CodeAvail

Exploring 250+ Machine Learning Research Topics

machine learning research topics

In recent years, machine learning has become super popular and grown very quickly. This happened because technology got better, and there’s a lot more data available. Because of this, we’ve seen lots of new and amazing things happen in different areas. Machine learning research is what makes all these cool things possible. In this blog, we’ll talk about machine learning research topics, why they’re important, how you can pick one, what areas are popular to study, what’s new and exciting, the tough problems, and where you can find help if you want to be a researcher.

Why Does Machine Learning Research Matter?

Table of Contents

Machine learning research is at the heart of the AI revolution. It underpins the development of intelligent systems capable of making predictions, automating tasks, and improving decision-making across industries. The importance of this research can be summarized as follows:

Advancements in Technology

The growth of machine learning research has led to the development of powerful algorithms, tools, and frameworks. Numerous industries, including healthcare, banking, autonomous cars, and natural language processing, have found use for these technology.

As researchers continue to push the boundaries of what’s possible, we can expect even more transformative technologies to emerge.

Real-world Applications

Machine learning research has brought about tangible changes in our daily lives. Voice assistants like Siri and Alexa, recommendation systems on streaming platforms, and personalized healthcare diagnostics are just a few examples of how this research impacts our world. 

By working on new research topics, scientists can further refine these applications and create new ones.

Economic and Industrial Impacts

The economic implications of machine learning research are substantial. Companies that harness the power of machine learning gain a competitive edge in the market. 

This creates a demand for skilled machine learning researchers, driving job opportunities and contributing to economic growth.

How to Choose the Machine Learning Research Topics?

Selecting the right machine learning research topics is crucial for your success as a machine learning researcher. Here’s a guide to help you make an informed decision:

  • Understanding Your Interests

Start by considering your personal interests. Machine learning is a broad field with applications in virtually every sector. By choosing a topic that aligns with your passions, you’ll stay motivated and engaged throughout your research journey.

  • Reviewing Current Trends

Stay updated on the latest trends in machine learning. Attend conferences, read research papers, and engage with the community to identify emerging research topics. Current trends often lead to exciting breakthroughs.

  • Identifying Gaps in Existing Research

Sometimes, the most promising research topics involve addressing gaps in existing knowledge. These gaps may become evident through your own experiences, discussions with peers, or in the course of your studies.

  • Collaborating with Experts

Collaboration is key in research. Working with experts in the field can help you refine your research topic and gain valuable insights. Seek mentors and collaborators who can guide you.

250+ Machine Learning Research Topics: Category-wise

Supervised learning.

  • Explainable AI for Decision Support
  • Few-shot Learning Methods
  • Time Series Forecasting with Deep Learning
  • Handling Imbalanced Datasets in Classification
  • Regression Techniques for Non-linear Data
  • Transfer Learning in Supervised Settings
  • Multi-label Classification Strategies
  • Semi-Supervised Learning Approaches
  • Novel Feature Selection Methods
  • Anomaly Detection in Supervised Scenarios
  • Federated Learning for Distributed Supervised Models
  • Ensemble Learning for Improved Accuracy
  • Automated Hyperparameter Tuning
  • Ethical Implications in Supervised Models
  • Interpretability of Deep Neural Networks.

Unsupervised Learning

  • Unsupervised Clustering of High-dimensional Data
  • Semi-Supervised Clustering Approaches
  • Density Estimation in Unsupervised Learning
  • Anomaly Detection in Unsupervised Settings
  • Transfer Learning for Unsupervised Tasks
  • Representation Learning in Unsupervised Learning
  • Outlier Detection Techniques
  • Generative Models for Data Synthesis
  • Manifold Learning in High-dimensional Spaces
  • Unsupervised Feature Selection
  • Privacy-Preserving Unsupervised Learning
  • Community Detection in Complex Networks
  • Clustering Interpretability and Visualization
  • Unsupervised Learning for Image Segmentation
  • Autoencoders for Dimensionality Reduction.

Reinforcement Learning

  • Deep Reinforcement Learning in Real-world Applications
  • Safe Reinforcement Learning for Autonomous Systems
  • Transfer Learning in Reinforcement Learning
  • Imitation Learning and Apprenticeship Learning
  • Multi-agent Reinforcement Learning
  • Explainable Reinforcement Learning Policies
  • Hierarchical Reinforcement Learning
  • Model-based Reinforcement Learning
  • Curriculum Learning in Reinforcement Learning
  • Reinforcement Learning in Robotics
  • Exploration vs. Exploitation Strategies
  • Reward Function Design and Ethical Considerations
  • Reinforcement Learning in Healthcare
  • Continuous Action Spaces in RL
  • Reinforcement Learning for Resource Management.

Natural Language Processing (NLP)

  • Multilingual and Cross-lingual NLP
  • Contextualized Word Embeddings
  • Bias Detection and Mitigation in NLP
  • Named Entity Recognition for Low-resource Languages
  • Sentiment Analysis in Social Media Text
  • Dialogue Systems for Improved Customer Service
  • Text Summarization for News Articles
  • Low-resource Machine Translation
  • Explainable NLP Models
  • Coreference Resolution in NLP
  • Question Answering in Specific Domains
  • Detecting Fake News and Misinformation
  • NLP for Healthcare: Clinical Document Understanding
  • Emotion Analysis in Text
  • Text Generation with Controlled Attributes.

Computer Vision

  • Video Action Recognition and Event Detection
  • Object Detection in Challenging Conditions (e.g., low light)
  • Explainable Computer Vision Models
  • Image Captioning for Accessibility
  • Large-scale Image Retrieval
  • Domain Adaptation in Computer Vision
  • Fine-grained Image Classification
  • Facial Expression Recognition
  • Visual Question Answering
  • Self-supervised Learning for Visual Representations
  • Weakly Supervised Object Localization
  • Human Pose Estimation in 3D
  • Scene Understanding in Autonomous Vehicles
  • Image Super-resolution
  • Gaze Estimation for Human-Computer Interaction.

Deep Learning

  • Neural Architecture Search for Efficient Models
  • Self-attention Mechanisms and Transformers
  • Interpretability in Deep Learning Models
  • Robustness of Deep Neural Networks
  • Generative Adversarial Networks (GANs) for Data Augmentation
  • Neural Style Transfer in Art and Design
  • Adversarial Attacks and Defenses
  • Neural Networks for Audio and Speech Processing
  • Explainable AI for Healthcare Diagnosis
  • Automated Machine Learning (AutoML)
  • Reinforcement Learning with Deep Neural Networks
  • Model Compression and Quantization
  • Lifelong Learning with Deep Learning Models
  • Multimodal Learning with Vision and Language
  • Federated Learning for Privacy-preserving Deep Learning.

Explainable AI

  • Visualizing Model Decision Boundaries
  • Saliency Maps and Feature Attribution
  • Rule-based Explanations for Black-box Models
  • Contrastive Explanations for Model Interpretability
  • Counterfactual Explanations and What-if Analysis
  • Human-centered AI for Explainable Healthcare
  • Ethics and Fairness in Explainable AI
  • Explanation Generation for Natural Language Processing
  • Explainable AI in Financial Risk Assessment
  • User-friendly Interfaces for Model Interpretability
  • Scalability and Efficiency in Explainable Models
  • Hybrid Models for Combined Accuracy and Explainability
  • Post-hoc vs. Intrinsic Explanations
  • Evaluation Metrics for Explanation Quality
  • Explainable AI for Autonomous Vehicles.

Transfer Learning

  • Zero-shot Learning and Few-shot Learning
  • Cross-domain Transfer Learning
  • Domain Adaptation for Improved Generalization
  • Multilingual Transfer Learning in NLP
  • Pretraining and Fine-tuning Techniques
  • Lifelong Learning and Continual Learning
  • Domain-specific Transfer Learning Applications
  • Model Distillation for Knowledge Transfer
  • Contrastive Learning for Transfer Learning
  • Self-training and Pseudo-labeling
  • Dynamic Adaption of Pretrained Models
  • Privacy-Preserving Transfer Learning
  • Unsupervised Domain Adaptation
  • Negative Transfer Avoidance in Transfer Learning.

Federated Learning

  • Secure Aggregation in Federated Learning
  • Communication-efficient Federated Learning
  • Privacy-preserving Techniques in Federated Learning
  • Federated Transfer Learning
  • Heterogeneous Federated Learning
  • Real-world Applications of Federated Learning
  • Federated Learning for Edge Devices
  • Federated Learning for Healthcare Data
  • Differential Privacy in Federated Learning
  • Byzantine-robust Federated Learning
  • Federated Learning with Non-IID Data
  • Model Selection in Federated Learning
  • Scalable Federated Learning for Large Datasets
  • Client Selection and Sampling Strategies
  • Global Model Update Synchronization in Federated Learning.

Quantum Machine Learning

  • Quantum Neural Networks and Quantum Circuit Learning
  • Quantum-enhanced Optimization for Machine Learning
  • Quantum Data Compression and Quantum Principal Component Analysis
  • Quantum Kernels and Quantum Feature Maps
  • Quantum Variational Autoencoders
  • Quantum Transfer Learning
  • Quantum-inspired Classical Algorithms for ML
  • Hybrid Quantum-Classical Models
  • Quantum Machine Learning on Near-term Quantum Devices
  • Quantum-inspired Reinforcement Learning
  • Quantum Computing for Quantum Chemistry and Drug Discovery
  • Quantum Machine Learning for Finance
  • Quantum Data Structures and Quantum Databases
  • Quantum-enhanced Cryptography in Machine Learning
  • Quantum Generative Models and Quantum GANs.

Ethical AI and Bias Mitigation

  • Fairness-aware Machine Learning Algorithms
  • Bias Detection and Mitigation in Real-world Data
  • Explainable AI for Ethical Decision Support
  • Algorithmic Accountability and Transparency
  • Privacy-preserving AI and Data Governance
  • Ethical Considerations in AI for Healthcare
  • Fairness in Recommender Systems
  • Bias and Fairness in NLP Models
  • Auditing AI Systems for Bias
  • Societal Implications of AI in Criminal Justice
  • Ethical AI Education and Training
  • Bias Mitigation in Autonomous Vehicles
  • Fair AI in Financial and Hiring Decisions
  • Case Studies in Ethical AI Failures
  • Legal and Policy Frameworks for Ethical AI.

Meta-Learning and AutoML

  • Neural Architecture Search (NAS) for Efficient Models
  • Transfer Learning in NAS
  • Reinforcement Learning for NAS
  • Multi-objective NAS
  • Automated Data Augmentation
  • Neural Architecture Optimization for Edge Devices
  • Bayesian Optimization for AutoML
  • Model Compression and Quantization in AutoML
  • AutoML for Federated Learning
  • AutoML in Healthcare Diagnostics
  • Explainable AutoML
  • Cost-sensitive Learning in AutoML
  • AutoML for Small Data
  • Human-in-the-Loop AutoML.

AI for Healthcare and Medicine

  • Disease Prediction and Early Diagnosis
  • Medical Image Analysis with Deep Learning
  • Drug Discovery and Molecular Modeling
  • Electronic Health Record Analysis
  • Predictive Analytics in Healthcare
  • Personalized Treatment Planning
  • Healthcare Fraud Detection
  • Telemedicine and Remote Patient Monitoring
  • AI in Radiology and Pathology
  • AI in Drug Repurposing
  • AI for Medical Robotics and Surgery
  • Genomic Data Analysis
  • AI-powered Mental Health Assessment
  • Explainable AI in Healthcare Decision Support
  • AI in Epidemiology and Outbreak Prediction.

AI in Finance and Investment

  • Algorithmic Trading and High-frequency Trading
  • Credit Scoring and Risk Assessment
  • Fraud Detection and Anti-money Laundering
  • Portfolio Optimization with AI
  • Financial Market Prediction
  • Sentiment Analysis in Financial News
  • Explainable AI in Financial Decision-making
  • Algorithmic Pricing and Dynamic Pricing Strategies
  • AI in Cryptocurrency and Blockchain
  • Customer Behavior Analysis in Banking
  • Explainable AI in Credit Decisioning
  • AI in Regulatory Compliance
  • Ethical AI in Financial Services
  • AI for Real Estate Investment
  • Automated Financial Reporting.

AI in Climate Change and Sustainability

  • Climate Modeling and Prediction
  • Renewable Energy Forecasting
  • Smart Grid Optimization
  • Energy Consumption Forecasting
  • Carbon Emission Reduction with AI
  • Ecosystem Monitoring and Preservation
  • Precision Agriculture with AI
  • AI for Wildlife Conservation
  • Natural Disaster Prediction and Management
  • Water Resource Management with AI
  • Sustainable Transportation and Urban Planning
  • Climate Change Mitigation Strategies with AI
  • Environmental Impact Assessment with Machine Learning
  • Eco-friendly Supply Chain Optimization
  • Ethical AI in Climate-related Decision Support.

Data Privacy and Security

  • Differential Privacy Mechanisms
  • Federated Learning for Privacy-preserving AI
  • Secure Multi-Party Computation
  • Privacy-enhancing Technologies in Machine Learning
  • Homomorphic Encryption for Machine Learning
  • Ethical Considerations in Data Privacy
  • Privacy-preserving AI in Healthcare
  • AI for Secure Authentication and Access Control
  • Blockchain and AI for Data Security
  • Explainable Privacy in Machine Learning
  • Privacy-preserving AI in Government and Public Services
  • Privacy-compliant AI for IoT and Edge Devices
  • Secure AI Models Sharing and Deployment
  • Privacy-preserving AI in Financial Transactions
  • AI in the Legal Frameworks of Data Privacy.

Global Collaboration in Research

  • International Research Partnerships and Collaboration Models
  • Multilingual and Cross-cultural AI Research
  • Addressing Global Healthcare Challenges with AI
  • Ethical Considerations in International AI Collaborations
  • Interdisciplinary AI Research in Global Challenges
  • AI Ethics and Human Rights in Global Research
  • Data Sharing and Data Access in Global AI Research
  • Cross-border Research Regulations and Compliance
  • AI Innovation Hubs and International Research Centers
  • AI Education and Training for Global Communities
  • Humanitarian AI and AI for Sustainable Development Goals
  • AI for Cultural Preservation and Heritage Protection
  • Collaboration in AI-related Global Crises
  • AI in Cross-cultural Communication and Understanding
  • Global AI for Environmental Sustainability and Conservation.

Emerging Trends and Hot Topics in Machine Learning Research

The landscape of machine learning research topics is constantly evolving. Here are some of the emerging trends and hot topics that are shaping the field:

As AI systems become more prevalent, addressing ethical concerns and mitigating bias in algorithms are critical research areas.

Interpretable and Explainable Models

Understanding why machine learning models make specific decisions is crucial for their adoption in sensitive areas, such as healthcare and finance.

Meta-learning algorithms are designed to enable machines to learn how to learn, while AutoML aims to automate the machine learning process itself.

Machine learning is revolutionizing the healthcare sector, from diagnostic tools to drug discovery and patient care.

Algorithmic trading, risk assessment, and fraud detection are just a few applications of AI in finance, creating a wealth of research opportunities.

Machine learning research is crucial in analyzing and mitigating the impacts of climate change and promoting sustainable practices.

Challenges and Future Directions

While machine learning research has made tremendous strides, it also faces several challenges:

  • Data Privacy and Security: As machine learning models require vast amounts of data, protecting individual privacy and data security are paramount concerns.
  • Scalability and Efficiency: Developing efficient algorithms that can handle increasingly large datasets and complex computations remains a challenge.
  • Ensuring Fairness and Transparency: Addressing bias in machine learning models and making their decisions transparent is essential for equitable AI systems.
  • Quantum Computing and Machine Learning: The integration of quantum computing and machine learning has the potential to revolutionize the field, but it also presents unique challenges.
  • Global Collaboration in Research: Machine learning research benefits from collaboration on a global scale. Ensuring that researchers from diverse backgrounds work together is vital for progress.

