Are you seeking one-on-one college counseling and/or essay support? Limited spots are now available. Click here to learn more.

How to Write a Lab Report – with Example/Template

April 11, 2024

Perhaps you’re in the midst of your challenging AP chemistry class in high school, or perhaps college you’re enrolled in biology , chemistry , or physics at university. At some point, you will likely be asked to write a lab report. Sometimes, your teacher or professor will give you specific instructions for how to format and write your lab report, and if so, use that. In case you’re left to your own devices, here are some guidelines you might find useful. Continue reading for the main elements of a lab report, followed by a detailed description of the more writing-heavy parts (with a lab report example/lab report template). Lastly, we’ve included an outline that can help get you started.

What is a lab report?

A lab report is an overview of your experiment. Essentially, it explains what you did in the experiment and how it went. Most lab reports end up being 5-10 pages long (graphs or other images included), though the length depends on the experiment. Here are some brief explanations of the essential parts of a lab report:

Title : The title says, in the most straightforward way possible, what you did in the experiment. Often, the title looks something like, “Effects of ____ on _____.” Sometimes, a lab report also requires a title page, which includes your name (and the names of any lab partners), your instructor’s name, and the date of the experiment.

Abstract : This is a short description of key findings of the experiment so that a potential reader could get an idea of the experiment before even beginning.

Introduction : This is comprised of one or several paragraphs summarizing the purpose of the lab. The introduction usually includes the hypothesis, as well as some background information.

Lab Report Example (Continued)

Materials : Perhaps the simplest part of your lab report, this is where you list everything needed for the completion of your experiment.

Methods : This is where you describe your experimental procedure. The section provides necessary information for someone who would want to replicate your study. In paragraph form, write out your methods in chronological order, though avoid excessive detail.

Data : Here, you should document what happened in the experiment, step-by-step. This section often includes graphs and tables with data, as well as descriptions of patterns and trends. You do not need to interpret all of the data in this section, but you can describe trends or patterns, and state which findings are interesting and/or significant.

Discussion of results : This is the overview of your findings from the experiment, with an explanation of how they pertain to your hypothesis, as well as any anomalies or errors.

Conclusion : Your conclusion will sum up the results of your experiment, as well as their significance. Sometimes, conclusions also suggest future studies.

Sources : Often in APA style , you should list all texts that helped you with your experiment. Make sure to include course readings, outside sources, and other experiments that you may have used to design your own.

How to write the abstract

The abstract is the experiment stated “in a nutshell”: the procedure, results, and a few key words. The purpose of the academic abstract is to help a potential reader get an idea of the experiment so they can decide whether to read the full paper. So, make sure your abstract is as clear and direct as possible, and under 200 words (though word count varies).

When writing an abstract for a scientific lab report, we recommend covering the following points:

  • Background : Why was this experiment conducted?
  • Objectives : What problem is being addressed by this experiment?
  • Methods : How was the study designed and conducted?
  • Results : What results were found and what do they mean?
  • Conclusion : Were the results expected? Is this problem better understood now than before? If so, how?

How to write the introduction

The introduction is another summary, of sorts, so it could be easy to confuse the introduction with the abstract. While the abstract tends to be around 200 words summarizing the entire study, the introduction can be longer if necessary, covering background information on the study, what you aim to accomplish, and your hypothesis. Unlike the abstract (or the conclusion), the introduction does not need to state the results of the experiment.

Here is a possible order with which you can organize your lab report introduction:

  • Intro of the intro : Plainly state what your study is doing.
  • Background : Provide a brief overview of the topic being studied. This could include key terms and definitions. This should not be an extensive literature review, but rather, a window into the most relevant topics a reader would need to understand in order to understand your research.
  • Importance : Now, what are the gaps in existing research? Given the background you just provided, what questions do you still have that led you to conduct this experiment? Are you clarifying conflicting results? Are you undertaking a new area of research altogether?
  • Prediction: The plants placed by the window will grow faster than plants placed in the dark corner.
  • Hypothesis: Basil plants placed in direct sunlight for 2 hours per day grow at a higher rate than basil plants placed in direct sunlight for 30 minutes per day.
  • How you test your hypothesis : This is an opportunity to briefly state how you go about your experiment, but this is not the time to get into specific details about your methods (save this for your results section). Keep this part down to one sentence, and voila! You have your introduction.

How to write a discussion section

Here, we’re skipping ahead to the next writing-heavy section, which will directly follow the numeric data of your experiment. The discussion includes any calculations and interpretations based on this data. In other words, it says, “Now that we have the data, why should we care?”  This section asks, how does this data sit in relation to the hypothesis? Does it prove your hypothesis or disprove it? The discussion is also a good place to mention any mistakes that were made during the experiment, and ways you would improve the experiment if you were to repeat it. Like the other written sections, it should be as concise as possible.

Here is a list of points to cover in your lab report discussion:

  • Weaker statement: These findings prove that basil plants grow more quickly in the sunlight.
  • Stronger statement: These findings support the hypothesis that basil plants placed in direct sunlight grow at a higher rate than basil plants given less direct sunlight.
  • Factors influencing results : This is also an opportunity to mention any anomalies, errors, or inconsistencies in your data. Perhaps when you tested the first round of basil plants, the days were sunnier than the others. Perhaps one of the basil pots broke mid-experiment so it needed to be replanted, which affected your results. If you were to repeat the study, how would you change it so that the results were more consistent?
  • Implications : How do your results contribute to existing research? Here, refer back to the gaps in research that you mentioned in your introduction. Do these results fill these gaps as you hoped?
  • Questions for future research : Based on this, how might your results contribute to future research? What are the next steps, or the next experiments on this topic? Make sure this does not become too broad—keep it to the scope of this project.

How to write a lab report conclusion

This is your opportunity to briefly remind the reader of your findings and finish strong. Your conclusion should be especially concise (avoid going into detail on findings or introducing new information).

Here are elements to include as you write your conclusion, in about 1-2 sentences each:

  • Restate your goals : What was the main question of your experiment? Refer back to your introduction—similar language is okay.
  • Restate your methods : In a sentence or so, how did you go about your experiment?
  • Key findings : Briefly summarize your main results, but avoid going into detail.
  • Limitations : What about your experiment was less-than-ideal, and how could you improve upon the experiment in future studies?
  • Significance and future research : Why is your research important? What are the logical next-steps for studying this topic?

Template for beginning your lab report

Here is a compiled outline from the bullet points in these sections above, with some examples based on the (overly-simplistic) basil growth experiment. Hopefully this will be useful as you begin your lab report.

1) Title (ex: Effects of Sunlight on Basil Plant Growth )

2) Abstract (approx. 200 words)

  • Background ( This experiment looks at… )
  • Objectives ( It aims to contribute to research on…)
  • Methods ( It does so through a process of…. )
  • Results (Findings supported the hypothesis that… )
  • Conclusion (These results contribute to a wider understanding about…)

3) Introduction (approx. 1-2 paragraphs)

  • Intro ( This experiment looks at… )
  • Background ( Past studies on basil plant growth and sunlight have found…)
  • Importance ( This experiment will contribute to these past studies by…)
  • Hypothesis ( Basil plants placed in direct sunlight for 2 hours per day grow at a higher rate than basil plants placed in direct sunlight for 30 minutes per day.)
  • How you will test your hypothesis ( This hypothesis will be tested by a process of…)

4) Materials (list form) (ex: pots, soil, seeds, tables/stands, water, light source )

5) Methods (approx. 1-2 paragraphs) (ex: 10 basil plants were measured throughout a span of…)

6) Data (brief description and figures) (ex: These charts demonstrate a pattern that the basil plants placed in direct sunlight…)

7) Discussion (approx. 2-3 paragraphs)

  • Support or reject hypothesis ( These findings support the hypothesis that basil plants placed in direct sunlight grow at a higher rate than basil plants given less direct sunlight.)
  • Factors that influenced your results ( Outside factors that could have altered the results include…)
  • Implications ( These results contribute to current research on basil plant growth and sunlight because…)
  • Questions for further research ( Next steps for this research could include…)
  • Restate your goals ( In summary, the goal of this experiment was to measure…)
  • Restate your methods ( This hypothesis was tested by…)
  • Key findings ( The findings supported the hypothesis because…)
  • Limitations ( Although, certain elements were overlooked, including…)
  • Significance and future research ( This experiment presents possibilities of future research contributions, such as…)
  • Sources (approx. 1 page, usually in APA style)

Final thoughts – Lab Report Example

Hopefully, these descriptions have helped as you write your next lab report. Remember that different instructors may have different preferences for structure and format, so make sure to double-check when you receive your assignment. All in all, make sure to keep your scientific lab report concise, focused, honest, and organized. Good luck!

For more reading on coursework success, check out the following articles:

  • How to Write the AP Lang Argument Essay (With Example)
  • How to Write the AP Lang Rhetorical Analysis Essay (With Example)
  • 49 Most Interesting Biology Research Topics
  • 50 Best Environmental Science Research Topics
  • High School Success

Sarah Mininsohn

With a BA from Wesleyan University and an MFA from the University of Illinois at Urbana-Champaign, Sarah is a writer, educator, and artist. She served as a graduate instructor at the University of Illinois, a tutor at St Peter’s School in Philadelphia, and an academic writing tutor and thesis mentor at Wesleyan’s Writing Workshop.

  • 2-Year Colleges
  • Application Strategies
  • Best Colleges by Major
  • Best Colleges by State
  • Big Picture
  • Career & Personality Assessment
  • College Essay
  • College Search/Knowledge
  • College Success
  • Costs & Financial Aid
  • Data Visualizations
  • Dental School Admissions
  • Extracurricular Activities
  • Graduate School Admissions
  • High Schools
  • Law School Admissions
  • Medical School Admissions
  • Navigating the Admissions Process
  • Online Learning
  • Private High School Spotlight
  • Summer Program Spotlight
  • Summer Programs
  • Teacher Tools
  • Test Prep Provider Spotlight

“Innovative and invaluable…use this book as your college lifeline.”

— Lynn O'Shaughnessy

Nationally Recognized College Expert

College Planning in Your Inbox

Join our information-packed monthly newsletter.

Optional Lab Activities

Scientific method lab report.

The report should be typed and single spaced. See grading rubric at the end of this page for clarity on formatting.

Requirements

Should include Title (brief, concise, yet descriptive), your name, lab instructor’s name, and lab section (such as L14 or L24, etc.).

Note: this is a separate sheet

Body of Report

Identify the different sections of the body of the report with headings.

  • The report should begin with a brief paragraph (complete sentences) that includes a statement of the problem and your hypothesis (remember your hypothesis should be written as a testable statement).
  • What question are you trying to answer?
  • Include any preliminary observations or background information about the subject (in this case the Alka-Seltzer tablet) such as what the tablet is used for, directions on packaging, personal experience you may have, etc. Be sure to cite any sources.
  • Write a possible explanation/prediction for the problem/question you are asking.
  • Make sure this possible explanation/prediction is a complete sentence and not a question.
  • Make sure the statement is testable. In other words, can you perform an experiment that will either support or refute your prediction. If you cannot not think of a way to test your prediction, then it is not testable.
  • Make a list (this does not need to be in paragraph form) of all  items used in the experiment and their quantities. Of the materials used, identify which are dependent and independent variables, constants (standardized variable) and control group (you will lose points if you do not identify all  dependent and independent variables, constants and controls) .
  • Write at least one paragraph (complete sentences) which explains what you did in the experiment.
  • Your procedure should be written so that anyone else could repeat the experiment. For instance, if you used hot water, how did you make the water hot and what temperature was it; if you chose salt water, what was the concentration of the salt water, etc. That means that even some of the most obvious steps need to be stated so there is no uncertainty.
  • When designing the procedure, be sure to include replicating the experiment (trials) to ensure data is reproducible and valid.
  • Write at least a paragraph (complete sentences) describing the results and observations of your experiment. Here you will compare results for control groups and experimental groups and not simply list the numbers.
  • This section also includes both  a data table and graph to illustrate the results of you experiment. Be sure to include calculated averages of trials.
  • All tables, graphs and charts should be labeled appropriately (a title, labels for x & y axis, legend etc.) so the reader will be able to understand the information presented.
  • Write at least a paragraph restating your hypothesis and whether you accept or reject your hypothesis
  • In this section, explain  why you accepted or rejected your hypothesis using data from the experiment . Include a brief summary of the data—averages, highest, lowest, etc., to help the reader understand your results and why you have come to particular conclusions.
  • Discuss your thoughts about the possible reasons for your results (for example, if you chose salt water as a variable, give a possible reason why salt water, in particular, may have generated your results).
  • Discuss possible errors that could have occurred in the collection of the data (experimental errors) and describe how these errors may have impacted the data.

Sample Report

This is a good lab report written for a different (and more complex experiment). You can use it as a model if you want.

Lab Report Grading Rubric

  • Biology 101 Labs . Authored by : Lynette Hauser. Provided by : Tidewater Community College . Located at : http://www.tcc.edu/ . License : CC BY: Attribution

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Biology LibreTexts

10.3: Lab Report

  • Last updated
  • Save as PDF
  • Page ID 105834

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Data Collection

Part 1: observe the effects of catalase.

  • What happened when H 2 O 2 was added to the potato in test tube A?
  • What caused this to happen?
  • What happened in test tube B?
  • What was the purpose of the water in tube B?

Part 2: Effects of pH, Temperature, and Substrate Concentration

  • How does temperature affect the ability of enzymes to catalyze chemical reactions?
  • How does pH affect the ability of enzymes to catalyze chemical reactions?
  • What is the effect of substrate concentration on the rate of enzyme catalyzed reactions?

Based on the questions above, come up with some possible hypotheses. These should be general, not specific, statements that are possible answers to your questions.

  • Temperature hypothesis
  • pH hypothesis
  • Substrate concentration hypothesis

Test Your Hypotheses

Based on your hypotheses, design a set of experiments to test your hypotheses. Use your original experiment to shape your ideas. You have the following materials available:

Write your procedure to test each hypothesis. You should have three procedures, one for each hypothesis. Make sure your instructor checks your procedures before you continue.

  • Procedure 1: Temperature
  • Procedure 2: pH
  • Procedure 3: Concentration

Record your results—you may want to draw tables. Also record any observations you make. Interpret your results to draw conclusions.

  • Do your results match your hypothesis for each experiment?
  • Do the results reject or fail to reject your hypothesis and why?
  • What might explain your results? If your results are different from your hypothesis, why might they differ? If the results matched your predictions, hypothesize some mechanisms behind what you have observed.

Communicating Your Findings

Scientists generally communicate their research findings in written reports. Save the data and findings you have recorded above. You will be use them to write a lab report a little later in the course.

Use the guidelines below to complete your lab report. Your report should be typed, use 12-point font, and be double-spaced.

Sections of a Lab Report

  • Title Page: The title describes the focus of the research. The title page should also include the student’s name, the lab instructor’s name, and the lab section.
  • Introduction: The introduction provides the reader with background information about the problem and provides the rationale for conducting the research. The introduction should incorporate and cite outside sources. You should avoid using websites and encyclopedias for this background information. The introduction should start with more broad and general statements that frame the research and become more specific, clearly stating your hypotheses near the end.
  • Methods: The methods section describes how the study was designed to test your hypotheses. This section should provide enough detail for someone to repeat your study. This section explains what you did. It should not be a bullet list of steps and materials used; nor should it read like a recipe that the reader is to follow. Typically this section is written in first person past tense in paragraph form since you conducted the experiment.
  • Results: This section provides a written description of the data in paragraph form. What was the most reaction? The least reaction? This section should also include numbered graphs or tables with descriptive titles. The objective is to present the data, not interpret the data. Do not discuss why something occurred, just state what occurred.
  • Discussion: In this section you interpret and critically evaluate your results. Generally, this section begins by reviewing your hypotheses and whether your data support your hypotheses. In describing conclusions that can be drawn from your research, it is important to include outside studies that help clarify your results. You should cite outside resources. What is most important about the research? What is the take-home message? The discussion section also includes ideas for further research and talks about potential sources of error. What could you improve if you conducted this experiment a second time?

Contributors and Attributions

  • Biology 101 Labs. Authored by : Lynette Hauser. Provided by : Tidewater Community College. Located at : http://www.tcc.edu/ . License : CC BY: Attribution
  • BIOL 160 - General Biology with Lab. Authored by : Scott Rollins. Provided by : Open Course Library. Located at : http://opencourselibrary.org/biol-160-general-biology-with-lab/ . License : CC BY: Attribution

How to Write a Lab Report

Lab Reports Describe Your Experiment

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

Lab reports are an essential part of all laboratory courses and usually a significant part of your grade. If your instructor gives you an outline for how to write a lab report, use that. Some instructors require a lab report to be included in a lab notebook , while others will request a separate report. Here's a format for a lab report you can use if you aren't sure what to write or need an explanation of what to include in the different parts of the report.

A lab report is how you explain what you did in ​your experiment, what you learned, and what the results meant.

Lab Report Essentials

Not all lab reports have title pages, but if your instructor wants one, it would be a single page that states:​

  • The title of the experiment.
  • Your name and the names of any lab partners.
  • Your instructor's name.
  • The date the lab was performed or the date the report was submitted.

The title says what you did. It should be brief (aim for ten words or less) and describe the main point of the experiment or investigation. An example of a title would be: "Effects of Ultraviolet Light on Borax Crystal Growth Rate". If you can, begin your title using a keyword rather than an article like "The" or "A".

Introduction or Purpose

Usually, the introduction is one paragraph that explains the objectives or purpose of the lab. In one sentence, state the hypothesis. Sometimes an introduction may contain background information, briefly summarize how the experiment was performed, state the findings of the experiment, and list the conclusions of the investigation. Even if you don't write a whole introduction, you need to state the purpose of the experiment, or why you did it. This would be where you state your hypothesis .

List everything needed to complete your experiment.

Describe the steps you completed during your investigation. This is your procedure. Be sufficiently detailed that anyone could read this section and duplicate your experiment. Write it as if you were giving direction for someone else to do the lab. It may be helpful to provide a figure to diagram your experimental setup.

Numerical data obtained from your procedure usually presented as a table. Data encompasses what you recorded when you conducted the experiment. It's just the facts, not any interpretation of what they mean.

Describe in words what the data means. Sometimes the Results section is combined with the Discussion.

Discussion or Analysis

The Data section contains numbers; the Analysis section contains any calculations you made based on those numbers. This is where you interpret the data and determine whether or not a hypothesis was accepted. This is also where you would discuss any mistakes you might have made while conducting the investigation. You may wish to describe ways the study might have been improved.

Conclusions

Most of the time the conclusion is a single paragraph that sums up what happened in the experiment, whether your hypothesis was accepted or rejected, and what this means.

Figures and Graphs

Graphs and figures must both be labeled with a descriptive title. Label the axes on a graph, being sure to include units of measurement. The independent variable is on the X-axis, the dependent variable (the one you are measuring) is on the Y-axis. Be sure to refer to figures and graphs in the text of your report: the first figure is Figure 1, the second figure is Figure 2, etc.

If your research was based on someone else's work or if you cited facts that require documentation, then you should list these references.

  • Null Hypothesis Examples
  • Examples of Independent and Dependent Variables
  • How to Format a Biology Lab Report
  • Science Lab Report Template - Fill in the Blanks
  • How to Write a Science Fair Project Report
  • How to Write an Abstract for a Scientific Paper
  • Six Steps of the Scientific Method
  • How To Design a Science Fair Experiment
  • Make a Science Fair Poster or Display
  • Understanding Simple vs Controlled Experiments
  • How to Organize Your Science Fair Poster
  • Scientific Method Lesson Plan
  • The 10 Most Important Lab Safety Rules
  • What Are the Elements of a Good Hypothesis?
  • What Is an Experiment? Definition and Design

Banner

  • Scientific Lab Reports
  • Understanding the Assignment
  • Need a Topic?
  • Evaluating Sources
  • Brainstorming Strategies
  • Drafting Strategies
  • Thesis Formulation
  • Introductions
  • Conclusions
  • Show Don't Tell
  • Expand Your Draft
  • Flow & Lexical Coherence
  • Revision Checklist
  • Introduction to Style and Grammar
  • Apostrophes
  • Article Usage for ESL Learners
  • Capitalization
  • Clarity: Get Rid of Nominalizations
  • Cohesion: Does my Paragraph Flow?
  • Commas and Colons
  • Conciseness
  • Confusing Words
  • Parallel Structure
  • Passive Voice
  • Quotation Marks
  • Run-on Sentences
  • Subject-Verb Agreement
  • Writing Mechanics
  • Other Styles
  • Art History This link opens in a new window
  • Programming Lab Reports

Writing a Lab Report

Link to other resources.

  • Screenwriting
  • Publication Opportunities
  • Meet with a Tutor This link opens in a new window

Academic Resource Center Hours :

Monday-Thursday: 8:00 AM-6:00 PM

Friday: 8:00 AM-4:00 PM

Phone Number : 310-338-2847

Email :  [email protected]

www.lmu.edu/arc

We are located in Daum Hall on the 2nd floor!

Writing a scientific lab report is significantly different from writing for other classes like philosophy, English, and history. The most prominent form of writing in biology, chemistry, and environmental science is the lab report, which is a formally written description of results and discoveries found in an experiment. College lab reports should emulate and follow the same formats as reports found in scholarly journals, such as Nature , Cell , and The American Journal of Biochemistry .

Report Format

Title: The title says what you did. It should be brief (aim for ten words or less) and describe the main point of the experiment or investigation.

  • Example:  Caffeine Increases Amylase Activity in the Mealworm ( Tenebrio molitar).
  • If you can, begin your title using a keyword rather than an article like “The” or “A.”

Abstract: An abstract is a very concise summary of the purpose of the report, data presented, and major conclusions in about 100 - 200 words.  Abstracts are also commonly required for conference/presentation submissions because they summarize all of the essential materials necessary to understand the purpose of the experiment. They should consist of a background sentence , an introduction sentence , your hypothesis/purpose of the experiment, and a sentence about the results and what this means.

Introduction: The introduction of a lab report defines the subject of the report, provides background information and relevant studies, and outlines scientific purpose(s) and/or objective(s).

  • The introduction is a place to provide the reader with necessary research on the topic and properly cite sources used.
  • Summarizes the current literature on the topic including primary and secondary sources.
  • Introduces the paper’s aims and scope.
  • States the purpose of the experiment and the hypothesis.

Materials and Methods: The materials and methods section is a vital component of any formal lab report. This section of the report gives a detailed account of the procedure that was followed in completing the experiment as well as all important materials used. (This includes bacterial strains and species names in tests using living subjects.)

