U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

National Academy of Sciences (US) Committee on Research in the Life Sciences. The Life Sciences: Recent Progress and Application to Human Affairs: The World of Biological Research Requirements for the Future. Washington (DC): National Academies Press (US); 1970.

Cover of The Life Sciences

The Life Sciences: Recent Progress and Application to Human Affairs: The World of Biological Research Requirements for the Future.

  • Hardcopy Version at National Academies Press

CHAPTER THREE THE WORLD OF BIOLOGICAL RESEARCH

The life sciences embrace a great array of intellectual activity, a continuum extending from the search for the origin of life and the detailed structure of the macromolecules that make life possible to understanding of the total ecology of planet Earth. The millions of micro-organisms and plant and animal species interacting in the air, the soil, freshwater ponds and streams, and the oceans afford a never-ending variety of objects of fascinating inquiry. This endeavor has enhanced man's capacity to manage and protect his environment, to feed and clothe himself, and to prolong his comfortable and fruitful years. The inquiry itself is conducted in the laboratory, in research institutes and hospitals, in experimental tracts and ponds, by walks in the woods, by surveillance from the skies, from ships at sea, and on treks through the jungle, observing both undisturbed and managed nature. Those so engaged range from amateur nature lovers to directors of large institutes. They work in and out of institutions large and small; they work with private, state, and federal resources in institutions of higher learning, nonprofit research institutes, research hospitals, federal, state, and local laboratories, and in the organized multidisciplinary teams of industry.

In 1966 the National Register of Scientific Personnel identified approximately 84,000 individuals with diverse levels of training and educational backgrounds who classified themselves as working life scientists. The identification of these people was possible through the cooperation of the two major biological research societies, the Federation of American Societies for Experimental Biology and the American Institute of Biological Sciences.

The Federation issued questionnaires to approximately 24,300 people, the great majority of whom had earned doctoral degrees. Of these, some 20,100, or 83 percent, responded to the Register questionnaires. The American Institute of Biological Sciences contributed approximately 59,800 names, but the proportion of doctorate holders among this group is lower, and hence fewer of them meet the conditions for inclusion in our survey as individual life scientists. Approximately 40,000 people, or 67 percent, responded to the Institute's questionnaire and the proportion of doctorate holders represented by those respondents is higher than that of the original 59,800 individuals surveyed by that society. The overall response to the Register from the two societies was approximately 65 percent and should comprise most working biologists. From these numbers it can be estimated that 70 to 80 percent of doctoral-degree holders responded to the National Register in 1966. However, one can only guess what fraction of American biologists, with or without doctoral degrees, this represents.

It is estimated * that, in the aggregate, $2,264 million was invested in research in the life sciences in fiscal year 1967, of which 60.3 percent came from the federal government, 7.3 percent from the resources of nonprofit institutions, and 30.0 percent from industry. In its entirety, therefore, research in the life sciences has become one of the major pursuits of American society. This chapter is devoted to a description of some of the components of the life sciences research system, based largely on information gathered from responses to our two questionnaires (Appendixes A and B).

Detailed information on the gross parameters of the total system was revealed by the first of our two questionnaires: It contains 14,362 scientists, of whom 12,383 were investigators as here defined, viz., they devoted more than 20 percent of their time to research. In 1966 they published more than 24,000 original articles, 489 books, 1,100 reviews, and 7,500 in-house reports and other contributions. The universe revealed by the second questionnaire contains 1,256 academic departments with an aggregate continuing staff of 18,608 scientists, with available research funds (direct costs only) totaling $304 million, operating in 325 acres of laboratory space in which they directed the research and training of 23,287 graduate students and 4,695 postdoctoral fellows and were assisted by 24,481 technicians, secretaries, and other personnel.

Of the 14,362 individuals who replied to the individual questionnaire, 3.4 percent were less than 30 years old and 6.3 percent were at least 60 years of age; 36.2 percent ranged from 30 to 39 years; 36.3 percent ranged from 40 to 49 years; and 17.8 percent were in the range 50 to 59 years. This distribution is fairly close to that of the scientific population at large. The average age of the group was 43.2 years, the median 41 to 42 years. Only 5.1 percent of the total population was female.

Every state of the Union was represented in the reporting of birthplaces. New York was represented by the largest number of scientists (1,989); Pennsylvania and Illinois followed with 880 and 855, respectively; and 631 were born in California; in all, 12,439 had been born in the United States, and 1,866 were foreign-born. All but 41 of the foreign-born regarded themselves as permanent residents of the United States at the time of the questionnaire. The foreign-born life scientists had come to our shores from 81 different nations. The major sources were Canada (292), Germany (236), England (162), Taiwan (142), India (97), Austria (89), Hungary (68), Poland (55), and Japan (50).

  • WHERE LIFE SCIENTISTS WORK

Two thirds of the 12,383 investigators were employed by institutions of higher learning; as shown in Table 7 , 14 percent were employed by the federal government, 10 percent by industry, and the remaining 10 percent by a variety of nonprofit organizations—e.g., hospitals, clinics, museums, state and local governments—and a few are self-employed. In a general way, this pattern is relatively independent of the field in which these life scientists were trained ( Figure 33 ). With the exception of horticulturists, those trained in the agricultural sciences are more likely to work for the federal government than those trained in any other scientific area. Of the 68 percent who were trained in the basic biological sciences, biochemists are by far the largest single group, constituting 15 percent of the total population of this study, with microbiologists and physiologists 8 percent and 7 percent of the total, respectively. Although, because of their numbers, these groups are predominant on the faculties of institutions of higher education, biochemists, microbiologists, and pharmacologists are also in great demand outside these institutions. Over 40 percent of those trained in these three disciplines operate in nonacademic environments, with all three unusually well represented in the laboratories of industry.

TABLE 7. Principal Employment of Life Scientists.

Principal Employment of Life Scientists.

Type of employment of life scientists, by field of doctoral training. (Source: Survey of Individual Life Scientists, National Academy of Sciences Committee on Research in the Life Sciences.)

Of the 17 percent of our population who were originally trained as physicians, one third also obtained Ph.D. degrees. Seventy percent of the M.D.'s are on the faculties of universities, including virtually all the M.D.-Ph.D.'s; rather few research-performing M.D.'s are in industry, but there is unusually high representation in nonprofit institutions, particularly independent hospitals and clinics and public-health organizations. Those trained as physicians constituted 44 percent of the 3,170 reporting members of faculties of medical schools (and these schools corresponded to 39 percent of the total academic population); these were 87 percent of all reporting physicians. The remainder of the medical faculty was drawn largely from among those originally trained in the basic medical sciences; biochemists predominated in this last group (15 percent of the gross total), with major representation also from physiology, microbiology, and pharmacology.

Because of their relatively large total number, those trained in biochemistry are found throughout the system in substantial numbers. Of 1,834 trained biochemists reporting, 59 percent (1,069) were in institutions of higher learning, including 491 in medical schools, 225 on arts and sciences faculties, 126 in agricultural schools, and 37 in liberal arts colleges. Substantial numbers were also found elsewhere: 247 in the federal government, 275 in industry, and 231 in other nonacademic, nonprofit organizations. (The disciplinary designation, “biochemist,” relates only to the field of original doctoral-level training, and not to the area of science in which the scientist is currently working.)

Of the life scientists in our sample employed by institutions of higher learning, slightly less than 5 percent were at liberal arts colleges. Undoubtedly, a much larger fraction of life scientists, particularly botanists and zoologists, are on the faculties of such institutions, but relatively few engage in research on a scale sufficient to have put them within the scope of this study.

The questionnaire addressed to department chairmen yielded an aggregate faculty for all responding departments of 17,172, of whom 3,852 were on faculties of arts and sciences, 3,907 on the faculties of agricultural schools, and 8,915 on the faculties of medical schools. Although the general employment patterns in the two questionnaire files are similar, the discrepancies are of some interest. Whereas 39 percent of all individual respondents were on the faculties of medical schools, 52 percent of the total departmental faculties reported were so employed. To place this in perspective, it should be noted that, of the 1,256 departments represented in the study, 267 are in agricultural schools, 246 in faculties of arts and sciences, and 694 in medical schools. Of the medical departments, 361 were departments of the preclinical and 333 of the clinical segments of medical schools. Undoubtedly, the returns from the chairmen's questionnaire should be taken as a more valid description of the distribution of the faculties of life scientists than that provided by the individual returns.

The 1,689 individual scientists who indicated that they are employed by the federal government appear to represent a large fraction of the senior life scientists in the federal establishment. The major employers of the 1,689 reporting life scientists within the federal establishment are the Departments of Agriculture (36 percent), Health, Education, and Welfare (27 percent), Defense (15 percent), and the Veterans Administration (11 percent). The patterns of employment of scientists in the various biological disciplines reflect the character of the agency missions rather closely. Thus, 84 percent of all those trained in agricultural sciences now in the federal establishment are employed by the Department of Agriculture; 53 percent of all federally employed M.D.'s actively engaged in research work for the Department of Health, Education, and Welfare; 29 percent of the M.D.'s work in the Veterans Administration; and 18 percent of the M.D.'s work in the Department of Defense.

The disciplinary employment patterns in other areas are repeated in the federal establishment: 32 percent of all federal life scientists were trained in the basic medical sciences, varying from 12 percent in the Department of Agriculture to 55 percent in the Department of Defense. Except for the physicians employed by the Department of Health, Education, and Welfare and the Veterans Administration and the agronomists employed by the Department of Agriculture, biochemists again constitute the largest single group of scientists in all federal agencies, ranging from 7 percent in the Department of Agriculture to 16 percent in the Department of Defense, 21 percent in the Department of Health, Education, and Welfare, and 26 percent in the Veterans Administration.

An additional 135 scientists were employed in federal contract research centers, which are managed by educational or other nonprofit organizations. State governments employed 229 life scientists (1.8 percent of the grand total), largely in hospitals or state health departments and their laboratories, and approximately half as many life scientists were found in municipally controlled institutions of the same character. A significant number, 462 scientists (3.7 percent of the total), were employed by nonprofit institutes, foundations, and privately controlled museums.

There are no reliable indicators to determine whether the 1,155 individual respondents who indicated that they are employed in industry constitute either a large or a true sample of the total number of senior life scientists employed in that sector of the economy. Seventy-six percent were employed by manufacturing industries; two thirds of these were in the pharmaceutical industry. Again, those trained in the basic medical sciences predominate: 262 biochemists were the largest group, followed by 178 microbiologists and 107 pharmacologists. The low representation of other disciplines among investigators in industry is somewhat disconcerting. For example, only two embryologists, three anatomists, four cell biologists, four ecologists, eight animal pathologists, 10 biophysicists, 13 botanists, and 25 zoologists reported that they were in the employ of some industrial establishment.

Finally, in this regard, it should be remarked that of the 12,151 life scientists responding, 442 had obtained Ph.D.'s in chemistry and 114 in other fields of the physical sciences (about one half in physics), while 105 individuals were originally educated as psychologists. (No questionnaires were sent to individual practicing research psychologists or to the chairmen of either psychiatry or psychology departments.) The employment distribution of these 662 converts to the life sciences among institutions of higher learning, the federal government, industry, and other organizations was much like that of the groups described earlier.

  • MOBILITY OF LIFE SCIENTISTS

Geographic mobility, so prominently a characteristic of American society, is nowhere more evident than in the scientific community. As shown in Table 8 , scientists born in each of the standard census regions can currently be found in each of the other census regions. Presumably, the direction of these migrations is dictated largely by increasing employment opportunities. This is particularly evident in the considerable migration from all other census regions to the Pacific Coast region and the South Atlantic region. Of at least equal interest, however, is the even greater tendency for relocation to regions likely to produce the least “cultural shock.” Not only is there the expected tendency of a substantial fraction of all scientists in all census regions to remain within the states or census regions within which they were born, but the most frequent move from one region to another has been to an adjoining area where life patterns are similar—e.g., from the lower South to the upper South, or within the Midwest.

TABLE 8. Migration Patterns of Life Scientists.

Migration Patterns of Life Scientists.

For the entire population of life scientists, the average length of employment in the current position was 9.6 years, with the median 6 to 7 years. Fifty-five percent of all respondents had held at least one previous position with a different employer, quite apart from any number of postdoctoral appointments. The average length of employment in that previous position was 4.7 years, and the median was 3 to 4 years. Although 90.5 percent of all such moves had been made after less than 10 years with the previous employer, employment translocation was reported by some scientists even after as long as 40 years with the initial employer.

The pattern of these moves is of interest in itself. Although institutions of higher learning were the principal source of those who entered the employ of the federal government, private industry, and other organizations, in a general way each employing entity in the system also tended to recruit from other institutions in the same category. For example, 36 percent of all those in private industry had been employed by a different corporation, and 19 percent of those now working for an independent hospital or clinic had previously worked for some other independent hospital or clinic.

Two thirds of those who had moved to an institution of higher learning had come from another such institution. Of the remainder, 13 percent had left the federal government, 5 percent private industry, 5 percent other nonprofit organizations, and 8 percent various other state and community institutions. Perhaps the major surprise in these data is the fact that, ignoring graduate and postdoctorate education, institutions of higher learning appeared to be a net importer of scientific employees. Whereas 1,750 individuals whose previous employers had been nonacademic institutions currently were employed by the universities, only 1,260 individuals currently employed by nonacademic institutions had previously been employed by universities or colleges.

Respondents to the questionnaire were not queried about their motivation in accepting offers of new positions. It may be assumed that these were responses to offers of higher pay, of opportunity to engage in independent research or research under more desirable conditions, or to locate in geographical areas attractive to the families of the scientists concerned.

  • PREVIOUS EDUCATION OF WORKING LIFE SCIENTISTS

In the foregoing summary, the initial training of working life scientists was categorized in disciplinary terms that are familiar as the titles of academic departments and that are employed in most statistical collections. However, the reader who has considered earlier chapters will have recognized that these conventional subdisciplinary titles have, in considerable measure, lost their meaning and convey false distinctions. Whereas biochemists were formerly concerned largely with elucidation of metabolic maps, they may today be concerned with macromolecular structure, the chemistry of cell-cell recognition, or the phenomena responsible for atherosclerosis. Not so long ago, microbiologists were overwhelmingly concerned with the taxonomy of microbiological forms, yet today they may be concerned with genetic mechanisms or the nature of the immune response to invasion by some specific organism. Hematologists, who only yesterday were describing changes in the morphology of blood cells in leukemia as seen with a light microscope, are now intimately involved in understanding the manner in which nucleic acids control the differentiation process among white blood cell types. Physiologists, who formerly engaged in studies of the mechanics of muscular contraction or morphological changes induced by steroid hormones, are today inquiring into mechanisms of transmembranal transport or the molecular events by which steroid hormones affect protein biosynthesis in receptor cells. Botanists, once engaged in taxonomic studies or in gross plant physiology, are today concerned with the phenomena by which plants interact with other organisms and with their environment, the cardinal aspects of ecology, while zoologists may be concerned with all those aspects of the environment that have favored rapid proliferation of new species in one set of circumstances or remarkably prolonged survival, unchanged, of other species, studies that embrace all aspects of ecology, genetics, biochemistry, and physiology. Even more dramatic have been the changes in the character of research in clinical medicine, pathology, and pharmacology. Investigators in these areas have learned to use the most recent developments in understanding such phenomena as protein structure, enzyme kinetics, transmembranal transport, neural transmission, immunochemistry, viral reproduction, lipid metabolism, and behavioral genetics as they explore disease mechanisms in man or animals, design and test new drugs, or prepare a patient for organ transplantation. And their laboratories cannot be distinguished from those of other scientists so engaged.

Because of these rapidly evolving and profound trends, it appeared desirable to reconsider individual scientists, not under classical disciplinary labels, but in relation to the nature of the research conducted during their initial formal education in graduate school and in relation to the research in which they are currently engaged. That two individuals are studying cellular structure and function is more significant than that one considers himself a zoologist and the other a botanist. The plant pathologist may have more in common with an animal pathologist than with a plant taxonomist, and similar considerations are obvious for plant and animal physiologists, or for plant, animal, and microbial geneticists, for example.

Thus, we have found it useful to recategorize life sciences research into the following dozen classifications:

Behavioral biology

Cell biology

Developmental biology

Disease mechanisms

Evolution and systematic biology

Molecular biology and biochemistry

Pharmacology

It will be evident that even these categories are somewhat arbitrary and are by no means mutually exclusive. They fail to make clear the fact that biochemistry, a research area itself, is also the common language and the tool for almost every other entry in the classification scheme. However, the questions being asked of nature by scientists within each category are sufficiently distinct to permit self-identification by our respondents, while providing a more revealing description of the life sciences endeavor than that offered by more traditional disciplinary titles.

Tables 9 and 10 summarize the current research areas of some of our respondents, comparing their current areas of involvement with the disciplines and research areas in which they had been trained as graduate students. As a consequence of an awkwardness in the design of the layout of the printed questionnaire, almost a quarter of all respondents failed to provide information concerning the research fields, as here categorized, in which they had been trained and in which they are currently engaged. However, as indicated in Appendix A , it appears fair to assume that the patterns revealed by those who did not overlook this question are representative of the total.

TABLE 9. Comparison of Current Research Areas with Areas of Most Recent Ph.D. or D.Sc. Degree.

Comparison of Current Research Areas with Areas of Most Recent Ph.D. or D.Sc. Degree.

TABLE 10. Comparison of Current Research Area with Disciplines in Which Life Scientists Were Trained.

Comparison of Current Research Area with Disciplines in Which Life Scientists Were Trained.

As indicated by the diagonal of Table 9 , current research in any given area is conducted predominantly by individuals who were trained in that area, varying from 49 percent of those currently engaged in behavioral biology to 85 percent of those working in genetics. Equally impressive, however, is the degree of intellectual migration among research fields. Thus, 48 percent of all those trained in morphology are now engaged in some other area, as are 39 percent of those originally trained in cell biology, 33 percent of those trained in developmental biology, and 30 percent of those trained in physiology. Maximum field retention was found among those trained in pharmacology, ecology, genetics, and molecular biology and biochemistry. Perhaps the most striking fact shown by the table is that every possible crossover was reported. Noteworthy, too, are the fields that, on balance, have either attracted more investigators than they have lost, or vice versa. The “gainers” include molecular biology and biochemistry, behavioral biology, cellular biology, disease mechanisms, ecology, and pharmacology. The most significant “losers,” in absolute numbers rather than percentages, were genetics, morphology, nutrition, and physiology, with developmental biology and systematic biology remaining approximately in balance.

Many biologists currently consider that there has been a rapid growth in the opportunities for fruitful studies in behavioral and developmental biology and in ecology. But these data indicate that, although there has been some modest influx into these fields, it is not yet particularly striking, although graduate enrollments have been affected in the predicted directions. Moreover, the changes are generally immediately lateral in the sense that most of those who have changed research areas have moved into areas in which they can apply the skills and insights of their primary training. This is most certainly the case for the 184 of 287 individuals who left molecular biology and biochemistry to enter upon studies in cellular biology, disease mechanisms, pharmacology, or physiology, as it must also be true for the 317 individuals who left physiology to enter other biological categories.

Only 741 scientists were sufficiently certain of their plans to change research areas in the future to so indicate. And again, the planned changes were, in the main, relatively conservative ( Table 11 ) and into closely related areas, e.g., molecular biology to genetics, genetics to molecular biology, physiology to pharmacology, botany to ecology. Molecular biology will be the chief gainer (19 percent of all who plan to change), largely from cellular biology and physiology. However, it will lose a slightly larger number (20 percent), mainly to cell biology, developmental biology, and disease mechanisms. Disease mechanisms attracts the second largest group (15 percent), largely from among those now engaged in cellular biology, biochemistry, and physiology, while developmental biology also seems attractive to those in the same group of research areas (12 percent). The survey revealed a particularly interesting trend. Some ecologists indicated plans to enter behavioral biology, while a significant number of physiologists and students of disease were seriously considering switching to ecology.

TABLE 11. Projected Research Areas of Some Life Scientists.

Projected Research Areas of Some Life Scientists.

Moreover, the perhaps not unexpected conservative migratory pattern is again evident from the responses of life scientists who intended to change the biological material with which they were working. In a general way, those now seriously contemplating such a change are, in the main, thinking of switching either to the next higher or the next lower level of biological organization, e.g., from broken cell preparations to cells or tissue culture or to molecular systems; or from intact organs to either intact organisms or cellular preparations.

Table 12 relates research areas to the principal employers of the 8,139 individuals for whom such information is available. Of this subset, institutions of higher learning employed 68 percent, the federal government 14 percent, industry 9 percent, and all other nonprofit organizations, hospitals, etc., 9 percent. Noteworthy are the high levels of employment by the federal government of those studying ecology and disease mechanisms; the government shows much less interest in developmental biology, morphology, and pharmacology. Private business employs an unusually high fraction of all nutritionists and pharmacologists, but appears to have little interest in ecology, systematic biology, or morphology.

TABLE 12. Distribution of Investigators in Various Research Areas by Principal Employer.

Distribution of Investigators in Various Research Areas by Principal Employer.

A small insight into the changing dynamics of the life sciences is provided by observation of the fraction of the total population within each research area under 34 years of age. This fraction is remarkably close to 21 percent for virtually all research areas, with a few interesting exceptions. Only 11 percent of those engaged in the study of disease mechanisms are within this age group, presumably reflecting the long period of residency training for physicians. In contrast, 23 percent of those in developmental biology and 28 percent of those in molecular biology and biochemistry were under the age of 34 at the time of this survey, indicating that in the recent past these two fields, as compared with the other research areas, have become increasingly attractive to young scientists. Only 18 percent of all those attracted into the life sciences from the physical sciences were within this age group, indicating that there has been no dramatic upsurge of interest in the life sciences among young chemists or physicists.

The reverse situation is in accord with the same suggestions. For the entire population, 18 percent were 50 years of age or older, but only 12 percent of those in molecular biology and biochemistry fell within that age range, in contrast with 25–28 percent in the areas of disease mechanisms, evolutionary and systematic biology, morphology, and nutrition.

Of some interest are the attributes of the group of investigators originally trained only as M.D.'s or in the other health professions. They are older, with only 15 percent under 34 years of age, but 42 percent within the age span 40–49. Logically, disease mechanisms constitute their principal single interest (27 percent of the total), but they are also represented in every other research area with the exception of systematic biology, major interests being physiology (22 percent), molecular biology and biochemistry (15 percent), cellular biology (9 percent), and pharmacology (8 percent).

The 456 women showed only a few distinct tendencies to differ from the distribution of the men. Women tended to avoid physiology, ecology, and systematic and behavioral biology, and 28 percent of all female respondents work in molecular biology and biochemistry.

  • POSTDOCTORAL TRAINING

Prior to World War II, postdoctoral research training experience was a privilege granted very few young scientists. Fellowships were scarce, and only the most highly talented could aspire to such opportunity. Since available research grants were decidedly limited in size, few senior academic investigators commanded the means to support eligible new M.D.'s or Ph.D.'s desirous of embarking upon the apprentice training characteristic of the postdoctoral experience. That situation no longer obtains. Postdoctoral experience has become almost the norm rather than the exception, and we are entirely convinced that this is in the national interest.

However, the situation has given rise to concern among those less closely associated with research in these disciplines. For example, agencies that provide support for postdoctoral training are uncertain of its value. Educational institutions in which postdoctoral fellows abound are uncertain of their institutional responsibility for this enterprise. Institutions that, perhaps until 1969, have had difficulty in recruiting sufficient staff to meet teaching obligations—largely the four-year colleges and junior colleges, but also a significant number of medical schools, as well as industry and some federal laboratories—have complained that the postdoctoral system is a holdup in the pipeline that, in the steady state, keeps a substantial number of bright young investigators out of the regular job market. We appreciate these problems, but consider that the benefits of postdoctoral education far outweigh these transient difficulties. Let us consider here the postdoctoral training experience of our responding population of life scientists. In the following chapter there is a summary of the numbers and activities of postdoctoral fellows in training in 1967–1968, as well as an analysis of the contribution of postdoctoral education to the operation of the entire endeavor.

Of the 12,151 investigators in the study, 5,041 had had at least one postdoctoral appointment, including 1,402 M.D.'s who had had postdoctoral experience in which research was their major responsibility. Three fourths of those who had had postdoctoral experience are now in academic life. Indeed, 45 percent of the 8,143 scientists now employed by universities had enjoyed postdoctoral experience, compared with 21 percent of the scientists in industry and 31 percent of those in the federal establishment. Taken across all disciplines, postdoctoral experience somewhat enhances the opportunity for employment in the federal government and markedly enhances the opportunity for employment in the universities. It is our impression that in universities with major commitments to graduate education and research, measured in supporting dollars and number of graduate students, faculty appointments for individuals who have not had postdoctoral experience are probably rare indeed. According to a National Academy of Sciences study of postdoctorals, * 74 percent of all new appointees to the rank of instructor or assistant professor in 21 departments of biological sciences in 10 “leading” institutions either came from other university faculties or had just held postdoctoral appointments.

However, the trend to postdoctoral education is not universal across all biological fields. For example, of the 855 individuals with graduate training in agricultural fields, only 35 had had postdoctoral appointments. In contrast, postdoctoral training was commonplace among M.D.'s since it has become the conventional medium for obtaining research training among this group.

As shown in Table 13 , postdoctoral training was less frequent among botanists (29 percent) than among biochemists (53 percent), with the other disciplines ranging in between. Postdoctoral training was frequently taken in fields other than those in which scholars had their initial doctoral experience. Thus, of the zoologists and botanists who did take postdoctoral training, less than half did so in zoology and botany departments. Again, the biochemists appear as the other extreme. Not only did a larger fraction of biochemists than other life scientists take postdoctoral training, but a decidedly larger fraction remained within biochemistry for their postdoctoral experiences. Since an additional 540 individuals who had taken their original graduate education in fields other than biochemistry sought postdoctoral training in biochemistry, postdoctoral education is a major aspect of life in biochemistry departments. Large numbers of those trained in biochemistry in graduate school later work in other disciplinary areas, while many individuals enrich their original disciplinary education by a one- or two-year postdoctoral experience in biochemistry and then, when they become independent investigators, return to their original disciplines and research areas or enter yet other research areas.

TABLE 13. Postdoctoral Experience of Scientists in a Limited Group of Biological Disciplines.

Postdoctoral Experience of Scientists in a Limited Group of Biological Disciplines.

These data uphold one of the primary arguments in support of the trend toward postdoctoral experience as a normal component of the education of those who later will espouse careers in which research is a major activity, viz., that this constitutes a unique opportunity to broaden one's horizons, learn new techniques, and become familiar with the style of other subdisciplines, while profiting by the examples of different master scientists. The overall situation is reflected in the totals of Table 13 . Of 5,765 Ph.D.'s in this file, 2,395 undertook postdoctoral experience, of whom 1,463, or 61 percent, extended their experience in the same disciplines in which they had studied in graduate school. But the impression that postdoctoral experience is a continuation of graduate education in 61 percent of all cases is misleading, since it is weighted by the fact that more than half of all of those who did experience this continuation were biochemists. If the biochemists are excluded, only 50 percent of the remaining scientists who undertook postdoctoral training did so in their graduate disciplines. Moreover, such an experience is but rarely a mere continuation of graduate education. This is borne out by the following consideration: In a subfile of 3,234 postdoctoral fellows, only 14 percent had taken postdoctoral education in the same university in which they had obtained their doctoral degrees, and only 6 percent in the same departments that had awarded their doctoral degrees. This migratory pattern is particularly evident among the M.D. population. However, about one third of all Ph.D.'s in agriculture and forestry who undertook their postdoctoral training—a rather small group—did so in their original universities and, indeed, in the departments that had awarded their degrees. The rather small proportion of students who remained in the same department for postdoctoral study was almost twice as great in public universities as in private universities.

In sum, it is clear that the norm for postdoctoral experience, by a wide measure, consists of apprenticeship to a different set of investigators in an environment different from that in which graduate education has been completed. Further, in the experience of our panelists, the current internal heterogeneity of the classical disciplines assured that even the postdoctoral trainee who remains within his original discipline is likely to engage in a problem remote from his graduate research experience. The biochemist who studied intermediary metabolism may later become preoccupied with the mechanism of enzyme action; the physiologist who traced neural pathways as a graduate student may focus upon ion transport across the nerve membrane during his postdoctoral years. The botanist who was concerned with nutritional requirements for plant growth may later become involved in the ecology of a cornfield, while the entomologist concerned with patterns of insect distribution may switch to a study of insect sex attractants. Intellectual inbreeding is rare in the life sciences community, and the postdoctoral experience is among the chief means of assuring the hybrid vigor of the entire enterprise.

A few notes comparing the bioscience subculture with the subcultures of the physical and social sciences may be warranted. The data in support of the following statements are derived largely from the recent National Research Council study of postdoctoral education, The Invisible University . *

In the nation's leading academic institutions, postdoctoral experience has become the expected prelude to faculty appointment. In recent times, 70 to 80 percent of all initial faculty appointments at such institutions in physics, in chemistry, in biology departments of faculties of arts and sciences, and in the preclinical departments of medical schools have been made to individuals with postdoctoral experience either at the same or at some other institution. In contrast, initial faculty appointments in the social sciences, the humanities, and engineering relatively rarely require postdoctoral experience. The play of the academic marketplace is such that the frequency of postdoctoral experience among initial appointees to the faculty decreases with the general academic status of the institution. Postdoctoral experience is less frequent among the faculties of “developing” universities, is rare for scientists who are appointed to the faculties of liberal arts colleges, and is even less common among those who enter industry.

The converse is equally evident; 30 to 40 percent of all relatively young faculty at all universities who have not had postdoctoral experience feel this lack in their current professional lives. In all branches of natural science, promotion up the academic ladder occurs somewhat less rapidly for those who have not had postdoctoral experience, although this may reflect similar appraisal of human potential by the committees who select postdoctoral-fellowship recipients and those who recommend academic promotions, rather than the intellectual rewards of postdoctoral study. These trends are undoubtedly enhanced by the advice given to aspiring scientists by their mentors in graduate school, who strongly urge students in the natural sciences to undertake postdoctoral experience if they aspire to academic careers but rarely do so when this is not the case. In general, such mentors recommend a postdoctoral experience of about two years, with a specific senior scientist in a field somewhat different from that in which the student's dissertation research was conducted, thereby broadening his understanding of his discipline. When queried, postdoctoral students advance the same general purpose as their reason for undertaking postdoctoral study, but place more emphasis than do their graduate mentors upon the acquisition of additional research techniques.

Attempts by statistical means to assess the influence on subsequent scientific productivity of postdoctoral training are not revealing. Differences among those who took postdoctoral training immediately after graduate school, those who deferred such training for several years, and those who had no such training are trivial when measured by counting numbers of scientific publications, reviews, books written, and similar measures. What cannot be assessed by this means is the quality of the work or its significance to the field. One indicator has been reported in The Invisible University * : the fact that papers published by those who have had postdoctoral experience are cited about twice as frequently in the Citation Index † as are papers by those who have not had such experience. Statistically, frequency of citation of a paper is some measure of its significance or fundamentally. It is our contention that, in all scientific fields, scientific boldness—willingness to venture beyond the frontier or to undertake large and challenging problems—is established relatively early. Certainly, if this is not encouraged in graduate school or in the immediate postdoctoral years, it is rarely evident in subsequent careers. But statistical assessment of this all-important quality is not readily feasible; hence, the enhanced opportunity to develop such habits of mind is another argument that we would advance in support of a year or two of postdoctoral study, preferably not in the same institution or with the same mentor that provided the graduate experience.

Data purporting to compare the consequences of graduate or postdoctoral study in the 10 or 20 leading academic institutions with those in other institutions are probably not completely valid. The selection process that operates at the level of admission to graduate school and then to postdoctoral study in the most productive academic laboratories already serves as a screen almost sufficient to assure the ultimate outcome. It is not readily possible to distinguish between the consequences of differences in the quality of the educational experiences in such institutions and the consequences of the quality of the initial human input. Certainly it must be undeniable that those most highly qualified will benefit most from a stimulating environment in which science is being conducted at its outermost frontiers.

  • EDUCATIONAL LIMITATIONS

An attempt was made to estimate the extent to which working life scientists sense deficits in the educational preparation for their careers. Respondents to the questionnaire were asked to state whether their current research programs are significantly limited by their own educational preparation in chemistry, mathematics, physics, electronics, statistics, other areas of the life sciences, or the use of computers. In all, 4,396 scientists, 30.6 percent of the entire responding population, indicated that full development of their current research effort is indeed very seriously hindered by insufficient personal training in one or more of these disciplines. Lack of knowledge of chemistry was most frequently felt to be limiting (1,766 individuals), followed by computer science (1,569), mathematics (1,427), statistics (1,136), other biological sciences (1,085), and electronics (983), with only 498 life scientists acutely aware of insufficient personal training in physics.

Scientists in academic institutions were not distinguished from those working in nonacademic institutions with respect to this pattern of perceived inadequacies, although 38 percent of academic personnel were aware of some such limitation, and only 30 percent of nonacademic scientists were. In both groups, those in the middle of the age range (35–50 years) were about 30 percent more likely to be aware of such deficits than were younger or older investigators. Again, however, age was essentially without influence on the pattern of perceived disciplinary insufficiency; the rank order of disciplines cited above for the entire population was characteristic of the youngest, oldest, and midrange investigators alike.

  • WITH WHAT MATERIALS DO LIFE SCIENTISTS WORK?

The panorama of the biological universe offers such remarkable and diverse organisms, ecological situations, environmental responses, and unanswered questions at levels varying from the molecular to the cosmic that it is not surprising that research biologists employ an almost equally disparate and diverse variety of approaches to the questions they put to nature. In Table 14 is displayed a representation of primary research materials and the extent to which these are utilized by those who work in various biological research areas.

TABLE 14. The Research Materials of Life Scientists.

The Research Materials of Life Scientists.

It may come as a surprise to some that mathematical models are utilized by representatives of almost every research area, most frequently by those engaged in the study of physiology, molecular biology and biochemistry, genetics, or biophysics and, increasingly, in studies of ecology. Molecular models are to be found in virtually every biochemical laboratory, and the refined, precise models now available have become an extremely important tool for those seeking to relate molecular structure to biological function. Indeed, 46 individuals stated that such models constitute their primary materials.

It was somewhat surprising to find 6 percent of the entire surveyed population engaged primarily in the development of analytical procedures of various types. Study of molecular systems, utilizing highly purified materials of natural origin, engaged 10 percent of the total population, including one third of the biochemists. A somewhat greater proportion of life scientists were studying the behavior of subcellular organelles, isolated or in situ . Such materials are utilized by scientists, except the ecologists, in all research areas and, as one might expect, are a principal preoccupation of cell biologists and biochemists. A small proportion (3 percent) of our population, most notably the cell biologists, were learning to use disassociated preparations of living cells, from either plant or animal sources, as primary tools in their studies. Tissue culture was twice as popular and was utilized by at least some scientists, including behavioral biologists, in every research area, while intact tissues and organs claimed the attention of 12 percent of the total population, involving all research categories except ecology—most notably morphologists, pharmacologists, physiologists, and developmental biologists.

Intact individual organisms were the test objects of one third of all life scientists in the study, notably the behavioral biologists and those studying disease mechanisms, ecology, systematic biology, genetics, nutrition, pharmacology, and physiology. Decidedly smaller numbers of scientists addressed themselves to entire populations of organisms or to ecosystems.

Of interest is the fact that the pattern of use of materials by those with original training in the health professions cannot be distinguished from that of the remainder of the population; their primary research materials simply reflect the pattern of all others in the research areas in which they now engage. Accordingly, their major research materials are whole organisms (32 percent), tissue and organ systems (23 percent), subcellular fractions (13 percent), cell cultures (8 percent), and molecular systems (9 percent).

Within each research area a few individuals are engaged in comparative studies either within a single phylum or plant division or across several phyla or plant divisions. Although students of evolution and systematic biology were the most numerous such group, these were only 44 of the 123 individuals so engaged.

  • WITH WHAT SPECIES DO LIFE SCIENTISTS WORK?

The diversity of living nature never fails to astonish. The workings of evolution have resulted in millions of distinct species of living forms, unicellular, plant, and animal, all located in the thin web of life, which is a film on the surface of our planet. These are the objects of study for life scientists. But which species should one study? The answer depends upon the question that has been raised. Some species are of interest because they are the basis of our agricultural economy. Some make the world more beautiful and exciting; some cause disease of man, plant, or animal. Sometimes even the most obscure species provide excellent models for study of complex biological phenomena. And surely a proper object for study by man is man himself! Thus there are valid reasons for the study of a great variety of species.

