GMOs – Top 3 Pros and Cons

Cite this page using APA, MLA, Chicago, and Turabian style guides

  • Pro/Con Arguments
  • Did You Know?

Discussion Questions

Take Action

Selective breeding techniques have been used to alter the genetic makeup of plants for thousands of years. The earliest form of selective breeding were simple and have persisted: farmers save and plant only the seeds of plants that produced the most tasty or largest (or otherwise preferable) results. In 1866, Gregor Mendel, an Austrian monk, discovered and developed the basics of DNA by crossbreeding peas. More recently, genetic engineering has allowed DNA from one species to be inserted into a different species to create genetically modified organisms (GMOs). [ 1 ] [ 2 ] [ 53 ] [ 55 ]

To create a GMO plant, scientists follow these basic steps over several years:

  • Identify the desired trait and find an animal or plant with that trait. For example, scientists were looking to make corn more insect-resistant. They identified a gene in a soil bacterium ( Bacillus thuringiensis , or Bt), that naturally produces an insecticide commonly used in organic agriculture.
  • Copy the specific gene for the desired trait.
  • Insert the specific gene into the DNA of the plant scientists want to change. In the above example, the insecticide gene from Bacillus thuringiensis was inserted into corn.
  • Grow the new plant and perform tests for safety and the desired trait. [ 55 ]

According to the Genetic Literacy Project , “The most recent data from the International Service for the Acquisition of Agri-biotech Applications (ISAAA) shows that more than 18 million farmers in 29 countries, including 19 developing nations, planted over 190 million hectares (469.5 million acres) of GMO crops in 2019.” The organization stated that a “majority” of European countries and Russia, among other countries, ban the crops. However, most countries that ban the growth of GMO crops, allow their import. Europe, for example, imports 30 million tons of corn and soy animal feeds every year, much of which is GMO. [ 58 ]

In the United States, the health and environmental safety standards for GM crops are regulated by the Environmental Protection Agency (EPA), the Food and Drug Administration (FDA), and the US Department of Agriculture (USDA). Between 1985 and Sep. 2013, the USDA approved over 17,000 different GM crops for field trials, including varieties of corn, soybean, potato, tomato, wheat, canola, and rice, with various genetic modifications such as herbicide tolerance; insect, fungal, and drought resistance; and flavor or nutrition enhancement. [ 44 ] [ 45 ]

In 1994, the “FLAVR SAVR” tomato became the first genetically modified food to be approved for public consumption by the FDA. The tomato was genetically modified to increase its firmness and extend its shelf life. [ 51 ]

Recently, the term “bioengineered” food has come into popularity, under the argument that almost all food has been “genetically modified” via selective breeding or other basic growing methods. Bioengineered food refers specifically to food that has undergone modification using rDNA technology, but does not include food genetically modified by basic cross-breeding or selective breeding. As of Jan. 10, 2022, the USDA listed 12 bioengineered products available in the US: alfalfa, Arctic apples, canola, corn, cotton, BARI Bt Begun varieties of eggplant, ringspot virus-resistant varieties of papaya, pink flesh varieties of pineapple, potato, AquAdvantage salmon, soybean, summer squash, and sugarbeet. [ 56 ] [ 57 ]

The National Bioengineered Food Disclosure Standard established mandatory national standards for labeling foods with genetically engineered ingredients in the United States. The Standard was implemented on Jan. 1, 2020 and compliance became mandatory on Jan. 1, 2022. [ 46 ]

49% of US adults believe that eating GMO foods are “worse” for one’s health, 44% say they are “neither better nor worse,” and 5% believe they are “better,” according to a 2018 Pew Research Center report. [ 9 ]

Should Genetically Modified Organisms (GMOs) Be Grown?

Pro 1 Genetically modified (GM) crops have been proven safe through testing and use, and can even increase the safety of common foods. As  astrophysicist Neil deGrasse Tyson explained, “Practically every food you buy in a store for consumption by humans is genetically modified food. There are no wild, seedless watermelons. There’s no wild cows… We have systematically genetically modified all the foods, the vegetables and animals that we have eaten ever since we cultivated them. It’s called artificial selection.” [ 54 ] A single health risk associated with GMO consumption has not been discovered in over 30 years of lab testing and over 15 years of field research. Martina Newell-McGoughlin, Director of the University of California Systemwide Biotechnology Research and Education Program, said that “GMOs are more thoroughly tested than any product produced in the history of agriculture.” [ 8 ] Over 2,000 global studies have affirmed the safety of GM crops. Trillions of meals containing GMO ingredients have been eaten by humans, with zero verified cases of illness related to the food being genetically altered. [ 10 ] [ 11 ] GM crops can even be engineered to reduce natural allergens and toxins, making them safer and healthier. Molecular biologist Hortense Dodo, genetically engineered a hypoallergenic peanut by suppressing the protein that can lead to a deadly reaction in people with peanut allergies. [ 12 ] Read More
Pro 2 GMO crops lower the price of food and increase nutritional content, helping to alleviate world hunger. The World Food Programme, a humanitarian organization, between 720 and 811 million people face hunger globally. Population growth, climate change, over-farming, and water shortages all contribute to food scarcity. GMOs can help address those problems with genetic engineering to improve crop yields and help farmers grow food in drought regions or on depleted soil, thereby lowering food prices and feeding more people. [ 13 ] [ 14 ] [ 15 ] [ 16 ] David Zilberman, Professor of Agricultural and Resource Economics at UC Berkeley, said that GMO crops have “raised the output of corn, cotton and soy by 20 to 30 percent, allowing some people to survive who would not have without it. If it were more widely adopted around the world, the price [of food] would go lower, and fewer people would die of hunger.” [ 17 ] To combat Vitamin A deficiency, the main cause of childhood blindness in developing countries, researchers developed a GMO ‘Golden Rice’ that produces high levels of beta-carotene. A report by Australia and New Zealand’s food safety regulator found that Golden Rice “is considered to be as safe for human consumption as food derived from conventional rice.” [ 18 ] [ 19 ] [ 20 ] Read More
Pro 3 Growing GMO crops leads to environmental benefits such as reduced pesticide use, less water waste, and lower carbon emissions. The two main types of GMO crops in use are bioengineered to either produce their own pesticides or to be herbicide-tolerant. More than 80% of corn grown in the US is GMO Bt corn, which produces its own Bacillus thuringiensis (Bt) insecticide. This has reduced the need for spraying insecticides over corn fields by 35%, and dozens of studies have shown there are no environmental or health concerns with Bt corn. [ 21 ] [ 22 ] [ 23 ] [ 59 ] Drought-tolerant varieties of GMO corn have been shown to reduce transpiration (evaporation of water off of plants) by up to 17.5%, resulting in less water waste. [ 24 ] Herbicide-tolerant (Ht) GMO soy crops have reduced the need to till the soil to remove weeds. Tilling is a process that involves breaking up the soil, which brings carbon to the surface. When that carbon mixes with oxygen in the atmosphere, it becomes carbon dioxide and contributes to global warming. Reduced tilling preserves topsoil, reduces soil erosion and water runoff (keeping fertilizers out of the water supply), and lowers carbon emissions. The decreased use of fuel and tilling as a result of growing GM crops can lower greenhouse gas emissions as much as removing 12 million cars from the roads each year. [ 25 ] [ 26 ] [ 27 ] [ 28 ] [ 29 ] [ 30 ] The global population is expected to increase by two billion by 2050. Andrew Allan, a plant biologist at the University of Auckland, explained, “So where’s that extra food going to come from? It can’t come from using more land, because if we use more land, then we’ve got to deforest more, and the [global] temperature goes up even more. So what we really need is more productivity. And that, in all likelihood, will require G.M.O.s.” [ 59 ] Read More
Con 1 Genetically modified (GM) crops have not been proven safe for human consumption through human clinical trials. Scientists still don’t know what the long-term effects of significant GMO consumption could be. Robert Gould, pathologist at the UC San Francisco School of Medicine, said, “the contention that GMOs pose no risks to human health can’t be supported by studies that have measured a time frame that is too short to determine the effects of exposure over a lifetime.” [ 33 ] Genetically modified ingredients are in 70-80% of food eaten in the United States, even though there haven’t been any long term clinical trials on humans to determine whether GMO foods are safe. [ 31 ] [ 32 ] According to the Center for Food Safety, a US-based nonprofit organization, “Each genetic insertion creates the added possibility that formerly nontoxic elements in the food could become toxic.” The group says that resistance to antibiotics, cancer, and suppressed immune function are among potential risks of genetic modification using viral DNA. [ 34 ] Megan Westgate, Executive Director of the Non-GMO Project, explained, “Anyone who knows about genetics knows that there’s a lot we don’t understand. We’re always discovering new things or finding out that things we believed aren’t actually right.” Because of the lack of testing, we may not have found the particular dangers in GMO foods yet, but that doesn’t make them safe to consume. [ 59 ] Read More
Con 2 Tinkering with the genetic makeup of plants may result in changes to the food supply that introduce toxins or trigger allergic reactions. An article in Food Science and Human Welfare said, “Three major health risks potentially associated with GM foods are: toxicity, allergenicity and genetic hazards.” The authors raised concerns that the GMO process could disrupt a plant’s genetic integrity, with the potential to activate toxins or change metabolic toxin levels in a ripple effect beyond detection. [ 35 ] A joint commission of the World Health Organization (WHO) and the Food and Agriculture Organization of the UN (FAO) identified two potential unintended effects of genetic modification of food sources: higher levels of allergens in a host plant that contains known allergenic properties, and new proteins created by the gene insertion that could cause allergic reactions. [ 36 ] The insertion of a gene to modify a plant can cause problems in the resulting food. After StarLink corn was genetically altered to be insect-resistant, there were several reported cases of allergic reactions in consumers. The reactions ranged from abdominal pain and diarrhea to skin rashes to life-threatening issues. [ 37 ] Read More
Con 3 Certain GM crops harm the environment through the increased use of toxic herbicides and pesticides. An “epidemic of super-weeds” has developed resistance to the herbicides that GM crops were designed to tolerate since herbicide-resistant GM crop varieties were developed in 1996. Those weeds choke crops on over 60 million acres of US croplands, and the solution being presented to farmers is to use more herbicides. This has led to a tenfold increase in the use of the weed killer Roundup, which is made by Monsanto, the largest GMO seed producer. [ 33 ] [ 38 ] The increased use of the weed killer glyphosate (created by Monsanto) to kill the weeds that compete with crops can harm pollinating insects. Scientists blame Roundup (the active ingredient of which is glyphosate) for a 90% decrease in the US monarch butterfly population. The weed killer potentially create health risks for humans who ingest traces of herbicides used on GM crops. When glyphosate is used near rivers, local wildlife is impacted, including a higher mortality rates among amphibians.  [ 38 ] [ 41 ] [ 42 ] A report from the Canadian Biotechnology Action Network found that “Herbicide-tolerant crops reduce weed diversity in and around fields, which in turn reduces habitat and food for other important species.” [ 43 ] Melissa Waddell, Editor of Living Non-GMO, explained, “Most GMO crops are engineered for herbicide resistance, so fields can be sprayed liberally with weedkillers that eliminate everything but the cash crop. Weeds are a huge problem for farmers — they compete with cash crops for nutrients, water and light. But diverse plant life also protects the soil from erosion and nutrient loss. It supports the pollinators and other beneficial insects that do so much of our agricultural labor. While ‘welcoming the weeds’ isn’t a practical solution, neither is wiping out plant life with toxic chemicals. Between herbicide tolerance and built-in pesticides, GMOs are a double-decker biodiversity-wrecker.” [ 60 ] Read More

argumentative essay gm crops

1.Should GMOs be grown and used in foods? Why or why not?

2. Should food labels include whether GMO plants have been included in the products? Why or why not?

3. What other ways can world hunger be alleviated if not via GMOs? Explain your answers.

1. Consider Megan L. Norris’ answer to the question “ Will GMOs Hurt My Body? ”

2. Discover “ Science and History of GMOs and Other Food Modification Processes ” according to the Food and Drug Administration (FDA).

3. Explore Farm Aid’s argument to change the GMO status quo .

4. Consider how you felt about the issue before reading this article. After reading the pros and cons on this topic, has your thinking changed? If so, how? List two to three ways. If your thoughts have not changed, list two to three ways your better understanding of the “other side of the issue” now helps you better argue your position.

5. Push for the position and policies you support by writing US national senators and representatives .

1.Theresa Phillips, "Genetically Modified Organisms (GMOs): Transgenic Crops and Recombinant DNA Technology," nature.com, 2008
2.Chelsea Powell and Ana Maurer, "How to Make a GMO," sitn.hms.harvard.edu, Aug. 9, 2015
3.Chase Purdy, "The First Non-Browning, Genetically Modified Apple Is Shipping to US Groceries," qz.com, Nov. 7, 2017
4.David Johnson and Siobhan O’Connor, "These Charts Show Every Genetically Modified Food People Already Eat in the US," time.com, Apr. 30, 2015
5.Genetic Literacy Project, "Where Are GMO Crops and Animals Approved and Banned?," gmo.geneticliteracyproject.org (accessed July 22, 2019)
6.European Commission, "Several European Countries Move to Rule out GMOs," ec.europa.edu (accessed June 25, 2019)
7.US Food and Drug Administration (FDA), "Questions & Answers on Food from Genetically Engineered Plants," fda.gov, Jan. 4, 2018
8.Best Food Facts, "GMOs and Human Health," bestfoodsfacts.org, Apr. 18, 2018
9.Pew Research Center, "Public Perspectives on Food Risks," pewresearch.org, Nov. 19, 2018
10.Alan McHughen, "GMO Safety and Regulations," geneticliteracyproject.org, Dec. 16, 2014
11.David H. Freedman, "The Truth about Genetically Modified Food," scientificamerican.com, Sep. 1, 2013
12.Becky Ferreira, "This Food Scientist Wants to Save Lives with a Hypoallergenic Peanut," vice.com, Jan. 26, 2018
13.World Food Proramme (WFP), "The State of Food Security and Nutrition in the World," wfp.org, 2021
14.World Economic Forum, "Food Security and Why It Matters," weforum.org, Jan. 18. 2016
15.David S. Levin, "Op-Ed: GMOs Could Be the Solution to Africa’s Food Shortages," cnbcafrica.com, July 26, 2017
16.Jennifer Ackerman, "Food: How Altered?," nationalgeographic.com (accessed July 22, 2019)
17.David H. Freedman, "The Truth about Genetically Modified Food," scientificamerican.com, Sep. 1, 2013
18.Genetic Literacy Project, "What Is Nutritionally Enhanced Golden Rice and Why Is It Controversial?," gmo.geneticliteracyproject.org (accessed July 22, 2019)
19.World Health Organization (WHO), "Global Prevalence of Vitamin a Deficiency," who.int, 1995
20.Food Standards, "Approval Report – Application A1138," foodstandards.gov.au, Dec. 20, 2017
21.Genetic Literacy Project, "Which Genetically Engineered Crops and Animals Are Approved in the US?," gmo.geneticliteracyproject.org (accessed July 22, 2019)
22.United States Department of Agriculture Economic Research Service, "Recent Trends in GE Adoption," ers.usda.gov, July 16, 2018
23.Michael S. Koach, Janson M. Ward, Steven L. Levine, James A. Baum, et al., "The Food and Environmental Safety of BT Crops," ncbi.nlm.nih.gov, Apr. 29, 2015
24.Krishna S. Nemali et al., "Physiological Responses Related to Increased Grain Yield under Drought in the First Biotechnology-Derived Drought-Tolerant Maize," Plant, Cell & Environment, Sep. 11, 2014
25.Danielle Prieur, "Could No-Till Farming Reverse Climate Change?," usnews.com, Aug. 4, 2016
26.International Service for the Acquisition of Agri-Biotec Applications (ISAAA), "Resources Publications Pocket K Herbicide Tolerance Technology: Glyphosate and Glufosinate Pocket K No. 10: Herbicide Tolerance Technology: Glyphosate and Glufosinate," isaaa.org, Oct. 2018
27.N.K. Fageria and A. Moreira, "Chapter Four - the Role of Mineral Nutrition on Root Growth of Crop Plants," sciencedirect.com, 2011
28.National Academies of Sciences, Engineering, and Medicine, "The Impact of Genetically Engineered Crops on Farm Sustainability in the United States," nap.edu, 2010
29.Jon Entine and Rebecca Randall, "GMO Sustainability Advantage? Glyphosate Spurs No-Till Farming, Preserving Soil Carbon," geneticliteracyproject.org, May 5, 2017
30.Graham Brookes and Peter Barfoot, "Environmental Impacts of Genetically Modified (Gm) Crop Use 1996–2015: Impacts on Pesticide Use and Carbon Emissions," tandfonline.com, May 2, 2017
31.Grocery Manufacturers Association, "Grocery Manufacturers Association Position on GMOs," gmaonline.org, Sep. 23, 2013
32.Genetic Literacy Project, "Why Are There No Long-Term GMO Safety Studies or Studies on Humans?," gmo.geneticliteracyproject.org (accessed June 24, 2019)
33.Consumer Reports, "GMO Foods: What You Need to Know Why Is There so Much Fuss over Genetically Modified Ingredients? This Will Help You Sift Through the Facts.," consumerreports.org, Feb. 26, 2015
34.Center For Food Safety, "GE Food & Your Health," centerforfoodsafety.org (accessed July 23, 2019)
35.Chen Zhang, Robert Wohlueter, and Han Zang, "Genetically Modified Foods: A Critical Review of Their Promise and Problems," sciencedirect.com, Sep. 2016
36.Food and Agriculture Organization of the United Nations and World Health Organization, "Evaluation of Allergenicity of Genetically Modified Foods," fao.gov, Jan. 2001
37.CBS News, "Life-Threatening Food?," cbsnews.com, May 17, 2001
38.Consumer Reports, "GMO Foods: What You Need to Know Why Is There so Much Fuss over Genetically Modified Ingredients? This Will Help You Sift Through the Facts.," consumerreports.org, Feb. 26, 2015
39.Patricia Callahan, "EPA Tosses Aside Safety Data, Says Dow Pesticide for GMOs Won't Harm People," chicagotribune.com, Dec. 8, 2015
40.Consumer Reports, "GMO Foods: What You Need to Know Why Is There so Much Fuss over Genetically Modified Ingredients? This Will Help You Sift Through the Facts.," consumerreports.org, Feb. 26, 2015
41.Garden Organic, "GMOs - Environmental Concerns," gardenorganic.org.uk (accessed July 23, 2019)
42.Jessica Neves, Adam D'Agostino, and Alicia Zolondick, "Environmental Impact of GMOs," blogs.umass.edu, Apr. 20, 2016
43.Canadian Biotechnology Action Network (CBAN), "Are GMO Crops Better for the Environment?," gmoinquiry.ca, May 2015
44.US Department of Agriculture, "Regulation of Biotech Plants," usda.gov (accessed June 23, 2019)
45.Jorge Fernandez-Cornejo, Seth Weshsler, Mike Livingston, and Lorrie Mitchell, "Genetically Engineered Crops in the United States," ers.usda.gov, Feb. 2014
46.United States Department of Agriculture, "BE Disclosure," ams.usda.gov (accessed June 23, 2019)
47.United States Department of Agriculture, "Adoption of Genetically Engineered Crops in the U.S.," ers.usda.gov (accessed July 23, 2019)
48.Center for Food Safety, "About Genetically Engineered Foods," centerforfoodsafety.com (accessed June 23, 2019)
49.GMO Answers, "GMOs and Livestock," gmoanswers.com (accessed June 23, 2019)
50.Chicago Tribune, "FDA OKs Calgene's Flavr Savr Tomato, a 1st for Whole Biotech Food," chicagotribune.com, May 18, 1984
51.G. Bruening, and JM Lyons, "The Case of the Flavr Savr Tomato," calag.ucanr.edu, July 1, 2000
52David Johnson and Siobhan O'Connor, "Health Diet/Nutrition These Charts Show Every Genetically Modified Food People Already Eat in the U.S.," time.com, Apr. 30, 2015
53.Brad Plumer, "Here’s What 9,000 Years of Breeding Has Done to Corn, Peaches, and Other Crops," vox.com, May 12, 2016
54.Brad Plumer, "'Traditional Crop Breeding' Isn’t Nearly as Traditional as You Think," vox.com, Aug. 5, 2014
55.FDA, "Science and History of GMOs and Other Food Modification Processes," fda.gov, Apr. 22, 2020
56.Rudy Pacumbaba, "Understanding GMOs and Bioengineered Foods," aces.edu, June 3, 2020
57.USDA Agricultural Marketing Service, "List of Bioengineered Food," ams.usda.gov (accessed Jan. 10, 2022)
58. Genetic Literacy Project, "Where Are GMO Crops and Animals Approved and Banned?," geneticliteracyproject.org (accessed Jan. 10, 2021)
59.Jennifer Kahn, "Learning to Love G.M.O.s," nytimes.com, July 20, 2021
60.Melissa Waddell, "How Do GMOs Affect Biodiversity?," livingnongmo.org, Apr. 13, 2021