  • Discusses the procedure of the experiment in as much detail as possible.
  • Provides information about participants, apparatus, tools, substances, location of experiment, etc.
  • For field studies, be sure to clearly explain where and when the work was done.
  • It must be written so that anyone can use the methods section as instructions for exact replications.
  • Don’t hesitate to use subheadings to organize these categories.
  • Practice proper scientific writing forms. Be sure to use the proper abbreviations for units. Example: The 50mL sample was placed in a 5ºC room for 48hrs.

Results: The results section focuses on the findings, or data, in the experiment, as well as any statistical tests used to determine their significance.

  • Concentrate on general trends and differences and not on trivial details.
  • Summarize the data from the experiments without discussing their implications (This is where all the statistical analyses goes.)
  • Organize data into tables, figures, graphs, photographs, etc.  Data in a table should not be duplicated in a graph or figure. Be sure to refer to tables and graphs in the written portion, for example, “Figure 1 shows that the activity....”
  • Number and title all figures and tables separately, for example, Figure 1 and Table 1 and include a legend explaining symbols and abbreviations. Figures and graphs are labeled below the image while tables are labeled above.

  Discussion: The discussion section interprets the results, tying them back to background information and experiments performed by others in the past.This is also the area where further research opportunities shold be explored.

  • Interpret the data; do not restate the results.
  • Observations should also be noted in this section, especially anything unusual which may affect your results.

For example, if your bacteria was incubated at the wrong temperature or a piece of equipment failed mid-experiment, these should be noted in the results section.

  • Relate results to existing theories and knowledge.This can tie back to your introduction section because of the background you provided.
  • Explain the logic that allows you to accept or reject your original hypotheses.
  • Include suggestions for improving your techniques or design, or clarify areas of doubt for further research.

Acknowledgements and References: A references list should be compiled at the end of the report citing any works that were used to support the paper. Additionally, an acknowledgements section should be included to acknowledge research advisors/ partners, any group or person providing funding for the research and anyone outside the authors who contributed to the paper or research.

General Tips

  • In scientific papers, passive voice is perfectly acceptable. On the other hand, using “I” or “we” is not.

          Incorrect: We found that caffeine increased amylase levels in Tenebrio molitar.  Correct: It was discovered that caffeine increased amylase levels in Tenebrio molitar.   

  • It is expected that you use as much formal (bland) language and scientific terminology as you can. There should be no emphasis placed on “expressing yourself” or “keeping it interesting”; a lab report is not a narrative.
  • In a lab report, it is important to get to the point. Be descriptive enough that your audience can understand the experiment, but strive to be concise.
  • << Previous: Programming Lab Reports
  • Next: Screenwriting >>
  • Last Updated: May 17, 2024 2:20 PM
  • URL: https://libguides.lmu.edu/writing
  • Clerc Center | PK-12 & Outreach
  • KDES | PK-8th Grade School (D.C. Metro Area)
  • MSSD | 9th-12th Grade School (Nationwide)
  • Gallaudet University Regional Centers
  • Parent Advocacy App
  • K-12 ASL Content Standards
  • National Resources
  • Youth Programs
  • Academic Bowl
  • Battle Of The Books
  • National Literary Competition
  • Youth Debate Bowl
  • Youth Esports Series
  • Bison Sports Camp
  • Discover College and Careers (DC²)
  • Financial Wizards
  • Immerse Into ASL
  • Alumni Relations
  • Alumni Association
  • Homecoming Weekend
  • Class Giving
  • Get Tickets / BisonPass
  • Sport Calendars
  • Cross Country
  • Swimming & Diving
  • Track & Field
  • Indoor Track & Field
  • Cheerleading
  • Winter Cheerleading
  • Human Resources
  • Plan a Visit
  • Request Info

how to write a hypothesis example biology lab report

  • Areas of Study
  • Accessible Human-Centered Computing
  • American Sign Language
  • Art and Media Design
  • Communication Studies
  • Data Science
  • Deaf Studies
  • Early Intervention Studies Graduate Programs
  • Educational Neuroscience
  • Hearing, Speech, and Language Sciences
  • Information Technology
  • International Development
  • Interpretation and Translation
  • Linguistics
  • Mathematics
  • Philosophy and Religion
  • Physical Education & Recreation
  • Public Affairs
  • Public Health
  • Sexuality and Gender Studies
  • Social Work
  • Theatre and Dance
  • World Languages and Cultures
  • B.A. in American Sign Language
  • B.A. in Art and Media Design
  • B.A. in Biology
  • B.A. in Communication Studies
  • B.A. in Communication Studies for Online Degree Completion Program
  • B.A. in Deaf Studies
  • B.A. in Deaf Studies for Online Degree Completion Program
  • B.A. in Education with a Specialization in Early Childhood Education
  • B.A. in Education with a Specialization in Elementary Education
  • B.A. in English
  • B.A. in Government
  • B.A. in Government with a Specialization in Law
  • B.A. in History
  • B.A. in Interdisciplinary Spanish
  • B.A. in International Studies
  • B.A. in Interpretation
  • B.A. in Mathematics
  • B.A. in Philosophy
  • B.A. in Psychology
  • B.A. in Psychology for Online Degree Completion Program
  • B.A. in Social Work (BSW)
  • B.A. in Sociology
  • B.A. in Sociology with a concentration in Criminology
  • B.A. in Theatre Arts: Production/Performance
  • B.A. or B.S. in Education with a Specialization in Secondary Education: Science, English, Mathematics or Social Studies
  • B.S in Risk Management and Insurance
  • B.S. in Accounting
  • B.S. in Accounting for Online Degree Completion Program
  • B.S. in Biology
  • B.S. in Business Administration
  • B.S. in Business Administration for Online Degree Completion Program
  • B.S. in Information Technology
  • B.S. in Mathematics
  • B.S. in Physical Education and Recreation
  • B.S. In Public Health
  • General Education
  • Honors Program
  • Peace Corps Prep program
  • Self-Directed Major
  • M.A. in Counseling: Clinical Mental Health Counseling
  • M.A. in Counseling: School Counseling
  • M.A. in Deaf Education
  • M.A. in Deaf Education Studies
  • M.A. in Deaf Studies: Cultural Studies
  • M.A. in Deaf Studies: Language and Human Rights
  • M.A. in Early Childhood Education and Deaf Education
  • M.A. in Early Intervention Studies
  • M.A. in Elementary Education and Deaf Education
  • M.A. in International Development
  • M.A. in Interpretation: Combined Interpreting Practice and Research
  • M.A. in Interpretation: Interpreting Research
  • M.A. in Linguistics
  • M.A. in Secondary Education and Deaf Education
  • M.A. in Sign Language Education
  • M.S. in Accessible Human-Centered Computing
  • M.S. in Speech-Language Pathology
  • Master of Social Work (MSW)
  • Au.D. in Audiology
  • Ed.D. in Transformational Leadership and Administration in Deaf Education
  • Ph.D. in Clinical Psychology
  • Ph.D. in Critical Studies in the Education of Deaf Learners
  • Ph.D. in Hearing, Speech, and Language Sciences
  • Ph.D. in Linguistics
  • Ph.D. in Translation and Interpreting Studies
  • Ph.D. Program in Educational Neuroscience (PEN)
  • Individual Courses and Training
  • Summer On-Campus Courses
  • Summer Online Courses
  • Certificates
  • Certificate in Sexuality and Gender Studies
  • Educating Deaf Students with Disabilities (online, post-bachelor’s)
  • American Sign Language and English Bilingual Early Childhood Deaf Education: Birth to 5 (online, post-bachelor’s)
  • Peer Mentor Training (low-residency/hybrid, post-bachelor’s)
  • Early Intervention Studies Graduate Certificate
  • Online Degree Programs
  • ODCP Minor in Communication Studies
  • ODCP Minor in Deaf Studies
  • ODCP Minor in Psychology
  • ODCP Minor in Writing
  • Online Degree Program General Education Curriculum
  • University Capstone Honors for Online Degree Completion Program

Quick Links

  • PK-12 & Outreach
  • NSO Schedule

Wavy Decoration

Sample Biology Lab Report at Gallaudet University

202.448-7036

Demonstration of a close genetic relationship between human and chimpanzee through the Nutall precipitation reaction

Some scientists theorize that humans and chimpanzees evolved from a common ancestor millions of years ago. Because of this theory, we hypothesized that the chimpanzee blood proteins would most resemble human blood proteins. Three other vertebrates, the frog, cow, and monkey were also compared in this study. In order to test for similarities in various blood proteins, the Nutall Precipitation process was used. By employing this technique, we noted and compared the agglutination of red blood cells from the five species. This method allowed us to see which animal’s blood proteins would be most closely related to humans. Results confirmed our hypothesis: the blood proteins of chimpanzees are most closely related to human blood proteins, more so than to the blood proteins of a cow, a frog, and a monkey.

The Nutall Precipitation is a technique used to test and compare the relationship of the blood proteins between one species and another to see how they are similar or different. The Nutall Precipitation capitalizes on the vertebrates’ immune defense mechanism, which resists foreign materials that are introduced into their blood (Braun, pp. 71). To combat the foreign materials, the vertebrates will develop antibodies which, in turn, will agglutinate to the foreign material. The agglutination causes a fast precipitation reaction (Braun, pp. 71). By judging the agglutination amounts, we can determine if the materials are more or less foreign to the blood. The Nutall Precipitation can attempt to prove or disprove the hypothesis that the chimpanzee is the animal that is most closely related to a human. An anti-human serum was introduced into the blood proteins of the chimpanzee, cow, frog, and the monkey. The agglutination reactions allowed us to determine which of the four animals was the one most closely related to a human. When there is an increase in agglutination between the animal and human blood, it signifies that the two species’ blood is more similar, thus showing a closer relationship. When the agglutination is lighter, it signifies that the blood proteins in human blood and animal blood are less similar, thus determining that the two species are not as closely related. In our experiment using the Nutall Precipitation, our hypothesis that the chimpanzee is the animal most closely related to humans was tested to determine whether or not the chimpanzee’s agglutination with the human blood is greater than with the other species-the cow, frog, and the monkey.

Methodology

The Nutall Precipitation technique tested the hypothesis-five dishes were set up, each one with a different serum from a chimpanzee, cow, frog, monkey, and a human. The dish with the anti-human serum was compared with the four dishes of animal serum. In each dish, there were eight wells containing serial dilutions of a specific animal serum (50 – 300 l) and a combination of water (100 – 350 l) and anti-human serum (400 l). Data was recorded based on the amount of agglutination in each dish. A table chart was developed, using the rubric scores of 0, 1, 2, and 3. A score of 0 signified that there was no reaction between the anti-human serum and animal serum. A score of 1 indicated that there was a reaction, but that it was light and weak. A score of 2 meant that there was a medium reaction, showing signs of agglutination. A score of 3 signified that there was high agglutination with a strong and immediate reaction.

Results and Discussion

Well Number:

Based on the recorded data, the dish containing the chimpanzee serum showed an immediate and strong reaction with the human’s anti-serum with the heaviest agglutination in comparison to the other species. In fact, the dishes containing the chimpanzee’s serum and the anti-human serum showed the same amounts of agglutination. The monkey was shown to be trailing the chimpanzee, with the cow next. The frog showed the least amount of agglutination, with wells 3 through 8 showing no signs of agglutination. The conclusion strongly indicates that the sera of the chimpanzee and humans showed very similar agglutination reactions with the anti-human serum. This supports our hypothesis that the chimpanzee blood protein is the most closely related to the human blood protein as compared to the blood proteins of a cow, a frog, and a monkey.

Bibliography

Braun DC and Pearce LL, Laboratory Manual for Introduction to Biology. 5th ed. Washington (DC): Gallaudet University; 2004: 69 – 75

Olson MV and Varki A. Sequencing the chimpanzee genome: insights into human evolution and disease Nature Reviews Genetics. 2003 Jan 01;4:20-28.

****This sample biology lab report was developed by Will Garrow for a biology course at Gallaudet University. It was revised by Raymond Merritt and Jane Dillehay of the Department of Biology.

202-448-7036

At a Glance

  • Quick Facts
  • University Leadership
  • History & Traditions
  • Accreditation
  • Consumer Information
  • Our 10-Year Vision: The Gallaudet Promise
  • Annual Report of Achievements (ARA)
  • The Signing Ecosystem
  • Not Your Average University

Our Community

  • Library & Archives
  • Technology Support
  • Interpreting Requests
  • Ombuds Support
  • Health and Wellness Programs
  • Profile & Web Edits

Visit Gallaudet

  • Explore Our Campus
  • Virtual Tour
  • Maps & Directions
  • Shuttle Bus Schedule
  • Kellogg Conference Hotel
  • Welcome Center
  • National Deaf Life Museum
  • Apple Guide Maps

Engage Today

  • Work at Gallaudet / Clerc Center
  • Social Media Channels
  • University Wide Events
  • Sponsorship Requests
  • Data Requests
  • Media Inquiries
  • Gallaudet Today Magazine
  • Giving at Gallaudet
  • Financial Aid
  • Registrar’s Office
  • Residence Life & Housing
  • Safety & Security
  • Undergraduate Admissions
  • Graduate Admissions
  • University Communications
  • Clerc Center

Gallaudet Logo

Gallaudet University, chartered in 1864, is a private university for deaf and hard of hearing students.

Copyright © 2024 Gallaudet University. All rights reserved.

  • Accessibility
  • Cookie Consent Notice
  • Privacy Policy
  • File a Report

800 Florida Avenue NE, Washington, D.C. 20002

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 21 May 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

  • How To Find Articles with Databases
  • How To Evaluate Articles
  • How To Read A Scientific Paper
  • How To Interpret Data
  • How To Write A Lab Report
  • How To Write A Scientific Paper
  • Get More Help
  • Reference: Encyclopedia, Handbooks & Dictionaries
  • Research Tools: Databases, Protocols & Citation Locators
  • E-Journal Lists by Subject
  • Scholarly vs Popular
  • Search Tips
  • Open Resources
  • E-Journal lists by subject
  • Develop a Research Question

Writing Lab Reports

Writing lab reports follows a straightforward and structured procedure. It is important to recognize that each part of a lab report is important, so take the time to complete each carefully. A lab report is broken down into eight sections: title, abstract, introduction, methods and materials, results, discussion, conclusion, and references. 

  • Ex: "Determining the Free Chlorine Content of Pool Water"
  • Abstracts are a summary of the experiment as a whole and should familiarize the reader with the purpose of the research. 
  • Abstracts will always be written last, even though they are the first paragraph of a lab report. 
  • Not all lab reports will require an abstract. However, they are often included in upper-level lab reports and should be studied carefully. 
  • Why was the research done or experiment conducted?
  • What problem is being addressed?
  • What results were found?
  • What are the meaning of the results?
  • How is the problem better understood now than before, if at all?

Introduction

  • The introduction of a lab report discusses the problem being studied and other theory that is relevant to understanding the findings. 
  • The hypothesis of the experiment and the motivation for the research are stated in this section. 
  • Write the introduction in your own words. Try not to copy from a lab manual or other guidelines. Instead, show comprehension of the experiment by briefly explaining the problem.

Methods and Materials

  • Ex: pipette, graduated cylinder, 1.13mg of Na, 0.67mg Ag
  • List the steps taken as they actually happened during the experiment, not as they were supposed to happen. 
  • If written correctly, another researcher should be able to duplicate the experiment and get the same or very similar results. 
  • The results show the data that was collected or found during the experiment. 
  • Explain in words the data that was collected.
  • Tables should be labeled numerically, as "Table 1", "Table 2", etc. Other figures should be labeled numerically as "Figure 1", "Figure 2", etc. 
  • Calculations to understand the data can also be presented in the results. 
  • The discussion section is one of the most important parts of the lab report. It analyzes the results of the experiment and is a discussion of the data. 
  • If any results are unexpected, explain why they are unexpected and how they did or did not effect the data obtained. 
  • Analyze the strengths and weaknesses of the design of the experiment and compare your results to other similar experiments.
  • If there are any experimental errors, analyze them.
  • Explain your results and discuss them using relevant terms and theories.
  • What do the results indicate?
  • What is the significance of the results?
  • Are there any gaps in knowledge?
  • Are there any new questions that have been raised?
  • The conclusion is a summation of the experiment. It should clearly and concisely state what was learned and its importance.
  • If there is future work that needs to be done, it can be explained in the conclusion.
  • If using any outside sources to support a claim or explain background information, those sources must be cited in the references section of the lab report. 
  • In the event that no outside sources are used, the references section may be left out. 

Other Useful Sources

  • The Lab Report
  • Sample Laboratory Report #2
  • Some Tips on Writing Lab Reports
  • Writing a Science Lab Report
  • << Previous: How To Interpret Data
  • Next: How To Write A Scientific Paper >>
  • Last Updated: Mar 8, 2024 2:26 PM
  • URL: https://guides.libraries.indiana.edu/STEM

Social media

  • Instagram for Herman B Wells Library
  • Facebook for IU Libraries

Additional resources

Featured databases.

  • Resource available to authorized IU Bloomington users (on or off campus) OneSearch@IU
  • Resource available to authorized IU Bloomington users (on or off campus) Academic Search (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) ERIC (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) Nexis Uni
  • Resource available without restriction HathiTrust Digital Library
  • Databases A-Z
  • Resource available to authorized IU Bloomington users (on or off campus) Google Scholar
  • Resource available to authorized IU Bloomington users (on or off campus) JSTOR
  • Resource available to authorized IU Bloomington users (on or off campus) Web of Science
  • Resource available to authorized IU Bloomington users (on or off campus) Scopus
  • Resource available to authorized IU Bloomington users (on or off campus) WorldCat

IU Libraries

  • Diversity Resources
  • About IU Libraries
  • Alumni & Friends
  • Departments & Staff
  • Jobs & Libraries HR
  • Intranet (Staff)
  • IUL site admin
  • Find Resources
  • Useful Free Sites
  • Evaluating Sources
  • Writing Resources
  • Citing Sources

Table of Contents

Handbook for writing lab reports in biology.

  • Need Help? Ask a Librarian This link opens in a new window
  • A. Strategy for writing your lab report
  • B. Finding references for a lab report
  • C. Writing style
  • D. Components of a lab report
  • E. Sample lab report
  • F. Acknowledgements
  • G. Bibliography

Last revised 9/20/15

  • Lab Report Handbook 09.20.15

A.   Strategy for writing your lab report

1.     read the directions.

Seriously, don’t skip this step.  If you read the directions right away, you are less likely to leave out mandatory parts of the lab report, you will be able to ask your instructor for clarification if necessary, and you can get set aside an amount of prep time appropriate to the scope of the project.  Teaching assistants may also be able to provide guidance.

When reading the directions, be sure to make note of the due date(s).  Depending on the assignment, there may be a single due date for a complete lab report or multiple due dates for different lab report components and/or drafts.

2.     Find and read relevant literature

Your instructor has most likely provided you with information about the number and/or types of sources that should be cited in your lab report.  For more information about finding the references used in a lab report, see Section B below.

3.     Outline your lab report

Start by listing the required sections noted in the directions for the assignment.  For the discussion section, also list the required topics (sources of error, future studies, etc.).  Next, list the topics or even topic sentences for paragraphs in each section; in the results section be sure to note the locations for your figures and/or tables.  If you haven’t created your figures and tables yet, sketch an outline of how they will be set up (axis labels for figures, column and row headings for tables).

4.     Start writing

Different writing guides will suggest different sections to start with – our suggestion is that you start with whichever section, in your opinion, will be easiest.  As you write, focus on the big picture for each section before focusing on detail; that is, set up a logical flow of paragraphs before worrying too much about the specific wording in the paragraphs. For more information about writing style, see Section C .  For detailed descriptions of the standard components of a lab report, see Section D . A sample lab report is provided in Section E .

5.     Review & revise!

Finish your lab report at least a few days early whenever possible.  This will allow time for you to set it aside and review it with fresh eyes, and to hand it to friends and classmates so they can check for errors.  Confirm that all of the required components listed in your directions are addressed in your lab report! 

B.   Finding references for a lab report

                   

Primary vs. secondary references

In most, if not all, of your lab reports you will have to put your work in the context of previous research – that is, you will have to discuss your work as it relates to research described in primary references.  A primary reference is a peer-reviewed, original description of a research study.  Typically this is a journal article describing original research.  Since a several types of article are published in research journals (e.g. review articles or commentaries in addition to original research), you cannot assume that all articles published in journals will qualify as primary references.  Since scientists must be able to reproduce each other’s work, a primary reference will always include a description of the research methods.  Sometimes it will be obvious from an abstract that an article contains a description of original research (the research methods may be summarized); at other times you will not realize until you look at the full text if you have a primary reference or a secondary reference.

A secondary reference can also be very valuable in preparing your lab report, even though it will not count as one of your required primary references.  Many journals publish review articles, for example, that give you an overview of a specific topic.  The authors of a review article might summarize the results of a hundred or more individual studies in a given research area, while evaluating the merits and drawbacks of the different studies and putting the findings into context.  Review articles can be invaluable when trying to learn about an unfamiliar area of research.  Other examples of secondary references include textbooks, commentaries and magazine articles. A lab report will typically require use of at least one secondary reference in the Introduction.

Since it can take some time to find, read and decide if you can use references, it is critical that these sources be identified well in advance of the due date for your lab report.

Search resources

A simple google search is unlikely to provide you with the references that you will need as you prepare your lab report.  Your instructor may direct you to specific search resources or databases, but the two search resources most commonly used to find journal articles for biology courses are Google Scholar ( http://scholar.google.com ) and, for biomedical studies, PubMed ( http://www.ncbi.nlm.nih.gov/pubmed ).  Effective use of these resources will require some judicious use of search terms.  If you feel that your search terms are not yielding the types of articles that you are looking for, consult a research librarian, your instructor or your teaching assistant for assistance.

The biology libguide ( http://mcla.libguides.com/biology ) hosted by Freel Library contains a variety of search resources, including links to the online collections of journals housed in the Academic Search Premier and JSTOR databases.  If you do your literature search through one of the links on the libguide (e.g. the Google Scholar link on the databases page http://library.mcla.edu/az.php ), the articles freely available through the MCLA databases should appear as free full text in your search.

Full-text journal articles

If you have a lot of relevant articles at your disposal, you can limit the articles retrieved in a PubMed search to those with free full text.  In Google Scholar, free articles are usually indicated with links on the right-hand side of the screen.  In most cases, however, the articles most relevant to your work will not be freely available.  You have several options for obtaining these articles.