Some species are of interest because they are intermediate links in a food chain, because they survive under what appear to be improbable conditions, or because they represent evolutionary extremes. Still others are of interest because they offer unique opportunities to study phenomena of general importance but difficult to analyze or observe in more common species. For example, the nerve net of the crab is of interest as a prototype of the more complex nervous system of the mammal; the response of certain insects to sugars can serve as a model for some aspects of the physiological bases of behavior; the “alarm reaction” of the clam is highly instructive with respect to certain reflex activities; the photosynthetic properties of the chromatophores of purple bacteria and of certain algae are more readily studied than is photosynthesis in a higher plant; regulation of the genome of a bacterium serves as a model for the process of differentiation in a higher organism; and the giant axon of the squid is the favorite test object of numerous neurophysiologists. Nutritionists long since seized on the omnivorous white rat as a model for human nutritional requirements, but primates may be more instructive with respect to human behavior or reaction to disease. The pig offers a surface area and mass somewhat comparable to that of man, and thus should serve as a model for human response to radiation. Comparison of the properties of hemoglobins from a wide variety of species elucidates those properties of the hemoglobin molecule that are imperative to its physiological function, and frog muscle has taught us much of what we understand of muscle physiology and its molecular aspects. The list is well-nigh endless.

And so it is that life scientists continue to study or exploit the properties of a great diversity of organisms. In a highly compressed form, this is displayed in Table 15 . Each of the respondents to the questionnaire was given a choice of 58 genera, phyla, or larger divisions of the plant, animal, and microbial kingdoms and was asked to indicate no more than two that most closely described the objects of his study. Hence, the number of specific responses exceeded the number of respondents. But hundreds of investigators indicated that necessarily and properly they should indicate more than two such entries.

TABLE 15. Biological Materials Studied by Life Scientists.

Biological Materials Studied by Life Scientists.

Perhaps the aggregated totals are of greatest interest: 21 percent of all scientists dealt with one or another micro-organism, 15 percent with plant forms, and 54 percent with animal forms. None of the categories of living forms was totally ignored by the current activities of life scientists but, clearly, some are more attractive than others. Viruses and bacteria are the concern of scientists in each research area, particularly those who study disease mechanisms, cell biology, and molecular biology and biochemistry. Lower plants engage the attention of all but the nutritionists and pharmacologists, while higher plants attract the attention of all but the pharmacologists. Invertebrates are of great interest to the ecologists and the systematists as well as to the behavioral biologists, who see in them models for the behavior of more advanced forms. Surprisingly little attention is being given to the species of fish that dominate our commercial harvests, whereas other fish, amphibia, reptiles, and birds are receiving greater attention. Of the mammalia, man and the common laboratory rodents are the most frequent study objects. The great utility of the latter is indicated by the fact that, whereas ecologists and systematic biologists pay them scant heed and only 6 percent of all geneticists make use of their particular attributes, these species are utilized by 12 percent of the behavioral biologists and 37 percent of the pharmacologists. Domestic mammals, i.e., cats and dogs, are particularly useful to the physiologists, pharmacologists, nutritionists, and morphologists and are used to some degree by almost all other groups.

Although 5 percent of all behavioral biologists and 4 percent of the morphologists report that they work with small primates, primates are little used by workers in other scientific areas. However, there is reason to think that this reflects not the utility of these species, but the great costs involved in their acquisition and maintenance, which have inhibited, if not prohibited, their utilization for a variety of studies in which they could be extraordinarily useful.

In contrast, millions of species currently go unstudied, and many others are under scrutiny by only one or two investigators. When, from time to time, such an investigator directs attention to some unique or remarkable attribute of a seemingly esoteric species, it can rapidly claim the attention of many other scientists, an incident that has recurred many times in the past. Thus, the bacterium Escherichia coli has become the most thoroughly studied of all cells, while both neurophysiologists and molecular biologists have recently seized upon the tiny marine organism Aplysia because of its easily studied giant nerve cells. In any case, the diversity of species under study demands an equal diversity of laboratory accommodations for their culture or maintenance. This may engender substantial expenditures and contribute much to the cost of scientific investigation, particularly in extreme instances. Elaborate facilities are required for the conduct of research employing cells in culture. Inadequate accommodations, overcrowding, or infestation can render a colony of dogs or rodents useless to the investigator and give rise to misleading data. Humane considerations demand that larger domestic mammals—cats, dogs, and primates—be housed in decent quarters, be wellnourished, and be subjected to the minimum of trauma commensurate with the purposes of study. This in turn creates further serious financial requirements, which should be borne by some institutional mechanism and not met by taking funds from personal research grants made to individual investigators. Certain plants and animals require carefully controlled environments; a continuing supply of virus may require a colony of host animals, a large-scale fermentor, or a large tissue-culture facility. Most importantly, all these demand substantial expenditures merely to assure a supply of the biological entity to be studied before the research proper can be undertaken.

  • WHAT FACILITIES AND TOOLS DO LIFE SCIENTISTS USE?

The classic image of the biologist is an aging gentleman, wrapped in a dirty laboratory apron, in a musty laboratory surrounded by museum jars, an ancient, battered microscope, staining jars for microscope slides, and perhaps an unwashed dissecting table. If that image ever corresponded to reality, it no longer does. As the questions we ask of nature become more sophisticated and the information we seek becomes more remote from that which we can acquire with our naked senses, the requirements for the conduct of research in the life sciences become more complex. Today, in order to achieve his ends, the investigator may have to travel thousands of miles from his home base, armed with telemetering equipment, tape recorders, or remote sensors. He may require a floating laboratory, a deep-submersible vessel, a reconnaissance plane, or even a satellite equipped with infrared sensors. He may utilize the gadgetry of modern biochemistry— ultracentrifuges, equipment for optically following the course of kinetic processes on the scale of milliseconds or of molecular-relaxation times (10 −9 sec), for the quantitation of visible or ultraviolet light or radioactivity. His laboratory may be what amounts to a small electronics plant equipped with the complex electronic apparatus needed for the study of neurophysiology, and his experiment may be guided by an on-line computer. Increasingly, the tools of any biological subdiscipline tend to become the tools in many other areas of biology. As we have noted repeatedly, this is particularly true of the tools of the biochemist, which have become the tools of all biologists.

Specialized Biological Research Facilities

Table 16 summarizes the replies from respondents whose completed questionnaires usefully indicated their utilization of specialized research facilities. The spectrum of such activity is broad indeed. For example, we were surprised at the high rate of utilization of controlled field areas, which seemingly are employed by participants in each of the research areas. Computer centers are available to and utilized by a strikingly high fraction of all life scientists, and general animal care facilities appear to be utilized by almost half the scientists covered by our survey. Indeed, it is difficult to correlate specific types of facilities with specific research areas. Notable exceptions include the 87 percent of all systematists and 44 percent of ecologists who utilized taxonomic research collections, the 51 percent of cell biologists who employed cell- or tissue-culture facilities, and the 76 percent of all pharmacologists who made use of general animal care facilities. The existence of the specialized facilities listed here was known to the Survey Committee, but the extent of use was not anticipated.

TABLE 16. Utilization of Specialized Biological Research Facilities.

Utilization of Specialized Biological Research Facilities.

Rarely can the cost of acquisition and maintenance of such facilities be justified by the research program of a single investigator; hence, no small or medium-sized institution can hope to have a complete selection of these opportunities for conduct of research. This has the effect of either limiting the capabilities of the staff of such institutions or so affecting their recruitment patterns that, at each institution, there are clusters of investigators whose research requires easy access to the same major research facility. For smaller institutions, this fact, in turn, may well prevent the assembly of a staff broadly representative of biology.

Major Instruments

Table 17 displays the utilization of major instruments by life scientists during 1966–1967. Like Table 16 , this table is limited to those respondents whose replies to the questionnaire were found adequate to the purpose. And, as in Table 16 , what is impressive is the extent of use of the wide variety of instruments listed and the relative amount of use without regard to specific research areas, again with a few notable exceptions. This table well illustrates how the tools developed for biochemical studies have become the tools of biology in general; this is evident in the use pattern of centrifuges, gas chromatographs, amino acid analyzers, scintillation counters, infrared and ultraviolet spectrophotometers, as well as electrophoresis apparatus. These common tools of the biochemical laboratory are now the common tools of the biological laboratory. Specialized uses of instruments will, however, be found in the table. For example, large-scale fermentors are used largely by biochemists; multichannel recorders are required by physiologists and pharmacologists; small special computers by physiologists. Biochemists are pioneering in the use of ultrasonic probes, and electron paramagnetic resonance and nuclear magnetic resonance spectrometers, as well as instruments for measuring circular dichroism. The physiologists are the major users of infrared carbon dioxide analyzers, and the clinicians interested in disease mechanisms utilize complex electronic systems for monitoring human physiology, while systematists use telemetry and sensitive tape recorders.

TABLE 17. Utilization of Instruments by Life Scientists.

Utilization of Instruments by Life Scientists.

The utilization of the electron microscope is particularly revealing. This instrument, slowly introduced into biological laboratories in the years following World War II, is now used by investigators in every research area. In absolute numbers, those interested in molecular biology and biochemistry, cellular biology, disease mechanisms, and physiology are the principal users. But 48 percent of all those studying morphology and 44 percent of those studying cellular biology made use of this instrument. The great expense of acquisition and maintenance of these instruments prevents the figures for utilization from approximating 100 percent of those in both of the latter research areas.

One should not leave the subject of instruments without a tribute to the instrument-manufacturing industry. This highly competitive industry has frequently been a jump ahead of most life scientists. In general, instrument manufacturers have recognized needs and potential uses before the scientific community has. Yet, as each instrument has become available—e.g., ultraviolet spectrophotometers, electrophoresis apparatus, scintillation counters, electron microscopes, and multichannel recorders—not long thereafter the scientists involved have wondered how they had ever made progress before these commercial instruments became available. As the markets grow, the instruments become more refined, more reliable, and more versatile, thereby enormously enhancing the reliability, sophistication, and ease of performance of biological research. The availability of such instruments has been made possible by the very scale of federal support of the life sciences. By creating a sufficient market, the manufacturer has, in turn, been able to achieve economies of large-scale production, keeping the unit cost and sales price down. (It is ironic that, although the electron microscope was developed by an American firm, and this country is the major market for this instrument, no American manufacturer now supplies it.)

Nor should we fail to acknowledge our debt to our brethren in physics, chemistry, and engineering. From them came the electron microscope, spectrophotometers, the electron paramagnetic and nuclear magnetic resonance spectrometers, ultrasonic gear, the great variety of oscilloscopes, x-ray crystallographic analysis systems, the laser, telemetry, and a host of other devices. To their designers and developers, the biological community extends its gratitude.

  • THE RESEARCH GROUP

Research in the life sciences is “small science”; only rarely is it organized around some very large and expensive piece of apparatus or facility. Whereas much research in other areas of science revolves about large accelerators, research vessels, telescopes, balloon-launching facilities, rocket facilities, or large magnets, for example, there are few parallels in the life sciences. Occasional exceptions include relatively elaborate hyperbaric facilities, primate colonies, colonies of germ-free animals, phytotrons or biotrons, biosatellites, museums, or marine-biology stations. But these are the exceptions rather than the rule, and even in these instances, the facilities in question are actually utilized by numbers of small research groups, each pursuing its own questions in its own way, while taking advantage of the availability of the facilities. In very few instances have the various groups that, collectively, used such a facility comprised a coordinated whole with common goals and objectives. The functional unit of research in the life sciences, therefore, usually consists of a principal investigator and the postdoctoral fellows, graduate students, and technicians who work with him. According to data collected by the Study of Postdoctoral Education of the National Academy of Sciences, * the mean such research group, in addition to the faculty member, is 6.1 members in academic biology departments, 7.6 in biochemistry departments, 5.3 in physiology departments, and 4.0 in clinical specialties. These may be compared with 5.8 members in physics and 8.3 in chemistry. When, however, research groups without postdoctoral are considered, these units are distinctly smaller, receding to 4.6, 3.9, and 4.0 in biology, biochemistry, and physiology, respectively, and 3.2 and 5.2 in physics and chemistry.

This scale of operation was borne out by reports from the individual investigators surveyed in the study. For all principal investigators, the mean was 6.5 persons per research group, in addition to the principal investigator himself, ranging from 4.4 for investigators engaged in studies of systematic biology to 8.0 for those studying disease mechanisms. Perhaps surprisingly, the sizes of groups were much the same in academic and nonacademic laboratories. Approximately equal numbers of co-investigators and professional staff are found in both classes of laboratories. The graduate students, who vary in academic laboratories from 1.5 to 4.0 students per group (the extremes being represented by morphology and behavioral biology, respectively), with an overall average for all biological disciplines of 2.2 students per group, are replaced in nonacademic laboratories by technicians and other supporting staff.

Thus, in general, the typical academic laboratory contains a principal investigator, a co-investigator, and one other scientist with a doctoral degree who may be a visiting scientist, postdoctoral fellow, or continuing research associate, two technicians, and two or three graduate students. Federal laboratories may have one or two postdoctorals in place of the graduate students, while industrial laboratories utilize additional technicians. The routine tasks of the laboratory are generally performed by the technicians, while the graduate students and postdoctoral fellows serve as junior co-investigators and colleagues for the principal investigator. In our view, such a research group does indeed constitute something close to optimal for the conduct of “small science,” particularly in the life sciences. Graduate students and postdoctorals are spared some of the drudgery of routine analyses after they have learned to perform such analyses and understand their limitations, and the total group combines a mixture of experience, expertise, ideas from other disciplines, and youthful enthusiasm. We can only conclude that, however haphazard the various mechanisms by which such an enterprise is funded, the average working unit is sufficiently large to attain an intellectual critical mass and to sustain the pace of exciting investigation while training the novice investigator for his future career.

Although this report gives emphasis to the research and education endeavor of the universities, it remains possible for dedicated scholars to pursue meaningful research in the biology departments of the independent four-year colleges. Biology is still mainly “small science,” and research in many subdisciplines can be conducted with relatively modest support. When access to major equipment is required, this is frequently arranged with the faculty of a nearby university or undertaken during the summer at some properly equipped institution. These efforts constitute a significant part of the total life sciences research endeavor.

There are, however, important exceptions to this “small science” pattern. Decidedly larger aggregates of scientists, focused on a single goal, have been brought together to design a biological experiment for a space probe or to study the ecology of a major biome. The integrated approach to environmental research, stimulated by the International Biological Program, promises to open new levels of understanding of the functioning, resilience, and critical sensitivities of man-dominated ecosystems. In this program, teams of ecologists, social scientists, and physical scientists— as many as 150 individuals—cooperate in the analysis of entire ecosystems, such as the Western grasslands, the Eastern deciduous forests, or the Southwestern desert. Their data are compiled, coordinated, and utilized to construct mathematical models of these large systems, one day to be integrated with models of the atmospheres of the same regions. These systems involve so many components and multiple interactions that realistic abstractions or simplifications must be designed for simulation on large digital computers. The model is a combination of mathematical expressions and statistical probability distributions representing the processes and interactions of the system, as from soil to plant or plant to animal, and the impact of temperature on energy flow. A properly designed model can be used to suggest the potentially most fruitful field experiments from among the multitude that might be conducted, to identify gaps in existing knowledge through deficiencies in model performance, and to suggest optimal courses of action in managing real-world ecosystems. In the medical schools, large groups with representatives from several clinical or preclinical departments coalesce to collaborate on some aspect of cardiovascular, neurological, or neoplastic disease. These groups can number from 20 to 200 scientists and may well serve as forerunners of an era of “big biology.”

  • WHAT DO LIFE SCIENTISTS DO?

The average life scientist employed in an institution of higher learning devotes about half his time to research, 10 to 20 percent to administration, a fourth to a third of his time to instruction, and the balance to assorted other responsibilities. The actual distribution, of course, varies with the type of institution and the specific disciplinary field and according to whether he has clinical responsibility. This pattern is clearly in contrast with that of life scientists employed by nonacademic institutions, for whom research is, to an even greater extent, their dominant responsibility, demanding about 70 percent of their effort, while the remainder of their time is largely devoted to administrative responsibilities. Surprisingly, nonacademic scientists report that they engage in instruction that varies in percentages of their time from 0 to 10 percent—about 3 percent for the entire group but 8.5 percent for physicians. The physicians also give a sixth of their time to clinical care and hence can devote only about half their time to research. Some pertinent data in this regard are summarized in Table 18 .

TABLE 18. Percentage Distribution of Work Time of Some Life Scientists.

Percentage Distribution of Work Time of Some Life Scientists.

The same set of respondents, 6,125 scientists in academic institutions and 3,054 scientists in nonacademic institutions, were also queried with respect to whether the research in which they were engaged was basic, clinical, or applied. It was made clear that these designations were not necessarily mutually exclusive and, indeed, that an individual could check more than one of these categories if he felt that this was appropriate, particularly if he was engaged in more than one research project. Some of the resultant data are shown in Table 19 . It is not surprising that scientists outside the academic world engage in applied and clinical research. But it may be surprising that 22 percent of all life scientists in institutions of higher learning indicated that their research is applied in some degree. By their own judgment, 76 percent of academically employed physicians indicate that they are engaged in basic research, and only 12 percent state that the research that they are doing is “applied” in some fashion. Quite logically, entomologists and the faculty of agriculture schools consider that a large fraction of their research is directed toward application. Conversely, while it was to be anticipated that 48 percent of all life scientists employed outside the academic world engage in applied research, the fact that 79 percent of all such scientists consider that they are engaged in some fundamental research was somewhat surprising. It indicates that the prejudices of many young scientists against careers outside the academic setting, for lack of opportunity to engage in basic research, may well be ill founded.

TABLE 19. Types of Research Conducted by Some Life Scientists.

Types of Research Conducted by Some Life Scientists.

In any case, the reader will recognize that there is no meaningful close definition of the terms “basic” and “applied” in these regards and that these indications by our respondents reflect their motivation in addressing specific problems and not the character of the work. By this measure, one investigator studying sodium transport in human erythrocytes may classify it as “basic” research; another may consider the same study “clinical,” only because human cells are employed for the purpose; and a third may view it as applied, since he hopes to develop a new drug. Taking into consideration these broad caveats, the data of Table 19 provide a useful description of the world of biological research.

  • FINANCIAL SUPPORT OF RESEARCH IN THE LIFE SCIENCES

Research in the life sciences is a substantial national enterprise in which the United States invested $2,264 million in fiscal year 1967*; of this, 30 percent was provided by industry, 4.1 percent by foundations and other private granting agencies, 1.2 percent by academic institutions from their own resources, 0.3 percent by local and state governments, and 60.3 percent by the federal government, principal patron of the endeavor. Table 20 summarizes federal expenditures for life science research in fiscal year 1968. Research supported by industry was largely conducted in-house. In all, biomedical research conducted within federal laboratories required the expenditure of approximately $435 million. In part because of the proprietary nature of industrial biomedical research, and largely because the “principal investigator” in industrial and federal laboratories functions with a large supporting organization for whose expenditures he is not responsible, it was patently impossible to obtain, by questionnaire, meaningful data concerning research expenditures from individual scientists in these two sectors. Our data, therefore, are restricted to information provided by individual life scientists employed by academic institutions and by academic department chairmen. Only the former are considered in this chapter; the latter are discussed in the succeeding chapter. The collected data, summarized in Tables 21 , 22 , and 23 , indicate that in fiscal year 1967 the 4,046 responding academic life scientists, each of whom was principal investigator of one or more research grants or contracts, had available to them, collectively, $162,883,000 in support of the direct costs of research. The growth of this system is indicated by the fact that, in the previous year, the same investigators had available $134,726,000 and, in the prior year, $115,319,000. It is most unfortunate that we have no data for the same group in fiscal years 1969 or 1970, and, hence, no realistic data base with which to examine the consequences of the alterations in federal funding of science that have occurred since our questionnaires were distributed.

TABLE 20. Federal Obligations for Research in Life Sciences, by Agency and Discipline—Fiscal Year 1968 (In Thousands of Dollars).

Federal Obligations for Research in Life Sciences, by Agency and Discipline—Fiscal Year 1968 (In Thousands of Dollars).

TABLE 21. Financial Support of Academic Research in the Life Sciences (In Millions of Dollars).

Financial Support of Academic Research in the Life Sciences (In Millions of Dollars).

TABLE 22. Numbers of Research Grants and Contracts Awarded to 4,046 Academic Life Scientists.

Numbers of Research Grants and Contracts Awarded to 4,046 Academic Life Scientists.

TABLE 23. Average Size of Research Grant (Direct Costs) in Thousands of Dollars.

Average Size of Research Grant (Direct Costs) in Thousands of Dollars.

It will be seen that, using our categorizations of the life sciences, molecular biology and biochemistry commanded one fourth of all reported support, a substantial fraction of which went to individuals with appointments in clinical departments. Following, in rank order, were physiology (17 percent) and disease mechanisms (14 percent). Only 1 percent of the total support went to scientists who stated that they were studying morphological problems and 2 percent, each, to those engaged in behavioral biology and in the study of systematic biology and evolution, with other research areas distributed in between.

The magnitude of support reported for the research area of disease mechanisms is disturbing in that, proportionally, it is very significantly under-represented. While the relative support per research area for all other areas may be considered a reasonably fair indication of the fraction of total national support that they command, this is surely not the case for disease mechanisms, presumably due to the disproportionately low response to our questionnaire by clinical investigators. Thus, it is highly doubtful that the support of research directly concerned with disease mechanisms by the National Institutes of Health is only 15 percent of its extramural research program, since half of its total extramural research support is granted to clinical investigators.

Caution is necessary in interpreting these data, however, because of the failure of the questionnaire to be sufficiently precise in guiding the respondents. Although “disease,” broadly taken, is the concern of clinicians and pathologists, there are no aspects of the study of disease, other than access to human patients, that are unique to their endeavors. In addressing himself to cardiac disease, the clinician may actually function as a physiologist who studies vector cardiography or analyzes the composition of blood obtained by catheterization of one of the cardiac chambers; or he may be concerned with the etiology and pathogenesis of atherosclerosis and so utilize the techniques and understanding of the biochemist or nutritionist. Concerned with a hereditary disorder, he may consider himself a human geneticist; if studying changes in the architectonics of the brain, he may view himself as a morphologist or even a student of evolution. If engaged in elucidation of the causative agent of an infectious disease, he may function, variously, as a cell biologist or a biochemist, while, if he is testing a drug in the hope of finding a successful therapeutic procedure, he is, at least for the time being, a pharmacologist. Accordingly, it is entirely possible that students of disease, its etiology, pathogenesis, incidence, or therapy, may well have indicated that their current research area lies in some category other than “disease mechanisms,” thus unintentionally distorting the interpretation that might be applied to these data.

The pattern of support from the National Science Foundation contrasts with that from the National Institutes of Health. Both supported molecular biology and biochemistry more heavily than any other category, but, whereas the National Institutes of Health also contributed in a large way to the study of physiology and disease mechanisms, the National Science. Foundation was clearly the principal supporter of systematic biology. The Atomic Energy Commission and the Department of the Interior, while contributing only 4 percent and 1 percent, respectively, to the total support of these life sciences, were particularly concerned with ecology. The principal thrust of support by the National Aeronautics and Space Administration, which contributed only 1 percent of the reported federal total, was in physiology, while only the Department of Agriculture and diverse industrial contributors allocated as much as one seventh of their research funds to studies involving nutrition.

Of interest is the fact that, whereas the voluntary societies were organized to combat the dread diseases, only 22 percent of their funds went to scientists who classified their own research as bearing directly on disease mechanisms, whereas one third of their support went to investigators in molecular biology and biochemistry, and one seventh each to studies of physiology and cellular biology. Clearly, the administrators of these societies were sufficiently understanding of the problems involved in treating and preventing these diseases to recognize the need for relevant basic research.

Table 21 indicates clearly that indeed the federal government is the principal patron of these areas of scientific endeavor. Three fourths of all funds in direct support of research derived from the federal government, while one sixth of such funds was provided out of the academic institutions' own resources. The low figures quoted for support by state and municipal agencies refer to direct granting activity, but the state budgets for the public universities contributed in major degree to the 16 percent of all directly research-supporting funds that are stated to have come from the institutions' own resources.

Particularly disappointing is the low order of contribution to research support provided by industry, private foundations, voluntary societies, and individual contributors shown in Table 21 . This is the consequence not so much of a low frequency of granting activity as it is of the relatively small awards actually made by these sources, as shown in Tables 22 and 23 . Thus, the average grant from industry was only $4,000, that from the voluntary societies, $10,000, and that from private foundations, $13,000. These figures are in contrast to grants from the National Science Foundation ($14,000), the National Institutes of Health ($30,000), and the federal average of $25,000.

Of some interest is the pattern of support by discipline. Typical grants in nutrition, ecology, and systematic biology are of the order of $15,000 per year, whereas grants to investigators in most of the other research areas were about twice as large.

Utilization of Research Grants

Typically, a research grant is utilized to provide consumable supplies, major and minor equipment, salaries of technicians and clerical staff, travel and publication costs, stipends for graduate students, postdoctoral fellows, and visiting investigators, as well as a variable fraction of the salary of the principal investigator not to exceed that fraction of his annual effort invested in the research project in question. Uniquely, research grants to clinical investigators may require expenditures in support of the basic costs of maintaining patients in hospitals; other grants may provide for unusual purposes such as ship time, international travel either to meetings or for work in the field, and, increasingly frequently, computer time. The relative distribution of expenditures among these various areas from research grants in support of research in the life sciences was not ascertained by the present study. However, data describing the general patterns of funding by the National Science Foundation are summarized in Table 24 .

TABLE 24. Utilization of Funds from an Average Two-Year Research Grant in the Life Sciences—National Science Foundation—1968.

Utilization of Funds from an Average Two-Year Research Grant in the Life Sciences—National Science Foundation—1968.

Research Support as a Function of the Investigator's Age

In a general way, increasing research support comes to the academic investigator as he gains seniority in the system. As shown in Figure 34 , this is clearly true for investigators supported by the National Institutes of Health and most other sources. The figures shown for “all sources” represent the simple arithmetic means for all grants from all sources. Because of the relatively large number of small grants from the National Science Foundation, industry, foundations, and voluntary societies, the mean grant size for all sources is decidedly less than that shown for the National Institutes of Health. Nevertheless, the trend is quite apparent: individual research support attains a maximum at 50 to 60 years of age and declines thereafter. This phenomenon is scarcely visible for the National Science Foundation, largely because this beleaguered agency strives to stretch its available resources as far as it can to support all qualified applicant investigators whose proposals fall within its purview, thus markedly reducing the amount of money available per applicant investigator.

Research support of life scientists as a function of their age. (Source: Survey of Individual Life Scientists, National Academy of Sciences Committee on Research in the Life Sciences.)

  • RESEARCH INSTITUTES

The preceding survey of the major parameters of the world of biological research fails to convey the myriad arrangements for both research and education in biology. It ignores the dozens of small research institutes in which excellent investigators quietly pursue their research, occasionally with profound impact on the conceptual development of biology. The Cold Spring Harbor Laboratory for Quantitative Biology has had a brilliant record of achievement, and its summer courses have trained virtually all those who have led the modern development of virus and bacterial genetics, a major segment of molecular biology. Developmental biology and some aspects of neurophysiology have received great stimulus from the research and education programs of marine-biology stations such as that at Woods Hole, Massachusetts. Much of the current understanding of neurochemistry and the physiology of the brain has been obtained at small research institutes under private or state auspices, while ecology has grown at a multitude of field stations remote from their parent institutions.

  • NATURAL HISTORY MUSEUMS

Natural history museums, with their combinations of scientists, research collections, and field stations are unique non-degree-granting academic institutions for research and graduate training. Quite apart from its role in public education through exhibits, a natural history museum contributes to the acquisition of scientific knowledge in two principal ways.

Its staff of scientists may engage in original research in systematic biology, evolutionary biology, ecology, geophysics, astrophysics, oceanography, and many other fields of science, depending upon their academic training and scientific interests. While many museum scientists depend on specialized collections in conducting their investigations, an increasing number engage in field and laboratory experimental studies of living organisms, or of ecological problems in natural settings. Their collections provide the basis for taxonomic-classification services necessary to many other scientists and also provide a base line for ecological studies.

The combination of resident scientists, research collections, and field research facilities provides intellectually attractive settings for visiting scientists. The number of graduate students who receive part or all of their graduate training in natural history museums is impressive and increasing.

Natural history museums, as both forums and research settings for systematists, ecologists, and environmental scientists, are becoming increasingly important as a national scientific resource, despite a long history of public neglect.

  • BIOLOGICAL DISCIPLINES

For brevity and conciseness, we found it useful to structure all the life sciences into a dozen research areas. But this should not conceal the rich and diverse infrastructure of the life sciences. As we have seen, classical disciplinary labels have lost their meaning, but one could readily describe a hundred or more subdisciplines based on the work of groups of likeminded scientists who have blended the approaches of several older disciplines in attacks on some specific subsets of biological problems. A few examples are cited in the following paragraph.

Photobiologists, well versed in optics and the physics of light, are variously concerned with the mechanism of vision, the events in photosynthesis, the emission of light by bacterial and animal forms (the biological purpose of light emission by all but fireflies being not at all evident), and the photoinactivation of enzymes and viruses. Neuroscientists bring the skills of electrophysiology, cellular biology, molecular biology, and communications theory to bear on studies of information processing in the nervous system. Oncologists, focusing on the essential nature of the transformation of normal cells into malignant ones, are similarly a group apart, borrowing from every major discipline that may be of help, while vascular physiologists necessarily borrow from hydrodynamics and studies of urban traffic flow as they study the operation of a capillary bed or a major blood vessel. Physical anthropology is a subdiscipline that contributes to the total endeavor while it provides a bridge from the biological to the social sciences. It is the study of the bodily manifestations of human variation—in particular, the description of human body size, shape, and function in the light of man's history—and the role of heredity, environment, and culture in bringing about man's present diversity. The biological anthropologist aims to understand human physical variation and to apply his knowledge for human betterment through medicine and engineering.

As concern with the environment grows, an increasing number of physicians and biologists of many backgrounds have generated the area of research and practice called “environmental health,” the concern of one of the panels of this survey. More sophisticated understanding of this field should permit society to enjoy the fruits of an advancing technology, a superior living environment, and freedom to develop a society with fewer restraints and tensions. Past effort is minuscule compared with the magnitude of the problem. Since the problems increase with increasing population density and developing technology, efforts at controlling the environment, and thus the health of the population, must keep pace. Indeed, in a very real sense, students of environmental health serve technology by providing the knowledge permitting its benefits to be enjoyed without adventitious adverse effects on the health of man and, more broadly, on the environment of man. Thus, support of an adequate level of competence in environmental health is indispensable to a society that elects to make optimal use of the fruits of technology. Accordingly, the environmental-health resources of the nation must first be expanded to catch up with the problems now with us and thereafter be developed, along with technological development, to provide an adequate preventive program. Current support of research in environmental health probably lies between $30 million and $50 million per year; support for training for both research and practice is between $9 million and $18 million per year and is known to support (in 1969) 974 candidates for the master's degree, 981 candidates for the Ph.D., and 148 postdoctoral fellows.

A broad federal policy is needed, with a long-range plan of attack upon the whole problem of environmental deterioration and with better identification of the separate missions and responsibilities of the several federal departments and agencies. Only with such a policy will it be possible to develop in an orderly way the required training programs to supply the personnel needed for both research and practice, both within and outside the government, necessary to build a strong foundation for effective control programs against environmental-health hazards, a foundation that must rest on the entire current understanding of the life sciences.

Thus, the world of research in the life sciences is marvelously diverse. Tens of thousands of scientists in a thousand institutions contribute to its progress. They migrate between institutions, between classes of institutions, and between subfields of biology. They are quick to seize upon any new instruments or techniques, without regard to whether these are initially devised for use in the physical sciences or for some other research area in the life sciences. Biochemistry has become the language of biology, providing the bridge to the physical sciences, but it has yet to be applied to the farthest reaches of organismal biology. The federal government is the principal sponsor of the entire endeavor and, for the indefinite future, only the federal government can sponsor an effort of this magnitude. Its success will affect all aspects of our lives, and its conduct has become one of the central purposes of our civilization.

Basic Data Relating to the National Institutes of Health 1969, Associate Director for Program Planning and Evaluation and the Division of Research Grants, National Institutes of Health. U.S. Government Printing Office, Washington, D.C., 1969, p. 4.

The Invisible University: Postdoctoral Education in the United States, Report of a Study Conducted under the Auspices of the National Research Council, National Academy of Sciences, Washington, D.C., 1969.

Science Citation Index; An International Interdisciplinary Index to the Literature of Science. (Published by Institute for Scientific Information, Philadelphia.)

  • Cite this Page National Academy of Sciences (US) Committee on Research in the Life Sciences. The Life Sciences: Recent Progress and Application to Human Affairs: The World of Biological Research Requirements for the Future. Washington (DC): National Academies Press (US); 1970. CHAPTER THREE, THE WORLD OF BIOLOGICAL RESEARCH.

In this Page

Recent activity.

  • THE WORLD OF BIOLOGICAL RESEARCH - The Life Sciences THE WORLD OF BIOLOGICAL RESEARCH - The Life Sciences

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Biology library

Course: biology library   >   unit 1, the scientific method.

  • Controlled experiments
  • The scientific method and experimental design

what is biology research

Introduction

  • Make an observation.
  • Ask a question.
  • Form a hypothesis , or testable explanation.
  • Make a prediction based on the hypothesis.
  • Test the prediction.
  • Iterate: use the results to make new hypotheses or predictions.

Scientific method example: Failure to toast

1. make an observation., 2. ask a question., 3. propose a hypothesis., 4. make predictions., 5. test the predictions..

  • If the toaster does toast, then the hypothesis is supported—likely correct.
  • If the toaster doesn't toast, then the hypothesis is not supported—likely wrong.

Logical possibility

Practical possibility, building a body of evidence, 6. iterate..

  • If the hypothesis was supported, we might do additional tests to confirm it, or revise it to be more specific. For instance, we might investigate why the outlet is broken.
  • If the hypothesis was not supported, we would come up with a new hypothesis. For instance, the next hypothesis might be that there's a broken wire in the toaster.

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Incredible Answer

1.1 The Science of Biology

Learning objectives.

By the end of this section, you will be able to do the following:

  • Identify the shared characteristics of the natural sciences
  • Summarize the steps of the scientific method
  • Compare inductive reasoning with deductive reasoning
  • Describe the goals of basic science and applied science

What is biology? In simple terms, biology is the study of life. This is a very broad definition because the scope of biology is vast. Biologists may study anything from the microscopic or submicroscopic view of a cell to ecosystems and the whole living planet ( Figure 1.2 ). Listening to the daily news, you will quickly realize how many aspects of biology we discuss every day. For example, recent news topics include Escherichia coli ( Figure 1.3 ) outbreaks in spinach and Salmonella contamination in peanut butter. Other subjects include efforts toward finding a cure for AIDS, Alzheimer’s disease, and cancer. On a global scale, many researchers are committed to finding ways to protect the planet, solve environmental issues, and reduce the effects of climate change. All of these diverse endeavors are related to different facets of the discipline of biology.

The Process of Science

Biology is a science, but what exactly is science? What does the study of biology share with other scientific disciplines? We can define science (from the Latin scientia , meaning “knowledge”) as knowledge that covers general truths or the operation of general laws, especially when acquired and tested by the scientific method. It becomes clear from this definition that applying scientific method plays a major role in science. The scientific method is a method of research with defined steps that include experiments and careful observation.

We will examine scientific method steps in detail later, but one of the most important aspects of this method is the testing of hypotheses by means of repeatable experiments. A hypothesis is a suggested explanation for an event, which one can test. Although using the scientific method is inherent to science, it is inadequate in determining what science is. This is because it is relatively easy to apply the scientific method to disciplines such as physics and chemistry, but when it comes to disciplines like archaeology, psychology, and geology, the scientific method becomes less applicable as repeating experiments becomes more difficult.

These areas of study are still sciences, however. Consider archaeology—even though one cannot perform repeatable experiments, hypotheses may still be supported. For instance, archaeologists can hypothesize that an ancient culture existed based on finding a piece of pottery. They could make further hypotheses about various characteristics of this culture, which could be correct or false through continued support or contradictions from other findings. A hypothesis may become a verified theory. A theory is a tested and confirmed explanation for observations or phenomena. Therefore, we may be better off to define science as fields of study that attempt to comprehend the nature of the universe.

Natural Sciences

What would you expect to see in a museum of natural sciences? Frogs? Plants? Dinosaur skeletons? Exhibits about how the brain functions? A planetarium? Gems and minerals? Maybe all of the above? Science includes such diverse fields as astronomy, biology, computer sciences, geology, logic, physics, chemistry, and mathematics ( Figure 1.4 ). However, scientists consider those fields of science related to the physical world and its phenomena and processes natural sciences . Thus, a museum of natural sciences might contain any of the items listed above.