ProCon/Encyclopaedia Britannica, Inc. 325 N. LaSalle Street, Suite 200 Chicago, Illinois 60654 USA

Natalie Leppard Managing Editor [email protected]

© 2023 Encyclopaedia Britannica, Inc. All rights reserved

New Topic

  • Social Media
  • Death Penalty
  • School Uniforms
  • Video Games
  • Animal Testing
  • Gun Control
  • Banned Books
  • Teachers’ Corner

Cite This Page

ProCon.org is the institutional or organization author for all ProCon.org pages. Proper citation depends on your preferred or required style manual. Below are the proper citations for this page according to four style manuals (in alphabetical order): the Modern Language Association Style Manual (MLA), the Chicago Manual of Style (Chicago), the Publication Manual of the American Psychological Association (APA), and Kate Turabian's A Manual for Writers of Term Papers, Theses, and Dissertations (Turabian). Here are the proper bibliographic citations for this page according to four style manuals (in alphabetical order):

[Editor's Note: The APA citation style requires double spacing within entries.]

[Editor’s Note: The MLA citation style requires double spacing within entries.]

Site Logo

The GMO debate

August 15, 2018

The issue of genetically modified organisms (GMOs) as they relate to the food supply is an ongoing, nuanced and highly contentious issue.

Individuals from the scientific and medical fields fall on both sides of the argument, some claiming that genetically modified crops are helping to solve issues concerning hunger, environmental sustainability and an increasing global population, while others believe they’re doing more harm than good.

With studies supporting both sides, many wonder: Who should we believe? To give a clearer sense of the issues and arguments that surround GMOs, Dr. Sarah Evanega, a plant biologist, and Dr. David Perlmutter, a neurologist, weigh in from opposing sides. Here’s what they had to say:

What’s your stance on GMO food?

Dr. Sarah Evanega: Genetically modified organism (GMO) food is safe. In that respect, my stance mirrors the position taken by the National Academies of Sciences and the majority of the world’s scientific community.

I eat GMO foods, as do my three young children, because I’m confident in the safety of these products. I support GMO food because I’m convinced that GMO crops can help reduce poverty and hunger among smallholder farmers in developing nations. They can also lessen the environmental impact of agriculture in general.

Genetic engineering is a tool that can help us breed crops that resist drought, diseases, and insect pests, which means farmers achieve higher yields from the crops they grow to feed their families and generate extra income. We have seen, time and again, that farmers who grow GMO crops in Africa, and South and East Asia earn extra money that helps them do things we Westerners take for granted — like send their children to school and buy a propane stove so they no longer have to cook over fires fueled by cow dung.

In developing nations, much of the weeding is done by women and children. By growing crops that can tolerate herbicide applications, the children are freed up to attend school and the women have time to earn income to help support their families.

I know many of the scientists who are using genetic engineering to breed improved crops, and I’ve witnessed their dedication to making the world a better place. I support GMO food because I’ve seen first-hand how it can improve people’s lives. For farmers, access to GMOs is a matter of social and environmental justice.

Dr. David Perlmutter: Genetic modification of agricultural seeds isn’t in the interest of the planet or its inhabitants. Genetically modified (GM) crops are associated with an increased use of chemicals, like glyphosate , that are toxic to the environment and to humans. These chemicals not only contaminate our food and water supplies, but they also compromise soil quality and are actually associated with increased disease susceptibility in crops.

This ultimately leads to an increase in the use of pesticides and further disrupts ecosystems. And yet, despite these drawbacks, we haven’t seen increased yield potential of GM crops, although that has always been one of the promises of GM seeds.

Fortunately, there are innovative alternatives to the issue of food insecurity that are not dependent on using GM crops.

Is GMO really less healthy than non-GMO food? Why or why not?

SE: From a health perspective, GMO food is no different than non-GMO food. In fact, they can even be healthier. Imagine peanuts that can be genetically engineered to reduce levels of aflatoxin , and gluten-free wheat , which would give those with celiac disease a healthy and tasty bread option. GM corn has cut levels of naturally-occurring mycotoxin — a toxin that causes both health problems and economic losses — by a third.

Other GMO foods, such as vitamin A-enriched Golden Rice , has been fortified with vitamins and minerals to create healthier staple foods and help prevent malnutrition.

In general, though, the process of engineering crops to contain a certain trait, such as pest-resistance or drought-tolerance, does nothing to affect the nutrient quality of food. Insect-resistant Bacillus thuringiensis   (Bt) crops actually reduce or eliminate the need for pesticide applications, which further improves their healthfulness and safety.

We have seen this in Bangladesh, where farmers would spray their traditional eggplant crops with pesticides right up until the time of harvest — which meant farmers were getting a lot of pesticide exposure and consumers were getting a lot of pesticide residue. Since growing pest-resistant Bt eggplant, however, they’ve been able to greatly reduce their pesticide applications . And that means GMO crops are healthier not only for the farmer, but the consumer.

Similarly, studies have shown a new disease-resistant GMO potato could reduce fungicide use by up to 90 percent . Again, this would certainly result in a healthier potato — especially since even organic farmers use pesticides.

I understand that people have legitimate concerns about highly processed foods, such as baked goods, breakfast cereals, chips, and other snacks and convenience foods, which are often made from corn, soy, sugar beets, and other crops that are genetically engineered. It’s the manufacturing process, however, that makes these items less healthy than whole foods, like fruits, vegetables, and grains. The origin of the ingredients is irrelevant.

DP: Without question, the various toxic herbicides that are liberally applied to GM crops are having a devastating effect. In terms of the nutritional quality of conventional versus GM food, it’s important to understand that mineral content is, to a significant degree, dependent on the various soil-based microorganisms. When the soil is treated with glyphosate, as is so often the case with GM crops, it basically causes sterilization and deprives the plant of its mineral absorption ability.

But to be fair, the scientific literature doesn’t indicate a dramatic difference in the nutritional quality comparing conventional and GM agricultural products in terms of vitamins and minerals.

It is now, however, well-substantiated that there are health risks associated with exposure to glyphosate. The World Health Organization has characterized glyphosate as a “ probable human carcinogen .” This is the dirty truth that large agribusiness doesn’t want us to understand or even be aware of. Meanwhile, it’s been estimated that over 1.6 billion kilograms of this highly toxic chemical have been applied to crops around the world. And to be clear, GM herbicide-resistant crops now account for more than 50 percent of the global glyphosate usage.

The connection between GM crops and use of chemicals poses a significant threat to the health of humans and our environment.

Does GMO food affect the health of the environment? Why or why not?

SE: GMOs have a positive impact on the health of the environment. Recently, a meta-analysis of 20 years of data found that growing genetically modified insect-resistant corn in the United States has dramatically reduced insecticide use. By suppressing the population of damaging insect pests, it’s also created a “halo effect” that benefits farmers raising non-GM and organic vegetable crops, allowing them to reduce their use of pesticides, too.

We’re also seeing the use of genetic engineering to breed crops that can produce their own nitrogen, thrive in dry conditions, and resist pests. These crops will directly benefit environmental health by cutting the use of fertilizers, pesticides, and water. Other researchers are working to accelerate the rate of photosynthesis, which means crops can reach maturity quicker, thus improving yields, reducing the need to farm new land, and sparing that land for conservation or other purposes.

Genetic engineering can also be used to reduce food waste and its associated environmental impact. Examples include non-browning mushrooms , apples, and potatoes, but could also be expanded to include more perishable fruits. There’s also tremendous potential in regard to genetically engineered animals, such as pigs that produce less phosphorus material.

In summary, GMO crops can have remarkable environmental benefits. They allow farmers to produce more food with fewer inputs. They help us spare land, reduce deforestation, and promote and reduce chemical use.

DP: No doubt. Our ecosystems have evolved to work in balance. Whenever harmful chemicals like glyphosate are introduced into an ecosystem, this disrupts the natural processes that keep our environment healthy.

The USDA Pesticide Data Program reported in 2015 that 85 percent of crops had pesticide residue. Other studies that have looked at the pesticide levels in groundwaters reported that 53 percent of their sampling sites contained one or more pesticides. These chemicals are not only contaminating our water and food supplies, they’re also contaminating the supplies for other organisms in the surrounding environment. So the fact that GM seeds now account for more than 50 percent of global glyphosate usage is certainly concerning.

Perhaps even more importantly, though, is that these chemicals are harming the soil microbiome. We are just now beginning to recognize that the various organisms living in the soil act to protect plants and make them more disease resistant. Destroying these protective organisms with the use of these chemicals weaken plants’ natural defense mechanisms and, therefore, will require the use of even more pesticides and other chemicals.

We now recognize that plants, like animals, are not autonomous, but rather exist in a symbiotic relationship with diverse microorganisms. Plants are vitally dependent upon soil microbes for their health and disease resistance.

To summarize, the use of pesticides for GM crops is disrupting ecosystems, contaminating the water and food supplies for the environment’s organisms, and harming the soil microbiome.

Is GMO food necessary to feed the entire world population? Why or why not?

SE:  With the world’s population expected to reach 9.7 billion by 2050, farmers are now being asked to produce more food than they’ve produced in the entire 10,000-year history of agriculture. At the same time, we’re facing extreme climate change events, such as prolonged droughts and severe storms, that greatly impact agricultural production.

Meanwhile, we need to reduce the carbon emissions, water pollution, erosion, and other environmental impacts associated with agriculture, and avoid expanding food production into wild areas that other species need for habitat.

We can’t expect to meet these enormous challenges using the same old crop breeding methods. Genetic engineering offers us one tool for increasing yields and reducing agriculture’s environmental footprint. It’s not a silver bullet — but it’s an important tool in the plant breeder’s toolbox because it allows us to develop improved crops more quickly than we could through conventional methods. It also helps us work with important food crops like bananas, which are very difficult to improve through conventional breeding methods.

We certainly can feed more people by reducing food waste and improving food distribution and storage systems worldwide. But we can’t afford to ignore important tools like genetic engineering, which can do a lot to improve the productivity and quality of both crops and livestock.

The social and environmental problems that we face today are unprecedented in scale and scope. We must use all the tools available to address the challenge of feeding the world while taking care of the environment. GMOs can play a part.

DP:  The argument that we need GMO food to feed the entire world population is absurd. The reality of the situation is that GM crops have actually not increased the yield of any major commercialized food source . In fact, soy — the most widely grown genetically modified crop — is actually experiencing reduced yields. The promise of increased yield potentials with GM crops is one that we have not realized.

Another important consideration in terms of food security is the reduction of waste. It’s estimated that in the United States, food waste approaches an astounding 40 percent . Leading health commentators, like Dr. Sanjay Gupta, have been vocal on this issue and highlighted food waste as a key component of addressing the issue of food insecurity. So there’s definitely a big opportunity to reduce the amount of food that needs to be produced overall by cutting waste out of the supply chain.

Is there a viable alternative to GMO food? If so, what is it?

SE:  There’s no reason to seek an alternative to GMO foods, from a scientific, environmental, or health perspective. But if people wish to avoid GMO food they can purchase organic products. Organic certification does not allow the use of genetic engineering. However, consumers need to be aware that organic food does carry a rather hefty environmental and economic cost.

A recent study by the U.S. Department of Agriculture found that organic food costs at least 20 percent more than nonorganic food — a figure that can be even higher with certain products and in various geographic regions. That’s a significant difference for families living within a budget, especially when you consider that organic food is not any healthier than nonorganic foods, and both types of food typically have pesticide residues that fall well below federal safety guidelines.

Organic crops also have an environmental cost because they’re generally less productive and require more tilling than conventional and GM crops. They also use fertilizers from animals, which consume feed and water and produce methane gas in their waste. In some cases, take apples for example, the “natural” pesticides that organic growers use are far more toxic to humans and the environment than what conventional growers use.

In terms of plant breeding, some of the improvements that are possible with genetic engineering simply couldn’t be accomplished through traditional methods. Again, genetic engineering offers plant breeders an important tool that can result in a healthy, eco-friendly approach to agriculture. There’s simply no scientific reason to avoid this technology in producing food for the world’s growing population.

DP: Absolutely. There are many innovators working on solutions to sustainably solve the issue of food insecurity. One area of focus has been reducing the waste across the supply chain. For example, Apeel Sciences , a company that has raised funding from the Bill and Melinda Gates Foundation, developed a natural coating that’s made of leftover plant skins and stems. It can be sprayed on produce to slow the ripening process and extend shelf life, which helps consumers and supermarkets alike reduce food waste.

In addition to this, forward-thinking researchers are now deeply involved in studying the microorganisms that live on and near plants in terms of how they function to enhance not only the health of plants, but the quality and quantity of nutrients that they produce. According to British agricultural researcher Davide Bulgarelli, in a recent article published by The Scientist, “Scientists are looking to manipulate soil microbes to sustainably increase crop production — and novel insights into the plant microbiome are now facilitating the development of such agricultural tactics.”

The research that looks at how microbes benefit plants is consistent with similar research relating microorganisms to human health. So another alternative is to harness and take full advantage of the beneficial interaction between microorganisms and plants to create a healthier and more productive agricultural experience.

Dr. Sarah Evanega is a plant biologist who earned her doctorate degree from Cornell University, where she also helped lead a global project to help protect the world’s wheat from wheat stem rust. She’s currently the director of the Cornell Alliance for Science , a global communications initiative that’s seeking to restore science to the policies and discussions around genetically engineered crops.

Dr. Perlmutter is a board-certified neurologist and four-time New York Timesbest-selling author. He received his MD from the University of Miami School of Medicine where he was awarded the Leonard G. Rowntree Research Award. Dr. Perlmutter is a frequent lecturer at symposia sponsored by institutions such as the World Bank and IMF, Yale University, Columbia University, Scripps Institute, New York University, and Harvard University, and serves as an Associate Professor at the University of Miami Miller School of Medicine. He also serves on the board of directors and is a fellow of the American College of Nutrition.

This article first appeared on Healthline .

Get Our News Blast

You might also enjoy.

114 GMO Essay Topics & Examples

To write a GMO argumentative essay, you will need an engaging topic that you will be able to explore in detail. Find it in the list below!

🏆 Best GMO Essay Topics & Examples

🔍 good gmo research paper topics, ✅ interesting gmo argumentative essay topics, ❓ research questions about gmo.

Our experts have gathered GMO essay topics that will be great for a variety of assignments. You can examine the advantages and disadvantages of genetically modified foods. Or talk about the harmful effects of pesticides. Besides, click on the links to read GMO essay examples.