Resources for Machine Learning Researchers

If you’re looking to embark on a journey in machine learning research topics, there are various resources at your disposal:

  • Journals and Conferences

Journals such as the “Journal of Machine Learning Research” and conferences like NeurIPS and ICML provide a platform for publishing and discussing research findings.

  • Online Communities and Forums

Platforms like Stack Overflow, GitHub, and dedicated forums for machine learning provide spaces for collaboration and problem-solving.

  • Datasets and Tools

Open-source datasets and tools like TensorFlow and PyTorch simplify the research process by providing access to data and pre-built models.

  • Research Grants and Funding Opportunities

Many organizations and government agencies offer research grants and funding for machine learning projects. Seek out these opportunities to support your research.

Machine learning research is like a superhero in the world of technology. To be a part of this exciting journey, it’s important to choose the right machine learning research topics and keep up with the latest trends.

Machine learning research makes our lives better. It powers things like smart assistants and life-saving medical tools. It’s like the force driving the future of technology and society.

But, there are challenges too. We need to work together and be ethical in our research. Everyone should benefit from this technology. The future of machine learning research is incredibly bright. If you want to be a part of it, get ready for an exciting adventure. You can help create new solutions and make a big impact on the world.

Related Posts

Tips on How To Tackle A Machine Learning Project As A Beginner

Tips on How To Tackle A Machine Learning Project As A Beginner

Here in this blog, CodeAvail experts will explain to you tips on how to tackle a machine learning project as a beginner step by step…

Artificial Intelligence and Machine Learning Basics for Beginners

Artificial Intelligence and Machine Learning Basics for Beginners

Here in this blog, CodeAvail experts will explain to you Artificial Intelligence and Machine Learning basics for beginners in detail step by step. What is…

Grad Coach

Research Topics & Ideas

Artifical Intelligence (AI) and Machine Learning (ML)

Research topics and ideas about AI and machine learning

If you’re just starting out exploring AI-related research topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research topic ideation process by providing a hearty list of research topics and ideas , including examples from past studies.

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . To develop a suitable research topic, you’ll need to identify a clear and convincing research gap , and a viable plan  to fill that gap.

If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, if you’d like hands-on help, consider our 1-on-1 coaching service .

Research topic idea mega list

AI-Related Research Topics & Ideas

Below you’ll find a list of AI and machine learning-related research topics ideas. These are intentionally broad and generic , so keep in mind that you will need to refine them a little. Nevertheless, they should inspire some ideas for your project.

  • Developing AI algorithms for early detection of chronic diseases using patient data.
  • The use of deep learning in enhancing the accuracy of weather prediction models.
  • Machine learning techniques for real-time language translation in social media platforms.
  • AI-driven approaches to improve cybersecurity in financial transactions.
  • The role of AI in optimizing supply chain logistics for e-commerce.
  • Investigating the impact of machine learning in personalized education systems.
  • The use of AI in predictive maintenance for industrial machinery.
  • Developing ethical frameworks for AI decision-making in healthcare.
  • The application of ML algorithms in autonomous vehicle navigation systems.
  • AI in agricultural technology: Optimizing crop yield predictions.
  • Machine learning techniques for enhancing image recognition in security systems.
  • AI-powered chatbots: Improving customer service efficiency in retail.
  • The impact of AI on enhancing energy efficiency in smart buildings.
  • Deep learning in drug discovery and pharmaceutical research.
  • The use of AI in detecting and combating online misinformation.
  • Machine learning models for real-time traffic prediction and management.
  • AI applications in facial recognition: Privacy and ethical considerations.
  • The effectiveness of ML in financial market prediction and analysis.
  • Developing AI tools for real-time monitoring of environmental pollution.
  • Machine learning for automated content moderation on social platforms.
  • The role of AI in enhancing the accuracy of medical diagnostics.
  • AI in space exploration: Automated data analysis and interpretation.
  • Machine learning techniques in identifying genetic markers for diseases.
  • AI-driven personal finance management tools.
  • The use of AI in developing adaptive learning technologies for disabled students.

Research topic evaluator

AI & ML Research Topic Ideas (Continued)

  • Machine learning in cybersecurity threat detection and response.
  • AI applications in virtual reality and augmented reality experiences.
  • Developing ethical AI systems for recruitment and hiring processes.
  • Machine learning for sentiment analysis in customer feedback.
  • AI in sports analytics for performance enhancement and injury prevention.
  • The role of AI in improving urban planning and smart city initiatives.
  • Machine learning models for predicting consumer behaviour trends.
  • AI and ML in artistic creation: Music, visual arts, and literature.
  • The use of AI in automated drone navigation for delivery services.
  • Developing AI algorithms for effective waste management and recycling.
  • Machine learning in seismology for earthquake prediction.
  • AI-powered tools for enhancing online privacy and data protection.
  • The application of ML in enhancing speech recognition technologies.
  • Investigating the role of AI in mental health assessment and therapy.
  • Machine learning for optimization of renewable energy systems.
  • AI in fashion: Predicting trends and personalizing customer experiences.
  • The impact of AI on legal research and case analysis.
  • Developing AI systems for real-time language interpretation for the deaf and hard of hearing.
  • Machine learning in genomic data analysis for personalized medicine.
  • AI-driven algorithms for credit scoring in microfinance.
  • The use of AI in enhancing public safety and emergency response systems.
  • Machine learning for improving water quality monitoring and management.
  • AI applications in wildlife conservation and habitat monitoring.
  • The role of AI in streamlining manufacturing processes.
  • Investigating the use of AI in enhancing the accessibility of digital content for visually impaired users.

Recent AI & ML-Related Studies

While the ideas we’ve presented above are a decent starting point for finding a research topic in AI, they are fairly generic and non-specific. So, it helps to look at actual studies in the AI and machine learning space to see how this all comes together in practice.

Below, we’ve included a selection of AI-related studies to help refine your thinking. These are actual studies,  so they can provide some useful insight as to what a research topic looks like in practice.

  • An overview of artificial intelligence in diabetic retinopathy and other ocular diseases (Sheng et al., 2022)
  • HOW DOES ARTIFICIAL INTELLIGENCE HELP ASTRONOMY? A REVIEW (Patel, 2022)
  • Editorial: Artificial Intelligence in Bioinformatics and Drug Repurposing: Methods and Applications (Zheng et al., 2022)
  • Review of Artificial Intelligence and Machine Learning Technologies: Classification, Restrictions, Opportunities, and Challenges (Mukhamediev et al., 2022)
  • Will digitization, big data, and artificial intelligence – and deep learning–based algorithm govern the practice of medicine? (Goh, 2022)
  • Flower Classifier Web App Using Ml & Flask Web Framework (Singh et al., 2022)
  • Object-based Classification of Natural Scenes Using Machine Learning Methods (Jasim & Younis, 2023)
  • Automated Training Data Construction using Measurements for High-Level Learning-Based FPGA Power Modeling (Richa et al., 2022)
  • Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare (Manickam et al., 2022)
  • Critical Review of Air Quality Prediction using Machine Learning Techniques (Sharma et al., 2022)
  • Artificial Intelligence: New Frontiers in Real–Time Inverse Scattering and Electromagnetic Imaging (Salucci et al., 2022)
  • Machine learning alternative to systems biology should not solely depend on data (Yeo & Selvarajoo, 2022)
  • Measurement-While-Drilling Based Estimation of Dynamic Penetrometer Values Using Decision Trees and Random Forests (García et al., 2022).
  • Artificial Intelligence in the Diagnosis of Oral Diseases: Applications and Pitfalls (Patil et al., 2022).
  • Automated Machine Learning on High Dimensional Big Data for Prediction Tasks (Jayanthi & Devi, 2022)
  • Breakdown of Machine Learning Algorithms (Meena & Sehrawat, 2022)
  • Technology-Enabled, Evidence-Driven, and Patient-Centered: The Way Forward for Regulating Software as a Medical Device (Carolan et al., 2021)
  • Machine Learning in Tourism (Rugge, 2022)
  • Towards a training data model for artificial intelligence in earth observation (Yue et al., 2022)
  • Classification of Music Generality using ANN, CNN and RNN-LSTM (Tripathy & Patel, 2022)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, in order for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

Topic Kickstarter: Research topics in education

can one come up with their own tppic and get a search

can one come up with their own title and get a search

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

youtube logo

The Future of AI Research: 20 Thesis Ideas for Undergraduate Students in Machine Learning and Deep Learning for 2023!

A comprehensive guide for crafting an original and innovative thesis in the field of ai..

By Aarafat Islam on 2023-01-11

“The beauty of machine learning is that it can be applied to any problem you want to solve, as long as you can provide the computer with enough examples.” — Andrew Ng

This article provides a list of 20 potential thesis ideas for an undergraduate program in machine learning and deep learning in 2023. Each thesis idea includes an  introduction , which presents a brief overview of the topic and the  research objectives . The ideas provided are related to different areas of machine learning and deep learning, such as computer vision, natural language processing, robotics, finance, drug discovery, and more. The article also includes explanations, examples, and conclusions for each thesis idea, which can help guide the research and provide a clear understanding of the potential contributions and outcomes of the proposed research. The article also emphasized the importance of originality and the need for proper citation in order to avoid plagiarism.

1. Investigating the use of Generative Adversarial Networks (GANs) in medical imaging:  A deep learning approach to improve the accuracy of medical diagnoses.

Introduction:  Medical imaging is an important tool in the diagnosis and treatment of various medical conditions. However, accurately interpreting medical images can be challenging, especially for less experienced doctors. This thesis aims to explore the use of GANs in medical imaging, in order to improve the accuracy of medical diagnoses.

2. Exploring the use of deep learning in natural language generation (NLG): An analysis of the current state-of-the-art and future potential.

Introduction:  Natural language generation is an important field in natural language processing (NLP) that deals with creating human-like text automatically. Deep learning has shown promising results in NLP tasks such as machine translation, sentiment analysis, and question-answering. This thesis aims to explore the use of deep learning in NLG and analyze the current state-of-the-art models, as well as potential future developments.

3. Development and evaluation of deep reinforcement learning (RL) for robotic navigation and control.

Introduction:  Robotic navigation and control are challenging tasks, which require a high degree of intelligence and adaptability. Deep RL has shown promising results in various robotics tasks, such as robotic arm control, autonomous navigation, and manipulation. This thesis aims to develop and evaluate a deep RL-based approach for robotic navigation and control and evaluate its performance in various environments and tasks.

4. Investigating the use of deep learning for drug discovery and development.

Introduction:  Drug discovery and development is a time-consuming and expensive process, which often involves high failure rates. Deep learning has been used to improve various tasks in bioinformatics and biotechnology, such as protein structure prediction and gene expression analysis. This thesis aims to investigate the use of deep learning for drug discovery and development and examine its potential to improve the efficiency and accuracy of the drug development process.

5. Comparison of deep learning and traditional machine learning methods for anomaly detection in time series data.

Introduction:  Anomaly detection in time series data is a challenging task, which is important in various fields such as finance, healthcare, and manufacturing. Deep learning methods have been used to improve anomaly detection in time series data, while traditional machine learning methods have been widely used as well. This thesis aims to compare deep learning and traditional machine learning methods for anomaly detection in time series data and examine their respective strengths and weaknesses.

research topics in machine learning

Photo by  Joanna Kosinska  on  Unsplash

6. Use of deep transfer learning in speech recognition and synthesis.

Introduction:  Speech recognition and synthesis are areas of natural language processing that focus on converting spoken language to text and vice versa. Transfer learning has been widely used in deep learning-based speech recognition and synthesis systems to improve their performance by reusing the features learned from other tasks. This thesis aims to investigate the use of transfer learning in speech recognition and synthesis and how it improves the performance of the system in comparison to traditional methods.

7. The use of deep learning for financial prediction.

Introduction:  Financial prediction is a challenging task that requires a high degree of intelligence and adaptability, especially in the field of stock market prediction. Deep learning has shown promising results in various financial prediction tasks, such as stock price prediction and credit risk analysis. This thesis aims to investigate the use of deep learning for financial prediction and examine its potential to improve the accuracy of financial forecasting.

8. Investigating the use of deep learning for computer vision in agriculture.

Introduction:  Computer vision has the potential to revolutionize the field of agriculture by improving crop monitoring, precision farming, and yield prediction. Deep learning has been used to improve various computer vision tasks, such as object detection, semantic segmentation, and image classification. This thesis aims to investigate the use of deep learning for computer vision in agriculture and examine its potential to improve the efficiency and accuracy of crop monitoring and precision farming.

9. Development and evaluation of deep learning models for generative design in engineering and architecture.

Introduction:  Generative design is a powerful tool in engineering and architecture that can help optimize designs and reduce human error. Deep learning has been used to improve various generative design tasks, such as design optimization and form generation. This thesis aims to develop and evaluate deep learning models for generative design in engineering and architecture and examine their potential to improve the efficiency and accuracy of the design process.

10. Investigating the use of deep learning for natural language understanding.

Introduction:  Natural language understanding is a complex task of natural language processing that involves extracting meaning from text. Deep learning has been used to improve various NLP tasks, such as machine translation, sentiment analysis, and question-answering. This thesis aims to investigate the use of deep learning for natural language understanding and examine its potential to improve the efficiency and accuracy of natural language understanding systems.

research topics in machine learning

Photo by  UX Indonesia  on  Unsplash

11. Comparing deep learning and traditional machine learning methods for image compression.

Introduction:  Image compression is an important task in image processing and computer vision. It enables faster data transmission and storage of image files. Deep learning methods have been used to improve image compression, while traditional machine learning methods have been widely used as well. This thesis aims to compare deep learning and traditional machine learning methods for image compression and examine their respective strengths and weaknesses.

12. Using deep learning for sentiment analysis in social media.

Introduction:  Sentiment analysis in social media is an important task that can help businesses and organizations understand their customers’ opinions and feedback. Deep learning has been used to improve sentiment analysis in social media, by training models on large datasets of social media text. This thesis aims to use deep learning for sentiment analysis in social media, and evaluate its performance against traditional machine learning methods.

13. Investigating the use of deep learning for image generation.

Introduction:  Image generation is a task in computer vision that involves creating new images from scratch or modifying existing images. Deep learning has been used to improve various image generation tasks, such as super-resolution, style transfer, and face generation. This thesis aims to investigate the use of deep learning for image generation and examine its potential to improve the quality and diversity of generated images.

14. Development and evaluation of deep learning models for anomaly detection in cybersecurity.

Introduction:  Anomaly detection in cybersecurity is an important task that can help detect and prevent cyber-attacks. Deep learning has been used to improve various anomaly detection tasks, such as intrusion detection and malware detection. This thesis aims to develop and evaluate deep learning models for anomaly detection in cybersecurity and examine their potential to improve the efficiency and accuracy of cybersecurity systems.

15. Investigating the use of deep learning for natural language summarization.

Introduction:  Natural language summarization is an important task in natural language processing that involves creating a condensed version of a text that preserves its main meaning. Deep learning has been used to improve various natural language summarization tasks, such as document summarization and headline generation. This thesis aims to investigate the use of deep learning for natural language summarization and examine its potential to improve the efficiency and accuracy of natural language summarization systems.

research topics in machine learning

Photo by  Windows  on  Unsplash

16. Development and evaluation of deep learning models for facial expression recognition.

Introduction:  Facial expression recognition is an important task in computer vision and has many practical applications, such as human-computer interaction, emotion recognition, and psychological studies. Deep learning has been used to improve facial expression recognition, by training models on large datasets of images. This thesis aims to develop and evaluate deep learning models for facial expression recognition and examine their performance against traditional machine learning methods.

17. Investigating the use of deep learning for generative models in music and audio.

Introduction:  Music and audio synthesis is an important task in audio processing, which has many practical applications, such as music generation and speech synthesis. Deep learning has been used to improve generative models for music and audio, by training models on large datasets of audio data. This thesis aims to investigate the use of deep learning for generative models in music and audio and examine its potential to improve the quality and diversity of generated audio.

18. Study the comparison of deep learning models with traditional algorithms for anomaly detection in network traffic.

Introduction:  Anomaly detection in network traffic is an important task that can help detect and prevent cyber-attacks. Deep learning models have been used for this task, and traditional methods such as clustering and rule-based systems are widely used as well. This thesis aims to compare deep learning models with traditional algorithms for anomaly detection in network traffic and analyze the trade-offs between the models in terms of accuracy and scalability.