There is no complete agreement when it comes to defining what the natural sciences include, however. For some experts, the natural sciences are astronomy, biology, chemistry, earth science, and physics. Other scholars choose to divide natural sciences into life sciences , which study living things and include biology, and physical sciences , which study nonliving matter and include astronomy, geology, physics, and chemistry. Some disciplines such as biophysics and biochemistry build on both life and physical sciences and are interdisciplinary. Some refer to natural sciences as “hard science” because they rely on the use of quantitative data. Social sciences that study society and human behavior are more likely to use qualitative assessments to drive investigations and findings.

Not surprisingly, the natural science of biology has many branches or subdisciplines. Cell biologists study cell structure and function, while biologists who study anatomy investigate the structure of an entire organism. Those biologists studying physiology, however, focus on the internal functioning of an organism. Some areas of biology focus on only particular types of living things. For example, botanists explore plants, while zoologists specialize in animals.

Scientific Reasoning

One thing is common to all forms of science: an ultimate goal “to know.” Curiosity and inquiry are the driving forces for the development of science. Scientists seek to understand the world and the way it operates. To do this, they use two methods of logical thinking: inductive reasoning and deductive reasoning.

Inductive reasoning is a form of logical thinking that uses related observations to arrive at a general conclusion. This type of reasoning is common in descriptive science. A life scientist such as a biologist makes observations and records them. These data can be qualitative or quantitative, and one can supplement the raw data with drawings, pictures, photos, or videos. From many observations, the scientist can infer conclusions (inductions) based on evidence. Inductive reasoning involves formulating generalizations inferred from careful observation and analyzing a large amount of data. Brain studies provide an example. In this type of research, scientists observe many live brains while people are engaged in a specific activity, such as viewing images of food. The scientist then predicts the part of the brain that “lights up” during this activity to be the part controlling the response to the selected stimulus, in this case, images of food. Excess absorption of radioactive sugar derivatives by active areas of the brain causes the various areas to "light up". Scientists use a scanner to observe the resultant increase in radioactivity. Then, researchers can stimulate that part of the brain to see if similar responses result.

Deductive reasoning or deduction is the type of logic used in hypothesis-based science. In deductive reasoning, the pattern of thinking moves in the opposite direction as compared to inductive reasoning. Deductive reasoning is a form of logical thinking that uses a general principle or law to predict specific results. From those general principles, a scientist can deduce and predict the specific results that would be valid as long as the general principles are valid. Studies in climate change can illustrate this type of reasoning. For example, scientists may predict that if the climate becomes warmer in a particular region, then the distribution of plants and animals should change.

Both types of logical thinking are related to the two main pathways of scientific study: descriptive science and hypothesis-based science. Descriptive (or discovery) science , which is usually inductive, aims to observe, explore, and discover, while hypothesis-based science , which is usually deductive, begins with a specific question or problem and a potential answer or solution that one can test. The boundary between these two forms of study is often blurred, and most scientific endeavors combine both approaches. The fuzzy boundary becomes apparent when thinking about how easily observation can lead to specific questions. For example, a gentleman in the 1940s observed that the burr seeds that stuck to his clothes and his dog’s fur had a tiny hook structure. On closer inspection, he discovered that the burrs’ gripping device was more reliable than a zipper. He eventually experimented to find the best material that acted similarly, and produced the hook-and-loop fastener popularly known today as Velcro. Descriptive science and hypothesis-based science are in continuous dialogue.

The Scientific Method

Biologists study the living world by posing questions about it and seeking science-based responses. Known as scientific method, this approach is common to other sciences as well. The scientific method was used even in ancient times, but England’s Sir Francis Bacon (1561–1626) first documented it ( Figure 1.5 ). He set up inductive methods for scientific inquiry. The scientific method is not used only by biologists; researchers from almost all fields of study can apply it as a logical, rational problem-solving method.

The scientific process typically starts with an observation (often a problem to solve) that leads to a question. Let’s think about a simple problem that starts with an observation and apply the scientific method to solve the problem. One Monday morning, a student arrives at class and quickly discovers that the classroom is too warm. That is an observation that also describes a problem: the classroom is too warm. The student then asks a question: “Why is the classroom so warm?”

Proposing a Hypothesis

Recall that a hypothesis is a suggested explanation that one can test. To solve a problem, one can propose several hypotheses. For example, one hypothesis might be, “The classroom is warm because no one turned on the air conditioning.” However, there could be other responses to the question, and therefore one may propose other hypotheses. A second hypothesis might be, “The classroom is warm because there is a power failure, and so the air conditioning doesn’t work.”

Once one has selected a hypothesis, the student can make a prediction. A prediction is similar to a hypothesis but it typically has the format “If . . . then . . . .” For example, the prediction for the first hypothesis might be, “ If the student turns on the air conditioning, then the classroom will no longer be too warm.”

Testing a Hypothesis

A valid hypothesis must be testable. It should also be falsifiable , meaning that experimental results can disprove it. Importantly, science does not claim to “prove” anything because scientific understandings are always subject to modification with further information. This step—openness to disproving ideas—is what distinguishes sciences from non-sciences. The presence of the supernatural, for instance, is neither testable nor falsifiable. To test a hypothesis, a researcher will conduct one or more experiments designed to eliminate one or more of the hypotheses. Each experiment will have one or more variables and one or more controls. A variable is any part of the experiment that can vary or change during the experiment. The control group contains every feature of the experimental group except it is not given the manipulation that the researcher hypothesizes. Therefore, if the experimental group's results differ from the control group, the difference must be due to the hypothesized manipulation, rather than some outside factor. Look for the variables and controls in the examples that follow. To test the first hypothesis, the student would find out if the air conditioning is on. If the air conditioning is turned on but does not work, there should be another reason, and the student should reject this hypothesis. To test the second hypothesis, the student could check if the lights in the classroom are functional. If so, there is no power failure and the student should reject this hypothesis. The students should test each hypothesis by carrying out appropriate experiments. Be aware that rejecting one hypothesis does not determine whether or not one can accept the other hypotheses. It simply eliminates one hypothesis that is not valid ( Figure 1.6 ). Using the scientific method, the student rejects the hypotheses that are inconsistent with experimental data.

While this “warm classroom” example is based on observational results, other hypotheses and experiments might have clearer controls. For instance, a student might attend class on Monday and realize she had difficulty concentrating on the lecture. One observation to explain this occurrence might be, “When I eat breakfast before class, I am better able to pay attention.” The student could then design an experiment with a control to test this hypothesis.

In hypothesis-based science, researchers predict specific results from a general premise. We call this type of reasoning deductive reasoning: deduction proceeds from the general to the particular. However, the reverse of the process is also possible: sometimes, scientists reach a general conclusion from a number of specific observations. We call this type of reasoning inductive reasoning, and it proceeds from the particular to the general. Researchers often use inductive and deductive reasoning in tandem to advance scientific knowledge ( Figure 1.7 ). In recent years a new approach of testing hypotheses has developed as a result of an exponential growth of data deposited in various databases. Using computer algorithms and statistical analyses of data in databases, a new field of so-called "data research" (also referred to as "in silico" research) provides new methods of data analyses and their interpretation. This will increase the demand for specialists in both biology and computer science, a promising career opportunity.

Visual Connection

In the example below, the scientific method is used to solve an everyday problem. Match the scientific method steps (numbered items) with the process of solving the everyday problem (lettered items). Based on the results of the experiment, is the hypothesis correct? If it is incorrect, propose some alternative hypotheses.

Decide if each of the following is an example of inductive or deductive reasoning.

  • All flying birds and insects have wings. Birds and insects flap their wings as they move through the air. Therefore, wings enable flight.
  • Insects generally survive mild winters better than harsh ones. Therefore, insect pests will become more problematic if global temperatures increase.
  • Chromosomes, the carriers of DNA, are distributed evenly between the daughter cells during cell division. Therefore, each daughter cell will have the same chromosome set as the mother cell.
  • Animals as diverse as humans, insects, and wolves all exhibit social behavior. Therefore, social behavior must have an evolutionary advantage.

The scientific method may seem too rigid and structured. It is important to keep in mind that, although scientists often follow this sequence, there is flexibility. Sometimes an experiment leads to conclusions that favor a change in approach. Often, an experiment brings entirely new scientific questions to the puzzle. Many times, science does not operate in a linear fashion. Instead, scientists continually draw inferences and make generalizations, finding patterns as their research proceeds. Scientific reasoning is more complex than the scientific method alone suggests. Notice, too, that we can apply the scientific method to solving problems that aren’t necessarily scientific in nature.

Two Types of Science: Basic Science and Applied Science

The scientific community has been debating for the last few decades about the value of different types of science. Is it valuable to pursue science for the sake of simply gaining knowledge, or does scientific knowledge only have worth if we can apply it to solving a specific problem or to bettering our lives? This question focuses on the differences between two types of science: basic science and applied science.

Basic science or “pure” science seeks to expand knowledge regardless of the short-term application of that knowledge. It is not focused on developing a product or a service of immediate public or commercial value. The immediate goal of basic science is knowledge for knowledge’s sake, although this does not mean that, in the end, it may not result in a practical application.

In contrast, applied science or “technology,” aims to use science to solve real-world problems, making it possible, for example, to improve a crop yield, find a cure for a particular disease, or save animals threatened by a natural disaster ( Figure 1.8 ). In applied science, the problem is usually defined for the researcher.

Some individuals may perceive applied science as “useful” and basic science as “useless.” A question these people might pose to a scientist advocating knowledge acquisition would be, “What for?” However, a careful look at the history of science reveals that basic knowledge has resulted in many remarkable applications of great value. Many scientists think that a basic understanding of science is necessary before researchers develop an application, therefore, applied science relies on the results that researchers generate through basic science. Other scientists think that it is time to move on from basic science in order to find solutions to actual problems. Both approaches are valid. It is true that there are problems that demand immediate attention; however, scientists would find few solutions without the help of the wide knowledge foundation that basic science generates.

One example of how basic and applied science can work together to solve practical problems occurred after the discovery of DNA structure led to an understanding of the molecular mechanisms governing DNA replication. DNA strands, unique in every human, are in our cells, where they provide the instructions necessary for life. When DNA replicates, it produces new copies of itself, shortly before a cell divides. Understanding DNA replication mechanisms enabled scientists to develop laboratory techniques that researchers now use to identify genetic diseases, pinpoint individuals who were at a crime scene, and determine paternity. Without basic science, it is unlikely that applied science could exist.

Another example of the link between basic and applied research is the Human Genome Project, a study in which researchers analyzed and mapped each human chromosome to determine the precise sequence of DNA subunits and each gene's exact location. (The gene is the basic unit of heredity represented by a specific DNA segment that codes for a functional molecule. An individual’s complete collection of genes is their genome.) Researchers have studied other less complex organisms as part of this project in order to gain a better understanding of human chromosomes. The Human Genome Project ( Figure 1.9 ) relied on basic research with simple organisms and, later, with the human genome. An important end goal eventually became using the data for applied research, seeking cures and early diagnoses for genetically related diseases.

While scientists usually carefully plan research efforts in both basic science and applied science, note that some discoveries are made by serendipity , that is, by means of a fortunate accident or a lucky surprise. Scottish biologist Alexander Fleming discovered penicillin when he accidentally left a petri dish of Staphylococcus bacteria open. An unwanted mold grew on the dish, killing the bacteria. Fleming's curiosity to investigate the reason behind the bacterial death, followed by his experiments, led to the discovery of the antibiotic penicillin, which is produced by the fungus Penicillium . Even in the highly organized world of science, luck—when combined with an observant, curious mind—can lead to unexpected breakthroughs.

Reporting Scientific Work

Whether scientific research is basic science or applied science, scientists must share their findings in order for other researchers to expand and build upon their discoveries. Collaboration with other scientists—when planning, conducting, and analyzing results—is important for scientific research. For this reason, important aspects of a scientist’s work are communicating with peers and disseminating results to peers. Scientists can share results by presenting them at a scientific meeting or conference, but this approach can reach only the select few who are present. Instead, most scientists present their results in peer-reviewed manuscripts that are published in scientific journals. Peer-reviewed manuscripts are scientific papers that a scientist’s colleagues or peers review. These colleagues are qualified individuals, often experts in the same research area, who judge whether or not the scientist’s work is suitable for publication. The process of peer review helps to ensure that the research in a scientific paper or grant proposal is original, significant, logical, and thorough. Grant proposals, which are requests for research funding, are also subject to peer review. Scientists publish their work so other scientists can reproduce their experiments under similar or different conditions to expand on the findings.

A scientific paper is very different from creative writing. Although creativity is required to design experiments, there are fixed guidelines when it comes to presenting scientific results. First, scientific writing must be brief, concise, and accurate. A scientific paper needs to be succinct but detailed enough to allow peers to reproduce the experiments.

The scientific paper consists of several specific sections—introduction, materials and methods, results, and discussion. This structure is sometimes called the “IMRaD” format. There are usually acknowledgment and reference sections as well as an abstract (a concise summary) at the beginning of the paper. There might be additional sections depending on the type of paper and the journal where it will be published. For example, some review papers require an outline.

The introduction starts with brief, but broad, background information about what is known in the field. A good introduction also gives the rationale of the work. It justifies the work carried out and also briefly mentions the end of the paper, where the researcher will present the hypothesis or research question driving the research. The introduction refers to the published scientific work of others and therefore requires citations following the style of the journal. Using the work or ideas of others without proper citation is plagiarism .

The materials and methods section includes a complete and accurate description of the substances the researchers use, and the method and techniques they use to gather data. The description should be thorough enough to allow another researcher to repeat the experiment and obtain similar results, but it does not have to be verbose. This section will also include information on how the researchers made measurements and the types of calculations and statistical analyses they used to examine raw data. Although the materials and methods section gives an accurate description of the experiments, it does not discuss them.

Some journals require a results section followed by a discussion section, but it is more common to combine both. If the journal does not allow combining both sections, the results section simply narrates the findings without any further interpretation. The researchers present results with tables or graphs, but they do not present duplicate information. In the discussion section, the researchers will interpret the results, describe how variables may be related, and attempt to explain the observations. It is indispensable to conduct an extensive literature search to put the results in the context of previously published scientific research. Therefore, researchers include proper citations in this section as well.

Finally, the conclusion section summarizes the importance of the experimental findings. While the scientific paper almost certainly answers one or more scientific questions that the researchers stated, any good research should lead to more questions. Therefore, a well-done scientific paper allows the researchers and others to continue and expand on the findings.

Review articles do not follow the IMRAD format because they do not present original scientific findings, or primary literature. Instead, they summarize and comment on findings that were published as primary literature and typically include extensive reference sections.

Scientific Ethics

Scientists must ensure that their efforts do not cause undue damage to humans, animals, or the environment. They also must ensure that their research and communications are free of bias and that they properly balance financial, legal, safety, replicability, and other considerations. All scientists -- and many people in other fields -- have these ethical obligations, but those in the life sciences have a particular obligation because their research may involve people or other living things. Bioethics is thus an important and continually evolving field, in which researchers collaborate with other thinkers and organizations. They work to define guidelines for current practice, and also continually consider new developments and emerging technologies in order to form answers for the years and decades to come.

For example, bioethicists may examine the implications of gene editing technologies, including the ability to create organisms that may displace others in the environment, as well as the ability to “design” human beings. In that effort, ethicists will likely seek to balance the positive outcomes -- such as improved therapies or prevention of certain illnesses -- with negative outcomes.

Unfortunately, the emergence of bioethics as a field came after a number of clearly unethical practices, where biologists did not treat research subjects with dignity and in some cases did them harm. In the 1932 Tuskegee syphilis study, 399 African American men were diagnosed with syphilis but were never informed that they had the disease, leaving them to live with and pass on the illness to others. Doctors even withheld proven medications because the goal of the study was to understand the impact of untreated syphilis on Black men.

While the decisions made in the Tuskegee study are unjustifiable, some decisions are genuinely difficult to make. Bioethicists work to establish moral and dignifying approaches before such decisions come to pass. For example, doctors rely on artificial intelligence and robotics for medical diagnosis and treatment; in the near future, even more responsibility will lie with machines. Who will be responsible for medical decisions? Who will explain to families if a procedure doesn’t go as planned? And, since such treatments will likely be expensive, who will decide who has access to them and who does not? These are all questions bioethicists seek to answer, and are the types of considerations that all scientific researchers take into account when designing and conducting studies.

Bioethics are not simple, and often leave scientists balancing benefits with harm. In this text and course, you will discuss medical discoveries, vaccines, and research that, at their core, have an ethical complexity or, in the view of many, an ethical lapse. In 1951, Henrietta Lacks , a 30-year-old African American woman, was diagnosed with cervical cancer at Johns Hopkins Hospital. Unique characteristics of her illnesses gave her cells the ability to divide continuously, essentially making them “immortal.” Without her knowledge or permission, researchers took samples of her cells and with them created the immortal HeLa cell line. These cells have contributed to major medical discoveries, including the polio vaccine. Many researchers mentioned in subsequent sections of the text relied on HeLa cell research as at least a component of their work related to cancer, AIDS, cell aging, and even very recently in COVID-19 research.

Today, harvesting tissue or organs from a dying patient without consent is not only considered unethical but illegal, regardless of whether such an act could save other patients’ lives. Is it ethical, then, for scientists to continue to use Lacks’s tissues for research, even though they were obtained illegally by today’s standards? Should Lacks be mentioned as a contributor to the research based on her cells, and should she be cited in the several Nobel Prizes that have been awarded through such work? Finally, should medical companies be obligated to pay Lacks’ family (which had financial difficulties) a portion of the billions of dollars in revenue earned through medicines that benefited from HeLa cell research? How would Henrietta Lacks feel about this? Because she was never asked, we will never know.

To avoid such situations, the role of ethics in scientific research is to ask such questions before, during, and after research or practice takes place, as well as to adhere to established professional principles and consider the dignity and safety of all organisms involved or affected by the work.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/biology-2e/pages/1-introduction
  • Authors: Mary Ann Clark, Matthew Douglas, Jung Choi
  • Publisher/website: OpenStax
  • Book title: Biology 2e
  • Publication date: Mar 28, 2018
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/biology-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/biology-2e/pages/1-1-the-science-of-biology

© Apr 26, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Support Biology

Dei council and dei faculty committee, biology diversity community, mit biology catalyst symposium, honors and awards, employment opportunities, faculty and research, current faculty, in memoriam, areas of research, biochemistry, biophysics, and structural biology, cancer biology, cell biology, computational biology, human disease, microbiology, neurobiology, stem cell and developmental biology, core facilities, video gallery, faculty resources, undergraduate, why biology, undergraduate testimonials, major/minor requirements, general institute requirement, advanced standing exam, transfer credit, current students, subject offerings, research opportunities, biology undergraduate student association, career development, why mit biology, diversity in the graduate program, nih training grant, career outcomes, graduate testimonials, prospective students, application process, interdisciplinary and joint degree programs, living in cambridge, graduate manual: key program info, graduate teaching, career development resources, biology graduate student council, biopals program, postdoctoral, life as a postdoc, postdoc associations, postdoc testimonials, workshops for mit biology postdocs entering the academic job market, responsible conduct of research, postdoc resources, non-mit undergraduates, bernard s. and sophie g. gould mit summer research program in biology (bsg-msrp-bio), bsg-msrp-bio gould fellows, quantitative methods workshop, high school students and teachers, summer workshop for teachers, mit field trips, leah knox scholars program, additional resources, mitx biology, biogenesis podcast, biology newsletter, department calendar, ehs and facilities, graduate manual, resources for md/phd students, preliminary exam guidelines, thesis committee meetings, guidelines for graduating, mentoring students and early-career scientists, remembering stephen goldman (1962 – 2022).

For over 50 years, we have played a central role in the growth of molecular life sciences and the revolution in molecular and cellular biology, genetics, genomics, and computational biology.

Biology n., [baɪˈɑlədʒi] Definition: scientific study of life

Biology n., [baɪˈɑlədʒi] Definition: scientific study of life

Table of Contents

Biology Definition

Biology is the branch of science that primarily deals with the structure , function , growth , evolution , and distribution of organisms . As a science, it is a methodological study of life and living things . It determines verifiable facts or formulates theories based on experimental findings on living things by applying the scientific method . An expert in this field is called a biologist.

Some of the common objectives of their research include understanding the life processes, determining biological processes and mechanisms, and how these findings can be used in medicine and industry. Thus, biological research settings vary, e.g. inside a laboratory or in the wild.

Biology is a wide-ranging field. It encompasses various fields in science, such as chemistry, physics, mathematics, and medicine. Biochemistry , for instance, is biology and chemistry combined. It deals primarily with the diverse biomolecules (e.g. nucleic acids , proteins , carbohydrates , and lipids ), studying biomolecular structures and functions. Biophysics is another interdisciplinary field that applies approaches in physics to understand biological phenomena.

Mathematics and biology have also gone hand in hand to come up with theoretical models to elucidate biological processes using mathematical techniques and tools. Medical biology or biomedicine is another major integration where medicine makes use of biological principles in clinical settings. These are just a few of the many biology examples wherein its fundamental tenets are integrated into other scientific fields.

living things

Introduction to Biology

animal cell

A basic biology definition would be is that it is the study of living organisms. It is concerned with all that has life and living. (Ref.1) In contrast to inanimate objects, a living matter is one that demonstrates life . For instance, a living thing would be one that is comprised of a cell or a group of cells.

Each of these cells can carry out processes, e.g. anabolic and catabolic reactions, in order to sustain life. These reactions may be energy-requiring. They are also regulated through homeostatic mechanisms. A living matter would also be one that is capable of reacting to stimuli, adapt to its environment, reproduce, and grow.

The major groups of living things are animals , plants , fungi , protists , bacteria , and archaea . Biology studies their structure, function, distribution, evolution, and taxonomy.

Recommended: BLASTing through the kingdom of life – a guide for teachers , from Digitalworldbiology.com.

Modern Principles and Concepts of Biology

The fundamental principles of biology that are acceptable to this day include cell theory , gene theory , evolutionary theory , homeostasis , and energy .

Cell theory

Cell theory is a scientific theory proposed by the scientists, Theodor Schwann, Matthias Jakob Schleiden, and Rudolf Virchow. It is formulated to refute the old theory, Spontaneous generation . It suggests the following tenets: (1) All living things are made up of one or more cells, (2) the cell is the structural and functional unit, (3) cells come from a pre-existing process of division, (4) all cells have the same chemical composition, and (5) energy flow occurs within the cell. (Ref.2)

Gene theory

test cross

In Gene theory, the gene is considered as the fundamental, physical, and functional unit of heredity. (Ref.3) It is located on the chromosome and contains DNA. The gene stores the genetic code , i.e. a sequence of nucleotides that determines the structure of a protein or RNA. A gene is a unit of heredity because it is transmitted across generations. It is through which the phenotypic trait of an organism is based upon.

Gregor Johann Mendel was one of the main pioneers that established the science of genetics. As such, he is regarded as the father of the said field. He was able to determine the occurrence of unit factors (now referred to as genes ) that were passed down from one generation to the next. He described these unit factors as occurring in pairs. One of the pairs will be dominant over the other ( recessive ). He formulated the Mendelian laws to elucidate how heredity occurs.

These laws include Law of Segregation , Law of Independent Assortment , and Law of Dominance . The inheritance pattern that follows these laws is referred to as Mendelian inheritance . Conversely, an inheritance pattern that does not conform to these laws is described as Non-Mendelian .

Evolutionary theory

mutation diagram

Evolution pertains to the genetic changes in a population over successive generations driven by natural selection, mutation, hybridization, or inbreeding. (Ref.4) Charles Darwin is one of the major contributors to the theory of evolution. He is known for his work Origin of Species by Natural Selection after his Beagle voyage.

He was able to observe different plant and animal species. Based on his analysis, he postulated that living things have an inherent tendency to produce offspring of the same kind. Thus, the survival of the species becomes dependent on the available food and space. As a result, organisms compete as the carrying capacity of the habitat would not be able to sustain a massive population. (Ref.5) Survival or struggle for existence, thus, becomes an individual feat.

Homeostasis

Homeostasis is the tendency of an organism to maintain optimal internal conditions. It entails a system of feedback controls so as to stabilize and keep up with the normal homeostatic range despite the changing external conditions. For instance, it employs homeostatic mechanisms to regulate temperature, pH, and blood pressure.

The homeostatic system is comprised of three main components: a receptor, a control center, and an effector. The receptor of the homeostatic system includes the various sensory receptors that can detect external and internal changes. The information is sent to the control center to process it and to produce a signal to incite an appropriate response from the effector. The concept of homeostasis is credited to Claude Bernard in 1865.

In biology, energy is essential to drive various biological processes, especially anabolic reactions. Adenosine triphosphate (ATP) is the main energy carrier of the cell. It is released from carbohydrates through glycolysis, fermentation, and oxidative phosphorylation. Lipids are another group of biomolecules that store energy.

Importance of Biology

Biology is the scientific way to understand life. Knowing the biological processes and functions of life is essential to gain a deeper knowledge and appreciation in life. Furthermore, it opens an avenue of resources for use in medicine and industry. How a biological process proceeds, its regulatory systems, and its components can lead to better awareness. For example, conservation efforts could begin to save a species that has been classified as endangered , i.e. on the verge of extinction.

A specialist or an expert in the field of biology is called a biologist . Biologists look upon the biophysical, biomolecular, cellular, and systemic levels of an organism. They attempt to understand the mechanisms at play in various biological processes that govern life. They are also interested in coming up with innovations to create and improve life. Some of them have advocacies and are concerned with the conservation of species. Depending on the nature and objectives of their research, they may be found conducting research inside a laboratory. Others carry out their scientific pursuits outside, such as in diverse habitats where an organism or a population of organisms thrive.

The biological study can be traced back to early times. Aristotle, for instance, was a Greek philosopher in Athens known for his contributions to philosophy and biology. He was the first person to study biology systematically. Some of his popular works include the History of Animals , Generation of Animals , Movement of Animals , Parts of Animals . Much of his botanical studies, though, were lost. Because of his many pioneering studies, he is regarded by many as the “Father of Biology” .

At present, biologists are now seeking the potential use of biology in other fields, such as medicine, agriculture, and industry. One of the most recent breakthroughs is CRISPR — a gene-hacking tool used by scientists to splice specific DNA targets and then replace them with a DNA that would yield the desired effect. One of its promises is that it can correct physiological anomalies due to mutated or defective gene mutations. (Ref.6)

Authors can now submit preprints to bioRxiv — an online archive and distribution service for preprints in the life sciences. More details here: BioTechniques Welcomes Preprints – BioTechniques (BioTechniques: https://www.biotechniques.com/general-interest/biotechniques-welcomes-preprints/).

Branches of Biology

Biology encompasses various sub-disciplines or branches. Some of the branches of biology are as follows:

  • Anatomy – the study of the animal form, particularly the human body
  • Astrobiology – the branch of biology concerned with the effects of outer space on living organisms and the search for extraterrestrial life
  • Biochemistry – the study of the structure and function of cellular components, such as proteins , carbohydrates , lipids , nucleic acids , and other biomolecules , and of their functions and transformations during life processes
  • Bioclimatology – a science concerned with the influence of climates on organisms, for instance, the effects of climate on the development and distribution of plants , animals , and humans
  • Bioengineering – or biological engineering , a broad-based engineering discipline that deals with bio-molecular and molecular processes, product design, sustainability, and analysis of biological systems
  • Biogeography – a science that attempts to describe the changing distributions and geographic patterns of living and fossil species of plants and animals
  • Bioinformatics – information technology as applied to the life sciences, especially the technology used for the collection, storage, and retrieval of genomic data
  • Biomathematics – mathematical biology or biomathematics , an interdisciplinary field of academic study which aims at modeling natural, biological processes using mathematical techniques and tools. It has both practical and theoretical applications in biological research
  • Biophysics – or biological physics , interdisciplinary science that applies the theories and methods of physical sciences to questions of biology
  • Biotechnology – applied science concerned with biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use
  • Botany – the scientific study of plants
  • Cell biology – the study of cell s at the microscopic or at the molecular level. It includes studying the cells’ physiological properties, structures, organelles, interactions with their environment, life cycle , cell division , and apoptosis
  • Chronobiology – a science that studies time-related phenomena in living organisms
  • Conservation Biology – concerned with the studies and schemes of habitat preservation and species protection for the purpose of alleviating extinction crisis and conserving biodiversity
  • Cryobiology – the study of the effects of low temperatures on living organisms
  • Developmental Biology – the study of the processes by which an organism develops from a zygote to its full structure
  • Ecology – the scientific study of the relationships between plants, animals, and their environment
  • Ethnobiology – a study of the past and present human interactions with the environment, for instance, the use of diverse flora and fauna by indigenous societies
  • Evolutionary Biology – a subfield concerned with the origin and descent of species , as well as their change over time, i.e. their evolution
  • Freshwater Biology – a science concerned with the life and ecosystem s of freshwater habitats
  • Genetics – a science that deals with heredity , especially the mechanisms of hereditary transmission and the variation of inherited characteristics among similar or related organisms
  • Geobiology – a science that combines geology and biology to study the interactions of organisms with their environment
  • Immunobiology – a study of the structure and function of the immune system , innate and acquired immunity, the bodily distinction of self from non-self , and laboratory techniques involving the interaction of antigens with specific antibodies
  • Marine Biology – the study of ocean plants and animals and their ecological relationships
  • Medicine – the science which relates to the prevention, cure, or alleviation of disease
  • Microbiology – the branch of biology that deals with microorganism s and their effects on other living organisms
  • Molecular Biology – the branch of biology that deals with the formation, structure, and function of macromolecules  essential to life, such as nucleic acids  and proteins , and especially with their role in cell replication and the transmission of genetic information
  • Mycology – the study of fungi
  • Neurobiology – the branch of biology that deals with the anatomy, physiology, and pathology of the nervous system
  • Paleobiology – the study of the forms of life existing in prehistoric or geologic times, as represented by the fossil s of plants, animals, and other organisms
  • Parasitology – the study of parasites  and parasitism
  • Pathology – the study of the nature of the disease and its causes, processes, development, and consequences
  • Pharmacology – the study of preparation and use of drugs and synthetic medicines
  • Physiology – the biological study of the functions of living organisms and their parts
  • Protistology – the study of protist s
  • Psychobiology – the study of mental functioning and behavior in relation to other biological processes
  • Toxicology – the study of how natural or man-made poisons cause undesirable effects in living organisms
  • Virology – the study of viruses
  • Zoology – The branch of biology that deals with animals and animal life, including the study of the structure, physiology, development, and classification of animals
  • Ethology – the study of animal behavior
  • Entomology – the scientific study of insects
  • Ichthyology – the study of fishes
  • Herpetology – the science of reptiles and amphibians
  • Ornithology – the science of birds
  • Mammalogy – the study of mammals
  • Primatology – the science that deals with primates

Human Biology – Definition

Human biology is the branch of biology that focuses on humans in terms of evolution, genetics, anatomy and physiology, ecology, epidemiology, and anthropology. It can be a subfield of Primatology since humans belong to the group of primates, particularly of the family Hominidae (tribe Hominini). Since human biology is a course that deals mainly with humans, it is a viable option for use as a preparatory course in medicine.

Try to answer the quiz below to check what you have learned so far about biology.

Choose the best answer. 

Send Your Results (Optional)

clock.png

  • INTRODUCTION: THE NATURE OF SCIENCE AND BIOLOGY. (2019). Retrieved September 12, 2019, from Estrellamountain.edu website: http://www2.estrellamountain.edu/faculty/farabee/biobk/biobookintro.html
  • 4.1C: Cell Theory. (2019, September 9). Retrieved from Biology LibreTexts website: https://bio.libretexts.org/Bookshelves/Introductory-and-General-Biology/Book:-General-Biology-(Boundless)/4:-Cell-Structure/4.1:-Studying-Cells/4.1C:-Cell-Theory
  • Rheinberger, H.-J., Müller-Wille, S., & Meunier, R. (2015). Gene (Stanford Encyclopedia of Philosophy). Retrieved September 12, 2019, from Stanford.edu website: https://plato.stanford.edu/entries/gene/
  • A brief history of evolution. (2019). Retrieved from OpenLearn website: https://www.open.edu/openlearn/history-the-arts/history/history-science-technology-and-medicine/history-science/brief-history-evolution
  • 3. Theories of Evolution. (2010). Retrieved from BIOLOGY4ISC website: https://biology4isc.weebly.com/3-theories-of-evolution.html
  • Gonzaga, M. V. (2019, August 21). CRISPR DIY – biohacking genes at. Retrieved from Biology Blog & Dictionary Online website: https://www.biologyonline.com/crispr-diy-biohacking-genes-at-home/

Recommended Source

  • The Society for Experimental Biology (SEB) – get the latest news on cell biology, plant biology, animal biology, and more.

© Biology Online. Content provided and moderated by Biology Online Editors

Last updated on May 26th, 2022

You will also like...

what is biology research

Developmental Biology

what is biology research

Cell Biology

what is biology research

Human Biology – Food and Digestion

what is biology research

Community Patterns

what is biology research

Plant Biology

what is biology research

Effect of Chemicals on Growth & Development in Organisms

Related articles....

what is biology research

The biology of how the brain forgets

Theory of Neuroscience

Theory of Neuroscience

what is biology research

A Protein Being Born – a live cell imaging of RNA translation

what is biology research

Public Engagement: Rising Expectations in the Digital Age

what is biology research

How Celiac Disease Affects The Digestive System

  • How it works

Published by Robert Bruce at August 29th, 2023 , Revised On September 5, 2023

Biology Research Topics

Are you in need of captivating and achievable research topics within the field of biology? Your quest for the best biology topics ends right here as this article furnishes you with 100 distinctive and original concepts for biology research, laying the groundwork for your research endeavor.

Table of Contents

Our proficient researchers have thoughtfully curated these biology research themes, considering the substantial body of literature accessible and the prevailing gaps in research.

Should none of these topics elicit enthusiasm, our specialists are equally capable of proposing tailor-made research ideas in biology, finely tuned to cater to your requirements. 

Thus, without further delay, we present our compilation of biology research topics crafted to accommodate students and researchers.

Research Topics in Marine Biology

  • Impact of climate change on coral reef ecosystems.
  • Biodiversity and adaptation of deep-sea organisms.
  • Effects of pollution on marine life and ecosystems.
  • Role of marine protected areas in conserving biodiversity.
  • Microplastics in marine environments: sources, impacts, and mitigation.

Biological Anthropology Research Topics

  • Evolutionary implications of early human migration patterns.
  • Genetic and environmental factors influencing human height variation.
  • Cultural evolution and its impact on human societies.
  • Paleoanthropological insights into human dietary adaptations.
  • Genetic diversity and population history of indigenous communities.

Biological Psychology Research Topics 

  • Neurobiological basis of addiction and its treatment.
  • Impact of stress on brain structure and function.
  • Genetic and environmental influences on mental health disorders.
  • Neural mechanisms underlying emotions and emotional regulation.
  • Role of the gut-brain axis in psychological well-being.

Cancer Biology Research Topics 

  • Targeted therapies in precision cancer medicine.
  • Tumor microenvironment and its influence on cancer progression.
  • Epigenetic modifications in cancer development and therapy.
  • Immune checkpoint inhibitors and their role in cancer immunotherapy.
  • Early detection and diagnosis strategies for various types of cancer.

Also read: Cancer research topics

Cell Biology Research Topics

  • Mechanisms of autophagy and its implications in health and disease.
  • Intracellular transport and organelle dynamics in cell function.
  • Role of cell signaling pathways in cellular response to external stimuli.
  • Cell cycle regulation and its relevance to cancer development.
  • Cellular mechanisms of apoptosis and programmed cell death.

Developmental Biology Research Topics 

  • Genetic and molecular basis of limb development in vertebrates.
  • Evolution of embryonic development and its impact on morphological diversity.
  • Stem cell therapy and regenerative medicine approaches.
  • Mechanisms of organogenesis and tissue regeneration in animals.
  • Role of non-coding RNAs in developmental processes.

Also read: Education research topics

Human Biology Research Topics

  • Genetic factors influencing susceptibility to infectious diseases.
  • Human microbiome and its impact on health and disease.
  • Genetic basis of rare and common human diseases.
  • Genetic and environmental factors contributing to aging.
  • Impact of lifestyle and diet on human health and longevity.