  • Genetically Modified Food Essay In spite of the perceived benefits of genetic engineering technology in the agricultural sector, the production and use of genetically modified foods has triggered a number of issues pertaining to safety and consequences of consumption.
  • Should All Genetically Modified Foods Be Labeled? According to this scholar, members of the public are always comfortable with the idea of not labeling the genetically modified food.
  • Growing GMO Seeds: Monsanto Corporation This paper analyzes Monsanto’s case by focusing on the company’s ethical culture, the costs and benefits of growing genetically modified seeds, and the management of harm caused to plants and animals.
  • Green Acres Company and GMO Products The case at hand concerns Green Acres Inc, which is one of the largest multinational producers of canned fruit and vegetables, known for the use of organic suppliers of their products.
  • GMO Production: Reasons and Potential Effects The purpose of this essay is to examine the reasons and possible effects of GMO production. People interfere in the DNA of organisms to improve their characteristics and make them more beneficial for humans.
  • Ecological Effects of the Release of Genetically Engineered Organisms Beneficial soil organisms such as earthworms, mites, nematodes, woodlice among others are some of the soil living organisms that are adversely affected by introduction of genetically engineered organisms in the ecosystem since they introduce toxins […]
  • The Effect of Genetically Modified Food on Society and Environment First, whether or not genetically modified food provides a sustainable food security alternative; second, what the inferences are of genetically modified food for bio-safety in addition to for human safety and health; and third, the […]
  • Proposition 37 and Genetically Engineered Foods The discussion of Proposition 37 by the public is based on the obvious gap between the “law on the books” and the “law in action” because Food Safety Law which is associated with the Proposition […]
  • Genetically Modified Food of Monsanto Company However, over the years the company has found itself on the hot seat in regards to the safety of some of its products.
  • Genetically Modified Corn in the United States of America This paper does not only asses the impact of GM maize to the agricultural sector but also highlights the risk and beneficial factors the technology has caused to both environment and the public health sector […]
  • Genetically Modified Foods Projects The plan should be formed once the project’s participants have been chosen and it should be communicated to the members and should continuously be used as a reminder of the mission of the project when […]
  • Genetically Modified Organisms and Controversial Discussions in Australia The controversy of the GMOs issue as mentioned above is as a result of the clash between the benefits and negative impacts where some people the anti-GMOs believe that the risks despite the number are […]
  • Overview on the Effects of Genetically Modified Food It is the use of selective breeding that allowed for the creation of wide varieties of plants and animals, however, “the process depended on nature to produce the desired gene”.
  • Can Genetically Modified Food Feed the World: Agricultural and Biotechnological Perspective Undoubtedly, the practice of tissue culture and grafting in plants is never enough to quench the scientific evidence on the power of biotechnology to improve breeding and feeding in living organisms.
  • Genetically Modified Foods Negative Aspects This paper highlights the negative aspects that are associated with genetically modified foods; genetically modified foods expose people and the environment to risks.
  • Analyzing the Prospects of Genetically Modified Foods Despite being the leading producer and consumer of GMFs products across the world, the US practice of embracing GMFs has elicited a major dilemma in the country ranging from human health to environmental challenges.
  • Will Genetically Modified Foods Doom Us All? One of the most desired outcomes from a crop is the ability to grow tolerance to the effects of herbicide. One of the more recent innovations in the field of GM foods is the invention […]
  • Genetically Modified Foods and Environment It is on this background researchers that are in the field of genetic engineering and biotechnology have come up with a concept of genetic modification in attempt to address this limitation to farmers.
  • The Debate Pertaining to Genetically Modified Food Products Some of the concerns raised are genuine, but then, the advantages of embracing the use of genetically modified food products outweigh the disadvantages.
  • Is Genetically Modified Food Safe for Human Bodies and the Environment? The following is a discussion of the benefits of using genetically modified foods. A different concern adjoining GM foods is the bringing in of new allergies.
  • Consumer Judgment on Genetically Modified Foods A clear understanding of the genetically modified foods in terms of their risks and benefits could help determine the preferences of consumers for genetically modified foods and GM labeling policy.
  • Business Ethics-Labeling Genetically Modified Food The consumer protection agency has done little to enhance the labeling given that they believe that these products that are genetically modified are just similar to the natural ones hence no need to be labeled […]
  • Objection to the Production of Genetically Modified Foods Contrary to the objections presented by the public concerning the introduction and use of GM food, some of the big world organizations seem to be reading from different scripts.
  • Is Genetically Engineered Food the Solution to the World’s Hunger Problems? However, the acceptance of GMO’s as the solution to the world’s food problem is not unanimously and there is still a multitude of opposition and suspicion of their use.
  • Monsanto Agricultural Corporation and Genetically Modified Food Mandatory Labeling
  • Genetically Modified Food: Monsters or Miracle?
  • Genetically Modified Food: It’s the End of The World as We Know It
  • Risk, Genetically Modified Food and the US and EU Divide
  • Genetically Modified Food and Drug Administration
  • The First Death Caused by Genetically Modified Food
  • Banning Unlabeled Genetically Modified Food
  • Comparing Consumer Attitudes Towards Genetically Modified Food in Europe
  • Arguments for and Against Genetically Modified Food
  • The Issue Surrounding the Health Dangers of Genetically Modified Food
  • The Harm Negative Effects of Genetically Modified Food
  • Genetically Modified Food Must Be Regulated
  • Genetically Modified Food and Its Effects on The Environment
  • Genetically Modified Food and Its Effects on Humans
  • Trade Standards and the Political Economy of Genetically Modified Food
  • Advantages and Disadvantages About Genetically Modified Food
  • The Genetically Modified Food as the Risk in the Society
  • Controversy over Genetically Modified Food
  • Cultural World View and Genetically Modified Food Policy Preferences
  • Genetically Modified Food Are Pandora´s Box to Humans and the Environment
  • Biogenetics: Genetically Modified Food and Food Supply
  • Eat Genetically Modified Food: It ‘s Not Bad for You
  • Positive and Negative Impact of Genetically Modified Food
  • Potential Market Segments for Genetically Modified Food
  • Information Policy and Genetically Modified Food
  • Critique Genetically Modified Food Assignment
  • Genetically Modified Food Are Not Good For the Human Race
  • The Dangers and Safety of Genetically Modified Food
  • Genetically Modified Food and Americans Right to Know
  • Should Genetically Modified Food Be Labeled?
  • Analyzing Anti GMO Golden Rice Argument
  • Finding Common Ground Among the GMO Jungle
  • Contested Accountability Claims and GMO Regulation in the European Union
  • Controversy Surrounding GMO and the Food Industry
  • Genetic Engineering: Using Biotechnology in GMO
  • GMO and Its Effects on Health, Super Weeds, and the Impact
  • GMO Food and Distribution Should Be Illegal
  • GMO: Nutrition and Genetically Modified Foods
  • GMO Regulations, International Trade and the Imperialism of Standards
  • GMO Testing Strategies and Implications for Trade
  • HGH for Humans Like GMO’S for Food
  • How Does GMO Affect on Us and Our Health?
  • Market and Welfare Effects of GMO Introduction in Small Exporting Countries
  • Labeling Genetically Modified Organisms
  • Natural Versus Artificial Selection and the Issues of the GMO
  • Analyzing Non-GMO Plant Breeding Techniques
  • Psychological and Sociological Effects of GMO
  • The Common Ingredients Derived from GMO Risk Crops
  • The Flaws and Failure of Genetically Modified Organisms
  • The Great GMO Debate on Genetically Modified Organisms
  • Untested, Unsafe and Unhealthy GMO Foods
  • China’s GMO and Adoption of New Technology
  • Consumer Preference and Market Simulations of Food and Non-Food GMO Introductions
  • Europe’s Regions Demand Power-Sharing over GMO Crop Decision
  • Frankenfood: GMO Foods and Their Effects on Us and the Planet
  • Genetic Testing and the Human GMO
  • GMO and Its Effects on the Economy
  • GMO Biology Basis, Social and Ethical Dilemmas Associated with GMO
  • GMO Contamination Price Effects in the U.S. Corn Market
  • GMO Products Needs for Be Regulated, and Product Packaging Needs
  • Should Government Enforce GMO Labeling?
  • Why Are GMO Products So Harmful?
  • Who Pays the Costs of Non-GMO Segregation and Identity Preservation?
  • What Are the Similarities and Differences Between Genetically Modified Organism and Organic Food?
  • What Are the Flaws and Failure of Genetically Modified Organisms?
  • Can Systematic Reviews Inform GMO Risk Assessment and Risk Management?
  • What Are the Advantages and Disadvantages of GMOs?
  • Are GMO Policies “Trade-Related”?
  • How Does GMOs Affect Us and Our Health?
  • What Are the Requirements for Transparency in the GMO Industry?
  • Why Are GMO Foods Bad?
  • How Genetically Modified Organisms?
  • Should Mandatory GMO Labeling Really Hurt the Economy?
  • Are GMO Genetically Modified Organisms?
  • What Are the Safety and Health Effects of Eating GMO Foods?
  • Beef Labeling After BSE: Do Consumers Care About BSE Testing and GMO Labeling?
  • What Are GMOs and How Are They Affecting Consumers?
  • Are GMO Foods Better Than Organic Foods?
  • Technological Risks: GMO, Gene Editing, What Is the Problem with Europe?
  • “Does Contain” VS “Does Not Contain”: Does It Matter Which GMO Label Is Used?
  • Are GMOs the Silent Killer?
  • How GMO Effect Life?
  • Are GMO Products Really That Harmful?
  • Why All the Fuss over GMO Foods?
  • Without GMO Food Crops, Will We Have Enough Food?
  • Are GMO Foods Safe?
  • Why Should GMO Labeling Exist?
  • How Will the GMO Debate Affect the WTO and Farm Trade Reform?
  • How Is Visual Unsupported Claims Used by Simply Anti-GMO Proponents – Genetical?
  • Which is the Labeling For GMO Foods?
  • Corn Paper Topics
  • Metabolic Disorders Questions
  • World Hunger Research Topics
  • Cooking Questions
  • Fast Food Essay Titles
  • Grocery Store Essay Topics
  • Health Topics
  • Poisoning Essay Ideas
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2023, November 30). 114 GMO Essay Topics & Examples. https://ivypanda.com/essays/topic/gmo-essay-examples/

"114 GMO Essay Topics & Examples." IvyPanda , 30 Nov. 2023, ivypanda.com/essays/topic/gmo-essay-examples/.

IvyPanda . (2023) '114 GMO Essay Topics & Examples'. 30 November.

IvyPanda . 2023. "114 GMO Essay Topics & Examples." November 30, 2023. https://ivypanda.com/essays/topic/gmo-essay-examples/.

1. IvyPanda . "114 GMO Essay Topics & Examples." November 30, 2023. https://ivypanda.com/essays/topic/gmo-essay-examples/.

Bibliography

IvyPanda . "114 GMO Essay Topics & Examples." November 30, 2023. https://ivypanda.com/essays/topic/gmo-essay-examples/.

  • Tools and Resources
  • Customer Services
  • Agriculture and the Environment
  • Case Studies
  • Chemistry and Toxicology
  • Environment and Human Health
  • Environmental Biology
  • Environmental Economics
  • Environmental Engineering
  • Environmental Ethics and Philosophy
  • Environmental History
  • Environmental Issues and Problems
  • Environmental Processes and Systems
  • Environmental Sociology and Psychology
  • Environments
  • Framing Concepts in Environmental Science
  • Management and Planning
  • Policy, Governance, and Law
  • Quantitative Analysis and Tools
  • Sustainability and Solutions
  • Share This Facebook LinkedIn Twitter

Article contents

Pros and cons of gmo crop farming.

  • Rene Van Acker , Rene Van Acker University of Guelph
  • M. Motior Rahman M. Motior Rahman University of Guelph
  •  and  S. Zahra H. Cici S. Zahra H. Cici University of Guelph
  • https://doi.org/10.1093/acrefore/9780199389414.013.217
  • Published online: 26 October 2017

The global area sown to genetically modified (GM) varieties of leading commercial crops (soybean, maize, canola, and cotton) has expanded over 100-fold over two decades. Thirty countries are producing GM crops and just five countries (United States, Brazil, Argentina, Canada, and India) account for almost 90% of the GM production. Only four crops account for 99% of worldwide GM crop area. Almost 100% of GM crops on the market are genetically engineered with herbicide tolerance (HT), and insect resistance (IR) traits. Approximately 70% of cultivated GM crops are HT, and GM HT crops have been credited with facilitating no-tillage and conservation tillage practices that conserve soil moisture and control soil erosion, and that also support carbon sequestration and reduced greenhouse gas emissions. Crop production and productivity increased significantly during the era of the adoption of GM crops; some of this increase can be attributed to GM technology and the yield protection traits that it has made possible even if the GM traits implemented to-date are not yield traits per se . GM crops have also been credited with helping to improve farm incomes and reduce pesticide use. Practical concerns around GM crops include the rise of insect pests and weeds that are resistant to pesticides. Other concerns around GM crops include broad seed variety access for farmers and rising seed costs as well as increased dependency on multinational seed companies. Citizens in many countries and especially in European countries are opposed to GM crops and have voiced concerns about possible impacts on human and environmental health. Nonetheless, proponents of GM crops argue that they are needed to enhance worldwide food production. The novelty of the technology and its potential to bring almost any trait into crops mean that there needs to remain dedicated diligence on the part of regulators to ensure that no GM crops are deregulated that may in fact pose risks to human health or the environment. The same will be true for the next wave of new breeding technologies, which include gene editing technologies.

  • genetically modified
  • herbicide tolerance
  • insect resistance

Introduction

Genetically modified organisms (GMOs) result from recombinant DNA technology that allows for DNA to be transferred from one organism to another (transgenesis) without the genetic transfer limits of species to species barriers and with successful expression of transferred genes in the receiving organism (Gray, 2001 ). Four crops, maize, canola, soybean, and cotton, constitute the vast majority of GM crop production (James, 2015a ), and GM crops have been grown commercially since 1995 (Bagavathiannan, Julier, Barre, Gulden, & Van Acker, 2010 ). The acceptance of GM crops by farmers has been rapid, with the global GM production area growing from 1.7 million hectares in 1996 (International Service for the Acquisition of Agri-biotech Applications [ISAAA], 2015 ) to 182 million hectares in 2014 (James, 2014 ). Just 10 countries represent almost 98% of the GM hectares worldwide. The top GM producing countries are the United States (73.1 million ha), Brazil (42.2 million ha), Argentina (24.3 million ha), Canada (11.6 million ha), and India (11.6 million ha) (James, 2014 ). GM soybean is the most popular GM crop and almost 50% of global soybean acres are now GM soybean (James, 2015b ). For corn and cotton the global proportion of GM is 30% and 14%, respectively (James, 2015b ). GM canola occupies only 5% of the global canola hectares (James, 2015b ). GM crops are grown on only 3.7% of the world’s total agricultural land, by less than one percent of the world’s farmers. Almost 100% of GM crops on the market are either herbicide tolerant (HT) or insect resistant or have both of these two traits (Dill, CaJacob, & Padgette, 2008 ).

The production of GM crops is not equal across the world and in some jurisdictions there is little or no production. Countries in the European Union (EU) are a notable example in this regard. The near complete moratorium on the production of GM crops in the EU is based on common public view and political decisions rather than GM food safety assessment (Fischer, Ekener-Petersen, Rydhmer, & Edvardsson Björnberg, 2015 ). This is also true for Switzerland, where, for example, since 2005 GM foods and crops have been banned because of strong negative views on the part of both Swiss farmers and citizens (Mann, 2015 ). Five EU countries (Spain, Portugal, the Czech Republic, Slovakia and Romania) accounted for 116,870 hectares of Bt maize cultivation in 2015 , down 18% from the 143,016 hectares in 2014 . The leading EU producer is Spain, with 107,749 hectares of Bt maize in 2015 , down 18% from the 131,538 hectares in 2014 (James, 2015a ). Russia is the world's largest GM-free zone (James, 2015a ). Despite the claimed benefits over risks, and the wide adoption of biotech-improved crop varieties in many parts of the world, Europe and Africa still remain largely GM-free in terms of production (Paarlberg, 2008 ). This may be due in part to the relative absence of reliable public scientific studies on the long-term risks of GM crops and foods and the seed monopoly that is linked to GM technology development (Paarlberg, 2008 ). In Asia, four countries, including Turkey, have banned GM crops. The GM concerns in Europe have also slowed down the approval of GM crops in many developing countries because of impacts on agricultural exports (Inghelbrecht, Dessein, & Huylenbroeck, 2014 ). Many African governments have been slow to approve, or have sometimes even banned GM crops, in order not to lose export markets and to maintain positive relations with the EU, especially given implications for development aid (Wafula, Waithaka, Komen, & Karembu, 2012 ). In addition, a few African nations have banned GM cultivation over fears of losing European markets (ISAAA, 2015 ). Public concerns over GM crops and foods have also had an impact on production of GM crops in North America. The withdrawal of the GM Bt potato (NewLeaf™) varieties from the North American market due to the concerns of two of the largest buyers of processing potatoes (Frito-Lay and McDonalds) was the result of feared consumer rejection (Kynda & Moeltner, 2006 ).

The extensive adaptation of GM crops does, however, also have some drawbacks. The occurrence of outcrossing with non-GM crops, gene flow, and the adventitious presence of GM crops on organic farms has sparked concerns among various stakeholders, including farmers who are growing GM crops (Ellstrand, 2003 ; Marvier & Van Acker, 2005 ). Public concern over GM crops is centered in three areas: human health, environmental safety, and trade impacts (Van Acker, Cici, Michael, Ryan, & Sachs, 2015 ). GM biosafety is also forcing both agriculture and food companies to appreciate GM safety in their marketing decisions (Blaine & Powell, 2001 ; Rotolo et al., 2015 ). The adoption of GM crops in a given jurisdiction is a function of public GM acceptance as well as the level of public trust of regulatory authorities (Vigani & Olper, 2013 ). Examples of these include feeding the world, consumer choice, and seed ownership (Van Acker & Cici, 2014 ). Opponents of GM crops have questioned their necessity in terms of agricultural productivity to feed the world (Gilbert, 2013 ). They point to studies that have shown that current agricultural output far exceeds global calorie needs and that distribution, access, and waste are the key limitations to feeding those who are hungry and not gross production per se (Altieri, 2005 ).

The novelty of GM technology has been both an asset and a challenge for those companies producing GM seeds. Supporters of GM crops have asserted that GM is merely an evolution of conventional breeding approaches (Herdt, 2006 ). They have insisted that humans have been genetically modifying crops for millennia and that GM technology has been an extension and facilitation of natural breeding. At the same time, however, GM crops are patentable, emphasizing that the process is truly novel and different from the natural breeding (Boucher, 1999 ). In addition, expert technical assessments acknowledge the unique and novel nature of GM crops (Taylor, 2007 ). This situation highlights the conundrum and challenge of not only introducing disruptive new technologies into society but having such technologies accepted by society (Van Acker et al., 2015 ). The socioeconomic nature of most risks along with the continuing farm income crisis in North America has led some to argue for the adoption of a more comprehensive approach to risk assessment of GM crops and all new agricultural technologies (Mauro et al., 2009 ).

