal credibility regarding which instructional strategies are effective. The What Works Clearinghouse (WWC) of the Institute of Education Sciences (e.g., What Works Clearinghouse, 2020) and the Every Student Succeeds Act (ESSA; Every Student Succeeds Act, 2015 ) are efforts by the US Department of Education to hierarchically characterize the levels of evidence currently available for instructional practices in education. The WWC uses a review framework, developed by methodological and statistical experts, for evaluating the quality and scope of evidence for specific instructional practices based on features of the design, implementation, and analysis of studies. Similarly, ESSA uses four tiers that focus on both the design of the study and the results of the study in which the tiers differ based on the quantity of evidence and quality of evidence supporting an approach. For both WWC and ESSA, quantity of evidence refers to the number of well-designed and well-implemented studies, and quality of evidence is defined by the ability of a study’s methods to allow for alternative explanations of a finding to be ruled out, for which the randomized controlled trial provides the strongest method.

As outlined above, the “science of reading” utilizes multiple research approaches to generate ideas about reading. Ultimately, the highest priority in the science of reading should be the replicable and generalizable knowledge from observational and experimental methods, rooted in a deductive research approach to knowledge generation that is framed in a correspondence theory of truth. In this manner, the accumulated evidence is built on a research foundation by which theories, principles, and hypotheses have been subjected to rigorous empirical scrutiny to determine the degree to which they hold up across variations in samples, measures, and contexts. In the following sections, we summarize issues related to the nature, development, and instruction of reading for which we believe the science of reading either has or has not yielded compelling evidence, identify what we believe are promising areas for which sufficient evidence has not yet accumulated, and suggest a number of areas that we believe will help move the science of reading forward, increasing knowledge and enhancing its positive impacts for a variety of stakeholders.

Compelling Evidence in the Science of Reading

In this section, we focus on a number of findings centrally important for understanding the development and teaching of reading in alphabetic languages. The evidence base provides answers varying across orthographic regularity (e.g., English vs. Spanish), reading subskill (i.e., decoding vs. comprehension), grade range or developmental level (e.g., early childhood, elementary, adolescence), and linguistic diversity (e.g., English language learners, dialect speakers).

There are large differences among alphabetic languages in the rules for how graphemes represent sounds in words (i.e., a language’s orthography). In languages like Spanish and Finnish there is a near one-to-one relation between letters and sounds. The letter-sound coding in these languages is transparent, and they have shallow orthographies. In other languages, most notably English, there is often not a one-to-one relation between letters and sounds. The letter-sound coding in these languages is opaque, and they have deep orthographies. Children must learn which words cannot be decoded based solely on letter-sound correspondence (e.g., two, knight, laugh) and learn to match these irregular spellings to the words they represent. Where a language’s orthography falls on the shallow-deep dimension affects how quickly children develop accurate and fluent word-reading skills ( Ellis et al., 2004 ; Ziegler & Goswami, 2005 ) and how much instruction on foundational reading skills is likely needed. Studies indicate that children learning to read in English are slower to acquire decoding skills (e.g., Caravolas et al., 2013 ). Ziegler et al. (1997) reported that 69% of monosyllabic words in English were consistent in spelling-to-phonology mappings and 31% of the phonology-to-spelling mappings were consistent. Thus, in teaching children to read in English, the “grain size” of phoneme, onset-rime, and whole word matters ( Ziegler & Goswami, 2005 ) and the preservation of morphological regularities in English spelling matters (e.g., vine vs. vineyard ).

Gough and Tunmer’s (1986) “simple view of reading” model, which is supported by a significant amount of research, provides a useful framework for conceptualizing the development of reading skills across time. It also frames the elements for which it is necessary to provide instructional support. The ultimate goal of reading is to extract and construct meaning from text for a purpose. For this task to be successful, however, the reader needs skills in both word decoding and linguistic comprehension. Weaknesses in either area will reduce the capacity to achieve the goal of reading. Decoding skills and linguistic comprehension make independent contributions to the prediction of reading comprehension across diverse populations of readers ( Kershaw & Schatschneider, 2012 ; Sabatini et al., 2010 ; Vellutino, et al., 2007 ). Results of several studies employing measurement strategies that allow modeling of each component as a latent variable indicate that decoding and linguistic comprehension account for almost all of the variance in reading comprehension (e.g., Foorman et al., 2015 ; Lonigan et al., 2018 ). The relative influence of these skill domains, however, changes across development. The importance of decoding skill in explaining variance in reading comprehension decreases across grades whereas the importance of linguistic comprehension increases (e.g., Catts et al., 2005 ; Foorman et al., 2018 ; García & Cain, 2014 ; Lonigan et al., 2018 ). By the time children are in high school linguistic comprehension and reading comprehension essentially form a single dimension (e.g., Foorman et al., 2018 ).

Children’s knowledge of the alphabetic principle (i.e., how letters and sounds connect) and knowledge of the morphophonemic nature of English are necessary to create the high-quality lexical representations essential to accurate and efficient decoding ( Ehri, 2005 ; Perfetti, 2007 ). Acquiring the alphabetic principle is dependent on understanding that words are composed of smaller sounds (i.e., phonological awareness, PA) and alphabet knowledge (AK). Both PA and AK are substantial correlates and predictors of decoding skills (e.g., Wagner & Torgesen, 1987 ; Wagner et al., 1994 ). Prior to formal reading instruction, children are developing PA and AK as well as other early literacy skills that are related to later decoding skills following formal reading instruction ( Lonigan et al., 2009 ; Lonigan et al., 1998 ; National Early Literacy Panel [NELP], 2008 ; Whitehurst & Lonigan, 1998 ). Reading comprehension takes advantage of the reader’s ability to understand language. In most languages, written language and spoken language have high levels of overlap in their basic structure. Longitudinal studies indicate that linguistic comprehension skills from early childhood predict reading comprehension at the end of elementary school ( Catts et al., 2015 ; Language and Reading Research Consortium & Chiu, 2018 ; Mancilla-Martinez & Lesaux, 2010 ; Storch & Whitehurst, 2002 ; Verhoeven & Van Leeuwe, 2008 ). The developmental precursors to skilled reading are present prior to school entry. Consequently, differences between children in the development of these skills forecast later differences in reading skills and are useful for identifying children at risk for reading difficulties.

The science of reading provides numerous clear answers about the type and focus of reading instruction for the subskills of reading, depending on where children are on the continuum of reading development and children’s linguistic backgrounds. Much of this knowledge is summarized in the practice guides produced by the Institute of Education Sciences ( Baker et al., 2014 ; Foorman et al., 2016a ; Gersten et al., 2007 , 2008 ; Kamil et al., 2008 ; Shanahan et al., 2010 ) and in meta-analytic summaries of research (e.g., Berkeley et al., 2012 ; Ehri, Nunes, Stahl et al., 2001 ; Ehri, Nunes, Willows et al., 2001 ; NELP, 2008 ; Therrien, 2004 ; Wanzek et al., 2013 , 2016 ). Whereas the practice guides list several best practices, here we emphasize those practices classified as supported by strong or moderate evidence based on WWC standards.

Since the publication of the Report of the National Reading Panel ( National Institute of Child Health and Human Development, 2000 ) and supported by subsequent research (e.g., Gersten et al., 2017a ; Foorman et al., 2016a ), it is clear that a large evidence base provides strong support for the explicit and systematic instruction of the component and foundational skills of decoding and decoding itself. That is, teaching children phonological awareness and letter knowledge, particularly when combined, results in improved word-decoding skills. Teaching children to decode words using systematic and explicit phonics instruction results in improved word-decoding skills. Such instruction is effective both for monolingual English-speaking children and children whose home language is other than English (i.e., dual-language learners; Baker et al., 2014 ; Gersten et al., 2007 ) as well as children who are having difficulties learning to read or who have an identified reading disability ( Ehri, Nunes, Stahl et al., 2001 ; Gersten et al., 2008 ). Additionally, providing children with frequent opportunities to read connected text supports the development of word-reading accuracy and fluency as well as comprehension skills ( Foorman et al., 2016a ; Therrien, 2004 ).

Similarly, a number of instructional activities to promote the development of reading comprehension have strong or moderate supporting evidence. For younger children, teaching children how to use comprehension strategies and how to utilize the organizational structure of a text to understand, learn, and retain content supports better reading comprehension ( Shanahan et al., 2010 ). For older children, teaching the use of comprehension strategies also enhances reading comprehension ( Kamil et al., 2008 ) as does explicit instruction in key vocabulary, providing opportunities for extended discussion of texts, and providing instruction on foundational reading skills when children lack these skills; such instructional approaches are also effective for children with significant reading difficulties ( Berkeley et al., 2012 ; Kamil et al., 2008 ).

Lack of Compelling Evidence in the Science of Reading

In the above section, practices were highlighted that have sufficient evidence to warrant their widespread use. In this section, we address reading practices for which there is a lack of compelling evidence. Some practices have simply not yet been scientifically evaluated. Other practices have been evaluated, but either the evidence does not support their use based on the generalizability of the results or the studies in which they were evaluated were not of sufficient quality to meet a minimal standard of evidence (e.g., WWC standards). Although we lack sufficient space to present a comprehensive list of practices that do not have compelling evidence, we provide examples of practices that are commonplace and vary in the degree to which they have been scientifically studied.

Evidence-based decision making regarding effective literacy programs and practices for classroom use can be difficult. Often, there is no evidence of effectiveness for a program or the evidence is of poor quality. For instance, of the five most popular reading programs used nationwide (i.e., Units of Study for Teaching Reading, Journeys, Into Reading, Leveled Literacy Intervention and Reading Recovery; Schwartz, 1999) only Leveled Literacy Intervention and Reading Recovery, both interventions for struggling readers, have studies that meet WWC standards. The evidence indicates that there were mixed effects across outcomes for Leveled Literacy Intervention and positive or potentially positive effects for Reading Recovery (e.g., Chapman & Tunmer, 2016 ). Classroom reading programs are typically built around the notion of evidence-informed practices – teaching approaches that are grounded in quality research – but have not been subjected to direct scientific evaluation. As a consequence, it is currently impossible for schools to select basal reading programs that adhere to strict evidence-based standards (e.g., ESSA, 2015 ). As an alternative, schools must develop selection criteria for choosing classroom reading programs informed by the growing scientific evidence on instructional factors that support early reading development (e.g., Castles et al., 2018 ; Foorman et al.2017 ; Rayner et al., 2001 ).

Common instructional approaches that lack generalizable empirical support include such practices as close reading ( Welsch et al., 2019 ), use of decodable text ( Jenkins et al., 2004 ), sustained silent reading ( NICHD, 2000 ), multisensory approaches ( Birsh, 2011 ), and the three-cueing system to support word recognition development (Seidenberg, 2017). Some of these instructional approaches rest on sound theoretical and pedagogical grounds. For example, giving beginning readers the opportunity to read decodable texts provides practice applying the grapheme-phoneme relations they have learned to successfully decode words ( Foorman et al., 2016a ), thus building lexical memory to support word reading accuracy and automaticity (Ehri, this issue). However, the only study to experimentally examine the impact of reading more versus less decodable texts as part of an early intervention phonics program for at risk first graders found no differences between the two groups on any of the posttest measures ( Jenkins et al., 2004 ). Such a result does not rule out the possibility of the usefulness of decodable texts but rather indicates the need to disentangle the active ingredients of effective interventions to specify what to use, when, how often, and for whom.

Similarly, multisensory approaches (e.g., Orton-Gillingham) that teach reading by using multiple senses (i.e., sight, hearing, touch, and movement) to help children make systematic connections between language, letters, and words ( Birsh, 2011 ) are commonplace and have considerable clinical support for facilitating reading development in children who struggle to learn to read. However, there is little scientific evidence that indicates that a multisensory approach is more effective than similarly structured phonological-based approaches that do not include a strong multisensory component (e.g., Boyer & Ehri, 2011 ; Ritchey & Goeke, 2006 ; Torgesen et al., 2001 ). With further research, we may find that a multisensory component is a critical ingredient of intervention for struggling readers, but we lack this empirical evidence currently.

Instruction in reading comprehension is another area where despite some studies showing moderate or strong support (see section on compelling evidence) other practices are employed despite limited support for them (e.g., Boulay et al., 2015 ). The complexity of reading comprehension relies on numerous cognitive resources and background knowledge; as a result, intervention directed exclusively at one component or another is not likely to be that impactful. For example, research shows a clear relation between breadth and depth of vocabulary and reading comprehension ( Wagner et al., 2007 ). One implication of this relation is that teaching vocabulary could improve reading comprehension. Numerous studies have tested this implication using instructional approaches that vary from teaching words in isolation to practices that involve instruction in the use of context to learn the meaning of unfamiliar words. Instruction has also included strategies to determine meaning of words through word study and morphological analysis (e.g., Beck & McKeown, 2007 ; Lesaux et al., 2014 ). Although these practices have been effective in increasing vocabulary knowledge of the words taught, there is limited evidence of transfer to untaught words (as measured by standardized measures) or to improvement in general reading comprehension ( Elleman et al., 2009 ; Lesaux et al., 2010 ). Such findings do not mean that vocabulary instruction is not a useful practice; rather, by itself, it is not sufficient to improve reading comprehension. To make meaningful gains, intervention for reading comprehension likely requires addressing multiple components of language as well as teaching content knowledge (see next section) to make sizable gains.

Other instructional practices go directly against what is known from the science of reading. For example, the three-cueing approach to support early word recognition (i.e., relying on a combination of semantic, syntactic, and graphophonic cues simultaneously to formulate an intelligent hypothesis about a word’s identity) ignores 40 years of overwhelming evidence that orthographic mapping involves the formation of letter-sound connections to bond spelling, pronunciation, and meaning of specific words in memory (see Ehri, this issue). Moreover, relying on alternative cuing systems impedes the building of automatic word-recognition skill that is the hallmark of skilled word reading ( Stanovich, 1990 ; 1991 ). The English orthography, being both alphabetic-phonemic and morpho-phonemic, clearly privileges the use of various levels of grapheme-phoneme correspondences to read words ( Frost, 2012 ), with rapid context-free word recognition being the process that most clearly distinguishes good from poor readers ( Perfetti, 1992 ; Stanovich, 1980 ). Guessing at a word amounts to a lost learning trial to help children learn the orthography of the word and thus reduce the need to guess the word in the future ( Castles et al., 2018 ; Share, 1995 ).

Similarly, alternative approaches to improving reading skills for struggling readers often fall well outside the scientific consensus regarding sources of reading difficulties. Some of these approaches are based on the tenet that temporal processing deficits in the auditory (e.g., Tallal, 1984 ) and visual (e.g., Stein, 2019 ) systems of the brain are causally related to poor word-reading development. Although there is some evidence that typically developing and struggling readers differ on measures tapping auditory ( Casini et al., 2018 ; Protopapas, 2014 ) and visual (e.g., Eden et al., 1995; Olson & Datta, 2002 ) processing skill, there is little evidence to support the use of instructional programs designed to improve auditory or visual systems to ameliorate reading problems ( Strong et al., 2011 ). Further, interventions designed to decrease visual confusion (e.g., Dyslexie font) or modify transient channel processing (e.g., Irlen lenses) to improve reading skill for children with reading disability have also failed to garner scientific support ( Hyatt et al., 2009 ; Iovino et al., 1998 ; Marinus et al., 2016 ). Similarly, although use of video games to improve reading via enhanced visual attention is reported to be an effective intervention for children with reading disability ( Peters et al., 2019 ), studies of this supplemental intervention approach have not compared it to standard supplemental approaches. Finally, studies of interventions designed to enhance other cognitive processes, such as working memory, also lack evidence effectiveness in terms of improved reading-related outcomes (e.g., Melby-Lervåg et al., 2016 ).

Promising but Not (Yet) Compelling Evidence in the Science of Reading

There are many promising areas of research that are poised to provide compelling evidence to inform the science of reading in the coming years. As we do not have space to provide a comprehensive list, we highlight only a few promising areas in prevention research and elementary education research.

Promising Directions in Prevention Research

Research on the prevention of reading problems is critical for our ability to reduce the number of children who struggle learning to read. One area of prevention research that has great promise but needs more evidence is how to more fully develop preschoolers’ language abilities that support later reading success. Both correlational and experimental findings indicate that providing children with opportunities to engage in high-quality conversations, coupled with exposure to advanced language models, matters for language development ( Cabell et al., 2015 ; Dickinson & Porche, 2011 ; Lonigan et al., 2011 ; Wasik & Hindman, 2018). Yet, most programs have a more robust impact on children’s proximal language learning (i.e., learning taught words) than on generalized language learning as measured with standardized assessments ( Marulis & Neuman, 2010 ).

Promising studies that have demonstrated significant effects on children’s general language development elucidate potential points of leverage. First, improving the connection between the school and home contexts by including parents as partners can promote synergistic learning for children as language-learning activities in school and home settings are increasingly aligned (e.g., Lonigan & Whitehurst, 1998 ). A second leverage point is increasing attention to children’s active use of language in the classroom to promote a rich dialogue between children and adults (e.g., Lonigan et al., 2011 ; Wasik & Hindman, 2018). A third leverage point is integrating content area instruction into early literacy instruction to improve language learning, for example, building children’s conceptual knowledge of the social and natural world and teaching vocabulary words within the context of related ideas (e.g., Gonzalez et al., 2011 ).

Promising Directions in Elementary Education Research

We present two promising areas in reading research with elementary-age students, one focused on improving linguistic comprehension and one focused on improving decoding, consistent with the simple view of reading.