  • Use interlibrary loan .  An option, though not the quickest option.  See a reference librarian for assistance with this.
  • Email the corresponding author.  This is a good option, though you might need to do some detective work to find the author’s email address.  Sometimes it is listed with the abstract, otherwise you can do a search for the name of the corresponding author (if noted) or the last author (the boss) combined with the institution (university or company at which they did the work), and you should be able to find an up-to-date email address.  In your email, politely and professionally ask for a PDF copy of the article.  Be sure to note the title, year and journal for the article.  In most cases you will receive a reply within a few days.
  • If you don’t have a few days and the corresponding author is not responding, see if Williams College ( http://library.williams.edu/ ) has the article.  If so, get someone to drive you there – there are public access computers at Sawyer Library (the main library) and Schow Library (the science library) at which you can access the college’s journal articles.  You will not be able to save the PDF, unfortunately, but you can purchase a print card and print the article(s) there.
  • Purchase the article.   You will not even consider this option, because it would mean you procrastinated to the point that none of the other options are possible.  You would never do that, right??

Websites of suitable authority

Depending on the instructor and the assignment, you may or may not be permitted to use websites as references.  (Note that journal articles that are available in print but can be accessed online are considered to be journal articles, not websites, for reference and citation purposes).  If you do intend to use a website as a reference, take care to evaluate it to determine if it is a suitable source.  Is the website published by an institution or individual that would be widely accepted as a reliable and knowledgeable authority?  If you have any doubt, check with your instructor.  When obtaining information from websites, be sure to note the information that you will need for the reference list in your lab report (author, title, revision date or accession date, website; see an APA style guide, e.g. https://www.library.cornell.edu/research/citation/apa ).

Other sources

You can typically cite your textbook and/or lab manual as books in your lab report; other books may also be used for background information.  These will not qualify as primary references.  Articles from newspapers and magazines are not suitable resources for a lab report.

C.   Writing style

A complete review of suitable writing style will not be provided here.  Resources that can help you to improve your writing style can be found under the “Writing Resources” tab of the Biology LibGuide ( http://mcla.libguides.com/biology ).  The following are some of the issues and errors specifically encountered with lab reports in biology:

Watch your language!

Scientific writing is concise, precise and professional.  Words should be chosen with care to avoid vagueness (“we added 100 ml of water” rather than “we added some water”) and unnecessary detail (“the subjects ran up and down a flight of stairs for 5 minutes” rather than “the subjects, who were wearing workout clothes, were timed by an observer with a black electronic stopwatch as they ran up and down the stairs between the first and second floors in the science building from 11:00 to 11:05 am, for a total of 5 minutes”). 

Contractions are typically avoided in scientific writing (“the fruit flies did not wake up from anesthesia” rather than “the fruit flies didn’t wake up from anesthesia”). 

To quote or to summarize?

Quotes are not used in lab reports, and minor rewording to “paraphrase” is also inappropriate for scientific writing.  For the most part you will be summarizing the key ideas in an article.  If you paste a summary sentence from an abstract or a textbook then try to reword it, you will undoubtedly run into problems – in addition, the key point that the article’s authors were trying to make may not be the same point that you are trying to make.  It is best even when making notes to summarize key points (citing the source) rather than copying sections of text.  For more information, see the sections “Quoting, Paraphrasing and Summarizing” and “Taking Notes” in the “Citing and Documenting Sources” tab of the Biology Libguide ( http://mcla.libguides.com/biology ).

Present vs. past tense

Verb tense will vary in a lab report.  The present tense is used for descriptions of information that is widely accepted as true (or at least can be backed up by a published, peer-reviewed reference).  Information that could be found in a textbook will always be written in the present tense (“yeasts are single-celled organisms”). The findings of published research studies are usually written in the present tense (“fruit flies are attracted to rotting bananas”), though a scientist’s actions in a published study are written in the past tense, for example: “Smith et al. (1978) observed that fruit flies were [or are, your choice] attracted to rotting bananas.” 

The description of your own study, since it has not been published and accepted in the field, will be written in the past tense (“carbon dioxide accumulation was higher for plants kept in the dark,” “the bacteria were Gram-positive”).

Passive vs. active voice

There is no strong consensus in the field of Biology with regards to use of the active voice (“I did”) or the passive voice (“it was done”).  Find out from your instructor if he or she will allow the active voice.  If the active voice is acceptable, you may use “I” or “we” as the subject in sentences that describe your actions, though that should still be kept to a minimum. If the instructor prefers exclusive use of the passive voice, there should be no use of “I” or “we” in the document. 

Frequently mis-used words

Significant.

Significant has a very specific meaning in biology.  If you say that there were significantly more brine shrimp on the light side of the tank, or that the plants kept in the dark were significantly smaller, that means you did a statistical analysis of your data and found a difference with a p value <0.05.  Do not use the word “significant” in any other way in your lab report.

Data is a plural (singular: datum).  “Data were collected after 12, 24 and 48 hours.” “The data from this experiment support our hypothesis.”

Affect vs. effect

Spell-check and grammar-check will not help you here – you must think consider your word choice every time you use “affect” or “effect” in your lab report.  Affect is a verb (A is for Action); “the loud noises affected the behavior of the fish.”  Effect is a noun; “different effects were observed with different chemicals.”  Effect may, in rare cases, be used as a verb (= to bring about), but unless you are quite comfortable with this use, stick to the previous rules!

Support vs. prove

Biologists must be open to the possibility that ideas about how living things function will change based on new data.  We therefore hate the word “prove,” since “prove” suggests that an answer is final.  A single experiment doesn’t prove anything (particularly not a single, small-scale experiment conducted in a 3-hour lab block).  Your data don’t prove or disprove your hypothesis – they can only support or not support your hypothesis.

Writing numbers and units

Unless followed by a scientific unit, numbers under twenty should be spelled out in the text (fifteen leeches, 4°C, nine plants, 5 mL).  If a number starts a sentence, it must always be written out, even if it is followed by a unit (sometimes it is easier to rearrange your sentence than to write out your number!) 

The abbreviations for scientific units should be used; these need not (and should not) be spelled out at any point in the text.  Use the degree symbol (°) rather than the word degree when describing temperatures – to find this, and to find the “±” for standard deviation and the “µ” for µL, click on the “Insert” tab in Word.  Select “Symbol,” and then scroll through the options till you find the symbol that you need.  Double-click on it or select “insert” from the bottom.

Abbreviations

Some abbreviations are sufficiently standard that you do not need to define them in your lab report (DNA, RNA, mRNA).  Other abbreviations must be defined at first use.  (“The primary antibodies were dissolved in phosphate-buffered saline (PBS) at a ratio of 1:100.  The secondary antibodies were dissolved in PBS at a ratio of 1:1000”).  Minimize the use of abbreviations in your lab report – you are typically not restricted to a maximum number of words in a lab report, so make it as easy as possible for your reader to understand your text.

Chemical names (NaCl, H + ) do not need to be defined, nor do abbreviations for scientific units (mm, µL, min). 

Specialized terminology

If you use specialized terms in your lab report that would not be familiar to most of your classmates, define or explain them in the text.  (“The reduction in herbivory could be due to high levels of phenols, which are defensive chemicals made by plants.”)

Scientific names

Remember that genus and species names must always be written in italics ( Hirudo medicinalis ).  After the first use of the genus name, it can be abbreviated ( H. medicinalis).  The species component of the name must start with a lower-case letter – note that auto-correct might try to make it a capital letter.  When specifically referring to a kingdom, phylum, class, order or family for an organism, the name must be capitalized (“the medicinal leech Hirudo medicinalis belongs to phylum Annelida”), but if you are not using the official name, do not capitalize (“leeches are annelid worms”).

D.   Components of a lab report

The following are the standard components used to describe a research study – you will find them in both lab reports and journal articles, though formats may vary somewhat.

1.     Title 

The title will be a short, informative description of the experimental purpose, research question or research findings.

Sample titles:

     Rate of lactose digestion at different temperatures.

     Dinoflagellate responses to increases in temperature.

     Fruit flies are more attracted to apple cider than to apple juice.

2.     Author

For a lab report you, the writer, are the author.  For group submissions there may be multiple authors.  Your lab partners should also be acknowledged, if they contributed to the research. You can list lab partner(s) below or next to the author name(s).

For some assignments (e.g. drafts submitted for peer review), anonymous submissions will be required.  Do not list the author or lab partners on these drafts!  

Sample author list:  

Author:  Anne Goodwin

Lab Partners: Justin Golub, Sarah Herrick, Jerry Smosky

3.     Abstract

The abstract is a concise summary of the research study.  This section should always be written last, so that you have the key points from each of the other sections to draw from.  Include a sentence (at most, two sentences) addressing each of the following:

  • Introduction.  Provide context for your study, but don’t cite references.
  • Research question or the purpose of the experiment.  Be very clear about why the study was done.
  • Experimental design.  Provide an overview of how the study was done without going into great detail.
  • Results.  Summarize the main findings.
  • Conclusions.  State the take-home message from your study, based on the findings.

Sample abstracts:

The salt content in water that plants take up can potentially affect plants growth and development in different ways. In this experiment, our group watered Brassica rapa plants with a 2% salt water solution from the time of planting to see what its effects would be on their growth and development. We planted eight seeds to be treated with the salt water and eight seeds that would be the control in normal tap water. There were five dependent variables that were recorded after four weeks of growth: stem height, total number of leaves, number of seed pods, number of flowers, and average leaf length per plant. Our results showed that the salt solution affected the total number of leaves that grew on each plant. These result showed that the plants were not as adversely affected by the salt solution as we had thought they would be.

In this lab, Drosophila melanogaster was used as a model to study development because of the wide range of research that has already been performed on this organism. In this experiment dissected and whole individuals were observed to examine physical characteristics including sex, larval body forms, imaginal discs, eggs, and polytene chromosomes. During the experiment we anesthetized flies and examined their body shapes and we dissected individuals to remove the imaginary discs and the polytene chromosomes within the salivary glands. Additionally, we observed larval forms and normal and dechorionated eggs. Based on the results of the lab we were able to recognize and understand the importance of the various life stages of Drosophila melanogaster as well as understanding the purpose of the structures involved in development.

4.     Introduction

The purpose of the introduction is to explain to the reader why it was important that you did your research study.  The introduction will contain the following information:

  • Background about the research topic.  This information will be organized from general (information about your system or test organism) to specific (importance of your particular research question), and all information provided should directly serve to emphasize the relevance of your study.  General information will typically be obtained from secondary references such as textbooks and review articles.  Primary references may or may not be used to introduce your research question, depending on the primary references at your disposal and on the instructor’s directions.  Background information from secondary sources will be written in the present tense, past or present tense may be used in descriptions of research studies from primary references, as noted above. 

The background portion of the introduction is typically two paragraphs in length. Citations must be provided for information that is not common knowledge; see the references section below for instructions for citing references. 

  • Research question or purpose of experiment.  This will typically be a single sentence, phrased as a statement or question.

Sample experimental purposes or research questions: 

The purpose of this laboratory activity was to determine the rate of lactose digestion by lactase. 

This led to the following research question: are fruit flies attracted to sugar?

We therefore wondered if temperature would change the behavior of leeches.

  • Hypothesis (if appropriate).  If the experiment addressed a research question, include the hypothesis at the end of the introduction.  The hypothesis should be written as a statement expressing a prediction.

Sample hypotheses:

I hypothesized that leeches would be attracted to warm water.

The hypothesis was that fruit flies would be attracted to a solution containing sugar.

We predicted that heart rate would increase with exercise.

If fruit flies are attracted to sweet things, then fruit flies will be caught in greater numbers by a solution containing sugar.

Sample introduction:

Dinoflagellates are single-celled organisms that life in freshwater and saltwater environments. Some species live in symbiosis in corals, including the species Symbiodinium adriaticum , which is what our experiment is using. The experiment we are performing falls under the question of “How do changing ocean conditions affect dinoflagellates?” The oceans of the world are undergoing changes such as salt content and the increasing depths of the ocean from the melting polar ice caps. How will these factors affect marine life, including symbiotic dinoflagellates in corals? Costa et al studied the effects of seasonal dynamics in the coastal reefs off Picãozinho in Northeast Brazil and their effects on cell density and photosynthetic pigment contents of the zooxanthellae hosted by the dinoflagellate species Montastrea cavernosa (Costa et al, 2004). They found that cell numbers were greater in the rainy season, photosynthetic pigments were greater in the dry season, and that both parameters drastically dropped in amount during heavy rains. They speculated that this pattern is because of the rain cycles and how they affected the water clarity and the seasonal physiological condition of the cells (Costa et al , 2004).

Perhaps, when the water is clouded and murky, the dinoflagellates could not absorb enough light of their preferred spectrum to carry out photosynthesis, and therefore could not survive. Our group decided to test a similar aspect of water quality. We wanted to see if the color of the water, rather than the turbidity of the water, had any effect on dinoflagellate survival. Symbiodinium adriaticum have brown photosynthetic pigments, so we decided to color the water in the experimental flasks brown using food dye. This way, the water stayed clear, but it was a different color for light to pass through. In a natural setting, a change in water color could be due to an algae bloom or if a chemical got into the water that caused it to change color. An example of change in water color but not clarity in a contained ecosystem would be if you were treating a household aquarium with medicine containing Malachite Green to treat a fish parasite infection. It causes the water to turn a bright blue color, but doesn’t affect the clarity of the tank water. Our group hypothesized that water colored brown by food dye will have a negative effect on the growth of the S. adriaticum populations in the three test flasks.

5.     Methods

The methods section is a critical component of a lab report or a published research study, as scientists must be able to reproduce each other’s work.  Your methods section should be written in such a way that a classmate could reproduce your experiment based on the information provided.  The methods section must be written in the past tense, using paragraphs rather than a list format.  A separate list of materials is not included in biology lab reports; key materials are simply mentioned as they are used in the experimental setup and measurement procedures.  Be sure to include the following information in the methods section:

  • Experimental setup.   Note which research organisms were used, if appropriate, and how those research organisms were obtained.  Describe your experimental procedure, citing the lab manual if appropriate.  Include all information needed to reproduce the setup and interpret the results, but do not provide excessive detail – that is, information not needed for reproducing the experiment or interpreting the results (for example, it is not necessary to include the fact that cups were labeled 1-6, that volumes were measured using a graduated cylinder or that temperature was measured at 1:56 pm – someone could reproduce your experiment without any of this knowledge).
  • Human studies (if appropriate): If you used humans as the subjects in your experiment, explain how the subjects were recruited and note the rules used to exclude subjects from your study.  Provide a subject characteristics table containing the ages, sexes and any other relevant information about your subjects.  Do not include the subject names here or anywhere else in your lab report.  Do note that the experimental protocol received IRB approval.
  • Data collection.   Note how observations were made, how measurements were done and any other information relevant to how the data were collected.
  • Statistical analysis.   Note which statistical tests were used, and name the statistical software used to conduct the statistical tests.

Sample methods:

We observed and collected data on populations of shaving brush algae in Little Lameshur Bay on the island of Saint John in the United States Virgin Islands. We counted algae over a one-quarter square meter area at multiple sites. We were able to locate three suitable seagrass beds each containing Manatee Grass and Turtle Grass. Within each seagrass bed, one group member positioned our quadrat at one-half meter intervals. At each of the seagrass beds, we placed the quadrat into each seagrass bed at the decided interval five times, giving us a total count of 15 observations. For each time we placed the quadrat down, we performed a visual count of the number of algae individuals, and then we photographed the site for later examination in order to prevent any miscounts. An analysis of variance was carried out to determine the difference between group means.

6.     Results

The results section will provide a written summary of your findings that can be understood independently from – and is complementary to – your figures and tables.  Summarize your findings, citing each figure and table, and provide appropriate statistical descriptions (for example: means, standard deviations, p values, t statistics) as requested by your instructor.   Note trends and observations, and be sure to use the word “significant” only in the statistical sense.  Do not provide any interpretation of your results here (no opinons, no notes about the importance of the findings). 

When describing differences between groups or trends in data, take care that your descriptions match your statistical analysis.  For example, you cannot suggest that two groups are different if the p value for the comparison is > 0.05. (“Heart rates were not significantly different between the two groups.  Heart rate was 80 ± 4 bpm for group A and 84 ± 3 bpm for group B, p=0.34.”)

The results section is usually quite short in a lab report.  The results shown in each figure or table will typically be described in a single sentence (for a simple graph) up to, at most, a paragraph (for a complicated graph or table, or for observations).  Again, do not forget to cite each figure and table as you describe the findings!

Sample results:

The SDS-PAGE procedure provided information to determine Rf values for the standard samples. The values vs. log molecular weight were plotted on an xy scatter plot to generate the protein standard curve (Figure 1).  The slope of the line was used to calculate the molecular weights of the samples. Porcine pancreas was calculated to be 151.93 kDa, Bacillus licheniformis 141.82 kDa, and Aspergillus oryzae 141.82 kDa (Table 1). 

 Protein standard markers were used on the Western Blotting nitrocellulose paper to calibrate the molecular weight markers (Figure 2). The results from Western Blotting were the human salivary α-amylase band was present on the nitrocellulose paper however porcine pancreas, Bacillus licheniformis, and Aspergillus oryzae were non-reactive and did not exhibit colored bands (Figure 3).

7.     Figures and tables

Your data will be summarized in the text, but table and figures are essential in allowing the reader to interpret the results of your experiment or laboratory exercise.  Care must be taken to design tables and figures to highlight data trends and key findings for the reader.  Data tables and figures are considered part of the results section, and each table and figure must be cited in the results text; for example, “Heart rate increased after exercise, from 80 ± 4 bpm to 124 ± 9 bpm (p<0.05, Figure 1).”

Figures or tables?

Tables are particularly useful if you are providing descriptive observations, showing information for each of your research subjects, or if a variety of measurements were taken in your experiment.  Graphs are most frequently used for comparisons and to show trends.  Graphs, photographs and diagrams are all considered figures.  Tables and figures that show subject characteristics or aspects of the experimental procedure are typically placed in the methods section; tables and figures that show experimental data are placed in the results section.  Do not place tables and figures at the end of the document unless directed to do so by your instructor.

Sample decisions about how to present data  

Table setup

Each table (and figure) will need a number and a descriptive title.  The title of a table is positioned above the table, and any explanatory information is provided below the table.  Since people typically read from left to right before up to down, it is best to place your subjects as rows and your data measures as columns.  Each row should have a title, and each column should have a heading.  If you are using human subjects, do not include their names in data tables (or anywhere else in the lab report).

Sample table:

Table 1:  Molecular Weight and Rf Values for Standards and Samples.

Graph setup

Graphs are powerful tools for communicating important aspects of your data.  The type and overall appearance of your graph must be carefully considered. 

With the exception of pie charts, each graph will have an x axis and a y axis.  The x axis will typically show the independent variable (the group, category, individual, or variable that you control – for example, the concentration of enzyme in a given tube).  The y axis will typically show the dependent variable (the variable that you measure).

In many cases means (or averages) will be graphed rather than individual data points.  This will allow trends or comparisons to be better visualized than with a depiction of all data points.  When averages are shown, error bars (“whiskers” above and/or below a bar or point) are typically used to show standard deviation or another measure of variability.  Standard deviations should not be graphed as stand-alone bars; see your instructor if you are unsure of how to graph variability for your experiment.

Each graph is considered a figure, and each figure will have a number (Figure 1, Figure 2).  The figure number and figure title will be provided below the graph, as the beginning of the figure caption (called a “legend” in scientific writing).  Additional information needed to interpret the graph should be provided in the legend.  The number of subjects/replicates (“n”), markers of statistical significance (“*, p<0.05) and the measure of variability (“error bars show standard deviation”) are often included in the figure caption/legend.  If abbreviations are used in the figure labels, these should be defined in the figure legend.

Types of graph

Many different types of graphs that can be used as figures in lab reports; these include bar graphs, line graphs, scatter plots, box plots and pie charts. 

Bar graphs are used when you are comparing groups (men vs. women, hot vs. cold, before vs. after, 22°C vs. 37°C).  Error bars will be used to show standard deviation or other measures of variability.  The categories/group names are shown on the x axis and the measured value is graphed on the y axis.  The bars should have informative labels on the x axis (for example, “warm” and “cold” rather than “A” and “B”).  Unless otherwise directed by your instructor, make sure the y axis starts at 0. For more-complicated groups of data (e.g. with more than one series), the two measures you want to compare should be shown next to each other, and an informative key should be used to differentiate the series (see the two-series graphs in the samples below).

Sample bar graphs:

how to write a hypothesis example biology lab report

Figure 1 .  Percent of Strongylocentrotus eggs fertilized per condition.  ASW, artificial seawater; CaFSW, calcium-free seawater; NaFSW,  sodium-free seawater.  Error bars show standard deviation.

how to write a hypothesis example biology lab report

Figure 2.  Actual heart rate vs. perceived heart rate before, during and after moderate exercise on a rowing machine. The perceived heart rate was calculated by multiplying the rating of perceived exertion (RPE) by 10.  N=3.  Error bars show standard deviation.

Line graphs are used when you want to show average (or individual) measurements made over a continuous variable such as time, temperature or concentration.  The continuous independent variable (time/temperature/concentration) is graphed on the x axis and the measured value is graphed on the y axis.  If two lines are shown, comparisons can be indicated by marking statistically significant differences between the groups at specific times/temperatures/concentrations. Unless otherwise directed by your instructor, make sure the y axis starts at 0.  When averages are graphed, error bars can be added to the points on the line to show standard deviation or another measure of variability.

Sample line graph:

how to write a hypothesis example biology lab report

Figure 3.  Behavioral response to predator cues after hatching. Fry from embryos exposed to goldfish (predator; closed circles) or not exposed to goldfish (control; open circles) were challenged by exposing to goldfish starting at 5-7 days after hatching (Initial fry challenge). Fry challenges were repeated 1, 2, 3, 4, 6, 8, and 12 weeks after the initial challenge.  The time to resume normal foraging behavior (recovery time; Log 10 seconds) was recorded for each fry challenge.  Error bars represent 95% confidence intervals.

Scatter plots are used to show trends and correlations; individual data points are graphed rather than averages.  As in a line graph, the x axis must show a continuous variable – either an independent variable or, for correlations, one of two measured variables.  A trendline (“best-fit” line) can be added to the graph to show trends in the data.

Sample scatter plot with trendline:

how to write a hypothesis example biology lab report

Figure 4. Protein standard curve for alpha-amylase, as determined by SDS-PAGE, with Rf reflecting the distance the band traveled relative to the log of the molecular weight. 