The Green Revolution was driven by global hunger, and some argue that the next agricultural production revolution, which is perhaps being sparked by the introduction of GM crops, would be driven by other global needs including sustainability and the needs of individuals (Lipton & Longhurst, 2011 ). The green revolution of the 1960s and 1970s depended on the use of fertilizers, pesticides, and irrigation methods to initiate favorable conditions in which high-yielding modern varieties could thrive. Between 1970 and 1990 , fertilizer use in developing countries rose by 360% while pesticide use increased by 7 to 8% annually. The environmental impacts, of the adoption of these technologies did in some cases override their benefits. These impacts included polluted land, water, and air, and the development of resistant strains of pests. GM crops could be used to sustain or grow production levels while diminishing environmental impacts yet despite the rapid adoption of GM crops many of the problems associated with the green revolution remain (Macnaghten & Carro-Ripalda, 2015 ). The pros and cons of GM crops are many and diverse but there is little argument over the ambiguous consequences of this comparatively new technology, and numerous critics noted the potential pros and cons of GM crops as soon as they were launched in the early 1990s (Mannion, 1995a , 1995b , 1995c ).

Pros of GMO Crop Farming

The world population has exceeded 7 billion people and is forecasted to reach beyond 11 billion by 2100 (United Nations, 2017 ). The provision of an adequate food supply for this booming population is an ongoing and tremendous challenge. The companies that develop GM seeds point to this challenge as the key rationale for their need, and they explain that GM seeds will help to meet the “feeding the world” challenge in a number of ways.

Productivity of GM Crops

GM seed companies promised to raise productivity and profitability levels for farmers around the world (Pinstrup-Andersen, 1999 ). GM seed companies had expected GM crops to be adopted by farmers because the traits they were incorporating provided direct operational benefits for farmers that could be linked to increased profits for farmers (Hatfield et al., 2014 ). The proponents of GM crops have argued that the application of GM technology would fundamentally improve the efficiency, resiliency, and profitability of farming (Apel, 2010 ). In addition GM seed companies argue that the adoption of GM crops helps to reduce the application of pesticides, which has a direct impact on the sustainability of the cropping systems (Lal, 2004 ) as well as profitability for farmers (Morse, Mannion, & Evans, 2011 ). Some have even suggested that the production of GM crops creates a halo effect for nearby non-GM crops by reducing pest pressures within regions that are primarily sown to GM crops (Mannion & Morse, 2013 ).

There is an expectation widely held by those in agriculture that GM seeds increase yields, or at least protect yield potential. GM crops with resistance to insects and herbicides can substantially simplify crop management and reduce crop losses, leading to increased yields (Pray, Jikun Huang, Hu, & Rozelle, 2002 ; Pray, Nagarajan, Huang, Hu, & Ramaswami, 2011 ; Nickson, 2005 ). GM varieties of soybean, cotton, and maize produced 20%, 15%, and 7% higher yield, respectively, than non-GM varieties (Mannion & Morse, 2013 ). The Economic Research Service (ERS) of the United States Department of Agriculture (USDA) noticed a significant relationship between increased crop yields and increased adoption of herbicide- and pesticide-tolerant GM crop seeds, and the USDA reported significantly increased yields when farmers adopted herbicide-tolerant cotton and Bt cotton (USDA, 2009 ). India cultivated a record 11.6 million hectares of Bt cotton planted by 7.7 million small farmers in 2014 , with an adoption rate of 95%, up from 11.0 million hectares in 2013 . The increase from 50,000 hectares in 2002 to 11.6 million hectares in 2014 represents an unprecedented 230-fold increase in 13 years (James, 2014 ). This rapid adoption has been attributed to the increased yields farmers in this region experienced because of the efficacy of the GM seeds on cotton bollworm and the additional income farmers received as a result (James, 2014 ; Morse & Mannion, 2009 ). Similarly, the benefits that were obtained by resource-poor cotton farmers in South Africa have led many smallholders in South Africa and elsewhere in sub-Saharan Africa to accept GM cotton (Hillocks, 2009 ). Similar benefits were also obtained by resource-poor farmers growing Bt maize in the Philippines (James, 2010 ).

Tillage Systems

The adoption of no tillage and minimum tillage practices in agriculture started in the 1980s. In fact, the largest extension of both no tillage and conservation tillage and the concomitant declines in soil erosion significantly predates the release of the first HT varieties of maize and soybean in 1996 (National Research Council [NRC], 2010 ). However, farmers in the United States who adopted HT crops were more likely to practice conservation tillage and vice versa (NRC, 2010 ). There was an increase in HT crops and conservation tillage in the United States during the period of rapid GM crop adoption from 1997–2002 (Fernandez-Cornejo, Hallahan, Nehring, Wechsler, & Grube, 2012 ). Soybeans genetically engineered with HT traits have been the most widely and rapidly adopted GM crop in the United States, followed by HT cotton. Adoption of HT soybeans increased from 17% of U.S. soybean acreage in 1997 to 68% in 2001 and 93% in 2010 . Plantings of HT cotton expanded from about 10% of U.S. acreage in 1997 to 56% in 2001 and 78% in 2010 (Fernandez-Cornejo et al., 2012 ). Some argue that the adoption of GM HT varieties resulted in farmers’ deciding to use conservation tillage, or farmers who were practicing conservation tillage may have adopted GM HT crops more readily (Mauro & McLachlan, 2008 ). Adoption of HT soybean has a positive and highly significant impact on the adoption of conservation tillage in the United States (Carpenter, 2010 ). Technologies that promote conservation tillage practices decrease soil erosion in the long term and fundamentally promote soil conservation (Montogomery, 2007 ), while reducing nutrient and carbon loss (Brookes & Barfoot, 2014 ; Giller, Witter, Corbeels, & Pablo, 2009 ; Mannion & Morse, 2013 ; Powlson et al., 2014 ). Adopting HT soybean has decreased the number of tillage operations between 25% and 58% in the United States and in Argentina (Carpenter, 2010 ). The introduction of HT soybean has been cited as an important factor in the rapid increase of no tillage practices in Argentina, and the adoption of no tillage practices in this region has allowed for wheat to be double cropped with soybean which has led to a fundamental increase in farm productivity (Trigo, Cap, Malach, & Villareal, 2009 ). Substantial growth in no tillage production linked to the adoption of GM HT crops has also been noted in Canada. Several authors have reported a positive correlation between the adoption of GM HT canola and the adoption of zero-tillage systems in western Canada (Phillips, 2003 ; Beckie et al., 2006 ; Kleter et al., 2007 ). The no tillage canola production area in western Canada increased from 0.8 million hectares to 2.6 million hectares from 1996 to 2005 . This area covers about half the total canola area in Canada (Qaim & Traxler, 2005 ). In addition, tillage passes among farmers growing HT canola in Canada dropped by more than 70% in this same period (Smyth, Gusta, Belcher, Phillips, & Castle, 2011 ). Fields planted with HT crops in this region require less tillage between crops to manage weeds (Fawcett & Towery, 2003 ; Nickson, 2005 ).

Reductions in tillage and pesticide application have great benefits because they minimize inputs of fossil fuels in farming systems and in doing so, they reduce the carbon footprint of crop production (Baker, Ochsner, Venterea, & Griffis, 2007 ). The mitigation of soil erosion is important with respect to environmental conservation and the conservation of productivity potential. The adoption of no tillage practices would also save on the use of diesel fuel, and it enriches carbon sequestration in soils (Brookes & Barfoot, 2014 ). Brookes and Barfoot ( 2008 ) suggested that the fuel reduction because of GM crop cultivation resulted in a carbon dioxide emissions savings of 1215 × 10 6 Kg. This corresponds to taking more than 500,000 cars off the road. In addition, a further 13.5 × 10 9 Kg of carbon dioxide could be saved through carbon sequestration, which is equivalent to taking 6 million cars off the road. The impact of GM crops on the carbon flows in agriculture may be considered as a positive impact of GM crops on the environment (Knox et al., 2006 ).

Herbicide Tolerance and Pest Management

Herbicide tolerance in GM crops is achieved by the introduction of novel genes. The control of weeds by physical means or by using selective herbicides is time-consuming and expensive (Roller & Harlander, 1998 ). The most widely adopted HT crops are glyphosate tolerant (Dill, CaJabob, & Padgette, 2008 ) colloquially (and commercially for Monsanto) known as “Roundup Ready” crops. Herbicide tolerant GM crops have provided farmers with operational benefits. The main benefits associated with HT canola, for example, were easier and better weed control (Mauro & McLachlan, 2008 ). The development of GM HT canola varieties has also been linked to incremental gains in weed control and canola yield (Harker, Blackshaw, Kirkland, Derksen, & Wall, 2000 ). Despite all of the weed management options available in traditional canola, significant incentives remained for the development of HT canola. The most apparent incentives were special weed problems such as false cleavers ( Galium aparine ) and stork’s bill ( Erodium cicutarium ), and the lack of low-cost herbicide treatments for perennials such as quackgrass ( Agropyron repens ) and Canada thistle ( Cirsium arvense ). Mixtures of herbicides can control many of the common annual and perennial weeds in western Canada but they are expensive and not necessarily reliable (Blackshaw & Harker, 1992 ). In addition, some tank-mixtures led to significant canola injury and yield loss (Harker, Blackshaw, & Kirkland, 1995 ). Thus, canola producers welcomed the prospect of applying a single nonselective herbicide for all weed problems with little concern for specific weed spectrums, growth stages, tank mixture interactions (i.e., antagonism or crop injury) and/or extensive consultations. Two major GM HT canola options are widely used in western Canada. Canola tolerant to glufosinate was the first transgenic crop to be registered in Canada (Oelck et al., 1995 ). Canola tolerant to glyphosate (Roundup Ready) followed shortly thereafter. The GM HT canola offers the possibility of improved weed management in canola via a broader spectrum of weed control and/or greater efficacy on specific weeds (Harker et al., 2000 ). The greatest gains in yield attributed to the adoption of GM HT crops has been for soybean in the United States and Argentina and for GM HT canola in Canada (Brookes & Barfoot, 2008 ).

The reduction of pesticide applications is a major direct benefit of GM crop cultivation: reducing farmers’ exposure to chemicals (Hossain et al., 2004 ; Huang, Hu, Rozelle, & Pray, 2005 ) and lowering pesticide residues in food and feed crops, while also releasing fewer chemicals into the environment and potentially increasing on-farm diversity in insects and pollinators (Nickson, 2005 ). Additionally, improved pest management can reduce the level of mycotoxins in food and feed crops (Wu, 2006 ). Insect resistance in GM crops has been conferred by transferring the gene for toxin creation from the bacterium Bacillus thuringiensis (Bt) into crops like maize. This toxin is naturally occurring in Bt and is presently used as a traditional insecticide in agriculture, including certified organic agriculture, and is considered safe to use on food and feed crops (Roh, Choi, Li, Jin, & Je, 2007 ). GM crops that produce this toxin have been shown to require little or no additional pesticide application even when pest pressure is high (Bawa & Anilakumar, 2013 ). As of the end of the 21st century , insect resistant GM crops were available via three systems (Bt variants). Monsanto and Dow Agrosciences have developed SmartStax maize, which has three pest management attributes, including protection against both above-ground and below-ground insect pests, and herbicide tolerance, which facilitates weed control (Monsanto, 2009 ). SmartStax maize GM varieties were first approved for release in the United States in 2009 and combine traits that were originally intended to be used individually in GM crops (Mannion & Morse, 2013 ). Significant reductions in pesticide use is reported by adoption of Bt maize in Canada, South Africa, and Spain, as well as Bt cotton, notably in China (Pemsl, Waibel, & Gutierrez, 2005 ), India (Qiam, 2003 ), Australia, and the United States (Mannion & Morse, 2013 ).

Human Health

GM crops may have a positive influence on human health by reducing exposure to insecticides (Brimner, Gallivan, & Stephenson, 2005 ; Knox, Vadakuttu, Gordon, Lardner, & Hicks, 2006 ) and by substantially altering herbicide use patterns toward glyphosate, which is considered to be a relatively benign herbicide in this respect (Munkvold, Hellmich, & Rice, 1999 ). However these claims are mostly based on assumption rather than real experimental data. There is generally a lack of public studies on the potential human health impacts of the consumption of food or feed derived from GM crops (Domingo, 2016 ; Wolt et al., 2010 ) and any public work that has been done to date has garnered skepticism and criticism, including, for example, the work by Seralini et al. ( 2013 ). However, the GM crops that are commercialized pass regulatory approval as being safe for human consumption by august competent authorities including the Food and Drug Administration in the United States and the European Food Safety Authority in Europe. Improvement of GM crops that will have a direct influence on health such as decreased allergens (Chu et al., 2008 ), superior levels of protein and carbohydrates (Newell-McGloughlin, 2008 ), greater levels of essential amino acids, essential fatty acids, vitamins and minerals including, multivitamin corn (Naqvi et al., 2009 ; Zhu et al., 2008 ), and maximum zeaxanthin corn (Naqvi et al., 2011 ) hold much promise but have yet to be commercialized. Malnutrition is very common in developing countries where poor people rely heavily on single food sources such as rice for their diet (Gómez-Galera et al., 2010 ). Rice does not contain sufficient quantities of all essential nutrients to prevent malnutrition and GM crops may offer means for supplying more nutritional benefits through single food sources such as rice (White & Broadley, 2009 ). This not only supports people to get the nutrition they require, but also plays a potential role in fighting malnutrition in developing nations (Sakakibara & Saito, 2006 ; Sauter, Poletti, Zhang, & Gruissem, 2006 ). Golden rice is one the most known examples of a bio-fortified GM crop (Potrykus, 2010 ). Vitamin A deficiency renders susceptibility to blindness and affects between 250,000 and 500,000 children annually and is very common in parts of Africa and Asia (Golden Rice Project, 2009 ). A crop like Golden rice could help to overcome the problem of vitamin A deficiency by at least 50% at moderate expense (Stein, Sachdev, & Qaim, 2008 ), yet its adoption has been hampered by activist campaigns (Potrykus, 2012 ).

Environmental Benefits

For currently commercialized GM crops the environmental benefits as previously pointed out are primarily linked to reductions in pesticide use and to reductions in tillage (Christou & Twyman, 2004 ; Wesseler, Scatasta, & El Hadji, 2011 ). Reductions in pesticide use can lead to a greater conservation of beneficial insects and help to protect other non-target species (Aktar, Sengupta, & Chowdhury, 2009 ). Reduced tillage helps to mitigate soil erosion and environmental pollution (Wesseler et al., 2011 ; Brookes & Barfoot, 2008 ) and can lead to indirect environmental benefits including reductions in water pollution via pesticide and fertilizer runoff (Christos & Ilias, 2011 ). It has been claimed that growing Bt maize could help to significantly reduce the use of chemical pesticides and lower the cost of production to some extent (Gewin, 2003 ). The deregulation process for GM crops includes the assessment of potential environmental risks including unintentional effects that could result from the insertion of the new gene (Prakash, Sonika, Ranjana, & Tiwary, 2011 ). Development of GM technology to introduce genes conferring tolerance to abiotic stresses such as drought or inundation, extremes of heat or cold, salinity, aluminum, and heavy metals are likely to enable marginal land to become more productive and may facilitate the remediation of polluted soils (Czako, Feng, He, Liang, & Marton, 2005 ; Uchida et al., 2005 ). The multiplication of GM crop varieties carrying such traits may increase farmers’ capacities to cope with these and other environmental problems (Dunwell & Ford, 2005 ; Sexton & Zilberman, 2011 ). Therefore, GM technology may hold out further hope of increasing the productivity of agricultural land with even less environmental impact (Food and Agriculture Organization [FAO], 2004 ).

Some proponents of GM crops have argued that because they increase productivity they facilitate more sustainable farming practices and can lead to “greener” agriculture. Mannion and Morse ( 2013 ), for example, argue that GM crops require less energy investment in farming because the reduced application of insecticide lowers energy input levels, thereby reducing the carbon footprint. It has been suggested by other authors that the adoption of GM crops may have the potential to reduce inputs such as chemical fertilizers and pesticides (Bennett, Ismael, Morse, & Shankar, 2004 ; Bennett, Phipps, Strange, & Grey, 2004 ). Others note that higher crop yields facilitated by GM crops could offset greenhouse gas emissions at scales similar to those attributed to wind and solar energy (Wise et al., 2009 ). Greenhouse gas emissions from intensive agriculture are also offset by the conservation of non-farmed lands. While untilled forest soils and savannas, for example, act as carbon stores, farmed land is often a carbon source (Burney, Davis, & Lobell, 2010 ).

The Economy

GM crops are sold into a market and are subject to the market in terms of providing a realized value proposition for farmers and value through the food chain in terms of reduced costs of production (Lucht, 2015 ). Currently the GM crops on the market are targeted to farmers and have a value proposition based on economic benefits to farmers via operational benefits (Mauro, McLachlan, & Van Acker, 2009 ). Due to higher yield and lower production cost of GM crops, farmers will get more economic return and produce more food at affordable prices, which can potentially provide benefits to consumers including the poor (Lucht, 2015 ; Lemaux, 2009 ). The most significant economic benefits attributed to GM crop cultivation have been higher gross margins due to lower costs of pest management for farmers (Klümper & Qaim, 2014 ; Qaim, 2010 ). GM varieties have provided a financial benefit for many farmers (Andreasen, 2014 ). In some regions, GM crops have led to reduced labor costs for farmers (Bennett et al., 2005 ). Whether GM crops have helped to better feed the poor and alleviate global poverty is not yet proven (Yuan et al., 2011 ).

Cons of GMO Crop Farming

The intensive cultivation of GM crops has raised a wide range of concerns with respect to food safety, environmental effects, and socioeconomic issues. The major cons are explored for cross-pollination, pest resistance, human health, the environment, the economy, and productivity.