The knowledge a reader brings to a text is the chief determinant of whether the reader will understand that text ( Anderson & Pearson, 1984 ). Thus, building knowledge is an essential, yet neglected, part of improving linguistic comprehension (Cabell & Hwang, this issue). Teaching reading is most often approached in early elementary classrooms as a subject that is independent from other subjects, such as science and social studies ( Palinscar & Duke, 2004 ). As such, reading is taught using curricula that do not systematically build children’s knowledge of the social and natural world. Instruction in reading and the content areas does not have to be an either/or proposition. Rather, the teaching of reading and of content-area learning can be simultaneously taught and integrated to powerfully impact children’s learning of both reading and content knowledge (e.g., Connor et al., 2017 ; Kim et al., 2020 ; Williams et al., 2014 ). This area of research is promising but not yet compelling, due to the small number of experimental and quasi-experimental studies that have examined either integrated content-area and literacy instruction or content-rich English Language Arts instruction in K-5 settings (approximately 31 studies). Through meta-analysis, this corpus of studies demonstrates that combining knowledge building and literacy approaches has a positive impact on both vocabulary and comprehension outcomes for elementary-age children ( Hwang et al., 2019 ). Further rigorous studies are needed that test widely used content-rich English Language Arts curricula (Cabell & Hwang, 2020, this issue); also required is new development of integrative and interdisciplinary approaches in this area.

There is also promising research on helping students to decode words more efficiently. It is widely accepted that students with reading difficulties often have underlying deficits in phonological processing (e.g., Brady & Schankweiler, 1991 ; Stanovich & Siegel, 1994 ; Torgesen, 2000 ; Vellutino et al., 1996 ) and these deficits are believed to disrupt the acquisition of spelling-to-sound translation routines that form the basis of early decoding-skill development (e.g., van IJzendoorn & Bus, 1994 ; Rack et al., 1992 ). For developing readers, decoding an unfamiliar letter string can result in either full or partial decoding. During partial decoding, the reader must match the assembled phonology from decoding with their lexical representation of a word ( Venezky, 1999 ). For example, encountering the word island might render the incorrect but partial decoding attempt, “izland”. A child’s flexibility with the partially decoded word is referred to as their “set for variability” or their ability to go from the decoded form to the correct pronunciation of a word. This skill serves as a bridge between decoding and lexical pronunciations and may be an important second step in the decoding process ( Elbro et al., 2012 ).

The matching of partial phonemic-decoding output is facilitated by the child’s decoding skills, the quality of the child’s lexical word representation, and by the potential contextual support of text ( Nation & Castles, 2017 ). Correlational studies indicate that students’ ability to go from a decoded form of a word to a correct pronunciation (their set for variability) predicts the reading of irregular words ( Tunmer & Chapman, 2012 ), regular words ( Elbro, et al., 2012 ), and nonwords ( Steacy et al., 2019a ). Set for variability has also been found to be a stronger predictor of word reading than phonological awareness in students in grades 2-5 (e.g., Steacy et al., 2019b ). Recent studies in this area suggest that children can benefit from being encouraged to engage with the irregularities of English ( Dyson et al., 2017 ) to promote the implicit knowledge structures needed to read and spell these complex words. Additional research suggests that set for variability training can be effective in promoting early word reading skills (e.g., Savage et al., 2018 ; Zipke, 2016 ). The work done in this area to date suggests that set for variability requires child knowledge structures and strategies, which can be developed through instruction, that allow successful matching of partial phonemic-decoding output with the corresponding phonological, morphological, and semantic lexical representations.

Where Do We Go Next in the Science of Reading?

Basic science research.

The science of reading has reached some consensus on the typical development of reading skill and how individual differences may alter this trajectory (e.g., Boscardin et al., 2008 ; Hjetland et al., 2019; Peng et al., 2019 ). Less is known about factors and mechanisms related to reading among diverse learners, a critical barrier to the field’s ability to address and prevent reading difficulty when it arises. Investigations with large and diverse participant samples are needed to improve understanding of how child characteristics additively and synergistically affect reading acquisition ( Hernandez, 2011 ; Lonigan et al., 2013 ). Insufficient research disentangles the influence of English-learner status for children who also have identified disabilities (Solari et al., 2014; Wagner et al., 2005 ). Greater attention to how language variation (e.g., dialect use) and differences in language experience affect reading development is crucial ( Patton Terry et al., 2010 ; Seidenberg & MacDonald, 2018; Washington et al., 2018). New realizations of the interaction between child characteristics and the depth of the orthography have also highlighted the importance of implicit learning in early reading ( Seidenberg, 2005 ; Steacy et al., 2019). Innovative cross-linguistic research is exploring how diverse methods of representing pronunciation and meaning within different orthographies, and children’s developing awareness of these methods, jointly predict reading skills (e.g., Kuo & Anderson, 2006 ; Wade-Woolley, 2016 ). Furthermore, a better understanding of the role of executive function, socio-emotional resilience factors, and biopsychosocial risk variables (e.g., poverty and trauma) on reading development is critical. Additional research like this, in English and across languages, is needed to develop effective instruction and assessments for all leaners.

A clearer understanding of child and contextual influences on the development of reading also will support improvements in how early and accurately children at risk for reading difficulties and disabilities are identified. Currently, numerous challenges remain in identifying children early enough to maximize benefits of interventions ( Colenbrander et al., 2018 ; Gersten et al., 2017b ). Investigators often use behavioral precursors or correlates of reading to estimate children’s risk for reading failure. Whereas this work has shown some promise ( Catts et al., 2015 ; Compton et al., 2006 , 2010 ; Lyytinen et al., 2015 ; Thompson et al., 2015 ), identification of risk typically involves high error rates, especially for preschoolers and kindergarteners who might benefit most from early identification and intervention. Similar challenges to accuracy have emerged when identifying older children with reading disabilities. Historically, this process has relied on discrepancy models (e.g., such as between reading skill and general cognitive aptitude), often yielding a just single comparison on which decisions are based (Waesche et al., 2011).

Challenges to identification for both younger and older children may be best met with frameworks that recognize the multifactorial casual basis of reading problems ( Pennington et al., 2012 ). Newer models of identification that combine across multiple indicators of risk derived from current skill, and that augment these indicators with other metrics of potential risk, may yield improved identification and interventions (e.g., Erbeli et al., 2018 ; Spencer et al., 2011). In particular, future research will need to consider and combine, while considering both additive and interactive effects, a wide array of measures, which may include genetic, neurological, and biopsychosocial indicators ( Wagner et al., 2019 ). Furthermore, more evaluation is needed of some new models of identification that integrate both risk and protective, or resiliency, factors, to see if these models increase the likelihood of correctly identifying those children most in need of additional instructional support (e.g., Catts & Petscher, 2020 ; Haft et al., 2016 ). Even if beneficial, it is likely that for early identification to be maximally effective, early risk assessments will need to be combined with progress monitoring of response to instruction ( Miciak & Fletcher, 2020 ). Of course, for such an approach to be successful, all children must receive high-quality reading instruction from the beginning and interventions need to be in place to address children who show varying levels of risk ( Foorman et al., 2016a ). Identifying children at risk and providing appropriate intervention early on has the potential to significantly improve reading outcomes and reduce the negative consequences of reading failure.

Intervention Innovations

Despite successes, too many children still struggle to read novel text with understanding, and intervention design efforts have not fully met this challenge ( Compton et al., 2014 ; Phillips et al., 2016 ; Vaughn et al., 2017 ). Greater creativity and integration of research from a broader array of complementary fields, including cognitive science and behavioral genetics may be required to deal with long-standing problems. For example, genetic information may have causal explanatory power; randomized trials are needed to evaluate the efficacy of using such information to select and individualize instruction and intervention ( Hart, 2016 ).

The field would benefit from increased attention to the problem of fading intervention effects over time. Although there can be detectable effects of interventions several years after they are completed (e.g., Blachman et al., 2014 ; Vadasy et al., 2011 ; Vadasy & Sanders, 2013 ), invariably effect sizes reduce over time. A meta-analysis of long-term effects of interventions for phonemic awareness, fluency, and reading comprehension found a 40 percent reduction in effect sizes within one year post-intervention ( Suggate, 2016 ). Perhaps reading interventions with larger initial effects or sequential reading interventions with smaller but cumulating effects would be more resistant to fade-out.

Solutions to the problem of diminishing effects may be inspired by examples from other fields. The field of memory includes examples of content that appears immune from forgetting. This phenomenon has been called permastore ( Bahrick, 1984 ). For example, people only meaningfully exposed to a foreign language in school classes will still retain some knowledge of the language 50 years later. Additionally, expertise in the form of world-class performance appears to result from cumulative effects of long-term deliberate practice ( Ericsson, 1996 ), and skilled reading can be viewed as an example of expert performance ( Wagner & Stanovich, 1996 ). Informed by these concepts and by advances in early math instruction (e.g., Sarama et al., 2012 ; Kang et al., 2019 ), reading intervention studies should prioritize follow-up evaluations, including direct comparisons of follow-through strategies aimed at sustaining benefits from earlier instruction. For example, studies should evaluate booster interventions, professional development that better aligns cross-grade instruction, and how re-teaching and cumulative review may consolidate skill acquisition across time (e.g., Cepeda et al., 2006 ; Smolen et al., 2016 ).

Translational and Implementation Science

If the science of reading is to be applied in a manner resulting in achievement for all learners, the field must increase its focus on processes supporting implementation of evidence-based reading practices in schools. The field can leverage its considerable evidence-base to systematically investigate, with replication, both the effectiveness of reading instructional practices with diverse learners and to investigate processes that facilitate or prevent adoption, implementation, and sustainability of these practices (National Research Council, 2002; Schneider, 2018 ; Slavin, 2002 ). Research on these processes in educational contexts may be best facilitated by making use of methodological and conceptual tools developed within the traditions of translation and implementation science research ( Gilliland et al., 2019 ; Eccles & Mittman, 2006 ). For example, these frameworks can support studies on whether and how educators and policymakers use information about evidence to inform decision making (e.g., Farley-Ripple et al., 2018 ) and studies on how institutional routines may need to be adapted to best integrate new procedures and practices (e.g., scheduling changes in the school day; Foorman et al., 2016b ).

Reading research that uses translational and implementation science frameworks and methodologies will make more explicit the processes of adoption, implementation and sustainability and how these interact within diverse settings and with multiple populations ( Brown et al., 2017 ; Fixsen et al., 2005 , 2013 ). This work will be guided by new questions, not only asking “what works” but also “what works for whom under what conditions” and “what factors promote sustainability of implementation.” Innovative studies would adhere to rigorous scientific standards, prioritize hypothesis testing within a deductive, experimental framework, and leverage qualitative methodologies to systematically explore implementation processes and factors ( Brown et al., 2017 ). Results could iteratively inform the breadth of scientific reading research, including basic mechanisms related to reading and the development of novel assessments and interventions to support achievement among diverse learners in diverse settings ( Cook & Odom, 2013 ; Douglas et al., 2015 ; Forman et al., 2013 ).

There has recently been a resurgence of the debate on the science of reading, and in this article, we described the existing evidence base and possible future directions. Compelling evidence is available to guide understanding of how reading develops and identify proven instructional practices that impact both decoding and linguistic comprehension. Whereas there is some evidence that is either not compelling or has yet to be generated for instructional practices and programs that are widely used, the scientific literature on reading is ever-expanding through contributions from the fields education, psychology, linguistics, communication science, neuroscience, and computational sciences. As these additions to the literature mature and contribute to an evidence base, we anticipate they will inform and shape the science of reading as well as the science of teaching reading.

Acknowledgments

First author was determined by group consensus. Authors equally contributed and are listed and alphabetically. The authors’ work was supported by funding from the Chan Zuckerberg Initiative, the Institute of Education Sciences (R305A160241, R305A170430, R305F100005, R305F100027, R324A180020, R324B19002) and Eunice Kennedy Shriver National Institute of Child Health and Human Development (P50HD52120, P20HD091013, HD095193, HD072286).