Box plots are used to emphasize the distribution of data within a group.  The box contains the middle 50% of the data points, with a line showing the median, and “whiskers” extending from the box indicate the minimum and maximum. 

Sample box plot:

how to write a hypothesis example biology lab report

Figure 5.  Scores on the first and second exams for a biology course.

Pie graphs are used to show composition of your research populations or observations.

Sample pie graph:

how to write a hypothesis example biology lab report

Figure 6 . Taxa composition of sample taken from Site B (n=102). Ephm. = Ephemeroptera.

Photographs or diagrams  may be useful in describing results or in describing experimental methods (for the latter case, the figure should be cited in the methods section). 

8.     Discussion

The discussion section allows analysis of the implications of your findings.  Take care to frame the discussion around your actual results, not the results you hoped for or predicted based on your hypothesis.  Unless otherwise directed, you must cite at least one primary reference in the discussion section; a description of the appropriate format for in-text citations is provided in the “References” section below.

There are several standard topics that are typically addressed in a discussion.

  • Relate your findings to your hypothesis or to the purpose of the experiment. If your research was hypothesis-driven, note if the results supported or did not support your hypothesis. Do not say that your hypothesis was proven/disproven, or that your hypothesis was true/false – a single experiment can only support or not support a hypothesis.  If your experiment was organized around an objective rather than a hypothesis, note whether the objective was met, based on your results. 
  • Compare your results to those of published findings, if appropriate .  You must typically use at least one primary reference in this part of the discussion.  You will note if your findings agreed with those described in the published study, and you will describe how your study was similar to and different from the published study in terms of methods.  This comparison will typically require one paragraph per primary reference.  You will use the past tense in describing the methods and results of both studies.  Don’t forget to cite the published study.
  • Speculate about unexpected results and provide sources of error.  In the introduction, you explained why you expected certain results. The discussion is the appropriate location for speculation about unexpected results.  You might have noted aspects of the procedure or conditions during the experiment that might have influenced the results.  Furthermore, statistically significant trends are rarely shown when sample sizes are small and variability high (that is, most experiments carried out in biology labs).  This speculation will typically account for a paragraph in your discussion.

Whether your results were expected or unexpected, experimental procedures can typically be improved in a variety of ways.  Provide possible sources of error related to your experimental design or the way in which you carried out the procedures.  (If you already addressed some of these in detail in speculating about unexpected results, you can mention these briefly here, without going into great detail again.)  Follow up by explaining how the experimental design could be improved to address some of these sources of error.  This section will typically account for one or two paragraphs in the discussion.

  • Describe a future study, if appropriate.  A future study is not simply a new study that addresses procedural flaws described in the sources of error section.  A future study must logically take the experiment in a new direction – for example, by addressing a new or revised hypothesis or research objective, or by using a new procedure to address the same hypothesis or research objective.  Provide some description of the new experimental strategy.  This section will typically account for one paragraph in your discussion.
  • Conclusion.   End your discussion with a sentence or two summarizing the take-home message(s) of your lab report.  Feel free to be very obvious about this, for example by starting the sentence with “In conclusion”.

Sample discussion:

Data analysis has shown that there is no significant statistical difference in population numbers of Penicillus capitatus between different species of seagrass beds. Wilson and Ramsook (2007) performed a study that examined population densities of epiphytal foraminiflora on seagrasses and algae, such as Penicillus capitatus . During the course of their study, they noted that populations of Penicillus capitatus grew in abundance in both species of seagrass beds, just as was the case in our experiment.

During our data collection, there were several possible sources of error that could have impacted our results. For one, we only took 15 population counts for each type of seagrass bed over the course of two days. Our data would be more valuable if we were to take more population counts overall. Second, only one of the bays we planned to use before arriving in the Caribbean was usable for data collection, significantly limiting the area we were able to work in. Therefore, we were able to get population counts for Penicillus capitatus , but those population counts may only be relevant in the one bay we worked in. In the future, it will be beneficial to alter experimental design so that more population counts can be recorded and multiple locations can be used for experimentation.

A potential future study could be to examine populations of Penicillus capitatus on several different types of substrates, including different species of seagrass beds. This study should be performed ideally over several months, with several hundred population counts in order to gain more viable data. In conclusion, the experimental data revealed an insignificant difference in population means for Penicillus capitatus among different species of seagrass , but further experimentation should be performed in order to gain the most feasible results.

9.     References

Include all references cited in the text – and only those cited in the text.  Consult the directions for your lab report to confirm the required numbers and types of references.  Unless otherwise directed, use the modified APA format described here for in-text citations, and use standard APA format for the reference list.  Online APA formatting guides and links to reference management programs such as EasyBib and RefME are provided in the “Citing Resources” tab of the Biology Libguide ( http://mcla.libguides.com/biology/citing ). 

In-text citations

A modified version of the APA in-text citation style will be used for in-text citations in biology lab reports.  Do format your in-text citations as (name, year), as in APA style.  Type the author’s last name (no first name, no initials), then a comma, then the year of the publication.  For two authors, provide both names, then the year. For three or more authors write “et al.” after the first author’s last name, without listing all of the subsequent authors’ names.  et al. = et alia = and others; take care to put a period after the “al”, as this is an abbreviation.  In APA style, up to five authors are listed when a reference is first cited; the “et al.” even at first use is more typical for publications in biology.  If the author names are provided as part of the sentence, put the year only in parentheses at the end of the sentence.

Sample in-text citations:                  

Smosky and Billetz (1995) observed that fruit flies were more attracted to overripe bananas than to underripe bananas; similar results were reported by Goodwin et al. (2015).

Leeches can sense a variety of stimuli, including chemicals and heat (Herrick, 2014).  Leech feeding behavior is influenced by these and other stimuli (Golub et al., 2015). 

General rules for the reference list

Put the references in alphabetical order by the last name of the first author; do not change the order of the authors listed in the publication.  Use initials rather than full first and middle names.  Provide the author name(s), year of publication and title of the resource, followed by information specific to the resource type, as noted below.  If a reference requires more than one line in the text, indent all lines after the first.

Instructions and extensive lists of examples for references in APA style can be found at https://www.library.cornell.edu/research/citation/apa and   https://owl.english.purdue.edu/owl/resource/560/06/ , among other websites.   Examples for some common types of references are provided below.

Journal Articles

Author. (Date). Title of article. Journal, volume, pages.  [if accessed online, also include one of the following:] doi: [insert doi number] OR retrieved from: [insert url].

Smosky, J. (1980).  A strain of fruit flies that is resistant to anesthesia.  Journal of Interesting Research, 5, 76-87.  doi: 123456789

Goodwin, A. M., & Billetz, A. (2000).  Identification of bacteria swabbed from door handles in Venable Hall.  Journal of Interesting Research, 25, 112-121.  doi: 987654321

Golub, J., Goodwin, A. M., & Herrick, S. (2014).  Statistical misconceptions commonly encountered in seminar courses.  Journal of Interesting Research, 39, 50-59.

Author or Editor. (Date). Title of book.   City of publisher: Publisher.  Pages [if only a portion of the book is being cited].

Krzyzanowicz, R. , & Hoyt, P. (2010). Four thousand three hundred sixty-two strategies for taping an ankle.  North Adams, MA: MCLA Press.  pp. 20-30.

Unpublished lab manual

     Golub, J. L. (2015). BIOL 340: Developmental Biology Lab manual . pp. 1-4.

Author [or title, if no author found]. (Year or n.d. if no date found). Title of website [unless used in place of author] . Retrieved from [insert url].

Cornell University Library PSEC Documentation Committee. (2011). APA Citation Style. Retrieved from https://www.library.cornell.edu/research/citation/apa.

Biology. (n.d.).  Retrieved from http://www.mcla.edu/Academics/undergraduate/academic-programs/biology/. 

E.   Sample lab report

Relationship between an overnight fast and blood pressure

Steven Miller

Lab Partner: Ashley “Erin” Kelley

One in four Americans is predicted to develop metabolic syndrome, which includes high blood pressure.  Modern medicine views hypertension as related to diet and lifestyle.  The reason for this experiment was to see if an overnight fast had a decremental effect on blood pressure.  It is known that postprandial changes in mean arterial pressure and heart rate are significant, but the effects of a short term fast are not known.   A group of young, healthy students from a college class fasted overnight and their mean arterial pressure was monitored for changes. These results were compared to those of similar students who did not fast overnight.  No significant difference in mean arterial pressure was observed between fasting and nonfasting students.  The hypothesis that lower blood pressure would be seen in the experimental (fasting) group was not supported by the data.

Introduction

A full third of Americans have hypertension and there is a greater than 90% risk of developing this condition within one’s lifetime (Bakris 2007).  When one’s diet is based on fruits and vegetables, low-fat foods, and reduced saturated fats, blood pressure goes down dramatically (Appell et al., 1997).  It is noted that these foods have a high water content and that subjects in that study drank increased amounts of water.  Going a step further, many people generally believe that a water fast will dramatically lower blood pressure. 

It was decided to test the idea that a very short term water fast would lower blood pressure.  If it did, then perhaps a regimen of fasting every other day or every three days might be a suitable method of controlling blood pressure.  Dr. Mark Mattson, a popular proponent of calorie restriction as a way to health and longevity, noted in a piece of research that intermittent fasting (in rats) can reduce the normal growth related increase of end systolic and end diastolic volumes (Wan et al., 2010) that determine stroke volume.  On the opposite side of the fence, another study showed that cardiac output, heart rate, stroke volume, and systolic and diastolic pressures all increase after a meal (Varady et al., 2009).  In fact, one is urged by the study authors to never to have a postprandial cardiac evaluation because it will be abnormal!  The hypothesis of the current study is that overnight fasting from solid food through breakfast time (12 hours) will significantly lower blood pressure from normal levels in a healthy person.

Materials and Methods

In this experiment eight student volunteers were solicited from the anatomy and physiology class.  Effort was made to select people as randomly as possible, however it is noted that most class members were young females with normal blood pressure.  Many of them had been athletically conditioned.  Two chosen subjects were males with widely differing ages, neither of whom had high blood pressure.  Subjects were divided into two groups so that there were four reasonable replicates in each group.  Directions for a fasting event were given, allowing no food or snacking after the evening meal until class the following morning, roughly 12 hours.  Students were to allowed to drink as they normally would, or if thirsty, but no extra beverages were allowed to compensate for lack of food.  Two groups were formed.  The experimental group agreed to an overnight fast and the control group ate and drank as they normally would.

Blood pressure was measured with an aneroid sphygmomanometer. A stethoscope was available.  Blood pressure data were recorded for each person before and after the fasting event.  Data were entered into a spreadsheet as systolic pressure, diastolic pressure, and pulse rate.  The Mean Arterial Pressure (MAP) was calculated as [diastolic pressure + 1/3(systolic pressure – diastolic pressure]. To compare the difference in MAP between fasting and nonfasting groups, the final MAP was calculated as a per cent of the original .  Numbers greater than 100% were therefore increases, and those less than 100% were deceases, from base line MAP.

Differences were analyzed using the t-test in Microsoft Excel.  Using the paired t-test, it was assessed whether the mean change of MAP was statistically different within the fasting group or nonfasting group.  Using the unpaired t-test, it was assessed whether the mean change of MAP was statistically different between the fasting or nonfasting group.  In all cases the level of significance was α = 0.05.

For fasting students, there was no significant difference in MAP before and after the fast (78.24 ±11.01 vs. 81.13 ±8.36, P = 0.66, Figure 1).  For nonfasting students, there was also no significant difference in MAP on the first or second measurement days (82.47 ±15.63 vs 76.47 ±11.47, P = 0.27, Figure 2).  Comparing the blood pressures for fasting and nonfasting students, the final MAP as a percentage of the original MAP for fasting students was not significantly different from that of nonfasting students (105.07% vs. 93.64%, Figure 3). 

how to write a hypothesis example biology lab report

Figure 1.  Mean arterial pressure (MAP) for fasting students before and after fasting.  N=4. Error bars indicate standard deviation. P=0.66.

how to write a hypothesis example biology lab report

Figure 2.  Mean arterial pressure (MAP) for nonfasting students before and after the designated fast day.  N=4. Error bars indicate standard deviation. P=0.27.

how to write a hypothesis example biology lab report

Figure 3.  Final mean arterial pressure (MAP) as a % of the original MAP for fasting and nonfasting students.  N=4. Error bars indicate standard deviation. P=0.26.

In this study all subjects maintained their normal blood pressure with or without a fast.  Maintaining the same blood pressure was, of course, totally expected from nonfasting students.  It was not expected in fasting students.  Clearly, the data do not support the hypothesis that a 12 hour fast in normally healthy subjects will significantly lower blood pressure and heart rate. 

In our study focusing on normotensive students, a single fast did not reduce blood pressure.  A significant decrease in systolic pressure from 124±5 to 116 ±3 (P < 0.05) was observed after an alternate day fasting protocol over 10 weeks (Varady et al., 2009), a fasting protocol that was much longer than ours.  The study described by Varady et al. (2009) involved more subjects, and the subjects were obese.

Errors might have been made in measuring blood pressure.  A more rigorous process for this study would have been to be sure the arm was level with the heart, to have subjects seated for several minutes before taking measurements, to use the stethoscope rather than just looking at the needle on the aneroid sphygmomanometer, and to have the same person doing all measurements.  In addition, it would make for a sounder protocol to take multiple measurements and average them together for the data analysis, or to use a much larger and broader sample.  Another limitation of this study was the homogeneity and limited number of the subjects and, perhaps more specifically, that they all had normal pressure that did not need to be lowered.  Therefore, even had the results shown a drop in blood pressure and heart rate from fasting, one would be remiss in suggesting a fast for lowering blood pressure for hypertensive individuals. 

That fasting students maintained mean arterial pressure may be the result from the power of homeostasis and the inability of a short-term fast to modify the strength of long-term hormonal (ANP vs aldosterone) controls on blood pressure.  It would be interesting to try a longer fast of perhaps 24 hours.  Alternatively, a study might be done with a focus on repeated fasts.  It would be interesting to experiment with the hypothesis that an 18 hour fast, two days per week, for three months will significantly lower high blood pressure and, perhaps, in certain age groups, the risk of a cardiovascular event.

In conclusion, a decrease in blood pressure was not seen for students without hypertension who did an overnight fast.

Appel, L. J., Moore, T. J., Obarzanek, E., Vollmer, W. M., Svetkey, L. P., Sacks, F. M., Bray, G. A., Vogt, T. M., Cutler, J. A., Windhauser, M. M., Lin, P.-H., Karanja, N., Simons-Morton, D., McCullough, M., Swain, J., Steele, P., Evans, M., Miller, E. R. & Harsha, D. W. (1997). A clinical trial of the effects of dietary patterns on blood pressure. New England Journal of Medicine, 336, 1117-1124. doi: 10.1056/NEJM19970417336160.

Bakris, G. L. (2007). Current perspectives on hypertension and metabolic syndrome. Journal of Managed Care Pharmacy , 13.5, S3-S5. Retrieved from http://www.amcp.org/data/jmcp/JMCP%20Supp_June%2007_All.pdf.

Varady, K. A., Bhutani, S., Church, E. C. & Klempel, M. C. (2009). Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults." American Journal of Clinical Nutrition, 90, 1138-43. doi: 10.3945/ajcn.2009.28380.

Wan, R., Ahmet, I., Brown, M., Cheng, A., Kamimura, N., Talan, M. & Mattson, M. P. (2010). Cardioprotective effect of intermittent fasting is associalted with an elevation of adiponectin levles in rats. Journal of Nutritional Biochemistry , 5, 413-417. doi: 10.1016/j.jnutbio.2009.01.020.

  • << Previous: Citing Sources
  • Next: Need Help? Ask a Librarian >>
  • Last Updated: Apr 2, 2024 10:42 AM
  • URL: https://library.mcla.edu/biology

How to Write a Lab Report or Research Paper for Biology?

image

Table of contents

  • 1 What Is a Biology Research Paper or Lab Report?
  • 2.1 Abstract
  • 2.2 Introduction
  • 2.3 Materials and Methods
  • 2.4 Results
  • 2.5 Discussion
  • 2.6 How To Cite Your Sources
  • 2.7 How To Find The Right Title
  • 3 How To Proofread Your Biology Lab Report
  • 4 Conclusion

Are you thinking of how to write a lab report for your biology practicals? You’ve come to the right place. To successfully write a biology lab report format for college, you need to pay attention to guidelines. This piece will reveal a detailed guide and clear instructions on how to write a paper in biology.

Before getting started, you need to understand the purpose of this report. When you know what your work is meant for, it’s easier to achieve better goals overall. The main objective of writing a biology lab report template is to analyze the events of the experiment critically. You also have to demonstrate if the goals obtained at the end of the investigation are an indication of success or not. Without any doubt, a student can extract valuable information from their lab recordings. However, you also need to demonstrate a good understanding of the topic in question to interpret your results successfully. If you’re unsure of how to go about this, you can always rush to hire a lab report writing service .

But you can also learn a lot from this piece. Here’s how to write a biology report, let’s take a look.

What Is a Biology Research Paper or Lab Report?

A biology research paper or lab report is a comprehensive document that methodically presents data and analyses from biological experiments. It involves a detailed examination of scientific findings, often encompassing aspects such as hypothesis testing, experimental design, data collection, statistical analysis, and interpretation of results. These reports are crucial in sharing new insights and advancements in the field of biology, contributing to the broader scientific discourse. They typically include an introduction to the research topic, methodology, results, discussion, and a conclusion, along with relevant references.

Scientific research papers whether Biology, Physics, Chemistry, or geography can be structured similarly as they are based on scientific evidence and a thesis. In terms of Biology, there are two main methods that will affect the type of paper you will write. There are Universal and Individual scientific methods.

1. Universal

The following terms are aspects of what makes a universal type of research paper:

  • Modeling – a method when a particular perspective of an object is presented then scientists gather evidence based on this.
  • Observation – a method where research is conducted through measurement and observation of an object. Data is then verified through repetition and observation multiple times. This will then develop into conclusions.
  • Experiment – a method that provides scientific answers to a question by conducting an experiment that provides numerical or observed results.

2. Individual scientific methods

The following terms are aspects of what makes an Individual scientific method paper:

  • Genealogical – a method where the genes of people or animals are studied to look through their ancestral path and characteristics.
  • Historic – a method that is completed through the establishment of a correlation between facts that have continued to become reality for a set period of time.
  • Paleontological – a method of exploring the relationships between ancient organisms found deep in the earth.

Biology Lab Report Format

Before we get started, did you know that a good biology report format is broken down into a specific format and structure? Yes, a good lab recording is split into the following sections:

Introduction

Materials and methods.

Now, let’s take a detailed look at how to compile each part correctly.

Before you start writing your abstract, you must fill in your biology lab report title page. This page will contain details about yourself and the experiment in question. If your instructor has requested a title page, it should include the following; names of the project participants, class title, present-day date, and the name of the instructor you’re working with. It’s also a great idea to consult with your instructor about the preferred format of the page.

When writing the abstract of your biology lab recording , the aim is to inform the reader about the purpose of your experiment and the conclusions you’re looking to make after it. When writing, you need to note that this part is further broken down into five subsections – the objectives, problems, methods, results, and determination of the experiment. The information here must be written. Often, the abstract is the last part of the lab review to be written.

✏️How should it look like? Here is a short example:

The particular experiment has been carried out in order to define the factors that have a positive effect on the rates of enzyme reactions in cellular activities due to the fact that certain enzymes appear to be more effective than others. The catecholase activity of enzymes has been measured through its rate of absorption in a spectrophotometer, with the use of light that has a 540 nm wavelength. In the course of the experiment , we compared samples with a different concentration of enzymes. The comparison was based on their absorbance rates. The experiment has shown that those samples that had a higher concentration of enzymes, respectively showed a higher percent of absorption rate – the difference is significant, 95% against 24%. This proves that a higher production rate is ensured by a higher concentration of enzymes.

The introduction of your biology reports is one of the first sections to appear in a statement. However, it’s recommended that you work on it when you are almost done compiling the review. Yes, write it after you have completed the methodology chapter, result, and conclusion part of the information.

In a biology lab review, this is the part that serves as the framework for the entire text. A properly-written opening chapter is a clear sign that you are familiar with the experiment and the purpose of the research.

In this section, it’s a great idea to note down facts and references. Also, don’t hesitate to use lecture notes to support the points you are building up. Ensure that your introduction is as brief as possible with straight-to-the-point terminology related to the topic. Information about your hypothesis should be explained here, including how you plan to achieve it.

An important point to remember is that you’re not allowed to stretch your opening too much or try to prove a point while writing it. You are only authorized to describe the truth about what you are working on. If you find anything unclear, you may check a sample biology report to find out how they have written their introduction.

✏️Example:

It is a proven fact that enzymes are catalytic proteins whose function is  to accelerate reactions by means of lowering activation energy (Campbell, 1996). In the experiment, we studied the rate of reaction between oxygen and catechol and their ability to form benzoquinone in a condition where the concentration of enzymes (catecholase) was different. We supposed that the concentration of enzymes directly influences reaction rates.

This chapter is designed to explain how the entire experiment ran. You would need to produce a written description of the materials and procedures you’ve used in your project. A great way to tackle a biology lab review is to compile the materials and methods section first.

However, don’t just go ahead to list out the materials you used for your project blindly. It’s also essential to indicate how they were used during the research.

Your description aims to help another person conduct this experiment in the future. You’re allowed to use tables and figures to describe your procedure. Here, you’re expected to fully explain everything, including measurement procedures, quantities, and techniques. Make sure to state your facts accurately and with caution in this section of your college lab report. Take care not to include too much detail, but they still need to be enough clarity to help a third-party follow your instructions.

Preparing an extract of catecholase, we used a washed, skinned, and diced potato and we used a scale in order to get precisely 30 grams of potato. We also poured 150 ml of water into a beaker. We added water to the potato, removed the cover of a kitchen blender, and added both ingredients to a blender, we then put the cover back on and pressed the start button, noting the time. Then we pushed the button again to stop the blender. We used four layers of cheesecloth to filter the result, and then we stored the obtained extract in a clean, closed container.

The results section of an APA format biology lab report is where you state the result of your experiment clearly. You’re expected to list the details of your development in an orderly fashion – according to how they happened. The facts here may seem like a story you intend to tell another person. But don’t be overly narrative. State only important details and compile them with as few words as possible.