Cross-Pollination

The out crossing of GM crops to non-GM crops or related wild type species and the adventitious mixing of GM and non-GM crops has led to a variety of issues. Because of the asynchrony of the deregulation of GM crops around the world, the unintended presence of GM crops in food and feed trade channels can cause serious trade and economic issues. One example is “LibertyLink” rice, a GM variety of rice developed by Bayer Crop Science, traces of which were found in commercial food streams even before it was deregulated for production in the United States. The economic impact on U.S. rice farmers and millers when rice exports from the United States were halted amounted to hundreds of millions of dollars (Bloomberg News, 2011 ). A more recent example is Agrisure Viptera corn, which was approved for cultivation in the United States in 2009 but had not yet been deregulated in China. Exports of U.S. corn to China contained levels of Viptera corn, and China closed its borders to U.S. corn imports for a period. The National Grain and Feed Association (NGFA) had encouraged Syngenta to stop selling Viptera because of losses U.S. farmers were facing, and there is an ongoing class-action lawsuit in the United States against Syngenta (U.S. District Court, 2017 ). Concerns over the safety of GM food have played a role in decisions by Chinese officials to move away from GM production. Cross-pollination can result in difficulty in maintaining the GM-free status of organic crops and threaten markets for organic farmers (Ellstrand, Prentice, & Hancock, 1999 ; Van Acker, McLean, & Martin, 2007 ). The EU has adopted a GM and non-GM crop coexistence directive that has allowed nation-states to enact coexistence legislation that aims to mitigate economic issues related to adventitious presence of GM crops in non-GM crops (Van Acker et al., 2007 ).

GM crops have also been criticized for promoting the development of pesticide-resistant pests (Dale, Clarke, & Fontes, 2002 ). The development of resistant pests is most due to the overuse of a limited range of pesticides and overreliance on one pesticide. This would be especially true for glyphosate because prior to the development of Roundup Ready crops glyphosate use was very limited and since the advent of Roundup Ready crops there has been an explosion of glyphosate-resistant weed species (Owen, 2009 ). The development of resistant pests via cross-pollination to wild types (weeds) is often cited as a major issue (Friedrich & Kassam, 2012 ) but it is much less of a concern because it is very unlikely (Owen et al., 2011 ; Ellstrand, 2003 ). There are, however, issues when genes transfer from GM to non-GM crops creating unexpected herbicide resistant volunteer crops, which can create challenges and costs for farmers (Van Acker, Brule-Babel, & Friesen, 2004 ; Owen, 2008 ; Mallory-Smith & Zapiola, 2008 ).

Some critics of GM crops express concerns about how certain GM traits may provide substantive advantages to wild type species if the traits are successfully transferred to these wild types. This is not the case for GM HT traits, which would offer no advantage in non-cropped areas where the herbicides are not used, but could be an issue for traits such as drought tolerance (Buiatti, Christou, & Pastore, 2013 ). This situation would be detrimental because the GM crops would grow faster and reproduce more often, allowing them to become invasive (FAO, 2015 ). This has sometime been referred to as genetic pollution (Reichman et al., 2006 ). There are also some concerns that insects may develop resistance to the pesticides after ingesting GM pollen (Christou, Capell, Kohli, Gatehouse, & Gatehouse, 2006 ). The potential impact of genetic pollution of this type is unclear but could have dramatic effects on the ecosystem (Stewart et al., 2003 ).

Pest Resistance

Repeated use of a single pesticide over time leads to the development of resistance in populations of the target species. The extensive use of a limited number of pesticides facilitated by GM crops does accelerate the evolution of resistant pest populations (Bawa & Anilakumar, 2013 ). Resistance evolution is a function of selection pressure from use of the pesticide and as such it is not directly a function of GM HT crops for example, but GM HT crops have accelerated the development of glyphosate resistant weeds because they have promoted a tremendous increase in the use of glyphosate (Owen, 2009 ). Farmers have had to adjust to this new problem and in some cases this had added costs for farmers (Mauro, McLachlan, & Van Acker, 2009 ; Mannion & Morse, 2013 ). The management of GM HT volunteers has also produced challenges for some farmers. These are not resistant weeds as they are not wild type species, but for farmers they are herbicide-resistant weeds in an operational sense (Knispel, McLachlan, & Van Acker, 2008 ; Liu et al., 2015 ). Pink bollworm has become resistant to the first generation GM Bt cotton in India (Bagla, 2010 ). Similar pest resistance was also later identified in Australia, China, Spain, and the United States (Tabashnik et al., 2013 ). In 2012 , army worms were found resistant to Dupont-Dow’s Bt corn in Florida (Kaskey, 2012 ), and the European corn borer is also capable of developing resistance to Bt maize (Christou et al., 2006 ).

Although the deregulation of GM crops includes extensive assessments of possible human health impacts by competent authorities there are still many who hold concerns about the potential risks to human health of GM crops. For some this is related to whether transgenesis itself causes unintended consequences (Domingo, 2016 ), while for others it is concerns around the traits that are possible using GM (Herman, 2003 ). Some criticize the use of antibiotic resistance as markers in the transgenesis procedure and that this can facilitate antibiotic resistance development in pathogens that are a threat to human health (Key, Ma, & Drake, 2008 ). Many critics of GM crops express concerns about allergenicity (Lehrer & Bannon, 2005 ). Genetic modification often adds or mixes proteins that were not native to the original plant, which might cause new allergic reactions in the human body (Lehrer & Bannon, 2005 ). Gene transfer from GM foods to cells of the body or to bacteria in the gastrointestinal tract would cause concern if the transferred genetic material unfavorably influences human health, but the probability of this occurring is remote. Other concerns include the possibility of GM crops somehow inducing mutations in human genes (Ezeonu, Tagbo, Anike, Oje, & Onwurah, 2012 ) or other unintended consequences (Yanagisawa, 2004 ; Lemaux, 2009 ; Gay & Gillespie, 2005 ; Wesseler, Scatasta, & El Hadji, 2011 ) but commentary by these authors is speculative and is not based on experimentation with current GM crops.

Environment

For currently commercialized GM crops the potential environmental impacts are mostly related to how these crops impact farming systems. Some argue that because crops like Roundup Ready soybean greatly simplify weed management they facilitate simple farming systems including monocultures (Dunwell & Ford, 2005 ). The negative impact of monocultures on the environment is well documented and so this might be considered an indirect environmental effect of GM crops (Nazarko, Van Acker, & Entz, 2005 ; Buiatti, Christou, & Pastore, 2013 ). Other concerns that have been raised regarding GM crops include the effects of transgenic on the natural landscape, significance of gene flow, impact on non-target organisms, progression of pest resistance, and impacts on biodiversity (Prakash et al., 2011 ). Again, many of these concerns may be more a function of the impacts of simple and broad-scale farming practices facilitated by GM crops rather than GM crops per se. However, there has been considerable concern over the environmental impact of Bt GM crops highlighted by studies that showed the potential impact on monarch butterfly populations (Dively et al., 2004 ). This begged questions then about what other broader effects there may be on nontarget organisms both direct and indirect (Daniell, 2002 ). In addition, there may be indirect effects associated with how GM crops facilitate the evolution of pesticide resistant pests in that the follow-on control of these pest populations may require the use of more pesticides and often older chemistries that may be more toxic to the environment in the end (Nazarko et al., 2005 ).

Bringing a GM crop to market can be both expensive and time consuming, and agricultural bio-technology companies can only develop products that will provide a return on their investment (Ramaswami, Pray, & Lalitha, 2012 ). For these companies, patent infringement is a big issue. The price of GM seeds is high and it may not be affordable to small farmers (Ramaswami et al., 2012 ; Qaim, 2009 ). A considerable range of problems has been associated with GM crops, including debt and increased dependence on multinational seed companies, but these can also be combined with other agricultural technologies to some extent (Kloppenburg, 1990 ; Finger et al., 2011 ). The majority of seed sales for the world’s major crops are controlled by a few seed companies. The issues of private industry control and their intellectual property rights over seeds have been considered problematic for many farmers and in particular small farmers and vulnerable farmers (Fischer, Ekener-Petersen, Rydhmer, & Edvardsson Björnberg, 2015 ; Mosher & Hurburgh, 2010 ). In addition, efforts by GM seed companies to protect their patented seeds through court actions have created financial and social challenges for many farmers (Marvier & Van Acker, 2005 ; Semal, 2007 ). There is considerable debate about the extent to which GM crops bring additional value to small and vulnerable farmers with strong opinions on both sides (Park, McFarlane, Phipps, & Ceddia, 2011 ; Brookes & Barfoot, 2010 ; James, 2010 ; Smale et al., 2009 ; Subramanian & Qaim, 2010 ). As the reliance on GM seeds extends, concerns grow about control over the food supply via seed ownership and the impacts on the diversity of seed sources, which can impact the resilience of farming systems across a region (Key et al., 2008 ). The risk of GM crops to the world economy can be significant. Global food production is dominated by a few seed companies, and they have increased the dependence of developing countries on industrialized nations (Van Acker, Cici, Michael, Ryan, & Sachs, 2015 ).

Productivity

Justification for GM crops on the basis of the need to feed the world is often used by proponents of the technology, but the connection between GM crops and feeding the world is not direct. GM crops are used by farmers and are sold primarily on the basis of their direct operational benefits to farmers, including the facilitation of production and/or more production (Mauro et al., 2009 ). Farmers realize these benefits in terms of cost savings or increased production or both and are looking to increase their margins by using the technology. Companies producing GM seeds can be very successful if they are able to capture a greater share of a seed market because they supply farmers with operational benefits such as simplified weed management (Blackshaw & Harker, 1992 ) even if there are no productivity gains. In addition, the traits in GM crops on the market as of the early part of the 21st century are not yield traits per se but are yield potential protection traits that may or may not result in greater productivity.

Conclusions

Genetic modification via recombinant DNA technology is compelling because it does provide a means for bringing truly novel traits into crops and the adoption of GM crops has been rapid in a range of countries around the world. Only a very limited number of traits have been incorporated to date into GM crops, the two primary traits being herbicide tolerance (HT) and insect resistance. Nonetheless, farmers who have adopted GM crops have benefited from the operational benefits they provide, and current GM crops have facilitated the adoption of more sustainable farming practices, in particular, reduced tillage. The ongoing asynchronous approvals of GM crops around the world mean that there will always be issues related to the adventitious presence of GM crops in crop shipments and trade disruptions. Pollen mediated gene flow from crop to crop, and seed admixtures are challenges of GM crop farming and agricultural marketing as a result. The adoption of GM HT crops has also accelerated the evolution of herbicide resistant weeds, which has created additional operational challenges and costs for farmers. The GM crops commercialized to date have all been deregulated and deemed to be safe to the environment and safe in terms of human health by competent authorities around the world, including the European Food Safety Association. There remain, however, critics of the technology who point to a lack of public research on the potential risks of GM and GM crops. GM crops will continue to be developed because they provide real operational benefits for farmers, who are the ones who purchase the seeds. The novelty of the technology and its potential to bring almost any trait into crops mean that there needs to remain dedicated diligence on the part of regulators to ensure that no GM crops are deregulated that may in fact pose risks to human health or the environment, but there will also remain the promise of the value of novel inventions that bring benefits to consumers and the environment. The same will be true for the next wave of new breeding technologies, which include gene editing technologies such as CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) (Cong et al., 2013 ). These new technologies have even greater potential for modifying crops than GM technology and they avoid some of the characteristics of GM technology that have underpinned criticisms including, for example, the presence of foreign DNA.