  • Anderson RC, & Pearson PD (1984). A schema-theoretic view of basic processes in reading comprehension. In Pearson PD, Barr R, Kamil ML, & Mosenthal P (Eds.), Handbook of reading research (1st ed., pp. 255–291). New York: Longman. [ Google Scholar ]
  • Baker S, Lesaux N, Jayanthi M, Dimino J, Proctor CP, Morris J, … Newman-Gonchar R (2014). Teaching academic content and literacy to English learners in elementary and middle school (NCEE 2014-4012) . Washington, DC: National Center for Education Evaluation and Regional Assistance (NCEE), Institute of Education Sciences, U.S. Department of Education. Retrieved from https://ies.ed.gov/ncee/wwc/Docs/PracticeGuide/english_learners_pg_040114.pdf . [ Google Scholar ]
  • Bahrick HP (1984). Semantic memory content in permastore: Fifty years of memory for Spanish learned in school . Journal of Experimental Psychology: General , 113 ,1–29. DOI: 10.1037//0096-3445.113.1.1 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beck IL, & McKeown MG (2007). Increasing young low-income children’s oral vocabulary repertoires through rich and focused instruction . The Elementary School Journal , 107 ( 3 ), 251–271. DOI: 10.1086/511706 [ CrossRef ] [ Google Scholar ]
  • Berkeley S, Scruggs TE, & Mastropier MA (2012). Reading comprehension instruction for student with learning disabilities, 1995-2006: A meta-analysis . Remedial and Special Education , 31 , 423–436. 10.1177/0741932509355988 [ CrossRef ] [ Google Scholar ]
  • Birsh JR (2011). Multisensory teaching of basic language skills . Brookes Publishing Company. PO Box 10624, Baltimore, MD 21285. [ Google Scholar ]
  • Blachman BA, Schatschneider C, Fletcher JM, Francis DJ, Clonan SM, Shaywitz BA, & Shaywitz SE (2004). Effects of intensive reading remediation for second and third graders and a 1-year follow-up . Journal of Educational Psychology , 96 ( 3 ), 444–461. doi: http://dx.doi.org.proxy.lib.fsu.edu/10.1037/0022-0663.96.3.444 [ Google Scholar ]
  • Blachman BA, Schatschneider C, Fletcher JM, Murray MS, Munger KA, & Vaughn MG (2014). Intensive reading remediation in grade 2 or 3: Are there effects a decade later? Journal of Educational Psychology , 106 ( 1 ), 46–57. doi: http://dx.doi.org.proxy.lib.fsu.edu/10.1037/a0033663 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Boscardin CK, Muthén B, Francis DJ, & Baker EL (2008). Early identification of reading difficulties using heterogeneous developmental trajectories . Journal of Educational Psychology , 100 , 192–208. 10.1037/0022-0663.100.1.192 [ CrossRef ] [ Google Scholar ]
  • Boulay B, Goodson B, Frye M, Blocklin M, & Price C (2015). Summary of Research Generated by Striving Readers on the Effectiveness of Interventions for Struggling Adolescent Readers. NCEE 2016-4001 . National Center for Education Evaluation and Regional Assistance. [ Google Scholar ]
  • Boyer N, & Ehri LC (2011). Contribution of phonemic segmentation instruction with letters and articulation pictures to word reading and spelling in beginners . Scientific Studies of Reading , 15 ( 5 ), 440–470. 10.1080/10888438.2010.520778 [ CrossRef ] [ Google Scholar ]
  • Brady S (2020). Strategies used in education for resisting the evidence and implications of the science of reading . The Reading Journal , 1 ( 1 ), 33–40. [ Google Scholar ]
  • Brady SA, & Shankweiler DP (Eds.). (1991). Phonological processes in literacy: A tribute to Isabelle Y. Liberman Hillsdale, NJ: Erlbaum. [ Google Scholar ]
  • Brown CH, Curran G, Palinkas LA, Aarons GA, Wells KB, Jones L, Collins LM, Duan N, Mittman BS, Wallace A, Tabak RG, Ducharme L, Chambers DA, Neta G, Wiley T, Landsverk J, Cheung K, & Cruden G (2017). An overview of research and evaluation designs for dissemination and implementation . Annual Review of Public Health , 38 , 1–22. 10.1146/annurev-publhealth-031816-044215 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cabell SQ, Justice LM, McGinty AS, DeCoster J, & Forston L (2015). Teacher-child conversations in preschool classrooms: Contributions to children’s vocabulary development . Early Childhood Research Quarterly , 30 , 80–92. DOI: 10.1016/j.ecresq.2014.09.004 [ CrossRef ] [ Google Scholar ]
  • Calkins L (2020). No one gets to own the term “The Science of Reading” . Retrieved from: https://readingandwritingproject.org/news/no-one-gets-to-own-the-term-the-science-of-reading [ Google Scholar ]
  • Caravolas M, Lervåg A, Defior S, Málkova G,S, & Hulme C (2013). Different patterns, but equivalent predictors, of growth in reading in consistent and inconsistent orthographies . Psychological Science , 24 , 1398–1407. 10.1177/0956797612473122 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Casini L, Pech-Georgel C, & Ziegler JC (2018). It's about time: Revisiting temporal processing deficits in dyslexia . Developmental Science , 21 ( 2 ), 1–14. DOI: 10.1111/desc.12530 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Castles A, Rastle K, & Nation K (2018). Ending the reading wars: Reading acquisition from novice to expert . Psychological Science in the Public Interest , 19 ( 1 ), 5–51. 10.1177/1529100618772271 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Catts H, Adlof S, & Weismer SE (2006). Language deficits in poor comprehenders: A case for the simple view of reading . Journal of Speech, Language, and Hearing Research , 49 , 278–293. 10.1044/1092-4388(2006/023) [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Catts H, Herrera S, Nielsen D, & Bridges, 2015. Early prediction of reading comprehension within the simple view framework . Reading and Writing: An Interdisciplinary Journal , 28 , 1407–1425. 10.1007/s11145-015-9576-x [ CrossRef ] [ Google Scholar ]
  • Catts H, Hogan T, & Adlof S (2005). Developmental changes in reading and reading disabilities. In Catts H & Kamhi A, A. (Eds.). Connections between language and reading disabilities . Mahwah, NJ: Erlbaum [ Google Scholar ]
  • Catts HW, & Petscher Y (2020, March 25). A cumulative risk and protection model of dyslexia . 10.35542/osf.io/g57ph [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cepeda NJ, Pashler H, Vul E, Wixted JT, & Rohrer D (2006). Distributed practice in verbal recall tasks: A review and quantitative synthesis . Psychological Bulletin , 132 ( 3 ), 354–380. 10.1037/0033-2909.132.3.354 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Chall J (1967). Learning to read: The great debate . New York: McGraw-Hill. [ Google Scholar ]
  • Chapman JW, & Tunmer WE (2016). Is Reading Recovery an effective intervention for students with reading difficulties? A critique of the i3 scale-up study . Reading Psychology , 37 ( 7 ), 1025–1042. 10.1080/02702711.2016.1157538 [ CrossRef ] [ Google Scholar ]
  • Colenbrander D, Ricketts J, & Breadmore HL (2018). Early identification of dyslexia: Understanding the issues . Language, Speech, and Hearing Services in Schools , 49 , 817–828. 10.1044/2018_LSHSS-DYSLC-18-0007 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Compton DL, Fuchs D, Fuchs LS, & Bryant JD (2006). Selecting at-risk readers in first grade for early intervention: A two-year longitudinal study of decision rules and procedures . Journal of Educational Psychology , 98 , 394–409. [ Google Scholar ]
  • Compton DL, Fuchs D, Fuchs LS, Bouton B, Gilbert JK, Barquero LA, Cho E, & Crouch RC (2010). Selecting at-risk readers in first grade for early intervention: Eliminating false positives and exploring the promise of a two-stage screening process . Journal of Educational Psychology . 102 , 327–340. 10.1037/0022-0663.98.2.394 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Compton DL, Miller AC, Elleman AM, & Steacy LM (2014). Have we forsaken reading theory in the name of “quick fix” interventions for children with reading disability? Scientific Studies of Reading , 18 ( 1 ), 55–73. doi: 10.1080/10888438.2013.836200 [ CrossRef ] [ Google Scholar ]
  • Connor CMD, Dombek J, Crowe EC, Spencer M, Tighe EL, Coffinger S, … Petscher Y (2017). Acquiring science and social studies knowledge in kindergarten through fourth grade: Conceptualization, design, implementation, and efficacy testing of content-area literacy instruction (CALI) . Journal of Educational Psychology , 109 ( 3 ), 301–320. doi: 10.1037/edu0000128 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cook BG, & Odom SL (2013). Evidence-based practices and implementation science in special education . Exceptional Children , 79 , 135–144. 10.1177/001440291307900201 [ CrossRef ] [ Google Scholar ]
  • Dane FC (1990). Research methods (Vol. 120 ). Pacific Grove, CA: Brooks/Cole Publishing Company. [ Google Scholar ]
  • Dehaene S (2011). The massive impact of literacy on the brain and its consequences for education . Human Neuroplascticity and Education , 117 , 19–32. [ Google Scholar ]
  • Dehaene-Lambertz G, Monzalvo K, & Dehaene S (2018). The emergence of the visual word form: Longitudinal evolution of category-specific ventral visual areas during reading acquisition . PLoS biology , 16 ( 3 ), e2004103. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • DeWalt DA, & Hink A (2009). Health literacy and child health outcomes: a systematic review of the literature . Pediatrics , 124 ( Supplement 3 ), S265–S274. 10.1542/peds.2009-1162B [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dickinson DK, & Porche MV (2011). Relation between language experiences in preschool classrooms and children’s kindergarten and fourth-grade language and reading abilities . Child Development , 82 , 870–886. doi: 10.1111/j.1467-8624.2011.01576.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Douglas NF, Campbell WN, & Hinckley J (2015). Implementation science: Buzzword or game changer? Journal of Speech, Language, and Hearing Research , 58 , S1827–S1836. doi: 10.1044/2015_JSLHR-L-15-0302. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dyson H, Best W, Solity J, & Hulme C (2017). Training mispronunciation correction and word meanings improves children’s ability to learn to read words . Scientific Studies of Reading , 1–16. doi: 10.1080/10888438.2017.1315424 [ CrossRef ] [ Google Scholar ]
  • Eccles MP & Mittman BS (2006). Welcome to implementation science . Implementation Science , 1 , 1–3. 10.1186/1748-5908-1-1 [ CrossRef ] [ Google Scholar ]
  • Eden GF, VanMeter JW, Rumsey JM, Maisog JM, Woods RP, & Zeffiro TA (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging . Nature , 382 ( 6586 ), 66–69. DOI: 10.1038/382066a0 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ehri LC (2005). Learning to read words: Theory, findings, and issues . Scientific Studies of Reading , 9 , 167–188. 10.1207/s1532799xssr0902_4 [ CrossRef ] [ Google Scholar ]
  • Ehri LC (2014). Orthographic mapping in the acquisition of sight word reading, spelling memory, and vocabulary learning . Scientific Studies of Reading , 18 ( 1 ), 5–21. 10.1080/10888438.2013.819356 [ CrossRef ] [ Google Scholar ]
  • Ehri LC, Nunes SR, Stahl SA, & Willows DM (2001). Systematic phonics instruction helps students learn to read: Evidence from the National Reading Panel’s meta-analysis . Review of Educational Research , 71 , 393–447. 10.3102/00346543071003393 [ CrossRef ] [ Google Scholar ]
  • Ehri LC, Nunes SR, Willows D,M, Schuster BV, Yaghoub-Zadeh Z, & Shanahan T (2001). Phonemic awareness instruction helps children learn to read: Evidence from the National Reading Panel’s meta-analysis . Reading Research Quarterly , 36 , 250–287. 10.1598/RRQ.36.3.2 [ CrossRef ] [ Google Scholar ]
  • Elbro C, de Jong PF, Houter D, & Nielsen A (2012). From spelling pronunciation to lexical access: A second step in word decoding? Scientific Studies of Reading , 16 ( 4 ), 341–359. doi: 10.1080/10888438.2011.568556 [ CrossRef ] [ Google Scholar ]
  • Elleman A, Lindo E, Morphy P, & Compton D (2009). The impact of vocabulary instruction on passage-level comprehension of school-age children: A meta-analysis , Journal of Research on Educational Effectiveness 2 , 1–44. 10.1080/19345740802539200 [ CrossRef ] [ Google Scholar ]
  • Ellis NC, Natsume I, Stavropoulou K, Hoxhallari L, van Daal VHP, Polyzoe N, et al. (2004). The effects of the orthographic depth on learning to read alphabetic, syllabic, and logographic scripts . Reading Research Quarterly , 39 , 438–468. doi: 10.1598/RRQ.39.4.5 [ CrossRef ] [ Google Scholar ]
  • Erbeli F (2019). Translating research findings in genetics of learning disabilities to special education instruction . Mind, Brain, and Education , 13 ( 2 ), 74–79. 10.1111/mbe.12196 [ CrossRef ] [ Google Scholar ]
  • Erbeli F, Hart SA, Wagner RW, & Taylor J (2018). Examining the etiology of reading disability as conceptualized by the hybrid model . Scientific Studies of Reading , 22 ( 2 ), 167–180. doi: 10.1080/10888438.2017.1407321. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ericsson KA (1996). The road to excellence: The acquisition of expert performance in the arts and sciences, sports, and games . Mahwah, NJ: Erlbaum. [ Google Scholar ]
  • Every Student Succeeds Act (2015). Pub. L. No. 114-95 § 114 Stat. 1177 (2015-2016) .
  • Farley-Ripple, May H, Karpyn A, Tilley K, & McDonough K (2018). Rethinking connections between research and practice in education: A conceptual framework . Educational Researcher , 47 ( 4 ), 235–245. [ Google Scholar ]
  • Fixsen D, Blase K, Metz A, & Van Dyke M (2013). Statewide implementation of evidence-based programs . Exceptional Children , 79 , 213–230. 10.1177/001440291307900206 [ CrossRef ] [ Google Scholar ]
  • Fixsen DL, Naoom SF, Blase KA, Friedman RM & Wallace F (2005). Implementation research: A synthesis of the literature . Tampa, FL: University of South Florida, Louis de la Parte Florida Mental Health Institute, The National Implementation Research Network (FMHI Publication #231). [ Google Scholar ]
  • Flesch R (1955). Why Johnny can’t read - and what you can do about it . NY: Harper & Brothers. [ Google Scholar ]
  • Foorman B, Beyler N, Borradaile K, Coyne M, Denton C, Dimino J, …Wissel S (2016a). Foundational skills to support reading for understanding in kindergarten through 3rd grade (NCEE 2016-4008) . Washington, DC: National Center for Education Evaluation and Regional Assistance (NCEE), Institute of Education Sciences, U.S. Department of Education. Retrieved from https://ies.ed.gov/ncee/wwc/Docs/PracticeGuide/wwc_foundationalreading_070516.pdf [ Google Scholar ]
  • Foorman B, Dombek J, & Smith K (2016b). Seven elements important to successful implementation of early literacy intervention . New Directions for Child and Adolescent Development , 2016 ( 154 ), 49–65. [ PubMed ] [ Google Scholar ]
  • Foorman BR, Koon S, Petscher Y, Mitchell A, & Truckenmiller A (2015). Examining general and specific factors in the dimensionality of oral language and reading in 4th–10th grades . Journal of Educational Psychology , 107 , 884–899. DOI: 10.1037/edu0000026 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Foorman B, Petscher Y, Herrera S (2018). Unique and common effects of decoding and language factors in predicting reading comprehension in grades 1-10 . Learning and Individual Differences , 63 , 12–23. 10.1016/j.lindif.2018.02.011 [ CrossRef ] [ Google Scholar ]
  • Foorman BF, Smith KG, & Kosanovich ML (2017). Rubric for evaluating reading/language arts instructional materials for kindergarten to grade 5 (REL 2016-219) . Washington, DC: U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, Regional Educational Laboratory Southeast. [ Google Scholar ]
  • Forman SG, Shapiro ES, Codding RS, Gonzales JE, Reddy LA, Rosenfield SA, Sanetti LMH, & Stoiber KC (2013). Implementation science and school psychology . School Psychology Quarterly , 28 , 77–100. 10.1037/spq0000019 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Frost R (2012). Toward a universal model of reading . Behavioral & Brain Sciences , 35 , 263–279. doi: 10.1017/S0140525X11001841 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • García JR, & Cain K (2014). Decoding and reading comprehension: A meta-analysis to identify which reader and assessment characteristics influence the strength of the relationship in English . Review of Educational Research , 84 ( 1 ), 74–111. 10.3102/0034654313499616 [ CrossRef ] [ Google Scholar ]
  • Gersten R, Baker SK, Shanahan T, Linan-Thompson S, Collins P, & Scarcella R (2007). Effective literacy and English language instruction for English learners in the elementary grades: A practice guide (NCEE 2007-4011) . Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. Retrieved from https://ies.ed.gov/ncee/wwc/Docs/PracticeGuide/20074011.pdf . [ Google Scholar ]
  • Gersten R, Compton D, Connor CM, Dimino J, Santoro L, Linan-Thompson S, & Tilly WD (2008). Assisting students struggling with reading: Response to Intervention and multi-tier intervention for reading in the primary grades. A practice guide. (NCEE 2009-4045) . Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. Retrieved from https://ies.ed.gov/ncee/wwc/Docs/PracticeGuide/rti_math_pg_042109.pdf [ Google Scholar ]
  • Gersten R, Jayanthi M, & Dimino J (2017a). Too much, too soon? Unanswered questions from national response to intervention evaluation . Exceptional Children , 83 , 244–254. 10.1177/0014402917692847 [ CrossRef ] [ Google Scholar ]
  • Gersten R, Newman-Gonchar R, Haymond K, & Dimino J (2017b). What is the evidence base for Response to Intervention in reading in grades 1–3? (REL 2016-129) . Washington, DC: U.S. Department of Education, Institute of Education Sciences. National Center for Education Evaluation and Regional Assistance, Regional Educational Laboratory Southeast. Retrieved from https://files.eric.ed.gov/fulltext/ED573686.pdf [ Google Scholar ]
  • Gillam RB, Loeb DF, Hoffman LM, Bohman T, Champlin CA, Thibodeau L, … & Friel-Patti S (2008). The efficacy of Fast ForWord language intervention in school-age children with language impairment: A randomized controlled trial . Journal of Speech, Language, and Hearing Research , 51 ( 1 ), 97–119. 10.1044/1092-4388(2008/007) [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gilliland CT, White J, Gee B, Kreeftmeijer-Vegter R, Bietrix F, Ussi AE, Hajduch M, Kocis P, Chiba N, Hirasawa R, Suematsu M, Bryans J, Newman S, Hall MD, & Austin CP (2019). The fundamental characteristics of a translational scientist . ACS Pharmacology & Translational Science , 2 , 213–261. 10.1021/acsptsci.9b00022 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gonzalez JE, Pollard-Durodola S, Simmons DC, Taylor AB, Davis MJ, Kim M, & Simmons L (2011). Developing low-income preschoolers’ social studies and science vocabulary knowledge through content-focused shared book reading . Journal of Research on Educational Effectiveness , 4 ( 1 ), 25–52. doi: 10.1080/19345747.2010.487927 [ CrossRef ] [ Google Scholar ]
  • Goodman KS (1967). Reading: A psycholinguistic guessing game , Literacy Research and Instruction , 6 ( 4 ), 126–135, 10.1080/19388076709556976 [ CrossRef ] [ Google Scholar ]
  • Gough PB, & Tunmer WE (1986). Decoding, reading, and reading disability . Remedial and Special Education , 7 , 6–10. 10.1177/074193258600700104 [ CrossRef ] [ Google Scholar ]
  • Haft SL, Myers CA, & Hoeft F (2016). Socio-emotional and cognitive resilience in children with reading disabilities . Current Opinion in Behavioral Sciences , 10 , 133–141. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Hanford E (2019). At a loss for words: How a flawed idea is teaching millions of kids to be poor readers . Retrieved from: https://www.apmreports.org/story/2019/08/22/whats-wrong-how-schools-teach-reading [ Google Scholar ]
  • Hart SA (2016). Precision education initiative: Moving toward personalized education . Mind, Brain, and Education , 10 ( 4 ), 209–211.doi: 10.1111/mbe.12109 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hernandez DJ (2011). Double jeopardy: How third-grade reading skills and poverty influence high school graduation . Annie E. Casey Foundation. https://files-eric-ed-gov.proxy.lib.fsu.edu/fulltext/ED518818.pdf https://psycnet.apa.org/doi/10.1097/00011363-200501000-00004 [ Google Scholar ]
  • Hwang H, Cabell SQ, White TG, & Joiner R (2019, December). A systematic review of the research on the effect of knowledge building in literacy instruction on comprehension and vocabulary in the elementary years. Presentation at the annual meeting of the Literacy Research Association , Tampa, FL. [ Google Scholar ]
  • Hyatt KJ, Stephenson J, & Carter M (2009). A review of three controversial educational practices: Perceptual motor programs, sensory integration, and tinted lenses . Education & Treatment of Children , 32 ( 2 ), 313–342. doi: 10.1353/etc.0.0054 [ CrossRef ] [ Google Scholar ]
  • Iovino I, Fletcher JM, Breitmeyer BG, & Foorman BR (1998). Colored overlays for visual perceptual deficits in children with reading disability and attention deficit/hyperactivity disorder: Are they differentially effective? Journal of Clinical and Experimental Neuropsychology , 20 ( 6 ), 791–806. DOI: 10.1076/jcen.20.6.791.1113 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Israel SE, & Duffy GG (Eds.). (2014). Handbook of Research on Reading Comprehension . New York: Routledge. [ Google Scholar ]
  • Jenkins JR, Peyton JA, Sanders EA, & Vadasy PF (2004). Effects of reading decodable texts in supplemental first-grade tutoring . Scientific Studies of Reading , 8 , 53–85. 10.1207/s1532799xssr0801_4 [ CrossRef ] [ Google Scholar ]
  • Joyce E (2020, January 22). Scientific Racism 2.0 (SR2.0): An erroneous argument from genetics which inadvertently refines scientific racism . 10.35542/osf.io/f7jnh [ CrossRef ] [ Google Scholar ]
  • Kamil ML, Borman GD, Dole J, Kral CC, Salinger T, & Torgesen J (2008). Improving adolescent literacy: Effective classroom and intervention practices: A practice guide (NCEE #2008-4027) . Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. Retrieved from https://ies.ed.gov/ncee/wwc/Docs/PracticeGuide/adlit_pg_082608.pdf . [ Google Scholar ]
  • Kang CY, Duncan GJ, Clements DH, Sarama J, & Bailey DH (2019). The roles of transfer of learning and forgetting in the persistence and fadeout of early childhood mathematics interventions . Journal of Educational Psychology , 111 , 590–603. 10.1037/edu0000297 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kershaw S & Schatschneider C (2012). A latent variable approach to the simple view of reading . Reading and Writing , 25 , 433–464. 10.1177/0741932518764833 [ CrossRef ] [ Google Scholar ]
  • Kim JS, Burkhauser MA, Mesite LM, Asher CA, Relyea JE, Fitzgerald J, & Elmore J (2020). Improving reading comprehension, science domain knowledge, and reading engagement through a first-grade content literacy intervention . Journal of Educational Psychology . Advance online publication. 10.1037/edu0000465. [ CrossRef ] [ Google Scholar ]
  • Kuo LJ, & Anderson RC (2006). Morphological awareness and learning to read: A cross-language perspective . Educational Psychologist , 41 , 161–180. 10.1207/s15326985ep4103_3 [ CrossRef ] [ Google Scholar ]
  • Language and Reading Research Consortium & Chiu YD (2018). The simple view of reading across development: Prediction of grade 3 reading comprehension from prekindergarten skills . Remedial and Special Education , 39 ( 5 ), 289–303. 10.1177/0741932518762055 [ CrossRef ] [ Google Scholar ]
  • Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, … & Fontana MA (2018). Gene discovery and polygenic prediction from a 1.1-million-person GWAS of educational attainment . Nature Genetics , 50 ( 8 ), 1112–1121.doi: 10.1038/s41588-018-0147-3 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lesaux NK, Kieffer MJ, Faller SE, & Kelley JG (2010). The effectiveness and ease of implementation of an academic vocabulary intervention for linguistically diverse students in urban middle schools . Reading Research Quarterly , 45 ( 2 ), 196–228. 10.1598/RRQ.45.2.3 [ CrossRef ] [ Google Scholar ]
  • Lesaux NK, Kieffer MJ, Kelley JG, & Harris JR (2014). Effects of academic vocabulary instruction for linguistically diverse adolescents: Evidence from a randomized field trial . American Educational Research Journal , 51 ( 6 ), 1159–1194. 10.3102/0002831214532165 [ CrossRef ] [ Google Scholar ]
  • Little CW, Haughbrook R, & Hart SA (2017). Cross-study differences in the etiology of reading comprehension: A meta-analytical review of twin studies . Behavior Genetics , 47 ( 1 ), 52–76. 10.1007/s10519-016-9810-6 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lonigan CJ, Anthony JL, Phillips BM, Purpura DJ, Wilson SB, & McQueen J (2009). The nature of preschool phonological processing abilities and their relations to vocabulary, general cognitive abilities, and print knowledge . Journal of Educational Psychology , 101 , 345–358. 10.1037/a0013837 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lonigan CJ, Burgess SR, Anthony JL, & Barker TA (1998). Development of phonological sensitivity in two- to five-year-old children . Journal of Educational Psychology , 90 , 294–311. 10.1037/0022-0663.90.2.294 [ CrossRef ] [ Google Scholar ]
  • Lonigan C, Burgess S, & Schatschneider C (2018). Examining the Simple View of Reading with elementary school children: Still simple after all these years . Remedial and Special Education , 39 ( 5 ), 260–273. 10.1177/0741932518764833 [ CrossRef ] [ Google Scholar ]
  • Lonigan CJ, Farver JM, Nakamoto J, & Eppe S (2013). Developmental trajectories of preschool early literacy skills: A comparison of language-minority and monolingual-English children . Developmental Psychology , 49 , 1943–1957. 10.1037/a0031408 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lonigan CJ, Farver JM, Phillips BM, & Clancy-Menchetti J (2011). Promoting the development of preschool children’s emergent literacy skills: A randomized evaluation of a literacy-focused curriculum and two professional development models . Reading and Writing: An Interdisciplinary Journal , 24 , 305–337. doi: 10.1007/s11145-009-9214-6 [ CrossRef ] [ Google Scholar ]
  • Lonigan CJ, & Whitehurst GJ (1998). Relative efficacy of parent and teacher involvement in a shared-reading intervention for preschool children from low-income backgrounds . Early Childhood Research Quarterly , 13 , 263–290. doi: 10.1016/S0885-2006(99)80038-6 [ CrossRef ] [ Google Scholar ]
  • Lyytinen H, Erskine J, Hämäläinen J, Torppa M & Ronimus M (2015). Dyslexia-early identification and prevention: Highlights of the Jyvaskyla longitudinal study of dyslexia . Current Developmental Disorders Report , 2 , 330–338. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Maher B (2008). Personal genomes: The case of missing heritability . Nature , 456 , 18–21. doi: 10.1038/456018a. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mancilla-Martinez J, & Lesaux N (2010). Predictors of reading comprehension for struggling readers: The case of Spanish-speaking language minority children . Journal of Educational Psychology , 102 ( 3 ), 701–711. 10.1037/a0019135. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Marinus E, Mostard M, Segers E, Schubert TM, Madelaine A, & Wheldall K (2016). A special font for people with dyslexia: Does it work and, if so, why? Dyslexia , 22 ( 3 ), 233–244. doi: 10.1002/dys.1527 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Marulis LM, & Neuman SB (2010). The effects of vocabulary intervention on young children’s word learning: A meta-analysis . Review of Educational Research , 80 ( 3 ), 300–335. doi: 10.3102/0034654310377087 [ CrossRef ] [ Google Scholar ]
  • Melby-Lervåg M, Redick TS, & Hulme C (2016). Working memory training does not improve performance on measures of intelligence or other measures of “far transfer” evidence from a meta-analytic review . Perspectives on Psychological Science , 11 ( 4 ), 512–534. doi: 10.1177/1745691616635612 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Miciak J, & Fletcher JM (2020). The critical role of instructional response for identifying dyslexia and other learning disabilities . Journal of Learning Disabilities . Advance online publication. doi: 10.1177/0022219420906801 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Nation K, & Castles A (2017). Putting the learning into orthographic learning . Theories of reading development , 148–168. [ Google Scholar ]
  • National Institute of Child Health and Human Development (2000). National reading panel—Teaching children to read: Reports of the subgroups (NIH Pub. No. 00-4754) . Washington, DC: U.S. Department of Health and Human Services. Retrieved from https://www.nichd.nih.gov/sites/default/files/publications/pubs/nrp/Documents/report.pdf [ Google Scholar ]
  • National Institute for Literacy (2008). Developing early literacy: Report of the National Early Literacy Panel . Retrieved at https://lincs.ed.gov/publications/pdf/NELPReport09.pdf
  • Neuman SB, & Kaefer T (2018). Developing low-income children’s vocabulary and content knowledge through a shared book reading program . Contemporary Educational Psychology , 52 , 15–24. doi: 10.1016/j.cedpsych.2017.12.001 [ CrossRef ] [ Google Scholar ]
  • Olson R & Datta H (2002). Visual-temporal processing in reading-disabled and normal twins . Reading and Writing: An Interdisciplinary Journal , 15 ( 1-2 ), 127–149. [ Google Scholar ]
  • Palinscar AS, & Duke NK (2004). The role of text and text-reader interactions in young children’s reading development and achievement . The Elementary School Journal , 105 ( 2 ), 183–197. doi: 10.1086/428864 [ CrossRef ] [ Google Scholar ]
  • Patton-Terry N, Connor CM, Thomas-Tate S, & Love M (2010). Examining relationships among dialect variation, literacy skills, and school context in first grade . Journal of Speech, Language, and Hearing Research , 53 ( 1 ), 126–145. doi: 10.1044/1092-4388(2009/08-0058) [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Peng P, Fuchs D, Fuchs LS, Elleman AM, Kearns DM, Gilbert JK, … & Patton S III (2019). A longitudinal analysis of the trajectories and predictors of word reading and reading comprehension development among at-risk readers . Journal of Learning Disabilities , 52 , 195–208. 10.1177/00222194188090 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pennington BF, Santerre-Lemmon L, Rosenberg J, MacDonald B, Boada R, et al. (2012). Individual prediction of dyslexia by single versus multiple deficit models . Journal of Abnormal Psychology , 121 , 212–224. doi: 10.1037/a0025823 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Perfetti C (2007). Reading ability: Lexical quality to comprehension . Scientific Studies of Reading , 11 ( 4 ), 357–383. 10.1080/10888430701530730 [ CrossRef ] [ Google Scholar ]
  • Perfetti CA (1992). The representation problems in reading acquisition. In Gough PB, Ehri LC, & Treiman R (Eds.), Reading acquisition (pp. 145–174). Hillsdale, NJ: Erlbaum. [ Google Scholar ]
  • Peters JL, De Losa L, Bavin EL, & Crewther SG (2019). Efficacy of dynamic visuo-attentional interventions for reading in dyslexic and neurotypical children: A systematic review . Neuroscience & Biobehavioral Reviews , 100 , 58–76. 10.1016/j.neubiorev.2019.02.015 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Phillips BM, Connor CM, Lonigan CJ, Willis KB, & Crowe E (presented 2016, July). Supporting language and comprehension in second grade: Results from a Tier 2 efficacy trial. Presentation at Annual Meeting of the Society for the Scientific Study of Reading , Society for the Scientific Study of Reading, Porto, Portugal. [ Google Scholar ]
  • Protopapas A (2014). From temporal processing to developmental language disorders: Mind the gap . Philosophical Transactions of the Royal Society B: Biological Sciences , 369 ( 1634 ), 20130090. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Rack JP, Snowling MJ, & Olson RK (1992). The nonword reading deficit in developmental dyslexia: A review . Reading Research Quarterly , 27 ( 1 ), 28–53. doi: 10.2307/747832 [ CrossRef ] [ Google Scholar ]
  • Rayner K, Foorman BR, Perfetti CA, Pesetsky D, & Seidenberg MS (2001). How psychological science informs the teaching of reading . Psychological Science in the Public Interest , 2 ( 2 ), 31–74. doi: 10.1111/1529-1006.00004 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Reutzel DR, Petscher Y, & Spichtig AN (2012). Exploring the value added of a guided, silent reading intervention: Effects on struggling third-grade readers’ achievement . The Journal of Educational Research , 105 ( 6 ), 404–415. 10.1080/00220671.2011.629693 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ritchey KD, & Goeke JL (2006). Orton-Gillingham and Orton-Gillingham—based reading instruction: A review of the literature . The Journal of Special Education , 40 ( 3 ), 171–183. 10.1177/00224669060400030501 [ CrossRef ] [ Google Scholar ]
  • Sabatini JP, Sawaki Y, Shore JR, & Scarborough HS (2010). Relationships among reading skills of adults with low literacy . Journal of Learning Disabilities , 43 , 122–138. 10.1177/0022219409359343 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sarama J, Clements DH, Wolfe CB, & Spitler ME (2012). Longitudinal evaluation of a scale-up model for teaching mathematics with trajectories and technologies . Journal of Research on Educational Effectiveness , 5 , 105–135. 10.3102/0002831212469270 [ CrossRef ] [ Google Scholar ]
  • Savage R, Georgiou G, Parrila R, & Maiorino K (2018). Preventative reading interventions teaching direct mapping of graphemes in texts and set-for-variability aid at-risk learners . Scientific Studies of Reading , 22 ( 3 ), 225–247. doi: 10.1080/10888438.2018.1427753 [ CrossRef ] [ Google Scholar ]
  • Schneider M (2018, December 17). A more systematic approach to replicating research . Institute of Education Sciences. https://ies.ed.gov/director/remarks/12-17-2018.asp [ Google Scholar ]
  • Schwartz S (2019, December). The most popular reading programs aren't backed by science . Retrieved from EDWeek https://www.edweek.org/ew/articles/2019/12/04/the-most-popular-reading-programs-arent-backed.html [ Google Scholar ]
  • Scruggs TE, Mastropieri MA, & McDuffie KA (2007). Co-teaching in inclusive classrooms: A meta-synthesis of qualitative research . Exceptional Children , 73 ( 4 ), 392–416. 10.1177/001440290707300401 [ CrossRef ] [ Google Scholar ]
  • Seidenberg MS (2005). Connectionist models of word reading . Current Directions in Psychological Science , 14 ( 5 ), 238–242. 10.1111/j.0963-7214.2005.00372.x [ CrossRef ] [ Google Scholar ]
  • Selzam S, Dale PS, Wagner RK, DeFries JC, Cederlöf M, O’Reilly PF, … & Plomin R (2017). Genome-wide polygenic scores predict reading performance throughout the school years . Scientific Studies of Reading , 21 ( 4 ), 334–349.doi: 10.1080/10888438.2017.1299152 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Seymour PH, Aro M, & Erskine JM (2003). Foundation literacy acquisition in european orthographies . British Journal of Psychology , 94 ( 2 ), 143–174. doi: http://dx.doi.org.proxy.lib.fsu.edu/10.1348/000712603321661859 [ PubMed ] [ Google Scholar ]
  • Shanahan T, Callison K, Carriere C, Duke NK, Pearson PD, Schatschneider C, & Torgesen J (2010). Improving reading comprehension in kindergarten through 3rd grade: A practice guide (NCEE 2010-4038) . Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. Retrieved from https://ies.ed.gov/ncee/wwc/Docs/PracticeGuide/readingcomp_pg_092810.pdf [ Google Scholar ]
  • Share DL (1995). Phonological recoding and self-teaching: Sine qua non of reading acquisition . Cognition , 55 , 151–218. 10.1016/0010-0277(94)00645-2 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Slavin RE (2002). Evidence-based education policies: Transforming educational practice and research . Educational Researcher , 31 , 15–21. 10.3102/0013189x031007015 [ CrossRef ] [ Google Scholar ]
  • Smith (1971). Understanding Reading . New York: Holt, Rhinehart & Winston. [ Google Scholar ]
  • Smolen P, Zhang Y, & Byrne JH (2016). The right time to learn: mechanisms and optimization of spaced learning . Nature Reviews Neuroscience , 17 ( 2 ), 77–88. 10.1038/nrn.2015.18 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Stanovich KE (1980). Toward an interactive-compensatory model of individual differences in the development of reading fluency . Reading Research Quarterly , 16 ( 1 ), 32–71. DOI: 10.2307/747348 [ CrossRef ] [ Google Scholar ]
  • Stanovich KE (1990). Concepts in developmental theories of reading skill: Cognitive resources, automaticity, and modularity . Developmental Review , 10 ( 1 ), 72–100. 10.1016/0273-2297(90)90005-O [ CrossRef ] [ Google Scholar ]
  • Stanovich KE (1991). Word recognition: Changing perspectives. In Barr R, Kamil ML, Mosenthal PB, & Pearson PD (Eds.), Handbook of reading research , Vol. 2 (p. 418–452). Lawrence Erlbaum Associates, Inc. [ Google Scholar ]
  • Stanovich KE (2000). Progress in understanding reading: Scientific foundations and new frontiers . Guilford Press. [ Google Scholar ]
  • Stanovich (2003). Understanding the styles of science in the study of reading . Scientific Studies of Reading , 7 ( 2 ), 105–126, 10.1207/S1532799XSSR0702_1 [ CrossRef ] [ Google Scholar ]
  • Stanovich KE, & Siegel LS (1994). Phenotypic performance profile of children with reading disabilities: A regression-based test of the phonological-core variable-difference model . Journal of Educational Psychology , 86 ( 1 ), 24–53. doi: 10.1037/0022-0663.86.1.24 [ CrossRef ] [ Google Scholar ]
  • Steacy LM, Compton DL, Petscher Y, Elliott JD, Smith K, Rueckl JG, Sawi O, Frost SJ, & Pugh K (2019a). Development and prediction of context-dependent vowel pronunciation in elementary readers . Scientific Studies of Reading , 23 ( 1 ), 49–63. 10.1080/10888438.2018.1466303 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Steacy LM, Wade-Woolley L, Rueckl JG, Pugh KR, Elliott JD, & Compton DL (2019b). The role of set for variability in irregular word reading: Word and child predictors in typically developing readers and students at-risk for reading disabilities . Scientific Studies of Reading , 23 ( 6 ), 523–532. doi: 10.1080/10888438.2019.1620749 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Stein J (2019). The current status of the magnocellular theory of developmental dyslexia . Neuropsychologia , 130 , 66–77. DOI: 10.1016/j.neuropsychologia.2018.03.022 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Storch S, & Whitehurst GR (2002). Oral language and code-related precursors to reading: Evidence from a longitudinal, structural model . Developmental Psychology , 38 , 934–947 10.1037/0012-1649.38.6.934 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Strong GK, Torgerson CJ, Torgerson D, & Hulme C (2011). A systematic meta-analytic review of evidence for the effectiveness of the 'fast ForWord' language intervention program . Journal of Child Psychology and Psychiatry , 52 ( 3 ), 224–235. doi: 10.1111/j.1469-7610.2010.02329.x [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Suggate SP (2016). A meta-analysis of the long-term effect of phonemic awareness, phonics, fluency, and reading comprehension analyses . Journal of Learning Disabilities , 49 , 77–96. 10.1177/0022219414528540 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Tallal P (1984). Temporal or phonetic processing deficit in dyslexia? That is the question . Applied Psycholinguistics , 5 ( 2 ), 167–169. 10.1017/S0142716400004963 [ CrossRef ] [ Google Scholar ]
  • Therrien WJ (2004). Fluency and comprehension gains as a result of repeated reading: A meta-analysis . Remedial and Special Education , 25 , 253–261. 10.1177/07419325040250040801 [ CrossRef ] [ Google Scholar ]
  • Thompson PA, Hulme C, Nash HM, Gooch D, Hayiou-Thomas E & Snowling MJ (2015). Developmental dyslexia: Predicting risk . Journal of Child Psychology and Psychiatry , 56 , 976–987. doi: 10.1111/jcpp.12412 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Torgesen JK (2000). Individual differences in response to early interventions in reading: The lingering problem of treatment resisters . Learning Disabilities Research & Practice , 15 ( 1 ), 55–64. doi: 10.1207/SLDRP1501_6 [ CrossRef ] [ Google Scholar ]
  • Torgesen JK, Alexander AW, Wagner RK, Rashotte CA, Voeller KK, & Conway T (2001). Intensive remedial instruction for children with severe reading disabilities: Immediate and long-term outcomes from two instructional approaches . Journal of Learning Disabilities , 34 ( 1 ), 33–58. doi: 10.1177/002221940103400104 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Tunmer WE, & Chapman JW (2012). Does set for variability mediate the influence of vocabulary knowledge on the development of word recognition skills? Scientific Studies of Reading , 16 ( 2 ), 122–140. doi: 10.1080/10888438.2010.542527 [ CrossRef ] [ Google Scholar ]
  • Vadasy PF, Nelson JR, & Sanders EA (2011). Longer term effects of a tier 2 kindergarten vocabulary intervention for English learners . Remedial and Special Education , 34 , 91–101. 10.1177/0741932511420739 [ CrossRef ] [ Google Scholar ]
  • Vadasy PF, & Sanders EA (2013). Two-year follow-up of a code-oriented intervention for lower-skilled first graders: The influence of language status and word reading skills on third-grade literacy outcomes . Reading & Writing , 26 , 821–843. 10.1007/s11145-012-9393-4 [ CrossRef ] [ Google Scholar ]
  • van IJzendoorn MH, & Bus AG (1994). Meta-analytic confirmation of the nonword reading deficit in developmental dyslexia . Reading Research Quarterly , 3 , 267–275. 10.2307/747877 [ CrossRef ] [ Google Scholar ]
  • Vaughn S, Martinez LR, Wanzek J, Roberts G, Swanson E, & Fall AM (2017). Improving content knowledge and comprehension for English language learners: Findings from a randomized control trial . Journal of Educational Psychology , 109 , 22–34. 10.1037/edu0000069 [ CrossRef ] [ Google Scholar ]
  • Vellutino FR, Scanlon DM, Sipay ER, Small SG, Pratt A, Chen R, & Denckla MB (1996). Cognitive profiles of difficult-to-remediate and readily remediated poor readers: Early intervention as a vehicle for distinguishing between cognitive and experiential deficits as basic causes of specific reading disability . Journal of Educational Psychology 88 , 601–638. doi: 10.1037/0022-0663.88.4.601 [ CrossRef ] [ Google Scholar ]
  • Vellutino FR, Tunmer WE, Jaccard J, & Chen S (2007). Components of reading ability: Multivariate evidence for a convergent skills model of reading development . Scientific Studies of Reading , 11 , 3–32. DOI: 10.1080/10888430709336632 [ CrossRef ] [ Google Scholar ]
  • Venezky RL (1999). The American way of spelling: The structure and origins of American English Orthography . New York, NY: Guilford Press. [ Google Scholar ]
  • Verhoeven L, & van Leeuwe J (2008). Prediction of the development of reading comprehension: A longitudinal study . Applied Cognitive Psychology , 22 , 407–423. 10.1002/acp.1414 [ CrossRef ] [ Google Scholar ]
  • Wade-Woolley L (2016). Prosodic and phonemic awareness in children’s reading of long and short words . Reading and Writing , 29 , 371–382. 10.1007/s11145-015-9600-1 [ CrossRef ] [ Google Scholar ]
  • Wagner RK, Edwards AA, Malkowski A, Schatschneider C, Joyner RE, Wood S, Zirps FA (2019). Combining old and new for better understanding and predicting dyslexia . New Directions for Child and Adolescent Development , 165 , 1–11. doi: 10.1002/cad.20289 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wagner RK, Francis DJ, & Morris RD (2005). Identifying English language learners with learning disabilities: Key challenges and possible approaches . Learning Disabilities Research & Practice , 20 ( 1 ), 6–15. 10.1111/j.1540-5826.2005.00115.x [ CrossRef ] [ Google Scholar ]
  • Wagner RK, Muse AE, & Tannenbaum KR (2007). Promising avenues for better understanding implications of vocabulary development for reading comprehension. In Wagner R. Muse A, Tannenbaum K (Eds). Vocabulary acquisition: Implications for reading comprehension . New York: Guilford Press. pp. 276–291. [ Google Scholar ]
  • Wagner RK, & Stanovich KE (1996). Expertise in reading. In Ericsson KA (Ed.), The road to excellence: The acquisition of expert performance in the arts and sciences, sports, and games (pp. 189–225). Mahwah, NJ: Erlbaum. [ Google Scholar ]
  • Wagner RK, & Torgesen JK (1987). The nature of phonological processing and its causal role in the acquisition of reading skills . Psychological Bulletin , 101 , 192–212. 10.1037/0033-2909.101.2.192 [ CrossRef ] [ Google Scholar ]
  • Wagner R, Torgesen J, & Rashotte C (1994). Development of reading-related phonological processing abilities: New evidence of bidirectional causality from a latent variable longitudinal study . Developmental Psychology , 30 , 73–87. 10.1037/0012-1649.30.1.73 [ CrossRef ] [ Google Scholar ]
  • Wanzek J, Vaughn S, Scammacca N, Gatlin B, Walker MA, & Capin P (2016). Meta-analyses of the effects of Tier 2 type reading interventions in grades K-3 . Educational Psychology Review , 28 , 551–576. 10.1007/s10648-015-9321-7 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wanzek J, Vaughn S, Scammacca NK, Metz K, Murray CS, Roberts G, & Danielson L (2013). Extensive reading interventions for students with reading difficulties after Grade 3 . Review of Educational Research , 83 , 163–195. 10.3102/0034654313477212 [ CrossRef ] [ Google Scholar ]
  • Wasik BA, & Hindman AH (2020). Increasing preschoolers’ vocabulary development through a streamlined teacher professional development intervention . Early Childhood Research Quarterly , 50 , 101–113. doi: 10.1016/j.ecresq.2018.11.001 [ CrossRef ] [ Google Scholar ]
  • Welsch JG, Powell JJ, & Robnolt VJ (2019). Getting to the core of close reading: What do we really know and what remains to be seen? Reading Psychology , 40 ( 1 ), 95–116. 10.1080/02702711.2019.1571544 [ CrossRef ] [ Google Scholar ]
  • Whitehurst GJ & Lonigan CJ (1998). Child development and emergent literacy . Child Development , 69 , 848–872. 10.2307/1132208 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Williams JP, Pollini S, Nubla-Kung AM, Snyder AE, Garcia A, Ordynans JG, & Atkins JG (2014). An intervention to improve comprehension of cause/effect through expository text structure instruction . Journal of Educational Psychology , 106 , 1–17. doi: 10.1037/a0033215 [ CrossRef ] [ Google Scholar ]
  • Ziegler J, & Goswami U (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory . Psychological Bulletin , 131 ( 1 ), 3–29. 10.1037/0033-2909.131.1.3 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ziegler J, Stone G, & Jacobs A (1997). What is the pronunciation for –ough and the spelling for /u/? A database for computing feedforward and feedback consistence in English . Behavior Research Methods, Instruments, & Computers , 29 ( 4 ), 600–618. 10.3758/BF03210615 [ CrossRef ] [ Google Scholar ]
  • Zipke M (2016). The importance of flexibility of pronunciation in learning to decode: A training study in set for variability . First Language , 36 ( 1 ), 71–86. doi: 10.1177/0142723716639495 [ CrossRef ] [ Google Scholar ]
  • Utility Menu