Molecular Biology Research Topics 

  • CRISPR-Cas gene editing technology and its applications.
  • Non-coding RNAs as regulators of gene expression.
  • Role of epigenetics in gene regulation and disease.
  • Mechanisms of DNA repair and genome stability.
  • Molecular basis of cellular metabolism and energy production.

Research Topics in Biology for Undergraduates

  • 41. Investigating the effects of pollutants on local plant species.
  • Microbial diversity and ecosystem functioning in a specific habitat.
  • Understanding the genetics of antibiotic resistance in bacteria.
  • Impact of urbanization on bird populations and biodiversity.
  • Investigating the role of pheromones in insect communication.

Synthetic Biology Research Topics 

  • Design and construction of synthetic biological circuits.
  • Synthetic biology applications in biofuel production.
  • Ethical considerations in synthetic biology research and applications.
  • Synthetic biology approaches to engineering novel enzymes.
  • Creating synthetic organisms with modified functions and capabilities.

Animal Biology Research Topics 

  • Evolution of mating behaviors in animal species.
  • Genetic basis of color variation in butterfly wings.
  • Impact of habitat fragmentation on amphibian populations.
  • Behavior and communication in social insect colonies.
  • Adaptations of marine mammals to aquatic environments.

Also read: Nursing research topics

Best Biology Research Topics 

  • Unraveling the mysteries of circadian rhythms in organisms.
  • Investigating the ecological significance of cryptic coloration.
  • Evolution of venomous animals and their prey.
  • The role of endosymbiosis in the evolution of eukaryotic cells.
  • Exploring the potential of extremophiles in biotechnology.

Biological Psychology Research Paper Topics

  • Neurobiological mechanisms underlying memory formation.
  • Impact of sleep disorders on cognitive function and mental health.
  • Biological basis of personality traits and behavior.
  • Neural correlates of emotions and emotional disorders.
  • Role of neuroplasticity in brain recovery after injury.

Biological Science Research Topics: 

  • Role of gut microbiota in immune system development.
  • Molecular mechanisms of gene regulation during development.
  • Impact of climate change on insect population dynamics.
  • Genetic basis of neurodegenerative diseases like Alzheimer’s.
  • Evolutionary relationships among vertebrate species based on DNA analysis.

Biology Education Research Topics 

  • Effectiveness of inquiry-based learning in biology classrooms.
  • Assessing the impact of virtual labs on student understanding of biology concepts.
  • Gender disparities in science education and strategies for closing the gap.
  • Role of outdoor education in enhancing students’ ecological awareness.
  • Integrating technology in biology education: challenges and opportunities.

Biology-Related Research Topics

  • The intersection of ecology and economics in conservation planning.
  • Molecular basis of antibiotic resistance in pathogenic bacteria.
  • Implications of genetic modification of crops for food security.
  • Evolutionary perspectives on cooperation and altruism in animal behavior.
  • Environmental impacts of genetically modified organisms (GMOs).

Biology Research Proposal Topics

  • Investigating the role of microRNAs in cancer progression.
  • Exploring the effects of pollution on aquatic biodiversity.
  • Developing a gene therapy approach for a genetic disorder.
  • Assessing the potential of natural compounds as anti-inflammatory agents.
  • Studying the molecular basis of cellular senescence and aging.

Biology Research Topic Ideas

  • Role of pheromones in insect mate selection and behavior.
  • Investigating the molecular basis of neurodevelopmental disorders.
  • Impact of climate change on plant-pollinator interactions.
  • Genetic diversity and conservation of endangered species.
  • Evolutionary patterns in mimicry and camouflage in organisms.

Biology Research Topics for Undergraduates 

  • Effects of different fertilizers on plant growth and soil health.
  • Investigating the biodiversity of a local freshwater ecosystem.
  • Evolutionary origins of a specific animal adaptation.
  • Genetic diversity and disease susceptibility in human populations.
  • Role of specific genes in regulating the immune response.

Cell and Molecular Biology Research Topics 

  • Molecular mechanisms of DNA replication and repair.
  • Role of microRNAs in post-transcriptional gene regulation.
  • Investigating the cell cycle and its control mechanisms.
  • Molecular basis of mitochondrial diseases and therapies.
  • Cellular responses to oxidative stress and their implications in ageing.

These topics cover a broad range of subjects within biology, offering plenty of options for research projects. Remember that you can further refine these topics based on your specific interests and research goals.

Frequently Asked Questions 

What are some good research topics in biology?

A good research topic in biology will address a specific problem in any of the several areas of biology, such as marine biology, molecular biology, cellular biology, animal biology, or cancer biology.

A topic that enables you to investigate a problem in any area of biology will help you make a meaningful contribution. 

How to choose a research topic in biology?

Choosing a research topic in biology is simple. 

Follow the steps:

  • Generate potential topics. 
  • Consider your areas of knowledge and personal passions. 
  • Conduct a thorough review of existing literature.
  •  Evaluate the practicality and viability. 
  • Narrow down and refine your research query. 
  • Remain receptive to new ideas and suggestions.

Who Are We?

For several years, Research Prospect has been offering students around the globe complimentary research topic suggestions. We aim to assist students in choosing a research topic that is both suitable and feasible for their project, leading to the attainment of their desired grades. Explore how our services, including research proposal writing , dissertation outline creation, and comprehensive thesis writing , can contribute to your college’s success.

You May Also Like

Looking for interesting and manageable research topics in education? Your search ends right here because this blog post provides 50 […]

Find out if you need permission to publish your dissertation in canada. Understand copyright, university rules, and third-party content.

Academic integrity: a commitment to honesty and ethical conduct in learning. Upholding originality and proper citation are its cornerstones.

Ready to place an order?

USEFUL LINKS

Learning resources, company details.

  • How It Works

Automated page speed optimizations for fast site performance

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Cell biology articles from across Nature Portfolio

Cell biology is the discipline of biological sciences that studies the structure, physiology, growth, reproduction and death of cells. Research in cell biology uses microscopic and molecular tools and examines all cell types, from unicellular organisms such as protozoa to the specialised cells that consitutute multicellular organisms.

what is biology research

TREM1 is the new kid on the block for the aging-associated innate immune response and Alzheimer’s disease

The immunometabolism of microglia determines not only their own fate but also that of neurons and their function during aging and neurodegeneration.

  • Michael T. Heneka

what is biology research

Decoding microscopy images by accurate measurement of point spread functions

uiPSF is a toolbox to measure point spread functions based on inverse modeling that improves single-molecule localization microscopy (SMLM) localization and microscope characterization, and that works for many microscopy technologies.

what is biology research

Unfolding emergency calls stress granules to the ER

Sensing stress within the endoplasmic reticulum (ER), the ER transmembrane protein IRE1α initiates a signal transduction pathway to restore homeostasis. A study finds that this process requires an ER membrane-bound phase separation event that leads to the local assembly of stress granules (SGs) and delivery of signalling components.

  • David Pincus
  • Scott A. Oakes

Related Subjects

  • Cell adhesion
  • Cell division
  • Cell growth
  • Cell migration
  • Cell polarity
  • Cell signalling
  • Cellular imaging
  • Chromosomes
  • Circadian rhythms
  • Cytoskeleton
  • Glycobiology
  • Mechanisms of disease
  • Membrane trafficking
  • Nuclear organization
  • Nuclear transport
  • Post-translational modifications
  • Protein folding
  • Protein transport
  • Proteolysis

Latest Research and Reviews

what is biology research

Fate of telomere entanglements is dictated by the timing of anaphase midregion nuclear envelope breakdown

Telomeric entanglements arising from stalled telomeric replication forks can cause mitotic catastrophe in dividing cells. Here, the authors show that resolution of such entanglements in fission yeast requires rapid exposure of the DNA to the cytoplasm during anaphase.

  • Rishi Kumar Nageshan
  • Raquel Ortega
  • Julia Promisel Cooper

what is biology research

RoPod, a customizable toolkit for non-invasive root imaging, reveals cell type-specific dynamics of plant autophagy

  • Marjorie Guichard
  • Sanjana Holla
  • Elena A. Minina

what is biology research

Effect of cellular senescence on the response of human peritoneal mesothelial cells to TGF-β

  • Edyta Kawka
  • Rebecca Herzog
  • Janusz Witowski

what is biology research

Real-time imaging of axonal membrane protein life cycles

Conjugation of self-labeling enzymatic tags to axonal membrane proteins enables studying the dynamics of their trafficking, cellular localization and fate.

  • Sidharth Tyagi
  • Grant P. Higerd-Rusli
  • Sulayman D. Dib-Hajj

what is biology research

SenNet recommendations for detecting senescent cells in different tissues

Senescent cells have complex and important roles in cancer and ageing, but they are quite rare and difficult to characterize in tissues in vivo. In this Expert Recommendation, the SenNet Biomarkers Working Group discusses recent advances in detecting and characterizing cellular senescence and provides recommendations for senescence markers in 14 human and mouse tissues.

  • Vidyani Suryadevara
  • Adam D. Hudgins
  • Nicola Neretti

what is biology research

Universal inverse modeling of point spread functions for SMLM localization and microscope characterization

uiPSF (universal inverse modeling of point spread functions) offers a versatile solution for inferring accurate PSF models from images of beads and blinking fluorophores, enabling improved imaging and image processing in localization microscopy.

  • Jianwei Chen

Advertisement

News and Comment

what is biology research

UDPG: Maintaining the true nature of sugar

  • Ronghui Yang

what is biology research

A snapshot into the transcriptomic landscape of apoptosis and ferroptosis in cancer

Apoptosis and ferroptosis are two regulated cell death (RCD) pathways implicated in different human diseases and considered as promising strategies to eliminate cancer cells. These two pathways are characterized by distinct morphological and biochemical properties, induce cell death through different mechanisms, but share common regulators in different cancer types. Although apoptosis and ferroptosis have been extensively studied over the last few years, their transcriptomic responses have not yet been systematically compared due to remarkable variability in the transcriptomic data. Here we provide a brief snapshot of the transcriptomic landscapes of the apoptosis and ferroptosis responses in cancer, discuss their divergent and convergent properties, and implications to cancer therapy.

  • Yaron Vinik

what is biology research

Cells dispose of cytoplasmic mitochondrial DNA by nucleoid-phagy

Mitochondrial damage in stress conditions results in the release of mitochondrial DNA (mtDNA), causing inflammation that is linked to various diseases. We discovered a mechanism for the elimination of this harmful mtDNA — ‘nucleoid-phagy’. Targeting this process represents another way to treat mitochondrial damage-related diseases.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

what is biology research

Aims and scope

Open access.

All articles published by Biological Research are made freely and permanently accessible online immediately upon publication, without subscription charges or registration barriers. Further information about open access can be found here .

As authors of articles published in Biological Research you are the copyright holders of your article and have granted to any third party, in advance and in perpetuity, the right to use, reproduce or disseminate your article, according to the BMC license agreement .

For those of you who are US government employees or are prevented from being copyright holders for similar reasons, BMC can accommodate non-standard copyright lines. Please contact us if further information is needed.

Article processing charges (APC)

Authors who publish open access in Biological Research are required to pay an article processing charge (APC). The APC price will be determined from the date on which the article is accepted for publication.

The current APC, subject to VAT or local taxes where applicable, is: £2090.00/$2790.00/€2390.00

Visit our open access support portal and our Journal Pricing FAQs for further information.

Open access funding

Visit Springer Nature’s open access funding & support services for information about research funders and institutions that provide funding for APCs.

Springer Nature offers agreements that enable institutions to cover open access publishing costs. Learn more about our open access agreements to check your eligibility and discover whether this journal is included.

Springer Nature offers APC waivers and discounts for articles published in our fully open access journals whose corresponding authors are based in the world’s lowest income countries (see our APC waivers and discounts policy for further information). Requests for APC waivers and discounts from other authors will be considered on a case-by-case basis, and may be granted in cases of financial need (see our open access policies for journals for more information). All applications for discretionary APC waivers and discounts should be made at the point of manuscript submission; requests made during the review process or after acceptance are unable to be considered.

Indexing services

All articles published in Biological Research are included in:

  • Biological Abstracts
  • PubMed Central
  • Science Citation Index Expanded

The full text of all articles is deposited in digital archives around the world to guarantee long-term digital preservation. You can also access all articles published by BioMed Central on SpringerLink .

Peer-review policy

Peer-review is the system used to assess the quality of a manuscript before it is published. Independent researchers in the relevant research area assess submitted manuscripts for originality, validity and significance to help editors determine whether the manuscript should be published in their journal. You can read more about the peer-review process here .

Biological Research operates using a single-blind peer-review system, where the reviewers are aware of the names and affiliations of the authors, but the reviewer reports provided to authors are anonymous.

Manuscripts that are deemed suitable for consideration will be assigned to two expert reviewers by the Editor-in-Chief or an Associate Editor. Reviewers may either be Editorial Board members or external experts selected by the Editors. The reviewers are asked to provide their report on the manuscript within two weeks. The final decision to accept or reject a manuscript will be made by the Editor-in-Chief.

Editorial policies

All manuscripts submitted to Biological Research should adhere to BioMed Central's editorial policies .

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Citing articles in Biological Research

Articles in Biological Research  should be cited in the same way as articles in a traditional journal. Because articles are not printed, they do not have page numbers; instead, they are given a unique article number.

Article citations follow this format:

Authors: Title. Biol Res [year], [volume number]:[article number].

e.g. Roberts LD, Hassall DG, Winegar DA, Haselden JN, Nicholls AW, Griffin JL: Increased hepatic oxidative metabolism distinguishes the action of Peroxisome Proliferator-Activated Receptor delta from Peroxisome Proliferator-Activated Receptor gamma in the Ob/Ob mouse.  Biol Res 2009, 1 :115.

refers to article 115 from Volume 1 of the journal.

Appeals and complaints

Authors who wish to appeal a rejection or make a complaint should follow the procedure outlined in the BMC Editorial Policies .

Benefits of publishing with BMC

High visibility.

Biological Research 's open access policy allows maximum visibility of articles published in the journal as they are available to a wide, global audience. 

Speed of publication

Biological Research offers a fast publication schedule whilst maintaining rigorous peer review; all articles must be submitted online, and peer review is managed fully electronically (articles are distributed in PDF form, which is automatically generated from the submitted files). Articles will be published with their final citation after acceptance, in both fully browsable web form, and as a formatted PDF.

Flexibility

Online publication in Biological Research gives you the opportunity to publish large datasets, large numbers of color illustrations and moving pictures, to display data in a form that can be read directly by other software packages so as to allow readers to manipulate the data for themselves, and to create all relevant links (for example, to PubMed , to sequence and other databases, and to other articles).

Promotion and press coverage

Articles published in Biological Research are included in article alerts and regular email updates. Some may be highlighted on Biological Research ’s pages and on the BMC homepage.

In addition, articles published in Biological Research may be promoted by press releases to the general or scientific press. These activities increase the exposure and number of accesses for articles published in Biological Research . A list of articles recently press-released by journals published by BMC is available here .

As an author of an article published in Biological Research you retain the copyright of your article and you are free to reproduce and disseminate your work (for further details, see the BMC license agreement ).

For further information about the advantages of publishing in a journal from BMC, please click here .

  • Editorial Board
  • Manuscript editing services
  • Instructions for Editors
  • Sign up for article alerts and news from this journal
  • Follow us on Twitter
  • Follow us on Facebook
  • ISSN: 0717-6287 (electronic)

Biological Research

ISSN: 0717-6287

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

Research Areas

Research activity in the Biology Department spans the full range of biological organization, from molecules to ecosystems. Main research fields are indicated here, as links to groups of faculty doing research in those areas.

what is biology research

Biochemistry

what is biology research

Cell Biology

what is biology research

Computational Biology

what is biology research

Conservation Biology

what is biology research

Developmental Biology

what is biology research

Marine Biology

what is biology research

Microbiology

what is biology research

Molecular Biology

what is biology research

Neurobiology

what is biology research

Plant Biology

what is biology research

Population Biology

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Biology LibreTexts

1.4: Research Proposals

  • Last updated
  • Save as PDF
  • Page ID 128984

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Learning Objectives

  • Perform biodiversity research through making and translating your observations of the natural world into research questions, hypotheses, and experimental design that are grounded in scientific literature.
  • Communicate the research process to your peers in a clear, effective, and engaging manner.

Written Proposal

Writing about research is a primary method scientists use to communicate their work. Thus, this course will involve developing a written research proposal. We will use several drafts to refine the research proposal. The first draft can utilize the template available in Appendix 6. Subsequent drafts should become more refined and start to take the format of a scientific paper. The proposal should include an introductory section providing background on the topic of interest, drawing from several primary research articles. This section also develops the argument for why the research question is worth studying. The research question and hypothesis should also be included in the introduction.

The second section should include the proposed methodology. Describe how the hypothesis will be tested. It should outline the experiments and what will be needed to perform them. Ideas can be supported by referring to previously published research. The third section will address anticipated results. Consider the expected findings and the implications of those findings for the original research question and hypothesis. Consider what it would mean if the results turned out a different way. Finally, be sure to include both in-text citations and a full reference list at the end. The proposal should have good narrative flow and be proofread for proper spelling and grammar. See the rubric in the Appendix 3 for evaluation guidelines.

Oral Presentation

Scientists also frequently share their research findings via presentations, such as at meetings with other scientists. Developing an oral presentation of the research proposal provides an opportunity to practice communicating science to our peers. The presentation should be ~10 minutes and delivered via a slideshow. The presentation should include the same content as the written portion, but the distinction here the audience will be engaged in a different way. The best presentations tell a good story, so think about how to translate the proposal into a story – typically start with background information so the audience members have some understanding of the context. Then use the background information strategically to build up to the identified research gap and the corresponding research question. The question then leads naturally into the hypothesis or hypotheses to be tested. The final part of the presentation will be the experimental plan – how will the hypothesis be tested? Try to envision all possible outcomes from the experiment and how that will support or refute the hypothesis and inform on the interpretation of the results.

There will be opportunities for questions from peers at the end. It is important to try to ask questions at the end of presentations in order to practice giving this kind of feedback. This is a very common way in which scientists provide feedback to each other on their work. Attending departmental seminars or conferences will enable witnessing this first hand. See the rubric in the Appendix 3 for evaluation guidelines.

Proposal Workshop I

Proposing research ideas is a key element of working in the biodiversity science field. Thus this first workshop will be focused on sharing and expanding upon initial ideas for a research proposal. It will take a lab meeting format with a round table discussion where each student has the opportunity to share their research proposal ideas. Peers will then ask follow-up questions to help support idea development. Incidentally, this also serves as an opportunity to practice communicating science to peers. It takes practice to clearly articulate ideas. Following the workshop, begin exploring some literature related to the topic of interest and start putting ideas down on paper – they will not be polished yet, but it will help to develop the initial draft of the research proposal. See the Appendix 6 for a proposal first draft template.

Proposal Workshop II

This workshop will continue to develop the research question, hypothesis, and experimental design. We will discuss developing ideas in pairs with both the course instructor and classmates. We will work to develop ideas into excellent proposal material by digging into the following questions.

Research Question

  • What is your research question?
  • Is your question clearly stated and focused? If not, how might you tailor it?
  • Why are you interested in this question? What makes you curious about it? What have you learned from previous studies that lead you to want to ask this question?

Hypotheses/predictions

  • What are your hypotheses/predictions?
  • Are they stated clearly? If not, what needs to be adjusted?
  • Are they aligned with the question you are asking?
  • Why are you interested in this hypothesis?

Experimental Plan

  • What is your experimental plan?
  • Does the design fit with your hypothesis?
  • Are there things that still need to be considered? If so, what are they?

Proposal Workshop III

This workshop is an opportunity to polish. Use this time to solicit final feedback from peers, test out design ideas for the final presentation, or practice delivering the presentation in front of an audience.

  • Ask An Astrobiologist
  • Resources Graphic Histories Coloring Pages Heroes Posters Life in the extremes Digital Backgrounds SciComm Guild

NASA Astrobiology Logo

Life, Here and Beyond

Astrobiology is the study of the origin, evolution, and distribution of life in the universe..

Mark Kaufman Headshot

Ask most anyone whether life exists on other planets and moons, and the answer you’ll get is a confident “yes!” Going back decades (and in many ways generations), we’ve been introduced to a menagerie of extraterrestrials good and bad. Their presence suffuses our entertainment and culture, and we humans seem to have an almost innate belief-or is it a hope-that we are not alone in the universe.

But that extraterrestrial presence on regular display is, of course, a fiction. No life beyond Earth has ever been found; there is no evidence that alien life has ever visited our planet. It’s all a story.

This does not mean, however, that the universe is lifeless. While no clear signs of life have ever been detected, the possibility of extraterrestrial biology – the scientific logic that supports it – has grown increasingly plausible. That is perhaps the single largest achievement of the burgeoning field of astrobiology, the broad-based study of the origins of life here and the search for life beyond Earth.

By exploring and illuminating the world of extreme life on Earth, by experimenting with how life here began, by understanding more about the chemical makeup of the cosmos, by testing for habitability on missions to Mars, Jupiter’s moon Europa, Saturn’s moon Titan, and beyond, an enormous body of science is being assembled to analyze and explain the origins, characteristics and possible extraterrestrial dimensions of life. And unlike the ETs and star-ship invaders of popular culture, these discoveries are, and will be, real.

Artist’s rendering of NASA’s Cassini spacecraft observing a sunset through Titan’s hazy atmosphere. Credit: NASA/JPL-Caltech

Turning Science Fiction into Science Fact

Consider: Both the rovers Curiosity and Perseverance have clearly determined that ancient Mars was significantly more wet and warm, and was an entirely habitable place for microbial life. All the ingredients needed for life as we know it – the proper chemicals, a consistent source of energy, and water that was likely present and stable on the surface for millions of years – were present.

Did microbial life then begin? If so, did it evolve? Those questions remain unanswered, but this much is known: If a second genesis occurred on Mars (or on Jupiter’s moon Europa, Saturn’s moon Enceladus, or anywhere else in our solar system), then the likelihood increases substantially that many other forms of life exist on those billions of exoplanets and exomoons now known to orbit distant stars and planets. One origin of life on Earth could be the result of a remarkable and inexplicable pathway to life. Two origins in one solar system strongly suggests that life is commonplace in the universe.

Consider, too, the revolution in understanding that has taken place since the mid-1990s regarding planets and moons in solar systems well beyond ours. Since ancient times, natural philosophers, then scientists, and untold interested others predicted, assumed even, that many other planets orbited their stars. By now more than 5,000 exoplanets have been officially identified – via NASA missions such as the Kepler Space Telescope, the Transiting Exoplanet Space Telescope ( TESS ), the Hubble Space Telescope as well as ground-based observations — and billions more await discovery. And that’s just in our Milky Way galaxy.

With advances in the instruments and knowledge that make possible the exoplanet hunt, the focus has been increasing refined to identify planets lying in habitable zones – at distances from their host stars that would allow water to remain at least periodically liquid on a planet’s surface. The search for exoplanets was born in the fields of astronomy and astrophysics, but it has always been intertwined with astrobiology as well. As with so many NASA missions, the broad and intense drive to find and understand habitable zone planets and moons both greatly enhances astrobiology and is informed by astrobiology.

Our experience with finding distant planets also makes you wonder: Will the search for the current or past presence of extraterrestrial life someday be viewed as a parallel to the earlier search for exoplanets? Men and women of science, as well as the lay public, intuitively assumed planets existed beyond our solar system, but these planets were identified only when our technology and thinking had sufficiently advanced. Is the discovery of ET life similarly awaiting our coming of scientific age?

This is an artistic rendering of planets orbiting stars in the Milky Way (the planets, their orbits and their host stars are all vastly magnified compared to their real separations). After surveying millions of stars, we’ve concluded that planets are the rule rather than the exception. Credit: ESO/M. Kornmesser

The Past As a Guide to the Future

Astrobiology research is taking place because its time has come. Scientists across the country and around the world are diving into origin-of-life and life-beyond-Earth issues and developing exciting and cutting-edge work. But NASA also has an astrobiology “strategy” describing where the agency sees promising lines of research – from the highly specific to the wide and broad — that the agency might support. A sampling of examples:

• What were the steps that led inanimate materials – rocks, sediments, organic compounds, water – to come together and build living organisms, with replicating genes, cell walls, and the ability to reproduce?

• What led to the proliferation of new life forms on Earth?

• How do water and essential organic compounds arrive on planets and moons, and how do they interact with the planets and moons they land on?

• Is it possible to learn from chemicals and minerals on the surface of planets whether microbes might live there, including beneath the planet’s surface?

• Is it possible, likely even, that life exists elsewhere based on elements other than carbon and a system different than DNA ? Could such life even exist here on Earth, but is as yet undetected?

These and so many other lines of research shed light on how to identify and find extraterrestrial life, as well as how to understand the origin of life on Earth. The two issues are inseparable.

The Atacama desert is one of the driest places on Earth, making it a good Mars analogy. A scientist searching for signs of life (“biomarkers”) in the soil must use clean suits, gloves, masks, goggles, and sterile tools to make sure no contamination ends up in the sample.  Image credit: Alfonso Davila/SETI Institute

The World of Astrobiology

While the United States and NASA have pioneered many lines of astrobiological study, we are hardly alone – as is only proper for an effort to address such enormous and universal questions. Few astrobiology missions launch without significant international partnership, and the trend is for ever greater interdependence. The much-anticipated mission to bring to Earth the rock and grain being now being cached by the Perseverance rover in Jezero Crater will feature major roles for both NASA and European Space Agency ( ESA ).

The Chinese Space Agency now has a rover on Mars as well, and is planning for the Tianwen-3 mission to collect Mars samples for transport back to Earth. Another high-profile example is the ExoMars mission headed by the European Space Agency ( ESA ), which includes a series of missions, the first phase of which was the Trace Gas Orbiter that launched in 2016. One of the major efforts of the Trace Gas Orbiter is to look for methane on Mars, a key question for NASA as well. Astrobiology cooperation is often intellectual as well as operational.

The next step for ExoMars is the delivery of the Rosalind Franklin rover to the Martian surface, which initially included input from the Russian Space Agency (Roscosmos) and NASA . The ExoMars rover cooperation was suspended in March 2022, but efforts are underway to find alternatives.

Astrobiology may sometimes seem most defined by high-profile missions, but often those missions represent years of prior theoretical and laboratory work. And once data from missions have been obtained, more lab analysis and testing are necessary. The data is then challenged and critiqued by colleagues before the results can be released as a significant finding. For instance, it took almost two years of intensive lab work and data analysis before members of the Curiosity science team could announce that they had teased out from Mars drill samples the presence of long-sought organic compounds, the building blocks of life as we know it.

Mars Curiosity rover’s one-year anniversary selfie.  The photo was actually composed of dozens of individual images taken between April and May 2014. Curiosity’s mission is to find evidence of past or present habitable conditions on the surface of Mars.  Credit: NASA

Looking for Life

At the heart of astrobiology is yet another basic and unanswered question: What actually is life? One might think after centuries of study that issue would be resolved, for life on Earth at least. Actually, it’s getting increasingly complicated to come up with an answer that takes in all the “lifeforms” discovered and that might have once existed on our planet. One frequently used definition of life is “a self-sustaining system capable of Darwinian evolution.” But there are literally several hundred more.

Ironically, some astrobiologists argue that we really won’t know what life is until we find an alternative to the basic structure found on Earth – the same DNA , metabolism and carbon-based blueprint shared by all known life. In other words, ET life could tell us what life really is.

A corollary to this line of thinking is the ever-present concern that a rover or lander has, or will, come across an example or signature of life present or past and not know it. This reality helps explain the emphasis that astrobiology puts on understanding the origins and logic of early life on Earth. In addition to its inherent importance, origin-of-life research guides the search for extraterrestrial life.

That NASA is very much in the business of the search for life beyond Earth is by now well known to the public, while the agency’s mission to make progress in understanding the origins of life on Earth is less well understood. Some, however, no doubt wonder why NASA investigates biological questions at all. Isn’t the primary focus of the agency to use robots and astronauts in space capsules to travel in space and explore destination such as the moon and Mars?

Artist’s impression of the Jupiter Icy Moons Explorer (JUICE) near Jupiter and one of its moons, Europa. Credit: ESA/AOES

Actually, today’s NASA has a much broader portfolio, one that includes the study of classic astronomical topics such as the very early universe and the formation of galaxies, stars and solar systems – all of which will be explored with greatly expanded precision by the James Webb Space Telescope. The JWST was also adapted to allow for newly possible explorations of exoplanets and their atmospheres, which are of paramount interest to astrobiologists.

The search for life beyond Earth is so intertwined with other NASA goals (and is so interdisciplinary by nature and design), it can never really be separated or isolated from them. The Cassini mission to Saturn discovered plumes spitting out of the moon Enceladus, and the Hubble Space Telescope did the same for Europa. Both plumes tell of an inner water world, and so are important to planetary science as well as astrobiology. The Kepler mission identified thousands of exoplanets in a small segment of the constellation Cygnus, 500 light years away, adding enormously to our understanding of the inventory and nature of distant planets. Included in those discoveries are the detection of rocky planets within the habitable zones of their central stars. TESS has also substantially added to the count of exoplanets, with more than 5,000 new exoplanet candidates.

The central goal of astrobiology is to find evidence of past or present life beyond Earth, if it ever existed. But there are countless mysteries about planets and moons, about solar systems, about galaxies and about the makeup of the space between them that inevitably will be confronted and hopefully unraveled along the way. Ultimately, the search for extraterrestrial life is possible only as part of an exploration of the makeup, the dynamics, the history and the many as yet unknown wonders of the cosmos.

Four antennas of the Atacama Large Millimeter/submillimeter Array (ALMA) gaze up at the stars and the band of the Milky Way.  Astronomers can use such telescopes to study star formation, as well as the origins of galaxies and planets. Credit: ESO/José Francisco Salgado

Updated: Oct 12, 2022

Marc Kaufman is an experienced journalist, having spent three decades at the Washington Post and the Philadelphia Inquirer , and is the author of two books on searching for life and planetary habitability. He also writes the Many Worlds blog.

About Mentored Research Mentored Research involves working directly with a faculty member on a specific research project. These research experiences will help you deepen your understanding of biological principles while simultaneously building a strong resume. Together these will enable you to be successful, whether your pathway leads you to professional school, graduate programs, government work or even career not directly related to biology.

Getting Involved We strongly encourage all of our majors to get started with mentored research as soon as they are able. The first step is to find what sparks your curiosity and find a professor who shares it. Professors have dedicated a large part of their lives to research, and enjoy few things more than passing their skills and passion to new students. Most professors are extremely busy, so spend some time reading up on their research before you contact them. A little preparation goes a long way, and it pays to be proactive and put forth the initial effort. You can find professors' contact information here .

Funding Not all labs will have immediate funding to support all the interested undergraduates. However, Mentored Research (Bio494R) or Introduction to Mentored Research (Bio194) are excellent ways to get started in a lab. Often a professor will eventually pay students helping them with research. In some rare cases, professors don't provide financial compensation. One remedy is the College Undergraduate Research Awards (CURA). These are grants given exclusively to undergraduate students to help foster and encourage research. More information is available at http://lscura.byu.edu.

Ecology is the study of how living organisms, including humans, interact with each other and their physical environment. Students and faculty in the Biology Department study the ecology of organisms at multiple levels or organization; from individuals, populations, communities, and ecosystems, to the entire biosphere (global ecology). The study of ecology intersects with several closely related fields, including biogeography, biodiversity, evolutionary biology, developmental biology, physiology, genetics, animal behavior, geology, biochemistry, anthropology, and paleontology.

Currently, the Earth is being transformed at a high rate and in unprecedented ways. Human activities are causing widespread habitat loss and degradation, pollution, invasive species, land-use changes, and climate change. Human health and welfare depend on our ability to understand and mitigate these changes. Thus, the study of ecology has become one of the most critical and dynamic fields in all of the biological sciences.

Do we really need more ecologists? Yes! Fundamental principles of ecology are used to inform applications and careers in conservation biology, conservation genetics, wetland management, agriculture, forestry, fisheries, wildlife management, urban planning and human ecology, community health, emerging infectious diseases, epidemiology, and economics.

As the Earth faces mounting pressure to meet the needs of our growing population, people with an understanding of ecological principals and how to apply them to sustain life will wield the most important skills we’ll need to navigate our uncertain future.

Faculty who do research in this area: Byron Adams ; Evolutionary Ecology, Ecosystem Responses to Climate-Driven Environmental Change; Co-Evolution, Soil Ecology, Ecological & Evolutionary Genomics Richard Gill ; Plant Ecology and Global Change, Marine Ecology Blaine Griffen ; Marine Ecology, Behavioral Ecology, Physiological Ecology, Population and Community Ecology Jerry Johnson ; Evolutionary Ecology, Behavioral Ecology Riley Nelson ; Freshwater Ecology Steve Peck ; Theoretical Ecology, Movement Ecology Russell Rader ; Aquatic Ecology

Evolutionary Biology is a sub-discipline in Biology that studies the forces that shape earth's variety of life forms, or biodiversity. There are several different forces or mechanisms that drive evolution. Natural selection is one of these major forces (and perhaps the most well-known), but there are others, including mutation, genetic drift, migration, and nonrandom mating. Collectively, these mechanisms influence how populations of organisms change over time -- how they evolve. One of the central tenets of evolution is that different species share common ancestry. Similar to how a family tree illustrates how individuals are descended from or related to others, the many species that currently live on the earth are related by descent from common ancestors. Evolutionary biology uses morphological (structural features of an organism), ecological, molecular, geographical, and behavioral data to study species relationships and understand what our planet's biodiversity used to be, how it became what it is now, and even make predictions about what it will look like in the future. As the unifying theory in Biology, evolution helps scientists understand more about the living things around us.

Faculty who do research in this area: Byron Adams ; Evolutionary Ecology; Co-Evolution, Soil Ecology, Ecological & Evolutionary Genomics Mark Belk ; Life History Evolution Seth Bybee ; Evolutionary Biology Jamie Jensen ; Evolution Acceptance Jerry Johnson ; Evolutionary Ecology, Life History Evolution Leigh Johnson , Evolution Steve Peck ; Evolution & Ecology Steve Leavitt ; Evolution Clint Whipple ; Evolution and Genetics of Plant Development Michael Whiting ; Bioinformatics Evolution

Education research, broadly, refers to the study of education and learning. Education researchers may focus on individuals, groups/classes, instructors, institutions and their interactions to investigate how they impact formal or informal teaching and learning. Biology education research is a type of discipline-based education research, where education research is conducted in the context of a specific field (its worldview, knowledge, and practices) and by content experts. Faculty and students in the Biology Department use their biology content expertise as well as training in broad learning theories and pedagogy to inform their biology education research. Discipline-based education research can focus on K-12 education, higher education, or informal education, although faculty in the Biology Department primarily focus on higher education.

Biology education research can answer a broad range of questions using a diverse set of methods. Goals of biology education researchers may include testing specific learning theories and constructing new models of effective teaching and learning in biology contexts, developing and testing evidence-based practices to improve biology teaching and learning, investigating the nature of biology expertise in specific sub-disciplines and how that expertise is developed, studying the experiences of marginalized groups in science and proposing practices to broaden participation and success, and more. Researchers may use experimental, quasi-experimental, observational, or design-based methods, and they may use quantitative and/or qualitative analysis techniques depending on the research question.

Biology education research is an exciting field that allows students to learn more about effective teaching and learning in the context of biology topics they are learning about in their coursework. Students also develop scientific skills such as study design, data collection, statistical and/or qualitative analysis, and written and verbal science communication.

Faculty who do research in this area: Liz Bailey ; Gender Gaps in Biology Education, Reciprocal Peer Tutoring, Course Structures/Assessments that Promote Growth Mindset, and Integration of Math and Biology Richard Gill ; Minority Representation in STEM Jamie Jensen ; Reconciliation of Science and Religion, STEM Faculty Development, Science Communication, Best Practices in Pedagogy Riley Nelson ; Science Education Stephen Piccolo ; Bioinformatics Education Josh Stowers ; Secondary Education

At BYU we have professors and researchers working with insects and their relatives in all these ways. BYU offers several courses where insects are the exact focus of the entire class and most classes in biology include them or should include them in the general

Entomology is the study of insects and their relatives. Flies, beetles, lacewings, bees, ants, centipedes, butterflies, dragonflies, and earwigs are all fair game for study. Our best estimates show 1.5 million species have been given names, more than all other animals combined. Related estimates are that only 10% of the species of insects on Earth have been given formal scientific names. So much more basic work needs to be done, if only to name them.

In addition to this taxonomic richness, they play key parts in most ecosystems and their inherent diversity makes them model organisms for all biologists in the study of evolution, genetics, ecology, and physiology. An entomologist is a person who studies these diverse animals using morphological, molecular, and behavioral techniques.