19. Investigating the use of deep learning for improving recommender systems.

Introduction:  Recommender systems are widely used in many applications such as online shopping, music streaming, and movie streaming. Deep learning has been used to improve the performance of recommender systems, by training models on large datasets of user-item interactions. This thesis aims to investigate the use of deep learning for improving recommender systems and compare its performance with traditional content-based and collaborative filtering approaches.

20. Development and evaluation of deep learning models for multi-modal data analysis.

Introduction:  Multi-modal data analysis is the task of analyzing and understanding data from multiple sources such as text, images, and audio. Deep learning has been used to improve multi-modal data analysis, by training models on large datasets of multi-modal data. This thesis aims to develop and evaluate deep learning models for multi-modal data analysis and analyze their potential to improve performance in comparison to single-modal models.

I hope that this article has provided you with a useful guide for your thesis research in machine learning and deep learning. Remember to conduct a thorough literature review and to include proper citations in your work, as well as to be original in your research to avoid plagiarism. I wish you all the best of luck with your thesis and your research endeavors!

Continue Learning

Role of artificial intelligence in metaverse.

Exploring the Saga of Metaverse with AI

MidJourney Lighting Guide: Tips and Advice

Amazon bedrock — build generative ai at scale, top ai/ml conferences to attend in 2023.

An extensive list of the top upcoming conferences in 2023 within the Artificial Intelligence field you should not miss

How to Use Llama 2 with an API on AWS to Power Your AI Apps

Why are gpus used for ai.

research topics in machine learning

Frequently Asked Questions

Journal of Machine Learning Research

The Journal of Machine Learning Research (JMLR), established in 2000 , provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.

  • 2024.02.18 : Volume 24 completed; Volume 25 began.
  • 2023.01.20 : Volume 23 completed; Volume 24 began.
  • 2022.07.20 : New special issue on climate change .
  • 2022.02.18 : New blog post: Retrospectives from 20 Years of JMLR .
  • 2022.01.25 : Volume 22 completed; Volume 23 began.
  • 2021.12.02 : Message from outgoing co-EiC Bernhard Schölkopf .
  • 2021.02.10 : Volume 21 completed; Volume 22 began.
  • More news ...

Latest papers

Topological Node2vec: Enhanced Graph Embedding via Persistent Homology Yasuaki Hiraoka, Yusuke Imoto, Théo Lacombe, Killian Meehan, Toshiaki Yachimura , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Granger Causal Inference in Multivariate Hawkes Processes by Minimum Message Length Katerina Hlaváčková-Schindler, Anna Melnykova, Irene Tubikanec , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Representation Learning via Manifold Flattening and Reconstruction Michael Psenka, Druv Pai, Vishal Raman, Shankar Sastry, Yi Ma , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Bagging Provides Assumption-free Stability Jake A. Soloff, Rina Foygel Barber, Rebecca Willett , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Fairness guarantees in multi-class classification with demographic parity Christophe Denis, Romuald Elie, Mohamed Hebiri, François Hu , 2024. [ abs ][ pdf ][ bib ]

Regimes of No Gain in Multi-class Active Learning Gan Yuan, Yunfan Zhao, Samory Kpotufe , 2024. [ abs ][ pdf ][ bib ]

Learning Optimal Dynamic Treatment Regimens Subject to Stagewise Risk Controls Mochuan Liu, Yuanjia Wang, Haoda Fu, Donglin Zeng , 2024. [ abs ][ pdf ][ bib ]

Margin-Based Active Learning of Classifiers Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi, Andrea Paudice , 2024. [ abs ][ pdf ][ bib ]

Random Subgraph Detection Using Queries Wasim Huleihel, Arya Mazumdar, Soumyabrata Pal , 2024. [ abs ][ pdf ][ bib ]

Classification with Deep Neural Networks and Logistic Loss Zihan Zhang, Lei Shi, Ding-Xuan Zhou , 2024. [ abs ][ pdf ][ bib ]

Spectral learning of multivariate extremes Marco Avella Medina, Richard A Davis, Gennady Samorodnitsky , 2024. [ abs ][ pdf ][ bib ]

Sum-of-norms clustering does not separate nearby balls Alexander Dunlap, Jean-Christophe Mourrat , 2024. [ abs ][ pdf ][ bib ]      [ code ]

An Algorithm with Optimal Dimension-Dependence for Zero-Order Nonsmooth Nonconvex Stochastic Optimization Guy Kornowski, Ohad Shamir , 2024. [ abs ][ pdf ][ bib ]

Linear Distance Metric Learning with Noisy Labels Meysam Alishahi, Anna Little, Jeff M. Phillips , 2024. [ abs ][ pdf ][ bib ]      [ code ]

OpenBox: A Python Toolkit for Generalized Black-box Optimization Huaijun Jiang, Yu Shen, Yang Li, Beicheng Xu, Sixian Du, Wentao Zhang, Ce Zhang, Bin Cui , 2024. (Machine Learning Open Source Software Paper) [ abs ][ pdf ][ bib ]      [ code ]

Generative Adversarial Ranking Nets Yinghua Yao, Yuangang Pan, Jing Li, Ivor W. Tsang, Xin Yao , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Predictive Inference with Weak Supervision Maxime Cauchois, Suyash Gupta, Alnur Ali, John C. Duchi , 2024. [ abs ][ pdf ][ bib ]

Functions with average smoothness: structure, algorithms, and learning Yair Ashlagi, Lee-Ad Gottlieb, Aryeh Kontorovich , 2024. [ abs ][ pdf ][ bib ]

Differentially Private Data Release for Mixed-type Data via Latent Factor Models Yanqing Zhang, Qi Xu, Niansheng Tang, Annie Qu , 2024. [ abs ][ pdf ][ bib ]

The Non-Overlapping Statistical Approximation to Overlapping Group Lasso Mingyu Qi, Tianxi Li , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Faster Rates of Differentially Private Stochastic Convex Optimization Jinyan Su, Lijie Hu, Di Wang , 2024. [ abs ][ pdf ][ bib ]

Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization O. Deniz Akyildiz, Sotirios Sabanis , 2024. [ abs ][ pdf ][ bib ]

Finite-time Analysis of Globally Nonstationary Multi-Armed Bandits Junpei Komiyama, Edouard Fouché, Junya Honda , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Stable Implementation of Probabilistic ODE Solvers Nicholas Krämer, Philipp Hennig , 2024. [ abs ][ pdf ][ bib ]

More PAC-Bayes bounds: From bounded losses, to losses with general tail behaviors, to anytime validity Borja Rodríguez-Gálvez, Ragnar Thobaben, Mikael Skoglund , 2024. [ abs ][ pdf ][ bib ]

Neural Hilbert Ladders: Multi-Layer Neural Networks in Function Space Zhengdao Chen , 2024. [ abs ][ pdf ][ bib ]

QDax: A Library for Quality-Diversity and Population-based Algorithms with Hardware Acceleration Felix Chalumeau, Bryan Lim, Raphaël Boige, Maxime Allard, Luca Grillotti, Manon Flageat, Valentin Macé, Guillaume Richard, Arthur Flajolet, Thomas Pierrot, Antoine Cully , 2024. (Machine Learning Open Source Software Paper) [ abs ][ pdf ][ bib ]      [ code ]

Random Forest Weighted Local Fréchet Regression with Random Objects Rui Qiu, Zhou Yu, Ruoqing Zhu , 2024. [ abs ][ pdf ][ bib ]      [ code ]

PhAST: Physics-Aware, Scalable, and Task-Specific GNNs for Accelerated Catalyst Design Alexandre Duval, Victor Schmidt, Santiago Miret, Yoshua Bengio, Alex Hernández-García, David Rolnick , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Unsupervised Anomaly Detection Algorithms on Real-world Data: How Many Do We Need? Roel Bouman, Zaharah Bukhsh, Tom Heskes , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Multi-class Probabilistic Bounds for Majority Vote Classifiers with Partially Labeled Data Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini , 2024. [ abs ][ pdf ][ bib ]

Information Processing Equalities and the Information–Risk Bridge Robert C. Williamson, Zac Cranko , 2024. [ abs ][ pdf ][ bib ]

Nonparametric Regression for 3D Point Cloud Learning Xinyi Li, Shan Yu, Yueying Wang, Guannan Wang, Li Wang, Ming-Jun Lai , 2024. [ abs ][ pdf ][ bib ]      [ code ]

AMLB: an AutoML Benchmark Pieter Gijsbers, Marcos L. P. Bueno, Stefan Coors, Erin LeDell, Sébastien Poirier, Janek Thomas, Bernd Bischl, Joaquin Vanschoren , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Materials Discovery using Max K-Armed Bandit Nobuaki Kikkawa, Hiroshi Ohno , 2024. [ abs ][ pdf ][ bib ]

Semi-supervised Inference for Block-wise Missing Data without Imputation Shanshan Song, Yuanyuan Lin, Yong Zhou , 2024. [ abs ][ pdf ][ bib ]

Adaptivity and Non-stationarity: Problem-dependent Dynamic Regret for Online Convex Optimization Peng Zhao, Yu-Jie Zhang, Lijun Zhang, Zhi-Hua Zhou , 2024. [ abs ][ pdf ][ bib ]

Scaling Speech Technology to 1,000+ Languages Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli , 2024. [ abs ][ pdf ][ bib ]      [ code ]

MAP- and MLE-Based Teaching Hans Ulrich Simon, Jan Arne Telle , 2024. [ abs ][ pdf ][ bib ]

A General Framework for the Analysis of Kernel-based Tests Tamara Fernández, Nicolás Rivera , 2024. [ abs ][ pdf ][ bib ]

Overparametrized Multi-layer Neural Networks: Uniform Concentration of Neural Tangent Kernel and Convergence of Stochastic Gradient Descent Jiaming Xu, Hanjing Zhu , 2024. [ abs ][ pdf ][ bib ]

Sparse Representer Theorems for Learning in Reproducing Kernel Banach Spaces Rui Wang, Yuesheng Xu, Mingsong Yan , 2024. [ abs ][ pdf ][ bib ]

Exploration of the Search Space of Gaussian Graphical Models for Paired Data Alberto Roverato, Dung Ngoc Nguyen , 2024. [ abs ][ pdf ][ bib ]

The good, the bad and the ugly sides of data augmentation: An implicit spectral regularization perspective Chi-Heng Lin, Chiraag Kaushik, Eva L. Dyer, Vidya Muthukumar , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Stochastic Approximation with Decision-Dependent Distributions: Asymptotic Normality and Optimality Joshua Cutler, Mateo Díaz, Dmitriy Drusvyatskiy , 2024. [ abs ][ pdf ][ bib ]

Minimax Rates for High-Dimensional Random Tessellation Forests Eliza O'Reilly, Ngoc Mai Tran , 2024. [ abs ][ pdf ][ bib ]

Nonparametric Estimation of Non-Crossing Quantile Regression Process with Deep ReQU Neural Networks Guohao Shen, Yuling Jiao, Yuanyuan Lin, Joel L. Horowitz, Jian Huang , 2024. [ abs ][ pdf ][ bib ]

Spatial meshing for general Bayesian multivariate models Michele Peruzzi, David B. Dunson , 2024. [ abs ][ pdf ][ bib ]      [ code ]

A Semi-parametric Estimation of Personalized Dose-response Function Using Instrumental Variables Wei Luo, Yeying Zhu, Xuekui Zhang, Lin Lin , 2024. [ abs ][ pdf ][ bib ]

Learning Non-Gaussian Graphical Models via Hessian Scores and Triangular Transport Ricardo Baptista, Rebecca Morrison, Olivier Zahm, Youssef Marzouk , 2024. [ abs ][ pdf ][ bib ]      [ code ]

On the Learnability of Out-of-distribution Detection Zhen Fang, Yixuan Li, Feng Liu, Bo Han, Jie Lu , 2024. [ abs ][ pdf ][ bib ]

Win: Weight-Decay-Integrated Nesterov Acceleration for Faster Network Training Pan Zhou, Xingyu Xie, Zhouchen Lin, Kim-Chuan Toh, Shuicheng Yan , 2024. [ abs ][ pdf ][ bib ]      [ code ]

On the Eigenvalue Decay Rates of a Class of Neural-Network Related Kernel Functions Defined on General Domains Yicheng Li, Zixiong Yu, Guhan Chen, Qian Lin , 2024. [ abs ][ pdf ][ bib ]

Tight Convergence Rate Bounds for Optimization Under Power Law Spectral Conditions Maksim Velikanov, Dmitry Yarotsky , 2024. [ abs ][ pdf ][ bib ]

ptwt - The PyTorch Wavelet Toolbox Moritz Wolter, Felix Blanke, Jochen Garcke, Charles Tapley Hoyt , 2024. (Machine Learning Open Source Software Paper) [ abs ][ pdf ][ bib ]      [ code ]

Choosing the Number of Topics in LDA Models – A Monte Carlo Comparison of Selection Criteria Victor Bystrov, Viktoriia Naboka-Krell, Anna Staszewska-Bystrova, Peter Winker , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Functional Directed Acyclic Graphs Kuang-Yao Lee, Lexin Li, Bing Li , 2024. [ abs ][ pdf ][ bib ]

Unlabeled Principal Component Analysis and Matrix Completion Yunzhen Yao, Liangzu Peng, Manolis C. Tsakiris , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Distributed Estimation on Semi-Supervised Generalized Linear Model Jiyuan Tu, Weidong Liu, Xiaojun Mao , 2024. [ abs ][ pdf ][ bib ]

Towards Explainable Evaluation Metrics for Machine Translation Christoph Leiter, Piyawat Lertvittayakumjorn, Marina Fomicheva, Wei Zhao, Yang Gao, Steffen Eger , 2024. [ abs ][ pdf ][ bib ]

Differentially private methods for managing model uncertainty in linear regression Víctor Peña, Andrés F. Barrientos , 2024. [ abs ][ pdf ][ bib ]

Data Summarization via Bilevel Optimization Zalán Borsos, Mojmír Mutný, Marco Tagliasacchi, Andreas Krause , 2024. [ abs ][ pdf ][ bib ]

Pareto Smoothed Importance Sampling Aki Vehtari, Daniel Simpson, Andrew Gelman, Yuling Yao, Jonah Gabry , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Policy Gradient Methods in the Presence of Symmetries and State Abstractions Prakash Panangaden, Sahand Rezaei-Shoshtari, Rosie Zhao, David Meger, Doina Precup , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Scaling Instruction-Finetuned Language Models Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, Jason Wei , 2024. [ abs ][ pdf ][ bib ]

Tangential Wasserstein Projections Florian Gunsilius, Meng Hsuan Hsieh, Myung Jin Lee , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Learnability of Linear Port-Hamiltonian Systems Juan-Pablo Ortega, Daiying Yin , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Off-Policy Action Anticipation in Multi-Agent Reinforcement Learning Ariyan Bighashdel, Daan de Geus, Pavol Jancura, Gijs Dubbelman , 2024. [ abs ][ pdf ][ bib ]      [ code ]

On Unbiased Estimation for Partially Observed Diffusions Jeremy Heng, Jeremie Houssineau, Ajay Jasra , 2024. (Machine Learning Open Source Software Paper) [ abs ][ pdf ][ bib ]      [ code ]

Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions Stanislas Ducotterd, Alexis Goujon, Pakshal Bohra, Dimitris Perdios, Sebastian Neumayer, Michael Unser , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Mathematical Framework for Online Social Media Auditing Wasim Huleihel, Yehonathan Refael , 2024. [ abs ][ pdf ][ bib ]

An Embedding Framework for the Design and Analysis of Consistent Polyhedral Surrogates Jessie Finocchiaro, Rafael M. Frongillo, Bo Waggoner , 2024. [ abs ][ pdf ][ bib ]