University Logo

  • ARC Scheduler
  • Student Employment

stack of books

Some sample reading goals: 

To find a paper topic or write a paper;

To have a comment for discussion;

To supplement ideas from lecture;

To understand a particular concept;

To memorize material for an exam;

To research for an assignment;

To enjoy the process (i.e., reading for pleasure!).

Seeing Textbook Reading in a New Light Students often come into college with negative associations surrounding textbook reading. It can be dry, dense, and draining; and in high school, sometimes we're left to our textbooks as a last resort for learning material.

A supportive resource : In college, textbooks can be a fantastic supportive resource. Some of your faculty may have authored their own for the specific course you're in!

Textbooks can provide:

A fresh voice through which to absorb material. Especially when it comes to challenging concepts, this can be a great asset in your quest for that "a-ha" moment.

The chance to “preview” lecture material, priming your mind for the big ideas you'll be exposed to in class.

The chance to review material, making sense of the finer points after class.

A resource that is accessible any time, whether it's while you are studying for an exam, writing a paper, or completing a homework assignment. 

Textbook reading is similar to and different from other kinds of reading . Some things to keep in mind as you experiment with its use:

Is it best to read the textbook before class or after?

Active reading is everything, apply the sq3r method., don’t forget to recite and review..

If you find yourself struggling through the readings for a course, you can ask the course instructor for guidance. Some ways to ask for help are: "How would you recommend I go about approaching the reading for this course?" or "Is there a way for me to check whether I am getting what I should be out of the readings?" 

Marking Text

Marking text – making marginal notes – helps with reading comprehension by keeping you focused and facilitating connections across readings. It also helps you find important information when reviewing for an exam or preparing to write an essay. The next time you’re reading, write notes in the margins as you go or, if you prefer, make notes on a separate sheet of paper. 

Your marginal notes will vary depending on the type of reading. Some possible areas of focus:

What themes do you see in the reading that relate to class discussions?

What themes do you see in the reading that you have seen in other readings?

What questions does the reading raise in your mind?

What does the reading make you want to research more?

Where do you see contradictions within the reading or in relation to other readings for the course?

Can you connect themes or events to your own experiences?

Your notes don’t have to be long. You can just write two or three words to jog your memory. For example, if you notice that a book has a theme relating to friendship, you can just write, “pp. 52-53 Theme: Friendship.” If you need to remind yourself of the details later in the semester, you can re-read that part of the text more closely. 

Accordion style

If you are looking for help with developing best practices and using strategies for some of the tips discussed above, come to an ARC workshop on reading!

Register for ARC Workshops

  • Assessing Your Understanding
  • Building Your Academic Support System
  • Common Class Norms
  • Effective Learning Practices
  • First-Year Students
  • How to Prepare for Class
  • Interacting with Instructors
  • Know and Honor Your Priorities
  • Memory and Attention
  • Minimizing Zoom Fatigue
  • Note-taking
  • Office Hours
  • Perfectionism
  • Scheduling Time
  • Senior Theses
  • Study Groups
  • Tackling STEM Courses
  • Test Anxiety

Reading Skills

  • Reference work entry
  • pp 2517–2518
  • Cite this reference work entry

reading skills in research

  • Michelle Lestrud M.Ed., C.A.G.S. 2  

1 Citations

Reading skills lead a person to interact and gain meaning from written language. There are several components one must master which lead to independently comprehending the intended message being relayed in the written content. First is phonemic awareness which is defined by the National Reading Panel as “recognizing and manipulating spoken words in language” (Whalon et al. 2009 ). Next is phonics defined by the same group as “understanding letter-sound correspondences in reading and spelling” then oral reading fluency which is “reading text with speed, accuracy, and expression.” The forth component is vocabulary defined as “understanding words read by linking the word to oral vocabulary” and lastly is comprehension defined as “directly teaching students to be aware of the cognitive processes involved in reading” (p. 4).

Typically developing children will start to acquire reading skills in preschool and continue to learn along a continuum until they reach an independent...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Readings

Afflerbach, P., Pearson, P. D., & Paris, S. G. (2008). Clarifying differences between reading skills and reading strategies. The Reading Teacher, 61 (5), 364 (10).

Article   Google Scholar  

Gough, P. B., & Hoover, W. A. (1990). The simple view of reading. Reading and Writing: An Interdisciplinary Journal, 2 , 127–160.

Huemer, S. V., & Mann, V. (2010). A comprehensive profile of decoding and comprehension in autism spectrum disorders. Journal of Autism and Developmental Disorders, 40 (4), 485–493.

King-Sears, M. E., Mainzer, L., & Swanson, C. (2011). TECHnology and literacy for adolescents with disabilities: A sound decision-making framework can assist teachers in adopting and embracing current technologies and looking toward Web 3.0 in order to create universally accessible learning environments to advance literacy learning for all students, and especially students with disabilities. Journal of Adolescent & Adult Literacy, 54 (8), 569.

Lanter, E., & Watson, L. R. (2008). Promoting literacy in students with ASD: The basics for the SLP. Language, Speech, & Hearing Services in Schools, 39 , 33.

Luyster, R., & Lord, C. (2009). Word learning in children with autism spectrum disorders. Developmental Psychology, 45 (6), 1774–1786.

Article   PubMed   Google Scholar  

Narkon, D. E., Wells, J. C., & Segal, L. S. (2011). E-word wall: An interactive vocabulary instruction tool for students with learning disabilities and autism spectrum disorders. TEACHING Exceptional Children, 43 (4), 38–45.

Google Scholar  

Randi, J., Newman, T., & Grigorenko, E. L. (2010). Teaching children with autism to read for meaning: Challenges and possibilities. Journal of Autism and Developmental Disorders, 40 (7), 890–902.

Whalon, K., & Hart, J. E. (2011). Adapting an evidence-based reading comprehension strategy for learners with autism spectrum disorder. Intervention in School and Clinic, 46 (4), 195–203.

Whalon, K. J., Otaiba, S. A., & Delano, M. E. (2009). Evidence-based reading instruction for individuals with autism spectrum disorders. Focus on Autism and Other Developmental Disabilities, 24 (1), 3–16.

Download references

Author information

Authors and affiliations.

The Gengras Center, University of Saint Joseph, 1678 Asylum Avenue, West Hartford, CT, 06117-2791, USA

Michelle Lestrud M.Ed., C.A.G.S.

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Michelle Lestrud M.Ed., C.A.G.S. .

Editor information

Editors and affiliations.

Irving B. Harris Professor of Child Psychiatry, Pediatrics and Psychology Yale University School of Medicine, Chief, Child Psychiatry Children's Hospital at Yale-New Haven Child Study Center, New Haven, CT, USA

Fred R. Volkmar ( Director, Child Study Center ) ( Director, Child Study Center )

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry.

Lestrud, M. (2013). Reading Skills. In: Volkmar, F.R. (eds) Encyclopedia of Autism Spectrum Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1698-3_1579

Download citation

DOI : https://doi.org/10.1007/978-1-4419-1698-3_1579

Publisher Name : Springer, New York, NY

Print ISBN : 978-1-4419-1697-6

Online ISBN : 978-1-4419-1698-3

eBook Packages : Behavioral Science

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 07 February 2022

Reading skills intervention during the Covid-19 pandemic

  • Ana Sucena 1 , 2 ,
  • Ana Filipa Silva 1 , 2 &
  • Cátia Marques 1 , 2  

Humanities and Social Sciences Communications volume  9 , Article number:  45 ( 2022 ) Cite this article

7 Citations

10 Altmetric

Metrics details

  • Language and linguistics

This paper diagnoses the reading skills at the onset of second grade after one (final) trimester of first grade, with online schooling as a result of COVID-19. It also describes and assesses the impact of a Reading Skills Consolidating Program conducted with second graders during the first weeks of the school year. This intervention program focuses on the promotion of letter-sound, phonemic awareness, decoding and spelling. The intervention was implemented with 446-second graders (224 boys and 208 girls), preceded and followed by a reading assessment. Results were analyzed with an intra (pre- and post-test) group design. A paired sample t -test indicated the presence of statistically significant differences between the two assessment moments, with higher values at the post-test. At the pre-test, there was a significantly higher than the normally expected percentage of students with a reading level on or below the 10th percentile along with a significantly worse performance among low Socioeconomic Status (SES) students. The post-test revealed a positive impact of the training program, as indicated by (i) a decrease to about half of the number of students at or below the 10th percentile, (ii) an increase of 20% of students with reading skills at or above the 30th percentile and (iii) the difference decrease in reading skills in a result of SES.

Similar content being viewed by others

reading skills in research

Transacting knowledge when there are no schools during the COVID-19 lockdown in Nigeria: the SENSE-transactional radio instruction experience

reading skills in research

The effect of classroom environment on literacy development

reading skills in research

Metacognitive reading strategies and its relationship with Filipino high school students’ reading proficiency: insights from the PISA 2018 data

The global pandemic of SARS-CoV-2 (COVID-19 [coronavirus disease 2019]) has completely changed education in many countries around the world (Reimer et al., 2021 ). Students had face-to-face instruction interrupted during the 2019–2020 school year due to the pandemic (Kuhfeld et al., 2021 ). The majority of schools provided some virtual instruction during the last months of school in 2019 (Lake and Dusseault, 2020 ), and the same scenario reoccurred at the beginning of 2021. Throughout this time, both educators and parents have been actively seeking the best way to continue formal education through remote or virtual learning (Daniel, 2020 ; Hodges et al., 2020 ; Reich et al., 2020 ). Nonetheless, it remains unclear how effective remote or virtual learning is (Viner et al., 2020 ).

Longer-term economic and societal implications of remote or virtual learning seem likely to be severe. Consequently, it will also have a direct impact on both short- and long-term school experiences and trajectories. For example, in short-term, research has shown that COVID-19 school closures will generate substantial learning losses, particularly for the lowest-achieving students (Bacher-Hicks et al., 2020; Chetty et al., 2020; Kuhfeld et al., 2021 ) and this can have long-term implications, since impairments in reading and writing acquisition skills have the potential to seriously limit personal aspirations (Jamshidifarsani et al., 2019 ). Furthermore, research anticipates that virtual learning will emphasize social inequality in student learning due to differences in children’s opportunities to learn at home (Bol, 2020 ), as many working parents were struggling to work and take care of their children at the same time (Harris, 2020 ). Parents identify personal, technical, logistical and financial barriers regarding the challenges of distance learning during the Pandemic (Abuhammad, 2020 ). Parents generally had negative beliefs about the benefits of online learning and preferred traditional learning in early childhood settings (Dong et al., 2020 ). Parents tended to resist online learning for four main reasons: the shortcomings of online learning, young children’s inadequate self-regulation, lack of time and professional knowledge for supporting children’s online learning (Dong et al., 2020 ). Summing up, research reports a close association between parental level of education and the ability to support children’s remote learning during the pandemic (Azubuike et al., 2021 ).