  • Aktar, W. M. , Sengupta, D. , & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology , 2 (1), 1–12.
  • Altieri, M. A. (2005). The myth of coexistence: Why transgenic crops are not compatible with agroecologically based systems of production. Bulletin of Science Technology & Society , 25 , 1–11.
  • Andreasen, M. (2014). GM food in the public mind—facts are not what they used to be. Nature Biotechnology , 32 , 25.
  • Apel, A. (2010). The costly benefits of opposing agricultural biotechnology. New Biotechnology , 27 , 635–640.
  • Bagavathiannan, M. V. , Julier, B. , Barre, P. , Gulden, R. H. , & Van Acker, R. C. (2010). Genetic diversity of feral alfalfa ( Medicago sativa L.) populations occurring in Manitoba, Canada, and comparison with alfalfa cultivars: An analysis using SSR markers and phenotypic traits. Euphytica , 173 , 419–432.
  • Bagla, P. (2010). Hardy cotton-munching pests are latest blow to GM crops. Science , 327 , 1439.
  • Baker, J. M. , Ochsner, T. E. , Venterea, R. T. , & Griffis, T. J. (2007). Tillage and soil carbon sequestration—What do we really know? Agriculture, Ecosystems and Environment , 118 , 1–5.
  • Bawa, A. S. , & Anilakumar, K. R. (2013). Genetically modified foods: Safety, risks and public concerns—a review. Journal of Food Science and Technology , 50 (6), 1035–1046.
  • Beckie, H. J. , Harker, K. N. , Hall, L. M. , Warwick, S. I. , Légère, A. , Sikkema, P. H. , . . . Simard, M. J. (2006). A decade of herbicide-resistant crops in Canada. Canadian Journal of Plant Science , 86 , 1243–1264.
  • Bennett, R. M. , Ismael, Y. , & Morse, S. (2005). Explaining contradictory evidence regarding impacts of genetically modified crops in developing countries: Varietal performance of transgenic cotton in India. Journal of Agricultural Science , 143 , 35–41.
  • Bennett, R. , Ismael, Y. , Morse, S. , & Shankar, B. (2004). Reductions in insecticide use from adoption of Bt cotton in South Africa: Impacts on economic performances and toxic load to the environment. Journal of Agricultural Sciences , 142 , 665–674.
  • Bennett, R. , Phipps, R. , Strange, A. , & Grey, P. (2004). Environmental and human health impacts of growing genetically modified herbicide tolerant sugar beet: A life-cycle assessment. Plant Biotechnology Journal , 2 , 273–278.
  • Blackshaw, R. E. , & Harker, K. N. (1992). Combined postemergence grass and broadleaf weed control in canola ( Brassica napus ). Weed Technology , 6 , 892–897.
  • Blaine, K. , & Powell, D. (2001). Communication of food-related risks. AgBioForum , 4 , 179–185.
  • Bloomberg News . (2011). Bayer Settles With Farmers Over Modified Rice Seeds . New York Times .
  • Boucher, D. H. (1999). The paradox of plenty: Hunger in bountiful world . Oakland, CA: Food First Books.
  • Brimner, T. A. , Gallivan, G. J. , & Stephenson, G. R. (2005). Influence of herbicide-resistant canola on the environmental impact of weed management . Pest Management Science , 61 , 47–52.
  • Brookes, G. , & Barfoot, P. (2008). Global impact of biotech crops: Socio-economic and environmental effects, 1996–2006. AgBioForum , 11 , 21–38.
  • Brookes, G. , & Barfoot, P. (2010). GM crops: Global socio-economic and environmental impacts 1996–2008 . Dorchester, U.K.: PG Economics.
  • Brookes, G. , & Barfoot, P. (2014). Key global economic and environmental impacts of genetically modified (GM) crop use 1996–2012. GM Crops and Food: Biotechnology in Agricultural and the Food Chain , 5 , 149–160.
  • Buiatti, M. , Christou, P. , & Pastore, G. (2013). The application of GMOs in agriculture and in food production for a better nutrition: Two different scientific points of view. Genes Nutrition , 8 (3), 255–270.
  • Burney, J. A. , Davis, S. J. , & Lobell, D. B. (2010). Greenhouse gas mitigation by agricultural intensification . Proceedings of the National Academy of Sciences of the United States of America , 107 (26), 12052–12057.
  • Carpenter, J. E. (2010). Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nature Biotechnology , 28 , 219–221.
  • Chikelu, M. B. A. , Elcio, P. G. , & Kakoli, G. (2012). Re-orienting crop improvement for the changing climatic conditions of the 21st century . Agriculture and Food Security , 1 (1), 1–17.
  • Christos A. D. , & Ilias, G. E. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health , 8 (5), 1402–1419.
  • Christou, P. , Capell, T. , Kohli, A. , Gatehouse, J. A. , & Gatehouse, A. M. R. (2006). Recent developments and future prospects in insect pest control in transgenic crops . Trends Plant Science , 11 , 302–308.
  • Christou, P. , & Twyman, R. M. (2004) The potential of genetically enhanced plants to address food insecurity . Nutrition Research Reviews , 17 , 23–42.
  • Chu, Y. , Faustinelli, P. , Ramos, M. L. , Hajduch, M. , Stevenson, S. , Thelen, J. J. , et al. (2008). Reduction of IgE binding and nonpromotion of Aspergillus flavus fungal growth by simultaneously silencing Ara h 2 and Ara h 6 in peanut . Journal of Agricultural and Food Chemistry , 56 , 11225–11233.
  • Cong, L. , Ran, F. A. , Cox, D. , Lin, S. , Barretto, R. , Habib, N. , . . . Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science , 339 , 819–823.
  • Czako, M. , Feng, X. , He, Y. , Liang, D. , & Marton, L. (2005). Genetic modification of wetland grasses for phytoremediation. Zeitschrift fu¨r Naturforschung , 60c , 285–291.
  • Dale, P. J. , Clarke, B. , & Fontes, E. M. G. (2002). Potential for the environmental impact of transgenic crops. Nature Biotechnology , 20 (6), 567–574.
  • Daniell, H. (2002). Molecular strategies for gene containment in transgenic crops. Nature Biotechnology , 20 , 581–586.
  • Dill, G. M. , CaJacob, C. A. , & Padgette, S. R. (2008). Glyphosate-resistant crops: Adoption, use and future considerations. Pest Management Science , 64 , 326–331.
  • Dively, G. P. , Rose, R. , Sears, M. K. , Hellmich, R. L. , Stanley-Horn, D. E. , Calvin, D. D. , . . . Anderson, P. L. (2004). Effects on monarch butterfly larvae (Lepidoptera: Danaidae) after continuous exposure to Cry1Ab-expressing corn during anthesis. Environmental Entomology , 33 (4), 1116–1125.
  • Domingo J. L. (2016). Safety assessment of GM plants: An updated review of the scientific literature. Food and Chemical Toxicology , 95 , 12–18.
  • Dunwell, J. M. , & Ford, C. S. (2005). Technologies for biological containment of GM and non-GM crops . Defra Contract CPEC 47. London: DEFRA.
  • Ellstrand, N. (2003). Current knowledge of gene flow in plants: Implications for transgenic flow. Philosophical Transactions of the Royal Society B: Biological Science , 358 (1434), 1163–1170.
  • Ellstrand, N. C. , Prentice, H. C. , & Hancock, J. F. (1999). Gene flow and introgression from domesticated plants into their wild relatives. Annual Review of Ecology and Systematics , 30 , 539–563.
  • Ezeonu, C. S. , Tagbo, R. , Anike, E. N. , Oje, O. A. , & Onwurah, I. N. E. O. (2012). Biotechnological tools for environmental sustainability: Prospects and challenges for environments in Nigeria—a standard review . Biotechnology Research International , 1 , 1–26.
  • Fawcett, R. , & Towery, D. (2003). Conservation tillage and plant biotechnology: How new technologies can improve the environment by reducing the need to plow . West Lafayette, IN: Conservation Technology Information Center (CTIC), Purdue University.
  • Fernandez-Cornejo, J. , Hallahan, C. , Nehring, R. , Wechsler, S. , & Grube, A. (2012). Conservation tillage, herbicide use, and genetically engineered crops in the United States: The case of soybeans. AgBioForum , 15 , 231–241.
  • Fernandez-Cornejo, J. , Wechsler, S. J. , Livingston, M. , & Mitchell, L. (2014). Genetically engineered crops in the United States. Washington, DC: United States Department of Agriculture—Economic Research Service.
  • Finger, R. , El Benni, N. , Kaphengst, T. , Evans, C. , Herbert, S. , Lehmann, B. , . . . Stupak, N. (2011). A meta-analysis on farm-level costs and benefits of GM crops. Sustainability , 3 (5), 743–762.
  • Fischer, K. , Ekener-Petersen, E. , Rydhmer, L. , & Edvardsson Björnberg, K. (2015). Social impacts of GM crops in agriculture: A systematic literature review . Sustainability , 7 , 8598–8620.
  • Food and Agriculture Organization . (2004). Agricultural biotechnology: Meeting the needs of the poor? The state of food and agriculture 2003–04 . Rome: Food and Agriculture Organization of the United Nations.
  • Food and Agriculture Organization . (2015). FAO statistical pocketbook 2015: World food and agriculture . Rome: Food and Agriculture Organization.
  • Friedrich, T. , & Kassam, A. (2012). No-till farming and the environment: Do no-till systems require more chemicals? Outlooks on Pest Management , 23 (4), 153–157.
  • Gay, P. B. , & Gillespie, S. H. (2005). Antibiotic resistance markers in genetically modified plants: A risk to human health? Lancet Infect Disease , 5 (10), 637–646.
  • Gewin, V. (2003). Genetically modified corn—environmental benefits and risks . PLoS Biology , 1 (1), e8.
  • Gilbert, N. (2013). A hard look at GM crops. Nature , 497 , 24–26.
  • Giller, K. E. , Witter, E. , Corbeels, M. , & Pablo, T. (2009). Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Research , 114 , 23–34.
  • Golden Rice Project . (2009). Golden Rice is part of the solution ..
  • Gómez-Galera, S. , Rojas, E. , Sudhakar, D. , Zhu, C. , Pelacho, A. M. , Capell, T. , & Christou, P. (2010). Critical evaluation of strategies for mineral fortification of staple food crops . Transgenic Research , 19 , 165–180.
  • Gray, R. (2001). Introduction. In M. Fulton , H. Furtan , D. Gosnell , R. Gray , J. Hobbs , J. Holzman , et al. (Eds.), Transforming agriculture: The benefits and costs of genetically modified crops . Ottawa, ON: Canadian Biotechnology Advisory Committee.
  • Gunther, M. (2007, July 2). Attack of the mutant rice . Fortune .
  • Harker, K. N. , Blackshaw, R. E. , & Kirkland, K. J. (1995). Ethametsulfuron interactions with grass herbicides on canola ( Brassica napus , B. rapa ). Weed Technology , 9 , 91–98.
  • Harker, K. N. , Blackshaw, R. E. , Kirkland, K. J. , Derksen, D. A. , & Wall, D. (2000). Herbicide-tolerant canola: Weed control and yield comparisons in western Canada. Canadian Journal of Plant Science , 80 (3), 647–654.
  • Hatfield, J. , Takle, G. , Grotjahn, R. , Holden, P. , Izaurralde, R. C. , Mader, T. , (2014). Agriculture. In J. M. Melillo , T. C. R. Terese , & G. W. Yohe (Eds.), Climate change impacts in the United States: The Third National Climate Assessment (pp. 150–174). Washington, DC: U.S. Government Printing Office.
  • Herdt, R. W. (2006). Biotechnology in agriculture. Annual Review of Environment and Resources , 31 , 265–295.
  • Herman, E. M. (2003). Genetically modified soybeans and food allergies. Journal of Experimental Botany , 54 , 1317–1319.
  • Hillocks, R. J. (2009). GM cotton for Africa. Outlook on Agriculture , 38 , 311–316.
  • Hossain, F. , Pray, C. E. , Lu, Y. , Huang, J. , Fan, C. , & Hu, R. (2004). Genetically modified cotton and farmers’ health in China. International Journal of Occupational Environmental Health , 10 , 296–303.
  • Huang, J. , Hu, R. , Rozelle, S. , & Pray, C. (2005). Insect-resistance GM rice in farmers’ fields: Assessing productivity and health effects in China. Science , 308 , 688–690.
  • Inghelbrecht, L. , Dessein, J. , & Huylenbroeck, G. V. (2014). The non-GM crop regime in the EU: How do industries deal with this wicked problem? Wageningen Journal of Life Sciences , 70 , 103–112.
  • International Service for the Acquisition of Agri-biotech Applications [ISAAA] . (2015). Annual report executive summary, 20th anniversary (1996 to 2015) of the global commercialization of biotech crops: Highlights in 2015 . ISAAA Brief No. 51. Ithaca, NY: ISAAA.
  • James, C. (2010). Global status of commercialized biotech/GM crops: 2010 . ISAAA Brief No. 42. Ithaca, NY: ISAAA.
  • James, C. (2014). Global status of commercialized biotech/GM crops: 2013 . ISAAA Brief No. 49. Ithaca, NY: ISAAA.
  • James, C. (2015a). Global status of commercialized biotech/GM crops: 2014 . ISAAA Brief No. 49. Ithaca, NY: ISAAA.
  • James, C. (2015b). 20th Anniversary (1996 to 2015) of the global commercialization of biotech crops: Highlights in 2015 . ISAAA Brief No. 51. Ithaca, NY: ISAAA.
  • Kaskey, J. (2012, November 16). DuPont-Dow corn defeated by armyworms in Florida: Study. Bloomberg News .
  • Key, S. , Ma, J. K.-C. , & Drake, P. M. W. (2008). Genetically modified plants and human health. Journal of the Royal Society of Medicine , 101 (6), 290–298.
  • Kleter, G. A. , Bhula, R. , Bodnaruk, K. , Carazo, E. , Felsot, A. S. , Harris, C. A. , . . . Wong, S.-S. (2007). Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective. Pest Management Science , 63 (11), 1107–1115.
  • Kloppenburg, J. R. (1990). First the seed: The political economy of plant biotechnology . Cambridge, U.K.: Cambridge University Press.
  • Klümper, W. , & Qaim, M. (2014). A meta-analysis of the impacts of genetically modified crops . PLoS ONE , 9 (11), e111629.
  • Knispel, A. L. , McLachlan, S. M. , Van Acker, R. C. , & Friesen, L. F. (2008). Gene flow and multiple herbicide resistance in escaped canola populations. Weed Science , 56 , 72–80.
  • Knox, O. G. G. , Vadakattu, G. V. S. R. , Gordon, K. , Lardner, R. , & Hicks, M. (2006). Environmental impact of conventional and Bt insecticidal cotton expressing one and two Cry genes in Australia . Australian Journal of Agricultural Research , 57 , 501–509.
  • Kynda R. C. , & Moeltner, K. (2006). Genetically modified food market participation and consumer risk perceptions: A cross-country comparison. Canadian Journal of Agricultural Economics , 54 , 289–310.
  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science , 304 (5677), 1623–1627.
  • Lehrer, S. B. , & Bannon, G. A. (2005). Risks of allergic reactions to biotech proteins in foods: Perception and reality. Allergy , 60 (5), 559–564.
  • Lemaux, P. G. (2009). Genetically engineered plants and foods: A scientist’s analysis of the issues (Part II). Annual Review Plant Biology , 60 , 511–559.
  • Lipton, M. , & Longhurst, V. (2011). New seeds and poor people . Abingdon, U.K.: Routledge.
  • Liu, Y. B. , Darmency, H. , Stewart, C. N. , Wei, W., Jr. , Tang, Z. X. , & Ma, K. P. (2015). The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea. Transgenic Research , 24 , 537–547.
  • Lucht, J. M. (2015). Public acceptance of plant biotechnology and GM crops. Viruses , 7 (8), 4254–4281.
  • Macnaghten, P. , & Carro-Ripalda, S. (2015). Governing agricultural sustainability: Global lessons from GM crops . London: Routledge.
  • Mallory-Smith, C. , & Zapiola, M. (2008). Gene flow from glyphosate-resistant crops. Pest Management Science , 64 , 428–440.
  • Mann, S. (2015). Is “GMO free” an additional “organic”? On the economics of chain segregation. AgBioForum , 18 , 26–33.
  • Mannion, A. M. (1995a). Biotechnology and environmental quality. Progress in Physical Geography , 19 , 192–215.
  • Mannion, A. M. (1995b). Agriculture and environmental change: Temporal and spatial dimensions . Chichester, U.K.: John Wiley.
  • Mannion, A. M. (1995c). The three Bs: Biodiversity, biotechnology and business. Environmental Conservation , 22 , 201–210.
  • Mannion, A. M. , & Morse, S. (2013). GM crops 1996–2012: A review of agronomic, environmental and socio-economic impacts . University of Reading, Geographical Paper No. 195. Retrieved from http://www.reading.ac.uk/geographyandenvironmentalscience/Research/ges-resGeogPapers.aspx
  • Marvier, M. , & Van Acker, R. C. (2005). Can crop transgenes be kept on a leash? Frontier Ecology Environment , 3 , 99–106.
  • Mauro, I. J. , & McLachlan, S. M. (2008). Farmer knowledge and risk analysis: Post release evaluation of herbicide-tolerant canola in Western Canada. Risk Analysis , 28 (2), 463–476.
  • Mauro, I. J. , McLachlan, S. M. , & Van Acker, R. C. (2009). Farmer knowledge and a priori risk analysis: Pre-release evaluation of genetically modified Roundup Ready wheat across the Canadian prairies. Environmental Science and Pollution Research , 16 , 689–701.
  • Monsanto . (2009). SmartStax corn receives Japanese import approval .
  • Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States , 104 , 13268–13272.
  • Morse, S. , & Mannion, A. M. (2009). Can genetically-modified cotton contribute to sustainable development in Africa? Progress in Development Studies , 9 , 225–247.
  • Morse, S. , Mannion, A. M. , & Evans, C. (2011). Location, location, location: Presenting evidence for genetically modified crops. Applied Geography , 34 (2), 274–280.
  • Mosher, G. , & Hurburgh, C. (2010). Transgenic plant risk: Coexistence and economy. Encyclopedia of Biotechnology in Agriculture and Food , 1 , 639–642.
  • Munkvold, G. P. , Hellmich, R. L. , & Rice, L. G. (1999). Comparison of fumonisin concentrations in kernels of transgenic Bt corn hybrids and non-transgenic hybrids . Plant Disease , 81 , 556–565.
  • Naqvi, S. , Zhu, C. , Farre, G. , Ramessar, K. , Bassie, L. , Breitenbach, J. , . . . Christou, P. (2009). Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways . Proceedings National Academy of Sciences, USA , 106 , 7762–7767.
  • Naqvi, S. , Zhu, C. , Farre, G. , Sandmann, G. , Capell, T. , & Christou, P. (2011). Synergistic metabolism in hybrid corn indicates bottlenecks in the carotenoid pathway and leads to the accumulation of extraordinary levels of the nutritionally important carotenoid zeaxanthin . Plant Biotechnology Journal , 9 , 384–393.
  • National Research Council . (2010). The impact of genetically engineered crops on farm sustainability in the United States . Washington, DC: National Academies Press.
  • Nazarko, O. M. , Van Acker, R. C. , & Entz, M. H. (2005). Strategies and tactics for herbicide use reduction in field crops in Canada: A review. Canadian Journal of Plant Science , 85 , 457–479.
  • Newell-McGloughlin, M. (2008). Nutritionally improved agricultural crops . Plant Physiology , 147 , 939–953.
  • Nickson, T. E. (2005). Crop biotechnology—the state of play. In G. M. Poppy & M. J. Wilkinson (Eds.), Gene flow from GM plants (pp. 12–42). Oxford: Blackwell.
  • Oelck, M. M. , MacDonald, R. , Belyk, M. , Ripley, V. , Weston, B. , Bennett, C. , et al. (1995, July 4–7). Registration, safety assessment and agronomic performance of transgenic canola cv. “Innovator” in Canada. In D. J. Murphy (Ed.), Proceedings of the 9th International Rapeseed Congress (Vol. 4, pp. 1420–1432). Cambridge, U.K.: Organising Committee of the Ninth International Rapeseed Congress.
  • Oerke, E. C. (2006). Crop losses to pests, centenary review. Journal of Agricultural Science , 144 , 31–43.
  • Owen, M. D. K. (2008). Weed species shifts in glyphosate-resistant crops. Pest Management Science , 64 , 377–387.
  • Owen, M. D. K. (2009). Herbicide-tolerant genetically modified crops: Resistance management. In N. Ferry & A. M. R. Gatehouse (Eds.), Environmental impact of genetically modified crops (pp. 115–164). Wallingford, U.K.: CABI.
  • Owen, M. D. K. , Young, B. G. , Shaw, D. R. , Wilson, R. G. , Jordan, D. L. , Dixon, P. M. , & Weller, S. C. (2011). Benchmark study on glyphosate-resistant crop systems in the United States. Part 2: Perspectives. Pest Management Science , 67 , 747–757.
  • Paarlberg, R. (2008). Starved for science: How biotechnology is being kept out of Africa . Cambridge, MA: Harvard University Press.
  • Park, R. J. , McFarlane, I. , Phipps, R. H. , & Ceddia, G. (2011). The role of transgenic crops in sustainable development . Plant Biotechnology Journal , 9 , 2–21.
  • Pemsl, D. , Waibel, H. , & Gutierrez, A. P. (2005). Why do some Bt-cotton farmers in China continue to use high levels of pesticide? International Journal of Agricultural Sustainability , 3 , 44–56.
  • Phillips, P. W. B. (2003). The economic impact of herbicide tolerant canola in Canada. In N. Kalaitzandonakes (Ed.), The economic and environmental impacts of Agbiotech: A global perspective (pp. 119–140). New York: Kluwer Academic.
  • Pimentel, D. , Hunter, M. S. , Lagro, J. A. , Efroymson, R. A. , Landers, J. C. , Mervis, F. T. , et al. (1989). Benefits and risks of genetic engineering in agriculture. BioScience , 39 (9), 606–614.
  • Pinstrup-Andersen, P. (1999). Agricultural biotechnology, trade, and the developing countries. AgBioForum , 2 , 215–217.
  • Potrykus, I. (2010). Lessons from the “Humanitarian Golden Rice” project: Regulation prevents development of public good genetically engineered crop products. Nature Biotechnology , 27 , 466–472.
  • Potrykus, I. (2012). “Golden Rice,” a GMO-product for public good, and the consequences of GE-regulation. Journal of Plant Biochemistry and Biotechnology , 21 , 68–75.
  • Powlson, D. S. , Stirling, C. M. , Jat, M. L. , Gerard, B. G. , Palm, C. A. , Sanchez, P. A. , & Cassman, K. G. (2014). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change , 4 , 678–683.
  • Prakash, D. , Sonika, V. , Ranjana, B. , & Tiwary, B. N. (2011). Risks and precautions of genetically modified organisms . ISRN Ecology, ID 369573.
  • Pray, C. E. , Huang, J. , Hu, R. , & Rozelle, S. (2002). Five years of Bt cotton in China—the benefits continue. Plant Journal , 31 (4), 423–430.
  • Pray, C. E. , Nagarajan, L. , Huang, J. , Hu, R. , & Ramaswami, B. (2011). Impact of Bt cotton, the potential future benefits from biotechnology in China and India. In C. Carter , G. Moschini , & I. Sheldon (Eds.), Genetically modified food and global welfare (pp. 83–114). Bingley, U.K.: Emerald.
  • Qaim, M. (2003). Bt cotton in India: Field trial results and economic projections. World Development , 31 , 2115–2127.
  • Qaim, M. (2009). The economics of genetically modified crops. Annual Review Resource Economics , 1 , 665–693.
  • Qaim, M. (2010). Benefits of genetically modified crops for the poor: Household income, nutrition and health. New Biotechnology , 27 , 552–557.
  • Qaim, M. , & Traxler, G. (2005). Roundup ready soybeans in Argentina: Farm level and aggregate welfare effects. Agricultural Economics , 32 , 73–86.
  • Ramaswami, B. , Pray, C. E. , & Lalitha, N. (2012). The spread of illegal transgenic cotton varieties in India: Biosafety regulation, monopoly, and enforcement. World Development , 40 (1), 177–188.
  • Reichman, J. R. , Watrud, L. S. , Lee, E. H. , Burdick, C. A. , Bollman, M. A. , Storm, M. J. , . . . Mallory-Smith, C. (2006). Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats. Molecular Ecology , 15 , 4243–4255.
  • Roh, J. Y. , Choi, J. Y. , Li, M. S. , Jin, B. R. , & Je, Y. H. (2007). Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. Journal of Microbial Biotechnology , 17 (4), 547–559.
  • Roller, S. , & Harlander, S. (1998). Genetic modifications in the food industry: A strategy for food quality improvement . London: Blackie Academic & Professional.
  • Rotolo, G. C. , Francis, C. , Craviotto, R. M. , Viglia, S. , Pereyra, A. , & Ulgiati, S. (2015). Time to rethink the GMO revolution in agriculture. Ecological Informatics , 26 , 35–49.
  • Sakakibara, K. , & Saiko, K. (2006). Review: Genetically modified plants for the promotion of human health. Biotechnology Letters , 28 , 1983–1991.
  • Sauter, C. , Poletti, S. , Zhang, P. , & Gruissem, W. (2006). Biofortification of essential natural compounds and trace elements in rice and cassava. Proceedings of the Nutrition Society , 65 , 153–159.
  • Semal, J. (2007). Patentability of living organisms: From biopatent to bio-big-bang. Chairs Agricultures , 16 , 41–48.
  • Seralini, G. E. , Mesnage, R. , Defarge, N. , Gress, S. , Hennequin, D. , Clair, E. , . . . de Vendômois, J. S. (2013). Answers to critics: Why there is a long term toxicity due to a Roundup-tolerant genetically modified maize and to a Roundup herbicide. Food Chemistry Toxicology , 53 , 476–483.
  • Sexton, S. , & Zilberman, D. (2011). Biotechnology and biofuel. In C. Carter , G. Moschini , & I. Sheldon (Eds.), Genetically modified food and global welfare (pp. 225–242). Bingley, U.K.: Emerald.
  • Smale, M. , Zambrano, P. , Gruère, G. , Falck-Zepeda, J. , Matuschke, I. , Horna, D. , . . . Jones, H. (2009). Measuring the economic impacts of transgenic crops in developing agriculture during the first decade . Washington, DC: International Food Policy Research Institute (IFPRI).
  • Smyth, S. J. , Gusta, M. , Belcher, K. , Phillips, P. W. B. , & Castle, D. (2011). Environmental impacts from herbicide tolerant canola production in Western Canada. Agricultural Systems , 104 , 403–410.
  • Stein, A. J. , Sachdev, H. P. S. , & Qaim, M. (2008). Genetic engineering for the poor: Golden Rice and public health in India. World Development , 36 , 144–158.
  • Stewart Jr, C. N. , Halfhill, M. D. , & Warwick, S. I. (2003). Transgene introgression from genetically modified crops to their wild relatives. Nature Reviews Genetics , 4 , 806.
  • Subramanian, A. , & Qaim, M. (2010). The impact of Bt cotton on poor households in rural India . Journal of Development Studies , 46 , 295–311..
  • Tabashnik, B. E. , Brevault, T. , & Carriere, Y. (2013). Insect resistance in Bt crops: Lessons from the first billion acres. Nature Biotechnology , 31 , 510–521.
  • Taylor I. E. P. (2007). Genetically engineered crops: Interim policies, uncertain legislation . New York: Haworth.
  • Trigo, E. , Cap, E. , Malach, V. , & Villareal, F. (2009). The case of zero-tillage technology in Argentina . Washington, DC: International Food Policy Research Institute.
  • Uchida, E. , Ouchi, T. , Suzuki, Y. , Yoshida, T. , Habe, H. , Yamaguchi, I. , … Nojiri, H. (2005). Secretion of bacterial xenobiotic degrading enzymes from transgenic plants by an apoplastic expressional system: An applicability for phytoremediation. Environmental Science and Technology , 39 , 7671–7677.
  • United Nations Department of Economic and Social Affairs, Population Division . (2017). World population prospects: The 2017 revision, key findings and advance tables .
  • United States Department of Agriculture . (2009). US Department of Agriculture GAIN report: EU-27 biotechnology: GE plants and animals . Washington, DC, USDA.
  • U.S. District Court, Kansas . (2017). Syngenta AG MIR162 Corn Litigation , 14-md-2591. Retrieved from http://www.ksd.uscourts.gov/syngenta-ag-mir162-corn-litigation/
  • Van Acker, R. C. , Brule-Babel, A. L. , & Friesen, L. F. (2004). Intraspecific gene movement can create environmental risk: The example of Roundup Ready® wheat in western Canada. In B. Breckling & R. Verhoeven (Eds.), Risk, hazard, damage—specification of criteria to assess environmental impact of genetically modified organisms (pp. 37–47). Bonn, Germany: Naturschutz und Biolische Viefalt.
  • Van Acker, R. C. , & Cici, S. Z. H. (2014). Coexistence in the case of a perennial species complex: The potential challenges of coexistence between GM and non-GM Prunus species. AgBioForum , 17 , 70–74.
  • Van Acker, R. C. , Cici, S. Z. H. , Michael, L. , Ryan, C. , & Sachs, E. (2015, November 17–20). Gaining societal acceptance of biotechnology: The case for societal engagement. In Seventh International Conference on Coexistence between Genetically Modified (GM) and Non-GM Based Agricultural Supply Chains (GMCC-15) . Amsterdam.
  • Van Acker, R. C. , McLean, N. , & Martin, R. C. (2007). Development of quality assurance protocols to prevent GM-contamination of organic crops. In J. Cooper , U. Niggli , & C. Leifert (Eds.), Handbook of organic food safety and quality (pp. 466–489). Boca Raton, FL: CRC.
  • Verma, S. R. (2013). Genetically modified plants: Public and scientific perceptions . ISRN Biotechnology , 2013 , 820671.
  • Vigani, M. , & Olper, A. (2013). GMO standards, endogenous policy and the market for information. Food Policy , 43 , 32–43.
  • Wafula, D. , Waithaka, M. , Komen, J. , & Karembu, M. (2012). Biosafety legislation and biotechnology development gains momentum in Africa . GM Crops Food , 3 (1), 72–77.
  • Wesseler, J. , Scatasta, S. , & El Hadji, F. (2011). The environmental benefits and costs of genetically modified (GM) crops. In C. Carter , G. Moschini , & I. Sheldon (Eds.), Genetically modified food and global welfare (pp. 173–199). Bingley, U.K.: Emerald.
  • White, P. J. , & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets: Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist , 182 , 49–84.
  • Wise, M. , Calvin, K. , Thomson, A. , Clarke, L. , Bond-Lamberty, B. , Sands, R. , … Edmonds, J. (2009). Implications of limiting CO 2 concentrations for land use and energy. Science , 324 , 1183–1186.
  • Wolt, J. D. , Keese, P. , Raybould, A. , Fitzpatrick, J. W , Burachik, M. , Gray, A. , … Wu, F. (2010). Problem formulation in the environmental risk assessment for genetically modified plants. Transgenic Research , 19 , 425–436.
  • Wu, F. (2006). Mycotoxin reduction in Bt corn: Potential economic, health, and regulatory impacts. Transgenic Research , 15 , 277–289.
  • Yanagisawa, S. (2004). Improved nitrogen assimilation using transcription factors. Plant Research , 2004 , 1–4.
  • You, C. B. , Song, W. , Lin, M. , Hai, W. L. , Li, P. , & Wang, Y. T. (2012). Allergens host plant interaction. In C. B. You , Z. I. Chen , & Y. Ding (Eds.), Biotechnology in agriculture: Proceedings of the First Asia-Pacific Conference on Agricultural Biotechnology, Beijing, China, 20–24 August 1992 (pp. 468–473). Dordrecht, The Netherlands: Kluwer.
  • Yuan, D. , Bassie, L. , Sabalza, M. , Miralpeix, B. , Dashevskaya, S. , Farre, G. , … Christou, P. (2011). The potential impact of plant biotechnology on the millennium development goals . Plant Cell Reports , 30 , 249–265.
  • Zhu, C. , Naqvi, S. , Breitenbach, J. , Sandmann, G. , Christou, P. , & Capell, T. (2008). Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in corn . Proceedings National Academy of Sciences USA , 105 , 18232–18237.