Low-rank Variational Bayes correction to the Laplace method Janet van Niekerk, Haavard Rue , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Scaling the Convex Barrier with Sparse Dual Algorithms Alessandro De Palma, Harkirat Singh Behl, Rudy Bunel, Philip H.S. Torr, M. Pawan Kumar , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Causal-learn: Causal Discovery in Python Yujia Zheng, Biwei Huang, Wei Chen, Joseph Ramsey, Mingming Gong, Ruichu Cai, Shohei Shimizu, Peter Spirtes, Kun Zhang , 2024. (Machine Learning Open Source Software Paper) [ abs ][ pdf ][ bib ]      [ code ]

Decomposed Linear Dynamical Systems (dLDS) for learning the latent components of neural dynamics Noga Mudrik, Yenho Chen, Eva Yezerets, Christopher J. Rozell, Adam S. Charles , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Existence and Minimax Theorems for Adversarial Surrogate Risks in Binary Classification Natalie S. Frank, Jonathan Niles-Weed , 2024. [ abs ][ pdf ][ bib ]

Data Thinning for Convolution-Closed Distributions Anna Neufeld, Ameer Dharamshi, Lucy L. Gao, Daniela Witten , 2024. [ abs ][ pdf ][ bib ]      [ code ]

A projected semismooth Newton method for a class of nonconvex composite programs with strong prox-regularity Jiang Hu, Kangkang Deng, Jiayuan Wu, Quanzheng Li , 2024. [ abs ][ pdf ][ bib ]

Revisiting RIP Guarantees for Sketching Operators on Mixture Models Ayoub Belhadji, Rémi Gribonval , 2024. [ abs ][ pdf ][ bib ]

Monotonic Risk Relationships under Distribution Shifts for Regularized Risk Minimization Daniel LeJeune, Jiayu Liu, Reinhard Heckel , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Polygonal Unadjusted Langevin Algorithms: Creating stable and efficient adaptive algorithms for neural networks Dong-Young Lim, Sotirios Sabanis , 2024. [ abs ][ pdf ][ bib ]

Axiomatic effect propagation in structural causal models Raghav Singal, George Michailidis , 2024. [ abs ][ pdf ][ bib ]

Optimal First-Order Algorithms as a Function of Inequalities Chanwoo Park, Ernest K. Ryu , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Resource-Efficient Neural Networks for Embedded Systems Wolfgang Roth, Günther Schindler, Bernhard Klein, Robert Peharz, Sebastian Tschiatschek, Holger Fröning, Franz Pernkopf, Zoubin Ghahramani , 2024. [ abs ][ pdf ][ bib ]

Trained Transformers Learn Linear Models In-Context Ruiqi Zhang, Spencer Frei, Peter L. Bartlett , 2024. [ abs ][ pdf ][ bib ]

Adam-family Methods for Nonsmooth Optimization with Convergence Guarantees Nachuan Xiao, Xiaoyin Hu, Xin Liu, Kim-Chuan Toh , 2024. [ abs ][ pdf ][ bib ]

Efficient Modality Selection in Multimodal Learning Yifei He, Runxiang Cheng, Gargi Balasubramaniam, Yao-Hung Hubert Tsai, Han Zhao , 2024. [ abs ][ pdf ][ bib ]

A Multilabel Classification Framework for Approximate Nearest Neighbor Search Ville Hyvönen, Elias Jääsaari, Teemu Roos , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization Lorenzo Pacchiardi, Rilwan A. Adewoyin, Peter Dueben, Ritabrata Dutta , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Multiple Descent in the Multiple Random Feature Model Xuran Meng, Jianfeng Yao, Yuan Cao , 2024. [ abs ][ pdf ][ bib ]

Mean-Square Analysis of Discretized Itô Diffusions for Heavy-tailed Sampling Ye He, Tyler Farghly, Krishnakumar Balasubramanian, Murat A. Erdogdu , 2024. [ abs ][ pdf ][ bib ]

Invariant and Equivariant Reynolds Networks Akiyoshi Sannai, Makoto Kawano, Wataru Kumagai , 2024. (Machine Learning Open Source Software Paper) [ abs ][ pdf ][ bib ]      [ code ]

Personalized PCA: Decoupling Shared and Unique Features Naichen Shi, Raed Al Kontar , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Survival Kernets: Scalable and Interpretable Deep Kernel Survival Analysis with an Accuracy Guarantee George H. Chen , 2024. [ abs ][ pdf ][ bib ]      [ code ]

On the Sample Complexity and Metastability of Heavy-tailed Policy Search in Continuous Control Amrit Singh Bedi, Anjaly Parayil, Junyu Zhang, Mengdi Wang, Alec Koppel , 2024. [ abs ][ pdf ][ bib ]

Convergence for nonconvex ADMM, with applications to CT imaging Rina Foygel Barber, Emil Y. Sidky , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Distributed Gaussian Mean Estimation under Communication Constraints: Optimal Rates and Communication-Efficient Algorithms T. Tony Cai, Hongji Wei , 2024. [ abs ][ pdf ][ bib ]

Sparse NMF with Archetypal Regularization: Computational and Robustness Properties Kayhan Behdin, Rahul Mazumder , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Deep Network Approximation: Beyond ReLU to Diverse Activation Functions Shijun Zhang, Jianfeng Lu, Hongkai Zhao , 2024. [ abs ][ pdf ][ bib ]

Effect-Invariant Mechanisms for Policy Generalization Sorawit Saengkyongam, Niklas Pfister, Predrag Klasnja, Susan Murphy, Jonas Peters , 2024. [ abs ][ pdf ][ bib ]

Pygmtools: A Python Graph Matching Toolkit Runzhong Wang, Ziao Guo, Wenzheng Pan, Jiale Ma, Yikai Zhang, Nan Yang, Qi Liu, Longxuan Wei, Hanxue Zhang, Chang Liu, Zetian Jiang, Xiaokang Yang, Junchi Yan , 2024. (Machine Learning Open Source Software Paper) [ abs ][ pdf ][ bib ]      [ code ]

Heterogeneous-Agent Reinforcement Learning Yifan Zhong, Jakub Grudzien Kuba, Xidong Feng, Siyi Hu, Jiaming Ji, Yaodong Yang , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Sample-efficient Adversarial Imitation Learning Dahuin Jung, Hyungyu Lee, Sungroh Yoon , 2024. [ abs ][ pdf ][ bib ]

Stochastic Modified Flows, Mean-Field Limits and Dynamics of Stochastic Gradient Descent Benjamin Gess, Sebastian Kassing, Vitalii Konarovskyi , 2024. [ abs ][ pdf ][ bib ]

Rates of convergence for density estimation with generative adversarial networks Nikita Puchkin, Sergey Samsonov, Denis Belomestny, Eric Moulines, Alexey Naumov , 2024. [ abs ][ pdf ][ bib ]

Additive smoothing error in backward variational inference for general state-space models Mathis Chagneux, Elisabeth Gassiat, Pierre Gloaguen, Sylvain Le Corff , 2024. [ abs ][ pdf ][ bib ]

Optimal Bump Functions for Shallow ReLU networks: Weight Decay, Depth Separation, Curse of Dimensionality Stephan Wojtowytsch , 2024. [ abs ][ pdf ][ bib ]

Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees Alexander Terenin, David R. Burt, Artem Artemev, Seth Flaxman, Mark van der Wilk, Carl Edward Rasmussen, Hong Ge , 2024. [ abs ][ pdf ][ bib ]      [ code ]

On Tail Decay Rate Estimation of Loss Function Distributions Etrit Haxholli, Marco Lorenzi , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces Hao Liu, Haizhao Yang, Minshuo Chen, Tuo Zhao, Wenjing Liao , 2024. [ abs ][ pdf ][ bib ]

Post-Regularization Confidence Bands for Ordinary Differential Equations Xiaowu Dai, Lexin Li , 2024. [ abs ][ pdf ][ bib ]

On the Generalization of Stochastic Gradient Descent with Momentum Ali Ramezani-Kebrya, Kimon Antonakopoulos, Volkan Cevher, Ashish Khisti, Ben Liang , 2024. [ abs ][ pdf ][ bib ]

Pursuit of the Cluster Structure of Network Lasso: Recovery Condition and Non-convex Extension Shotaro Yagishita, Jun-ya Gotoh , 2024. [ abs ][ pdf ][ bib ]

Iterate Averaging in the Quest for Best Test Error Diego Granziol, Nicholas P. Baskerville, Xingchen Wan, Samuel Albanie, Stephen Roberts , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Nonparametric Inference under B-bits Quantization Kexuan Li, Ruiqi Liu, Ganggang Xu, Zuofeng Shang , 2024. [ abs ][ pdf ][ bib ]

Black Box Variational Inference with a Deterministic Objective: Faster, More Accurate, and Even More Black Box Ryan Giordano, Martin Ingram, Tamara Broderick , 2024. [ abs ][ pdf ][ bib ]      [ code ]

On Sufficient Graphical Models Bing Li, Kyongwon Kim , 2024. [ abs ][ pdf ][ bib ]

Localized Debiased Machine Learning: Efficient Inference on Quantile Treatment Effects and Beyond Nathan Kallus, Xiaojie Mao, Masatoshi Uehara , 2024. [ abs ][ pdf ][ bib ]      [ code ]

On the Effect of Initialization: The Scaling Path of 2-Layer Neural Networks Sebastian Neumayer, Lénaïc Chizat, Michael Unser , 2024. [ abs ][ pdf ][ bib ]

Improving physics-informed neural networks with meta-learned optimization Alex Bihlo , 2024. [ abs ][ pdf ][ bib ]

A Comparison of Continuous-Time Approximations to Stochastic Gradient Descent Stefan Ankirchner, Stefan Perko , 2024. [ abs ][ pdf ][ bib ]

Critically Assessing the State of the Art in Neural Network Verification Matthias König, Annelot W. Bosman, Holger H. Hoos, Jan N. van Rijn , 2024. [ abs ][ pdf ][ bib ]

Estimating the Minimizer and the Minimum Value of a Regression Function under Passive Design Arya Akhavan, Davit Gogolashvili, Alexandre B. Tsybakov , 2024. [ abs ][ pdf ][ bib ]

Modeling Random Networks with Heterogeneous Reciprocity Daniel Cirkovic, Tiandong Wang , 2024. [ abs ][ pdf ][ bib ]

Exploration, Exploitation, and Engagement in Multi-Armed Bandits with Abandonment Zixian Yang, Xin Liu, Lei Ying , 2024. [ abs ][ pdf ][ bib ]

On Efficient and Scalable Computation of the Nonparametric Maximum Likelihood Estimator in Mixture Models Yangjing Zhang, Ying Cui, Bodhisattva Sen, Kim-Chuan Toh , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Decorrelated Variable Importance Isabella Verdinelli, Larry Wasserman , 2024. [ abs ][ pdf ][ bib ]

Model-Free Representation Learning and Exploration in Low-Rank MDPs Aditya Modi, Jinglin Chen, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal , 2024. [ abs ][ pdf ][ bib ]

Seeded Graph Matching for the Correlated Gaussian Wigner Model via the Projected Power Method Ernesto Araya, Guillaume Braun, Hemant Tyagi , 2024. [ abs ][ pdf ][ bib ]      [ code ]

Fast Policy Extragradient Methods for Competitive Games with Entropy Regularization Shicong Cen, Yuting Wei, Yuejie Chi , 2024. [ abs ][ pdf ][ bib ]

Power of knockoff: The impact of ranking algorithm, augmented design, and symmetric statistic Zheng Tracy Ke, Jun S. Liu, Yucong Ma , 2024. [ abs ][ pdf ][ bib ]

Lower Complexity Bounds of Finite-Sum Optimization Problems: The Results and Construction Yuze Han, Guangzeng Xie, Zhihua Zhang , 2024. [ abs ][ pdf ][ bib ]

On Truthing Issues in Supervised Classification Jonathan K. Su , 2024. [ abs ][ pdf ][ bib ]

  • Who’s Teaching What
  • Subject Updates
  • MEng program
  • Opportunities
  • Minor in Computer Science
  • Resources for Current Students
  • Program objectives and accreditation
  • Graduate program requirements
  • Admission process
  • Degree programs
  • Graduate research
  • EECS Graduate Funding
  • Resources for current students
  • Student profiles
  • Instructors
  • DEI data and documents
  • Recruitment and outreach
  • Community and resources
  • Get involved / self-education
  • Rising Stars in EECS
  • Graduate Application Assistance Program (GAAP)
  • MIT Summer Research Program (MSRP)
  • Sloan-MIT University Center for Exemplary Mentoring (UCEM)
  • Electrical Engineering
  • Computer Science
  • Artificial Intelligence + Decision-making
  • AI and Society
  • AI for Healthcare and Life Sciences
  • Artificial Intelligence and Machine Learning
  • Biological and Medical Devices and Systems
  • Communications Systems
  • Computational Biology
  • Computational Fabrication and Manufacturing
  • Computer Architecture
  • Educational Technology
  • Electronic, Magnetic, Optical and Quantum Materials and Devices
  • Graphics and Vision
  • Human-Computer Interaction
  • Information Science and Systems
  • Integrated Circuits and Systems
  • Nanoscale Materials, Devices, and Systems
  • Natural Language and Speech Processing
  • Optics + Photonics
  • Optimization and Game Theory
  • Programming Languages and Software Engineering
  • Quantum Computing, Communication, and Sensing
  • Security and Cryptography
  • Signal Processing
  • Systems and Networking
  • Systems Theory, Control, and Autonomy
  • Theory of Computation
  • Departmental History
  • Departmental Organization
  • Visiting Committee
  • Explore all research areas

Our research covers a wide range of topics of this fast-evolving field, advancing how machines learn, predict, and control, while also making them secure, robust and trustworthy. Research covers both the theory and applications of ML. This broad area studies ML theory (algorithms, optimization, etc.); statistical learning (inference, graphical models, causal analysis, etc.); deep learning; reinforcement learning; symbolic reasoning ML systems; as well as diverse hardware implementations of ML.

research topics in machine learning

Latest news in artificial intelligence and machine learning

Caroline uhler named ims fellow.

The Institute of Mathematical Statistics (IMS) fosters the development and dissemination of the theory and applications of statistics and probability.

Creating bespoke programming languages for efficient visual AI systems

Associate Professor Jonathan Ragan-Kelley optimizes how computer graphics and images are processed for the hardware of today and tomorrow.

QS World University Rankings rates MIT No. 1 in 11 subjects for 2024

The Institute also ranks second in five subject areas.

Three from MIT awarded 2024 Guggenheim Fellowships

MIT professors Roger Levy, Tracy Slatyer, and Martin Wainwright appointed to the 2024 class of “trail-blazing fellows.”

To build a better AI helper, start by modeling the irrational behavior of humans

A new technique can be used to predict the actions of human or AI agents who behave suboptimally while working toward unknown goals.

Upcoming events

Doctoral thesis: interactive spin dynamics in magnon and quantum spin systems, doctoral thesis: guiding deep probabilistic models.

Machine Intelligence

Google is at the forefront of innovation in Machine Intelligence, with active research exploring virtually all aspects of machine learning, including deep learning and more classical algorithms. Exploring theory as well as application, much of our work on language, speech, translation, visual processing, ranking and prediction relies on Machine Intelligence. In all of those tasks and many others, we gather large volumes of direct or indirect evidence of relationships of interest, applying learning algorithms to understand and generalize.

Machine Intelligence at Google raises deep scientific and engineering challenges, allowing us to contribute to the broader academic research community through technical talks and publications in major conferences and journals. Contrary to much of current theory and practice, the statistics of the data we observe shifts rapidly, the features of interest change as well, and the volume of data often requires enormous computation capacity. When learning systems are placed at the core of interactive services in a fast changing and sometimes adversarial environment, combinations of techniques including deep learning and statistical models need to be combined with ideas from control and game theory.

Recent Publications

Some of our teams.

Africa team

Algorithms & optimization

Applied science

Climate and sustainability

Graph mining

Impact-Driven Research, Innovation and Moonshots

Learning theory

Market algorithms

Operations research

Security, privacy and abuse

System performance

We're always looking for more talented, passionate people.