Children from disadvantaged families received much less academic support from their parents and were less likely to have access to necessary physical resources such as a computer or a tablet (Azubuike et al., 2021 ; Andrew et al., 2020 ; Bol, 2020 ). In Portugal, a report from the Court of Auditors (Machado et al., 2021 ) states that four in every five students did not have access to technological equipment and had difficulties with internet access. The Portuguese Ministry of Education acquired 100 thousand pieces of equipment, in March 2020, to be delivered to schools and then distributed to needy students. However, authorization for the acquisition and distribution of technological equipment was late (Machado et al., 2021 ). In January 2021, only 27% of the 100 thousand pieces of equipment had been delivered to the students. The Portuguese government answer did not come on time to strike the inequalities in digital literacy and access to technological equipment that the Pandemic imposed. Additional research based on the borrowing of children’s books from libraries shows that social inequality visibly increased during the lockdown (Jæger and Blaabæk, 2020 ; Reimer et al., 2021 ). Even though reading books to children does not substitute the critical role of formal education in teaching children how to read, the literature shows that children whose parents read to them daily during the pandemic, had less loss compared to those whose parents did not read to them (Bao et al., 2020 ). Consequently, differences in children’s reading activities during the pandemic might accelerate pre-existing social differences in children’s cognitive skills.

Based on these results, it is important to intervene as early as possible in order to help children that have seen their school year affected by the pandemic. If reading disabilities are not early addressed, difficulties tend to generalize to other domains, thus jeopardizing future knowledge acquisition (Raspin et al., 2019 ), exposing students to consecutive experiences of failure, thereby diminishing their motivation to learn (Lyytinen and Erskine, 2016 ). Conversely, when these difficulties are identified early and are accompanied by a prompt and intensive intervention, the likelihood of reversing trajectories is very high (Hall and Burns, 2018 ; Lyytinen, 2008 ).

In this study, we focus on an intervention program specifically designed for training second graders reading skills right from the beginning of the school year, after one (final) trimester of first grade with schools closed during the 2019–2020 school year.

The RSCP—Reading Skills Consolidation Program

This intervention program occurred as part of a broader project, aiming to intervene with kindergarteners, first and second graders. The main goal of the project, like other international ones (e.g., Jamshidifarsani et al., 2019 ; Solheim et al., 2018 ), is early intervention with children training the alphabetic principle through phonemic awareness and letter-sound correspondence (pre-reading skills), as well as the spelling and decoding processes (reading skills), which are the foundations for fluency and reading comprehension. These skills are aligned with the Portuguese guidelines for basic education (DGE, 2015 ).

The RSCP consists of ten activities, to be developed over five sessions, aiming to promote decoding competence. There were two intervention options: option A was aimed exclusively at promoting alphabetical decoding, targeting children with highly fragile skills (at letter-sound level); option B consisted of five sessions for the promotion of alphabetical decoding, later evolving to the developing of orthographic decoding, targeting children, also, with fragile skills (but in this case, with letter-sound knowledge already acquired). The choice of which option to adopt was made by the teacher based on the individual results of the reading assessment conducted before the intervention. One activity example of the intervention in option A is the “letters clothesline”. In this activity, the teacher hangs a set of letters on the clothesline (for example in this order: /p/, /m/, /v/, /j/, /d/ and /r/) and asks one student to throw the dice. Regarding the number the dice shows, another student has to write down a word that starts with the same letter (for example, the dice shows a six, which means, the student has to write a word that starts with the letter /r/). In the next round, another student throws the dice and another student spells a new word. An example of an activity in option B is the “change the syllables”. In this activity, the teacher writes a word in a roll (kitchen paper roll for example) and cut the roll into rings (one per syllable). Using a pen, the teacher hangs the rings in the pen to set a word and asks the student to read. In order to continue the activity, the teacher changes the syllable sequence. The program was implemented by educational and clinical professionals of the broader project, along with the classroom teacher, under the supervision of the coordinator of the project.

This study aims to diagnose the reading skills of children at the beginning of the second grade after the previous entire last trimester in first grade with closed schools, as well as to analyze whether the impact differed according to SES. We further present preliminary results regarding the impact of the RSCP, as a means of remediating (or ameliorating) the negative effects from the previous trimester.

Participants

At the pre-intervention assessment T1 (beginning of the school year - September) 542-second graders were assessed, 256 (47.2%) girls and 286 (52.8%) boys, attending public school (19 schools) in the North Coast of Portugal. From these, 280 (51.7%) students were attending NTEIP Schools Footnote 1 ( Territórios Educativos de Intervenção Não Prioritária [Non Priority Intervention Educational Territories] and 262 (48.3%) TEIP Schools ( Territórios Educativos de Intervenção Prioritária [Priority Intervention Educational Territories]). At the post-intervention T2, 446 students were assessed, 224 (50.2%) boys and 208 (46.6%) girls, in 17 schools. Of these, 200 (44.8%) belong to NTEIP School Groupings and 262 (55.2%) to TEIP School Groupings. A description of the participants per School Grouping is presented in Table 1 .

Instruments

Demographic variables were assessed through a survey built for that purpose (e.g., age, sex, school, SES). The SES was assessed by the type of school (NTEIP/TEIP). Children from NTEIP were considered from average SES and children from TEIP from low SES. Participants were assessed regarding reading skills with the Teste de Rastreio de Leitura -TRL [Screening Test for Reading] (Silva et al., 2020 ). TRL is an early reading ability screening test, developed for Portuguese speaking first graders. The test consists of 30 incomplete sentences (items), which the reader must read and complete by selecting one of four given alternatives using multiple choice. Across the four alternatives, one is the target word and the remaining three are distractors. Distractors are words or pseudowords that are visually and/or phonologically close to the target word. (e.g.,“ Paga o bolo com a: noda, mopa, bota, nota ” [Pay the cake with the: noda/mopa/boot/money - the additional options are pseudowords]; or “ O pai vai à : jola, mola, loja, dota” [The father goes to the: jola, clothespin, store, dota]). From the 30 sentences (items), 20 are orthographically simple words (words with consonant-vowel structure, e.g., boca [mouth]), and 10 are orthographically complex words (words with consonant-vowel-consonant - festa-; consonant- diphthong –bailado-; and consonant-consonant-vowel – florista -). The total score corresponds to the total number of sentences completed correctly by the child in five minutes. The maximum score is 30 points.

Procedures of data collection and data analysis

Authorizations were obtained from the school board and parents/legal guardians. The assessment goals were presented to parents/legal guardians, and the confidentiality of the data processing was guaranteed. Participants were administered the assessment tasks individually before the beginning of the intervention (in the last 2 weeks of September 2020) and after the intervention (5 weeks later). All second graders of 19 schools located on the North Coast of Portugal were selected for the intervention. Students included in the intervention program were not receiving any extra intervention regarding reading and writing abilities. There was a decrease between the number of participants who were evaluated at the beginning of the school year and those who completed the intervention as a result of quarantining measures ( n  = 96, 18%). As a result of COVID-19 outbreaks, entire classes and/or the teacher were confined at home so the post-assessment was not conducted with all participants assessed at pre-test.

Statistical analyses were performed through the Statistical Package for the Social Sciences for Windows, version 26.0. Statistical analyses were used to characterize the participants according to SES. A paired sample t -test to verify the effect of time on reading skills was conducted. Before running this test, we verified the fulfillment of normal distribution. Once fulfillment of normal distribution was not verified, non-parametric tests were conducted. When the results of non-parametric tests showed the same conclusions (rejection of the null hypothesis), the results of the parametric tests were reported.

Time 1—pre-intervention

At the pre-intervention assessment, the mean of accurate answers in the TRL was 12.3 (SD = 10). The distribution of the TRL results per percentile is described in Table 2 . We can observe that 27% of the students had reading skills at or below P10, a percentage that increases to 45% if we set the cut-off point at results equal to or less than P30.

At the beginning of the second-grade average SES children presented significantly better reading results than low SES children t (540) = 2.46 p  = 0.01 (Table 3 ).

In Table 4 the percentile distribution is detailed according to the SES. We can observe a higher percentage of children with results at P10 or below in low SES (31.7% vs. 21.8%); conversely, results above the P30 are lower for low SES in comparison to average SES children (50 vs. 58.9%).

Time 2—post-intervention

Table 5 describes the TRL result before and after the intervention. Since the number of students assessed decreased between pre-test and post-test, from this section forward, we will focus exclusively on the results of the 446 students, evaluated in both assessment moments, and, cumulatively enrolled in all sessions of the intervention. In the pre-intervention, the accuracy in the TRL ranged between 11 and 13 (respectively, low SES and average SES). After the intervention, there was a statistically significant increase, both in average SES t (445) = 17.00 p  < 0.001 and in low SES t (445) = 15.56 p  < 0.001. Post-test indicates the absence of statistical differences between average and low SES t (444)=1.52 p  = 0.13.

The distribution on the TRL by percentile intervals at T1 and T2 is described in Table 6 . Concerning reading skills at or below P10, there was a decrease of more than 10% (from 26% to 13%, respectively at T1 and T2). There was an increase of 20% for results higher than the P30 (from 53.4% to 73.1%, respectively).

Table 7 describes the percentile distribution by low and average SES after the intervention. We verify a decrease in the percentage of students with reading skills at or below P10 between T1 and T2 for both low and average SES children. In the same way, the percentage of children with results above the P30 increased between T1 and T2, both in low and on average SES. In the post-intervention, there was no statistical difference between low and average SES t (444) = 1.52 p  = 0.13.

This study aimed to diagnose the reading skills of second graders at the beginning of the school year after the major lockdown in schools in consequence of the Pandemic, as well as to assess the impact of a reading intervention program—RSCP—with the same group of children. Both the first assessment and the onset of the intervention took place in September 2021, after an entire final trimester in first grade with a learning scenario drastically changed, as the schools were closed and online teaching took place (instead of face to face). RSCP was developed to contribute to a national effort to diminish the negative consequences of the extended school closing, specifically developed for promoting alphabetic and orthographic decoding.

At the beginning of first grade, the average accuracy in the TRL was 12.3 (SD = 10), in line with the reference results expected at the end of first grade ( M  = 11; DP = 6.2, Silva et al., 2020). A closer look at the results, specifically analyzing the distribution of children across the different reading percentiles, reveals a worrying fact: 45% of the second graders started the school year (pre-test) with results under the P30. More dramatically, over one fourth presented a reading level at or below the 10th percentile.

An inspection of the results according to SES reveals that in the pre-test average SES children had significantly better accuracy compared with low SES children. This result is in line with Portuguese data that reports low SES students are in general characterized as having more reading difficulties and worse reading competencies than their average SES peers (DGE, 2021 ; CIES and ISCTE, 2011 ). These results might suggest that children with disadvantaged backgrounds (TEIP type of schools) have probably received less academic support from their parents and were less likely to have access to necessary physical resources (e.g., computer or tablet) during the lockdown (Andrew et al., 2020 ; Bol, 2020 ). In Portugal, some families from disadvantaged backgrounds received physical resources from the Portuguese Education Ministry (Machado et al., 2021 ) such as computers or tablets in order to help their children in attending online classes. However, some families did not know how to use those resources or did not have the availability to support children with simple chores such as turning on the computer and accessing the class. These results confirm that the pandemic increased the inequality in students’ reading skills (Bol, 2020 ), in line with previous research documenting that during long periods of school interruption such as summer vacations, low SES children had a slower rate of reading ability gain compared to children from high socioeconomic background families (Cooper et al., 1996 ). Results obtained at the beginning of the school year confirm that the Pandemic increased the tendency for a correlation between academic achievement and SES (Bacher-Hicks et al., 2020 ; Chetty et al., 2020 ; Kuhfeld et al., 2021 ), with the children from lower SES having worse academic achievement.

After the intervention (post-test), reading skills significantly increased for all children. Whereas at the pre-test, 46% of the children had reading skills below P30, at the post-test this percentage decreased to 27%. In addition, after the intervention, there were no statistically significant differences between children according to SES. These results are promising once a specific type of reading intervention during the first 5-week period of the second grade seems able to mitigate the effects of the school closures from the previous trimester, particularly when it comes to the factor of SES.

It was alarming to confirm that children from disadvantaged backgrounds were exactly the ones in worse conditions to overcome these difficulties, as indicated by the pre-intervention assessment. On the other hand, results indicate that an early, systematic and intensive intervention focusing on promoting decoding had a positive impact on reading skills in a short time. The authors expect that this program will be adopted on the early intervention for reading acquisition, thus contributing to promoting confident learners, willing to be fluent readers.

In the present study, concerning the urgency of the pandemic situation, it was the authors’ option not to select any children for a non-intervention condition. In future studies, it is important to compare the reading skills between at-risk children subject and non-subject to the RSCP. We hope to have contributed to the first of many studies developing and accessing reading promotion intensive programs, based on scientifically informed strategies. Future studies should also analyze the relationship between parents’ involvement during the lockdown, as well as the number of technological equipment’s available.

At the beginning of the second grade, after a most atypical first grade affected by the sanitary measures to face the Pandemic, with schools closed for the entire last trimester, an alarming result regarding reading skills was found: over one fourth had poor reading skills, with children from low SES family background significantly more affected. As a response to these results, the authors of this paper develop an intervention program to promote decoding skills during the initial 5 weeks of the school period defined by the Portuguese Ministry of Education as a period of consolidation.

The 5 weeks intervention was very positive, resulting in a significant improvement in reading skills, with an increase of 20 percentual points (53 to 23%) regarding reading abilities above P30 and a decrease of more than 10 percentual points at or below P10 (from 26 to 13%). Also, the 5 weeks intervention resulted inequality across SES. Our results highlight the need for educators and policymakers to address additional difficulties, where early intervention should take place with those children affected by the pandemic. Educators and policymakers will need to find ways for mass assessment. During the next school year, educators will need to adopt effective strategies to work with those most affected by the school closures. As for decoding, RSCP may be adopted as a complementary strategy, along with those adopted in the regular classroom syllabus. We expect to contribute to the growing important publication trend that empowers school leaders, policymakers, and researchers on their quest for urgent evidence-informed post–COVID-19 recovery decisions.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

The NTEIP/TEIP program is a Portuguese government initiative, currently implemented in schools located in economically and socially disadvantaged territories, marked by poverty and social exclusion, where violence, indiscipline, abandonment and school failure are most evident (TEIP schools). The main goal of the program is to prevent and to reduce early school dropout and the indiscipline (DGE, 2021 ; CIES and ISCTE, 2011 ) and improving school grades of the students in the TEIP schools. This is a positive discrimination program aimed at supporting schools located in socioeconomically disadvantaged areas. The strategy of the TEIP program is based on a decentralizing model, focusing on the territory, with the school as a central element in supporting the resolution of community problems (CIES and ISCTE, 2011 ).