Printed from Oxford Research Encyclopedias, Environmental Science. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 20 June 2024

  • Cookie Policy
  • Privacy Policy
  • Legal Notice
  • Accessibility
  • [185.66.14.236]
  • 185.66.14.236

Character limit 500 /500

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

  • The New Food Fights: U.S. Public Divides Over Food Science
  • 3. Public opinion about genetically modified foods and trust in scientists connected with these foods

Table of Contents

  • 1. Public views about Americans’ eating habits
  • 2. Americans’ views about and consumption of organic foods
  • About this report
  • Acknowledgments
  • Methodology

Genetically modified (GM) foods contain at least one ingredient coming from a plant with an altered genetic composition. 16 Genetic modification, also known as genetic engineering, often introduces new, desirable characteristics to plants, such as greater resistance to pests. Many U.S. crops are grown using genetically engineered seeds, including a large share of the soybean, corn, cotton and canola crop. As a result, the majority of processed foods in the U.S. contain at least one genetically modified ingredient.

Despite the growing use of genetically modified crops over the past 20 years, most Americans say they know only a little about GM foods. And many people appear to hold “soft” views about the health effects of GM foods, saying they are not sure about whether such foods are better or worse for one’s health. When asked which of three positions best fits their viewpoints, about half of Americans (48%) say the health effects of GM foods are no different than other foods, 39% say GM foods are worse for one’s health and one-in-ten (10%) say such foods are better for one’s health.

About one-in-six (16%) Americans care a great deal about the issue of GM foods. These more deeply concerned Americans predominantly believe GM foods pose health risks. A majority of this group also believe GM foods are very likely to bring problems for the environment along with health problems for the population as a whole.

While a 2016 report from the National Academies of Sciences, Engineering and Medicine suggests there is scientific consensus that GM foods are safe, a majority of Americans perceive disagreement in the scientific community over whether or not GM foods are safe to eat. And, only a minority of Americans perceive scientists as having a strong understanding of the health risks and benefits of GM foods.

Perhaps some of this skepticism comes from people’s concerns about the motives of research scientists. Some three-in-ten Americans say that research findings about GM foods are often influenced by the researchers’ desires to help their industries. And people deeply concerned about this issue are particularly skeptical about the influence of industries behind research findings. A minority of three-in-ten Americans say that research findings from scientists about GM foods are often influenced by the best available evidence. People who know more about science topics, generally, are more likely to trust information from scientists and see scientific research findings about GM foods in a more favorable light.

Public awareness of genetically modified foods runs the gamut

argumentative essay gm crops

Foods with genetically modified ingredients have been available to Americans since about the mid-1990s when U.S. farmers began using genetically engineered crop varieties designed to better tolerate herbicides and resist pests. 17  Today, many processed foods in the United States contain ingredients that are genetically modified. More than 90% of the soybeans, corn, cotton and canola grown in the United States come from genetically engineered seeds. Genetically engineered ingredients are widely used in processed foods from breakfast cereals to cooking oils to corn chips.

argumentative essay gm crops

Most Americans have heard something about GM foods; 29% have heard “a lot,” roughly half (52%) have heard “a little.” About one-in-five (19%) Americans have heard “nothing at all” about GM foods.

People’s perceptions of how much GM food they eat is often seen as a benchmark for the public’s familiarity with GM foods. The argument goes that people who see themselves as not eating GM foods must be largely unaware that much of today’s food supply contains at least some GM ingredients, particularly foods using genetically modified corn or corn oil.

Overall, just 11% of Americans estimate that most of the food they eat has GM ingredients, another four-in-ten (40%) say some of the food they eat has GM ingredients. About half of the public (48%) says they do not eat GM foods or do so not too much.

Familiarity with GM foods is linked with people’s perceptions of their own consumptions. Some 23% of those who say they have heard or read a lot about GM foods say that most of what they eat contains genetically modified ingredients. Another 42% of this group says they eat some GM foods. Just 1% of those who say they have heard nothing about GM foods estimate that most of the food they eat contains genetically modified ingredients.

About half of Americans see no difference between GM and other foods, while a sizable minority say GM foods are a health risk

A number of observers have suggested that Americans’ limited familiarity with genetically modified foods suggests that people’s opinions about GM are “soft” and, therefore, more likely to change over time and, potentially, to be sensitive to differences in survey question wording.

The Pew Research Center survey explored this possibility by first asking about the safety of eating of GM foods with an explicit option for those not sure of their opinions to register that uncertainty. Roughly a quarter of adults (26%) said they were not sure of their views on this topic. A follow up question among the unsure asked for their “leaning” about whether GM foods were generally better for one’s health, worse, or neither. Some 58% of this group opted for a neutral position that GM foods were neither better nor worse for one’s health than foods without GM ingredients.

argumentative essay gm crops

Overall, some 39% of Americans say that GM foods are worse for one’s health after combining the responses to the first question with “leaning” views on the second question. About half (48%) of Americans say GM foods are neither better nor worse for one’s health than other foods, and a minority of 10% say that GM foods are better for one’s health.

The Pew Research Center survey asked respondents who say foods with GM ingredients are worse for one’s health to evaluate the magnitude of the risk of eating GM foods. More Americans consider the risk either medium (15% of all U.S. adults) or high (20% of all U.S. adults) than consider the health threat of GM foods to be low (just 4% of all U.S. adults).

argumentative essay gm crops

People who have heard or read more about GM foods are much more likely to consider these foods worse for one’s health. Those who are less familiar with GM foods are comparatively more inclined to say the effect of GM foods is neither better nor worse than non-GM foods. For example, about half (50%) of those who have heard or read a lot about GM foods say such foods are worse for one’s health. By contrast, just two-in-ten (20%) of those who have heard nothing about GM foods consider these foods worse for one’s health. Six-in-ten of those who have heard nothing about GM foods prior to taking the survey say such foods are neither better nor worse for one’s health.

People who have heard or read a lot about GM foods are also much more likely to say the health risks from genetically modified foods are high (31% vs. 9%).

Younger adults and those more concerned about the issue say GM foods are a health risk

argumentative essay gm crops

People’s views about the health effects of GM foods tend to vary with their own levels of concern about the issue as well as with age.

Three-quarters of people who care a great deal about the issue of GM foods say such foods are worse for one’s health than foods without GM ingredients. By contrast, only 17% of those who do not care at all or not too much about this issue say that GM foods are health risks. Those who care “some” about this issue fall in between with 51% of this group saying that GM foods are worse for one’s health.

Younger adults are more likely than their elders to consider GM foods health risks. About half (48%) of those ages 18 to 29 say GM foods are worse for one’s health than non-GM foods. In comparison, roughly three-in-ten (29%) of those ages 65 and older say the same.

There are modest differences in views by gender. Women are more likely to say foods with GM ingredients are worse for one’s health (42% vs. 36%), while men are more inclined to say foods with GM ingredients are neither better nor worse for health (53% vs. 44%). A 2014 Pew Research Center survey also found women were more likely than men to say it is generally unsafe to eat GM foods.

argumentative essay gm crops

Frequent consumers of organic foods are also relatively more inclined to see GM foods as worse for one’s health. But people who are focused on eating healthy and nutritious are about equally likely as those with little or no focus on this to say that GM foods are worse for one’s health than other foods.

Other factors – including people’s education and general level of science knowledge –are only modestly linked with beliefs about the health effects of GM foods. While a related Pew Research Center report found issues related to climate and energy issues are strongly divided along political lines, Democrats and Republicans hold similar views on the effects of eating GM foods.

Who is particularly concerned about the issue of genetically modified foods?

argumentative essay gm crops

One-in-six (16%) U.S. adults say they care a great deal about the issue of GM foods. Some 37% care some about this issue. About three-in-ten Americans do not care too much (31%) and 15% do not care at all about the GM foods issue.

Those who care a great deal about the GM foods issue are also more likely to follow news on this topic. Some 68% of those who are engaged with this issue follow news on the topic very or somewhat closely. In contrast, only about one-quarter of other Americans follow news on GM foods somewhat or very closely.

argumentative essay gm crops

Those who care a great deal about this issue are more likely to report greater awareness about the topic. Some 68% of those who care deeply about this issue say they have heard or read a lot about GM foods. In contrast, 28% of those who care some and just 15% of those do not care at all or not too much about this issue say they have heard or read a lot about GM foods.

Americans’ eating choices tend to be linked with their degree of concern about the issue of GM foods.

About three-in-ten (31%) frequent consumers of organic foods care a great deal about the GM foods issue, compared with just 6% among those who eat little organic foods.

argumentative essay gm crops

Vegans/vegetarians are more likely to care about the issue of GM foods; 39% of people who are at least mostly vegan or vegetarian care a great deal about this issue.

People with food allergies are slightly more inclined to care about the issue of GM foods (22% care a great deal compared with 14% among those with no allergies or intolerances to food).

Women are more likely to care a great deal about the GM foods issue than men (20% vs. 12%).

There are only modest differences in concern about this issue by other demographic and educational groups. Older adults, ages 65 and older, are a bit less likely than their younger counterparts to care deeply about the issue of GM foods. Those with high school degrees or less are a bit less likely than other educational groups to care about the issue of GM foods. And those with family incomes under $30,000 annually have a bit less concern about this issue than those with higher incomes.

There are no differences by political party in people’s degree of concern about the issue of GM foods.

Public expectations about the effects of GM foods are mixed; some worry that GMOs will affect environment as well as public health

Americans have mixed expectations about the likely effects from genetically modified foods, with many expressing both optimism and pessimism about consequences of GM foods.

argumentative essay gm crops

Most of the public expects GM foods to increase the global food supply. One-quarter say this is very likely and an additional 44% say this is fairly likely. A somewhat smaller majority says GM foods are very (20%) or fairly likely (36%) to result in more affordably priced foods.

At the same time, about half of Americans say environment and health problems will result from GM foods. Some 18% say it is very likely and 31% say it is fairly likely that GM foods will create problems for the environment. And similar shares say it is very (16%) or fairly likely (33%) that GM foods will lead to health problems for the population as a whole.

People who are most concerned about the GM foods issue are far more likely to foresee environmental and health problems because of these foods

argumentative essay gm crops

People who are more personally concerned about the issue of GM foods are especially worried that such foods will lead to health and environmental problems for society. Some 58% of those with deep personal concern about the GM foods issue say it is very likely that these foods will lead to problems for the environment; a similar share (53%) expects GM foods to result in health problems for the population as a whole. In contrast, majorities of those who are less engaged with this issue say environmental and health problems stemming from GM foods are not too or not at all likely.

These expectations of risks for society from GM foods are in keeping with the wide differences among these groups in their views of the health risks associated with eating GM foods.

More men expect positive effects from GM foods; more women expect negative effects

argumentative essay gm crops

Men and women have somewhat different expectations for GM foods. Men are more optimistic, while women are more pessimistic about the likely impact of GM foods on society.