Insects are beautiful and many have been recognized in human culture as sources of both admiration and disdain. Consider the paintings, poetry, scriptures, and windshield smashes you have seen, read, or heard.

But wait, on the positive side insects are extremely important as pollinators of much of our human food and provide direct food for humans in the form of honey. Their entire bodies are eaten and relished in many cultures.

On the negative side insects destroy large proportions of the food we would like to eat with our burgeoning populations. Insects also pass on smaller organisms that cause disease for our own human bodies. The diseases they carry can harm the crops, pets, livestock, forests, lawns, and wildlands we cherish.

Insects can be studied for their own sake. Scientists refer to this as basic research. Outcomes of basic research may or may not yield solutions to human problems: the goal here is increasing overall knowledge. And yet those increases might be used later in solving problems. . .

And of course, we need to study insects to discover their roles in enhancing and harming humans. This is called applied research where an exact insect situation is studied with goals to find ways to either control the bad outcomes or enhance the good ones.

Faculty who do research in this area: Seth Bybee ; Entomology Shawn Clark ; Insect Systematics and Museum Curation Robert Johnson ; Plant-insect interactions Riley Nelson ; Insect Biodiversity Michael Whiting ; Entomology

Plant biologists study the many fascinating aspects of green life! As the only organisms with the ability to take carbon dioxide gas and turn it into carbohydrates, plants form the basis of our diets, provide feed for livestock, fuel our modern amenities (yes, coal and oil are just dead plants), make up the fibers in our clothing, give us lumber for building, and are the source of many pharmaceuticals.

Plant biologists are involved in many interesting areas. Plant taxonomists seek to understand the relationship between plant species and often discover new ones. They often also catalog the natural world to help us understand where specific plants are found. Plant geneticists seek to understand the genetic mechanisms by which plants grow and develop their individual traits. Geneticists are involved in helping us understand the fundamental basis of life, and they also do important work developing healthier, more sustainable crops. Plant biologists’ work often overlaps with ecologists, evolutionary biologists, bioinformaticians, molecular biologists, chemists, agronomists, and farmers.

So, whether you are looking to get your hand dirty, work with cutting edge science, or both, plant biology is a great place to be!

Faculty who do research in this area: Leigh Johnson ; Plant Systematics, Taxonomy & Species Delimination Robert Johnson ; Plant Systematics, Floristics, Plant-insect interactions Clint Whipple ; Evolution and Genetics of Plant Development

The incredible diversity of life on earth is invaluable. It is the key to adaptation to changes, creates resilient ecosystems, provides foundational ecosystem services, can broaden our perspective of the complexities of the world around us, and provides opportunities for spiritual growth and connection. While doing research, students are prepared to (1) understand principles that influence biodiversity, particularly those that create and those that reduce it, (2) document and preserve the diversity of life on the planet, in addition to the ecosystem services they support, and (3) develop a more comprehensive perspective of the world around us by considering the range of all life.

Human activities are presently causing widespread habitat loss and degradation, pollution, invasive species, land-use changes, and climate change. These activities have resulted in what is called the “Sixth Mass Extinction”, with estimated extinction rates at 100 to 1,000 times higher than the background rate. Human health and welfare depend on our ability to understand and mitigate these changes. Beyond human health, protecting earth’s diversity comprises foundational ethical and spiritual dimensions. Thus, the study of biodiversity and conservation has become one of the most critical, relevant, and dynamic fields across all disciplines.

Students and faculty in the Biology Department study biodiversity and conservation at multiple levels - from genetic diversity (the variety of genetic information contained in all organisms) to species diversity (the variety of different living species) to ecosystem diversity (the variety of habitats, the species that live in the habitat, and ecological processes). Here, our study of biodiversity and conservation intersects with several closely related fields, including biogeography, ecology, evolutionary biology, developmental biology, physiology, genetics, geology, biochemistry, and others.

Students are encouraged to engage in original, transformative research. With dedicated, passionate faculty mentors, students can explore topics ranging from documenting diversity to improving conservation and management strategies to developing improved educational practices to promote biodiversity and conservation. As we face mounting pressure to envision new ways to protect, promote, and value earth’s biodiversity, people with an understanding of biodiversity and principals of conservation will wield the most important skills we’ll need to navigate our uncertain future.

Faculty who do research in this area: Byron Adams Mark Belk ; Conservation of Fishes Seth Bybee Shawn Clark Richard Gill Blaine Griffen ; Conservation Biology and Extinction Jerry Johnson Leigh Johnson Robert Johnson Steve Leavitt ; Lichens, Holobionts, Diversity in arid or extreme environments Riley Nelson ; Insect Biodiversity Steve Peck Russell Rader ; Invasion Biology, Restoration, Conservation Clinton Whipple Michael Whiting

Bioinformatics research has several focus areas including (but not limited to) using machine-learning algorithms to clarify relationships between molecular measurements in tumors and cancer-patient outcomes, building software tools to aid biologists in their efforts to analyze biological data, and identifying pedagogical approaches that enable students to learn fundamental bioinformatics and biostatistics skills. Students in bioinformatics labs work on a variety of projects. Some projects are hypothesis driven and focus on analyzing data (typically from public repositories). Other projects are software focused--students write code and create open-source software. Other projects are experiment-driven, especially using classroom interventions to try new teaching techniques.

Faculty who do research in this area: Byron Adams ; Ecological & Evolutionary Genomics Matt Bailey ; Cancer and Genomics Seth Bybee ; Systematics and Bioinformatics Leigh Johnson ; Population Genetics Sam Payne ; Bioinformatics and Proteomics Stephen Piccolo ; Bioinformatics, Genomics, Human Disease (especially cancer), Data Science Perry Ridge ; Bioinformatics Methods, Alzheimer's disease, Genome Biology, Human Genetics John Sproul ; Biodiversity, Repetitive DNA, Rapid Genome Evolution Michael Whiting ; Bioinformatics Evolution Clint Whipple ; Genetics of Plant Development Edward Wilcox ; DNA Sequencing

Adams Lab - Evolutionary Ecology Bybee Lab Gill Lab - Ecology Griffen Lab - Marine Ecology Jensen Lab - Reconciling Evolution Jerry Johnson Lab - Evolutionary Ecology Kauwe Lab Leavitt Lab - Lichenology Nelson Lab Payne Lab - Bioinformatics and Proteomics Piccolo Lab - Bioinformatics Sproul Lab - Evolutionary Biology Whipple Lab - Evolution of Plant Developmental Mechanisms Whiting Lab DNA Sequencing Center

Cancer Biology Research

Three-dimensional culture of human breast cancer cells, with DNA stained blue and a protein in the cell surface membrane stained green.

Breast cancer cells

The Importance of Cancer Biology Research

Research on the biology of cancer starts with the simplest of questions: What is—and isn’t—normal? To understand how cancer develops and progresses, researchers first need to investigate the biological differences between normal cells and cancer cells. This work focuses on the mechanisms that underlie fundamental processes such as cell growth, the transformation of normal cells to cancer cells, and the spread ( metastasis ) of cancer cells.

Virtually all major advances against cancer originated with discoveries in basic science . Basic research can reveal new ideas about the causes of cancer and how it develops, progresses, and responds to therapy.

Knowledge gained from such studies deepens our understanding of cancer and produces insights that could lead to new clinical interventions. For example, studies of cell signaling pathways  in normal cells and cancer cells have contributed greatly to our knowledge about the disease, revealing molecular alterations that are shared among different types of cancer and pointing to possible treatment strategies.

Decades of basic research in cancer biology have created a broad base of knowledge that has been critical to progress against the disease.

Selected NCI Activities in Cancer Biology Research

National Cancer Plan

NCI Research and the National Cancer Plan

NCI supports a broad variety of research that aligns with the goals of the National Cancer Plan. Read about the plan and explore each goal.

Federal funding for cancer biology is essential because this area of research receives relatively little funding from entities that are driven by profit. NCI supports and directs cancer biology research through a variety of programs and approaches. For example:

  • The Metastasis Research Network (MetNet) supports research to improve our understanding of how cancer spreads. Cancer metastasis is a complex, dynamic, nonlinear process. The network supports several specialized centers working collaboratively on multidisciplinary projects focused on several themes of the metastatic process, including mechanisms of early dissemination, cellular and physical microenvironment crosstalk, dormancy, and mechanisms of responses to therapy by metastatic cells.
  • The Translational and Basic Science Research in Early Lesions (TBEL) Program is advancing the understanding of the mechanisms driving, or restraining, the development of precancers and early cancers, as well as informing the development of precision prevention approaches. The program supports multidisciplinary research centers that are integrating basic and translational research to investigate the interactions of an early lesion, its microenvironment, and host factors as “co-organizers” of tumor initiation and the development of cancer.
  • The Human Tumor Atlas Network is constructing 3-dimensional atlases of the cellular, morphological, and molecular features of human cancers as they evolve from precancerous lesions to advanced disease. The atlases, which represent a diverse patient population, will also be used to study how tumors respond to treatment and develop resistance to drugs.
  • The Cancer Tissue Engineering Collaborative (TEC) supports the development and characterization of state-of-the-art biomimetic tissue-engineered technologies for cancer research. This program advances innovative, well-characterized in vitro and ex vivo systems available for cancer research, expands the breadth of these systems to several cancer types, and promotes investigations of cancer with tissue-engineered systems.

Two people in white lab coats discussing something on a tablet.

NCI Fiscal Year 2025 Professional Judgment Budget Proposal

Each year, NCI prepares a professional judgment budget to lead progress against cancer.

  • The consortium of tumor glycomics laboratories and their research partners that make up the Alliance of Glycobiologists for Cancer Research are investigating the cancer-related dynamics of complex carbohydrates. The alliance, which NCI sponsors with the National Institute of General Medical Sciences and the National Heart, Lung, and Blood Institute, aims to study the structure and function of glycans in relation to cancer.
  • The NCI RNA Biology Initiative facilitates the exchange of information and expertise among investigator studying the structure, function, and biological roles of RNA for the purpose of developing new cancer diagnostics and therapies.
  • NCI’s Centers of Excellence bring together the institute’s intramural researchers to collaborate on new projects and initiatives in various areas of cancer biology, including Chromosome Biology and Genitourinary Malignancies .

Recent Research Findings in Cancer Biology

  • Loss of Y Chromosome in Men Makes Bladder Cancer More Aggressive
  • Cells’ decision to divide is reversible
  • How Fatty Liver Disease Helps Cancer Thrive in the Liver
  • No Glucose? Pancreatic Cancer May Have a Ready Energy Alternative
  • How Some Brain Tumors Hijack the Mind to Grow
  • Researchers discover the multiple shapes of RNA, a boon for drug design
  • Vulnerability in Brain Tumors May Open Door to New Treatments
  • Preventing Chemo Brain? Study Identifies Potential Approach for Common Problem

StatAnalytica

200+ Unique And Interesting Biology Research Topics For Students In 2023

Biology Research Topics

Are you curious about the fascinating world of biology and its many research possibilities? Well, you are in the right place! In this blog, we will explore biology research topics, exploring what biology is, what constitutes a good research topic, and how to go about selecting the perfect one for your academic journey.

So, what exactly is biology? Biology is the study of living organisms and their interactions with the environment. It includes everything from the tiniest cells to the largest ecosystems, making it a diverse and exciting field of study.

Stay tuned to learn more about biology research topics as we present over 200 intriguing research ideas for students, emphasizing the importance of selecting the right one. In addition, we will also share resources to make your quest for the perfect topic a breeze. Let’s embark on this scientific journey together!

If you are having trouble with any kind of assignment or task, do not worry—we can give you the best microbiology assignment help at a value price. Additionally, you may look at nursing project ideas .

What Is Biology?

Table of Contents

Biology is the study of living things, like animals, plants, and even tiny organisms too small to see. It helps us understand how these living things work and how they interact with each other and their environment. Biologists, or scientists who study biology, explore topics like how animals breathe, how plants grow, and how our bodies function. By learning about biology, we can better care for the Earth and all its living creatures.

What Is A Good Biology Research Topic?

A good biology research topic is a question or problem in the field of biology that scientists want to investigate and learn more about. It should be interesting and important, like studying how a new medicine can treat a disease or how animals adapt to changing environments. The topic should also be specific and clear, so researchers can focus on finding answers. Additionally, it’s helpful if the topic hasn’t been studied extensively before, so the research can contribute new knowledge to the field of biology and help us better understand the natural world.

Tips For Choosing A Biology Research Topics

Here are some tips for choosing a biology research topics:

1. Choose What Interests You

When picking a biology research topic, go for something that you personally find fascinating and enjoyable. When you’re genuinely curious about it, you’ll be more motivated to study and learn.

2. Select a Significant Topic

Look for a subject in biology that has real-world importance. Think about whether your research can address practical issues, like finding cures for diseases or understanding environmental problems. Research that can make a positive impact is usually a good choice.

3. Check If It’s Doable

Consider if you have the necessary tools and time to carry out your research. It’s essential to pick a topic that you can actually study with the resources available to you.

4. Add Your Unique Perspective

Try to find a fresh or different angle for your research. While you can build upon existing knowledge, bringing something new or unique to the table can make your research more exciting and valuable.

5. Seek Guidance

Don’t hesitate to ask for advice from your teachers or experienced researchers. They can provide you with valuable insights and help you make a smart decision when choosing your research topic in biology.

Biology Research Topics For College Students

1. Investigating the role of genetic mutations in cancer development.

2. Analyzing the impact of climate changes on wildlife populations.

3. Studying the ecology of invasive species in urban environments.

4. Investigating the microbiome of the human gut and its relationship to health.

5. Analyzing the genetic diversity of endangered species for conservation.

6. Studying the evolution of antibiotic resistance in bacteria.

7. Investigating the ecological consequences of deforestation.

8. Analyzing the behavior and communication of social insects like ants and bees.

9. Studying the physiology of extreme environments, such as deep-sea hydrothermal vents.

10. Investigating the molecular mechanisms of cell division and mitosis.

Plant Biology Research Topics For College Students

11. Studying the impact of different fertilizers on crop yields and soil health.

12. Analyzing the genetics of plant resistance to pests and diseases.

13. Investigating the role of plant hormones in growth and development.

14. Studying the adaptation of plants to drought conditions.

15. Analyzing the ecological interactions between plants and pollinators.

16. Investigating the use of biotechnology to enhance crop traits.

17. Studying the genetics of plant breeding for improved varieties.

18. Analyzing the physiology of photosynthesis and carbon fixation in plants.

19. Investigating the effects of soil microbiota on plant health.

20. Studying the evolution of plant species in response to changing environments.

Biotechnology Research Topics For College Students

21. Investigating the use of CRISPR-Cas9 technology for genome editing.

22. Analyzing the production of biofuels from microorganisms.

23. Studying the application of biotechnology in medicine, such as gene therapy.

24. Investigating the use of bioplastics as a sustainable alternative to conventional plastics.

25. Analyzing the role of biotechnology in food production, including GMOs.

26. Studying the development of biopharmaceuticals and monoclonal antibodies.

27. Investigating the use of bioremediation to clean up polluted environments.

28. Studying the potential of synthetic biology for creating novel organisms.

29. Analyzing the ethical and social implications of biotechnological advancements.

30. Investigating the use of biotechnology in forensic science, such as DNA analysis.

Molecular Biology Research Topics For Undergraduates

31. Studying the structure and function of DNA and RNA molecules.

32. Analyzing the regulation of gene expression in eukaryotic cells.

33. Investigating the mechanisms of DNA replication and repair.

34. Studying the role of non-coding RNAs in gene regulation.

35. Analyzing the molecular basis of genetic diseases like cystic fibrosis.

36. Investigating the epigenetic modifications that control gene activity.

37. Studying the molecular mechanisms of protein folding and misfolding.

38. Analyzing the molecular pathways involved in cancer progression.

39. Investigating the molecular basis of neurodegenerative diseases.

40. Studying the use of molecular markers in genetic diversity analysis.

Life Science Research Topics For High School Students

41. Investigating the effects of different diets on human health.

42. Analyzing the impact of exercise on cardiovascular fitness.

43. Studying the genetics of inherited traits and diseases.

44. Investigating the ecological interactions in a local ecosystem.

45. Analyzing the diversity of microorganisms in soil or water samples.

46. Studying the anatomy and physiology of a specific organ or system.

47. Investigating the life cycle of a local plant or animal species.

48. Studying the effects of environmental pollutants on aquatic organisms.

49. Analyzing the behavior of a specific animal species in its habitat.

50. Investigating the process of photosynthesis in plants.

Biology Research Topics For Grade 12

51. Investigating the genetic basis of a specific inherited disorder.

52. Analyzing the impact of climate change on a local ecosystem.

53.Studying the biodiversity of a particular rainforest region.

54. Investigating the physiological adaptations of animals to extreme temperatures.

55. Analyzing the effects of pollution on aquatic ecosystems.

56. Studying the life history and conservation status of an endangered species.

57. Investigating the molecular mechanisms of a specific disease.

58. Studying the ecological interactions within a coral reef ecosystem.

59. Analyzing the genetics of plant hybridization and speciation.

60. Investigating the behavior and communication of a particular bird species.

Marine Biology Research Topics

61. Studying the impact of ocean acidification on coral reefs.

62. Analyzing the migration patterns of marine mammals.

63. Investigating the physiology of deep-sea creatures under high pressure.

64. Studying the ecology of phytoplankton and their role in the marine food web.

65. Analyzing the behavior of different species of sharks.

66. Investigating the conservation of sea turtle populations.

67. Studying the biodiversity of deep-sea hydrothermal vent communities.

68. Analyzing the effects of overfishing on marine ecosystems.

69. Investigating the adaptation of marine organisms to extreme cold in polar regions.

70. Studying the bioluminescence and communication in marine organisms.

AP Biology Research Topics

71. Investigating the role of specific enzymes in cellular metabolism.

72. Analyzing the genetic variation within a population.

73. Studying the mechanisms of hormonal regulation in animals.

74. Investigating the principles of Mendelian genetics through trait analysis.

75. Analyzing the ecological succession in a local ecosystem.

76. Studying the physiology of the human circulatory system.

77. Investigating the molecular biology of a specific virus.

78. Studying the principles of natural selection through evolutionary simulations.

79. Analyzing the genetic diversity of a plant species in different habitats.

80. Investigating the effects of different environmental factors on plant growth.

Cell Biology Research Topics

81. Investigating the role of mitochondria in cellular energy production.

82. Analyzing the mechanisms of cell division and mitosis.

83. Studying the function of cell membrane proteins in signal transduction.

84. Investigating the cellular processes involved in apoptosis (cell death).

85. Analyzing the role of endoplasmic reticulum in protein synthesis and folding.

86. Studying the dynamics of the cytoskeleton and cell motility.

87. Investigating the regulation of cell cycle checkpoints.

88. Analyzing the structure and function of cellular organelles.

89. Studying the molecular mechanisms of DNA replication and repair.

90. Investigating the impact of cellular stress on cell health and function.

Human Biology Research Topics

91. Analyzing the genetic basis of inherited diseases in humans.

92. Investigating the physiological responses to exercise and physical activity.

93. Studying the hormonal regulation of the human reproductive system.

94. Analyzing the impact of nutrition on human health and metabolism.

95. Investigating the role of the immune system in disease prevention.

96. Studying the genetics of human evolution and migration.

97. Analyzing the neural mechanisms underlying human cognition and behavior.

98. Investigating the molecular basis of aging and age-related diseases.

99. Studying the impact of environmental toxins on human health.

100. Analyzing the genetics of organ transplantation and tissue compatibility.

Molecular Biology Research Topics

101. Investigating the role of microRNAs in gene regulation.

102. Analyzing the molecular basis of genetic disorders like cystic fibrosis.

103. Studying the epigenetic modifications that control gene expression.

104. Investigating the molecular mechanisms of RNA splicing.

105. Analyzing the role of telomeres in cellular aging.

106. Studying the molecular pathways involved in cancer metastasis.

107. Investigating the molecular basis of neurodegenerative diseases.

108. Studying the molecular interactions in protein-protein networks.

109. Analyzing the molecular mechanisms of DNA damage and repair.

110. Investigating the use of CRISPR-Cas9 for genome editing.

Animal Biology Research Topics

111. Studying the behavior and communication of social insects like ants.

112. Analyzing the physiology of hibernation in mammals.

113. Investigating the ecological interactions in a predator-prey relationship.

114. Studying the adaptations of animals to extreme environments.

115. Analyzing the genetics of inherited traits in animal populations.

116. Investigating the impact of climate change on animal migration patterns.

117. Studying the diversity of marine life in coral reef ecosystems.

118. Analyzing the physiology of flight in birds and bats.

119. Investigating the molecular basis of animal coloration and camouflage.

120. Studying the behavior and conservation of endangered species.

  • Neuroscience Research Topics
  • Mental Health Research Topics

Plant Biology Research Topics

121. Investigating the role of plant hormones in growth and development.

122. Analyzing the genetics of plant resistance to pests and diseases.

123. Climate change and plant phenology are being examined.

124. Investigating the ecology of mycorrhizal fungi and their symbiosis with plants.

125. Investigating plant photosynthesis and carbon fixing.

126. Molecular analysis of plant stress responses.

127. Investigating the adaptation of plants to drought conditions.

128. Studying the role of plants in phytoremediation of polluted environments.

129. Analyzing the genetics of plant hybridization and speciation.

130. Investigating the molecular basis of plant-microbe interactions.

Environmental Biology Research Topics

131. Analyzing the effects of pollution on aquatic ecosystems.

132. Investigating the biodiversity of a particular ecosystem.

133. Studying the ecological consequences of deforestation.

134. Analyzing the impact of climate change on wildlife populations.

135. Investigating the use of bioremediation to clean up polluted sites.

136. Studying the environmental factors influencing species distribution.

137. Analyzing the effects of habitat fragmentation on wildlife.

138. Investigating the ecology of invasive species in new environments.

139. Studying the conservation of endangered species and habitats.

140. Analyzing the interactions between humans and urban ecosystems.

Chemical Biology Research Topics

141. Investigating the design and synthesis of new drug compounds.

142. Analyzing the molecular mechanisms of enzyme catalysis.

143.Studying the role of small molecules in cellular signaling pathways.

144. Investigating the development of chemical probes for biological research.

145. Studying the chemistry of protein-ligand interactions.

146. Analyzing the use of chemical biology in cancer therapy.

147. Investigating the synthesis of bioactive natural products.

148. Studying the role of chemical compounds in microbial interactions.

149. Analyzing the chemistry of DNA-protein interactions.

150. Investigating the chemical basis of drug resistance in pathogens.

Medical Biology Research Topics

151. Investigating the genetic basis of specific diseases like diabetes.

152. Analyzing the mechanisms of drug resistance in bacteria.

153. Studying the molecular mechanisms of autoimmune diseases.

154. Investigating the development of personalized medicine approaches.

155. Studying the role of inflammation in chronic diseases.

156. Analyzing the genetics of rare diseases and genetic syndromes.

157. Investigating the molecular basis of viral infections and vaccines.

158. Studying the mechanisms of organ transplantation and rejection.

159. Analyzing the molecular diagnostics of cancer.

160. Investigating the biology of stem cells and regenerative medicine.

Evolutionary Biology Research Topics

161. Studying the evolution of human ancestors and early hominids.

162. The genetic variety of species and between species is being looked at.

163. Investigating the role of sexual selection in animal evolution.

164. Studying the co-evolutionary relationships between parasites and hosts.

165. Analyzing the evolutionary adaptations of extremophiles.

166. Investigating the evolution of developmental processes (evo-devo).

167. Studying the biogeography and distribution of species.

168. Analyzing the evolution of mimicry in animals and plants.

169. Investigating the genetics of speciation and hybridization.

170. Studying the evolutionary history of domesticated plants and animals.

Cellular Biology Research Topics

171. Investigating the role of autophagy in cellular homeostasis.

172. Analyzing the mechanisms of cellular transport and trafficking.

173. Studying the regulation of cell adhesion & migration.

174. Investigating the cellular responses to DNA damage.

175. Analyzing the dynamics of cellular membrane structures.

176. Studying the role of cellular organelles in lipid metabolism.

177. Investigating the molecular mechanisms of cell-cell communication.

178. Studying the physiology of cellular respiration and energy production.

179. Analyzing the cellular mechanisms of viral entry and replication.

180. Investigating the role of cellular senescence in aging and disease.

Good Biology Research Topics Related To Brain Injuries

181. Analyzing the molecular mechanisms of traumatic brain injury.

182. Investigating the role of neuroinflammation in brain injury recovery.

183. Studying the impact of concussions on long-term brain health.

184. Analyzing the use of neuroimaging in diagnosing brain injuries.

185. Investigating the development of neuroprotective therapies.

186. Studying the genetics of susceptibility to brain injuries.

187. Analyzing the cognitive and behavioral effects of brain trauma.

188. Investigating the role of rehabilitation in brain injury recovery.

189. Studying the cellular and molecular changes in axonal injury.

190. Looking into how stem cell therapy might be used to help brain injuries.

Biology Quantitative Research Topics

191. Investigating the mathematical modeling of population dynamics.

192. Analyzing the statistical methods for biodiversity assessment.

193. Studying the use of bioinformatics in genomics research.

194. Investigating the quantitative analysis of gene expression data.

195. Studying the mathematical modeling of enzyme kinetics.

196. Analyzing the statistical approaches for epidemiological studies.

197. Investigating the use of computational tools in phylogenetics.

198. Studying the mathematical modeling of ecological systems.

199. Analyzing the quantitative analysis of protein-protein interactions.

200. Investigating the statistical methods for analyzing genetic variation.

Importance Of Choosing The Right Biology Research Topics

Here are some importance of choosing the right biology research topics: 

1. Relevance to Your Interests and Goals

Choosing the right biology research topic is important because it should align with your interests and goals. Studying something you’re passionate about keeps you motivated and dedicated to your research.

2. Contribution to Scientific Knowledge

Your research should contribute something valuable to the world of science. Picking the right topic means you have the chance to discover something new or solve a problem, advancing our understanding of the natural world.

3. Availability of Resources

Consider the resources you have or can access. If you pick a topic that demands resources you don’t have, your research may hit a dead end. Choosing wisely means you can work efficiently.

4. Feasibility and Manageability

A good research topic should be manageable within your time frame and capabilities. If it’s too broad or complex, you might get overwhelmed. Picking the right topic ensures your research is doable.

5. Real-World Impact

Think about how your research might benefit the real world. Biology often has implications for health, the environment, or society. Choosing a topic with practical applications can make your work meaningful and potentially change lives.

Resources For Finding Biology Research Topics

There are numerous resources for finding biology research topics:

1. Online Databases

Look on websites like PubMed and Google Scholar. They have lots of biology articles. Type words about what you like to find topics.

2. Academic Journals

Check biology magazines. They talk about new research. You can find ideas and see what’s important.

3. University Websites

Colleges show what their teachers study. Find teachers who like what you like. Ask them about ideas for your own study.

4. Science News and Magazines

Read science news. They tell you about new things in biology. It helps you think of research ideas.

5. Join Biology Forums and Communities

Talk to other people who like biology online. You can ask for ideas and find friends to help you. Use websites like ResearchGate and Reddit for this.

Conclusion 

Biology Research Topics offer exciting opportunities for exploration and learning. We’ve explained what biology is and stressed the importance of picking a good research topic. Our tips and extensive list of over 200 biology research topics provide valuable guidance for students.

Selecting the right topic is more than just getting good grades; it’s about making meaningful contributions to our understanding of life. We’ve also shared resources to help you discover even more topics. So, embrace the world of biology research, embark on a journey of discovery, and be part of the ongoing effort to unravel the mysteries of the natural world.

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

SciTechDaily

  • June 3, 2024 | Challenging Conventional Wisdom: Scientists Uncover Hidden Waves in Brain Blood Flow
  • June 3, 2024 | New Research Reveals That Adding Orange Peels to Your Diet Could Improve Heart Health
  • June 3, 2024 | Sharper Than Ever – Io’s Volcanic Surfaces Revealed by New Telescope Technology
  • June 3, 2024 | Green Menace: Toxic Algae and Environmental Neglect at California’s Clear Lake
  • June 3, 2024 | The Ultimate Killer: Pollution Deadlier Than War, Terrorism, and Major Diseases

Biology News

Biology is the scientific study of life and living organisms, encompassing various sub-disciplines such as microbiology, botany, zoology, and physiology. We’re dedicated to bringing you the latest research findings, innovative technologies, and thought-provoking discoveries from top scientists, research institutions, and universities around the world.

This section on biology news includes new research related to many related subjects such as biochemistry, genetics, cytology, and microbiology. Popular sub-topics include Biotechnology , DNA ,  Microbiology , Neurology , Evolutionary Biology , Genetics , Stem Cells , Neuroscience , Bioengineering , and Cell Biology .

Whether you are a professional biologist, an aspiring scientist, or simply someone with a passion for learning about the living world, our Biology News page offers a wealth of information and insights to keep you informed and inspired.

Glowing Brain Waves Abstract

Biology June 3, 2024

Challenging Conventional Wisdom: Scientists Uncover Hidden Waves in Brain Blood Flow

An NIH-funded study challenges conventional wisdom by revealing that blood flow creates waves across the surface of the mouse brain. For the first time, researchers…

Thresher Shark

Evolutionary Ingenuity: How Ancient Sharks Survived Earth’s Hottest Oceans

Parasitic Microbe Feeding Concept Art

Metabolic Manipulators: How Parasitic Archaea Transform Their Hosts From the Inside Out

Acropora Coral Pre-Spawning

Scientists Unveil the Secret Sex Life of Coral

IVG Concept Art

Human IVG Paves the Way for Universal Fertility Treatments

Jellyfish Art Concept Illustration

Chilling Forecast: Jellyfish Set To Dominate Arctic Waters by 2050

Silky Shark Swim By

Record-Breaking Migration – Silky Shark Travels Four Times the Width of the U.S.

Argentine Ants Feeding on Food Scraps

Caffeine and Ants: A Potential Game Changer in Pest Control

Arabian Leopard

On the Brink of Extinction – Scientists Develop Genetic Rescue Plan for Arabian Leopards

Deep Imaging Pollen Tube

Biology May 31, 2024

The Love Life of Plants: How Female Flowers Pick Their Perfect Match

In a new study, published in EMBO Reports, researchers explore the selective attraction and repulsion mechanisms in Arabidopsis plants during reproduction. Using a novel microscopic…

FLVCR Proteins

Biology May 30, 2024

Trailblazers in Genetics: Researchers Chase the Cure for Rare Hereditary Diseases

The dynamic structure of FLVCR proteins and their role in nutrient transport within our cells have been revealed. It is known that malfunctions of the…

Mutated Amino Acids in the AFF3 Protein

Developmental Disorders: Researchers Link Protein Levels to Severe Intellectual Deficiencies

New research reveals that both the excess and the deficiency of a single protein can lead to severe intellectual deficiencies. The discovery offers critical insights…

Orca Killer Whale

Orcas’ One-Breath Mystery – Marine Biologists Confirm Longstanding Hypothesis

Research shows that killer whales take just one breath between short, shallow dives, with findings aiding in the conservation by estimating their daily fish requirements….

Cockroaches Map

Biology May 29, 2024

Scientists Solve the 250-Year-Old Origin Mystery of the Most Common Indoor Urban Pest Insect on the Planet

Scientists have traced the German cockroach’s origins to Asia around 2,100 years ago, debunking the myth of its German origin. This pest, known for its…

Brain Disease Scan Neurological Disorder Art

Unlocking Alzheimer’s: Memory Complaints Can Predict Biological Changes in the Brain

A study reveals that reports of memory decline by patients and partners were associated with the accumulation of tau, a hallmark of Alzheimer’s disease. New…

Great Ape Genetic Chromosome Sequencing Art

Surprising Evolutionary Insights Revealed by First Complete Chromosome Sequences From Great Apes

Complete X and Y chromosome sequences from six different primate species have been successfully mapped, revealing a rich diversity among these species and providing deeper…

Darkness Eye Night

Biology May 28, 2024

Johns Hopkins Scientists Solve 30-Year Biological Mystery of Night Blindness

Johns Hopkins scientists identified how the G90D mutation in the rhodopsin gene causes night blindness, offering potential therapeutic targets. In what they believe is a…

Brain Waves Signals Circuits Art Concept Illustration

The Frequencies of Cognition: Exploring How Our Brains Differentiate Sounds

A study shows our brains use basic sound rates and patterns to distinguish music from speech, offering insights to enhance therapies for speech impairments like…

  • Share full article

Advertisement

Supported by

Guest Essay

The Long-Overlooked Molecule That Will Define a Generation of Science

what is biology research

By Thomas Cech

Dr. Cech is a biochemist and the author of the forthcoming book “The Catalyst: RNA and the Quest to Unlock Life’s Deepest Secrets,” from which this essay is adapted.

From E=mc² to splitting the atom to the invention of the transistor, the first half of the 20th century was dominated by breakthroughs in physics.

Then, in the early 1950s, biology began to nudge physics out of the scientific spotlight — and when I say “biology,” what I really mean is DNA. The momentous discovery of the DNA double helix in 1953 more or less ushered in a new era in science that culminated in the Human Genome Project, completed in 2003, which decoded all of our DNA into a biological blueprint of humankind.

DNA has received an immense amount of attention. And while the double helix was certainly groundbreaking in its time, the current generation of scientific history will be defined by a different (and, until recently, lesser-known) molecule — one that I believe will play an even bigger role in furthering our understanding of human life: RNA.

You may remember learning about RNA (ribonucleic acid) back in your high school biology class as the messenger that carries information stored in DNA to instruct the formation of proteins. Such messenger RNA, mRNA for short, recently entered the mainstream conversation thanks to the role they played in the Covid-19 vaccines. But RNA is much more than a messenger, as critical as that function may be.

Other types of RNA, called “noncoding” RNAs, are a tiny biological powerhouse that can help to treat and cure deadly diseases, unlock the potential of the human genome and solve one of the most enduring mysteries of science: explaining the origins of all life on our planet.

Though it is a linchpin of every living thing on Earth, RNA was misunderstood and underappreciated for decades — often dismissed as nothing more than a biochemical backup singer, slaving away in obscurity in the shadows of the diva, DNA. I know that firsthand: I was slaving away in obscurity on its behalf.

In the early 1980s, when I was much younger and most of the promise of RNA was still unimagined, I set up my lab at the University of Colorado, Boulder. After two years of false leads and frustration, my research group discovered that the RNA we’d been studying had catalytic power. This means that the RNA could cut and join biochemical bonds all by itself — the sort of activity that had been thought to be the sole purview of protein enzymes. This gave us a tantalizing glimpse at our deepest origins: If RNA could both hold information and orchestrate the assembly of molecules, it was very likely that the first living things to spring out of the primordial ooze were RNA-based organisms.

That breakthrough at my lab — along with independent observations of RNA catalysis by Sidney Altman at Yale — was recognized with a Nobel Prize in 1989. The attention generated by the prize helped lead to an efflorescence of research that continued to expand our idea of what RNA could do.

In recent years, our understanding of RNA has begun to advance even more rapidly. Since 2000, RNA-related breakthroughs have led to 11 Nobel Prizes. In the same period, the number of scientific journal articles and patents generated annually by RNA research has quadrupled. There are more than 400 RNA-based drugs in development, beyond the ones that are already in use. And in 2022 alone, more than $1 billion in private equity funds was invested in biotechnology start-ups to explore frontiers in RNA research.

What’s driving the RNA age is this molecule’s dazzling versatility. Yes, RNA can store genetic information, just like DNA. As a case in point, many of the viruses (from influenza to Ebola to SARS-CoV-2) that plague us don’t bother with DNA at all; their genes are made of RNA, which suits them perfectly well. But storing information is only the first chapter in RNA’s playbook.

Unlike DNA, RNA plays numerous active roles in living cells. It acts as an enzyme, splicing and dicing other RNA molecules or assembling proteins — the stuff of which all life is built — from amino acid building blocks. It keeps stem cells active and forestalls aging by building out the DNA at the ends of our chromosomes.

RNA discoveries have led to new therapies, such as the use of antisense RNA to help treat children afflicted with the devastating disease spinal muscular atrophy. The mRNA vaccines, which saved millions of lives during the Covid pandemic, are being reformulated to attack other diseases, including some cancers . RNA research may also be helping us rewrite the future; the genetic scissors that give CRISPR its breathtaking power to edit genes are guided to their sites of action by RNAs.

Although most scientists now agree on RNA's bright promise, we are still only beginning to unlock its potential. Consider, for instance, that some 75 percent of the human genome consists of dark matter that is copied into RNAs of unknown function. While some researchers have dismissed this dark matter as junk or noise, I expect it will be the source of even more exciting breakthroughs.