Abuhammad S (2020) Barriers to distance learning during the COVID-19 outbreak: a qualitative review from parents’ perspective. Heliyon 6(05482):1–5. https://doi.org/10.1016/j.heliyon.2020.e05482

Andrew A, Cattan S, Costa-Dias M, Farquharson C, Kraftman L, Krutikova S, Sevilla A (2020) Learning during the lockdown: Real-time data on children’s experiences during home learning. IFS briefing note BN288, London

Google Scholar  

Azubuike OB, Adegboye O, Quadri H (2021) Who gets to learn in a pandemic? Exploring the digital divide in remote learning during the COVID-19 pandemic in Nigeria. Int J Educ Res Open 2(100022):1–10. https://doi.org/10.1016/j.ijedro.2020.100022

Article   Google Scholar  

Bacher-Hicks A, Goodman J, Mulhern C (2020) Inequality in household adaptation to schooling shocks: COVID-induced online learning engagement in real time. National Bureau of Economic Research, 27555, 1–35. http://www.nber.org/papers/w27555

Bao X, Qu H, Zhang R, Hogan T (2020) Modeling reading ability gain in kindergarten children during COVID-19 school closures. Int J Environ Res Public Health 17(6371):1–12. https://doi.org/10.3390/ijerph17176371

Article   CAS   Google Scholar  

Bol T (2020) Inequality in homeschooling during the Corona crisis in the Netherlands. First results from the LISS Panel. https://doi.org/10.31235/osf.io/hf32q

Centro de Investigação e Estudos de Sociologia (CIES) & Instituto Universitário de Lisboa (ISCTE) (2011) Efeitos TEIP: Avaliação de impactos escolares e sociais em sete territórios educativos de intervenção prioritária. Retrieved from: https://www.dge.mec.pt/sites/default/files/EPIPSE/estudoteip_sintese.pdf (accessed on 23 Mar 2021)

Chetty R, Friedman JN, Hendren N, Stepner M, The Opportunity Insights Team (2020) The economic impacts of COVID-19: Evidence from a new public database built using private sector data. National Bureau of Economic Research, 27431:1–109. https://doi.org/10.3386/w27431

Cooper H, Nye B, Charlton K, Lindsay J, Greathouse S (1996) The effects of summer vacation on achievement test scores: A narrative and meta-analytic review. Review of Educational Research, 3:227–268. https://doi.org/10.3102/00346543066003227

Daniel SJ (2020) Education and the COVID-19 pandemic. Prospects 1:1–6

Direção Geral da Educação – DGE (2015) Metas curriculares de Português: Ensino básico 1.° Ciclo. Retrieved 06 outubro, 2021, from https://www.dge.mec.pt/sites/default/files/Basico/Metas/Portugues/1_ciclo_leitura_escrita.pdf

Direção-Geral da Educação (DGE) (2021) Linhas orientadoras para elaboração do PPM 2018-2021. Retrived from: http://www.dge.mec.pt/documentos-de-referencia-1

Dong C, Cao S, Li H (2020) Young children’s online learning during COVID-19 pandemic: Chinese parents’ beliefs and attitudes. Children and Youth Services Review, 118(105440):2–10. https://doi.org/10.1016/j.childyouth.2020.105440

Hall M, Burns M (2018) Meta-analysis of targeted small-group reading interventions. J School Psychol 66(1):54–66. https://doi.org/10.1016/j.jsp.2017.11.002

Harris EA (2020, April 27) It was just too much: How remote learning is breaking parents. The New York Times. Retrieved from: https://www.nytimes.com/2020/04/27/nyregion/coronavirus-homeschoolingparents.htm (accessed on 23 Mar 2021)

Hodges C, Moore S, Lockee B, Trust T, Bond A (2020) The difference between emergency remote teaching and online learning. Retrieved from: https://er.educause.edu/articles/2020/3/the-difference-betweenemergency-remote-teaching-and-online-learning (accessed on 23 Mar 2021)

Jæger MM, Blaabæk EH (2020) Inequality in learning opportunities during Covid-19: Evidence from library takeout. Res Soc Strat Mobil 68:100524. https://doi.org/10.1016/j.rssm.2020.100524

Jamshidifarsani H, Garbaya S, Lim T, Blazevic P, Ritchie J (2019) Technology-based reading intervention programs for elementar grades: An analytical review. Comput Educ 128(1):427–451. https://doi.org/10.1016/j.compedu.2018.10.003

Kuhfeld M, Soland J, Tarasawa B, Johnson A, Ruzek E, Liu J (2021) Projecting the potential impact of COVID-19 school closures on academic achievement. Educ Res 49(8):549–565. https://doi.org/10.3102/0013189X20965918

Lake R, Dusseault B (2020a, April 27) Remote classes are in session for more school districts, but attendance plans are still absent. Center for Reinventing Public Education. Retrieved from: https://www.crpe.org/thelens/remote-classes-are-session-more-school-districts-attendance-plansare-still-absent

Lyytinen H (2008) New Technologies and interventions for learning difficulties: Dyslexia in Finnish as a case study. In: Foresight Mental Capital and Wellbeing Project: The Government Office for Science. Government Office for Science, London, UK

Lyytinen H, Erskine J (2016) Early identification and prevention of reading problems. Encyclopedia on Early Childhood Development, 1–5. Retrieved from http://www.childencyclopedia.com/documents/Lyytinen-ErskineANGxp.pdf

Machado F, Alves C, Arantes A (2021) Ensinoa distância e digitalização nas escolas durante a pandemia: Uma resposta rápidae adaptada à pandemia, mas limitada pela insuficiência de competências e meiosdigitais a requerer investimentos. [Online learning and digitalization inschools during the Pandemic: A quick and adapted response to the pandemic, butlimited by the insufficiency of digital skills and means requiring investments.Tribunal de contas [Audit Office] 9(2):1–66. https://www.tcontas.pt/pt-pt/ProdutosTC/Relatorios/RelatoriosAuditoria/Documents/2021/rel009-2021-2s.pdf

Raspin S, Smallwood R, Hatfield S, Boesley L (2019) Exploring the use of the ARROW literacy intervention for looked after children in a UK local authority. Educ Psychol Pract 35(4):1–13. https://doi.org/10.1080/02667363.2019.1632172

Reich J, Buttimer CJ, Fang A, Hillaire GE, Hirsch K, Larke L, Littenberg-Tobias J, Moussapour RM, Napier A, Thompson M (2020) Remote learning guidance from state education agencies during the COVID-19 pandemic: A first look. Retrieved from: https://edarxiv.org/437e2 (accessed on 23 Mar 2021)

Reimer D, Smith E, Andersen IG, Sortkaer B (2021) What happens when schools shut down? Investigating inequality in students’ reading behavior during Covid-19 in Denmark. Res Soc Stratif Mobil 71(100568):1–5. https://doi.org/10.1016/j.rssm.2020.100568

Silva AF, Marques C, Sucena A (2020) Validity Evidence of the Reading Screening Test for Portuguese First Graders. Frontiers in Education, 5(570639):1–7. https://doi.org/10.3389/feduc.2020.570639

Solheim O, Frijters J, Lundetrae K, Uppstad P (2018) Effectiveness of an early reading intervention in a semi-transparent orthography: A group randomised controlled trial. Learn Instruct 58(1):65–79. https://doi.org/10.1016/j.learninstruc.2018.05.004

Viner RM, Russell SJ, Croker H, Packer J, Ward J, Stansfield C, Mytton O, Bonell C, Booy R (2020) School closure and management practices during coronavirus outbreaks including COVID-19: A rapid systematic review. Lancet Child Adolesc Health 4:397–404. https://doi.org/10.1016/S2352-4642(20)30095-X

Article   CAS   PubMed   PubMed Central   Google Scholar  

Download references

Acknowledgements

This work was supported by European Horizon 2020, under OPERAÇÃO NORTE-08- 5266-FSE349 000095.

Author information

Authors and affiliations.

Polytechnic Institute of Porto, Porto, Portugal

Ana Sucena, Ana Filipa Silva & Cátia Marques

Research and Intervention Reading Centre, Porto, Portugal

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Ana Sucena .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethics approval

Ethical approval was not required for the study in accordance with institutional requirements. Previous authorizations by the Portuguese Education Ministry were provided.

Informed consent

Informed consent was obtained from all participants and their legal guardians.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Sucena, A., Silva, A.F. & Marques, C. Reading skills intervention during the Covid-19 pandemic. Humanit Soc Sci Commun 9 , 45 (2022). https://doi.org/10.1057/s41599-022-01059-x

Download citation

Received : 06 July 2021

Accepted : 18 January 2022

Published : 07 February 2022

DOI : https://doi.org/10.1057/s41599-022-01059-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Activation of content-schemata for scaffolding l2 writing: voices from a turkish context.

  • Elmaziye Özgür Küfi

Journal of Psycholinguistic Research (2023)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

reading skills in research

How Does Writing Fit Into the ‘Science of Reading’?

reading skills in research

  • Share article

In one sense, the national conversation about what it will take to make sure all children become strong readers has been wildly successful: States are passing legislation supporting evidence-based teaching approaches , and school districts are rushing to supply training. Publishers are under pressure to drop older materials . And for the first time in years, an instructional issue—reading—is headlining education media coverage.

In the middle of all that, though, the focus on the “science of reading” has elided its twin component in literacy instruction: writing.

Writing is intrinsically important for all students to learn—after all, it is the primary way beyond speech that humans communicate. But more than that, research suggests that teaching students to write in an integrated fashion with reading is not only efficient, it’s effective.

Yet writing is often underplayed in the elementary grades. Too often, it is separated from schools’ reading block. Writing is not assessed as frequently as reading, and principals, worried about reading-exam scores, direct teachers to focus on one often at the expense of the other. Finally, beyond the English/language arts block, kids often aren’t asked to do much writing in early grades.

“Sometimes, in an early-literacy classroom, you’ll hear a teacher say, ‘It’s time to pick up your pencils,’” said Wiley Blevins, an author and literacy consultant who provides training in schools. “But your pencils should be in your hand almost the entire morning.”

Strikingly, many of the critiques that reading researchers have made against the “balanced literacy” approach that has held sway in schools for decades could equally apply to writing instruction: Foundational writing skills—like phonics and language structure—have not generally been taught systematically or explicitly.

And like the “find the main idea” strategies commonly taught in reading comprehension, writing instruction has tended to focus on content-neutral tasks, rather than deepening students’ connections to the content they learn.

Education Week wants to bring more attention to these connections in the stories that make up this special collection . But first, we want to delve deeper into the case for including writing in every step of the elementary curriculum.

Why has writing been missing from the reading conversation?

Much like the body of knowledge on how children learn to read words, it is also settled science that reading and writing draw on shared knowledge, even though they have traditionally been segmented in instruction.

“The body of research is substantial in both number of studies and quality of studies. There’s no question that reading and writing share a lot of real estate, they depend on a lot of the same knowledge and skills,” said Timothy Shanahan, an emeritus professor of education at the University of Illinois Chicago. “Pick your spot: text structure, vocabulary, sound-symbol relationships, ‘world knowledge.’”

The reasons for the bifurcation in reading and writing are legion. One is that the two fields have typically been studied separately. (Researchers studying writing usually didn’t examine whether a writing intervention, for instance, also aided students’ reading abilities—and vice versa.)

Some scholars also finger the dominance of the federally commissioned National Reading Panel report, which in 2000 outlined key instructional components of learning to read. The review didn’t examine the connection of writing to reading.

Looking even further back yields insights, too. Penmanship and spelling were historically the only parts of writing that were taught, and when writing reappeared in the latter half of the 20th century, it tended to focus on “process writing,” emphasizing personal experience and story generation over other genres. Only when the Common Core State Standards appeared in 2010 did the emphasis shift to writing about nonfiction texts and across subjects—the idea that students should be writing about what they’ve learned.

And finally, teaching writing is hard. Few studies document what preparation teachers receive to teach writing, but in surveys, many teachers say they received little training in their college education courses. That’s probably why only a little over half of teachers, in one 2016 survey, said that they enjoyed teaching writing.

Writing should begin in the early grades

These factors all work against what is probably the most important conclusion from the research over the last few decades: Students in the early-elementary grades need lots of varied opportunities to write.

“Students need support in their writing,” said Dana Robertson, an associate professor of reading and literacy education at the school of education at Virginia Tech who also studies how instructional change takes root in schools. “They need to be taught explicitly the skills and strategies of writing and they need to see the connections of reading, writing, and knowledge development.”

While research supports some fundamental tenets of writing instruction—that it should be structured, for instance, and involve drafting and revising—it hasn’t yet pointed to a specific teaching recipe that works best.

One of the challenges, the researchers note, is that while reading curricula have improved over the years, they still don’t typically provide many supports for students—or teachers, for that matter—for writing. Teachers often have to supplement with additions that don’t always mesh well with their core, grade-level content instruction.

“We have a lot of activities in writing we know are good,” Shanahan said. “We don’t really have a yearlong elementary-school-level curriculum in writing. That just doesn’t exist the way it does in reading.”

Nevertheless, practitioners like Blevins work writing into every reading lesson, even in the earliest grades. And all the components that make up a solid reading program can be enhanced through writing activities.

4 Key Things to Know About How Reading and Writing Interlock

Want a quick summary of what research tells us about the instructional connections between reading and writing?

1. Reading and writing are intimately connected.

Research on the connections began in the early 1980s and has grown more robust with time.

Among the newest and most important additions are three research syntheses conducted by Steve Graham, a professor at the University of Arizona, and his research partners. One of them examined whether writing instruction also led to improvements in students’ reading ability; a second examined the inverse question. Both found significant positive effects for reading and writing.

A third meta-analysis gets one step closer to classroom instruction. Graham and partners examined 47 studies of instructional programs that balanced both reading and writing—no program could feature more than 60 percent of one or the other. The results showed generally positive effects on both reading and writing measures.

2. Writing matters even at the earliest grades, when students are learning to read.

Studies show that the prewriting students do in early education carries meaningful signals about their decoding, spelling, and reading comprehension later on. Reading experts say that students should be supported in writing almost as soon as they begin reading, and evidence suggests that both spelling and handwriting are connected to the ability to connect speech to print and to oral language development.

3. Like reading, writing must be taught explicitly.

Writing is a complex task that demands much of students’ cognitive resources. Researchers generally agree that writing must be explicitly taught—rather than left up to students to “figure out” the rules on their own.

There isn’t as much research about how precisely to do this. One 2019 review, in fact, found significant overlap among the dozen writing programs studied, and concluded that all showed signs of boosting learning. Debates abound about the amount of structure students need and in what sequence, such as whether they need to master sentence construction before moving onto paragraphs and lengthier texts.

But in general, students should be guided on how to construct sentences and paragraphs, and they should have access to models and exemplars, the research suggests. They also need to understand the iterative nature of writing, including how to draft and revise.

A number of different writing frameworks incorporating various degrees of structure and modeling are available, though most of them have not been studied empirically.

4. Writing can help students learn content—and make sense of it.

Much of reading comprehension depends on helping students absorb “world knowledge”—think arts, ancient cultures, literature, and science—so that they can make sense of increasingly sophisticated texts and ideas as their reading improves. Writing can enhance students’ content learning, too, and should be emphasized rather than taking a back seat to the more commonly taught stories and personal reflections.

Graham and colleagues conducted another meta-analysis of nearly 60 studies looking at this idea of “writing to learn” in mathematics, science, and social studies. The studies included a mix of higher-order assignments, like analyses and argumentative writing, and lower-level ones, like summarizing and explaining. The study found that across all three disciplines, writing about the content improved student learning.

If students are doing work on phonemic awareness—the ability to recognize sounds—they shouldn’t merely manipulate sounds orally; they can put them on the page using letters. If students are learning how to decode, they can also encode—record written letters and words while they say the sounds out loud.

And students can write as they begin learning about language structure. When Blevins’ students are mainly working with decodable texts with controlled vocabularies, writing can support their knowledge about how texts and narratives work: how sentences are put together and how they can be pulled apart and reconstructed. Teachers can prompt them in these tasks, asking them to rephrase a sentence as a question, split up two sentences, or combine them.

“Young kids are writing these mile-long sentences that become second nature. We set a higher bar, and they are fully capable of doing it. We can demystify a bit some of that complex text if we develop early on how to talk about sentences—how they’re created, how they’re joined,” Blevins said. “There are all these things you can do that are helpful to develop an understanding of how sentences work and to get lots of practice.”

As students progress through the elementary grades, this structured work grows more sophisticated. They need to be taught both sentence and paragraph structure , and they need to learn how different writing purposes and genres—narrative, persuasive, analytical—demand different approaches. Most of all, the research indicates, students need opportunities to write at length often.

Using writing to support students’ exploration of content

Reading is far more than foundational skills, of course. It means introducing students to rich content and the specialized vocabulary in each discipline and then ensuring that they read, discuss, analyze, and write about those ideas. The work to systematically build students’ knowledge begins in the early grades and progresses throughout their K-12 experience.

Here again, available evidence suggests that writing can be a useful tool to help students explore, deepen, and draw connections in this content. With the proper supports, writing can be a method for students to retell and analyze what they’ve learned in discussions of content and literature throughout the school day —in addition to their creative writing.

This “writing to learn” approach need not wait for students to master foundational skills. In the K-2 grades especially, much content is learned through teacher read-alouds and conversation that include more complex vocabulary and ideas than the texts students are capable of reading. But that should not preclude students from writing about this content, experts say.

“We do a read-aloud or a media piece and we write about what we learned. It’s just a part of how you’re responding, or sharing, what you’ve learned across texts; it’s not a separate thing from reading,” Blevins said. “If I am doing read-alouds on a concept—on animal habitats, for example—my decodable texts will be on animals. And students are able to include some of these more sophisticated ideas and language in their writing, because we’ve elevated the conversations around these texts.”

In this set of stories , Education Week examines the connections between elementary-level reading and writing in three areas— encoding , language and text structure , and content-area learning . But there are so many more examples.

Please write us to share yours when you’ve finished.

Want to read more about the research that informed this story? Here’s a bibliography to start you off.

Berninger V. W., Abbott, R. D., Abbott, S. P., Graham S., & Richards T. (2002). Writing and reading: Connections between language by hand and language by eye. J ournal of Learning Disabilities. Special Issue: The Language of Written Language, 35(1), 39–56 Berninger, Virginia, Robert D. Abbott, Janine Jones, Beverly J. Wolf, Laura Gould, Marci Anderson-Younstrom, Shirley Shimada, Kenn Apel. (2006) “Early development of language by hand: composing, reading, listening, and speaking connections; three letter-writing modes; and fast mapping in spelling.” Developmental Neuropsychology, 29(1), pp. 61-92 Cabell, Sonia Q, Laura S. Tortorelli, and Hope K. Gerde (2013). “How Do I Write…? Scaffolding Preschoolers’ Early Writing Skills.” The Reading Teacher, 66(8), pp. 650-659. Gerde, H.K., Bingham, G.E. & Wasik, B.A. (2012). “Writing in Early Childhood Classrooms: Guidance for Best Practices.” Early Childhood Education Journal 40, 351–359 (2012) Gilbert, Jennifer, and Steve Graham. (2010). “Teaching Writing to Elementary Students in Grades 4–6: A National Survey.” The Elementary School Journal 110(44) Graham, Steve, et al. (2017). “Effectiveness of Literacy Programs Balancing Reading and Writing Instruction: A Meta-Analysis.” Reading Research Quarterly, 53(3) pp. 279–304 Graham, Steve, and Michael Hebert. (2011). “Writing to Read: A Meta-Analysis of the Impact of Writing and Writing Instruction on Reading.” Harvard Educational Review (2011) 81(4): 710–744. Graham, Steve. (2020). “The Sciences of Reading and Writing Must Become More Fully Integrated.” Reading Research Quarterly, 55(S1) pp. S35–S44 Graham, Steve, Sharlene A. Kiuhara, and Meade MacKay. (2020).”The Effects of Writing on Learning in Science, Social Studies, and Mathematics: A Meta-Analysis.” Review of Educational Research April 2020, Vol 90, No. 2, pp. 179–226 Shanahan, Timothy. “History of Writing and Reading Connections.” in Shanahan, Timothy. (2016). “Relationships between reading and writing development.” In C. MacArthur, S. Graham, & J. Fitzgerald (Eds.), Handbook of writing research (2nd ed., pp. 194–207). New York, NY: Guilford. Slavin, Robert, Lake, C., Inns, A., Baye, A., Dachet, D., & Haslam, J. (2019). “A quantitative synthesis of research on writing approaches in grades 2 to 12.” London: Education Endowment Foundation. Troia, Gary. (2014). Evidence-based practices for writing instruction (Document No. IC-5). Retrieved from University of Florida, Collaboration for Effective Educator, Development, Accountability, and Reform Center website: http://ceedar.education.ufl.edu/tools/innovation-configuration/ Troia, Gary, and Steve Graham. (2016).“Common Core Writing and Language Standards and Aligned State Assessments: A National Survey of Teacher Beliefs and Attitudes.” Reading and Writing 29(9).