When writing this section, you should include all the tables or figures related to the project you’ve conducted. Also, don’t forget about charts, graphs, and other data illustrations. To further explain the information here, it’s a great idea to include a clear summary of the information in the images you have created.

Before you get started here, take your time to organize all the facts you have gathered from the experiment. However, it’s not time to analyze your end results. Also, avoid describing your methods here. All that’s needed from you in this section is to figure out the trends that follow the end results you have obtained from your work. Note these trends and document them to help your explanation in this section. Do your best to draw the reader’s attention to the patterns of the project.

When you are done with the results of your experiment, the next thing to work on is your discussions. In simple terms, the discussions section of the lab report summarizes the entire investigation. Yes, you will give a detailed account of all the information about the project here. This section allows you to fully discuss and interpret the news in your research.

Here, you’ll answer questions such as; What did you learn? What were the results of the experiment? Was the hypothesis of your experiment correct or not, and why? Were there any errors? By answering all these questions properly, you will give any reader a clear understanding of what you were trying to achieve from the experiment, the eventual result, and what you have gained from the overall experience. If any changes could be made to improve the outcome of your investigation, you could suggest them here.

An effective way to express your ideas in this part of your biology report is to compare the results and your expected findings. Furthermore, check through the entire process again and note any possible changes that could have been made. In this section, make sure your interpretation is original and not biased to support your hypothesis.

You can create content from a general perspective – neither supporting nor disregarding the hypothesis of your experiment. Don’t forget to add some original ideas and finish up with a concluding statement on the experiment. This is to inform the reader that you’ve reached the concluding part of your study.

Proteins catalyze reactions by bringing down the activation energy of the reaction; catecholase, an enzyme discovered in potatoes, changes catechol to benzoquinone with the presence of oxygen. We expected that more benzoquinone would be shaped by the presence of a more noteworthy measure of catecholase. This theory was proven by the outcomes acquired.

Catalysts are influenced by the environment – the level of pH present in the environment is one factor that can modify chemicals, while the rate at which the compound shape item is moderated or accelerated depends on how near to the standard the environment is.

How To Cite Your Sources

The final key thing to master when learning to write a formal lab report is proper citation techniques. Without a citation section, your work will be considered to be incomplete. Your report needs to comply with the APA biology lab report format. There are different biology lab report citation formats that could be used in college biology lab reports.

However, you’ll be using internal citations here. You can check an old lab report to learn how to cite sources in your study, or you could ask your instructor for the preferable citation technique. Moreover, all references are expected to be a part of the text. These references may include lab manuals, articles, books, etc.

  • In-text – (Author, year);
  • Literature Cited page – Author last name and initials, year, the title of an article or chapter, the title of a book, journal, website or another source , editor’s name, publisher, the city where published, pages.

more_shortcode

How To Find The Right Title

There may be times when it would be difficult to come up with the right title for your school biology report. So, what do you do when this happens?

The best solution is to write your title to contain essential details about your study. Let it tease the reader on what to expect at the end of the last page. Another great idea is to express it in a form that states whether you agree with or disprove a theory. Also, avoid titles that sound general or fail to address any particular issue. If you’re still finding it difficult to develop the right title, you may ask your instructor for some input.

How To Proofread Your Biology Lab Report

When you write and compile your lab report, check it for any grammar or spelling mistakes. Without any doubt, grammar errors will reduce the quality of your lab report. Some readers may even discredit the authenticity of the lab report if it’s riddled with spelling mistakes.

As soon as you are done checking for spelling errors, the next thing to do is to make sure that you have followed the format and style of your instructor. Proofreading is more than just correcting the grammar in your work. It involves giving it a comprehensive review to spot whatever is wrong. Your references also need to be listed fully. Also, make sure that the title page of your biology lab report complies with acceptable standards. It’s important to ensure that you’ve used a good font with correct margin formatting. Finally, add the page numbers, headings, full name, and additional information to the report.

Often, educational institutions frown against students getting outside help to write their lab reports. It’s important not to plagiarize the work of students and scientists who have worked on a similar topic before you. As a result, you need to properly understand the details of your study, including the style and format that is required. It would help if you kept in mind that the format of your report may vary depending on the requirements of the teacher or your class level. So, before you go ahead to learn or use a new format, ensure you make findings from the teacher. And if you are unsure of how to put the entire report together, it means you need some help.

If you are still having issues creating the report, you can hire a service provider to do it for you. You have to navigate to their website and click on “ write my lab report ” to get started. When hiring a writing service, you need to exchange some extra cash for quality. A good writing service will include all the essential details in your work and organize them properly. They’ll also help you take care of plagiarism. Your instructor will be pleased with the content of your work.

Biology lab reports require accuracy and precision in reporting data and results. Writing a good lab report requires organization, clear descriptions of the results, and careful analysis of the findings. Papers Owl can help you to structure your biology lab report to ensure accuracy, clarity, and brevity. Our experienced team of writers has compiled some useful tips to help you write an effective and well-structured biology lab report.

Finally, we’ve gotten to the end of this piece. You’ve learned how to write a biology lab report. Learning how to create a school report correctly is a great advantage to any student. You’ll be able to clearly state what you have worked on and observed during a study. For those who plan to make a career in science, this type of writing will become a regular thing for you. If you plan to learn the basics of how to write a lab report, go through the details in this article.

Readers also enjoyed

How to Write a Good Lab Report for College

WHY WAIT? PLACE AN ORDER RIGHT NOW!

Just fill out the form, press the button, and have no worries!

We use cookies to give you the best experience possible. By continuing we’ll assume you board with our cookie policy.

how to write a hypothesis example biology lab report

The Writing Center • University of North Carolina at Chapel Hill

Scientific Reports

What this handout is about.

This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation. Readers of this handout may also find our handout on writing in the sciences useful.

Background and pre-writing

Why do we write research reports.

You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that? What is your teacher expecting to see?

To take some of the guesswork out of answering these questions, try to think beyond the classroom setting. In fact, you and your teacher are both part of a scientific community, and the people who participate in this community tend to share the same values. As long as you understand and respect these values, your writing will likely meet the expectations of your audience—including your teacher.

So why are you writing this research report? The practical answer is “Because the teacher assigned it,” but that’s classroom thinking. Generally speaking, people investigating some scientific hypothesis have a responsibility to the rest of the scientific world to report their findings, particularly if these findings add to or contradict previous ideas. The people reading such reports have two primary goals:

  • They want to gather the information presented.
  • They want to know that the findings are legitimate.

Your job as a writer, then, is to fulfill these two goals.

How do I do that?

Good question. Here is the basic format scientists have designed for research reports:

  • Introduction

Methods and Materials

This format, sometimes called “IMRAD,” may take slightly different shapes depending on the discipline or audience; some ask you to include an abstract or separate section for the hypothesis, or call the Discussion section “Conclusions,” or change the order of the sections (some professional and academic journals require the Methods section to appear last). Overall, however, the IMRAD format was devised to represent a textual version of the scientific method.

The scientific method, you’ll probably recall, involves developing a hypothesis, testing it, and deciding whether your findings support the hypothesis. In essence, the format for a research report in the sciences mirrors the scientific method but fleshes out the process a little. Below, you’ll find a table that shows how each written section fits into the scientific method and what additional information it offers the reader.

Thinking of your research report as based on the scientific method, but elaborated in the ways described above, may help you to meet your audience’s expectations successfully. We’re going to proceed by explicitly connecting each section of the lab report to the scientific method, then explaining why and how you need to elaborate that section.

Although this handout takes each section in the order in which it should be presented in the final report, you may for practical reasons decide to compose sections in another order. For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.

What should I do before drafting the lab report?

The best way to prepare to write the lab report is to make sure that you fully understand everything you need to about the experiment. Obviously, if you don’t quite know what went on during the lab, you’re going to find it difficult to explain the lab satisfactorily to someone else. To make sure you know enough to write the report, complete the following steps:

  • What are we going to do in this lab? (That is, what’s the procedure?)
  • Why are we going to do it that way?
  • What are we hoping to learn from this experiment?
  • Why would we benefit from this knowledge?
  • Consult your lab supervisor as you perform the lab. If you don’t know how to answer one of the questions above, for example, your lab supervisor will probably be able to explain it to you (or, at least, help you figure it out).
  • Plan the steps of the experiment carefully with your lab partners. The less you rush, the more likely it is that you’ll perform the experiment correctly and record your findings accurately. Also, take some time to think about the best way to organize the data before you have to start putting numbers down. If you can design a table to account for the data, that will tend to work much better than jotting results down hurriedly on a scrap piece of paper.
  • Record the data carefully so you get them right. You won’t be able to trust your conclusions if you have the wrong data, and your readers will know you messed up if the other three people in your group have “97 degrees” and you have “87.”
  • Consult with your lab partners about everything you do. Lab groups often make one of two mistakes: two people do all the work while two have a nice chat, or everybody works together until the group finishes gathering the raw data, then scrams outta there. Collaborate with your partners, even when the experiment is “over.” What trends did you observe? Was the hypothesis supported? Did you all get the same results? What kind of figure should you use to represent your findings? The whole group can work together to answer these questions.
  • Consider your audience. You may believe that audience is a non-issue: it’s your lab TA, right? Well, yes—but again, think beyond the classroom. If you write with only your lab instructor in mind, you may omit material that is crucial to a complete understanding of your experiment, because you assume the instructor knows all that stuff already. As a result, you may receive a lower grade, since your TA won’t be sure that you understand all the principles at work. Try to write towards a student in the same course but a different lab section. That student will have a fair degree of scientific expertise but won’t know much about your experiment particularly. Alternatively, you could envision yourself five years from now, after the reading and lectures for this course have faded a bit. What would you remember, and what would you need explained more clearly (as a refresher)?

Once you’ve completed these steps as you perform the experiment, you’ll be in a good position to draft an effective lab report.

Introductions

How do i write a strong introduction.

For the purposes of this handout, we’ll consider the Introduction to contain four basic elements: the purpose, the scientific literature relevant to the subject, the hypothesis, and the reasons you believed your hypothesis viable. Let’s start by going through each element of the Introduction to clarify what it covers and why it’s important. Then we can formulate a logical organizational strategy for the section.

The inclusion of the purpose (sometimes called the objective) of the experiment often confuses writers. The biggest misconception is that the purpose is the same as the hypothesis. Not quite. We’ll get to hypotheses in a minute, but basically they provide some indication of what you expect the experiment to show. The purpose is broader, and deals more with what you expect to gain through the experiment. In a professional setting, the hypothesis might have something to do with how cells react to a certain kind of genetic manipulation, but the purpose of the experiment is to learn more about potential cancer treatments. Undergraduate reports don’t often have this wide-ranging a goal, but you should still try to maintain the distinction between your hypothesis and your purpose. In a solubility experiment, for example, your hypothesis might talk about the relationship between temperature and the rate of solubility, but the purpose is probably to learn more about some specific scientific principle underlying the process of solubility.

For starters, most people say that you should write out your working hypothesis before you perform the experiment or study. Many beginning science students neglect to do so and find themselves struggling to remember precisely which variables were involved in the process or in what way the researchers felt that they were related. Write your hypothesis down as you develop it—you’ll be glad you did.

As for the form a hypothesis should take, it’s best not to be too fancy or complicated; an inventive style isn’t nearly so important as clarity here. There’s nothing wrong with beginning your hypothesis with the phrase, “It was hypothesized that . . .” Be as specific as you can about the relationship between the different objects of your study. In other words, explain that when term A changes, term B changes in this particular way. Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails.

Not a hypothesis:

“It was hypothesized that there is a significant relationship between the temperature of a solvent and the rate at which a solute dissolves.”

Hypothesis:

“It was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases.”

Put more technically, most hypotheses contain both an independent and a dependent variable. The independent variable is what you manipulate to test the reaction; the dependent variable is what changes as a result of your manipulation. In the example above, the independent variable is the temperature of the solvent, and the dependent variable is the rate of solubility. Be sure that your hypothesis includes both variables.

Justify your hypothesis

You need to do more than tell your readers what your hypothesis is; you also need to assure them that this hypothesis was reasonable, given the circumstances. In other words, use the Introduction to explain that you didn’t just pluck your hypothesis out of thin air. (If you did pluck it out of thin air, your problems with your report will probably extend beyond using the appropriate format.) If you posit that a particular relationship exists between the independent and the dependent variable, what led you to believe your “guess” might be supported by evidence?

Scientists often refer to this type of justification as “motivating” the hypothesis, in the sense that something propelled them to make that prediction. Often, motivation includes what we already know—or rather, what scientists generally accept as true (see “Background/previous research” below). But you can also motivate your hypothesis by relying on logic or on your own observations. If you’re trying to decide which solutes will dissolve more rapidly in a solvent at increased temperatures, you might remember that some solids are meant to dissolve in hot water (e.g., bouillon cubes) and some are used for a function precisely because they withstand higher temperatures (they make saucepans out of something). Or you can think about whether you’ve noticed sugar dissolving more rapidly in your glass of iced tea or in your cup of coffee. Even such basic, outside-the-lab observations can help you justify your hypothesis as reasonable.

Background/previous research

This part of the Introduction demonstrates to the reader your awareness of how you’re building on other scientists’ work. If you think of the scientific community as engaging in a series of conversations about various topics, then you’ll recognize that the relevant background material will alert the reader to which conversation you want to enter.

Generally speaking, authors writing journal articles use the background for slightly different purposes than do students completing assignments. Because readers of academic journals tend to be professionals in the field, authors explain the background in order to permit readers to evaluate the study’s pertinence for their own work. You, on the other hand, write toward a much narrower audience—your peers in the course or your lab instructor—and so you must demonstrate that you understand the context for the (presumably assigned) experiment or study you’ve completed. For example, if your professor has been talking about polarity during lectures, and you’re doing a solubility experiment, you might try to connect the polarity of a solid to its relative solubility in certain solvents. In any event, both professional researchers and undergraduates need to connect the background material overtly to their own work.

Organization of this section

Most of the time, writers begin by stating the purpose or objectives of their own work, which establishes for the reader’s benefit the “nature and scope of the problem investigated” (Day 1994). Once you have expressed your purpose, you should then find it easier to move from the general purpose, to relevant material on the subject, to your hypothesis. In abbreviated form, an Introduction section might look like this:

“The purpose of the experiment was to test conventional ideas about solubility in the laboratory [purpose] . . . According to Whitecoat and Labrat (1999), at higher temperatures the molecules of solvents move more quickly . . . We know from the class lecture that molecules moving at higher rates of speed collide with one another more often and thus break down more easily [background material/motivation] . . . Thus, it was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases [hypothesis].”

Again—these are guidelines, not commandments. Some writers and readers prefer different structures for the Introduction. The one above merely illustrates a common approach to organizing material.

How do I write a strong Materials and Methods section?

As with any piece of writing, your Methods section will succeed only if it fulfills its readers’ expectations, so you need to be clear in your own mind about the purpose of this section. Let’s review the purpose as we described it above: in this section, you want to describe in detail how you tested the hypothesis you developed and also to clarify the rationale for your procedure. In science, it’s not sufficient merely to design and carry out an experiment. Ultimately, others must be able to verify your findings, so your experiment must be reproducible, to the extent that other researchers can follow the same procedure and obtain the same (or similar) results.

Here’s a real-world example of the importance of reproducibility. In 1989, physicists Stanley Pons and Martin Fleischman announced that they had discovered “cold fusion,” a way of producing excess heat and power without the nuclear radiation that accompanies “hot fusion.” Such a discovery could have great ramifications for the industrial production of energy, so these findings created a great deal of interest. When other scientists tried to duplicate the experiment, however, they didn’t achieve the same results, and as a result many wrote off the conclusions as unjustified (or worse, a hoax). To this day, the viability of cold fusion is debated within the scientific community, even though an increasing number of researchers believe it possible. So when you write your Methods section, keep in mind that you need to describe your experiment well enough to allow others to replicate it exactly.

With these goals in mind, let’s consider how to write an effective Methods section in terms of content, structure, and style.

Sometimes the hardest thing about writing this section isn’t what you should talk about, but what you shouldn’t talk about. Writers often want to include the results of their experiment, because they measured and recorded the results during the course of the experiment. But such data should be reserved for the Results section. In the Methods section, you can write that you recorded the results, or how you recorded the results (e.g., in a table), but you shouldn’t write what the results were—not yet. Here, you’re merely stating exactly how you went about testing your hypothesis. As you draft your Methods section, ask yourself the following questions:

  • How much detail? Be precise in providing details, but stay relevant. Ask yourself, “Would it make any difference if this piece were a different size or made from a different material?” If not, you probably don’t need to get too specific. If so, you should give as many details as necessary to prevent this experiment from going awry if someone else tries to carry it out. Probably the most crucial detail is measurement; you should always quantify anything you can, such as time elapsed, temperature, mass, volume, etc.
  • Rationale: Be sure that as you’re relating your actions during the experiment, you explain your rationale for the protocol you developed. If you capped a test tube immediately after adding a solute to a solvent, why did you do that? (That’s really two questions: why did you cap it, and why did you cap it immediately?) In a professional setting, writers provide their rationale as a way to explain their thinking to potential critics. On one hand, of course, that’s your motivation for talking about protocol, too. On the other hand, since in practical terms you’re also writing to your teacher (who’s seeking to evaluate how well you comprehend the principles of the experiment), explaining the rationale indicates that you understand the reasons for conducting the experiment in that way, and that you’re not just following orders. Critical thinking is crucial—robots don’t make good scientists.
  • Control: Most experiments will include a control, which is a means of comparing experimental results. (Sometimes you’ll need to have more than one control, depending on the number of hypotheses you want to test.) The control is exactly the same as the other items you’re testing, except that you don’t manipulate the independent variable-the condition you’re altering to check the effect on the dependent variable. For example, if you’re testing solubility rates at increased temperatures, your control would be a solution that you didn’t heat at all; that way, you’ll see how quickly the solute dissolves “naturally” (i.e., without manipulation), and you’ll have a point of reference against which to compare the solutions you did heat.

Describe the control in the Methods section. Two things are especially important in writing about the control: identify the control as a control, and explain what you’re controlling for. Here is an example:

“As a control for the temperature change, we placed the same amount of solute in the same amount of solvent, and let the solution stand for five minutes without heating it.”

Structure and style

Organization is especially important in the Methods section of a lab report because readers must understand your experimental procedure completely. Many writers are surprised by the difficulty of conveying what they did during the experiment, since after all they’re only reporting an event, but it’s often tricky to present this information in a coherent way. There’s a fairly standard structure you can use to guide you, and following the conventions for style can help clarify your points.

  • Subsections: Occasionally, researchers use subsections to report their procedure when the following circumstances apply: 1) if they’ve used a great many materials; 2) if the procedure is unusually complicated; 3) if they’ve developed a procedure that won’t be familiar to many of their readers. Because these conditions rarely apply to the experiments you’ll perform in class, most undergraduate lab reports won’t require you to use subsections. In fact, many guides to writing lab reports suggest that you try to limit your Methods section to a single paragraph.
  • Narrative structure: Think of this section as telling a story about a group of people and the experiment they performed. Describe what you did in the order in which you did it. You may have heard the old joke centered on the line, “Disconnect the red wire, but only after disconnecting the green wire,” where the person reading the directions blows everything to kingdom come because the directions weren’t in order. We’re used to reading about events chronologically, and so your readers will generally understand what you did if you present that information in the same way. Also, since the Methods section does generally appear as a narrative (story), you want to avoid the “recipe” approach: “First, take a clean, dry 100 ml test tube from the rack. Next, add 50 ml of distilled water.” You should be reporting what did happen, not telling the reader how to perform the experiment: “50 ml of distilled water was poured into a clean, dry 100 ml test tube.” Hint: most of the time, the recipe approach comes from copying down the steps of the procedure from your lab manual, so you may want to draft the Methods section initially without consulting your manual. Later, of course, you can go back and fill in any part of the procedure you inadvertently overlooked.
  • Past tense: Remember that you’re describing what happened, so you should use past tense to refer to everything you did during the experiment. Writers are often tempted to use the imperative (“Add 5 g of the solid to the solution”) because that’s how their lab manuals are worded; less frequently, they use present tense (“5 g of the solid are added to the solution”). Instead, remember that you’re talking about an event which happened at a particular time in the past, and which has already ended by the time you start writing, so simple past tense will be appropriate in this section (“5 g of the solid were added to the solution” or “We added 5 g of the solid to the solution”).
  • Active: We heated the solution to 80°C. (The subject, “we,” performs the action, heating.)
  • Passive: The solution was heated to 80°C. (The subject, “solution,” doesn’t do the heating–it is acted upon, not acting.)

Increasingly, especially in the social sciences, using first person and active voice is acceptable in scientific reports. Most readers find that this style of writing conveys information more clearly and concisely. This rhetorical choice thus brings two scientific values into conflict: objectivity versus clarity. Since the scientific community hasn’t reached a consensus about which style it prefers, you may want to ask your lab instructor.

How do I write a strong Results section?

Here’s a paradox for you. The Results section is often both the shortest (yay!) and most important (uh-oh!) part of your report. Your Materials and Methods section shows how you obtained the results, and your Discussion section explores the significance of the results, so clearly the Results section forms the backbone of the lab report. This section provides the most critical information about your experiment: the data that allow you to discuss how your hypothesis was or wasn’t supported. But it doesn’t provide anything else, which explains why this section is generally shorter than the others.

Before you write this section, look at all the data you collected to figure out what relates significantly to your hypothesis. You’ll want to highlight this material in your Results section. Resist the urge to include every bit of data you collected, since perhaps not all are relevant. Also, don’t try to draw conclusions about the results—save them for the Discussion section. In this section, you’re reporting facts. Nothing your readers can dispute should appear in the Results section.

Most Results sections feature three distinct parts: text, tables, and figures. Let’s consider each part one at a time.

This should be a short paragraph, generally just a few lines, that describes the results you obtained from your experiment. In a relatively simple experiment, one that doesn’t produce a lot of data for you to repeat, the text can represent the entire Results section. Don’t feel that you need to include lots of extraneous detail to compensate for a short (but effective) text; your readers appreciate discrimination more than your ability to recite facts. In a more complex experiment, you may want to use tables and/or figures to help guide your readers toward the most important information you gathered. In that event, you’ll need to refer to each table or figure directly, where appropriate:

“Table 1 lists the rates of solubility for each substance”

“Solubility increased as the temperature of the solution increased (see Figure 1).”

If you do use tables or figures, make sure that you don’t present the same material in both the text and the tables/figures, since in essence you’ll just repeat yourself, probably annoying your readers with the redundancy of your statements.