Careers

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 16 October 2023

Forecasting the future of artificial intelligence with machine learning-based link prediction in an exponentially growing knowledge network

  • Mario Krenn   ORCID: orcid.org/0000-0003-1620-9207 1 ,
  • Lorenzo Buffoni 2 ,
  • Bruno Coutinho 2 ,
  • Sagi Eppel 3 ,
  • Jacob Gates Foster 4 ,
  • Andrew Gritsevskiy   ORCID: orcid.org/0000-0001-8138-8796 3 , 5 , 6 ,
  • Harlin Lee   ORCID: orcid.org/0000-0001-6128-9942 4 ,
  • Yichao Lu   ORCID: orcid.org/0009-0001-2005-1724 7 ,
  • João P. Moutinho 2 ,
  • Nima Sanjabi   ORCID: orcid.org/0009-0000-6342-5231 8 ,
  • Rishi Sonthalia   ORCID: orcid.org/0000-0002-0928-392X 4 ,
  • Ngoc Mai Tran 9 ,
  • Francisco Valente   ORCID: orcid.org/0000-0001-6964-9391 10 ,
  • Yangxinyu Xie   ORCID: orcid.org/0000-0002-1532-6746 11 ,
  • Rose Yu 12 &
  • Michael Kopp 6  

Nature Machine Intelligence volume  5 ,  pages 1326–1335 ( 2023 ) Cite this article

6 Citations

1056 Altmetric

Metrics details

  • Complex networks
  • Computer science
  • Research data

A tool that could suggest new personalized research directions and ideas by taking insights from the scientific literature could profoundly accelerate the progress of science. A field that might benefit from such an approach is artificial intelligence (AI) research, where the number of scientific publications has been growing exponentially over recent years, making it challenging for human researchers to keep track of the progress. Here we use AI techniques to predict the future research directions of AI itself. We introduce a graph-based benchmark based on real-world data—the Science4Cast benchmark, which aims to predict the future state of an evolving semantic network of AI. For that, we use more than 143,000 research papers and build up a knowledge network with more than 64,000 concept nodes. We then present ten diverse methods to tackle this task, ranging from pure statistical to pure learning methods. Surprisingly, the most powerful methods use a carefully curated set of network features, rather than an end-to-end AI approach. These results indicate a great potential that can be unleashed for purely ML approaches without human knowledge. Ultimately, better predictions of new future research directions will be a crucial component of more advanced research suggestion tools.

Similar content being viewed by others

research topics in machine learning

Learning on knowledge graph dynamics provides an early warning of impactful research

research topics in machine learning

TrendyGenes, a computational pipeline for the detection of literature trends in academia and drug discovery

research topics in machine learning

Accelerating science with human-aware artificial intelligence

The corpus of scientific literature grows at an ever-increasing speed. Specifically, in the field of artificial intelligence (AI) and machine learning (ML), the number of papers every month is growing exponentially with a doubling rate of roughly 23 months (Fig. 1 ). Simultaneously, the AI community is embracing diverse ideas from many disciplines such as mathematics, statistics and physics, making it challenging to organize different ideas and uncover new scientific connections. We envision a computer program that can automatically read, comprehend and act on AI literature. It can predict and suggest meaningful research ideas that transcend individual knowledge and cross-domain boundaries. If successful, it could greatly improve the productivity of AI researchers, open up new avenues of research and help drive progress in the field.

figure 1

The doubling rate of papers per month is roughly 23 months, which might lead to problems for publishing in these fields, at some point. The categories are cs.AI, cs.LG, cs.NE and stat.ML.

In this work, we address the ambitious vision of developing a data-driven approach to predict future research directions 1 . As new research ideas often emerge from connecting seemingly unrelated concepts 2 , 3 , 4 , we model the evolution of AI literature as a temporal network. We construct an evolving semantic network that encapsulates the content and development of AI research since 1994, with approximately 64,000 nodes (representing individual concepts) and 18 million edges (connecting jointly investigated concepts).

We use the semantic network as an input to ten diverse statistical and ML methods to predict the future evolution of the semantic network with high accuracy. That is, we can predict which combinations of concepts AI researchers will investigate in the future. Being able to predict what scientists will work on is a first crucial step for suggesting new topics that might have a high impact.

Several methods were contributions to the Science4Cast competition hosted by the 2021 IEEE International Conference on Big Data (IEEE BigData 2021). Broadly, we can divide the methods into two classes: methods that use hand-crafted network-theoretical features and those that automatically learn features. We found that models using carefully hand-crafted features outperform methods that attempt to learn features autonomously. This (somewhat surprising) finding indicates a great potential for improvements of models free of human priors.

Our paper introduces a real-world graph benchmark for AI, presents ten methods for solving it, and discusses how this task contributes to the larger goal of AI-driven research suggestions in AI and other disciplines. All methods are available at GitHub 5 .

Semantic networks

The goal here is to extract knowledge from the scientific literature that can subsequently be processed by computer algorithms. At first glance, a natural first step would be to use large language model (such as GPT3 6 , Gopher 7 , MegaTron 8 or PaLM 9 ) on each article to extract concepts and their relations automatically. However, these methods still struggle in reasoning capabilities 10 , 11 ; thus, it is not yet directly clear how these models can be used for identifying and suggesting new ideas and concept combinations.

Rzhetsky et al. 12 pioneered an alternative approach, creating semantic networks in biochemistry from co-occurring concepts in scientific papers. There, nodes represent scientific concepts, specifically biomolecules, and are linked when a paper mentions both in its title or abstract. This evolving network captures the field’s history and, using supercomputer simulations, provides insights into scientists’ collective behaviour and suggests more efficient research strategies 13 . Although creating semantic networks from concept co-occurrences extracts only a small amount of knowledge from each paper, it captures non-trivial and actionable content when applied to large datasets 2 , 4 , 13 , 14 , 15 . PaperRobot extends this approach by predicting new links from large medical knowledge graphs and formulating new ideas in human language as paper drafts 16 .

This approach was applied and extended to quantum physics 17 by building a semantic network of over 6,000 concepts. There, the authors (including one of us) formulated the prediction of new research trends and connections as an ML task, with the goal of identifying concept pairs not yet jointly discussed in the literature but likely to be investigated in the future. This prediction task was one component for personalized suggestions of new research ideas.

Link prediction in semantic networks

We formulate the prediction of future research topics as a link-prediction task in an exponentially growing semantic network in the AI field. The goal is to predict which unconnected nodes, representing scientific concepts not yet jointly researched, will be connected in the future.

Link prediction is a common problem in computer science, addressed with classical metrics and features, as well as ML techniques. Network theory-based methods include local motif-based approaches 18 , 19 , 20 , 21 , 22 , linear optimization 23 , global perturbations 24 and stochastic block models 25 . ML works optimized a combination of predictors 26 , with further discussion in a recent review 27 .

In ref. 17 , 17 hand-crafted features were used for this task. In the Science4Cast competition, the goal was to find more precise methods for link-prediction tasks in semantic networks (a semantic network of AI that is ten times larger than the one in ref. 17 ).

Potential for idea generation in science

The long-term goal of predictions and suggestions in semantic networks is to provide new ideas to individual researchers. In a way, we hope to build a creative artificial muse in science 28 . We can bias or constrain the model to give topic suggestions that are related to the research interest of individual scientists, or a pair of scientists to suggest topics for collaborations in an interdisciplinary setting.

Generation and analysis of the dataset

Dataset construction.

We create a dynamic semantic network using papers published on arXiv from 1992 to 2020 in the categories cs.AI, cs.LG, cs.NE and stat.ML. The 64,719 nodes represent AI concepts extracted from 143,000 paper titles and abstracts using Rapid Automatic Keyword Extraction (RAKE) and normalized via natural language processing (NLP) techniques and custom methods 29 . Although high-quality taxonomies such as the Computer Science Ontology (CSO) exist 30 , 31 , we choose not to use them for two reasons: the rapid growth of AI and ML may result in new concepts not yet in the CSO, and not all scientific domains have high-quality taxonomies like CSO. Our goal is to build a scalable approach applicable to any domain of science. However, future research could investigate merging these approaches (see ‘Extensions and future work’).

Concepts form the nodes of the semantic network, and edges are drawn when concepts co-appear in a paper title or abstract. Edges have time stamps based on the paper’s publication date, and multiple time-stamped edges between concepts are common. The network is edge-weighted, and the weight of an edge stands for the number of papers that connect two concepts. In total, this creates a time-evolving semantic network, depicted in Fig. 2 .

figure 2

Utilizing 143,000 AI and ML papers on arXiv from 1992 to 2020, we create a list of concepts using RAKE and other NLP tools, which form nodes in a semantic network. Edges connect concepts that co-occur in titles or abstracts, resulting in an evolving network that expands as more concepts are jointly investigated. The task involves predicting which unconnected nodes (concepts not yet studied together) will connect within a few years. We present ten diverse statistical and ML methods to address this challenge.

Network-theoretical analysis

The published semantic network has 64,719 nodes and 17,892,352 unique undirected edges, with a mean node degree of 553. Many hub nodes greatly exceed this mean degree, as shown in Fig. 3 , For example, the highest node degrees are 466,319 (neural network), 198,050 (deep learning), 195,345 (machine learning), 169,555 (convolutional neural network), 159,403 (real world), 150,227 (experimental result), 127,642 (deep neural network) and 115,334 (large scale). We fit a power-law curve to the degree distribution p ( k ) using ref. 32 and obtained p ( k )  ∝   k −2.28 for degree k  ≥ 1,672. However, real complex network degree distributions often follow power laws with exponential cut-offs 33 . Recent work 34 has indicated that lognormal distributions fit most real-world networks better than power laws. Likelihood ratio tests from ref. 32 suggest truncated power law ( P  = 0.0031), lognormal ( P  = 0.0045) and lognormal positive ( P  = 0.015) fit better than power law, while exponential ( P  = 3 × 10 −10 ) and stretched exponential ( P  = 6 × 10 −5 ) are worse. We couldn’t conclusively determine the best fit with P  ≤ 0.1.

figure 3

Nodes with the highest (466,319) and lowest (2) non-zero degrees are neural network and video compression technique, respectively. The most frequent non-zero degree is 64 (which occures 313 times). The plot, in log scale, omits 1,247 nodes with zero degrees.

We observe changes in network connectivity over time. Although degree distributions remained heavy-tailed, the ordering of nodes within the tail changed due to popularity trends. The most connected nodes and the years they became so include decision tree (1994), machine learning (1996), logic program (2000), neural network (2005), experimental result (2011), machine learning (2013, for a second time) and neural network (2015).

Connected component analysis in Fig. 4 reveals that the network grew more connected over time, with the largest group expanding and the number of connected components decreasing. Mid-sized connected components’ trajectories may expose trends, like image processing. A connected component with four nodes appeared in 1999 (brightness change, planar curve, local feature, differential invariant), and three more joined in 2000 (similarity transformation, template matching, invariant representation). In 2006, a paper discussing support vector machine and local feature merged this mid-sized group with the largest connected component.

figure 4

Primary (left, blue) vertical axis: number of connected components with more than one node. Secondary (right, orange) vertical axis: number of nodes in the largest connected component. For example, the network in 2019 comprises of one large connected component with 63,472 nodes and 1,247 isolated nodes, that is, nodes with no edges. However, the 2001 network has 19 connected components with size greater than one, the largest of which has 2,733 nodes.

The semantic network reveals increasing centralization over time, with a smaller percentage of nodes (concepts) contributing to a larger fraction of edges (concept combinations). Figure 5 shows that the fraction of edges for high-degree nodes rises, while it decreases for low-degree nodes. The decreasing average clustering coefficient over time supports this trend, suggesting nodes are more likely to connect to high-degree central nodes. This could be due to the AI community’s focus on a few dominating methods or more consistent terminology use.

figure 5

This cumulative histogram illustrates the fraction of nodes (concepts) corresponding to the fraction of edges (connections) for given years (1999, 2003, 2007, 2011, 2015 and 2019). The graph was generated by adding edges and nodes dated before each year. Nodes are sorted by increasing degrees. The y value at x  = 80 represents the fraction of edges contributed by all nodes in and below the 80th percentile of degrees.

Problem formulation

At the big picture, we aim to make predictions in an exponentially growing semantic network. The specific task involves predicting which two nodes v 1 and v 2 with degrees d ( v 1/ 2 ) ≥  c lacking an edge in the year (2021 −  δ ) will have w edges in 2021. We use δ  = 1, 3, 5, c  = 0, 5, 25 and w  = 1, 3, where c is a minimal degree. Note that c  = 0 is an intriguing special case where the nodes may not have an associated edge in the initial year, requiring the model to predict which nodes will connect to entirely new edges. The task w  = 3 goes beyond simple link prediction and seeks to identify uninvestigated concept pairs that will appear together in at least three papers. An interesting alternative task could be predicting the fastest-growing links, denoted as ‘trend’ prediction.

In this task, we provide a list of 10 million unconnected node pairs (each node having a degree ≥ c ) for the year (2021 −  δ ), with the goal of sorting this list by descending probability that they will have at least w edges in 2021.

For evaluation, we employ the receiver operating characteristic (ROC) curve 35 , which plots the true-positive rate against the false-positive rate at various threshold settings. We use the area under the curve (AUC) of the ROC curve as our evaluation metric. The advantage of AUC over mean square error is its independence from the data distribution. Specifically, in our case, where the two classes have a highly asymmetric distribution (with only about 1–3% of newly connected edges) and the distribution changes over time, AUC offers meaningful interpretation. Perfect predictions yield AUC = 1, whereas random predictions result in AUC = 0.5. AUC represents the percentage that a random true element is ranked higher than a random false one. For other metrics, see ref. 36 .

To tackle this task, models can use the complete information of the semantic network from the year (2021 −  δ ) in any way possible. In our case, all presented models generate a dataset for learning to make predictions from (2021 − 2 δ ) to (2021 −  δ ). Once the models successfully complete this task, they are applied to the test dataset to make predictions from (2021 −  δ ) to 2021. All reported AUCs are based on the test dataset. Note that solving the test dataset is especially challenging due to the δ -year shift, causing systematic changes such as the number of papers and density of the semantic network.

AI-based solutions

We demonstrate various methods to predict new links in a semantic network, ranging from pure statistical approaches and neural networks with hand-crafted features (NF) to ML models without NF. The results are shown in Fig. 6 , with the highest AUC scores achieved by methods using NF as ML model inputs. Pure network features without ML are competitive, while pure ML methods have yet to outperform those with NF. Predicting links generated at least three times can achieve a quasi-deterministic AUC > 99.5%, suggesting an interesting target for computational sociology and science of science research. We have performed numerous tests to exclude data leakage in the benchmark dataset, overfitting or data duplication both in the set of articles and the set of concepts. We rank methods based on their performance, with model M1 as the best performing and model M8 as the least effective (for the prediction of a new edge with δ  = 3, c  = 0). Models M4 and M7 are subdivided into M4A, M4B, M7A and M7B, differing in their focus on feature or embedding selection (more details in Methods ).

figure 6

Here we show the AUC values for different models that use machine learning techniques (ML), hand-crafted network features (NF) or a combination thereof. The left plot shows results for the prediction of a single new link (that is, w  = 1) and the right plot shows the results for the prediction of new triple links w  = 3. The task is to predict δ  = [1, 3, 5] years into the future, with cut-off values c  = [0, 5, 25]. We sort the models by the the results for the task ( w  = 1,  δ  = 3,  c  = 0), which was the task in the Science4Cast competition. Data points that are not shown have a AUC below 0.6 or are not computed due to computational costs. All AUC values reported are computed on a validation dataset δ years ahead of the training dataset that the models have never seen. Note that the prediction of new triple edges can be performed nearly deterministic. It will be interesting to understand the origin of this quasi-deterministic pattern in AI research, for example, by connecting it to the research interests of scientists 88 .