A version of this article appeared in the January 25, 2023 edition of Education Week as How Does Writing Fit Into the ‘Science of Reading’?

Young writer looking at a flash card showing a picture of a dog and writing various words that begin with a "D" like dog, donut, duck and door.

Sign Up for EdWeek Update

Edweek top school jobs.

Image of a seventh-grade student looking through books in her school library.

Sign Up & Sign In

module image 9

  • Skip to main content
  • Keyboard shortcuts for audio player

Shots - Health News

Your Health

  • Treatments & Tests
  • Health Inc.
  • Public Health

Why writing by hand beats typing for thinking and learning

Jonathan Lambert

A close-up of a woman's hand writing in a notebook.

If you're like many digitally savvy Americans, it has likely been a while since you've spent much time writing by hand.

The laborious process of tracing out our thoughts, letter by letter, on the page is becoming a relic of the past in our screen-dominated world, where text messages and thumb-typed grocery lists have replaced handwritten letters and sticky notes. Electronic keyboards offer obvious efficiency benefits that have undoubtedly boosted our productivity — imagine having to write all your emails longhand.

To keep up, many schools are introducing computers as early as preschool, meaning some kids may learn the basics of typing before writing by hand.

But giving up this slower, more tactile way of expressing ourselves may come at a significant cost, according to a growing body of research that's uncovering the surprising cognitive benefits of taking pen to paper, or even stylus to iPad — for both children and adults.

Is this some kind of joke? A school facing shortages starts teaching standup comedy

In kids, studies show that tracing out ABCs, as opposed to typing them, leads to better and longer-lasting recognition and understanding of letters. Writing by hand also improves memory and recall of words, laying down the foundations of literacy and learning. In adults, taking notes by hand during a lecture, instead of typing, can lead to better conceptual understanding of material.

"There's actually some very important things going on during the embodied experience of writing by hand," says Ramesh Balasubramaniam , a neuroscientist at the University of California, Merced. "It has important cognitive benefits."

While those benefits have long been recognized by some (for instance, many authors, including Jennifer Egan and Neil Gaiman , draft their stories by hand to stoke creativity), scientists have only recently started investigating why writing by hand has these effects.

A slew of recent brain imaging research suggests handwriting's power stems from the relative complexity of the process and how it forces different brain systems to work together to reproduce the shapes of letters in our heads onto the page.

Your brain on handwriting

Both handwriting and typing involve moving our hands and fingers to create words on a page. But handwriting, it turns out, requires a lot more fine-tuned coordination between the motor and visual systems. This seems to more deeply engage the brain in ways that support learning.

Feeling Artsy? Here's How Making Art Helps Your Brain

Shots - Health News

Feeling artsy here's how making art helps your brain.

"Handwriting is probably among the most complex motor skills that the brain is capable of," says Marieke Longcamp , a cognitive neuroscientist at Aix-Marseille Université.

Gripping a pen nimbly enough to write is a complicated task, as it requires your brain to continuously monitor the pressure that each finger exerts on the pen. Then, your motor system has to delicately modify that pressure to re-create each letter of the words in your head on the page.

"Your fingers have to each do something different to produce a recognizable letter," says Sophia Vinci-Booher , an educational neuroscientist at Vanderbilt University. Adding to the complexity, your visual system must continuously process that letter as it's formed. With each stroke, your brain compares the unfolding script with mental models of the letters and words, making adjustments to fingers in real time to create the letters' shapes, says Vinci-Booher.

That's not true for typing.

To type "tap" your fingers don't have to trace out the form of the letters — they just make three relatively simple and uniform movements. In comparison, it takes a lot more brainpower, as well as cross-talk between brain areas, to write than type.

Recent brain imaging studies bolster this idea. A study published in January found that when students write by hand, brain areas involved in motor and visual information processing " sync up " with areas crucial to memory formation, firing at frequencies associated with learning.

"We don't see that [synchronized activity] in typewriting at all," says Audrey van der Meer , a psychologist and study co-author at the Norwegian University of Science and Technology. She suggests that writing by hand is a neurobiologically richer process and that this richness may confer some cognitive benefits.

Other experts agree. "There seems to be something fundamental about engaging your body to produce these shapes," says Robert Wiley , a cognitive psychologist at the University of North Carolina, Greensboro. "It lets you make associations between your body and what you're seeing and hearing," he says, which might give the mind more footholds for accessing a given concept or idea.

Those extra footholds are especially important for learning in kids, but they may give adults a leg up too. Wiley and others worry that ditching handwriting for typing could have serious consequences for how we all learn and think.

What might be lost as handwriting wanes

The clearest consequence of screens and keyboards replacing pen and paper might be on kids' ability to learn the building blocks of literacy — letters.

"Letter recognition in early childhood is actually one of the best predictors of later reading and math attainment," says Vinci-Booher. Her work suggests the process of learning to write letters by hand is crucial for learning to read them.

"When kids write letters, they're just messy," she says. As kids practice writing "A," each iteration is different, and that variability helps solidify their conceptual understanding of the letter.

Research suggests kids learn to recognize letters better when seeing variable handwritten examples, compared with uniform typed examples.

This helps develop areas of the brain used during reading in older children and adults, Vinci-Booher found.

"This could be one of the ways that early experiences actually translate to long-term life outcomes," she says. "These visually demanding, fine motor actions bake in neural communication patterns that are really important for learning later on."

Ditching handwriting instruction could mean that those skills don't get developed as well, which could impair kids' ability to learn down the road.

"If young children are not receiving any handwriting training, which is very good brain stimulation, then their brains simply won't reach their full potential," says van der Meer. "It's scary to think of the potential consequences."

Many states are trying to avoid these risks by mandating cursive instruction. This year, California started requiring elementary school students to learn cursive , and similar bills are moving through state legislatures in several states, including Indiana, Kentucky, South Carolina and Wisconsin. (So far, evidence suggests that it's the writing by hand that matters, not whether it's print or cursive.)

Slowing down and processing information

For adults, one of the main benefits of writing by hand is that it simply forces us to slow down.

During a meeting or lecture, it's possible to type what you're hearing verbatim. But often, "you're not actually processing that information — you're just typing in the blind," says van der Meer. "If you take notes by hand, you can't write everything down," she says.

The relative slowness of the medium forces you to process the information, writing key words or phrases and using drawing or arrows to work through ideas, she says. "You make the information your own," she says, which helps it stick in the brain.

Such connections and integration are still possible when typing, but they need to be made more intentionally. And sometimes, efficiency wins out. "When you're writing a long essay, it's obviously much more practical to use a keyboard," says van der Meer.

Still, given our long history of using our hands to mark meaning in the world, some scientists worry about the more diffuse consequences of offloading our thinking to computers.

"We're foisting a lot of our knowledge, extending our cognition, to other devices, so it's only natural that we've started using these other agents to do our writing for us," says Balasubramaniam.

It's possible that this might free up our minds to do other kinds of hard thinking, he says. Or we might be sacrificing a fundamental process that's crucial for the kinds of immersive cognitive experiences that enable us to learn and think at our full potential.

Balasubramaniam stresses, however, that we don't have to ditch digital tools to harness the power of handwriting. So far, research suggests that scribbling with a stylus on a screen activates the same brain pathways as etching ink on paper. It's the movement that counts, he says, not its final form.

Jonathan Lambert is a Washington, D.C.-based freelance journalist who covers science, health and policy.

  • handwriting

IMAGES

  1. Research-Based Reading Intervention Strategies

    reading skills in research

  2. Reading & Writing Center

    reading skills in research

  3. Top Tips for Developing Reading Skills

    reading skills in research

  4. How to Improve Your Reading Skills

    reading skills in research

  5. (PDF) The Effectiveness of Reading Strategies on Reading Comprehension

    reading skills in research

  6. 75 Essential Reading Skills (2024)

    reading skills in research

VIDEO

  1. Course Reading Lists & Copyright

  2. How to Read Articles for Improving reading Skills ?

  3. FREE Academic Writing Course For Grad Students (PEER System)

  4. Organizing Your Study Skills. Part 1

  5. Part 3. Why Extensive Reading doubles your vocabulary

  6. Session 3: Savvy Strategies for Academic Reading

COMMENTS

  1. Reading Comprehension Research: Implications for Practice and Policy

    Similarly, the RAND reading model, another influential reading framework for research and practice, defined reading comprehension as the process of "extracting and constructing meaning through interaction and involvement with written language" (RAND Reading Study Group, 2002, p. 11). Specifically, reading comprehension is the interaction ...

  2. Reading Research Effectively

    Specific Reading Strategies. Effectively reading scholarly research is an acquired skill that involves attention to detail and an ability to comprehend complex ideas, data, and theoretical concepts in a way that applies logically to the research problem you are investigating. Here are some specific reading strategies to consider.

  3. Improving Reading Skills Through Effective Reading Strategies

    The research question is, The purpose of this study was to analyze the improvement of the students reading skills after they have taken presentations on reading strategies. 712 Hülya KüçükoÄŸlu / Procedia - Social and Behavioral Sciences 70 ( 2013 ) 709 â€" 714 3.Method Reading proficiency is the most fundamental skill for ...

  4. <em>Reading Research Quarterly</em>

    Domain-general EF skills also contribute to reading ability indirectly, through both word recognition and language comprehension processes (e.g., Kieffer et al., 2013; Language and Reading Research Consortium, Jiang, & Farquharson, 2018; Taboada Barber, Cartwright, et al., 2020), and thus also help explain the shared variance between word ...

  5. The Science of Reading Comprehension Instruction

    Decades of research offer important understandings about the nature of comprehension and its development. Drawing on both classic and contemporary research, in this article, we identify some key understandings about reading comprehension processes and instruction, including these: Comprehension instruction should begin early, teaching word-reading and bridging skills (including ...

  6. How the Science of Reading Informs 21st‐Century Education

    The science of reading should be informed by an evolving evidence base built upon the scientific method. Decades of basic research and randomized controlled trials of interventions and instructional routines have formed a substantial evidence base to guide best practices in reading instruction, reading intervention, and the early identification of at-risk readers.

  7. The Science of Reading: Supports, Critiques, and Questions

    "The science of reading" is a phrase representing the accumulated knowledge about reading, reading development, and best practices for reading instruction obtained by the use of the scientific method.…Collectively, research studies with a focus on reading have yielded a substantial knowledge base of stable findings based on the science of reading.

  8. Skills and Strategies for Research and Reading

    Research and reading skills are well-documented in the literature as critical factors that influence student persistence and success (Rovai, 2003; Stephen, 2022; Tinto, 1993). Research skills, along with critical thinking, computer technology, and communication skills, are dimensions of information literacy.

  9. Reading

    Some sample reading goals: To find a paper topic or write a paper; To have a comment for discussion; To supplement ideas from lecture; To understand a particular concept; To memorize material for an exam; To research for an assignment; To enjoy the process (i.e., reading for pleasure!). Your goals for reading are often developed in relation to ...

  10. Critical reading in higher education: A systematic review

    The relationship between critical reading and other essential skills for undergraduates, such as critical thinking, problem-solving, or translation, is the second most frequently discussed topic in research on critical reading in higher education, accounting for 13.17 percent of all critical reading publications analyzed in this review over the ...

  11. Reading Skills

    Research has proven that reading skills are acquired through systematic instruction and improve with practice and repeated instruction. Students with autism are a heterogeneous group which means one intervention cannot be prescribed to teach all students. Through reading assessments, an accurate profile of the student's reading level can be ...

  12. Effective Research and Reading Strategies

    Overall, the KWL Reading Method is an effective strategy for active reading that can be implemented across academic and nonacademic environments alike. By engaging with challenging texts and monitoring their learning progress, readers can improve their retention of information, critical thinking skills, and overall reading comprehension.

  13. What Research Tells Us About Reading Instruction

    Much of the research in the field of reading has examined the relationships between children's reading ability and their other cognitive skills. For example, there is a good deal of work on the associations between reading and working memory. ... 2016), and the same may be true for a number of other skills outside of reading as well. Whether ...

  14. Reading skills intervention during the Covid-19 pandemic

    These results confirm that the pandemic increased the inequality in students' reading skills (Bol, 2020), in line with previous research documenting that during long periods of school ...

  15. (PDF) Reading skill

    Reading skill is an instrument to facilitate the communicative fluency in each of. Reiss (1983) contends that "the more our students read, the more they become familiar with the. figurative and ...

  16. PDF Reading Difficulty and Development of Fluent Reading Skills: An ...

    The two most important skills that affect fluent reading are word recognition and vocabulary knowledge. The inadequacy of these skills negatively affects the reading skills of the students compared to their peers. Inadequacies in reading skills cause students to fall behind in terms of achievement in both reading and other fields.

  17. Teaching reading skills in EFL classes: Practice and procedures

    2.2.1. Pre-reading phase. According to Williams (Citation 1984), the pre-phase of reading tries to introduce and arouse interest in the topic, motivate learners by giving a reason for reading, and provide some language preparation for the text.Correspondingly, Hedge (Citation 2000) explains that the pre-reading phase as one of the major responses to increasing insights about the role of ...

  18. The Effectiveness of Reading Strategies on Reading Comprehension

    Abstract —This research aimed to investigate the effectiveness. of reading strategies on reading comprehension of the second. year English major students who enrolled to study English. Reading ...

  19. The Role of Background Knowledge in Reading Comprehension: A Critical

    Research in reading over the last 40 years has increasingly emphasized the importance of background knowledge as a significant contributor to the reading ability of middle school students ... Low skill readers with high knowledge are able to compensate for poorer reading skills in textbase construction (McNamara et al., Citation 1996; ...

  20. PDF A Study on the Development of Reading Skills of the Students Having

    research shows that almost 30-35% of students in America and England experience difficulties in reading (Blanton, Wood &Taylor, 2007; Exley, 2007; National Council on ... improve the reading skills of students having reading difficulties through an enrichment reading program. International Electronic Journal of Elementary Education Vol.6, Issue ...

  21. Think Again: Should Elementary Schools Teach Reading Comprehension?

    To address the research on reading comprehension, the panel reviewed 481 studies and identified sixteen categories of comprehension instruction that had received scientific review, ... Put simply, knowledge of the world, not generalizable reading comprehension skills, determines reading ability. The average American reader would breeze through ...

  22. <em>Reading Research Quarterly</em>

    Reading Research Quarterly is the leading global journal offering multidisciplinary scholarship on literacy among learners of all ages, including ... showed that decoding skills are more related to reading comprehension in younger students but that verbal ability is more associated with reading ability in later grade levels. The simple view of ...

  23. PDF The reading framework

    National Reading Panel's meta-analysis' Reading Research Quarterly: volume 36, number 3, page 255. Also see Johnston, R. and Watson, J. (2004). 'Accelerating the development of reading, spelling and phonemic awareness skills in initial readers' Reading and writing: an interdisciplinary journal: volume 17, number 4, pages 327-357 : 78

  24. Did the Striving Readers Comprehensive Literacy Grant Program Reach Its

    Nearly one third of students in the United States have not developed the foundational reading skills needed to succeed academically, with students living in poverty, students with disabilities, and English learners especially at risk. Starting in 2010, Congress invested more than $1 billion for state literacy improvement efforts through the ...

  25. How Does Writing Fit Into the 'Science of Reading'?

    Graham, Steve. (2020). "The Sciences of Reading and Writing Must Become More Fully Integrated." Reading Research Quarterly, 55(S1) pp. S35-S44 Graham, Steve, Sharlene A. Kiuhara, and Meade ...

  26. How Reading Motivation and Engagement Enable Reading Achievement

    Research on reading motivation and engagement can inform policy aimed at improving reading achievement. Multiple dimensions of reading motivation and engagement—and instructional practices for bolstering each one—draw on interventions for students of diverse language and ethnic backgrounds in elementary and middle grade classrooms.

  27. (PDF) Improving English Reading Comprehension Skills of Grade 8

    This action research was conducted to evaluate the effectiveness of the Listen-Read-Discuss (LRD) Method in teaching reading skills in the English language to a set of grade 08 students in a ...

  28. 09-05-24

    Learners will identify 2 state-of-the-art technologies and 3 peer-reviewed research strands that make using AI based co-reading viable and feasible. Learners will identify 2 methods of computer-based remediation that have been demonstrated to improve oral reading prosody.

  29. As schools reconsider cursive, research homes in on handwriting's brain

    As schools reconsider cursive, research homes in on handwriting's brain benefits : Shots - Health News Researchers are learning that handwriting engages the brain in ways typing can't match ...