We don’t know yet how many of these possibilities will prove true. But if the past 40 years of research have taught me anything, it is never to underestimate this little molecule. The age of RNA is just getting started.

Thomas Cech is a biochemist at the University of Colorado, Boulder; a recipient of the Nobel Prize in Chemistry in 1989 for his work with RNA; and the author of “The Catalyst: RNA and the Quest to Unlock Life’s Deepest Secrets,” from which this essay is adapted.

The Times is committed to publishing a diversity of letters to the editor. We’d like to hear what you think about this or any of our articles. Here are some tips . And here’s our email: [email protected] .

Follow the New York Times Opinion section on Facebook , Instagram , TikTok , WhatsApp , X and Threads .

The College of Wooster

What can we help you find?

Helpful links.

  • Commencement
  • Senior Research Symposium
  • Community Health & Respiratory Viruses
  • Pay Your Tuition
  • Summer Session
  • Campus Dining
  • Faculty Directory
  • Academic Resource Center
  • Sponsored Research
  • New Students
  • Parents & Families
  • Faculty & Staff
  • Current Students
  • Admitted Students
  • Wellness Center
  • Lowry Center
  • College of Wooster Art Museum
  • Scot Center
  • Mayer Bookstore
  • Post Office

Biochemistry and molecular biology alumna shrinks gender gaps in scientific research

Kiandra Smith ’18

As a doctoral student, Kiandra Smith ’18 is at the forefront of new scientific discoveries. A biochemistry and molecular biology major at The College of Wooster, Smith is currently pursuing a doctorate in biomedical science and master’s degree in clinical research from the Morehouse School of Medicine, where she is working to research female health disparities related to the circadian clock within the realm of neuroscience, metabolism, and genetics, while also working to improve diversity and equity in scientific research.

At Wooster, Smith split her time between the laboratory, a variety of extracurriculars, and serving as a leader on campus. After noticing that minority groups weren’t as well represented in her STEM classes, she collaborated with students and faculty in the chemistry department and helped to found Wooster’s Minorities in STEM student organization. MiSTEM encourages students who are part of minority groups to get involved in STEM-based activities to attract, recruit, and retain more students in scientific fields. She also served as a peer tutor during her time at Wooster and has continued to mentor students in higher education.

Coming to Wooster as a Posse Scholar, a program through the Posse Foundation that brings students to one school as a group with full-tuition scholarships and mentorship, Smith valued the mentorship she received from Tom Tierney, emeritus professor of sociology and anthropology, who served as the mentor for her posse. “I feel like we would not have survived without him. He was amazing at shaping who I was on campus. Just being able to talk to somebody in a safe space was super helpful,” she said. Her experience led her to serve on the Posse Foundation’s national alumni representatives board and Posse Atlanta’s advisory board, connecting with current Posse students and alumni and helping them to network within the organization in ways that she came to value through her experience at Wooster.

Smith also works to connect undergraduate students with different opportunities in STEM fields that they may not have known about initially. During her undergraduate career, Smith thought she wanted to go to medical school but, after working as a research assistant, realized that medicine was not the path for her. “In high school, we don’t necessarily hear a lot about things that we can do outside of going to medical school” she explained. “I want to be that mentor to other people, because I didn’t necessarily get the opportunity to learn about those things before college.”

The opportunities Smith had to explore research and leadership helped her immensely as she made the transition to graduate school. “I.S. was especially helpful,” she said. “I appreciate the entire process because it helped prepare me for where I am now. It taught me how to think about things, how to multitask, and be independent in the lab.” As she conducts research to complete her doctorate, she has only continued to develop these skills. Smith’s research focuses on differences in the circadian clock between male and female mice, a lesser-known area of research. “Nobody has seen what I’ve seen in the field, especially from a circadian and female health context,” Smith explained.

Smith’s talents and dedication to research have not gone unnoticed by the scientific community. In 2023, she was selected as a Gilliam Fellow by the Howard Hughes Medical Institute , the first from her graduate school to receive such an honor and one of the first from a historically Black college or university. The prestigious Gilliam Fellowship recognizes graduate students and their advisors who have performed outstanding research in their respective fields and who are working towards creating a more inclusive scientific world.

By applying what she learned from Wooster’s liberal arts curriculum, Smith has made strides in her career, combining a variety of interests to create a path she loves, researching ways to close gender gaps in health, and mentoring students to encourage the next generation of STEM leaders. “As a double minority in STEM, I learned to use my experiences to shape my work by providing a different perspective, which will take me a long way in my career. My liberal arts education at Wooster helps me think more wholistically, which is an important skillset in whatever career you go into,” she said.

Posted in Alumni on June 3, 2024.

Related Posts

Kiandra Smith ’18

SEC Coach of the Year found coaching roots and values as Fighting Scot

what is biology research

Economics alumnus transforms the workplace and communities as leader of the National Bank of Pakistan

Related areas of study, biochemistry & molecular biology.

Biology and Chemistry combine in an interdisciplinary program for students with a passion for molecular events.

Connect with Wooster

  • Submit Your Deposit
  • Request Information
  • Connect with an Admissions Counselor

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

Scientists identify mechanism behind drug resistance in malaria parasite

Press contact :.

View of the torso of a woman wearing a white lab coat and gloves in a lab holding a petri dish with green material oozing in one hand and a small pipette in the other hand

Previous image Next image

Share this news article on:

Related links.

  • Peter Dedon
  • Antimicrobial Resistance Interdisciplinary Research Group
  • Singapore-MIT Alliance for Research and Technology (SMART)
  • Department of Biological Engineering

Related Topics

  • Drug resistance
  • Antibiotics
  • Biological engineering
  • Drug development
  • International initiatives
  • Collaboration

Related Articles

Landscape of a peat bog under a blue sky. In the foreground, several islands of peat are surrounded by water.

Satellite-based method measures carbon in peat bogs

Four researchers surround a mass spectrometer

Newly discovered bacterial communication system aids antimicrobial resistance

Aerial view of the city of Singapore on a sunny day

SMART launches research group to advance AI, automation, and the future of work

Four researchers in white lab coats and blue nitrile gloves pose at a bench

A novel combination therapy counters antibiotic-resistant Mycobacterium abscessus infections

Previous item Next item

More MIT News

20 identical images in a four by five grid show a robotic arm attempting to grasp a cube. Eighteen squares are green, while two are red. At left is an illustration of a black robotic arm attempting to grab a black cube with a question mark on it.

Helping robots grasp the unpredictable

Read full story →

Like Atlas holding up the world, a kneeling blue humanlike figure holds up a sphere with a sun radiating multicolored branches with different kinase groups. The figure, sphere, and background are overlaid with dot-and-line networks and pieces of Rosetta stone text in Greek and Egyptian.

“Rosetta Stone” of cell signaling could expedite precision cancer medicine

Four photos show, on top level, a simulation of a robot hand using a spatula, knife, hammer and wrench. The second row shows a real robot hand performing the tasks, and the bottom row shows a human hand performing the tasks.

A technique for more effective multipurpose robots

Thirteen MIT Corporation members.

MIT Corporation elects 10 term members, two life members

Diane Hoskins speaks on an indoor stage, at a lectern bearing MIT’s logo

Diane Hoskins ’79: How going off-track can lead new SA+P graduates to become integrators of ideas

Melissa Nobles stands at podium while speaking at MIT Commencement.

Chancellor Melissa Nobles’ address to MIT’s undergraduate Class of 2024

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram
  • Open access
  • Published: 27 May 2024

Current status of community resources and priorities for weed genomics research

  • Jacob Montgomery 1 ,
  • Sarah Morran 1 ,
  • Dana R. MacGregor   ORCID: orcid.org/0000-0003-0543-0408 2 ,
  • J. Scott McElroy   ORCID: orcid.org/0000-0003-0331-3697 3 ,
  • Paul Neve   ORCID: orcid.org/0000-0002-3136-5286 4 ,
  • Célia Neto   ORCID: orcid.org/0000-0003-3256-5228 4 ,
  • Martin M. Vila-Aiub   ORCID: orcid.org/0000-0003-2118-290X 5 ,
  • Maria Victoria Sandoval 5 ,
  • Analia I. Menéndez   ORCID: orcid.org/0000-0002-9681-0280 6 ,
  • Julia M. Kreiner   ORCID: orcid.org/0000-0002-8593-1394 7 ,
  • Longjiang Fan   ORCID: orcid.org/0000-0003-4846-0500 8 ,
  • Ana L. Caicedo   ORCID: orcid.org/0000-0002-0378-6374 9 ,
  • Peter J. Maughan 10 ,
  • Bianca Assis Barbosa Martins 11 ,
  • Jagoda Mika 11 ,
  • Alberto Collavo 11 ,
  • Aldo Merotto Jr.   ORCID: orcid.org/0000-0002-1581-0669 12 ,
  • Nithya K. Subramanian   ORCID: orcid.org/0000-0002-1659-7396 13 ,
  • Muthukumar V. Bagavathiannan   ORCID: orcid.org/0000-0002-1107-7148 13 ,
  • Luan Cutti   ORCID: orcid.org/0000-0002-2867-7158 14 ,
  • Md. Mazharul Islam 15 ,
  • Bikram S. Gill   ORCID: orcid.org/0000-0003-4510-9459 16 ,
  • Robert Cicchillo 17 ,
  • Roger Gast 17 ,
  • Neeta Soni   ORCID: orcid.org/0000-0002-4647-8355 17 ,
  • Terry R. Wright   ORCID: orcid.org/0000-0002-3969-2812 18 ,
  • Gina Zastrow-Hayes 18 ,
  • Gregory May 18 ,
  • Jenna M. Malone   ORCID: orcid.org/0000-0002-9637-2073 19 ,
  • Deepmala Sehgal   ORCID: orcid.org/0000-0002-4141-1784 20 ,
  • Shiv Shankhar Kaundun   ORCID: orcid.org/0000-0002-7249-2046 20 ,
  • Richard P. Dale 20 ,
  • Barend Juan Vorster   ORCID: orcid.org/0000-0003-3518-3508 21 ,
  • Bodo Peters 11 ,
  • Jens Lerchl   ORCID: orcid.org/0000-0002-9633-2653 22 ,
  • Patrick J. Tranel   ORCID: orcid.org/0000-0003-0666-4564 23 ,
  • Roland Beffa   ORCID: orcid.org/0000-0003-3109-388X 24 ,
  • Alexandre Fournier-Level   ORCID: orcid.org/0000-0002-6047-7164 25 ,
  • Mithila Jugulam   ORCID: orcid.org/0000-0003-2065-9067 15 ,
  • Kevin Fengler 18 ,
  • Victor Llaca   ORCID: orcid.org/0000-0003-4822-2924 18 ,
  • Eric L. Patterson   ORCID: orcid.org/0000-0001-7111-6287 14 &
  • Todd A. Gaines   ORCID: orcid.org/0000-0003-1485-7665 1  

Genome Biology volume  25 , Article number:  139 ( 2024 ) Cite this article

653 Accesses

9 Altmetric

Metrics details

Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.

Each year globally, agricultural producers and landscape managers spend billions of US dollars [ 1 , 2 ] and countless hours attempting to control weedy plants and reduce their adverse effects. These management methods range from low-tech (e.g., pulling plants from the soil by hand) to extremely high-tech (e.g., computer vision-controlled spraying of herbicides). Regardless of technology level, effective control methods serve as strong selection pressures on weedy plants and often result in rapid evolution of weed populations resistant to such methods [ 3 , 4 , 5 , 6 , 7 ]. Thus, humans and weeds have been locked in an arms race, where humans develop new or improved control methods and weeds adapt and evolve to circumvent such methods.

Applying genomics to weed science offers a unique opportunity to study rapid adaptation, epigenetic responses, and examples of evolutionary rescue of diverse weedy species in the face of widespread and powerful selective pressures. Furthermore, lessons learned from these studies may also help to develop more sustainable control methods and to improve crop breeding efforts in the face of our ever-changing climate. While other research fields have used genetics and genomics to uncover the basis of many biological traits [ 8 , 9 , 10 , 11 ] and to understand how ecological factors affect evolution [ 12 , 13 ], the field of weed science has lagged behind in the development of genomic tools essential for such studies [ 14 ]. As research in human and crop genetics pushes into the era of pangenomics (i.e., multiple chromosome scale genome assemblies for a single species [ 15 , 16 ]), publicly available genomic information is still lacking or severely limited for the majority of weed species. Recent reviews of current weed genomes identified 26 [ 17 ] and 32 weed species with sequenced genomes [ 18 ]—many assembled to a sub-chromosome level.

Here, we summarize the current state of weed genomics, highlighting cases where genomics approaches have successfully provided insights on topics such as population genetic dynamics, genome evolution, and the genetic basis of herbicide resistance, rapid adaptation, and crop dedomestication. These highlighted investigations all relied upon genomic resources that are relatively rare for weedy species. Throughout, we identify additional resources that would advance the field of weed science and enable further progress in weed genomics. We then introduce the International Weed Genomics Consortium (IWGC), an open collaboration among researchers, and describe current efforts to generate these additional resources.

Evolution of weediness: potential research utilizing weed genomics tools

Weeds can evolve from non-weed progenitors through wild colonization, crop de-domestication, or crop-wild hybridization [ 19 ]. Because the time span in which weeds have evolved is necessarily limited by the origins of agriculture, these non-weed relatives often still exist and can be leveraged through population genomic and comparative genomic approaches to identify the adaptive changes that have driven the evolution of weediness. The ability to rapidly adapt, persist, and spread in agroecosystems are defining features of weedy plants, leading many to advocate agricultural weeds as ideal candidates for studying rapid plant adaptation [ 20 , 21 , 22 , 23 ]. The insights gained from applying plant ecological approaches to the study of rapid weed adaptation will move us towards the ultimate goals of mitigating such adaptation and increasing the efficacy of crop breeding and biotechnology [ 14 ].

Biology and ecological genomics of weeds

The impressive community effort to create and maintain resources for Arabidopsis thaliana ecological genomics provides a motivating example for the emerging study of weed genomics [ 24 , 25 , 26 , 27 ]. Arabidopsis thaliana was the first flowering plant species to have its genome fully sequenced [ 28 ] and rapidly became a model organism for plant molecular biology. As weedy genomes become available, collection, maintenance, and resequencing of globally distributed accessions of these species will help to replicate the success found in ecological studies of A. thaliana [ 29 , 30 , 31 , 32 , 33 , 34 , 35 ]. Evaluation of these accessions for traits of interest to produce large phenomics data sets (as in [ 36 , 37 , 38 , 39 , 40 ]) enables genome-wide association studies and population genomics analyses aimed at dissecting the genetic basis of variation in such traits [ 41 ]. Increasingly, these resources (e.g. the 1001 genomes project [ 29 ]) have enabled A. thaliana to be utilized as a model species to explore the eco-evolutionary basis of plant adaptation in a more realistic ecological context. Weedy species should supplement lessons in eco-evolutionary genomics learned from these experiments in A. thaliana .

Untargeted genomic approaches for understanding the evolutionary trajectories of populations and the genetic basis of traits as described above rely on the collection of genotypic information from across the genome of many individuals. While whole-genome resequencing accomplishes this requirement and requires no custom methodology, this approach provides more information than is necessary and is prohibitively expensive in species with large genomes. Development and optimization of genotype-by-sequencing methods for capturing reduced representations of newly sequence genomes like those described by [ 42 , 43 , 44 ] will reduce the cost and computational requirements of genetic mapping and population genetic experiments. Most major weed species do not currently have protocols for stable transformation, a key development in the popularity of A. thaliana as a model organism and a requirement for many functional genomic approaches. Functional validation of genes/variants believed to be responsible for traits of interest in weeds has thus far relied on transiently manipulating endogenous gene expression [ 45 , 46 ] or ectopic expression of a transgene in a model system [ 47 , 48 , 49 ]. While these methods have been successful, few weed species have well-studied viral vectors to adapt for use in virus induced gene silencing. Spray induced gene silencing is another potential option for functional investigation of candidate genes in weeds, but more research is needed to establish reliable delivery and gene knockdown [ 50 ]. Furthermore, traits with complex genetic architecture divergent between the researched and model species may not be amenable to functional genomic approaches using transgenesis techniques in model systems. Developing protocols for reduced representation sequencing, stable transformation, and gene editing/silencing in weeds will allow for more thorough characterization of candidate genetic variants underlying traits of interest.

Beyond rapid adaptation, some weedy species offer an opportunity to better understand co-evolution, like that between plants and pollinators and how their interaction leads to the spread of weedy alleles (Additional File 1 : Table S1). A suite of plant–insect traits has co-evolved to maximize the attraction of the insect pollinator community and the efficiency of pollen deposition between flowers ensuring fruit and seed production in many weeds [ 51 , 52 ]. Genetic mapping experiments have identified genes and genetic variants responsible for many floral traits affecting pollinator interaction including petal color [ 53 , 54 , 55 , 56 ], flower symmetry and size [ 57 , 58 , 59 ], and production of volatile organic compounds [ 60 , 61 , 62 ] and nectar [ 63 , 64 , 65 ]. While these studies reveal candidate genes for selection under co-evolution, herbicide resistance alleles may also have pleiotropic effects on the ecology of weeds [ 66 ], altering plant-pollinator interactions [ 67 ]. Discovery of genes and genetic variants involved in weed-pollinator interaction and their molecular and environmental control may create opportunities for better management of weeds with insect-mediated pollination. For example, if management can disrupt pollinator attraction/interaction with these weeds, the efficiency of reproduction may be reduced.

A more complete understanding of weed ecological genomics will undoubtedly elucidate many unresolved questions regarding the genetic basis of various aspects of weediness. For instance, when comparing populations of a species from agricultural and non-agricultural environments, is there evidence for contemporary evolution of weedy traits selected by agricultural management or were “natural” populations pre-adapted to agroecosystems? Where there is differentiation between weedy and natural populations, which traits are under selection and what is the genetic basis of variation in those traits? When comparing between weedy populations, is there evidence for parallel versus non-parallel evolution of weediness at the phenotypic and genotypic levels? Such studies may uncover fundamental truths about weediness. For example, is there a common phenotypic and/or genotypic basis for aspects of weediness among diverse weed species? The availability of characterized accessions and reference genomes for species of interest are required for such studies but only a few weedy species have these resources developed.

Population genomics

Weed species are certainly fierce competitors, able to outcompete crops and endemic species in their native environment, but they are also remarkable colonizers of perturbed habitats. Weeds achieve this through high fecundity, often producing tens of thousands of seeds per individual plant [ 68 , 69 , 70 ]. These large numbers in terms of demographic population size often combine with outcrossing reproduction to generate high levels of diversity with local effective population sizes in the hundreds of thousands [ 71 , 72 ]. This has two important consequences: weed populations retain standing genetic variation and generate many new mutations, supporting weed success in the face of harsh control. The generation of genomic tools to monitor weed populations at the molecular level is a game-changer to understanding weed dynamics and precisely testing the effect of artificial selection (i.e., management) and other evolutionary mechanisms on the genetic make-up of populations.

Population genomic data, without any environmental or phenotypic information, can be used to scan the genomes of weed and non-weed relatives to identify selective sweeps, pointing at loci supporting weed adaptation on micro- or macro-evolutionary scales. Two recent within-species examples include weedy rice, where population differentiation between weedy and domesticated populations was used to identify the genetic basis of weedy de-domestication [ 73 ], and common waterhemp, where consistent allelic differences among natural and agricultural collections resolved a complex set of agriculturally adaptive alleles [ 74 , 75 ]. A recent comparative population genomic study of weedy barnyardgrass and crop millet species has demonstrated how inter-specific investigations can resolve the signatures of crop and weed evolution [ 76 ] (also see [ 77 ] for a non-weed climate adaptation example). Multiple sequence alignments across numerous species provide complementary insight into adaptive convergence over deeper timescales, even with just one genomic sample per species (e.g., [ 78 , 79 ]). Thus, newly sequenced weed genomes combined with genomes available for closely related crops (outlined by [ 14 , 80 ]) and an effort to identify other non-weed wild relatives will be invaluable in characterizing the genetic architecture of weed adaptation and evolution across diverse species.

Weeds experience high levels of genetic selection, both artificial in response to agricultural practices and particularly herbicides, and natural in response to the environmental conditions they encounter [ 81 , 82 ]. Using genomic analysis to identify loci that are the targets of selection, whether natural or artificial, would point at vulnerabilities that could be leveraged against weeds to develop new and more sustainable management strategies [ 83 ]. This is a key motivation to develop genotype-by-environment association (GEA) and selective sweep scan approaches, which allow researchers to resolve the molecular basis of multi-dimensional adaptation [ 84 , 85 ]. GEA approaches, in particular, have been widely used on landscape-wide resequencing collections to determine the genetic basis of climate adaptation (e.g., [ 27 , 86 , 87 ]), but have yet to be fully exploited to diagnose the genetic basis of the various aspects of weediness [ 88 ]. Armed with data on environmental dimensions of agricultural settings, such as focal crop, soil quality, herbicide use, and climate, GEA approaches can help disentangle how discrete farming practices have influenced the evolution of weediness and resolve broader patterns of local adaptation across a weed’s range. Although non-weedy relatives are not technically required for GEA analyses, inclusion of environmental and genomic data from weed progenitors can further distinguish genetic variants underpinning weed origins from those involved in local adaptation.

New weeds emerge frequently [ 89 ], either through hybridization between species as documented for sea beet ( Beta vulgaris ssp. maritima) hybridizing with crop beet to produce progeny that are well adapted to agricultural conditions [ 90 , 91 , 92 ], or through the invasion of alien species that find a new range to colonize. Biosecurity measures are often in place to stop the introduction of new weeds; however, the vast scale of global agricultural commodity trade precludes the possibility of total control. Population genomic analysis is now able to measure gene flow between populations [ 74 , 93 , 94 , 95 ] and identify populations of origin for invasive species including weeds [ 96 , 97 , 98 ]. For example, the invasion route of the pest fruitfly Drosophila suzukii from Eastern Asia to North America and Europe through Hawaii was deciphered using Approximate Bayesian Computation on high-throughput sequencing data from a global sample of multiple populations [ 99 ]. Genomics can also be leveraged to predict invasion rather than explain it. The resequencing of a global sample of common ragweed ( Ambrosia artemisiifolia L.) elucidated a complex invasion route whereby Europe was invaded by multiple introductions of American ragweed that hybridized in Europe prior to a subsequent introduction to Australia [ 100 , 101 ]. In this context, the use of genomically informed species distribution models helps assess the risk associated with different source populations, which in the case of common ragweed, suggests that a source population from Florida would allow ragweed to invade most of northern Australia [ 102 ]. Globally coordinated research efforts to understand potential distribution models could support the transformation of biosecurity from perspective analysis towards predictive risk assessment.

Herbicide resistance and weed management

Herbicide resistance is among the numerous weedy traits that can evolve in plant populations exposed to agricultural selection pressures. Over-reliance on herbicides to control weeds, along with low diversity and lack of redundancy in weed management strategies, has resulted in globally widespread herbicide resistance [ 103 ]. To date, 272 herbicide-resistant weed species have been reported worldwide, and at least one resistance case exists for 21 of the 31 existing herbicide sites of action [ 104 ]—significantly limiting chemical weed control options available to agriculturalists. This limitation of control options is exacerbated by the recent lack of discovery of herbicides with new sites of action [ 105 ].

Herbicide resistance may result from several different physiological mechanisms. Such mechanisms have been classified into two main groups, target-site resistance (TSR) [ 4 , 106 ] and non-target-site resistance (NTSR) [ 4 , 107 ]. The first group encompasses changes that reduce binding affinity between a herbicide and its target [ 108 ]. These changes may provide resistance to multiple herbicides that have a common biochemical target [ 109 ] and can be effectively managed through mixture and/or rotation of herbicides targeting different sites of action [ 110 ]. The second group (NTSR), includes alterations in herbicide absorption, translocation, sequestration, and/or metabolism that may lead to unpredictable pleotropic cross-resistance profiles where structurally and functionally diverse herbicides are rendered ineffective by one or more genetic variant(s) [ 47 ]. This mechanism of resistance threatens not only the efficacy of existing herbicidal chemistries, but also ones yet to be discovered. While TSR is well understood because of the ease of identification and molecular characterization of target site variants, NTSR mechanisms are significantly more challenging to research because they are often polygenic, and the resistance causing element(s) are not well understood [ 111 ].

Improving the current understanding of metabolic NTSR mechanisms is not an easy task, since genes of diverse biochemical functions are involved, many of which exist as extensive gene families [ 109 , 112 ]. Expression changes of NTSR genes have been implicated in several resistance cases where the protein products of the genes are functionally equivalent across sensitive and resistant plants, but their relative abundance leads to resistance. Thus, regulatory elements of NTSR genes have been scrutinized to understand their role in NTSR mechanisms [ 113 ]. Similarly, epigenetic modifications have been hypothesized to play a role in NTSR, with much remaining to be explored [ 114 , 115 , 116 ]. Untargeted approaches such as genome-wide association, selective sweep scans, linkage mapping, RNA-sequencing, and metabolomic profiling have proven helpful to complement more specific biochemical- and chemo-characterization studies towards the elucidation of NTSR mechanisms as well as their regulation and evolution [ 47 , 117 , 118 , 119 , 120 , 121 , 122 , 123 , 124 ]. Even in cases where resistance has been attributed to TSR, genetic mapping approaches can detect other NTSR loci contributing to resistance (as shown by [ 123 ]) and provide further evidence for the role of TSR mutations across populations. Knowledge of the genetic basis of NTSR will aid the rational design of herbicides by screening new compounds for interaction with newly discovered NTSR proteins during early research phases and by identifying conserved chemical structures that interact with these proteins that should be avoided in small molecule design.

Genomic resources can also be used to predict the protein structure for novel herbicide target site and metabolism genes. This will allow for prediction of efficacy and selectivity for new candidate herbicides in silico to increase herbicide discovery throughput as well as aid in the design and development of next-generation technologies for sustainable weed management. Proteolysis targeting chimeras (PROTACs) have the potential to bind desired targets with great selectivity and degrade proteins by utilizing natural protein ubiquitination and degradation pathways within plants [ 125 ]. Spray-induced gene silencing in weeds using oligonucleotides has potential as a new, innovative, and sustainable method for weed management, but improved methods for design and delivery of oligonucleotides are needed to make this technique a viable management option [ 50 ]. Additionally, success in the field of pharmaceutical drug discovery in the development of molecules modulating protein–protein interactions offers another potential avenue towards the development of herbicides with novel targets [ 126 , 127 ]. High-quality reference genomes allow for the design of new weed management technologies like the ones listed here that are specific to—and effective across—weed species but have a null effect on non-target organisms.

Comparative genomics and genome biology

The genomes of weed species are as diverse as weed species themselves. Weeds are found across highly diverged plant families and often have no phylogenetically close model or crop species relatives for comparison. On all measurable metrics, weed genomes run the gamut. Some have smaller genomes like Cyperus spp. (~ 0.26 Gb) while others are larger, such as Avena fatua (~ 11.1 Gb) (Table  1 ). Some have high heterozygosity in terms of single-nucleotide polymorphisms, such as the Amaranthus spp., while others are primarily self-pollinated and quite homozygous, such as Poa annua [ 128 , 129 ]. Some are diploid such as Conyza canadensis and Echinochloa haploclada while others are polyploid such as C. sumetrensis , E. crus-galli , and E. colona [ 76 ]. The availability of genomic resources in these diverse, unexplored branches of the tree of life allows us to identify consistencies and anomalies in the field of genome biology.

The weed genomes published so far have focused mainly on weeds of agronomic crops, and studies have revolved around their ability to resist key herbicides. For example, genomic resources were vital in the elucidation of herbicide resistance cases involving target site gene copy number variants (CNVs). Gene CNVs of 5-enolpyruvylshikimate-3-phosphate synthase ( EPSPS ) have been found to confer resistance to the herbicide glyphosate in diverse weed species. To date, nine species have independently evolved EPSPS CNVs, and species achieve increased EPSPS copy number via different mechanisms [ 153 ]. For instance, the EPSPS CNV in Bassia scoparia is caused by tandem duplication, which is accredited to transposable element insertions flanking EPSPS and subsequent unequal crossing over events [ 154 , 155 ]. In Eleusine indica , a EPSPS CNV was caused by translocation of the EPSPS locus into the subtelomere followed by telomeric sequence exchange [ 156 ]. One of the most fascinating genome biology discoveries in weed science has been that of extra-chromosomal circular DNAs (eccDNAs) that harbor the EPSPS gene in the weed species Amaranthus palmeri [ 157 , 158 ]. In this case, the eccDNAs autonomously replicate separately from the nuclear genome and do not reintegrate into chromosomes, which has implications for inheritance, fitness, and genome structure [ 159 ]. These discoveries would not have been possible without reference assemblies of weed genomes, next-generation sequencing, and collaboration with experts in plant genomics and bioinformatics.

Another question that is often explored with weedy genomes is the nature and composition of gene families that are associated with NTSR. Gene families under consideration often include cytochrome P450s (CYPs), glutathione- S -transferases (GSTs), ABC transporters, etc. Some questions commonly considered with new weed genomes include how many genes are in each of these gene families, where are they located, and which weed accessions and species have an over-abundance of them that might explain their ability to evolve resistance so rapidly [ 76 , 146 , 160 , 161 ]? Weed genome resources are necessary to answer questions about gene family expansion or contraction during the evolution of weediness, including the role of polyploidy in NTSR gene family expansion as explored by [ 162 ].

Translational research and communication with weed management stakeholders

Whereas genomics of model plants is typically aimed at addressing fundamental questions in plant biology, and genomics of crop species has the obvious goal of crop improvement, goals of genomics of weedy plants also include the development of more effective and sustainable strategies for their management. Weed genomic resources assist with these objectives by providing novel molecular ecological and evolutionary insights from the context of intensive anthropogenic management (which is lacking in model plants), and offer knowledge and resources for trait discovery for crop improvement, especially given that many wild crop relatives are also important agronomic weeds (e.g., [ 163 ]). For instance, crop-wild relatives are valuable for improving crop breeding for marginal environments [ 164 ]. Thus, weed genomics presents unique opportunities and challenges relative to plant genomics more broadly. It should also be noted that although weed science at its core is an applied discipline, it draws broadly from many scientific disciplines such as, plant physiology, chemistry, ecology, and evolutionary biology, to name a few. The successful integration of weed-management strategies, therefore, requires extensive collaboration among individuals collectively possessing the necessary expertise [ 165 ].

With the growing complexity of herbicide resistance management, practitioners are beginning to recognize the importance of understanding resistance mechanisms to inform appropriate management tactics [ 14 ]. Although weed science practitioners do not need to understand the technical details of weed genomics, their appreciation of the power of weed genomics—together with their unique insights from field observations—will yield novel opportunities for applications of weed genomics to weed management. In particular, combining field management history with information on weed resistance mechanisms is expected to provide novel insights into evolutionary trajectories (e.g. [ 6 , 166 ]), which can be utilized for disrupting evolutionary adaptation. It can be difficult to obtain field history information from practitioners, but developing an understanding among them of the importance of such information can be invaluable.

Development of weed genomics resources by the IWGC

Weed genomics is a fast-growing field of research with many recent breakthroughs and many unexplored areas of study. The International Weed Genomics Consortium (IWGC) started in 2021 to address the roadblocks listed above and to promote the study of weedy plants. The IWGC is an open collaboration among academic, government, and industry researchers focused on producing genomic tools for weedy species from around the world. Through this collaboration, our initial aim is to provide chromosome-level reference genome assemblies for at least 50 important weedy species from across the globe that are chosen based on member input, economic impact, and global prevalence (Fig.  1 ). Each genome will include annotation of gene models and repetitive elements and will be freely available through public databases with no intellectual property restrictions. Additionally, future funding of the IWGC will focus on improving gene annotations and supplementing these reference genomes with tools that increase their utility.

figure 1

The International Weed Genomics Consortium (IWGC) collected input from the weed genomics community to develop plans for weed genome sequencing, annotation, user-friendly genome analysis tools, and community engagement

Reference genomes and data analysis tools

The first objective of the IWGC is to provide high-quality genomic resources for agriculturally important weeds. The IWGC therefore created two main resources for information about, access to, or analysis of weed genomic data (Fig.  1 ). The IWGC website (available at [ 167 ]) communicates the status and results of genome sequencing projects, information on training and funding opportunities, upcoming events, and news in weed genomics. It also contains details of all sequenced species including genome size, ploidy, chromosome number, herbicide resistance status, and reference genome assembly statistics. The IWGC either compiles existing data on genome size, ploidy, and chromosome number, or obtains the data using flow cytometry and cytogenetics (Fig.  1 ; Additional File 2 : Fig S1-S4). Through this website, users can request an account to access our second main resource, an online genome database called WeedPedia (accessible at [ 168 ]), with an account that is created within 3–5 working days of an account request submission. WeedPedia hosts IWGC-generated and other relevant publicly accessible genomic data as well as a suite of bioinformatic tools. Unlike what is available for other fields, weed science did not have a centralized hub for genomics information, data, and analysis prior to the IWGC. Our intention in creating WeedPedia is to encourage collaboration and equity of access to information across the research community. Importantly, all genome assemblies and annotations from the IWGC (Table  1 ), along with the raw data used to produce them, will be made available through NCBI GenBank. Upon completion of a 1-year sponsoring member data confidentiality period for each species (dates listed in Table  1 ), scientific teams within the IWGC produce the first genome-wide investigation to submit for publication including whole genome level analyses on genes, gene families, and repetitive sequences as well as comparative analysis with other species. Genome assemblies and data will be publicly available through NCBI as part of these initial publications for each species.

WeedPedia is a cloud-based omics database management platform built from the software “CropPedia” and licensed from KeyGene (Wageningen, The Netherlands). The interface allows users to access, visualize, and download genome assemblies along with structural and functional annotation. The platform includes a genome browser, comparative map viewer, pangenome tools, RNA-sequencing data visualization tools, genetic mapping and marker analysis tools, and alignment capabilities that allow searches by keyword or sequence. Additionally, genes encoding known target sites of herbicides have been specially annotated, allowing users to quickly identify and compare these genes of interest. The platform is flexible, making it compatible with future integration of other data types such as epigenetic or proteomic information. As an online platform with a graphical user interface, WeedPedia provides user-friendly, intuitive tools that encourage users to integrate genomics into their research while also allowing more advanced users to download genomic data to be used in custom analysis pipelines. We aspire for WeedPedia to mimic the success of other public genomic databases such as NCBI, CoGe, Phytozome, InsectBase, and Mycocosm to name a few. WeedPedia currently hosts reference genomes for 40 species (some of which are currently in their 1-year confidentiality period) with additional genomes in the pipeline to reach a currently planned total of 55 species (Table  1 ). These genomes include both de novo reference genomes generated or in progress by the IWGC (31 species; Table  1 ), and publicly available genome assemblies of 24 weedy or related species that were generated by independent research groups (Table  2 ). As of May 2024, WeedPedia has over 370 registered users from more than 27 countries spread across 6 continents.

The IWGC reference genomes are generated in partnership with the Corteva Agriscience Genome Center of Excellence (Johnston, Iowa) using a combination of single-molecule long-read sequencing, optical genome maps, and chromosome conformation mapping. This strategy has already yielded highly contiguous, phased, chromosome-level assemblies for 26 weed species, with additional assemblies currently in progress (Table  1 ). The IWGC assemblies have been completed as single or haplotype-resolved double-haplotype pseudomolecules in inbreeding and outbreeding species, respectively, with multiple genomes being near gapless. For example, the de novo assemblies of the allohexaploids Conyza sumatrensis and Chenopodium album have all chromosomes captured in single scaffolds and most chromosomes being gapless from telomere to telomere. Complementary full-length isoform (IsoSeq) sequencing of RNA collected from diverse tissue types and developmental stages assists in the development of gene models during annotation.

As with accessibility of data, a core objective of the IWGC is to facilitate open access to sequenced germplasm when possible for featured species. Historically, the weed science community has rarely shared or adopted standard germplasm (e.g., specific weed accessions). The IWGC has selected a specific accession of each species for reference genome assembly (typically susceptible to herbicides). In collaboration with a parallel effort by the Herbicide Resistant Plants committee of the Weed Science Society of America, seeds of the sequenced weed accessions will be deposited in the United States Department of Agriculture Germplasm Resources Information Network [ 186 ] for broad access by the scientific community and their accession numbers will be listed on the IWGC website. In some cases, it is not possible to generate enough seed to deposit into a public repository (e.g., plants that typically reproduce vegetatively, that are self-incompatible, or that produce very few seeds from a single individual). In these cases, the location of collection for sequenced accessions will at least inform the community where the sequenced individual came from and where they may expect to collect individuals with similar genotypes. The IWGC ensures that sequenced accessions are collected and documented to comply with the Nagoya Protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization under the Convention on Biological Diversity and related Access and Benefit Sharing Legislation [ 187 ]. As additional accessions of weed species are sequenced (e.g., pangenomes are obtained), the IWGC will facilitate germplasm sharing protocols to support collaboration. Further, to simplify the investigation of herbicide resistance, the IWGC will link WeedPedia with the International Herbicide-Resistant Weed Database [ 104 ], an already widely known and utilized database for weed scientists.