Model M1: NF + ML. This approach combines tree-based gradient boosting with graph neural networks, using extensive feature engineering to capture node centralities, proximity and temporal evolution 37 . The Light Gradient Boosting Machine (LightGBM) model 38 is employed with heavy regularization to combat overfitting due to the scarcity of positive examples, while a time-aware graph neural network learns dynamic node representations.

Model M2: NF + ML. This method utilizes node and edge features (as well as their first and second derivatives) to predict link formation probabilities 39 . Node features capture popularity, and edge features measure similarity. A multilayer perceptron with rectified linear unit (ReLU) activation is used for learning. Cold start issues are addressed with feature imputation.

Model M3: NF + ML. This method captures hand-crafted node features over multiple time snapshots and employs a long short-term memory (LSTM) to learn time dependencies 40 . The features were selected to be highly informative while having a low computational cost. The final configuration uses degree centrality, degree of neighbours and common neighbours as features. The LSTM outperforms fully connected neural networks.

Model M4: pure NF. Two purely statistical methods, preferential attachment 41 and common neighbours 27 , are used 42 . Preferential attachment is based on node degrees, while common neighbours relies on the number of shared neighbours. Both methods are computationally inexpensive and perform competitively with some learning-based models.

Model M5: NF + ML. Here, ten groups of first-order graph features are extracted to obtain neighbourhood and similarity properties, with principal component analysis 43 applied for dimensionality reduction 44 . A random forest classifier is trained on the balanced dataset to predict new links.

Model M6: NF + ML. The baseline solution uses 15 hand-crafted features as input to a four-layer neural network, predicting the probability of link formation between node pairs 17 .

Model M7: end-to-end ML (auto node embedding). The baseline solution is modified to use node2vec 45 and ProNE embeddings 46 instead of hand-crafted features. The embeddings are input to a neural network with two hidden layers for link prediction.

Model M8: end-to-end ML (transformers). This method learns features in an unsupervised manner using transformers 47 . Node2vec embeddings 45 , 48 are generated for various snapshots of the adjacency matrix, and a transformer model 49 is pre-trained as a feature extractor. A two-layer ReLU network is used for classification.

Extensions and future work

Developing an AI that suggests research topics to scientists is a complex task, and our link-prediction approach in temporal networks is just the beginning. We highlight key extensions and future work directly related to the ultimate goal of AI for AI.

High-quality predictions without feature engineering. Interestingly, the most effective methods utilized carefully crafted features on a graph with extracted concepts as nodes and edges representing their joint publication history. Investigating whether end-to-end deep learning can solve tasks without feature engineering will be a valuable next step.

Fully automated concept extraction. Current concept lists, generated by RAKE’s statistical text analysis, demand time-consuming code development to address irrelevant term extraction (for example, verbs, adjectives). A fully automated NLP technique that accurately extracts meaningful concepts without manual code intervention would greatly enhance the process.

Leveraging ontology taxonomies. Alongside fully automated concept extraction, utilizing established taxonomies such as the CSO 30 , 31 , Wikipedia-extracted concepts, book indices 17 or PhySH key phrases is crucial. Although not comprehensive for all domains, these curated datasets often contain hierarchical and relational concept information, greatly improving prediction tasks.

Incorporating relation extraction. Future work could explore relation extraction techniques for constructing more accurate, sparser semantic networks. By discerning and classifying meaningful concept relationships in abstracts 50 , 51 , a refined AI literature representation is attainable. Using NLP tools for entity recognition, relationship identification and classification, this approach may enhance prediction performance and novel research direction identification.

Generation of new concepts. Our work predicts links between known concepts, but generating new concepts using AI remains a challenge. This unsupervised task, as explored in refs. 52 , 53 , involves detecting concept clusters with dynamics that signal new concept formation. Incorporating emerging concepts into the current framework for suggesting research topics is an intriguing future direction.

Semantic information beyond concept pairs. Currently, abstracts and titles are compressed into concept pairs, but more comprehensive information extraction could yield meaningful predictions. Exploring complex data structures such as hypergraphs 54 may be computationally demanding, but clever tricks could reduce complexity, as shown in ref. 55 . Investigating sociological factors or drawing inspiration from material science approaches 56 may also improve prediction tasks. A recent dataset for the study of the science of science also includes more complex data structures than the ones used in our paper, including data from social networks such as Twitter 57 .

Predictions of scientific success. While predicting new links between concepts is valuable, assessing their potential impact is essential for high-quality suggestions. Introducing a metric of success, like estimated citation numbers or citation growth rate, can help gauge the importance of these connections. Adapting citation prediction techniques from the science of science 58 , 59 , 60 , 61 to semantic networks offers a promising research direction.

Anomaly detections. Predicting likely connections may not align with finding surprising research directions. One method for identifying surprising suggestions involves constraining cosine similarity between vertices 62 , which measures shared neighbours and can be associated with semantic (dis)similarity. Another approach is detecting anomalies in semantic networks, which are potential links with extreme properties 63 , 64 . While scientists often focus on familiar topics 3 , 4 , greater impact results from unexpected combinations of distant domains 12 , encouraging the search for surprising associations.

End-to-end formulation. Our method breaks down the goal of extracting knowledge from scientific literature into subtasks, contrasting with end-to-end deep learning that tackles problems directly without subproblems 65 , 66 . End-to-end approaches have shown great success in various domains 67 , 68 , 69 . Investigating whether such an end-to-end solution can achieve similar success in our context would be intriguing.

Our method represents a crucial step towards developing a tool that can assist scientists in uncovering novel avenues for exploration. We are confident that our outlined ideas and extensions pave the way for achieving practical, personalized, interdisciplinary AI-based suggestions for new impactful discoveries. We firmly believe that such a tool holds the potential to become a influential catalyst, transforming the way scientists approach research questions and collaborate in their respective fields.

Details on concept set generation and application

In this section, we provide details on the generation of our list of 64,719 concepts. For more information, the code is accessible on GitHub . The entire approach is designed for immediate scalability to other domains.

Initially, we utilized approximately 143,000 arXiv papers from the categories cs.AI, cs.LG, cs.NE and stat.ML spanning 1992 to 2020. The omission of earlier data has a negligible effect on our research question, as we show below. We then iterated over each individual article, employing RAKE (with an extended stopword list) to suggest concept candidates, which were subsequently stored.

Following the iteration, we retained concepts composed of at least two words (for example, neural network) appearing in six or more articles, as well as concepts comprising a minimum of three words (for example, recurrent neural network) appearing in three or more articles. This initial filter substantially reduced noise generated by RAKE, resulting in a list of 104,948 concepts.

Lastly, we developed an automated filtering tool to further enhance the quality of the concept list. This tool identified common, domain-independent errors made by RAKE, which primarily included phrases that were not concepts (for example, dataset provided or discuss open challenge). We compiled a list of 543 words not part of meaningful concepts, including verbs, ordinal numbers, conjunctions and adverbials. Ultimately, this process produced our final list of 64,719 concepts employed in our study. No further semantic concept/entity linking is applied.

By this construction, the test sets with c  = 0 could lead to very rare contamination of the dataset. That is because each concept will have at least one edge in the final dataset. The effects, however, are negligible.

The distribution of concepts in the articles can be seen in Extended Data Fig. 1 . As an example, we show the extraction of concepts from five randomly chosen papers:

Memristor hardware-friendly reinforcement learning 70 : ‘actor critic algorithm’, ‘neuromorphic hardware implementation’, ‘hardware neural network’, ‘neuromorphic hardware system’, ‘neural network’, ‘large number’, ‘reinforcement learning’, ‘case study’, ‘pre training’, ‘training procedure’, ‘complex task’, ‘high performance’, ‘classical problem’, ‘hardware implementation’, ‘synaptic weight’, ‘energy efficient’, ‘neuromorphic hardware’, ‘control theory’, ‘weight update’, ‘training technique’, ‘actor critic’, ‘nervous system’, ‘inverted pendulum’, ‘explicit supervision’, ‘hardware friendly’, ‘neuromorphic architecture’, ‘hardware system’.

Automated deep learning analysis of angiography video sequences for coronary artery disease 71 : ‘deep learning approach’, ‘coronary artery disease’, ‘deep learning analysis’, ‘traditional image processing’, ‘deep learning’, ‘image processing’, ‘f1 score’, ‘video sequence’, ‘error rate’, ‘automated analysis’, ‘coronary artery’, ‘vessel segmentation’, ‘key frame’, ‘visual assessment’, ‘analysis method’, ‘analysis pipeline’, ‘coronary angiography’, ‘geometrical analysis’.

Demographic influences on contemporary art with unsupervised style embeddings 72 : ‘classification task’, ‘social network’, ‘data source’, ‘visual content’, ‘graph network’, ‘demographic information’, ‘social connection’, ‘visual style’, ‘historical dataset’, ‘novel information’

The utility of general domain transfer learning for medical language tasks 73 : ‘natural language processing’, ‘long short term memory’, ‘logistic regression model’, ‘transfer learning technique’, ‘short term memory’, ‘average f1 score’, ‘class classification model’, ‘domain transfer learning’, ‘weighted average f1 score’, ‘medical natural language processing’, ‘natural language process’, ‘transfer learning’, ‘f1 score’, ’natural language’, ’deep model’, ’logistic regression’, ’model performance’, ’classification model’, ’text classification’, ’regression model’, ’nlp task’, ‘short term’, ‘medical domain’, ‘weighted average’, ‘class classification’, ‘bert model’, ‘language processing’, ‘biomedical domain’, ‘domain transfer’, ‘nlp model’, ‘main model’, ‘general domain’, ‘domain model’, ‘medical text’.

Fast neural architecture construction using envelopenets 74 : ‘neural network architecture’, ‘neural architecture search’, ‘deep network architecture’, ‘image classification problem’, ‘neural architecture search method’, ‘neural network’, ‘reinforcement learning’, ‘deep network’, ‘image classification’, ‘objective function’, ‘network architecture’, ‘classification problem’, ‘evolutionary algorithm’, ‘neural architecture’, ‘base network’, ‘architecture search’, ‘training epoch’, ‘search method’, ‘image class’, ‘full training’, ‘automated search’, ‘generated network’, ‘constructed network’, ‘gpu day’.

Time gap between the generation of edges

We use articles from arXiv, which only goes back to the year 1992. However, of course, the field of AI exists at least since the 1960s 75 . Thus, this raises the question whether the omission of the first 30–40 years of research has a crucial impact in the prediction task we formulate, specifically, whether edges that we consider as new might not be so new after all. Thus, in Extended Data Fig. 2 , we compute the time between the formation of edges between the same concepts, taking into account all or just the first edge. We see that the vast majority of edges are formed within short time periods, thus the effect of omission of early publication has a negligible effect for our question. Of course, different questions might be crucially impacted by the early data; thus, a careful choice of the data source is crucial 61 .

Positive examples in the test dataset

Table 1 shows the number of positive cases within the 10 million examples in the 18 test datasets that are used for evaluation.

Publication rates in quantum physics

Another field of research that gained a lot of attention in the recent years is quantum physics. This field is also a strong adopter of arXiv. Thus, we analyse in the same way as for AI in Fig. 1 . We find in Extended Data Fig. 3 no obvious exponential increase in papers per month. A detailed analysis of other domains is beyond the current scope. It will be interesting to investigate the growth rates in different scientific disciplines in more detail, especially given that exponential increase has been observed in several aspects of the science of science 3 , 76 .

Details on models M1–M8

What follows are more detailed explanations of the models presented in the main text. All codes are available at GitHub. The feature importance of the best model M1 is shown here, those of other models are analysed in the respective workshop contributions (cited in the subsections).

Details on M1

The best-performing solution is based on a blend of a tree-based gradient boosting approach and a graph neural network approach 37 . Extensive feature engineering was conducted to capture the centralities of the nodes, the proximity between node pairs and their evolution over time. The centrality of a node is captured by the number of neighbours and the PageRank score 77 , while the proximity between a node pair is derived using the Jaccard index. We refer the reader to ref. 37 for the list of all features and their feature importance.

The tree-based gradient boosting approach uses LightGBM 38 and applies heavy regularization to combat overfitting due to the scarcity of positive samples. The graph neural network approach employs a time-aware graph neural network to learn node representations on dynamic semantic networks. The feature importance of model M1, averaged over 18 datasets, is shown in Table 2 . It shows that the temporal features do contribute largely to the model performance, but the model remains strong even when they are removed. An example of the evolution of the training (from 2016 to 2019) and test set (2019 to 2021) for δ  = 3, c  = 25, ω  = 1 is shown in Extended Data Fig. 4 .

Details on M2

The second method assumes that the probability that nodes u and v form an edge in the future is a function of the node features f ( u ), f ( v ) and some edge feature h ( u ,  v ). We chose node features f that capture popularity at the current time t 0 (such as degree, clustering coefficient 78 , 79 and PageRank 77 ). We also use these features’ first and second time derivatives to capture the evolution of the node’s popularity over time. After variable selection during training, we chose h to consist of the HOP-rec score (high-order proximity for implicit recommendation) 80 , 81 and a variation of the Dice similarity score 82 as a measure of similarity between nodes. In summary, we use 31 node features for each node, and two edge features, which gives 31 × 2 + 2 = 64 features in total. These features are then fed into a small multilayer perceptron (5 layers, each with 13 neurons) with ReLU activation.

Cold start is the problem that some nodes in the test set do not appear in the training set. Our strategy for a cold start is imputation. We say a node v is seen if it appeared in the training data, and unseen otherwise; similarly, we say that a node is born at time t if t is the first time stamp where an edge linking this node has appeared. The idea is that an unseen node is simply a node born in the future, so its features should look like a recently born node in the training set. If a node is unseen, then we impute its features as the average of the features of the nodes born recently. We found that with imputation during training, the test AUC scores across all models consistently increased by about 0.02. For a complete description of this method, we refer the reader to ref. 39 .

Details on M3

This approach, detailed in ref. 40 , uses hand-crafted node features that have been captured in multiple time snapshots (for example, every year) and then uses an LSTM to benefit from learning the time dependencies of these features. The final configuration uses two main types of feature: node features including degree and degree of neighbours, and edge features including common neighbours. In addition, to balance the training data, the same number of positive and negative instances have been randomly sampled and combined.

One of the goals was to identify features that are very informative with a very low computational cost. We found that the degree centrality of the nodes is the most important feature, and the degree centrality of the neighbouring nodes and the degree of mutual neighbours gave us the best trade-off. As all of the extracted features’ distributions are highly skewed to the right, meaning most of the features take near zero values, using a power transform such as Yeo–Johnson 83 helps to make the distributions more Gaussian, which boosts the learning. Finally, for the link-prediction task, we saw that LSTMs perform better than fully connected neural networks.

Details on M4

The following two methods are based on a purely statistical analysis of the test data and are explained in detail in ref. 42 .

Preferential attachment. In the network analysis, we concluded that the growth of this dataset tends to maintain a heavy-tailed degree distribution, often associated with scale-free networks. As mentioned before the γ value of the degree distribution is very close to 2, suggesting that preferential attachment 41 is probably the main organizational principle of the network. As such, we implemented a simple prediction model following this procedure. Preferential attachment scores in link prediction are often quantified as

with k i , j the degree of nodes i and j . However, this assumes the scoring of links between nodes that are already connected to the network, that is k i , j  > 0, which is not the case for all the links we must score in the dataset. As a result, we define our preferential attachment model as

Using this simple model with no free parameters we could score new links and compare them with the other models. Immediately we note that preferential attachment outperforms some learning-based models, even if it never manages to reach the top AUC, but it is extremely simple and with negligible computational cost.

Common neighbours. We explore another network-based approach to score the links. Indeed, while the preferential attachment model we derived performed well, it uses no information about the distance between i and j , which is a popular feature used in link-prediction methods 27 . As such, we decided to test a method known as common neighbours 18 . We define Γ ( i ) as the set of neighbors of node i and Γ ( i ) ∩  Γ ( j ) as the set of common neighbours between nodes i and j . We can easily score the nodes with

the intuition being that nodes that share a larger number of neighbours are more likely to be connected than distant nodes that do not share any.