Feel free to describe trends that emerge as you examine the data. Although identifying trends requires some judgment on your part and so may not feel like factual reporting, no one can deny that these trends do exist, and so they properly belong in the Results section. Example:

“Heating the solution increased the rate of solubility of polar solids by 45% but had no effect on the rate of solubility in solutions containing non-polar solids.”

This point isn’t debatable—you’re just pointing out what the data show.

As in the Materials and Methods section, you want to refer to your data in the past tense, because the events you recorded have already occurred and have finished occurring. In the example above, note the use of “increased” and “had,” rather than “increases” and “has.” (You don’t know from your experiment that heating always increases the solubility of polar solids, but it did that time.)

You shouldn’t put information in the table that also appears in the text. You also shouldn’t use a table to present irrelevant data, just to show you did collect these data during the experiment. Tables are good for some purposes and situations, but not others, so whether and how you’ll use tables depends upon what you need them to accomplish.

Tables are useful ways to show variation in data, but not to present a great deal of unchanging measurements. If you’re dealing with a scientific phenomenon that occurs only within a certain range of temperatures, for example, you don’t need to use a table to show that the phenomenon didn’t occur at any of the other temperatures. How useful is this table?

A table labeled Effect of Temperature on Rate of Solubility with temperature of solvent values in 10-degree increments from -20 degrees Celsius to 80 degrees Celsius that does not show a corresponding rate of solubility value until 50 degrees Celsius.

As you can probably see, no solubility was observed until the trial temperature reached 50°C, a fact that the text part of the Results section could easily convey. The table could then be limited to what happened at 50°C and higher, thus better illustrating the differences in solubility rates when solubility did occur.

As a rule, try not to use a table to describe any experimental event you can cover in one sentence of text. Here’s an example of an unnecessary table from How to Write and Publish a Scientific Paper , by Robert A. Day:

A table labeled Oxygen requirements of various species of Streptomyces showing the names of organisms and two columns that indicate growth under aerobic conditions and growth under anaerobic conditions with a plus or minus symbol for each organism in the growth columns to indicate value.

As Day notes, all the information in this table can be summarized in one sentence: “S. griseus, S. coelicolor, S. everycolor, and S. rainbowenski grew under aerobic conditions, whereas S. nocolor and S. greenicus required anaerobic conditions.” Most readers won’t find the table clearer than that one sentence.

When you do have reason to tabulate material, pay attention to the clarity and readability of the format you use. Here are a few tips:

  • Number your table. Then, when you refer to the table in the text, use that number to tell your readers which table they can review to clarify the material.
  • Give your table a title. This title should be descriptive enough to communicate the contents of the table, but not so long that it becomes difficult to follow. The titles in the sample tables above are acceptable.
  • Arrange your table so that readers read vertically, not horizontally. For the most part, this rule means that you should construct your table so that like elements read down, not across. Think about what you want your readers to compare, and put that information in the column (up and down) rather than in the row (across). Usually, the point of comparison will be the numerical data you collect, so especially make sure you have columns of numbers, not rows.Here’s an example of how drastically this decision affects the readability of your table (from A Short Guide to Writing about Chemistry , by Herbert Beall and John Trimbur). Look at this table, which presents the relevant data in horizontal rows:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in rows horizontally.

It’s a little tough to see the trends that the author presumably wants to present in this table. Compare this table, in which the data appear vertically:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in columns vertically.

The second table shows how putting like elements in a vertical column makes for easier reading. In this case, the like elements are the measurements of length and height, over five trials–not, as in the first table, the length and height measurements for each trial.

  • Make sure to include units of measurement in the tables. Readers might be able to guess that you measured something in millimeters, but don’t make them try.
  • Don’t use vertical lines as part of the format for your table. This convention exists because journals prefer not to have to reproduce these lines because the tables then become more expensive to print. Even though it’s fairly unlikely that you’ll be sending your Biology 11 lab report to Science for publication, your readers still have this expectation. Consequently, if you use the table-drawing option in your word-processing software, choose the option that doesn’t rely on a “grid” format (which includes vertical lines).

How do I include figures in my report?

Although tables can be useful ways of showing trends in the results you obtained, figures (i.e., illustrations) can do an even better job of emphasizing such trends. Lab report writers often use graphic representations of the data they collected to provide their readers with a literal picture of how the experiment went.

When should you use a figure?

Remember the circumstances under which you don’t need a table: when you don’t have a great deal of data or when the data you have don’t vary a lot. Under the same conditions, you would probably forgo the figure as well, since the figure would be unlikely to provide your readers with an additional perspective. Scientists really don’t like their time wasted, so they tend not to respond favorably to redundancy.

If you’re trying to decide between using a table and creating a figure to present your material, consider the following a rule of thumb. The strength of a table lies in its ability to supply large amounts of exact data, whereas the strength of a figure is its dramatic illustration of important trends within the experiment. If you feel that your readers won’t get the full impact of the results you obtained just by looking at the numbers, then a figure might be appropriate.

Of course, an undergraduate class may expect you to create a figure for your lab experiment, if only to make sure that you can do so effectively. If this is the case, then don’t worry about whether to use figures or not—concentrate instead on how best to accomplish your task.

Figures can include maps, photographs, pen-and-ink drawings, flow charts, bar graphs, and section graphs (“pie charts”). But the most common figure by far, especially for undergraduates, is the line graph, so we’ll focus on that type in this handout.

At the undergraduate level, you can often draw and label your graphs by hand, provided that the result is clear, legible, and drawn to scale. Computer technology has, however, made creating line graphs a lot easier. Most word-processing software has a number of functions for transferring data into graph form; many scientists have found Microsoft Excel, for example, a helpful tool in graphing results. If you plan on pursuing a career in the sciences, it may be well worth your while to learn to use a similar program.

Computers can’t, however, decide for you how your graph really works; you have to know how to design your graph to meet your readers’ expectations. Here are some of these expectations:

  • Keep it as simple as possible. You may be tempted to signal the complexity of the information you gathered by trying to design a graph that accounts for that complexity. But remember the purpose of your graph: to dramatize your results in a manner that’s easy to see and grasp. Try not to make the reader stare at the graph for a half hour to find the important line among the mass of other lines. For maximum effectiveness, limit yourself to three to five lines per graph; if you have more data to demonstrate, use a set of graphs to account for it, rather than trying to cram it all into a single figure.
  • Plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Remember that the independent variable is the condition that you manipulated during the experiment and the dependent variable is the condition that you measured to see if it changed along with the independent variable. Placing the variables along their respective axes is mostly just a convention, but since your readers are accustomed to viewing graphs in this way, you’re better off not challenging the convention in your report.
  • Label each axis carefully, and be especially careful to include units of measure. You need to make sure that your readers understand perfectly well what your graph indicates.
  • Number and title your graphs. As with tables, the title of the graph should be informative but concise, and you should refer to your graph by number in the text (e.g., “Figure 1 shows the increase in the solubility rate as a function of temperature”).
  • Many editors of professional scientific journals prefer that writers distinguish the lines in their graphs by attaching a symbol to them, usually a geometric shape (triangle, square, etc.), and using that symbol throughout the curve of the line. Generally, readers have a hard time distinguishing dotted lines from dot-dash lines from straight lines, so you should consider staying away from this system. Editors don’t usually like different-colored lines within a graph because colors are difficult and expensive to reproduce; colors may, however, be great for your purposes, as long as you’re not planning to submit your paper to Nature. Use your discretion—try to employ whichever technique dramatizes the results most effectively.
  • Try to gather data at regular intervals, so the plot points on your graph aren’t too far apart. You can’t be sure of the arc you should draw between the plot points if the points are located at the far corners of the graph; over a fifteen-minute interval, perhaps the change occurred in the first or last thirty seconds of that period (in which case your straight-line connection between the points is misleading).
  • If you’re worried that you didn’t collect data at sufficiently regular intervals during your experiment, go ahead and connect the points with a straight line, but you may want to examine this problem as part of your Discussion section.
  • Make your graph large enough so that everything is legible and clearly demarcated, but not so large that it either overwhelms the rest of the Results section or provides a far greater range than you need to illustrate your point. If, for example, the seedlings of your plant grew only 15 mm during the trial, you don’t need to construct a graph that accounts for 100 mm of growth. The lines in your graph should more or less fill the space created by the axes; if you see that your data is confined to the lower left portion of the graph, you should probably re-adjust your scale.
  • If you create a set of graphs, make them the same size and format, including all the verbal and visual codes (captions, symbols, scale, etc.). You want to be as consistent as possible in your illustrations, so that your readers can easily make the comparisons you’re trying to get them to see.

How do I write a strong Discussion section?

The discussion section is probably the least formalized part of the report, in that you can’t really apply the same structure to every type of experiment. In simple terms, here you tell your readers what to make of the Results you obtained. If you have done the Results part well, your readers should already recognize the trends in the data and have a fairly clear idea of whether your hypothesis was supported. Because the Results can seem so self-explanatory, many students find it difficult to know what material to add in this last section.

Basically, the Discussion contains several parts, in no particular order, but roughly moving from specific (i.e., related to your experiment only) to general (how your findings fit in the larger scientific community). In this section, you will, as a rule, need to:

Explain whether the data support your hypothesis

  • Acknowledge any anomalous data or deviations from what you expected

Derive conclusions, based on your findings, about the process you’re studying

  • Relate your findings to earlier work in the same area (if you can)

Explore the theoretical and/or practical implications of your findings

Let’s look at some dos and don’ts for each of these objectives.

This statement is usually a good way to begin the Discussion, since you can’t effectively speak about the larger scientific value of your study until you’ve figured out the particulars of this experiment. You might begin this part of the Discussion by explicitly stating the relationships or correlations your data indicate between the independent and dependent variables. Then you can show more clearly why you believe your hypothesis was or was not supported. For example, if you tested solubility at various temperatures, you could start this section by noting that the rates of solubility increased as the temperature increased. If your initial hypothesis surmised that temperature change would not affect solubility, you would then say something like,

“The hypothesis that temperature change would not affect solubility was not supported by the data.”

Note: Students tend to view labs as practical tests of undeniable scientific truths. As a result, you may want to say that the hypothesis was “proved” or “disproved” or that it was “correct” or “incorrect.” These terms, however, reflect a degree of certainty that you as a scientist aren’t supposed to have. Remember, you’re testing a theory with a procedure that lasts only a few hours and relies on only a few trials, which severely compromises your ability to be sure about the “truth” you see. Words like “supported,” “indicated,” and “suggested” are more acceptable ways to evaluate your hypothesis.

Also, recognize that saying whether the data supported your hypothesis or not involves making a claim to be defended. As such, you need to show the readers that this claim is warranted by the evidence. Make sure that you’re very explicit about the relationship between the evidence and the conclusions you draw from it. This process is difficult for many writers because we don’t often justify conclusions in our regular lives. For example, you might nudge your friend at a party and whisper, “That guy’s drunk,” and once your friend lays eyes on the person in question, she might readily agree. In a scientific paper, by contrast, you would need to defend your claim more thoroughly by pointing to data such as slurred words, unsteady gait, and the lampshade-as-hat. In addition to pointing out these details, you would also need to show how (according to previous studies) these signs are consistent with inebriation, especially if they occur in conjunction with one another. To put it another way, tell your readers exactly how you got from point A (was the hypothesis supported?) to point B (yes/no).

Acknowledge any anomalous data, or deviations from what you expected

You need to take these exceptions and divergences into account, so that you qualify your conclusions sufficiently. For obvious reasons, your readers will doubt your authority if you (deliberately or inadvertently) overlook a key piece of data that doesn’t square with your perspective on what occurred. In a more philosophical sense, once you’ve ignored evidence that contradicts your claims, you’ve departed from the scientific method. The urge to “tidy up” the experiment is often strong, but if you give in to it you’re no longer performing good science.

Sometimes after you’ve performed a study or experiment, you realize that some part of the methods you used to test your hypothesis was flawed. In that case, it’s OK to suggest that if you had the chance to conduct your test again, you might change the design in this or that specific way in order to avoid such and such a problem. The key to making this approach work, though, is to be very precise about the weakness in your experiment, why and how you think that weakness might have affected your data, and how you would alter your protocol to eliminate—or limit the effects of—that weakness. Often, inexperienced researchers and writers feel the need to account for “wrong” data (remember, there’s no such animal), and so they speculate wildly about what might have screwed things up. These speculations include such factors as the unusually hot temperature in the room, or the possibility that their lab partners read the meters wrong, or the potentially defective equipment. These explanations are what scientists call “cop-outs,” or “lame”; don’t indicate that the experiment had a weakness unless you’re fairly certain that a) it really occurred and b) you can explain reasonably well how that weakness affected your results.

If, for example, your hypothesis dealt with the changes in solubility at different temperatures, then try to figure out what you can rationally say about the process of solubility more generally. If you’re doing an undergraduate lab, chances are that the lab will connect in some way to the material you’ve been covering either in lecture or in your reading, so you might choose to return to these resources as a way to help you think clearly about the process as a whole.

This part of the Discussion section is another place where you need to make sure that you’re not overreaching. Again, nothing you’ve found in one study would remotely allow you to claim that you now “know” something, or that something isn’t “true,” or that your experiment “confirmed” some principle or other. Hesitate before you go out on a limb—it’s dangerous! Use less absolutely conclusive language, including such words as “suggest,” “indicate,” “correspond,” “possibly,” “challenge,” etc.

Relate your findings to previous work in the field (if possible)

We’ve been talking about how to show that you belong in a particular community (such as biologists or anthropologists) by writing within conventions that they recognize and accept. Another is to try to identify a conversation going on among members of that community, and use your work to contribute to that conversation. In a larger philosophical sense, scientists can’t fully understand the value of their research unless they have some sense of the context that provoked and nourished it. That is, you have to recognize what’s new about your project (potentially, anyway) and how it benefits the wider body of scientific knowledge. On a more pragmatic level, especially for undergraduates, connecting your lab work to previous research will demonstrate to the TA that you see the big picture. You have an opportunity, in the Discussion section, to distinguish yourself from the students in your class who aren’t thinking beyond the barest facts of the study. Capitalize on this opportunity by putting your own work in context.

If you’re just beginning to work in the natural sciences (as a first-year biology or chemistry student, say), most likely the work you’ll be doing has already been performed and re-performed to a satisfactory degree. Hence, you could probably point to a similar experiment or study and compare/contrast your results and conclusions. More advanced work may deal with an issue that is somewhat less “resolved,” and so previous research may take the form of an ongoing debate, and you can use your own work to weigh in on that debate. If, for example, researchers are hotly disputing the value of herbal remedies for the common cold, and the results of your study suggest that Echinacea diminishes the symptoms but not the actual presence of the cold, then you might want to take some time in the Discussion section to recapitulate the specifics of the dispute as it relates to Echinacea as an herbal remedy. (Consider that you have probably already written in the Introduction about this debate as background research.)

This information is often the best way to end your Discussion (and, for all intents and purposes, the report). In argumentative writing generally, you want to use your closing words to convey the main point of your writing. This main point can be primarily theoretical (“Now that you understand this information, you’re in a better position to understand this larger issue”) or primarily practical (“You can use this information to take such and such an action”). In either case, the concluding statements help the reader to comprehend the significance of your project and your decision to write about it.

Since a lab report is argumentative—after all, you’re investigating a claim, and judging the legitimacy of that claim by generating and collecting evidence—it’s often a good idea to end your report with the same technique for establishing your main point. If you want to go the theoretical route, you might talk about the consequences your study has for the field or phenomenon you’re investigating. To return to the examples regarding solubility, you could end by reflecting on what your work on solubility as a function of temperature tells us (potentially) about solubility in general. (Some folks consider this type of exploration “pure” as opposed to “applied” science, although these labels can be problematic.) If you want to go the practical route, you could end by speculating about the medical, institutional, or commercial implications of your findings—in other words, answer the question, “What can this study help people to do?” In either case, you’re going to make your readers’ experience more satisfying, by helping them see why they spent their time learning what you had to teach them.

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

American Psychological Association. 2010. Publication Manual of the American Psychological Association . 6th ed. Washington, DC: American Psychological Association.

Beall, Herbert, and John Trimbur. 2001. A Short Guide to Writing About Chemistry , 2nd ed. New York: Longman.

Blum, Deborah, and Mary Knudson. 1997. A Field Guide for Science Writers: The Official Guide of the National Association of Science Writers . New York: Oxford University Press.

Booth, Wayne C., Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, and William T. FitzGerald. 2016. The Craft of Research , 4th ed. Chicago: University of Chicago Press.

Briscoe, Mary Helen. 1996. Preparing Scientific Illustrations: A Guide to Better Posters, Presentations, and Publications , 2nd ed. New York: Springer-Verlag.

Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.

Davis, Martha. 2012. Scientific Papers and Presentations , 3rd ed. London: Academic Press.

Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.

Porush, David. 1995. A Short Guide to Writing About Science . New York: Longman.

Williams, Joseph, and Joseph Bizup. 2017. Style: Lessons in Clarity and Grace , 12th ed. Boston: Pearson.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

Examples

Biology Hypothesis

how to write a hypothesis example biology lab report

Delve into the fascinating world of biology with our definitive guide on crafting impeccable hypothesis thesis statements . As the foundation of any impactful biological research, a well-formed hypothesis paves the way for groundbreaking discoveries and insights. Whether you’re examining cellular behavior or large-scale ecosystems, mastering the art of the thesis statement is crucial. Embark on this enlightening journey with us, as we provide stellar examples and invaluable writing advice tailored for budding biologists.

What is a good hypothesis in biology?

A good hypothesis in biology is a statement that offers a tentative explanation for a biological phenomenon, based on prior knowledge or observation. It should be:

  • Testable: The hypothesis should be measurable and can be proven false through experiments or observations.
  • Clear: It should be stated clearly and without ambiguity.
  • Based on Knowledge: A solid hypothesis often stems from existing knowledge or literature in the field.
  • Specific: It should clearly define the variables being tested and the expected outcomes.
  • Falsifiable: It’s essential that a hypothesis can be disproven. This means there should be a possible result that could indicate the hypothesis is incorrect.

What is an example of a hypothesis statement in biology?

Example: “If a plant is given a higher concentration of carbon dioxide, then it will undergo photosynthesis at an increased rate compared to a plant given a standard concentration of carbon dioxide.”

In this example:

  • The independent variable (what’s being changed) is the concentration of carbon dioxide.
  • The dependent variable (what’s being measured) is the rate of photosynthesis. The statement proposes a cause-and-effect relationship that can be tested through experimentation.

100 Biology Thesis Statement Examples

Biology Thesis Statement Examples

Size: 272 KB

Biology, as the study of life and living organisms, is vast and diverse. Crafting a good thesis statement in this field requires a clear understanding of the topic at hand, capturing the essence of the research aim. From genetics to ecology, from cell biology to animal behavior, the following examples will give you a comprehensive idea about forming succinct biology thesis statements.

Genetics: Understanding the role of the BRCA1 gene in breast cancer susceptibility can lead to targeted treatments.

2. Evolution: The finch populations of the Galápagos Islands provide evidence of natural selection through beak variations in response to food availability.

3. Cell Biology: Mitochondrial dysfunction is a central factor in the onset of age-related neurodegenerative diseases.

4. Ecology: Deforestation in the Amazon directly impacts global carbon dioxide levels, influencing climate change.

5. Human Anatomy: Regular exercise enhances cardiovascular health by improving heart muscle function and reducing arterial plaque.

6. Marine Biology: Coral bleaching events in the Great Barrier Reef correlate strongly with rising sea temperatures.

7. Zoology: Migration patterns of Monarch butterflies are influenced by seasonal changes and available food sources.

8. Botany: The symbiotic relationship between mycorrhizal fungi and plant roots enhances nutrient absorption in poor soil conditions.

9. Microbiology: The overuse of antibiotics in healthcare has accelerated the evolution of antibiotic-resistant bacterial strains.

10. Physiology: High altitude adaptation in certain human populations has led to increased hemoglobin production.

11. Immunology: The role of T-cells in the human immune response is critical in developing effective vaccines against viral diseases.

12. Behavioral Biology: Birdsong variations in sparrows can be attributed to both genetic factors and environmental influences.

13. Developmental Biology: The presence of certain hormones during fetal development dictates the differentiation of sex organs in mammals.

14. Conservation Biology: The rapid decline of bee populations worldwide is directly linked to the use of certain pesticides in agriculture.

15. Molecular Biology: The CRISPR-Cas9 system has revolutionized gene editing techniques, offering potential cures for genetic diseases.

16. Virology: The mutation rate of the influenza virus necessitates annual updates in vaccine formulations.

17. Neurobiology: Neural plasticity in the adult brain can be enhanced through consistent learning and cognitive challenges.

18. Ethology: Elephant herds exhibit complex social structures and matriarchal leadership.

19. Biotechnology: Genetically modified crops can improve yield and resistance but also pose ecological challenges.

20. Environmental Biology: Industrial pollution in freshwater systems disrupts aquatic life and can lead to loss of biodiversity.

21. Neurodegenerative Diseases: Amyloid-beta protein accumulation in the brain is a key marker for Alzheimer’s disease progression.

22. Endocrinology: The disruption of thyroid hormone balance leads to metabolic disorders and weight fluctuations.

23. Bioinformatics: Machine learning algorithms can predict protein structures with high accuracy, advancing drug design.

24. Plant Physiology: The stomatal closure mechanism in plants helps prevent water loss and maintain turgor pressure.

25. Parasitology: The lifecycle of the malaria parasite involves complex interactions between humans and mosquitoes.

26. Molecular Genetics: Epigenetic modifications play a crucial role in gene expression regulation and cell differentiation.

27. Evolutionary Psychology: Human preference for symmetrical faces is a result of evolutionarily advantageous traits.

28. Ecosystem Dynamics: The reintroduction of apex predators in ecosystems restores ecological balance and biodiversity.

29. Epigenetics: Maternal dietary choices during pregnancy can influence the epigenetic profiles of offspring.

30. Biochemistry: Enzyme kinetics in metabolic pathways reveal insights into cellular energy production.

31. Bioluminescence: The role of bioluminescence in deep-sea organisms serves as camouflage and communication.

32. Genetics of Disease: Mutations in the CFTR gene cause cystic fibrosis, leading to severe respiratory and digestive issues.

33. Reproductive Biology: The influence of pheromones on mate selection is a critical aspect of reproductive success in many species.

34. Plant-Microbe Interactions: Rhizobium bacteria facilitate nitrogen fixation in leguminous plants, benefiting both organisms.