Training and collaboration in weed genomics

Beyond producing genomic tools and resources, a priority of the IWGC is to enable the utilization of these resources across a wide range of stakeholders. A holistic approach to training is required for weed science generally [ 188 ], and we would argue even more so for weed genomics. To accomplish our training goals, the IWGC is developing and delivering programs aimed at the full range of IWGC stakeholders and covering a breadth of relevant topics. We have taken care to ensure our approaches are diverse as to provide training to researchers with all levels of existing experience and differing reasons for engaging with these tools. Throughout, the focus is on ensuring that our training and outreach result in impacts that benefit a wide range of stakeholders.

Although recently developed tools are incredibly enabling and have great potential to replace antiquated methodology [ 189 ] and to solve pressing weed science problems [ 14 ], specialized computational skills are required to fully explore and unlock meaning from these highly complex datasets. Collaboration with, or training of, computational biologists equipped with these skills and resources developed by the IWGC will enable weed scientists to expand research programs and better understand the genetic underpinnings of weed evolution and herbicide resistance. To fill existing skill gaps, the IWGC is developing summer bootcamps and online modules directed specifically at weed scientists that will provide training on computational skills (Fig.  1 ). Because successful utilization of the IWGC resources requires more than general computational skills, we have created three targeted workshops that teach practical skills related to genomics databases, molecular biology, and population genomics (available at [ 190 ]). The IWGC has also hosted two official conference meetings, one in September of 2021 and one in January of 2023, with more conferences planned. These conferences have included invited speakers to present successful implementations of weed genomics, educational workshops to build computational skills, and networking opportunities for research to connect and collaborate.

Engagement opportunities during undergraduate degrees have been shown to improve academic outcomes [ 191 , 192 ]. As one activity to help achieve this goal, the IWGC has sponsored opportunities for US undergraduates to undertake a 10-week research experience, which includes an introduction to bioinformatics, a plant genomics research project that results in a presentation, and access to career building opportunities in diverse workplace environments. To increase equitable access to conferences and professional communities, we supported early career researchers to attend the first two IWGC conferences in the USA as well as workshops and bootcamps in Europe, South America, and Australia. These hybrid or in-person travel grants are intentionally designed to remove barriers and increase participation of individuals from backgrounds and experiences currently underrepresented within weed/plant science or genomics [ 193 ]. Recipients of these travel awards gave presentations and gained the measurable benefits that come from either virtual or in-person participation in conferences [ 194 ]. Moving forward, weed scientists must amass skills associated with genomic analyses and collaborate with other area experts to fully leverage resources developed by the IWGC.

The tools generated through the IWGC will enable many new research projects with diverse objectives like those listed above. In summary, contiguous genome assemblies and complete annotation information will allow weed scientists to join plant breeders in the use of genetic mapping for many traits including stress tolerance, plant architecture, and herbicide resistance (especially important for cases of NTSR). These assemblies will also allow for investigations of population structure, gene flow, and responses to evolutionary mechanisms like genetic bottlenecking and artificial selection. Understanding gene sequences across diverse weed species will be vital in modeling new herbicide target site proteins and designing novel effective herbicides with minimal off-target effects. The IWGC website will improve accessibility to weed genomics data by providing a single hub for reference genomes as well as phenotypic and genotypic information for accessions shared with the IWGC. Deposition of sequenced germplasm into public repositories will ensure that researchers are able to access and utilize these accessions in their own research to make the field more standardized and equitable. WeedPedia allows users of all backgrounds to quickly access information of interest such as herbicide target site gene sequence or subcellular localization of protein products for different genes. Users can also utilize server-based tools such as BLAST and genome browsing similar to other public genomic databases. Finally, the IWGC is committed to training and connecting weed genomicists through hosting trainings, workshops, and conferences.

Conclusions

Weeds are unique and fascinating plants, having significant impacts on agriculture and ecosystems; and yet, aspects of their biology, ecology, and genetics remain poorly understood. Weeds represent a unique area within plant biology, given their repeated rapid adaptation to sudden and severe shifts in the selective landscape of anthropogenic management practices. The production of a public genomics database with reference genomes and annotations for over 50 weed species represents a substantial step forward towards research goals that improve our understanding of the biology and evolution of weeds. Future work is needed to improve annotations, particularly for complex gene families involved in herbicide detoxification, structural variants, and mobile genetic elements. As reference genome assemblies become available; standard, affordable methods for gathering genotype information will allow for the identification of genetic variants underlying traits of interest. Further, methods for functional validation and hypothesis testing are needed in weeds to validate the effect of genetic variants detected through such experiments, including systems for transformation, gene editing, and transient gene silencing and expression. Future research should focus on utilizing weed genomes to investigate questions about evolutionary biology, ecology, genetics of weedy traits, and weed population dynamics. The IWGC plans to continue the public–private partnership model to host the WeedPedia database over time, integrate new datasets such as genome resequencing and transcriptomes, conduct trainings, and serve as a research coordination network to ensure that advances in weed science from around the world are shared across the research community (Fig.  1 ). Bridging basic plant genomics with translational applications in weeds is needed to deliver on the potential of weed genomics to improve weed management and crop breeding.

Availability of data and materials

All genome assemblies and related sequencing data produced by the IWGC will be available through NCBI as part of publications reporting the first genome-wide analysis for each species.

Gianessi LP, Nathan PR. The value of herbicides in U.S. crop production. Weed Technol. 2007;21(2):559–66.

Article   Google Scholar  

Pimentel D, Lach L, Zuniga R, Morrison D. Environmental and economic costs of nonindigenous species in the United States. Bioscience. 2000;50(1):53–65.

Barrett SH. Crop mimicry in weeds. Econ Bot. 1983;37(3):255–82.

Powles SB, Yu Q. Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol. 2010;61:317–47.

Article   CAS   PubMed   Google Scholar  

Thurber CS, Reagon M, Gross BL, Olsen KM, Jia Y, Caicedo AL. Molecular evolution of shattering loci in U.S. weedy rice. Mol Ecol. 2010;19(16):3271–84.

Article   PubMed   PubMed Central   Google Scholar  

Comont D, Lowe C, Hull R, Crook L, Hicks HL, Onkokesung N, et al. Evolution of generalist resistance to herbicide mixtures reveals a trade-off in resistance management. Nat Commun. 2020;11(1):3086.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Ashworth MB, Walsh MJ, Flower KC, Vila-Aiub MM, Powles SB. Directional selection for flowering time leads to adaptive evolution in Raphanus raphanistrum (wild radish). Evol Appl. 2016;9(4):619–29.

Chan EK, Rowe HC, Kliebenstein DJ. Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping. Genetics. 2010;185(3):991–1007.

Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.

Harkess A, Zhou J, Xu C, Bowers JE, Van der Hulst R, Ayyampalayam S, et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat Commun. 2017;8(1):1279.

Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, et al. The gene Sr33 , an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science. 2013;341(6147):786–8.

Ågren J, Oakley CG, McKay JK, Lovell JT, Schemske DW. Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana . Proc Natl Acad Sci U S A. 2013;110(52):21077–82.

Article   PubMed Central   Google Scholar  

Schartl M, Walter RB, Shen Y, Garcia T, Catchen J, Amores A, et al. The genome of the platyfish, Xiphophorus maculatus , provides insights into evolutionary adaptation and several complex traits. Nat Genet. 2013;45(5):567–72.

Ravet K, Patterson EL, Krähmer H, Hamouzová K, Fan L, Jasieniuk M, et al. The power and potential of genomics in weed biology and management. Pest Manag Sci. 2018;74(10):2216–25.

Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S, Liu J, et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science. 2021;373(6555):655–62.

Liao W-W, Asri M, Ebler J, Doerr D, Haukness M, Hickey G, et al. A draft human pangenome reference. Nature. 2023;617(7960):312–24.

Huang Y, Wu D, Huang Z, Li X, Merotto A, Bai L, et al. Weed genomics: yielding insights into the genetics of weedy traits for crop improvement. aBIOTECH. 2023;4:20–30.

Chen K, Yang H, Wu D, Peng Y, Lian L, Bai L, et al. Weed biology and management in the multi-omics era: progress and perspectives. Plant Commun. 2024;5(4):100816.

De Wet JMJ, Harlan JR. Weeds and domesticates: evolution in the man-made habitat. Econ Bot. 1975;29(2):99–108.

Mahaut L, Cheptou PO, Fried G, Munoz F, Storkey J, Vasseur F, et al. Weeds: against the rules? Trends Plant Sci. 2020;25(11):1107–16.

Neve P, Vila-Aiub M, Roux F. Evolutionary-thinking in agricultural weed management. New Phytol. 2009;184(4):783–93.

Article   PubMed   Google Scholar  

Sharma G, Barney JN, Westwood JH, Haak DC. Into the weeds: new insights in plant stress. Trends Plant Sci. 2021;26(10):1050–60.

Vigueira CC, Olsen KM, Caicedo AL. The red queen in the corn: agricultural weeds as models of rapid adaptive evolution. Heredity (Edinb). 2013;110(4):303–11.

Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, et al. Niche construction through germination cueing: life-history responses to timing of germination in Arabidopsis thaliana . Evolution. 2005;59(4):771–85.

PubMed   Google Scholar  

Exposito-Alonso M. Seasonal timing adaptation across the geographic range of Arabidopsis thaliana . Proc Natl Acad Sci U S A. 2020;117(18):9665–7.

Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM. A map of local adaptation in Arabidopsis thaliana . Science. 2011;334(6052):86–9.

Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, et al. Adaptation to climate across the Arabidopsis thaliana genome. Science. 2011;334(6052):83–6.

Initiative TAG. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature. 2000;408(6814):796–815.

Alonso-Blanco C, Andrade J, Becker C, Bemm F, Bergelson J, Borgwardt KM, et al. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana . Cell. 2016;166(2):481–91.

Durvasula A, Fulgione A, Gutaker RM, Alacakaptan SI, Flood PJ, Neto C, et al. African genomes illuminate the early history and transition to selfing in Arabidopsis thaliana . Proc Natl Acad Sci U S A. 2017;114(20):5213–8.

Frachon L, Mayjonade B, Bartoli C, Hautekèete N-C, Roux F. Adaptation to plant communities across the genome of Arabidopsis thaliana . Mol Biol Evol. 2019;36(7):1442–56.

Fulgione A, Koornneef M, Roux F, Hermisson J, Hancock AM. Madeiran Arabidopsis thaliana reveals ancient long-range colonization and clarifies demography in Eurasia. Mol Biol Evol. 2018;35(3):564–74.

Fulgione A, Neto C, Elfarargi AF, Tergemina E, Ansari S, Göktay M, et al. Parallel reduction in flowering time from de novo mutations enable evolutionary rescue in colonizing lineages. Nat Commun. 2022;13(1):1461.

Kasulin L, Rowan BA, León RJC, Schuenemann VJ, Weigel D, Botto JF. A single haplotype hyposensitive to light and requiring strong vernalization dominates Arabidopsis thaliana populations in Patagonia. Argentina Mol Ecol. 2017;26(13):3389–404.

Picó FX, Méndez-Vigo B, Martínez-Zapater JM, Alonso-Blanco C. Natural genetic variation of Arabidopsis thaliana is geographically structured in the Iberian peninsula. Genetics. 2008;180(2):1009–21.

Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature. 2010;465(7298):627–31.

Flood PJ, Kruijer W, Schnabel SK, van der Schoor R, Jalink H, Snel JFH, et al. Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods. 2016;12(1):14.

Marchadier E, Hanemian M, Tisné S, Bach L, Bazakos C, Gilbault E, et al. The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana . PLoS Genet. 2019;15(4):e1007954.

Tisné S, Serrand Y, Bach L, Gilbault E, Ben Ameur R, Balasse H, et al. Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity. Plant J. 2013;74(3):534–44.

Tschiersch H, Junker A, Meyer RC, Altmann T. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses. Plant Methods. 2017;13:54.

Chen X, MacGregor DR, Stefanato FL, Zhang N, Barros-Galvão T, Penfield S. A VEL3 histone deacetylase complex establishes a maternal epigenetic state controlling progeny seed dormancy. Nat Commun. 2023;14(1):2220.

Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106(45):19096–101.

Davey JW, Blaxter ML. RADSeq: next-generation population genetics. Brief Funct Genomics. 2010;9(5–6):416–23.

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011;6(5):e19379.

MacGregor DR. What makes a weed a weed? How virus-mediated reverse genetics can help to explore the genetics of weediness. Outlooks Pest Manag. 2020;31(5):224–9.

Mellado-Sánchez M, McDiarmid F, Cardoso V, Kanyuka K, MacGregor DR. Virus-mediated transient expression techniques enable gene function studies in blackgrass. Plant Physiol. 2020;183(2):455–9.

Dimaano NG, Yamaguchi T, Fukunishi K, Tominaga T, Iwakami S. Functional characterization of Cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon . Plant Mol Biol. 2020;102(4–5):403–16.

de Figueiredo MRA, Küpper A, Malone JM, Petrovic T, de Figueiredo ABTB, Campagnola G, et al. An in-frame deletion mutation in the degron tail of auxin coreceptor IAA2 confers resistance to the herbicide 2,4-D in Sisymbrium orientale . Proc Natl Acad Sci U S A. 2022;119(9):e2105819119.

Patzoldt WL, Hager AG, McCormick JS, Tranel PJ. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc Natl Acad Sci U S A. 2006;103(33):12329–34.

Zabala-Pardo D, Gaines T, Lamego FP, Avila LA. RNAi as a tool for weed management: challenges and opportunities. Adv Weed Sci. 2022;40(spe1):e020220096.

Fattorini R, Glover BJ. Molecular mechanisms of pollination biology. Annu Rev Plant Biol. 2020;71:487–515.

Rollin O, Benelli G, Benvenuti S, Decourtye A, Wratten SD, Canale A, et al. Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review Agron Sustain Dev. 2016;36(1):8.

Irwin RE, Strauss SY. Flower color microevolution in wild radish: evolutionary response to pollinator-mediated selection. Am Nat. 2005;165(2):225–37.

Ma B, Wu J, Shi T-L, Yang Y-Y, Wang W-B, Zheng Y, et al. Lilac ( Syringa oblata ) genome provides insights into its evolution and molecular mechanism of petal color change. Commun Biol. 2022;5(1):686.

Xing A, Wang X, Nazir MF, Zhang X, Wang X, Yang R, et al. Transcriptomic and metabolomic profiling of flavonoid biosynthesis provides novel insights into petals coloration in Asian cotton ( Gossypium arboreum L.). BMC Plant Biol. 2022;22(1):416.

Zheng Y, Chen Y, Liu Z, Wu H, Jiao F, Xin H, et al. Important roles of key genes and transcription factors in flower color differences of Nicotiana alata . Genes (Basel). 2021;12(12):1976.

Krizek BA, Anderson JT. Control of flower size. J Exp Bot. 2013;64(6):1427–37.

Powell AE, Lenhard M. Control of organ size in plants. Curr Biol. 2012;22(9):R360–7.

Spencer V, Kim M. Re"CYC"ling molecular regulators in the evolution and development of flower symmetry. Semin Cell Dev Biol. 2018;79:16–26.

Amrad A, Moser M, Mandel T, de Vries M, Schuurink RC, Freitas L, et al. Gain and loss of floral scent production through changes in structural genes during pollinator-mediated speciation. Curr Biol. 2016;26(24):3303–12.

Delle-Vedove R, Schatz B, Dufay M. Understanding intraspecific variation of floral scent in light of evolutionary ecology. Ann Bot. 2017;120(1):1–20.

Pichersky E, Gershenzon J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol. 2002;5(3):237–43.

Ballerini ES, Kramer EM, Hodges SA. Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associated with nectar spur development. BMC Genom. 2019;20(1):668.

Corbet SA, Willmer PG, Beament JWL, Unwin DM, Prys-Jones OE. Post-secretory determinants of sugar concentration in nectar. Plant Cell Environ. 1979;2(4):293–308.

Galliot C, Hoballah ME, Kuhlemeier C, Stuurman J. Genetics of flower size and nectar volume in Petunia pollination syndromes. Planta. 2006;225(1):203–12.

Vila-Aiub MM, Neve P, Powles SB. Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol. 2009;184(4):751–67.

Baucom RS. Evolutionary and ecological insights from herbicide-resistant weeds: what have we learned about plant adaptation, and what is left to uncover? New Phytol. 2019;223(1):68–82.

Bajwa AA, Latif S, Borger C, Iqbal N, Asaduzzaman M, Wu H, et al. The remarkable journey of a weed: biology and management of annual ryegrass ( Lolium rigidum ) in conservation cropping systems of Australia. Plants (Basel). 2021;10(8):1505.

Bitarafan Z, Andreasen C. Fecundity allocation in some european weed species competing with crops. Agronomy. 2022;12(5):1196.

Costea M, Weaver SE, Tardif FJ. The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii , A. powellii S. Watson, and A. hybridus L. Can J Plant Sci. 2004;84(2):631–68.

Dixon A, Comont D, Slavov GT, Neve P. Population genomics of selectively neutral genetic structure and herbicide resistance in UK populations of Alopecurus myosuroides . Pest Manag Sci. 2021;77(3):1520–9.

Kersten S, Chang J, Huber CD, Voichek Y, Lanz C, Hagmaier T, et al. Standing genetic variation fuels rapid evolution of herbicide resistance in blackgrass. Proc Natl Acad Sci U S A. 2023;120(16):e2206808120.

Qiu J, Zhou Y, Mao L, Ye C, Wang W, Zhang J, et al. Genomic variation associated with local adaptation of weedy rice during de-domestication. Nat Commun. 2017;8(1):15323.

Kreiner JM, Caballero A, Wright SI, Stinchcombe JR. Selective ancestral sorting and de novo evolution in the agricultural invasion of Amaranthus tuberculatus . Evolution. 2022;76(1):70–85.

Kreiner JM, Latorre SM, Burbano HA, Stinchcombe JR, Otto SP, Weigel D, et al. Rapid weed adaptation and range expansion in response to agriculture over the past two centuries. Science. 2022;378(6624):1079–85.

Wu D, Shen E, Jiang B, Feng Y, Tang W, Lao S, et al. Genomic insights into the evolution of Echinochloa species as weed and orphan crop. Nat Commun. 2022;13(1):689.

Yeaman S, Hodgins KA, Lotterhos KE, Suren H, Nadeau S, Degner JC, et al. Convergent local adaptation to climate in distantly related conifers. Science. 2016;353(6306):1431–3.

Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, et al. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat Genet. 2013;45(8):891–8.

Sackton TB, Grayson P, Cloutier A, Hu Z, Liu JS, Wheeler NE, et al. Convergent regulatory evolution and loss of flight in paleognathous birds. Science. 2019;364(6435):74–8.

Ye CY, Fan L. Orphan crops and their wild relatives in the genomic era. Mol Plant. 2021;14(1):27–39.

Clements DR, Jones VL. Ten ways that weed evolution defies human management efforts amidst a changing climate. Agronomy. 2021;11(2):284.

Article   CAS   Google Scholar  

Weinig C. Rapid evolutionary responses to selection in heterogeneous environments among agricultural and nonagricultural weeds. Int J Plant Sci. 2005;166(4):641–7.

Cousens RD, Fournier-Level A. Herbicide resistance costs: what are we actually measuring and why? Pest Manag Sci. 2018;74(7):1539–46.

Lasky JR, Josephs EB, Morris GP. Genotype–environment associations to reveal the molecular basis of environmental adaptation. Plant Cell. 2023;35(1):125–38.

Lotterhos KE. The effect of neutral recombination variation on genome scans for selection. G3-Genes Genom Genet. 2019;9(6):1851–67.

Lovell JT, MacQueen AH, Mamidi S, Bonnette J, Jenkins J, Napier JD, et al. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature. 2021;590(7846):438–44.

Todesco M, Owens GL, Bercovich N, Légaré J-S, Soudi S, Burge DO, et al. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature. 2020;584(7822):602–7.

Revolinski SR, Maughan PJ, Coleman CE, Burke IC. Preadapted to adapt: Underpinnings of adaptive plasticity revealed by the downy brome genome. Commun Biol. 2023;6(1):326.

Kuester A, Conner JK, Culley T, Baucom RS. How weeds emerge: a taxonomic and trait-based examination using United States data. New Phytol. 2014;202(3):1055–68.

Arnaud JF, Fénart S, Cordellier M, Cuguen J. Populations of weedy crop-wild hybrid beets show contrasting variation in mating system and population genetic structure. Evol Appl. 2010;3(3):305–18.

Ellstrand NC, Schierenbeck KA. Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci U S A. 2000;97(13):7043–50.

Nakabayashi K, Leubner-Metzger G. Seed dormancy and weed emergence: from simulating environmental change to understanding trait plasticity, adaptive evolution, and population fitness. J Exp Bot. 2021;72(12):4181–5.

Busi R, Yu Q, Barrett-Lennard R, Powles S. Long distance pollen-mediated flow of herbicide resistance genes in Lolium rigidum . Theor Appl Genet. 2008;117(8):1281–90.

Délye C, Clément JAJ, Pernin F, Chauvel B, Le Corre V. High gene flow promotes the genetic homogeneity of arable weed populations at the landscape level. Basic Appl Ecol. 2010;11(6):504–12.

Roumet M, Noilhan C, Latreille M, David J, Muller MH. How to escape from crop-to-weed gene flow: phenological variation and isolation-by-time within weedy sunflower populations. New Phytol. 2013;197(2):642–54.

Moghadam SH, Alebrahim MT, Mohebodini M, MacGregor DR. Genetic variation of Amaranthus retroflexus L. and Chenopodium album L. (Amaranthaceae) suggests multiple independent introductions into Iran. Front Plant Sci. 2023;13:1024555.

Muller M-H, Latreille M, Tollon C. The origin and evolution of a recent agricultural weed: population genetic diversity of weedy populations of sunflower ( Helianthus annuus L.) in Spain and France. Evol Appl. 2011;4(3):499–514.

Wesse C, Welk E, Hurka H, Neuffer B. Geographical pattern of genetic diversity in Capsella bursa-pastoris (Brassicaceae) -A global perspective. Ecol Evol. 2021;11(1):199–213.

Fraimout A, Debat V, Fellous S, Hufbauer RA, Foucaud J, Pudlo P, et al. Deciphering the routes of invasion of Drosophila suzukii by means of ABC random forest. Mol Biol Evol. 2017;34(4):980–96.

CAS   PubMed   PubMed Central   Google Scholar  

Battlay P, Wilson J, Bieker VC, Lee C, Prapas D, Petersen B, et al. Large haploblocks underlie rapid adaptation in the invasive weed Ambrosia artemisiifolia . Nat Commun. 2023;14(1):1717.

van Boheemen LA, Hodgins KA. Rapid repeatable phenotypic and genomic adaptation following multiple introductions. Mol Ecol. 2020;29(21):4102–17.

Putra A, Hodgins K, Fournier-Level A. Assessing the invasive potential of different source populations of ragweed ( Ambrosia artemisiifolia L.) through genomically-informed species distribution modelling. Authorea. 2023;17(1):e13632.

Google Scholar  

Bourguet D, Delmotte F, Franck P, Guillemaud T, Reboud X, Vacher C, et al. Heterogeneity of selection and the evolution of resistance. Trends Ecol Evol. 2013;28(2):110–8.

The International Herbicide-Resistant Weed Database. www.weedscience.org . Accessed 20 June 2023.

Powles S. Herbicide discovery through innovation and diversity. Adv Weed Sci. 2022;40(spe1):e020220074.

Murphy BP, Tranel PJ. Target-site mutations conferring herbicide resistance. Plants (Basel). 2019;8(10):382.

Gaines TA, Duke SO, Morran S, Rigon CAG, Tranel PJ, Küpper A, et al. Mechanisms of evolved herbicide resistance. J Biol Chem. 2020;295(30):10307–30.

Lonhienne T, Cheng Y, Garcia MD, Hu SH, Low YS, Schenk G, et al. Structural basis of resistance to herbicides that target acetohydroxyacid synthase. Nat Commun. 2022;13(1):3368.

Comont D, MacGregor DR, Crook L, Hull R, Nguyen L, Freckleton RP, et al. Dissecting weed adaptation: fitness and trait correlations in herbicide-resistant Alopecurus myosuroides . Pest Manag Sci. 2022;78(7):3039–50.

Neve P. Simulation modelling to understand the evolution and management of glyphosate resistance in weeds. Pest Manag Sci. 2008;64(4):392–401.

Torra J, Alcántara-de la Cruz R. Molecular mechanisms of herbicide resistance in weeds. Genes (Basel). 2022;13(11):2025.

Délye C, Gardin JAC, Boucansaud K, Chauvel B, Petit C. Non-target-site-based resistance should be the centre of attention for herbicide resistance research: Alopecurus myosuroides as an illustration. Weed Res. 2011;51(5):433–7.

Chandra S, Leon RG. Genome-wide evolutionary analysis of putative non-specific herbicide resistance genes and compilation of core promoters between monocots and dicots. Genes (Basel). 2022;13(7):1171.

Margaritopoulou T, Tani E, Chachalis D, Travlos I. Involvement of epigenetic mechanisms in herbicide resistance: the case of Conyza canadensis . Agriculture. 2018;8(1):17.

Pan L, Guo Q, Wang J, Shi L, Yang X, Zhou Y, et al. CYP81A68 confers metabolic resistance to ALS and ACCase-inhibiting herbicides and its epigenetic regulation in Echinochloa crus-galli . J Hazard Mater. 2022;428:128225.

Sen MK, Hamouzová K, Košnarová P, Roy A, Soukup J. Herbicide resistance in grass weeds: Epigenetic regulation matters too. Front Plant Sci. 2022;13:1040958.

Han H, Yu Q, Beffa R, González S, Maiwald F, Wang J, et al. Cytochrome P450 CYP81A10v7 in Lolium rigidum confers metabolic resistance to herbicides across at least five modes of action. Plant J. 2021;105(1):79–92.

Kubis GC, Marques RZ, Kitamura RS, Barroso AA, Juneau P, Gomes MP. Antioxidant enzyme and Cytochrome P450 activities are involved in horseweed ( Conyza sumatrensis ) resistance to glyphosate. Stress. 2023;3(1):47–57.

Qiao Y, Zhang N, Liu J, Yang H. Interpretation of ametryn biodegradation in rice based on joint analyses of transcriptome, metabolome and chemo-characterization. J Hazard Mater. 2023;445:130526.

Rouse CE, Roma-Burgos N, Barbosa Martins BA. Physiological assessment of non–target site restistance in multiple-resistant junglerice ( Echinochloa colona ). Weed Sci. 2019;67(6):622–32.

Abou-Khater L, Maalouf F, Jighly A, Alsamman AM, Rubiales D, Rispail N, et al. Genomic regions associated with herbicide tolerance in a worldwide faba bean ( Vicia faba L.) collection. Sci Rep. 2022;12(1):158.

Gupta S, Harkess A, Soble A, Van Etten M, Leebens-Mack J, Baucom RS. Interchromosomal linkage disequilibrium and linked fitness cost loci associated with selection for herbicide resistance. New Phytol. 2023;238(3):1263–77.

Kreiner JM, Tranel PJ, Weigel D, Stinchcombe JR, Wright SI. The genetic architecture and population genomic signatures of glyphosate resistance in Amaranthus tuberculatus . Mol Ecol. 2021;30(21):5373–89.

Parcharidou E, Dücker R, Zöllner P, Ries S, Orru R, Beffa R. Recombinant glutathione transferases from flufenacet-resistant black-grass ( Alopecurus myosuroides Huds.) form different flufenacet metabolites and differ in their interaction with pre- and post-emergence herbicides. Pest Manag Sci. 2023;79(9):3376–86.

Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21(3):181–200.

Acuner Ozbabacan SE, Engin HB, Gursoy A, Keskin O. Transient protein-protein interactions. Protein Eng Des Sel. 2011;24(9):635–48.

Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R, et al. Recent advances in the development of protein–protein interactions modulators: mechanisms and clinical trials. Signal Transduct Target Ther. 2020;5(1):213.

Benson CW, Sheltra MR, Maughan PJ, Jellen EN, Robbins MD, Bushman BS, et al. Homoeologous evolution of the allotetraploid genome of Poa annua L. BMC Genom. 2023;24(1):350.

Robbins MD, Bushman BS, Huff DR, Benson CW, Warnke SE, Maughan CA, et al. Chromosome-scale genome assembly and annotation of allotetraploid annual bluegrass ( Poa annua L.). Genome Biol Evol. 2022;15(1):evac180.

Montgomery JS, Giacomini D, Waithaka B, Lanz C, Murphy BP, Campe R, et al. Draft genomes of Amaranthus tuberculatus , Amaranthus hybridus and Amaranthus palmeri . Genome Biol Evol. 2020;12(11):1988–93.

Jeschke MR, Tranel PJ, Rayburn AL. DNA content analysis of smooth pigweed ( Amaranthus hybridus ) and tall waterhemp ( A. tuberculatus ): implications for hybrid detection. Weed Sci. 2003;51(1):1–3.

Rayburn AL, McCloskey R, Tatum TC, Bollero GA, Jeschke MR, Tranel PJ. Genome size analysis of weedy Amaranthus species. Crop Sci. 2005;45(6):2557–62.

Laforest M, Martin SL, Bisaillon K, Soufiane B, Meloche S, Tardif FJ, et al. The ancestral karyotype of the Heliantheae Alliance, herbicide resistance, and human allergens: Insights from the genomes of common and giant ragweed. Plant Genome . 2024;e20442. https://doi.org/10.1002/tpg2.20442 .

Mulligan GA. Chromosome numbers of Canadian weeds. I Canad J Bot. 1957;35(5):779–89.

Meyer L, Causse R, Pernin F, Scalone R, Bailly G, Chauvel B, et al. New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species. PLoS One. 2017;12(5):e0176197.

Pustahija F, Brown SC, Bogunić F, Bašić N, Muratović E, Ollier S, et al. Small genomes dominate in plants growing on serpentine soils in West Balkans, an exhaustive study of 8 habitats covering 308 taxa. Plant Soil. 2013;373(1):427–53.

Kubešová M, Moravcova L, Suda J, Jarošík V, Pyšek P. Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia. 2010;82(1):81–96.

Thébaud C, Abbott RJ. Characterization of invasive Conyza species (Asteraceae) in Europe: quantitative trait and isozyme analysis. Am J Bot. 1995;82(3):360–8.

Garcia S, Hidalgo O, Jakovljević I, Siljak-Yakovlev S, Vigo J, Garnatje T, et al. New data on genome size in 128 Asteraceae species and subspecies, with first assessments for 40 genera, 3 tribes and 2 subfamilies. Plant Biosyst. 2013;147(4):1219–27.

Zhao X, Yi L, Ren Y, Li J, Ren W, Hou Z, et al. Chromosome-scale genome assembly of the yellow nutsedge ( Cyperus esculentus ). Genome Biol Evol. 2023;15(3):evad027.

Bennett MD, Leitch IJ, Hanson L. DNA amounts in two samples of angiosperm weeds. Ann Bot. 1998;82:121–34.

Schulz-Schaeffer J, Gerhardt S. Cytotaxonomic analysis of the Euphorbia spp. (leafy spurge) complex. II: Comparative study of the chromosome morphology. Biol Zentralbl. 1989;108(1):69–76.

Schaeffer JR, Gerhardt S. The impact of introgressive hybridization on the weediness of leafy spurge. Leafy Spurge Symposium. 1989;1989:97–105.

Bai C, Alverson WS, Follansbee A, Waller DM. New reports of nuclear DNA content for 407 vascular plant taxa from the United States. Ann Bot. 2012;110(8):1623–9.

Aarestrup JR, Karam D, Fernandes GW. Chromosome number and cytogenetics of Euphorbia heterophylla L. Genet Mol Res. 2008;7(1):217–22.

Wang L, Sun X, Peng Y, Chen K, Wu S, Guo Y, et al. Genomic insights into the origin, adaptive evolution, and herbicide resistance of Leptochloa chinensis , a devastating tetraploid weedy grass in rice fields. Mol Plant. 2022;15(6):1045–58.

Paril J, Pandey G, Barnett EM, Rane RV, Court L, Walsh T, et al. Rounding up the annual ryegrass genome: high-quality reference genome of Lolium rigidum . Front Genet. 2022;13:1012694.

Weiss-Schneeweiss H, Greilhuber J, Schneeweiss GM. Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am J Bot. 2006;93(1):148–56.

Towers G, Mitchell J, Rodriguez E, Bennett F, Subba Rao P. Biology & chemistry of Parthenium hysterophorus L., a problem weed in India. Biol Rev. 1977;48:65–74.

CAS   Google Scholar  

Moghe GD, Hufnagel DE, Tang H, Xiao Y, Dworkin I, Town CD, et al. Consequences of whole-genome triplication as revealed by comparative genomic analyses of the wild radish ( Raphanus raphanistrum ) and three other Brassicaceae species. Plant Cell. 2014;26(5):1925–37.

Zhang X, Liu T, Wang J, Wang P, Qiu Y, Zhao W, et al. Pan-genome of Raphanus highlights genetic variation and introgression among domesticated, wild, and weedy radishes. Mol Plant. 2021;14(12):2032–55.

Chytrý M, Danihelka J, Kaplan Z, Wild J, Holubová D, Novotný P, et al. Pladias database of the Czech flora and vegetation. Preslia. 2021;93(1):1–87.

Patterson EL, Pettinga DJ, Ravet K, Neve P, Gaines TA. Glyphosate resistance and EPSPS gene duplication: Convergent evolution in multiple plant species. J Hered. 2018;109(2):117–25.

Jugulam M, Niehues K, Godar AS, Koo DH, Danilova T, Friebe B, et al. Tandem amplification of a chromosomal segment harboring 5-enolpyruvylshikimate-3-phosphate synthase locus confers glyphosate resistance in Kochia scoparia . Plant Physiol. 2014;166(3):1200–7.

Patterson EL, Saski CA, Sloan DB, Tranel PJ, Westra P, Gaines TA. The draft genome of Kochia scoparia and the mechanism of glyphosate resistance via transposon-mediated EPSPS tandem gene duplication. Genome Biol Evol. 2019;11(10):2927–40.

Zhang C, Johnson N, Hall N, Tian X, Yu Q, Patterson E. Subtelomeric 5-enolpyruvylshikimate-3-phosphate synthase ( EPSPS ) copy number variation confers glyphosate resistance in Eleusine indica . Nat Commun. 2023;14:4865.

Koo D-H, Molin WT, Saski CA, Jiang J, Putta K, Jugulam M, et al. Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri . Proc Natl Acad Sci U S A. 2018;115(13):3332–7.

Molin WT, Yaguchi A, Blenner M, Saski CA. The eccDNA Replicon: A heritable, extranuclear vehicle that enables gene amplification and glyphosate resistance in Amaranthus palmeri . Plant Cell. 2020;32(7):2132–40.

Jugulam M. Can non-Mendelian inheritance of extrachromosomal circular DNA-mediated EPSPS gene amplification provide an opportunity to reverse resistance to glyphosate? Weed Res. 2021;61(2):100–5.

Kreiner JM, Giacomini DA, Bemm F, Waithaka B, Regalado J, Lanz C, et al. Multiple modes of convergent adaptation in the spread of glyphosate-resistant Amaranthus tuberculatus . Proc Natl Acad Sci U S A. 2019;116(42):21076–84.

Cai L, Comont D, MacGregor D, Lowe C, Beffa R, Neve P, et al. The blackgrass genome reveals patterns of non-parallel evolution of polygenic herbicide resistance. New Phytol. 2023;237(5):1891–907.

Chen K, Yang H, Peng Y, Liu D, Zhang J, Zhao Z, et al. Genomic analyses provide insights into the polyploidization-driven herbicide adaptation in Leptochloa weeds. Plant Biotechnol J. 2023;21(8):1642–58.

Ohadi S, Hodnett G, Rooney W, Bagavathiannan M. Gene flow and its consequences in Sorghum spp. Crit Rev Plant Sci. 2017;36(5–6):367–85.

Renzi JP, Coyne CJ, Berger J, von Wettberg E, Nelson M, Ureta S, et al. How could the use of crop wild relatives in breeding increase the adaptation of crops to marginal environments? Front Plant Sci. 2022;13:886162.