Evaluating this score for each pair ( i ,  j ) on the dataset of unconnected pairs, which can be computed as the second power of the adjacency matrix, A 2 , we obtained an AUC that is sometimes higher than preferential attachment and sometimes lower than it but is still consistently quite close with the best learning-based models.

Details on M5

This method is based on ref. 44 . First, ten groups of first-order graph features are extracted to get some neighbourhood and similarity properties from each pair of nodes: degree centrality of nodes, pair’s total number of neighbours, common neighbours index, Jaccard coefficient, Simpson coefficient, geometric coefficient, cosine coefficient, Adamic–Adar index, resource allocation index and preferential attachment index. They are obtained for three consecutive years to capture the temporal dynamics of the semantic network, leading to a total of 33 features. Second, principal component analysis 43 is applied to reduce the correlation between features, speed up the learning process and improve generalization, which results in a final set of seven latent variables. Lastly, a random forest classifier is trained (using a balanced dataset) to estimate the likelihood of new links between the AI concepts.

In this paper, a modification was performed in relation to the original formulation of the method 44 : two of the original features, average neighbour degree and clustering coefficient, were infeasible to extract for some of the tasks covered in this paper, as their computation can be heavy for such a very large network, and they were discarded. Due to some computational memory issues, it was not possible to run the model for some of the tasks covered in this study, and so those results are missing.

Details on M6

The baseline solution for the Science4Cast competition was closely related to the model presented in ref. 17 . It uses 15 hand-crafted features of a pair of nodes v 1 and v 2 . (Degrees of v 1 and v 2 in the current year and previous two years are six properties. The number of shared neighbours in total of v 1 and v 2 in the current year and previous two years are six properties. The number of shared neighbours between v 1 and v 2 in the current year and the previous two years are three properties). These 15 features are the input of a neural network with four layers (15, 100, 10 and 1 neurons), intending to predict whether the nodes v 1 and v 2 will have w edges in the future. After the training, the model computes the probability for all 10 million evaluation examples. This list is sorted and the AUC is computed.

Details on M7

The solution M7 was not part of the Science4Cast competition and therefore not described in the corresponding proceedings, thus we want to add more details.

The most immediate way one can apply ML to this problem is by automating the detection of features. Quite simply, the baseline solution M6 is modified such that instead of 15 hand-crafted features, the neural network is instead trained on features extracted from a graph embedding. We use two different embedding approaches. The first method is employs node2vec (M7A) 45 , for which we use the implementations provided in the nodevectors Python package 84 . The second one uses the ProNE embedding (M7B) 46 , which is based on sparse matrix factorizations modulated by the higher-order Cheeger inequality 85 .

The embeddings generate a 32-dimensional representation for each node, resulting in edge representations in [0, 1] 64 . These features are input into a neural network with two hidden layers of size 1,000 and 30. Like M6, the model computes the probability for evaluation examples to determine the ROC. We compare ProNE to node2vec, a common graph embedding method using a biased random walk procedure with return and in–out parameters, which greatly affect network encoding. Initial experiments used default values for a 64-dimensional encoding before inputting into the neural network. The higher variance in node2vec predictions is probably due to its sensitivity to hyperparameters. While ProNE is better suited for general multi-dataset link prediction, node2vec’s sensitivity may help identify crucial network features for predicting temporal evolution.

Details on M8

This model, which is detailed in ref. 47 , does not use any hand-crafted features but learns them in a completely unsupervised manner. To do so, we extract various snapshots of the adjacency matrix through time, capturing graphs in the form of A t for t  = 1994, …, 2019. We then embed each of these graphs into 128-dimensional Euclidean space via node2vec 45 , 48 . For each node u in the semantic graph, we extract different 128-dimensional vector embeddings n u ( A 1994 ), …,  n u ( A 2019 ).

Transformers have performed extremely well in NLP tasks 49 ; thus, we apply them to learn the dynamics of the embedding vectors. We pre-train a transformer to help classify node pairs. For the transformer, the encoder and decoder had 6 layers each; we used 128 as the embedding dimension, 2,048 as the feed-forward dimension and 8-headed attention. This transformer acts as our feature extractor. Once we pre-train our transformer, we add a two-layer ReLU network with hidden dimension 128 as a classifier on top.

Data availability

All 18 datasets tested in this paper are available via Zenodo at https://doi.org/10.5281/zenodo.7882892 ref. 86 .

Code availability

All of the models and codes described above can be found via GitHub at https://github.com/artificial-scientist-lab/FutureOfAIviaAI ref. 5 and a permanent Zenodo record at https://zenodo.org/record/8329701 ref. 87 .

Clauset, A., Larremore, D. B. & Sinatra, R. Data-driven predictions in the science of science. Science 355 , 477–480 (2017).

Article   Google Scholar  

Evans, J. A. & Foster, J. G. Metaknowledge. Science 331 , 721–725 (2011).

Article   MathSciNet   MATH   Google Scholar  

Fortunato, S. et al. Science of science. Science 359 , eaao0185 (2018).

Wang, D. & Barabási, A.-L. The Science of Science (Cambridge Univ. Press, 2021).

Krenn, M. et al. FutureOfAIviaAI. GitHub https://github.com/artificial-scientist-lab/FutureOfAIviaAI (2023).

Brown, T. et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 33 , 1877–1901 (2020).

Google Scholar  

Rae, J. W. et al. Scaling language models: methods, analysis & insights from training gopher. Preprint at https://arxiv.org/abs/2112.11446 (2021).

Smith, S. et al. Using DeepSpeed and Megatron to train Megatron-Turing NLG 530B, a large-scale generative language model. Preprint at https://arxiv.org/abs/2201.11990 (2022).

Chowdhery, A. et al. Palm: scaling language modeling with pathways. Preprint at https://arxiv.org/abs/2204.02311 (2022).

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y. & Iwasawa, Y. Large language models are zero-shot reasoners. Preprint at https://arxiv.org/abs/2205.11916 (2022).

Zhang, H., Li, L. H., Meng, T., Chang, K.-W. & Broeck, G. V. d. On the paradox of learning to reason from data. Preprint at https://arxiv.org/abs/2205.11502 (2022).

Rzhetsky, A., Foster, J. G., Foster, I. T. & Evans, J. A. Choosing experiments to accelerate collective discovery. Proc. Natl Acad. Sci. USA 112 , 14569–14574 (2015).

Foster, J. G., Rzhetsky, A. & Evans, J. A. Tradition and innovation in scientists’ research strategies. Am. Sociol. Rev. 80 , 875–908 (2015).

Van Eck, N. J. & Waltman, L. Text mining and visualization using vosviewer. Preprint at https://arxiv.org/abs/1109.2058 (2011).

Van Eck, N. J. & Waltman, L. in Measuring Scholarly Impact: Methods and Practice (eds Ding, Y. et al.) 285–320 (Springer, 2014).

Wang, Q. et al. Paperrobot: Incremental draft generation of scientific ideas. Preprint at https://arxiv.org/abs/1905.07870 (2019).

Krenn, M. & Zeilinger, A. Predicting research trends with semantic and neural networks with an application in quantum physics. Proc. Natl Acad. Sci. USA 117 , 1910–1916 (2020).

Liben-Nowell, D. & Kleinberg, J. The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58 , 1019–1031 (2007).

Albert, I. & Albert, R. Conserved network motifs allow protein–protein interaction prediction. Bioinformatics 20 , 3346–3352 (2004).

Zhou, T., Lü, L. & Zhang, Y.-C. Predicting missing links via local information. Eur. Phys. J. B 71 , 623–630 (2009).

Article   MATH   Google Scholar  

Kovács, I. A. et al. Network-based prediction of protein interactions. Nat. Commun. 10 , 1240 (2019).

Muscoloni, A., Abdelhamid, I. & Cannistraci, C. V. Local-community network automata modelling based on length-three-paths for prediction of complex network structures in protein interactomes, food webs and more. Preprint at bioRxiv https://doi.org/10.1101/346916 (2018).

Pech, R., Hao, D., Lee, Y.-L., Yuan, Y. & Zhou, T. Link prediction via linear optimization. Physica A 528 , 121319 (2019).

Lü, L., Pan, L., Zhou, T., Zhang, Y.-C. & Stanley, H. E. Toward link predictability of complex networks. Proc. Natl Acad. Sci. USA 112 , 2325–2330 (2015).

Guimerà, R. & Sales-Pardo, M. Missing and spurious interactions and the reconstruction of complex networks. Proc. Natl Acad. Sci. USA 106 , 22073–22078 (2009).

Ghasemian, A., Hosseinmardi, H., Galstyan, A., Airoldi, E. M. & Clauset, A. Stacking models for nearly optimal link prediction in complex networks. Proc. Natl Acad. Sci. USA 117 , 23393–23400 (2020).

Zhou, T. Progresses and challenges in link prediction. iScience 24 , 103217 (2021).

Krenn, M. et al. On scientific understanding with artificial intelligence. Nat. Rev. Phys. 4 , 761–769 (2022).

Rose, S., Engel, D., Cramer, N. & Cowley, W. in Text Mining: Applications and Theory (eds Berry, M. W. & Kogan, J.) Ch. 1 (Wiley, 2010).

Salatino, A. A., Thanapalasingam, T., Mannocci, A., Osborne, F. & Motta, E. The computer science ontology: a large-scale taxonomy of research areas. In Proc. Semantic Web–ISWC 2018: 17th International Semantic Web Conference Part II Vol. 17, 187–205 (Springer, 2018).

Salatino, A. A., Osborne, F., Thanapalasingam, T. & Motta, E. The CSO classifier: ontology-driven detection of research topics in scholarly articles. In Proc. Digital Libraries for Open Knowledge: 23rd International Conference on Theory and Practice of Digital Libraries Vol. 23, 296–311 (Springer, 2019).

Alstott, J., Bullmore, E. & Plenz, D. powerlaw: a Python package for analysis of heavy-tailed distributions. PLoS ONE 9 , e85777 (2014).

Fenner, T., Levene, M. & Loizou, G. A model for collaboration networks giving rise to a power-law distribution with an exponential cutoff. Soc. Netw. 29 , 70–80 (2007).

Broido, A. D. & Clauset, A. Scale-free networks are rare. Nat. Commun. 10 , 1017 (2019).

Fawcett, T. ROC graphs: notes and practical considerations for researchers. Pattern Recognit. Lett. 31 , 1–38 (2004).

Sun, Y., Wong, A. K. & Kamel, M. S. Classification of imbalanced data: a review. Int. J. Pattern Recognit. Artif. Intell. 23 , 687–719 (2009).

Lu, Y. Predicting research trends in artificial intelligence with gradient boosting decision trees and time-aware graph neural networks. In 2021 IEEE International Conference on Big Data (Big Data) 5809–5814 (IEEE, 2021).

Ke, G. et al. LightGBM: a highly efficient gradient boosting decision tree. In Proc. 31st International Conference on Neural Information Processing Systems 3149–3157 (Curran Associates Inc., 2017).

Tran, N. M. & Xie, Y. Improving random walk rankings with feature selection and imputation Science4Cast competition, team Hash Brown. In 2021 IEEE International Conference on Big Data (Big Data) 5824–5827 (IEEE, 2021).

Sanjabi, N. Efficiently predicting scientific trends using node centrality measures of a science semantic network. In 2021 IEEE International Conference on Big Data (Big Data) 5820–5823 (IEEE, 2021).

Barabási, A.-L. Network science. Phil. Trans. R. Soci. A 371 , 20120375 (2013).

Moutinho, J. P., Coutinho, B. & Buffoni, L. Network-based link prediction of scientific concepts—a Science4Cast competition entry. In 2021 IEEE International Conference on Big Data (Big Data) 5815–5819 (IEEE, 2021).

Jolliffe, I. T. & Cadima, J. Principal component analysis: a review and recent developments. Phil. Trans. R. Soc. A 374 , 20150202 (2016).

Valente, F. Link prediction of artificial intelligence concepts using low computational power. In 2021 IEEE International Conference on Big Data (Big Data) 5828–5832 (2021).

Grover, A. & Leskovec, J. node2vec: scalable feature learning for networks. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 855–864 (ACM, 2016).

Zhang, J., Dong, Y., Wang, Y., Tang, J. & Ding, M. ProNE: fast and scalable network representation learning. In Proc. Twenty-Eighth International Joint Conference on Artificial Intelligence 4278–4284 (International Joint Conferences on Artificial Intelligence Organization, 2019).

Lee, H., Sonthalia, R. & Foster, J. G. Dynamic embedding-based methods for link prediction in machine learning semantic network. In 2021 IEEE International Conference on Big Data (Big Data) 5801–5808 (IEEE, 2021).

Liu, R. & Krishnan, A. PecanPy: a fast, efficient and parallelized python implementation of node2vec. Bioinformatics 37 , 3377–3379 (2021).

Vaswani, A. et al. Attention is all you need. In Proc. 31st International Conference on Neural Information Processing Systems 6000–6010 (Curran Associates Inc., 2017).

Zelenko, D., Aone, C. & Richardella, A. Kernel methods for relation extraction. J. Mach. Learn. Res. 3 , 1083–1106 (2003).

MathSciNet   MATH   Google Scholar  

Bach, N. & Badaskar, S. A review of relation extraction. Literature Review for Language and Statistics II 2 , 1–15 (2007).

Salatino, A. A., Osborne, F. & Motta, E. How are topics born? Understanding the research dynamics preceding the emergence of new areas. PeerJ Comput. Sc. 3 , e119 (2017).

Salatino, A. A., Osborne, F. & Motta, E. AUGUR: forecasting the emergence of new research topics. In Proc. 18th ACM/IEEE on Joint Conference on Digital Libraries 303–312 (IEEE, 2018).

Battiston, F. et al. The physics of higher-order interactions in complex systems. Nat. Phys. 17 , 1093–1098 (2021).

Coutinho, B. C., Wu, A.-K., Zhou, H.-J. & Liu, Y.-Y. Covering problems and core percolations on hypergraphs. Phys. Rev. Lett. 124 , 248301 (2020).

Article   MathSciNet   Google Scholar  

Olivetti, E. A. et al. Data-driven materials research enabled by natural language processing and information extraction. Appl. Phys. Rev. 7 , 041317 (2020).

Lin, Z., Yin, Y., Liu, L. & Wang, D. SciSciNet: a large-scale open data lake for the science of science research. Sci. Data 10 , 315 (2023).

Azoulay, P. et al. Toward a more scientific science. Science 361 , 1194–1197 (2018).

Liu, H., Kou, H., Yan, C. & Qi, L. Link prediction in paper citation network to construct paper correlation graph. EURASIP J. Wirel. Commun. Netw. 2019 , 1–12 (2019).

Reisz, N. et al. Loss of sustainability in scientific work. New J. Phys. 24 , 053041 (2022).

Frank, M. R., Wang, D., Cebrian, M. & Rahwan, I. The evolution of citation graphs in artificial intelligence research. Nat. Mach. Intell. 1 , 79–85 (2019).

Newman, M. Networks (Oxford Univ. Press, 2018).

Kwon, D. et al. A survey of deep learning-based network anomaly detection. Cluster Comput. 22 , 949–961 (2019).

Pang, G., Shen, C., Cao, L. & Hengel, A. V. D. Deep learning for anomaly detection: a review. ACM Comput. Surv. 54 , 1–38 (2021).

Collobert, R. et al. Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12 , 2493–2537 (2011).

MATH   Google Scholar  

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521 , 436–444 (2015).

Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM 60 , 84–90 (2017).

Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518 , 529–533 (2015).

Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529 , 484–489 (2016).

Wu, N., Vincent, A., Strukov, D. & Xie, Y. Memristor hardware-friendly reinforcement learning. Preprint at https://arxiv.org/abs/2001.06930 (2020).

Zhou, C. et al. Automated deep learning analysis of angiography video sequences for coronary artery disease. Preprint at https://arxiv.org/abs/2101.12505 (2021).

Huckle, N., Garcia, N. & Nakashima, Y. Demographic influences on contemporary art with unsupervised style embeddings. In Proc. Computer Vision–ECCV 2020 Workshops Part II Vol. 16, 126–142 (Springer, 2020).