35. Comparative Anatomy: Homologous structures in different species provide evidence of shared evolutionary ancestry.

36. Stem Cell Research: Induced pluripotent stem cells hold immense potential for regenerative medicine and disease modeling.

37. Bioethics: Balancing the use of genetic modification in humans with ethical considerations is a complex challenge.

38. Molecular Evolution: The study of orthologous and paralogous genes offers insights into evolutionary relationships.

39. Bioenergetics: ATP synthesis through oxidative phosphorylation is a fundamental process driving cellular energy production.

40. Population Genetics: The Hardy-Weinberg equilibrium model helps predict allele frequencies in populations over time.

41. Animal Communication: The complex vocalizations of whales serve both social bonding and long-distance communication purposes.

42. Biogeography: The distribution of marsupials in Australia and their absence elsewhere highlights the impact of geographical isolation on evolution.

43. Aquatic Ecology: The phenomenon of eutrophication in lakes is driven by excessive nutrient runoff and results in harmful algal blooms.

44. Insect Behavior: The waggle dance of honeybees conveys precise information about the location of food sources to other members of the hive.

45. Microbial Ecology: The gut microbiome’s composition influences host health, metabolism, and immune system development.

46. Evolution of Sex: The Red Queen hypothesis explains the evolution of sexual reproduction as a defense against rapidly evolving parasites.

47. Immunotherapy: Manipulating the immune response to target cancer cells shows promise as an effective cancer treatment strategy.

48. Epigenetic Inheritance: Epigenetic modifications can be passed down through generations, impacting traits and disease susceptibility.

49. Comparative Genomics: Comparing the genomes of different species sheds light on genetic adaptations and evolutionary divergence.

50. Neurotransmission: The dopamine reward pathway in the brain is implicated in addiction and motivation-related behaviors.

51. Microbial Biotechnology: Genetically engineered bacteria can produce valuable compounds like insulin, revolutionizing pharmaceutical production.

52. Bioinformatics: DNA sequence analysis reveals evolutionary relationships between species and uncovers hidden genetic information.

53. Animal Migration: The navigational abilities of migratory birds are influenced by magnetic fields and celestial cues.

54. Human Evolution: The discovery of ancient hominin fossils provides insights into the evolutionary timeline of our species.

55. Cancer Genetics: Mutations in tumor suppressor genes contribute to the uncontrolled growth and division of cancer cells.

56. Aquatic Biomes: Coral reefs, rainforests of the sea, host incredible biodiversity and face threats from climate change and pollution.

57. Genomic Medicine: Personalized treatments based on an individual’s genetic makeup hold promise for more effective healthcare.

58. Molecular Pharmacology: Understanding receptor-ligand interactions aids in the development of targeted drugs for specific diseases.

59. Biodiversity Conservation: Preserving habitat diversity is crucial to maintaining ecosystems and preventing species extinction.

60. Evolutionary Developmental Biology: Comparing embryonic development across species reveals shared genetic pathways and evolutionary constraints.

61. Plant Reproductive Strategies: Understanding the trade-offs between asexual and sexual reproduction in plants sheds light on their evolutionary success.

62. Parasite-Host Interactions: The coevolution of parasites and their hosts drives adaptations and counter-adaptations over time.

63. Genomic Diversity: Exploring genetic variations within populations helps uncover disease susceptibilities and evolutionary history.

64. Ecological Succession: Studying the process of ecosystem recovery after disturbances provides insights into resilience and stability.

65. Conservation Genetics: Genetic diversity assessment aids in formulating effective conservation strategies for endangered species.

66. Neuroplasticity and Learning: Investigating how the brain adapts through synaptic changes improves our understanding of memory and learning.

67. Synthetic Biology: Designing and engineering biological systems offers innovative solutions for medical, environmental, and industrial challenges.

68. Ethnobotany: Documenting the traditional uses of plants by indigenous communities informs both conservation and pharmaceutical research.

69. Ecological Niche Theory: Exploring how species adapt to specific ecological niches enhances our grasp of biodiversity patterns.

70. Ecosystem Services: Quantifying the benefits provided by ecosystems, like pollination and carbon sequestration, supports conservation efforts.

71. Fungal Biology: Investigating mycorrhizal relationships between fungi and plants illuminates nutrient exchange mechanisms.

72. Molecular Clock Hypothesis: Genetic mutations accumulate over time, providing a method to estimate evolutionary divergence dates.

73. Developmental Disorders: Unraveling the genetic and environmental factors contributing to developmental disorders informs therapeutic approaches.

74. Epigenetics and Disease: Epigenetic modifications contribute to the development of diseases like cancer, diabetes, and neurodegenerative disorders.

75. Animal Cognition: Studying cognitive abilities in animals unveils their problem-solving skills, social dynamics, and sensory perceptions.

76. Microbiota-Brain Axis: The gut-brain connection suggests a bidirectional communication pathway influencing mental health and behavior.

77. Neurological Disorders: Neurodegenerative diseases like Parkinson’s and Alzheimer’s have genetic and environmental components that drive their progression.

78. Plant Defense Mechanisms: Investigating how plants ward off pests and pathogens informs sustainable agricultural practices.

79. Conservation Genomics: Genetic data aids in identifying distinct populations and prioritizing conservation efforts for at-risk species.

80. Reproductive Strategies: Comparing reproductive methods in different species provides insights into evolutionary trade-offs and reproductive success.

81. Epigenetics in Aging: Exploring epigenetic changes in the aging process offers insights into longevity and age-related diseases.

82. Antimicrobial Resistance: Understanding the genetic mechanisms behind bacterial resistance to antibiotics informs strategies to combat the global health threat.

83. Plant-Animal Interactions: Investigating mutualistic relationships between plants and pollinators showcases the delicate balance of ecosystems.

84. Adaptations to Extreme Environments: Studying extremophiles reveals the remarkable ways organisms thrive in extreme conditions like deep-sea hydrothermal vents.

85. Genetic Disorders: Genetic mutations underlie numerous disorders like cystic fibrosis, sickle cell anemia, and muscular dystrophy.

86. Conservation Behavior: Analyzing the behavioral ecology of endangered species informs habitat preservation and restoration efforts.

87. Neuroplasticity in Rehabilitation: Harnessing the brain’s ability to rewire itself offers promising avenues for post-injury or post-stroke rehabilitation.

88. Disease Vectors: Understanding how mosquitoes transmit diseases like malaria and Zika virus is critical for disease prevention strategies.

89. Biochemical Pathways: Mapping metabolic pathways in cells provides insights into disease development and potential therapeutic targets.

90. Invasive Species Impact: Examining the effects of invasive species on native ecosystems guides management strategies to mitigate their impact.

91. Molecular Immunology: Studying the intricate immune response mechanisms aids in the development of vaccines and immunotherapies.

92. Plant-Microbe Symbiosis: Investigating how plants form partnerships with beneficial microbes enhances crop productivity and sustainability.

93. Cancer Immunotherapy: Harnessing the immune system to target and eliminate cancer cells offers new avenues for cancer treatment.

94. Evolution of Flight: Analyzing the adaptations leading to the development of flight in birds and insects sheds light on evolutionary innovation.

95. Genomic Diversity in Human Populations: Exploring genetic variations among different human populations informs ancestry, migration, and susceptibility to diseases.

96. Hormonal Regulation: Understanding the role of hormones in growth, reproduction, and homeostasis provides insights into physiological processes.

97. Conservation Genetics in Plant Conservation: Genetic diversity assessment helps guide efforts to conserve rare and endangered plant species.

98. Neuronal Communication: Investigating neurotransmitter systems and synaptic transmission enhances our comprehension of brain function.

99. Microbial Biogeography: Mapping the distribution of microorganisms across ecosystems aids in understanding their ecological roles and interactions.

100. Gene Therapy: Developing methods to replace or repair defective genes offers potential treatments for genetic disorders.

Scientific Hypothesis Statement Examples

This section offers diverse examples of scientific hypothesis statements that cover a range of biological topics. Each example briefly describes the subject matter and the potential implications of the hypothesis.

  • Genetic Mutations and Disease: Certain genetic mutations lead to increased susceptibility to autoimmune disorders, providing insights into potential treatment strategies.
  • Microplastics in Aquatic Ecosystems: Elevated microplastic levels disrupt aquatic food chains, affecting biodiversity and human health through bioaccumulation.
  • Bacterial Quorum Sensing: Inhibition of quorum sensing in pathogenic bacteria demonstrates a potential avenue for novel antimicrobial therapies.
  • Climate Change and Phenology: Rising temperatures alter flowering times in plants, impacting pollinator interactions and ecosystem dynamics.
  • Neuroplasticity and Learning: The brain’s adaptability facilitates learning through synaptic modifications, elucidating educational strategies for improved cognition.
  • CRISPR-Cas9 in Agriculture: CRISPR-engineered crops with enhanced pest resistance showcase a sustainable approach to improving agricultural productivity.
  • Invasive Species Impact on Predators: The introduction of invasive prey disrupts predator-prey relationships, triggering cascading effects in terrestrial ecosystems.
  • Microbial Contributions to Soil Health: Beneficial soil microbes enhance nutrient availability and plant growth, promoting sustainable agriculture practices.
  • Marine Protected Areas: Examining the effectiveness of marine protected areas reveals their role in preserving biodiversity and restoring marine ecosystems.
  • Epigenetic Regulation of Cancer: Epigenetic modifications play a pivotal role in cancer development, highlighting potential therapeutic targets for precision medicine.

Testable Hypothesis Statement Examples in Biology

Testability hypothesis is a critical aspect of a hypothesis. These examples are formulated in a way that allows them to be tested through experiments or observations. They focus on cause-and-effect relationships that can be verified or refuted.

  • Impact of Light Intensity on Plant Growth: Increasing light intensity accelerates photosynthesis rates and enhances overall plant growth.
  • Effect of Temperature on Enzyme Activity: Higher temperatures accelerate enzyme activity up to an optimal point, beyond which denaturation occurs.
  • Microbial Diversity in Soil pH Gradients: Soil pH influences microbial composition, with acidic soils favoring certain bacterial taxa over others.
  • Predation Impact on Prey Behavior: The presence of predators induces changes in prey behavior, resulting in altered foraging strategies and vigilance levels.
  • Chemical Communication in Marine Organisms: Investigating chemical cues reveals the role of allelopathy in competition among marine organisms.
  • Social Hierarchy in Animal Groups: Observing animal groups establishes a correlation between social rank and access to resources within the group.
  • Effect of Habitat Fragmentation on Pollinator Diversity: Fragmented habitats reduce pollinator species richness, affecting plant reproductive success.
  • Dietary Effects on Gut Microbiota Composition: Dietary shifts influence gut microbiota diversity and metabolic functions, impacting host health.
  • Hybridization Impact on Plant Fitness: Hybrid plants exhibit varied fitness levels depending on the combination of parent species.
  • Human Impact on Coral Bleaching: Analyzing coral reefs under different anthropogenic stresses identifies the main factors driving coral bleaching events.

Scientific Investigation Hypothesis Statement Examples in Biology

This section emphasizes hypotheses that are part of broader scientific investigations. They involve studying complex interactions or phenomena and often contribute to our understanding of larger biological systems.

  • Genomic Variation in Human Disease Susceptibility: Genetic analysis identifies variations associated with increased risk of common diseases, aiding personalized medicine.
  • Behavioral Responses to Temperature Shifts in Insects: Investigating insect responses to temperature fluctuations reveals adaptation strategies to climate change.
  • Endocrine Disruptors and Amphibian Development: Experimental exposure to endocrine disruptors elucidates their role in amphibian developmental abnormalities.
  • Microbial Succession in Decomposition: Tracking microbial communities during decomposition uncovers the succession patterns of different decomposer species.
  • Gene Expression Patterns in Stress Response: Studying gene expression profiles unveils the molecular mechanisms underlying stress responses in plants.
  • Effect of Urbanization on Bird Song Patterns: Urban noise pollution influences bird song frequency and complexity, impacting communication and mate attraction.
  • Nutrient Availability and Algal Blooms: Investigating nutrient loading in aquatic systems sheds light on factors triggering harmful algal blooms.
  • Host-Parasite Coevolution: Analyzing genetic changes in hosts and parasites over time uncovers coevolutionary arms races and adaptation.
  • Ecosystem Productivity and Biodiversity: Linking ecosystem productivity to biodiversity patterns reveals the role of species interactions in ecosystem stability.
  • Habitat Preference of Invasive Species: Studying the habitat selection of invasive species identifies factors promoting their establishment and spread.

Hypothesis Statement Examples in Biology Research

These examples are tailored for research hypothesis studies. They highlight hypotheses that drive focused research questions, often leading to specific experimental designs and data collection methods.

  • Microbial Community Structure in Human Gut: Investigating microbial diversity and composition unveils the role of gut microbiota in human health.
  • Plant-Pollinator Mutualisms: Hypothesizing reciprocal benefits in plant-pollinator interactions highlights the role of coevolution in shaping ecosystems.
  • Chemical Defense Mechanisms in Insects: Predicting the correlation between insect feeding behavior and chemical defenses explores natural selection pressures.
  • Evolutionary Significance of Mimicry: Examining mimicry in organisms demonstrates its adaptive value in predator-prey relationships and survival.
  • Neurological Basis of Mate Choice: Proposing neural mechanisms underlying mate choice behaviors uncovers the role of sensory cues in reproductive success.
  • Mycorrhizal Symbiosis Impact on Plant Growth: Investigating mycorrhizal colonization effects on plant biomass addresses nutrient exchange dynamics.
  • Social Learning in Primates: Formulating a hypothesis on primate social learning explores the transmission of knowledge and cultural behaviors.
  • Effect of Pollution on Fish Behavior: Anticipating altered behaviors due to pollution exposure highlights ecological consequences on aquatic ecosystems.
  • Coevolution of Flowers and Pollinators: Hypothesizing mutual adaptations between flowers and pollinators reveals intricate ecological relationships.
  • Genetic Basis of Disease Resistance in Plants: Identifying genetic markers associated with disease resistance enhances crop breeding programs.

Prediction Hypothesis Statement Examples in Biology

Predictive simple hypothesis involve making educated guesses about how variables might interact or behave under specific conditions. These examples showcase hypotheses that anticipate outcomes based on existing knowledge.

  • Pesticide Impact on Insect Abundance: Predicting decreased insect populations due to pesticide application underscores ecological ramifications.
  • Climate Change and Migratory Bird Patterns: Anticipating shifts in migratory routes of birds due to climate change informs conservation strategies.
  • Ocean Acidification Effect on Coral Calcification: Predicting reduced coral calcification rates due to ocean acidification unveils threats to coral reefs.
  • Disease Spread in Crowded Bird Roosts: Predicting accelerated disease transmission in densely populated bird roosts highlights disease ecology dynamics.
  • Eutrophication Impact on Freshwater Biodiversity: Anticipating decreased freshwater biodiversity due to eutrophication emphasizes conservation efforts.
  • Herbivore Impact on Plant Species Diversity: Predicting reduced plant diversity in areas with high herbivore pressure elucidates ecosystem dynamics.
  • Predator-Prey Population Cycles: Predicting cyclical fluctuations in predator and prey populations showcases the role of trophic interactions.
  • Climate Change and Plant Phenology: Anticipating earlier flowering times due to climate change demonstrates the influence of temperature on plant life cycles.
  • Antibiotic Resistance in Bacterial Communities: Predicting increased antibiotic resistance due to overuse forewarns the need for responsible antibiotic use.
  • Human Impact on Avian Nesting Success: Predicting decreased avian nesting success due to habitat fragmentation highlights conservation priorities.

How to Write a Biology Hypothesis – Step by Step Guide

A hypothesis in biology is a critical component of scientific research that proposes an explanation for a specific biological phenomenon. Writing a well-formulated hypothesis sets the foundation for conducting experiments, making observations, and drawing meaningful conclusions. Follow this step-by-step guide to create a strong biology hypothesis:

1. Identify the Phenomenon: Clearly define the biological phenomenon you intend to study. This could be a question, a pattern, an observation, or a problem in the field of biology.

2. Conduct Background Research: Before formulating a hypothesis, gather relevant information from scientific literature. Understand the existing knowledge about the topic to ensure your hypothesis builds upon previous research.

3. State the Independent and Dependent Variables: Identify the variables involved in the phenomenon. The independent variable is what you manipulate or change, while the dependent variable is what you measure as a result of the changes.

4. Formulate a Testable Question: Based on your background research, create a specific and testable question that addresses the relationship between the variables. This question will guide the formulation of your hypothesis.

5. Craft the Hypothesis: A hypothesis should be a clear and concise statement that predicts the outcome of your experiment or observation. It should propose a cause-and-effect relationship between the independent and dependent variables.

6. Use the “If-Then” Structure: Formulate your hypothesis using the “if-then” structure. The “if” part states the independent variable and the condition you’re manipulating, while the “then” part predicts the outcome for the dependent variable.

7. Make it Falsifiable: A good hypothesis should be testable and capable of being proven false. There should be a way to gather data that either supports or contradicts the hypothesis.

8. Be Specific and Precise: Avoid vague language and ensure that your hypothesis is specific and precise. Clearly define the variables and the expected relationship between them.

9. Revise and Refine: Once you’ve formulated your hypothesis, review it to ensure it accurately reflects your research question and variables. Revise as needed to make it more concise and focused.

10. Seek Feedback: Share your hypothesis with peers, mentors, or colleagues to get feedback. Constructive input can help you refine your hypothesis further.

Tips for Writing a Biology Hypothesis Statement

Writing a biology alternative hypothesis statement requires precision and clarity to ensure that your research is well-structured and testable. Here are some valuable tips to help you create effective and scientifically sound hypothesis statements:

1. Be Clear and Concise: Your hypothesis statement should convey your idea succinctly. Avoid unnecessary jargon or complex language that might confuse your audience.

2. Address Cause and Effect: A hypothesis suggests a cause-and-effect relationship between variables. Clearly state how changes in the independent variable are expected to affect the dependent variable.

3. Use Specific Language: Define your variables precisely. Use specific terms to describe the independent and dependent variables, as well as any conditions or measurements.

4. Follow the “If-Then” Structure: Use the classic “if-then” structure to frame your hypothesis. State the independent variable (if) and the expected outcome (then). This format clarifies the relationship you’re investigating.

5. Make it Testable: Your hypothesis must be capable of being tested through experimentation or observation. Ensure that there is a measurable and observable way to determine if it’s true or false.

6. Avoid Ambiguity: Eliminate vague terms that can be interpreted in multiple ways. Be precise in your language to avoid confusion.

7. Base it on Existing Knowledge: Ground your hypothesis in prior research or existing scientific theories. It should build upon established knowledge and contribute new insights.

8. Predict a Direction: Your hypothesis should predict a specific outcome. Whether you anticipate an increase, decrease, or a difference, your hypothesis should make a clear prediction.

9. Be Focused: Keep your hypothesis statement focused on one specific idea or relationship. Avoid trying to address too many variables or concepts in a single statement.

10. Consider Alternative Explanations: Acknowledge alternative explanations for your observations or outcomes. This demonstrates critical thinking and a thorough understanding of your field.

11. Avoid Value Judgments: Refrain from including value judgments or opinions in your hypothesis. Stick to objective and measurable factors.

12. Be Realistic: Ensure that your hypothesis is plausible and feasible. It should align with what is known about the topic and be achievable within the scope of your research.

13. Refine and Revise: Draft multiple versions of your hypothesis statement and refine them. Discuss and seek feedback from mentors, peers, or advisors to enhance its clarity and precision.

14. Align with Research Goals: Your hypothesis should align with the overall goals of your research project. Make sure it addresses the specific question or problem you’re investigating.

15. Be Open to Revision: As you conduct research and gather data, be open to revising your hypothesis if the evidence suggests a different outcome than initially predicted.

Remember, a well-crafted biology science hypothesis statement serves as the foundation of your research and guides your experimental design and data analysis. It’s essential to invest time and effort in formulating a clear, focused, and testable hypothesis that contributes to the advancement of scientific knowledge.

Twitter

AI Generator

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

Writing Studio

Writing a lab report: introduction and discussion section guide.

In an effort to make our handouts more accessible, we have begun converting our PDF handouts to web pages. Download this page as a PDF:   Writing a Lab Report Return to Writing Studio Handouts

Part 1 (of 2): Introducing a Lab Report

The introduction of a lab report states the objective of the experiment and provides the reader with background information. State the topic of your report clearly and concisely (in one or two sentences). Provide background theory, previous research, or formulas the reader should know. Usually, an instructor does not want you to repeat whatever the lab manual says, but to show your understanding of the problem.

Questions an Effective Lab Report Introduction Should Answer

What is the problem.

Describe the problem investigated. Summarize relevant research to provide context, key terms, and concepts so that your reader can understand the experiment.

Why is it important?

Review relevant research to provide a rationale for the investigation. What conflict, unanswered question, untested population, or untried method in existing research does your experiment address? How will you challenge or extend the findings of other researchers?

What solution (or step toward a solution) do you propose?

Briefly describe your experiment : hypothesis , research question , general experimental design or method , and a justification of your method (if alternatives exist).

Tips on Composing Your Lab Report’s Introduction

  • Move from the general to the specific – from a problem in research literature to the specifics of your experiment.
  • Engage your reader – answer the questions: “What did I do?” “Why should my reader care?”
  • Clarify the links between problem and solution, between question asked and research design, and between prior research and the specifics of your experiment.
  • Be selective, not exhaustive, in choosing studies to cite and the amount of detail to include. In general, the more relevant an article is to your study, the more space it deserves and the later in the introduction it appears.
  • Ask your instructor whether or not you should summarize results and/or conclusions in the Introduction.
  • “The objective of the experiment was …”
  • “The purpose of this report is …”
  • “Bragg’s Law for diffraction is …”
  • “The scanning electron microscope produces micrographs …”

Part 2 (of 2): Writing the “Discussion” Section of a Lab Report

The discussion is the most important part of your lab report, because here you show that you have not merely completed the experiment, but that you also understand its wider implications. The discussion section is reserved for putting experimental results in the context of the larger theory. Ask yourself: “What is the significance or meaning of the results?”

Elements of an Effective Discussion Section

What do the results indicate clearly? Based on your results, explain what you know with certainty and draw conclusions.

Interpretation

What is the significance of your results? What ambiguities exist? What are logical explanations for problems in the data? What questions might you raise about the methods used or the validity of the experiment? What can be logically deduced from your analysis?

Tips on the Discussion Section

1. explain your results in terms of theoretical issues..

How well has the theory been illustrated? What are the theoretical implications and practical applications of your results?