Ward SM, Cousens RD, Bagavathiannan MV, Barney JN, Beckie HJ, Busi R, et al. Agricultural weed research: a critique and two proposals. Weed Sci. 2014;62(4):672–8.

Evans JA, Tranel PJ, Hager AG, Schutte B, Wu C, Chatham LA, et al. Managing the evolution of herbicide resistance. Pest Manag Sci. 2016;72(1):74–80.

International Weed Genomics Consortium Website. https://www.weedgenomics.org . Accessed 20 June 2023.

WeedPedia Database. https://weedpedia.weedgenomics.org/ . Accessed 20 June 2023.

Hall N, Chen J, Matzrafi M, Saski CA, Westra P, Gaines TA, et al. FHY3/FAR1 transposable elements generate adaptive genetic variation in the Bassia scoparia genome. bioRxiv . 2023; DOI: https://doi.org/10.1101/2023.05.26.542497 .

Jarvis DE, Sproul JS, Navarro-Domínguez B, Krak K, Jaggi K, Huang Y-F, et al. Chromosome-scale genome assembly of the hexaploid Taiwanese goosefoot “Djulis” ( Chenopodium formosanum ). Genome Biol Evol. 2022;14(8):evac120.

Ferreira LAI, de Oliveira RS, Jr., Constantin J, Brunharo C. Evolution of ACCase-inhibitor resistance in Chloris virgata is conferred by a Trp2027Cys mutation in the herbicide target site. Pest Manag Sci. 2023;79(12):5220–9.

Laforest M, Martin SL, Bisaillon K, Soufiane B, Meloche S, Page E. A chromosome-scale draft sequence of the Canada fleabane genome. Pest Manag Sci. 2020;76(6):2158–69.

Guo L, Qiu J, Ye C, Jin G, Mao L, Zhang H, et al. Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nat Commun. 2017;8(1):1031.

Sato MP, Iwakami S, Fukunishi K, Sugiura K, Yasuda K, Isobe S, et al. Telomere-to-telomere genome assembly of an allotetraploid pernicious weed, Echinochloa phyllopogon . DNA Res. 2023;30(5):dsad023.

Stein JC, Yu Y, Copetti D, Zwickl DJ, Zhang L, Zhang C, et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza . Nat Genet. 2018;50(2):285–96.

Wu D, Xie L, Sun Y, Huang Y, Jia L, Dong C, et al. A syntelog-based pan-genome provides insights into rice domestication and de-domestication. Genome Biol. 2023;24(1):179.

Wang Z, Huang S, Yang Z, Lai J, Gao X, Shi J. A high-quality, phased genome assembly of broomcorn millet reveals the features of its subgenome evolution and 3D chromatin organization. Plant Commun. 2023;4(3):100557.

Mao Q, Huff DR. The evolutionary origin of Poa annua L. Crop Sci. 2012;52(4):1910–22.

Benson CW, Sheltra MR, Maughan JP, Jellen EN, Robbins MD, Bushman BS, et al. Homoeologous evolution of the allotetraploid genome of Poa annua L. Res Sq. 2023. https://doi.org/10.21203/rs.3.rs-2729084/v1 .

Brunharo C, Benson CW, Huff DR, Lasky JR. Chromosome-scale genome assembly of Poa trivialis and population genomics reveal widespread gene flow in a cool-season grass seed production system. Plant Direct. 2024;8(3):e575.

Mo C, Wu Z, Shang X, Shi P, Wei M, Wang H, et al. Chromosome-level and graphic genomes provide insights into metabolism of bioactive metabolites and cold-adaption of Pueraria lobata var. montana . DNA Research. 2022;29(5):dsac030.

Thielen PM, Pendleton AL, Player RA, Bowden KV, Lawton TJ, Wisecaver JH. Reference genome for the highly transformable Setaria viridis ME034V. G3 (Bethesda, Md). 2020;10(10):3467–78.

Yoshida S, Kim S, Wafula EK, Tanskanen J, Kim Y-M, Honaas L, et al. Genome sequence of Striga asiatica provides insight into the evolution of plant parasitism. Curr Biol. 2019;29(18):3041–52.

Qiu S, Bradley JM, Zhang P, Chaudhuri R, Blaxter M, Butlin RK, et al. Genome-enabled discovery of candidate virulence loci in Striga hermonthica , a devastating parasite of African cereal crops. New Phytol. 2022;236(2):622–38.

Nunn A, Rodríguez-Arévalo I, Tandukar Z, Frels K, Contreras-Garrido A, Carbonell-Bejerano P, et al. Chromosome-level Thlaspi arvense genome provides new tools for translational research and for a newly domesticated cash cover crop of the cooler climates. Plant Biotechnol J. 2022;20(5):944–63.

USDA-ARS Germplasm Resources Information Network (GRIN). https://www.ars-grin.gov/ . Accessed 20 June 2023.

Buck M, Hamilton C. The Nagoya Protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity. RECIEL. 2011;20(1):47–61.

Chauhan BS, Matloob A, Mahajan G, Aslam F, Florentine SK, Jha P. Emerging challenges and opportunities for education and research in weed science. Front Plant Sci. 2017;8:1537.

Shah S, Lonhienne T, Murray CE, Chen Y, Dougan KE, Low YS, et al. Genome-guided analysis of seven weed species reveals conserved sequence and structural features of key gene targets for herbicide development. Front Plant Sci. 2022;13:909073.

International Weed Genomics Consortium Training Resources. https://www.weedgenomics.org/training-resources/ . Accessed 20 June 2023.

Blackford S. Harnessing the power of communities: career networking strategies for bioscience PhD students and postdoctoral researchers. FEMS Microbiol Lett. 2018;365(8):fny033.

Pender M, Marcotte DE, Sto Domingo MR, Maton KI. The STEM pipeline: The role of summer research experience in minority students’ Ph.D. aspirations. Educ Policy Anal Arch. 2010;18(30):1–36.

PubMed   PubMed Central   Google Scholar  

Burke A, Okrent A, Hale K. The state of U.S. science and engineering 2022. Foundation NS. https://ncses.nsf.gov/pubs/nsb20221 . 2022.

Wu J-Y, Liao C-H, Cheng T, Nian M-W. Using data analytics to investigate attendees’ behaviors and psychological states in a virtual academic conference. Educ Technol Soc. 2021;24(1):75–91.

Download references

Peer review information

Wenjing She was the primary editor of this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

The International Weed Genomics Consortium is supported by BASF SE, Bayer AG, Syngenta Ltd, Corteva Agriscience, CropLife International (Global Herbicide Resistance Action Committee), the Foundation for Food and Agriculture Research (Award DSnew-0000000024), and two conference grants from USDA-NIFA (Award numbers 2021–67013-33570 and 2023-67013-38785).

Author information

Authors and affiliations.

Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA

Jacob Montgomery, Sarah Morran & Todd A. Gaines

Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, UK

Dana R. MacGregor

Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA

J. Scott McElroy

Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark

Paul Neve & Célia Neto

IFEVA-Conicet-Department of Ecology, University of Buenos Aires, Buenos Aires, Argentina

Martin M. Vila-Aiub & Maria Victoria Sandoval

Department of Ecology, Faculty of Agronomy, University of Buenos Aires, Buenos Aires, Argentina

Analia I. Menéndez

Department of Botany, The University of British Columbia, Vancouver, BC, Canada

Julia M. Kreiner

Institute of Crop Sciences, Zhejiang University, Hangzhou, China

Longjiang Fan

Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA

Ana L. Caicedo

Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA

Peter J. Maughan

Bayer AG, Weed Control Research, Frankfurt, Germany

Bianca Assis Barbosa Martins, Jagoda Mika, Alberto Collavo & Bodo Peters

Department of Crop Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil

Aldo Merotto Jr.

Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA

Nithya K. Subramanian & Muthukumar V. Bagavathiannan

Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA

Luan Cutti & Eric L. Patterson

Department of Agronomy, Kansas State University, Manhattan, KS, USA

Md. Mazharul Islam & Mithila Jugulam

Department of Plant Pathology, Kansas State University, Manhattan, KS, USA

Bikram S. Gill

Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA

Robert Cicchillo, Roger Gast & Neeta Soni

Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA

Terry R. Wright, Gina Zastrow-Hayes, Gregory May, Kevin Fengler & Victor Llaca

School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia

Jenna M. Malone

Jealott’s Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK

Deepmala Sehgal, Shiv Shankhar Kaundun & Richard P. Dale

Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa

Barend Juan Vorster

BASF SE, Ludwigshafen Am Rhein, Germany

Jens Lerchl

Department of Crop Sciences, University of Illinois, Urbana, IL, USA

Patrick J. Tranel

Senior Scientist Consultant, Herbicide Resistance Action Committee / CropLife International, Liederbach, Germany

Roland Beffa

School of BioSciences, University of Melbourne, Parkville, VIC, Australia

Alexandre Fournier-Level

You can also search for this author in PubMed   Google Scholar

Contributions

JMo and TG conceived and outlined the article. TG, DM, EP, RB, JSM, PJT, MJ wrote grants to obtain funding. MMI, BSG, and MJ performed mitotic chromosome visualization. VL performed sequencing. VL and KF assembled the genomes. LC and ELP annotated the genomes. JMo, SM, DRM, JSM, PN, CN, MV, MVS, AIM, JMK, LF, ALC, PJM, BABM, JMi, AC, MVB, LC, AFL, and ELP wrote the first draft of the article. All authors edited the article and improved the final version.

Corresponding author

Correspondence to Todd A. Gaines .

Ethics declarations

Ethics approval and consent to participate.

Ethical approval is not applicable for this article.

Competing interests

Some authors work for commercial agricultural companies (BASF, Bayer, Corteva Agriscience, or Syngenta) that develop and sell weed control products.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

13059_2024_3274_moesm1_esm.docx.

Additional file 1. List of completed and in-progress genome assemblies of weed species pollinated by insects (Table S1).

13059_2024_3274_MOESM2_ESM.docx

Additional file 2. Methods and results for visualizing and counting the metaphase chromosomes of hexaploid Avena fatua (Fig S1); diploid Lolium rigidum  (Fig S2); tetraploid Phalaris minor (Fig S3); and tetraploid Salsola tragus (Fig S4).

Additional file 3. Review history.

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Montgomery, J., Morran, S., MacGregor, D.R. et al. Current status of community resources and priorities for weed genomics research. Genome Biol 25 , 139 (2024). https://doi.org/10.1186/s13059-024-03274-y

Download citation

Received : 11 July 2023

Accepted : 13 May 2024

Published : 27 May 2024

DOI : https://doi.org/10.1186/s13059-024-03274-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Weed science
  • Reference genomes
  • Rapid adaptation
  • Herbicide resistance
  • Public resources

Genome Biology

ISSN: 1474-760X

what is biology research

  • See us on facebook
  • See us on twitter
  • See us on youtube
  • See us on linkedin
  • See us on instagram

Gene variants foretell the biology of future breast cancers in Stanford Medicine study

In a finding that vastly expands the understanding of tumor evolution, researchers discover genetic biomarkers that can predict the breast cancer subtype a patient is likely to develop.

May 30, 2024 - By Krista Conger

test

Stanford Medicine researchers found that inherited gene sequences can predict what type of breast cancer a patient is likely to develop, along with how aggressive that cancer may be.   Emily Moskal

A Stanford Medicine study of thousands of breast cancers has found that the gene sequences we inherit at conception are powerful predictors of the breast cancer type we might develop decades later and how deadly it might be.

The study challenges the dogma that most cancers arise as the result of random mutations that accumulate during our lifetimes. Instead, it points to the active involvement of gene sequences we inherit from our parents — what’s known as your germline genome — in determining whether cells bearing potential cancer-causing mutations are recognized and eliminated by the immune system or skitter under the radar to become nascent cancers. 

“Apart from a few highly penetrant genes that confer significant cancer risk, the role of hereditary factors remains poorly understood, and most malignancies are assumed to result from random errors during cell division or bad luck,” said Christina Curtis , PhD, the RZ Cao Professor of Medicine and a professor of genetics and of biomedical data science. “This would imply that tumor initiation is random, but that is not what we observe. Rather, we find that the path to tumor development is constrained by hereditary factors and immunity. This new result unearths a new class of biomarkers to forecast tumor progression and an entirely new way of understanding breast cancer origins.”

Curtis is the senior author of the study, which will be published May 31 in Science . Postdoctoral scholar Kathleen Houlahan , PhD, is the lead author of the research.

“Back in 2015, we had posited that some tumors are ‘born to be bad’ — meaning that their malignant and even metastatic potential is determined early in the disease course,” Curtis said. “We and others have since corroborated this finding across multiple tumors, but these findings cast a whole new light on just how early this happens.”

A new take on cancer’s origin

The study, which gives a nuanced and powerful new understanding of the interplay between newly arisen cancer cells and the immune system, is likely to help researchers and clinicians better predict and combat breast tumors.

Currently, only a few high-profile cancer-associated mutations in genes are regularly used to predict cancers, but these account for a small minority of cases. Those include BRCA1 and BRCA2, which occur in about one of every 500 women and confer an increased risk of breast or ovarian cancer, and rarer mutations in a gene called TP53 that causes a disease called Li Fraumeni syndrome, which predisposes to childhood and adult-onset tumors.

Christina Curtis

Christina Curtis

The findings suggest there are tens or hundreds of additional gene variants — identifiable in healthy people — that through interactions with the immune system pull the strings that determine why some people remain cancer-free throughout their lives.

“Our findings not only explain which subtype of breast cancer an individual is likely to develop,” Houlahan said, “but they also hint at how aggressive and prone to metastasizing that subtype will be. Beyond that, we speculate that these inherited variants may influence a person’s risk of developing breast cancer. However, future studies will be needed to examine this.”  

The genes we inherit from our parents are known as our germline genome. They’re mirrors of our parents’ genetic makeup, and they can vary among people in small ways that give some of us blue eyes, brown hair or type O blood. Some inherited genes include mutations that confer increased cancer risk from the get-go, such as BRCA1, BRCA2 and TP53.

In contrast, most cancer-associated genes are part of what’s known as our somatic genome. As we live our lives, our cells divide and die in the tens of millions. Each time the DNA in a cell is copied, mistakes happen and mutations can accumulate. DNA in tumors is often compared with the germline genomes in blood or normal tissues in an individual to pinpoint which changes likely led to the cell’s cancerous transformation.

Classifying breast cancers

In 2012, Curtis began a deep dive — assisted by machine learning — into the types of somatic mutations that occur in thousands of breast cancers. She was eventually able to categorize the disease into 11 subtypes with varying prognoses and risk of recurrence, finding that four of the 11 groups were significantly more likely to recur even 10 or 20 years after diagnosis — critical information for clinicians making treatment decisions and discussing long-term prognoses with their patients.

Prior studies had shown that people with inherited BRCA1 mutations tend to develop a subtype of breast cancer known as triple negative breast cancer. This correlation implies some behind-the-scenes shenanigans by the germline genome that affects what subtype of breast cancer someone might develop.

“We wanted to understand how inherited DNA might sculpt how a tumor evolves,” Houlahan said. To do so, they took a close look at the immune system.

It’s a quirk of biology that even healthy cells routinely decorate their outer membranes with small chunks of the proteins they have bobbing in their cytoplasm — an outward display that reflects their inner style.

Kathleen Houlahan

Kathleen Houlahan

The foundations for this display are what’s known as HLA proteins, and they are highly variable among individuals. Like fashion police, immune cells called T cells prowl the body looking for any suspicious or overly flashy bling (called epitopes) that might signal something is amiss inside the cell. A cell infected with a virus will display bits of viral proteins; a sick or cancerous cell will adorn itself with abnormal proteins. These faux pas trigger the T cells to destroy the offenders.

Houlahan and Curtis decided to focus on oncogenes, normal genes that, when mutated, can free a cell from regulatory pathways meant to keep it on the straight and narrow. Often, these mutations take the form of multiple copies of the normal gene, arranged nose to tail along the DNA — the result of a kind of genomic stutter called amplification. Amplifications in specific oncogenes drive different cancer pathways and were used to differentiate one breast cancer subtype from another in Curtis’ original studies.

The importance of bling

The researchers wondered whether highly recognizable epitopes would be more likely to attract T cells’ attention than other, more modest displays (think golf-ball-sized, dangly turquoise earrings versus a simple silver stud). If so, a cell that had inherited a flashy version of an oncogene might be less able to pull off its amplification without alerting the immune system than a cell with a more modest version of the same gene. (One pair of overly gaudy turquoise earrings can be excused; five pairs might cause a patrolling fashionista T cell to switch from tutting to terminating.)

The researchers studied nearly 6,000 breast tumors spanning various stages of disease to learn whether the subtype of each tumor correlated with the patients’ germline oncogene sequences. They found that people who had inherited an oncogene with a high germline epitope burden (read: lots of bling) — and an HLA type that can display that epitope prominently — were significantly less likely to develop breast cancer subtypes in which that oncogene is amplified.

There was a surprise, though. The researchers found that cancers with a large germline epitope burden that manage to escape the roving immune cells early in their development tended to be more aggressive and have a poorer prognosis than their more subdued peers.

“At the early, pre-invasive stage, a high germline epitope burden is protective against cancer,” Houlahan said. “But once it’s been forced to wrestle with the immune system and come up with mechanisms to overcome it, tumors with high germline epitope burden are more aggressive and prone to metastasis. The pattern flips during tumor progression.”

“Basically, there is a tug of war between tumor and immune cells,” Curtis said. “In the preinvasive setting, the nascent tumor may initially be more susceptible to immune surveillance and destruction. Indeed, many tumors are likely eliminated in this manner and go unnoticed. However, the immune system does not always win. Some tumor cells may not be eliminated and those that persist develop ways to evade immune recognition and destruction. Our findings shed light on this opaque process and may inform the optimal timing of therapeutic intervention, as well as how to make an immunologically cold tumor become hot, rendering it more sensitive to therapy.”

The researchers envision a future when the germline genome is used to further stratify the 11 breast cancer subtypes identified by Curtis to guide treatment decisions and improve prognoses and monitoring for recurrence. The study’s findings may also give additional clues in the hunt for personalized cancer immunotherapies and may enable clinicians to one day predict a healthy person’s risk of developing an invasive breast cancer from a simple blood sample.

“We started with a bold hypothesis,” Curtis said. “The field had not thought about tumor origins and evolution in this way. We’re examining other cancers through this new lens of hereditary and acquired factors and tumor-immune co-evolution.”

The study was funded by the National Institutes of Health (grants DP1-CA238296 and U54CA261719), the Canadian Institutes of Health Research and the Chan Zuckerberg Biohub.

Krista Conger

About Stanford Medicine

Stanford Medicine is an integrated academic health system comprising the Stanford School of Medicine and adult and pediatric health care delivery systems. Together, they harness the full potential of biomedicine through collaborative research, education and clinical care for patients. For more information, please visit med.stanford.edu .

Hope amid crisis

Psychiatry’s new frontiers

Stanford Medicine magazine: Mental health

ScienceDaily

Lighting up the brain: What happens when our 'serotonin center' is triggered?

Using mice, scientists at the Okinawa Institute of Science and Technology (OIST) and their collaborators from Keio University School of Medicine have studied the main source of serotonin in the brain -- the dorsal raphe nucleus (DRN). By studying how activating the brain's 'serotonin center' affects awake animals for the first time, they found that serotonin from the DRN activates brain areas that affect behavior and motivation. Results show that DRN serotonin stimulation causes activation of the cerebral cortex and the basal ganglia, brain areas involved in many cognitive functions.

Additionally, the brain's response to serotonin stimulation is strongly linked to the distribution of serotonin receptors (proteins activated by serotonin) and the connection patterns of DRN serotonin neurons. "We clearly see from the high-field MRI images which areas in the brain are activated and deactivated during the awake state and under anesthesia when we activate serotonin neurons in the DRN," lead author Dr. Hiroaki Hamada said. "A previous study showed that the cerebral cortex and the basal ganglia were mostly deactivated under anesthesia, which we also observed, however, in awake states these areas are significantly activated."

Our brains are made of tens of billions of nerve cells called neurons. These cells communicate with each other through biomolecules called neurotransmitters. Serotonin, a type of neurotransmitter, is produced by serotonin neurons in our brains and influences many of our behavioral and cognitive functions such as memory, sleep, and mood.

"Learning about the brain's serotonin system can help us understand how we adapt our behaviors and how mood therapy medication works. But it was hard to study how serotonin from the DRN affects the entire brain. First, because electric stimulation of the DRN can also activate neurons that don't use serotonin to communicate with each other, and second, using drugs can affect other serotonin in the brain," explained Dr. Hiroaki Hamada, a former PhD student at OIST's Neural Computation Unit and lead author of a paper on this study published in the journal Nature Communications .

Previous studies by researchers at the Neural Computation Unit have shown that serotonin neurons in the DRN promote adaptive behaviors in mice associated with future rewards. Dr. Hamada and his collaborators wanted to understand the mechanisms in the brain that cause these adaptive behaviors.

"We knew that DRN serotonin activation has strong effects on behavior, but we didn't know how this serotonin activation affects different parts of the brain," Prof. Kenji Doya, leader of the Neural Computation Unit, stated.

Observing the entire brain's response to DRN serotonin activation

The researchers used a novel technique called opto-functional MRI to address this question. They used a method called optogenetics to selectively activate serotonin neurons in the DRN with light and observed the entire brain's response using functional MRI (Magnetic Resonance Imaging). They utilized the latest MRI scanner with a strong magnetic field to achieve the high resolution needed to study the small brains of mice. The mice were put in the MRI scanner and serotonin neurons were stimulated at regular intervals to see how this affected the whole brain.

They found that DRN serotonin stimulation causes activation of the cerebral cortex and the basal ganglia, brain areas involved in many cognitive functions. This result was very different from a previous study performed under anesthesia. Additionally, the brain's response to serotonin stimulation is strongly linked to the distribution of serotonin receptors (proteins activated by serotonin) and the connection patterns of DRN serotonin neurons.

"We clearly see from the high-field MRI images which areas in the brain are activated and deactivated during the awake state and under anesthesia when we activate serotonin neurons in the DRN," Dr. Hamada said. "A previous study showed that the cerebral cortex and the basal ganglia were mostly deactivated under anesthesia, which we also observed, however, in awake states these areas are significantly activated."

The cerebral cortex and the basal ganglia are parts of the brain critical for many cognitive processes, including motor activity and behaviors to gain rewards such as food and water. Activation of DNR serotonin neurons can therefore lead to changes in motivation and behavior.

Patience and stimulating your own serotonin

Combining the new technique of high field MRI and optogenetics presented many obstacles that Dr. Hamada had to overcome. "We introduced and adapted a method previously used by our collaborators and established many new procedures at OIST. For me, the main challenge was using the new MRI machine at the time, so I needed to have patience and stimulate my own serotonin. I started doing a lot of exercise after that," he laughed.

Seeing activations in the DRN for the first time was a standout moment for Dr. Hamada. In the beginning, he used the same light intensity that his collaborators used, but this was too weak to see the brain responses in the MRI. He then used bigger optical fibers and increased the intensity to stimulate the DRNs.

Prof. Doya noted that the next important milestone to achieve is understanding exactly how this brain-wide activation of serotonin occurs: "It's important to find out what is the actual molecular mechanism allowing this activation in our brain. People who would like to get better at adjusting their behavior and thinking in different situations could also find it helpful to learn more about how serotonin helps control our moods."

  • Neuroscience
  • Brain Injury
  • Brain-Computer Interfaces
  • Intelligence
  • Animal Learning and Intelligence
  • Behavioral Science
  • Methamphetamine
  • Human brain
  • Neocortex (brain)
  • Parkinson's disease

Story Source:

Materials provided by Okinawa Institute of Science and Technology (OIST) Graduate University . Original written by Merle Naidoo. Note: Content may be edited for style and length.

Journal Reference :

  • Hiro Taiyo Hamada, Yoshifumi Abe, Norio Takata, Masakazu Taira, Kenji F. Tanaka, Kenji Doya. Optogenetic activation of dorsal raphe serotonin neurons induces brain-wide activation . Nature Communications , 2024; 15 (1) DOI: 10.1038/s41467-024-48489-6

Cite This Page :

Explore More

  • CO2 Conversion at a Much Larger Scale
  • The Embryo Assembles Itself
  • Thawing Permafrost: Not A Tipping Point
  • Climate Change Was No Problem for Sharks
  • Fungus Breaks Down Ocean Plastic
  • Kinship and Ancestry of the Celts
  • How Statin Therapy May Prevent Cancer
  • Origins of 'Welsh Dragons' Exposed
  • Resting Brain: Neurons Rehearse for Future
  • Observing Single Molecules

Trending Topics

Strange & offbeat.

IOWA Research Park

IDT Image

Integrated DNA Technologies Invests in New U.S. Synthetic Biology Manufacturing Facility

CORALVILLE, Iowa (May 28, 2024) –Global genomics solutions provider Integrated DNA Technologies (IDT) today announced the expansion of its synthetic biology operations with the opening of a new 25,000 square-foot-site in Coralville, IA. The two-story building will be dedicated to the manufacturing of IDT synthetic biology products, doubles IDT's synthetic biology footprint, and enables IDT to further enhance its gene synthesis portfolio with differentiated offerings.

"The expansion of our synthetic biology manufacturing operations adds significant capacity for IDT and lays the foundation for the future growth of our synthetic biology product portfolio, says Demaris Mills, President, IDT. "With this increased footprint, we will be introducing new product enhancements, which will include the launch of a rapid gene synthesis offering expected in late Q2. This investment provides IDT with a growth runway for its synthetic biology product portfolio and manufacturing arm to support the rapidly expanding global DNA synthesis market and related drug development activity."

Proximate to IDT's flagship U.S. headquarters, more than half of the 25,000 square-foot facility has been dedicated to synthetic biology lab spaces. Other areas include office and conference rooms, amenities, onsite dedicated support resources, and additional space for future expansion. Notable lab features include enhanced cold storage, facility and flow designed for lean manufacturing, and LED lighting and building automation systems to enable energy efficient building performance. The facility will be operational 24 hours a day, seven days a week.

The investment comes after IDT's recent launch of the new custom vector onboarding tool to equip researchers with an easy-to-use solution that enables them to skip in-house cloning steps and move quickly into functional studies with 100% sequence-verified clonal DNA. The launch was the latest addition to IDT's broad synthetic biology portfolio comprised of gene and gene fragment offerings. As a large-scale provider of synthetic DNA, IDT can make gene fragments between 125 bp to 3 kb, and custom genes from 25 bp to over 5 kb.

The expansion of IDT's synthetic biology manufacturing facility marks the second facility completion for IDT within the last 12 months. In late 2023, IDT announced the completion of its new Therapeutic Oligonucleotide Manufacturing facility in Iowa, which commemorated its entrance into the therapeutics space.

For more than 35 years, Integrated DNA Technologies, Inc. (IDT) has empowered genomics laboratories with an oligonucleotide manufacturing process unlike anyone else in the industry, featuring the most advanced synthesis, modification, purification, and quality control capabilities available. Since its founding in 1987, IDT has progressed from a leading oligo manufacturer to a genomics solutions provider supporting key application areas such as next generation sequencing, CRISPR genome editing, synthetic biology, digital PCR, and RNA interference. IDT manufactures products used by scientists researching many forms of cancer and most inherited and infectious diseases.

Seeking to fulfill its mission of accelerating the pace of genomics, IDT acquired Archer™ NGS Research Assays in December 2022. When combined with its existing solutions, the expanded portfolio helps realize the shared vision of enabling researchers to rapidly move from the lab to life-changing advances.

IDT's infrastructure supports customers around the globe with its manufacturing headquarters situated in Coralville, Iowa, USA, with additional manufacturing sites in San Diego, California, USA; Boulder, Colorado, USA; Research Triangle Park, North Carolina, USA; Ann Arbor, Michigan, USA; Leuven, Belgium; and Singapore.

IDT is proud to be part of Danaher. Danaher's science and technology leadership puts IDT’s solutions at the forefront of the industry, so they can reach more people. Being part of Danaher means we can offer unparalleled breadth and depth of expertise and solutions to our customers.

Together with Danaher's other businesses across Biotechnology, Diagnostics and Life Sciences, we unlock the transformative potential of cutting-edge science and technology to improve billions of lives every day.

For more information about IDT, visit www.idtdna.com  and follow the company on LinkedIn , X , Facebook , YouTube , and Instagram .

RUO24-2887_001

IMAGES

  1. Biology Research Resources Homepage

    what is biology research

  2. What Is Biology?

    what is biology research

  3. PPT

    what is biology research

  4. What Is Biology?

    what is biology research

  5. 60+ Biology Research Topics, Examples, List of Biology Research Topics

    what is biology research

  6. 10 Most Interesting Biology Research Topics

    what is biology research

VIDEO

  1. Introduction to biology

  2. Top 5 Unanswered Biology Questions Explained (16 Minutes Microlearning)

  3. Zoology : #Whatisbiology #biology

  4. What is biology

  5. What is Biology

  6. What is research

COMMENTS

  1. Biology

    Biology graduates can hold a wide range of jobs, some of which may require additional education. A person with a degree in biology could work in agriculture, health care, biotechnology, education, environmental conservation, research, forensic science, policy, science communication, and many other areas.

  2. Biology

    Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For ... Conservation biologists research and educate on the trends of biodiversity loss, species extinctions, ...

  3. THE WORLD OF BIOLOGICAL RESEARCH

    The life sciences embrace a great array of intellectual activity, a continuum extending from the search for the origin of life and the detailed structure of the macromolecules that make life possible to understanding of the total ecology of planet Earth. The millions of micro-organisms and plant and animal species interacting in the air, the soil, freshwater ponds and streams, and the oceans ...

  4. Articles

    Diabetes mellitus (DM) is a global epidemic with increasing incidences. DM is a metabolic disease associated with chronic hyperglycemia. Aside from conventional treatments, there is no clinically approved cure... Omar I. Badr, Mohamed M. Kamal, Shohda A. El-Maraghy and Heba R. Ghaiad. Biological Research 2024 57 :20.

  5. The scientific method (article)

    The scientific method. At the core of biology and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis.

  6. Introduction to the Study of Biology

    Biology is a natural science concerned with the study of life and living organisms. Modern biology is a vast and eclectic field composed of many specialized disciplines that study the structure, function, growth, distribution, evolution, or other features of living organisms. However, despite the broad scope of biology, there are certain ...

  7. Biological sciences

    Biological sciences encompasses all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and ...

  8. 1.1 The Science of Biology

    In simple terms, biology is the study of life. This is a very broad definition because the scope of biology is vast. Biologists may study anything from the microscopic or submicroscopic view of a cell to ecosystems and the whole living planet ( Figure 1.2 ). Listening to the daily news, you will quickly realize how many aspects of biology we ...

  9. Home page

    Biological Research, formerly Archives of Experimental Medicine and Biology, was founded in 1964 and transferred to BioMed Central in 2014. An electronic archive of articles published between 1999 and 2013 can be found in the SciELO database.

  10. Areas of Research

    Areas of Research. For over 50 years, we have played a central role in the growth of molecular life sciences and the revolution in molecular and cellular biology, genetics, genomics, and computational biology.

  11. Biology

    Biology is the branch of science that primarily deals with the structure, function, growth, evolution, and distribution of organisms. As a science, it is a methodological study of life and living things. It determines verifiable facts or formulates theories based on experimental findings on living things by applying the scientific method.

  12. What is Biology

    Biology. Definition: Biology is the study of life and living organisms. It includes the study of their structure, function, growth, origin, evolution, and distribution. It is a branch of science that deals with the study of living things. It covers a wide range of topics from the structure and function of cells to the behavior of ecosystems.

  13. 100 Biology Research Topics for Students & Researchers

    Research Topics in Biology for Undergraduates. 41. Investigating the effects of pollutants on local plant species. Microbial diversity and ecosystem functioning in a specific habitat. Understanding the genetics of antibiotic resistance in bacteria. Impact of urbanization on bird populations and biodiversity. Investigating the role of pheromones ...

  14. Cell biology

    Cell biology is the discipline of biological sciences that studies the structure, physiology, growth, reproduction and death of cells. Research in cell biology uses microscopic and molecular tools ...

  15. About

    Biological Research operates using a single-blind peer-review system, where the reviewers are aware of the names and affiliations of the authors, but the reviewer reports provided to authors are anonymous.. Manuscripts that are deemed suitable for consideration will be assigned to two expert reviewers by the Editor-in-Chief or an Associate Editor.

  16. Research Areas

    Research Areas. Research activity in the Biology Department spans the full range of biological organization, from molecules to ecosystems. Main research fields are indicated here, as links to groups of faculty doing research in those areas.

  17. What is Biology?

    Biology is a natural science discipline that studies living things. It is a very large and broad field due to the wide variety of life found on Earth, so individual biologists normally focus on specific fields. These fields are either categorized by the scale of life or by the types of organisms studied.

  18. 1.4: Research Proposals

    Written Proposal. Writing about research is a primary method scientists use to communicate their work. Thus, this course will involve developing a written research proposal. We will use several drafts to refine the research proposal. The first draft can utilize the template available in Appendix 6.

  19. About Astrobiology

    Astrobiology is the study of the origin, evolution, and distribution of life in the universe. Artist's rendering of NASA's Cassini spacecraft observing a sunset through Titan's hazy atmosphere. Credit: NASA/JPL-Caltech. This is an artistic rendering of planets orbiting stars in the Milky Way (the planets, their orbits and their host stars ...

  20. Research

    Biology education research is a type of discipline-based education research, where education research is conducted in the context of a specific field (its worldview, knowledge, and practices) and by content experts. Faculty and students in the Biology Department use their biology content expertise as well as training in broad learning theories ...

  21. Research Areas: Cancer Biology

    NCI supports and directs cancer biology research through a variety of programs and approaches. For example: The Metastasis Research Network (MetNet) supports research to improve our understanding of how cancer spreads. Cancer metastasis is a complex, dynamic, nonlinear process. The network supports several specialized centers working ...

  22. 200+ Interesting Biology Research Topics For Students In 2023

    Molecular Biology Research Topics For Undergraduates. 31. Studying the structure and function of DNA and RNA molecules. 32. Analyzing the regulation of gene expression in eukaryotic cells. 33. Investigating the mechanisms of DNA replication and repair. 34. Studying the role of non-coding RNAs in gene regulation.

  23. Latest Biology News & Discoveries: Cutting-Edge Research in Life

    Biology is the scientific study of life and living organisms, encompassing various sub-disciplines such as microbiology, botany, zoology, and physiology. We're dedicated to bringing you the latest research findings, innovative technologies, and thought-provoking discoveries from top scientists, research institutions, and universities around ...

  24. The Long-Overlooked Molecule That Will Define a Generation of Science

    Dr. Cech is a biochemist and the author of the forthcoming book "The Catalyst: RNA and the Quest to Unlock Life's Deepest Secrets," from which this essay is adapted. From E=mc² to splitting ...

  25. Biochemistry and molecular biology alumna shrinks gender gaps in

    A biochemistry and molecular biology major at The College of Wooster, Smith is currently pursuing a doctorate in biomedical science and master's degree in clinical research from the Morehouse School of Medicine, where she is working to research female health disparities related to the circadian clock within the realm of neuroscience ...

  26. Scientists identify mechanism behind drug resistance in malaria

    The research sets the foundation for the development of better tools to study RNA modifications and their role in resistance while simultaneously opening new avenues for drug development. RNA-modifying enzymes, especially those linked to resistance, are currently understudied, and they are attractive targets for the development of new and more ...

  27. Current status of community resources and priorities for weed genomics

    Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary ...

  28. Gene variants foretell the biology of future breast cancers in Stanford

    Gene variants foretell the biology of future breast cancers in Stanford Medicine study share. In a finding that vastly expands the understanding of tumor evolution, researchers discover genetic biomarkers that can predict the breast cancer subtype a patient is likely to develop. ... Postdoctoral scholar Kathleen Houlahan, PhD, is the lead ...

  29. Lighting up the brain: What happens when our 'serotonin center' is

    Serotonin, a type of neurotransmitter, is produced by serotonin neurons in our brains and influences many of our behavioral and cognitive functions such as memory, sleep, and mood. "Learning about ...

  30. Integrated DNA Technologies Invests in New U.S. Synthetic Biology

    CORALVILLE, Iowa (May 28, 2024)-Global genomics solutions provider Integrated DNA Technologies (IDT) today announced the expansion of its synthetic biology operations with the opening of a new 25,000 square-foot-site in Coralville, IA.The two-story building will be dedicated to the manufacturing of IDT synthetic biology products, doubles IDT's synthetic biology footprint, and enables IDT to ...