Men are more inclined than women to expect GM foods to increase the global food supply (29% of men vs. 21% of women who say this is very likely). Similarly men are more likely than women to say that GM foods will lead to lower food costs (25% vs. 16% who say this is very likely). But, women are more likely than men to think GM foods will create problems for the environment (21% of women vs. 14% of men who say this is very likely) and to bring health problems for the population as a whole (20% of women vs. 11% of men who say this is very likely).

These modest differences in expectations by gender are in keeping with other studies. For example, a 2016 Pew Research Center study found women are more wary than men of emerging biomedical technologies to enhance human abilities, and a 2014 survey found women less likely to expect future technological changes, in general, to make people’s lives better.

There are modest generational differences in expected effects from GM foods. Adults ages 65 and older are less pessimistic than their younger counterparts about the likely effects of GM foods for society; more adults ages 65 and older say harm to the environment or to public health from GM foods is not at all or not too likely to occur. But younger adults, especially those ages 18 to 29, are more likely to think that GMOs will result in more affordably priced foods.

argumentative essay gm crops

Those with high science knowledge are more optimistic in their expectations that GM foods will bring benefits to society. Roughly four-in-ten (41%) of those with high science knowledge say it is very likely that GM foods will increase the global food supply. And 35% of those with high science knowledge say it is very likely GM foods will lead to more affordably priced foods. In comparison, just 11% of those low in science knowledge say GM foods are very likely to increase the global food supply and 13% say GM foods are very likely to bring more affordably priced food.

Education, which is closely linked with levels of science knowledge, shows a similar pattern. Postgraduate degree-holders are more inclined to say GM foods are very likely to increase the global food supply and to lead to more affordably priced food than those with less education.

Americans hold mixed views of scientists and the research connected with GM foods

Public views of scientists and their understanding about the health risks and benefits of GM foods are mixed and, often, skeptical. Most Americans perceive considerable disagreement among scientific experts about whether or not GM foods are safe to eat. While most people trust scientists more than they trust each of several other groups to give full and accurate information about the health effects of GM foods, only a minority of the public says they have a lot of trust in scientists to do this. At the same time, most Americans say that scientists should have a major role in policy decisions about GM foods, but so, too, should small farm owners and the general public. Fewer Americans say that food industry leaders should play a major role at the policy-making table.

But views of scientists connected with GM foods are often similar among those who with deep personal concern about the issue of GM foods and those with less concern. Differences are more pronounced between these groups when it comes to views of industry influence on scientific research findings and trust in food industry leaders to give full and accurate information about the health effects of GM foods. In other respects, people with deeper concern about this issue vary only modestly from other Americans in their views of scientists and the scientific research on GM foods.

People who tend to know more about science topics, in general, tend to have more positive views of scientists’ understanding and see the influences on their research findings about the health effects of GM foods in a positive light.

Relatively few Americans perceive broad scientific consensus on safety of GM foods

A recent report from the National Academies of Sciences, Engineering and Medicine concluded there was no persuasive evidence that genetically engineered crops have caused health or environmental problems. 18  Other reviews of the scientific literature have found almost all researchers working on this topic think GM foods are as safe as non-GM foods. 19  Similarly, a 2014 Pew Research Center survey found 88% of members of the American Association for the Advancement of Science (AAAS) and 92% of working Ph.D. biomedical scientists said it is safe to eat genetically modified foods.

argumentative essay gm crops

But in the public’s view, scientists appear divided over the safety of GM foods. Only a small minority (14%) of Americans say almost all scientists agree that GM foods are safe. Another 28% say more than half of scientists say that GM foods are safe. But 53% of U.S. adults say that half or fewer scientists agree that GM foods are safe to eat.

People’s own views about the safety of foods with GM ingredients are closely related to their perceptions of scientific consensus. For example, those who view GM foods as worse for health are especially inclined to say that there is little agreement among scientists about the safety of GM foods. Past Pew Research Center studies have found a similar pattern when it comes to perceptions of scientific consensus and beliefs about climate change as well as beliefs about evolution .

Across all levels of concern about this issue, few see broad consensus among scientists that GM foods are safe to eat. Those who care a great deal about this issue are a bit more likely to see majority consensus among scientists (50% compared with 37% of those who care some and 43% of those who care not too much or not at all about the GM foods issue).

Similarly, people who have heard or read a lot about GM foods are far more likely than those who have heard or read nothing about this issue to see consensus among scientists that GM foods are safe.

A minority of Americans say scientists understand the health effects of GM foods very well

argumentative essay gm crops

Most of the public has at least some reservations about scientists’ understanding of the health effects of GM foods. Only 19% of Americans say scientists understand the health risks and benefits of eating GM foods very well, while an additional 44% say scientists understand this fairly well. About one-third of Americans say scientists understand the risks and benefits of eating GM foods not too well or not at all well. For comparison, in a 2014 Pew Research Center survey two-thirds (67%) of U.S. adults said that scientists generally do not have a clear understanding of the health effects of GM crops.

argumentative essay gm crops

Those who perceive broad scientific consensus on the safety of GM foods are more likely to think scientists understand this topic. Some 45% of those who think almost all scientists agree that GM foods are safe to eat also say scientists understand this topic very well.

Paradoxically, people who are care a great deal about the issue of GM foods tend to say that scientists understand the health risks and benefits of eating GM foods very well (32%). By comparison, fewer people who do not care at all or not too much about this issue give scientists high marks for their understanding of the health effects of GM foods. Although, roughly similar shares of each group say that scientists understand the effects of GM foods at least fairly well. A similar pattern occurs among those focused on eating healthy and nutritious; more among this group (29%) say that scientists understand the effects of GM foods very well, compared with 16% of those who are less focused on healthy eating.

As noted above, those who care a great deal about the issue of GM foods are also a bit more likely than others to see scientists as agreeing that GM foods are generally safe to eat.

Americans are most trusting of scientists, small farm owners for information about the effects of GM foods

Americans are, comparatively speaking, more trusting of information from scientists and small farm owners on the safety of GM foods than they are of information from food industry leaders, the news media or elected officials.

argumentative essay gm crops

In absolute terms, however, Americans are somewhat skeptical of information from scientists. A minority of 35% say they trust scientists a lot to give full and accurate information about the health effects of eating GM foods. About one-in-five say they do not trust information from scientists at all or not too much. Another 43% of U.S. adults report some trust in scientists’ information.

A similar share of Americans trust small farm owners a lot (29%) or some (49%) to give full and accurate information about the health effects of GM foods. Public trust in information on the effects of GM foods from the news media, food industry leaders and elected officials is much lower. No more than one-in-ten Americans trust each of these groups a lot; majorities say they have no trust or not too much trust in the news media, food industry leaders and elected officials to give full and accurate information about the health effects of GM foods.

argumentative essay gm crops

Those who have heard or read a lot about GM foods are more likely to trust scientists (44% of this group say they trust scientists a lot, compared with 20% among those who say they have heard or read nothing about GM foods.) People who care more deeply about this issue express a similar level of trust in scientists as those with less concern about the issue of GM foods.

However, people deeply concerned about the issue of GM foods are especially skeptical of information from food industry leaders. Just 21% of those deeply concerned about this issue trust food industry leaders at least some to provide full and accurate information about the effects of GM foods, compared with 48% among those who do not care about the issue of GM foods at all or not too much. Fully half of those who care deeply about the issue of GM foods (50%) say that scientific findings about GM foods are influenced by the researchers’ desires to help their industries “most of the time.” In contrast, 22% of those with little concern about the issue of GM foods say the same.

Three-in-ten Americans say research on GM foods is often influenced by the best available evidence; a similar share says other motivations influence researchers

argumentative essay gm crops

The public offers a mixed assessment of what influences research from scientists on GM foods. Many Americans are skeptical that the best available evidence commonly influences research findings on GM foods. Three-in-ten Americans say research findings are influenced by the best available evidence most of the time, about half (51%) say this occurs some of the time and 17% say the best available evidence rarely or never influences research findings about GM foods.

At the same time, three-in-ten Americans (30%) say desires of scientists to help their industries influence the research findings on GM foods most of the time. Half (50%) say this occurs some of the time.

Perceptions that researchers’ career interests influence the research findings are similar; 30% say such motivations influence the research most of the time and 48% say this occurs some of the time.

argumentative essay gm crops

People more engaged in the issue of GM foods are particularly skeptical about the possibility of industry influence on scientific research findings. Half (50%) of those who care a great deal about the GM foods issue say researchers’ desires to help their industries influence research on GM foods most of the time. Those less engaged in the issue of GM foods are much less inclined to say that industry interests often influence science research.

People with a deeper personal concern about the issue of GM foods are similarly more inclined than other Americans to say that scientists’ desires for career advancements or their own political leanings often influence their research findings about GM foods.

But level of concern about the issue of GM foods is unrelated to views that the best available evidence influences scientists’ research findings. A minority of 29% of those who care a great deal about this issue says the best evidence influences research findings about GM foods most of the time, as do similar shares of those with less concern about the GM foods issue.

People with higher science knowledge tend to hold more positive views of scientists and their research findings on GM foods

argumentative essay gm crops

Although there only modest differences in perceptions of risk from eating GM foods among people with high, medium or low levels of science knowledge, those with higher science knowledge tend to assess scientists and their research on GM foods more favorably than those with less knowledge.

Those high in science knowledge, based on a nine-item index, are more likely to see scientists as being in agreement that GM foods are safe; 64% of those with high science knowledge say that almost all/more than half of scientists agree about this, compared with 28% of those with low science knowledge.

Americans with high science knowledge are especially trusting of information from scientists on the effects of eating GM foods. Roughly half of those with high science knowledge (51%) trust information from scientists a lot, while only about one-in five (18%) of those with low science knowledge say the same.

People with high science knowledge are also more inclined to think that research on GM foods reflects the best available evidence most of the time (50% of those with high science knowledge say this, compared with 14% of those with low science knowledge).

Like other Americans, those with high science knowledge have low trust in information from food industry leaders to give full and accurate information about the effects of GM foods. And, those with high (32%) and medium (37%) science knowledge say that researchers’ desires to help industries they work with or work for influence research findings most of the time. This compares with 16% among adults with low science knowledge.

Most Americans say scientists should have a role in policymaking on GM foods

argumentative essay gm crops

Despite some skepticism among the public about scientists working on GM foods, most of the public wants scientists to have a seat at the policymaking table. Six-in-ten U.S. adults (60%) say scientists should have a major role in GM policy decisions and 28% say scientists should have a minor role. Just 11% think scientists should have no role in policy decisions.

Majorities also support major roles for small farmers and the general public in policy decisions related to GM foods. Six-in-ten (60%) Americans say small farmers should have a major role in policy decisions about GM foods and a similar share, 57%, says the general public should have a major role. Fewer Americans say that food industry leaders should have a major role in policy decisions related to GM foods (42%). Americans are least inclined to say elected officials should have a major role in GM food policy (24%); 45% say elected officials should have a minor role and 30% say they should have no role in policy decisions about GM foods.

argumentative essay gm crops

People who are deeply concerned about the issue of GM foods give higher priority to the general public in policy decisions. Fully 78% among this group say the general public should have a major role in policy decisions. A smaller majority says scientists should have a major role in GM food policy (66%). By comparison, people who are not at all concerned or not too concerned about the issue of GM foods give higher priority to scientists in influencing policy decisions.

Assessments of media coverage on GM foods vary with degree of concern about the issue

argumentative essay gm crops

Few Americans follow news about GM foods closely; just 6% of Americans say they follow news about GM foods very closely. Some 65% do not follow news about GM foods at all or not too closely, and another 28% say they follow such news somewhat closely.

argumentative essay gm crops

Overall, more Americans give negative than positive assessments of how the media cover GM foods. Some 56% of Americans say the news media are doing a very or somewhat bad job, while 41% say the news media are doing a very or somewhat good job.

People who follow news about GM foods very or somewhat closely are more divided in their assessments of news coverage on GM foods (52% say the news media do a good job and 47% say the news media do a bad job).

Ratings of media coverage of GM foods is roughly similar among those with higher and lower concern about the issue of GM foods.

argumentative essay gm crops

Americans with more science knowledge are especially critical of media coverage on GM foods. Some 73% of those with high science knowledge say the news media do a bad job, while only about one-quarter (26%) say the news media do a good job covering GM food issues. By comparison, those with low science knowledge are closely split in their views of media coverage on these issues; 49% say the media do a good job, 45% say they do a bad job covering these issues.

The Pew Research Center survey also included two additional questions exploring people’s views about the balance of news coverage on GM foods.

argumentative essay gm crops

Overall, four-in-ten Americans (40%) say the news media do not take the health risks of GM foods seriously enough. A slightly smaller share (30%) thinks the news media exaggerate the health risks of GM foods. Roughly one-quarter (26%) say the news media are about right in their reporting.

argumentative essay gm crops

Further, 43% of U.S. adults say the news media give skeptics of the safety of GMOs too little attention. A smaller share (22%) says the news media give too much attention to skeptics. About one-third (32%) say the news media give skeptics of the safety of GMOs about the right amount of attention.

argumentative essay gm crops

People’s level of concern with the issue of GM foods is closely related to their views about media coverage. Fully 73% of those who care a great deal about the issue of GM foods say the news media do not take the health threat from GMOs seriously enough. Those with little personal concern about this issue are roughly equally divided between whether the news media exaggerate the health threat, do not take the health threat seriously enough or are about right in their reporting.

argumentative essay gm crops

Views about media attention given to skeptics of the safety of GMOs follow a similar pattern. Some 73% of those who care a great deal about the issue of GM foods say the news media give too little attention to the skeptics of the safety of GMOs. In contrast, among those with no or not too much personal concern about the GM food issue, 27% say the news media give skeptics of the safety of GMOs too little attention.

  • Animals can also be genetically modified but most discussion about the role of GM foods in the U.S. has centered on crops. For background see the summary on food safety by the Word Health Organization or “ Genetically Engineered Crops: Experiences and Prospects ” from the National Academies of Sciences, Engineering and Medicine, 2016. ↩
  • Fernandez-Cornejo, Jorge, Wechsler, Seth, Livingston, Mike and Mitchell, Lorraine. Feb. 2014. Genetically Engineered Crops in the United States , Economic Research Report 162, Economic Research Service, U.S. Department of Agriculture. ↩
  • The National Academies of Sciences, Engineering and Medicine. 2016. Genetically Engineered Crops: Experiences and Prospects , page 157. Also see the review of research from the European Commission, A decade of EU-funded GMO research (2001-2010) . ↩
  • In a 2013 review of the scientific literature on the safety of GM crops , Alessandro Nicolia, Alberto Manzo, Fabio Veronesi and Daniele Rossellini found no “significant hazards directly connected with the use of GE crops” even though the public discourse continues. ↩

Sign up for our weekly newsletter

Fresh data delivery Saturday mornings

Sign up for The Briefing

Weekly updates on the world of news & information

Most Popular

Report materials.

  • American Trends Panel Wave 17

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

© 2024 Pew Research Center

Home / Essay Samples / Environment / Crops / Genetically Modified Crops: Advancing Agriculture through Science

Genetically Modified Crops: Advancing Agriculture through Science

  • Category: Environment , Science
  • Topic: Crops , GMO

Pages: 2 (870 words)

Views: 1687

  • Downloads: -->

References:

  • Brookes, G. and P. Barfoot. (2018). GM Crops: Global Socio-economic and Environmental Impacts 1996-2016. PG Economics Ltd, UK. pp 1-204. European Commission, European Research Area, Food, Agriculture and Fisheries and Biotechnology. (2010). A decade of EU-funded GMO research 2001-2010. EUR 24473 EN https://ec.europa.eu/research/biosociety/pdf/a_decade_of_eu-funded_gmo_research.pdf
  • Food and Agriculture Organization (FAO) (2019): The state of food security and nutrition in the world: Safeguarding against economic slowdowns and downturns: Food and Agriculture Organization of the United Nations, Rome http://www.fao.org/3/ca5162en/ca5162en.pdf
  • Liu, P., He, X., Chen, D., Luo, Y., Cao, S., Song, H., Liu, T., Huang, K., and Xu, W. (2012). A 90-day subchronic feeding study of genetically modified maize expressing Cry1Ac-M protein in sprague-dawley rats. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 50(9), 3215-3221. doi:10.1016/j.fct.2012.06.009 https://www.sciencedirect.com/science/article/pii/S0278691512004231?via%3Dihub
  • Oliver, Melvin J. (2014).Why we need GMO crops in agriculture. Missouri medicine vol. 111(6): 492-507. https://www.researchgate.net/publication/272194036_Why_we_need_GMO_crops_in_agriculture
  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, et al. (2005). Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnology 23: 482–487 United Nations, UN (2008), UN millennium ecosystem assessment. http://www.millenniumassessment.org/en/Index.aspx.
  • United Nations, Department of Economic and Social Affairs, Population Division (2019). World population prospects highlights, United Nations, New York. https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf
  • Wood, M. (1995). Boosting plant’s virus resistance: genetic engineering research could yield a safe way to produce hardy new plants. Agricultural Research, 43:18–20. World Health Organization (2014). Frequently Asked Questions on Genetically Modified Foods. March 12, 2016. https://www.who.int/foodsafety/areas_work/food-technology/faq-genetically-modified-food/en/
  • World Health Organization (2019). Nutrition, Micronutrient deficiencies, Vitamin-A deficiencies. https://www.who.int/nutrition/topics/vad/en/

--> ⚠️ Remember: This essay was written and uploaded by an--> click here.

Found a great essay sample but want a unique one?

are ready to help you with your essay

You won’t be charged yet!

Microbiology Essays

Ocean Essays

Cell Essays

Stem Cell Essays

Mountains Essays

Related Essays

We are glad that you like it, but you cannot copy from our website. Just insert your email and this sample will be sent to you.

By clicking “Send”, you agree to our Terms of service  and  Privacy statement . We will occasionally send you account related emails.

Your essay sample has been sent.

In fact, there is a way to get an original essay! Turn to our writers and order a plagiarism-free paper.

samplius.com uses cookies to offer you the best service possible.By continuing we’ll assume you board with our cookie policy .--> -->