For each major result:

  • Describe the patterns, principles, and relationships that your results show.
  • Explain how your results relate to expectations and to literature cited in your Introduction. Explain any agreements, contradictions, or exceptions.
  • Describe what additional research might resolve contradictions or explain exceptions.

2. Relate results to your experimental objective(s).

If you set out to identify an unknown metal by finding its lattice parameter and its atomic structure, be sure that you have identified the metal and its attributes.

3. Compare expected results with those obtained.

If there were differences, how can you account for them? Were the instruments able to measure precisely? Was the sample contaminated? Did calculated values take account of friction?

4. Analyze experimental error along with the strengths and limitations of the experiment’s design.

Were any errors avoidable? Were they the result of equipment?  If the flaws resulted from the experiment design, explain how the design might be improved. Consider, as well, the precision of the instruments that were used.

5. Compare your results to similar investigations.

In some cases, it is legitimate to compare outcomes with classmates, not in order to change your answer, but in order to look for and to account for or analyze any anomalies between the groups. Also, consider comparing your results to published scientific literature on the topic.

The “Introducing a Lab Report” guide was adapted from the University of Toronto Engineering Communications Centre and University of Wisconsin-Madison Writing Center.

The “Writing the Discussion Section of a Lab Report” resource was adapted from the University of Toronto Engineering Communications Centre and University of Wisconsin-Madison Writing Center.

Last revised: 07/2008 | Adapted for web delivery: 02/2021

In order to access certain content on this page, you may need to download Adobe Acrobat Reader or an equivalent PDF viewer software.

SchoolWorkHelper

  • Science & Math
  • Sociology & Philosophy
  • Law & Politics

How to Write Hypothesis for Lab Report

  • How to Write Hypothesis for…

What Is a Real Hypothesis?

how to write a hypothesis example biology lab report

A hypothesis is a tentative statement that proposes a possible explanation for some phenomenon or event. A useful hypothesis is a testable statement that may include a prediction.

When Are Hypotheses Used?

The keyword is testable. That is, you will perform a test of how two variables might be related. This is when you are doing a real experiment. You are testing variables. Usually, a hypothesis is based on some previous observations such as noticing that in November many trees undergo color changes in their leaves and the average daily temperatures are dropping. Are these two events connected? How?

Any laboratory procedure you follow without a hypothesis is really not an experiment. It is just an exercise or demonstration of what is already known.

How Are Hypotheses Written?

  • Chocolate may cause pimples.
  • Salt in soil may affect plant growth.
  • Plant growth may be affected by the color of the light.
  • Bacterial growth may be affected by temperature.
  • Ultraviolet light may cause skin cancer.
  • The temperature may cause leaves to change color.

All of these are examples of hypotheses because they use the tentative word “may.”. However, their form is not particularly useful. Using the word may do not suggest how you would go about proving it. If these statements had not been written carefully, they may not have even been hypotheses at all. For example, if we say “Trees will change color when it gets cold.” we are making a prediction. Or if we write, “Ultraviolet light causes skin cancer.” could be a conclusion. One way to prevent making such easy mistakes is to formalize the form of the hypothesis.

Formalized Hypotheses example: If the incidence of skin cancer is related to exposure levels of ultraviolet light , then people with a high exposure to uv light will have a higher frequency of skin cancer.

If leaf color change is related to temperature , then exposing plants to low temperatures will result in changes in leaf color .

Notice that these statements contain the words, if and then. They are necessary for a formalized hypothesis. But not all if-then statements are hypotheses. For example, “If I play the lottery, then I will get rich.” This is a simple prediction. In a formalized hypothesis, a tentative relationship is stated. For example, if the frequency of winning is related to the frequency of buying lottery tickets . “Then” is followed by a prediction of what will happen if you increase or decrease the frequency of buying lottery tickets. If you always ask yourself that if one thing is related to another, then you should be able to test it.

Formalized hypotheses contain two variables. One is “independent” and the other is “dependent.” The independent variable is the one you, the “scientist” control, and the dependent variable is the one that you observe and/or measure the results. In the statements above the dependent variable is underlined and the independent variable is underlined and italicized .

The ultimate value of a formalized hypothesis is it forces us to think about what results we should look for in an experiment.

For the “ If, Then, Because ” hypothesis…you would use: “ IF pigs and humans share the same nutritional behaviors, THEN their internal organs should look relatively the same BECAUSE of similar function and composure.” That is an example. For the “If, Then, Because” you should follow this guideline:

IF X and Y both do or share this, THEN this should be found/confirmed, BECAUSE of this fact or logical assumption.

Example Question : How does the type of liquid (water, milk, or orange juice) given to a plant affect how tall the plant will grow? Hypothesis : If the plant is given water then the plant will grow the tallest because water helps the plant absorb the nutrients that the plant needs to survive.

Related Posts

  • Energy Content of Food Lab Report Answers
  • Phet Projectile Motion Lab: Lab Answers
  • Magnesium Oxide: Percent Yield Lab Report
  • How to Write a Formal Laboratory Report
  • Physics: Lab Report Style

' src=

Author:  William Anderson (Schoolworkhelper Editorial Team)

Tutor and Freelance Writer. Science Teacher and Lover of Essays. Article last reviewed: 2022 | St. Rosemary Institution © 2010-2024 | Creative Commons 4.0

16 Comments

How would I write a hypothesis about a flying pig lab?

your lab hypothesis should have been written before the experiment. The purpose of the hypothesis was to create a testable statement in which your experimental data would either support or reject. Having a hypothesis based on a logical assumption (regardless of whether your data supports it) is still correct. If there is a disagreement between your hypothesis and experimental data it should be addressed in the discussion.

So you can go ahead an choose a hypothesis for either increase or decrease of adipogenesis after the inducement of insulin and not be wrong….as long as it is correctly formatted (see examples above).

Hey, I am having trouble writing my hypothesis.. I am supposed to write a hypothesis about how much adipogenesis was produced after the inducement of insulin. However, after proceeding with the experiments the results were On/Off .. meaning it will increase, decrease, increase, etc.. so it wasnt a constant result. It was supposed to be increasing.

please help!!!

this is very helpful but i don’t know how i would structure my hypothesis. i’m supposed to come up with a hypothesis related to the topic ‘how does mass effect the stopping distance of a cart?’. Could you help?

Thank you so much, it really help alot.:)

This is a rather difficult usage of this construct. It would most likely follow

“If the empirical formula of (enter compound’s name) is (enter compound’s formula) then it would be expected that combustion of _________ would yield _________, because (enter your rationale)

Need more background info.

For the “If, then, because” hypothesis I am doing an experiment to determine the empirical formula by using combustion but I am unsure on how to formulate the hypothesis using this structure.

For the “If, Then, Because” hypothesis…you would use: “IF pigs and humans share the same nutritional behaviors, THEN their internal organs should look relatively the same BECAUSE of similar function and composure.” That is an example. For the “If, Then, Because” you should follow this guideline:

Thanks, really helpful. Just one question, what about the ‘because’ part? right after the ‘if’ and ‘then’ parts?

I really need help for onion skin lab hypothesis for class

@Lauren An if/and statement is not usually apart of the convention. What exactly do you need help with?

Is there such thing as a if/and statement? I am in 8th grade science an I need to know for my lab report due tomorrow.HELP!!!!

Would have been better if more examples were given

If the purpose of your lab is “To obtain dissecting skills in an observational lab,” you can’t really formulate a testable hypothesis for that. I’ll assume you are doing some kind of pig or frog dissection. Often teachers give general outlines of skills that students are meant to ascertain from an experiment which aren’t necessarily what the actual experiment is directly testing. Obviously to do the dissection lab you need to obtain dissection skills but testing that would be rather subjective unless the teacher provided you with standards or operationally defined “dissecting skills”. If I were you, I would obviously mention it in the introduction of your lab but I am not sure if your teacher wants you to actually format it as a hypothesis; you can ask your teacher for clarification. If making a hypothesis from each purpose was some arbitrary exercise assigned to you then, it could look like this:

“If a student has successful acquired dissection skills, then they will be able to complete this observational lab with satisfactory competence because they utilized these newly acquired skills.”

For the “If, Then, Because” hypothesis…you pretty much have it. You would modify what you posted: “IF pigs and humans share the same nutritional behaviors, THEN their internal organs should look relatively the same BECAUSE of similar function and composure.” That is an example. For the “If, Then, Because” you should follow this guideline:

Thanks for this, it proved to be helpful. However, I do have a few questions. Obviously different teachers or instructors have their own requirements for their classes. How would you write an appropriate Question to follow each purpose in your lab report? For example: If the purpose was, “To obtain dissecting skills in an observational lab,” what question could you formulate with the purpose? (which is answered in the hypothesis)

And if a teacher requires the hypothesis to be in the format “If, Then, Because” how should this be written? I can actively complete the if and then, but I’m unsure how to incorporate the “because’ statement. For example, “If pigs and humans share the same nutritional behaviors, then their internal organs should function comparably and look relatively the same.” (how do i incorporate because?)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Post comment

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • Science Writing

How to Write a Good Lab Conclusion in Science

Last Updated: March 21, 2024 Fact Checked

This article was co-authored by Bess Ruff, MA . Bess Ruff is a Geography PhD student at Florida State University. She received her MA in Environmental Science and Management from the University of California, Santa Barbara in 2016. She has conducted survey work for marine spatial planning projects in the Caribbean and provided research support as a graduate fellow for the Sustainable Fisheries Group. There are 11 references cited in this article, which can be found at the bottom of the page. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 1,763,446 times.

A lab report describes an entire experiment from start to finish, outlining the procedures, reporting results, and analyzing data. The report is used to demonstrate what has been learned, and it will provide a way for other people to see your process for the experiment and understand how you arrived at your conclusions. The conclusion is an integral part of the report; this is the section that reiterates the experiment’s main findings and gives the reader an overview of the lab trial. Writing a solid conclusion to your lab report will demonstrate that you’ve effectively learned the objectives of your assignment.

Outlining Your Conclusion

Step 1 Go over your assignment.

  • Restate : Restate the lab experiment by describing the assignment.
  • Explain : Explain the purpose of the lab experiment. What were you trying to figure out or discover? Talk briefly about the procedure you followed to complete the lab.
  • Results : Explain your results. Confirm whether or not your hypothesis was supported by the results.
  • Uncertainties : Account for uncertainties and errors. Explain, for example, if there were other circumstances beyond your control that might have impacted the experiment’s results.
  • New : Discuss new questions or discoveries that emerged from the experiment.

Step 4 Plan other sections to add.

  • Your assignment may also have specific questions that need to be answered. Make sure you answer these fully and coherently in your conclusion.

Discussing the Experiment and Hypothesis

Step 1 Introduce the experiment in your conclusion.

  • If you tried the experiment more than once, describe the reasons for doing so. Discuss changes that you made in your procedures.
  • Brainstorm ways to explain your results in more depth. Go back through your lab notes, paying particular attention to the results you observed. [5] X Trustworthy Source University of North Carolina Writing Center UNC's on-campus and online instructional service that provides assistance to students, faculty, and others during the writing process Go to source

Step 3 Describe what you discovered briefly.

  • Start this section with wording such as, “The results showed that…”
  • You don’t need to give the raw data here. Just summarize the main points, calculate averages, or give a range of data to give an overall picture to the reader.
  • Make sure to explain whether or not any statistical analyses were significant, and to what degree, such as 1%, 5%, or 10%.

Step 4 Comment on whether or not your hypothesis is supported.

  • Use simple language such as, “The results supported the hypothesis,” or “The results did not support the hypothesis.”

Step 5 Link your results to your hypothesis.

Demonstrating What You Have Learned

Step 1 Describe what you learned in the lab.

  • If it’s not clear in your conclusion what you learned from the lab, start off by writing, “In this lab, I learned…” This will give the reader a heads up that you will be describing exactly what you learned.
  • Add details about what you learned and how you learned it. Adding dimension to your learning outcomes will convince your reader that you did, in fact, learn from the lab. Give specifics about how you learned that molecules will act in a particular environment, for example.
  • Describe how what you learned in the lab could be applied to a future experiment.

Step 2 Answer specific questions given in the assignment.

  • On a new line, write the question in italics. On the next line, write the answer to the question in regular text.

Step 3 Explain whether you achieved the experiment’s objectives.

  • If your experiment did not achieve the objectives, explain or speculate why not.

Wrapping Up Your Conclusion

Step 1 Describe possible errors that may have occurred.

  • If your experiment raised questions that your collected data can’t answer, discuss this here.

Step 3 Propose future experiments.

  • Describe what is new or innovative about your research.
  • This can often set you apart from your classmates, many of whom will just write up the barest of discussion and conclusion.

Step 6 Add a final statement.

Finalizing Your Lab Report

Step 1 Write in the third person.

Community Q&A

wikiHow Staff Editor

  • If you include figures or tables in your conclusion, be sure to include a brief caption or label so that the reader knows what the figures refer to. Also, discuss the figures briefly in the text of your report. Thanks Helpful 0 Not Helpful 0
  • Once again, avoid using personal pronouns (I, myself, we, our group) in a lab report. The first-person point-of-view is often seen as subjective, whereas science is based on objectivity. Thanks Helpful 0 Not Helpful 0
  • Ensure the language used is straightforward with specific details. Try not to drift off topic. Thanks Helpful 0 Not Helpful 0

how to write a hypothesis example biology lab report

  • Take care with writing your lab report when working in a team setting. While the lab experiment may be a collaborative effort, your lab report is your own work. If you copy sections from someone else’s report, this will be considered plagiarism. Thanks Helpful 3 Not Helpful 0

You Might Also Like

Write a Chemical Equation

  • ↑ https://phoenixcollege.libguides.com/LabReportWriting/introduction
  • ↑ https://www.hcs-k12.org/userfiles/354/Classes/18203/conclusionwriting.pdf
  • ↑ https://www.education.vic.gov.au/school/teachers/teachingresources/discipline/english/literacy/Pages/puttingittogether.aspx
  • ↑ https://writingcenter.unc.edu/tips-and-tools/brainstorming/
  • ↑ https://advice.writing.utoronto.ca/types-of-writing/lab-report/
  • ↑ http://www.socialresearchmethods.net/kb/hypothes.php
  • ↑ https://libguides.usc.edu/writingguide/conclusion
  • ↑ https://libguides.usc.edu/writingguide/introduction/researchproblem
  • ↑ http://writingcenter.unc.edu/handouts/scientific-reports/
  • ↑ https://phoenixcollege.libguides.com/LabReportWriting/labreportstyle
  • ↑ https://writingcenter.unc.edu/tips-and-tools/editing-and-proofreading/

About This Article

Bess Ruff, MA

To write a good lab conclusion in science, start with restating the lab experiment by describing the assignment. Next, explain what you were trying to discover or figure out by doing the experiment. Then, list your results and explain how they confirmed or did not confirm your hypothesis. Additionally, include any uncertainties, such as circumstances beyond your control that may have impacted the results. Finally, discuss any new questions or discoveries that emerged from the experiment. For more advice, including how to wrap up your lab report with a final statement, keep reading. Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Maddie Briere

Maddie Briere

Oct 5, 2017

Did this article help you?

Maddie Briere

Jun 13, 2017

Saujash Barman

Saujash Barman

Sep 7, 2017

Cindy Zhang

Cindy Zhang

Jan 16, 2017

Anonymous

Oct 29, 2017

Am I a Narcissist or an Empath Quiz

Featured Articles

115 Cute, Creative, & Funny Ways to Say “Thank You” Over Text

Trending Articles

How to Answer “How’s It Going?” in Any Situation

Watch Articles

Make Homemade Liquid Dish Soap

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

wikiHow Tech Help Pro:

Develop the tech skills you need for work and life

IMAGES

  1. How Write A Lab Report

    how to write a hypothesis example biology lab report

  2. 10 Proven Ways to Identify Hypothesis in Research Articles

    how to write a hypothesis example biology lab report

  3. Biology Lab Report Template

    how to write a hypothesis example biology lab report

  4. How to write a hypothesis

    how to write a hypothesis example biology lab report

  5. Biology: Lab Report Format by Transformation Teaching

    how to write a hypothesis example biology lab report

  6. Writing A Lab Report Sample

    how to write a hypothesis example biology lab report

VIDEO

  1. Science Lab Report/Report Writing/How to Write Science Report?

  2. HOW TO WRITE A LAB REPORT w/ Dr. B

  3. Hypothesis Writing in AP Biology

  4. Intro Bio Lab Reports

  5. How to Write a Biology Lab Report

  6. Lab Reports (Part 5A): Hypothesis (Criteria)

COMMENTS

  1. PDF Biology Lab Report Sample

    Biology Lab Report Sample, Cont'd Introduction The introduction gives background information on why your experiment is important and clearly states the issues that will be addressed in the rest of the report. Since it provides the structure for the entire report, it is a good idea to write the other sections of your report first, and

  2. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  3. How To Write A Lab Report

    Introduction. Your lab report introduction should set the scene for your experiment. One way to write your introduction is with a funnel (an inverted triangle) structure: Start with the broad, general research topic. Narrow your topic down your specific study focus. End with a clear research question.

  4. How to Write a Lab Report

    She served as a graduate instructor at the University of Illinois, a tutor at St Peter's School in Philadelphia, and an academic writing tutor and thesis mentor at Wesleyan's Writing Workshop. How to Write a Lab Report - We of a lab report example as well as a template and suggested format to get you started.

  5. PDF Lab Report Guide: How to Write in the Format of a Scientific Paper

    Sarah Deel, Carleton College Biology Department, June 2019 How to use this guide The purpose of this guide is to help you write lab reports in biology. It is designed to make the writing process clear, and should help protect you from unnecessary frustration. Before beginning your first report, read "The Fundamentals" below.

  6. 17.5: Scientific Method Lab Report

    Body of Report. Identify the different sections of the body of the report with headings. Introduction. The report should begin with a brief paragraph (complete sentences) that includes a statement of the problem and your hypothesis (remember your hypothesis should be written as a testable statement). Statement of the problem.

  7. Scientific Method Lab Report

    Body of Report. Identify the different sections of the body of the report with headings. Introduction. The report should begin with a brief paragraph (complete sentences) that includes a statement of the problem and your hypothesis (remember your hypothesis should be written as a testable statement). Statement of the problem.

  8. How to Write a Biology Lab Report (with Pictures)

    2. Be sure to include your name on the title page. You want to be sure you receive credit for the work. If you have a group report include the name of all students in your group. 3. Add the class title, date, and the instructor's name below your title. Your instructor may have a specific set of instructions.

  9. PDF Writing a Lab Report (Biology)

    report. Please see our other lab report resource to learn about the format of a chemistry lab report. Your lab report should begin with a title page, unless otherwise instructed. The information should include the name of the study, name(s) of the authors, instructor, course number, institution at which the experiment was performed, and the ...

  10. 10.3: Lab Report

    Sections of a Lab Report. Title Page: The title describes the focus of the research. The title page should also include the student's name, the lab instructor's name, and the lab section. Introduction: The introduction provides the reader with background information about the problem and provides the rationale for conducting the research.

  11. How to Write a Lab Report

    Title Page. Not all lab reports have title pages, but if your instructor wants one, it would be a single page that states: . The title of the experiment. Your name and the names of any lab partners. Your instructor's name. The date the lab was performed or the date the report was submitted.

  12. Scientific Lab Reports

    Writing a Lab Report. Writing a scientific lab report is significantly different from writing for other classes like philosophy, English, and history. The most prominent form of writing in biology, chemistry, and environmental science is the lab report, which is a formally written description of results and discoveries found in an experiment.

  13. Sample Biology Lab Report at Gallaudet University

    Lab Report. >Sample. Updated: 2005. Demonstration of a close genetic relationship between human and chimpanzee through the Nutall precipitation reaction. Abstract. Some scientists theorize that humans and chimpanzees evolved from a common ancestor millions of years ago. Because of this theory, we hypothesized that the chimpanzee blood proteins ...

  14. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  15. Library Research Guides: STEM: How To Write A Lab Report

    The introduction of a lab report discusses the problem being studied and other theory that is relevant to understanding the findings. The hypothesis of the experiment and the motivation for the research are stated in this section. Write the introduction in your own words. Try not to copy from a lab manual or other guidelines. Instead, show ...

  16. Lab Report Handbook

    5. Methods. The methods section is a critical component of a lab report or a published research study, as scientists must be able to reproduce each other's work. Your methods section should be written in such a way that a classmate could reproduce your experiment based on the information provided.

  17. How to Write Biology Lab Report or Research Paper

    Introduction. The introduction of your biology reports is one of the first sections to appear in a statement. However, it's recommended that you work on it when you are almost done compiling the review. Yes, write it after you have completed the methodology chapter, result, and conclusion part of the information.

  18. Scientific Reports

    This handout provides a general guide to writing reports about scientific research you've performed. In addition to describing the conventional rules about the format and content of a lab report, we'll also attempt to convey why these rules exist, so you'll get a clearer, more dependable idea of how to approach this writing situation ...

  19. How to Write an AP® Biology Lab Report

    Title. The title of your lab report should be as specific as possible (i.e., "Lab 1" is not a specific title). Oftentimes, you can follow the model of " The Effect of X on Y .". For example, in an experiment where you tested different types of fertilizer and how well they made potato plants grow, a good title would be "The Effect of ...

  20. Biology Hypothesis

    Follow this step-by-step guide to create a strong biology hypothesis: 1. Identify the Phenomenon: Clearly define the biological phenomenon you intend to study. This could be a question, a pattern, an observation, or a problem in the field of biology. 2.

  21. Writing a Lab Report: Introduction and Discussion Section Guide

    Download this page as a PDF: Writing a Lab Report. Return to Writing Studio Handouts. Part 1 (of 2): Introducing a Lab Report. The introduction of a lab report states the objective of the experiment and provides the reader with background information. State the topic of your report clearly and concisely (in one or two sentences).

  22. How to Write Hypothesis for Lab Report

    Lab Answers: Energy from Burning Food. Formalized Hypotheses example: Ifthe incidence of skin cancer is related to exposure levels of ultraviolet light , then people with a high exposure to uv light will have a higher frequency of skin cancer. If leaf color change is related to temperature , then exposing plants to low temperatures will result ...

  23. 5 Ways to Write a Good Lab Conclusion in Science

    1. Introduce the experiment in your conclusion. Start out the conclusion by providing a brief overview of the experiment. Describe the experiment in 1-2 sentences and discuss the objective of the experiment. Also, make sure to include your manipulated (independent), controlled and responding (dependent) variables. [3] 2.