Ranti, D. et al. The utility of general domain transfer learning for medical language tasks. Preprint at https://arxiv.org/abs/2002.06670 (2020).

Kamath, P., Singh, A. & Dutta, D. Fast neural architecture construction using envelopenets. Preprint at https://arxiv.org/abs/1803.06744 (2018).

Minsky, M. Steps toward artificial intelligence. Proc. IRE 49 , 8–30 (1961).

Bornmann, L., Haunschild, R. & Mutz, R. Growth rates of modern science: a latent piecewise growth curve approach to model publication numbers from established and new literature databases. Humanit. Soc. Sci. Commun. 8 , 224 (2021).

Brin, S. & Page, L. The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30 , 107–117 (1998).

Holland, P. W. & Leinhardt, S. Transitivity in structural models of small groups. Comp. Group Studies 2 , 107–124 (1971).

Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393 , 440–442 (1998).

Yang, J.-H., Chen, C.-M., Wang, C.-J. & Tsai, M.-F. HOP-rec: high-order proximity for implicit recommendation. In Proc. 12th ACM Conference on Recommender Systems 140–144 (2018).

Lin, B.-Y. OGB_collab_project. GitHub https://github.com/brucenccu/OGB_collab_project (2021).

Sorensen, T. A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons. Biol. Skar. 5 , 1–34 (1948).

Yeo, I.-K. & Johnson, R. A. A new family of power transformations to improve normality or symmetry. Biometrika 87 , 954–959 (2000).

Ranger, M. nodevectors. GitHub https://github.com/VHRanger/nodevectors (2021).

Bandeira, A. S., Singer, A. & Spielman, D. A. A Cheeger inequality for the graph connection Laplacian. SIAM J. Matrix Anal. Appl. 34 , 1611–1630 (2013).

Krenn, M. et al. Predicting the future of AI with AI. Zenodo https://doi.org/10.5281/zenodo.7882892 (2023).

Krenn, M. et al. FutureOfAIviaAI code. Zenodo https://zenodo.org/record/8329701 (2023).

Jia, T., Wang, D. & Szymanski, B. K. Quantifying patterns of research-interest evolution. Nat. Hum. Behav. 1 , 0078 (2017).

Download references

Acknowledgements

We thank IARAI Vienna and IEEE for supporting and hosting the IEEE BigData Competition Science4Cast. We are specifically grateful to D. Kreil, M. Neun, C. Eichenberger, M. Spanring, H. Martin, D. Geschke, D. Springer, P. Herruzo, M. McCutchan, A. Mihai, T. Furdui, G. Fratica, M. Vázquez, A. Gruca, J. Brandstetter and S. Hochreiter for helping to set up and successfully execute the competition and the corresponding workshop. We thank X. Gu for creating Fig. 2 , and M. Aghajohari and M. Sadegh Akhondzadeh for helpful comments on the paper. The work of H.L., R.S. and J.G.F. was supported by grant TWCF0333 from the Templeton World Charity Foundation. H.L. is additionally supported by NSF grant DMS-1952339. J.P.M. acknowledges the support of FCT (Portugal) through scholarship SFRH/BD/144151/2019. B.C. thanks the support from FCT/MCTES through national funds and when applicable co-funded EU funds under the project UIDB/50008/2020, and FCT through the project CEECINST/00117/2018/CP1495/CT0001. N.M.T. and Y.X. are supported by NSF grant DMS-2113468, the NSF IFML 2019844 award to the University of Texas at Austin, and the Good Systems Research Initiative, part of University of Texas at Austin Bridging Barriers.

Open access funding provided by Max Planck Society.

Author information

Authors and affiliations.

Max Planck Institute for the Science of Light (MPL), Erlangen, Germany

Mario Krenn

Instituto de Telecomunicações, Lisbon, Portugal

Lorenzo Buffoni, Bruno Coutinho & João P. Moutinho

University of Toronto, Toronto, Ontario, Canada

Sagi Eppel & Andrew Gritsevskiy

University of California Los Angeles, Los Angeles, CA, USA

Jacob Gates Foster, Harlin Lee & Rishi Sonthalia

Cavendish Laboratories, Cavendish, VT, USA

Andrew Gritsevskiy

Institute of Advanced Research in Artificial Intelligence (IARAI), Vienna, Austria

Andrew Gritsevskiy & Michael Kopp

Alpha 8 AI, Toronto, Ontario, Canada

Independent Researcher, Barcelona, Spain

Nima Sanjabi

University of Texas at Austin, Austin, TX, USA

Ngoc Mai Tran

Independent Researcher, Leiria, Portugal

Francisco Valente

University of Pennsylvania, Philadelphia, PA, USA

Yangxinyu Xie

University of California, San Diego, CA, USA

You can also search for this author in PubMed   Google Scholar

Contributions

M. Krenn and R.Y. initiated the research. M. Krenn and M. Kopp organized the Science4Cast competition. M. Krenn generated the datasets and initial codes. S.E. and H.L. analysed the network-theoretical properties of the semantic network. M. Krenn, L.B., B.C., J.G.F., A.G, H.L., Y.L, J.P.M, N.S., R.S., N.M.T, F.V., Y.X and M. Kopp provided codes for the ten models. M. Krenn wrote the paper with input from all co-authors.

Corresponding author

Correspondence to Mario Krenn .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Machine Intelligence thanks Alexander Belikov, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Mirko Pieropan, in collaboration with the Nature Machine Intelligence team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended data fig. 1.

Number of concepts per article.

Extended Data Fig. 2

Time Gap between the generation of edges. Here, left shows the time it takes to create a new edge between two vertices and right shows the time between the first and the second edge.

Extended Data Fig. 3

Publications in Quantum Physics.

Extended Data Fig. 4

Evolution of the AUC during training for Model M1.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Krenn, M., Buffoni, L., Coutinho, B. et al. Forecasting the future of artificial intelligence with machine learning-based link prediction in an exponentially growing knowledge network. Nat Mach Intell 5 , 1326–1335 (2023). https://doi.org/10.1038/s42256-023-00735-0

Download citation

Received : 21 January 2023

Accepted : 11 September 2023

Published : 16 October 2023

Issue Date : November 2023

DOI : https://doi.org/10.1038/s42256-023-00735-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

research topics in machine learning

eml header

37 Research Topics In Data Science To Stay On Top Of

Stewart Kaplan

  • February 22, 2024

As a data scientist, staying on top of the latest research in your field is essential.

The data science landscape changes rapidly, and new techniques and tools are constantly being developed.

To keep up with the competition, you need to be aware of the latest trends and topics in data science research.

In this article, we will provide an overview of 37 hot research topics in data science.

We will discuss each topic in detail, including its significance and potential applications.

These topics could be an idea for a thesis or simply topics you can research independently.

Stay tuned – this is one blog post you don’t want to miss!

37 Research Topics in Data Science

1.) predictive modeling.

Predictive modeling is a significant portion of data science and a topic you must be aware of.

Simply put, it is the process of using historical data to build models that can predict future outcomes.

Predictive modeling has many applications, from marketing and sales to financial forecasting and risk management.

As businesses increasingly rely on data to make decisions, predictive modeling is becoming more and more important.

While it can be complex, predictive modeling is a powerful tool that gives businesses a competitive advantage.

predictive modeling

2.) Big Data Analytics

These days, it seems like everyone is talking about big data.

And with good reason – organizations of all sizes are sitting on mountains of data, and they’re increasingly turning to data scientists to help them make sense of it all.

But what exactly is big data? And what does it mean for data science?

Simply put, big data is a term used to describe datasets that are too large and complex for traditional data processing techniques.

Big data typically refers to datasets of a few terabytes or more.

But size isn’t the only defining characteristic – big data is also characterized by its high Velocity (the speed at which data is generated), Variety (the different types of data), and Volume (the amount of the information).

Given the enormity of big data, it’s not surprising that organizations are struggling to make sense of it all.

That’s where data science comes in.

Data scientists use various methods to wrangle big data, including distributed computing and other decentralized technologies.

With the help of data science, organizations are beginning to unlock the hidden value in their big data.

By harnessing the power of big data analytics, they can improve their decision-making, better understand their customers, and develop new products and services.

3.) Auto Machine Learning

Auto machine learning is a research topic in data science concerned with developing algorithms that can automatically learn from data without intervention.

This area of research is vital because it allows data scientists to automate the process of writing code for every dataset.

This allows us to focus on other tasks, such as model selection and validation.

Auto machine learning algorithms can learn from data in a hands-off way for the data scientist – while still providing incredible insights.

This makes them a valuable tool for data scientists who either don’t have the skills to do their own analysis or are struggling.

Auto Machine Learning

4.) Text Mining

Text mining is a research topic in data science that deals with text data extraction.

This area of research is important because it allows us to get as much information as possible from the vast amount of text data available today.

Text mining techniques can extract information from text data, such as keywords, sentiments, and relationships.

This information can be used for various purposes, such as model building and predictive analytics.

5.) Natural Language Processing

Natural language processing is a data science research topic that analyzes human language data.

This area of research is important because it allows us to understand and make sense of the vast amount of text data available today.

Natural language processing techniques can build predictive and interactive models from any language data.

Natural Language processing is pretty broad, and recent advances like GPT-3 have pushed this topic to the forefront.

natural language processing

6.) Recommender Systems

Recommender systems are an exciting topic in data science because they allow us to make better products, services, and content recommendations.

Businesses can better understand their customers and their needs by using recommender systems.

This, in turn, allows them to develop better products and services that meet the needs of their customers.

Recommender systems are also used to recommend content to users.

This can be done on an individual level or at a group level.

Think about Netflix, for example, always knowing what you want to watch!

Recommender systems are a valuable tool for businesses and users alike.

7.) Deep Learning

Deep learning is a research topic in data science that deals with artificial neural networks.

These networks are composed of multiple layers, and each layer is formed from various nodes.

Deep learning networks can learn from data similarly to how humans learn, irrespective of the data distribution.

This makes them a valuable tool for data scientists looking to build models that can learn from data independently.

The deep learning network has become very popular in recent years because of its ability to achieve state-of-the-art results on various tasks.

There seems to be a new SOTA deep learning algorithm research paper on  https://arxiv.org/  every single day!

deep learning

8.) Reinforcement Learning

Reinforcement learning is a research topic in data science that deals with algorithms that can learn on multiple levels from interactions with their environment.

This area of research is essential because it allows us to develop algorithms that can learn non-greedy approaches to decision-making, allowing businesses and companies to win in the long term compared to the short.

9.) Data Visualization

Data visualization is an excellent research topic in data science because it allows us to see our data in a way that is easy to understand.

Data visualization techniques can be used to create charts, graphs, and other visual representations of data.

This allows us to see the patterns and trends hidden in our data.

Data visualization is also used to communicate results to others.

This allows us to share our findings with others in a way that is easy to understand.

There are many ways to contribute to and learn about data visualization.

Some ways include attending conferences, reading papers, and contributing to open-source projects.

data visualization

10.) Predictive Maintenance

Predictive maintenance is a hot topic in data science because it allows us to prevent failures before they happen.

This is done using data analytics to predict when a failure will occur.

This allows us to take corrective action before the failure actually happens.

While this sounds simple, avoiding false positives while keeping recall is challenging and an area wide open for advancement.

11.) Financial Analysis

Financial analysis is an older topic that has been around for a while but is still a great field where contributions can be felt.

Current researchers are focused on analyzing macroeconomic data to make better financial decisions.

This is done by analyzing the data to identify trends and patterns.

Financial analysts can use this information to make informed decisions about where to invest their money.

Financial analysis is also used to predict future economic trends.

This allows businesses and individuals to prepare for potential financial hardships and enable companies to be cash-heavy during good economic conditions.

Overall, financial analysis is a valuable tool for anyone looking to make better financial decisions.

Financial Analysis

12.) Image Recognition

Image recognition is one of the hottest topics in data science because it allows us to identify objects in images.

This is done using artificial intelligence algorithms that can learn from data and understand what objects you’re looking for.

This allows us to build models that can accurately recognize objects in images and video.

This is a valuable tool for businesses and individuals who want to be able to identify objects in images.

Think about security, identification, routing, traffic, etc.

Image Recognition has gained a ton of momentum recently – for a good reason.

13.) Fraud Detection

Fraud detection is a great topic in data science because it allows us to identify fraudulent activity before it happens.

This is done by analyzing data to look for patterns and trends that may be associated with the fraud.

Once our machine learning model recognizes some of these patterns in real time, it immediately detects fraud.

This allows us to take corrective action before the fraud actually happens.

Fraud detection is a valuable tool for anyone who wants to protect themselves from potential fraudulent activity.

fraud detection

14.) Web Scraping

Web scraping is a controversial topic in data science because it allows us to collect data from the web, which is usually data you do not own.

This is done by extracting data from websites using scraping tools that are usually custom-programmed.

This allows us to collect data that would otherwise be inaccessible.

For obvious reasons, web scraping is a unique tool – giving you data your competitors would have no chance of getting.

I think there is an excellent opportunity to create new and innovative ways to make scraping accessible for everyone, not just those who understand Selenium and Beautiful Soup.

15.) Social Media Analysis

Social media analysis is not new; many people have already created exciting and innovative algorithms to study this.

However, it is still a great data science research topic because it allows us to understand how people interact on social media.

This is done by analyzing data from social media platforms to look for insights, bots, and recent societal trends.

Once we understand these practices, we can use this information to improve our marketing efforts.

For example, if we know that a particular demographic prefers a specific type of content, we can create more content that appeals to them.

Social media analysis is also used to understand how people interact with brands on social media.

This allows businesses to understand better what their customers want and need.

Overall, social media analysis is valuable for anyone who wants to improve their marketing efforts or understand how customers interact with brands.

social media

16.) GPU Computing

GPU computing is a fun new research topic in data science because it allows us to process data much faster than traditional CPUs .

Due to how GPUs are made, they’re incredibly proficient at intense matrix operations, outperforming traditional CPUs by very high margins.

While the computation is fast, the coding is still tricky.

There is an excellent research opportunity to bring these innovations to non-traditional modules, allowing data science to take advantage of GPU computing outside of deep learning.

17.) Quantum Computing

Quantum computing is a new research topic in data science and physics because it allows us to process data much faster than traditional computers.

It also opens the door to new types of data.

There are just some problems that can’t be solved utilizing outside of the classical computer.

For example, if you wanted to understand how a single atom moved around, a classical computer couldn’t handle this problem.

You’ll need to utilize a quantum computer to handle quantum mechanics problems.

This may be the “hottest” research topic on the planet right now, with some of the top researchers in computer science and physics worldwide working on it.

You could be too.

quantum computing

18.) Genomics

Genomics may be the only research topic that can compete with quantum computing regarding the “number of top researchers working on it.”

Genomics is a fantastic intersection of data science because it allows us to understand how genes work.

This is done by sequencing the DNA of different organisms to look for insights into our and other species.

Once we understand these patterns, we can use this information to improve our understanding of diseases and create new and innovative treatments for them.

Genomics is also used to study the evolution of different species.

Genomics is the future and a field begging for new and exciting research professionals to take it to the next step.

19.) Location-based services

Location-based services are an old and time-tested research topic in data science.

Since GPS and 4g cell phone reception became a thing, we’ve been trying to stay informed about how humans interact with their environment.

This is done by analyzing data from GPS tracking devices, cell phone towers, and Wi-Fi routers to look for insights into how humans interact.

Once we understand these practices, we can use this information to improve our geotargeting efforts, improve maps, find faster routes, and improve cohesion throughout a community.

Location-based services are used to understand the user, something every business could always use a little bit more of.

While a seemingly “stale” field, location-based services have seen a revival period with self-driving cars.

GPS

20.) Smart City Applications

Smart city applications are all the rage in data science research right now.

By harnessing the power of data, cities can become more efficient and sustainable.

But what exactly are smart city applications?

In short, they are systems that use data to improve city infrastructure and services.

This can include anything from traffic management and energy use to waste management and public safety.

Data is collected from various sources, including sensors, cameras, and social media.

It is then analyzed to identify tendencies and habits.

This information can make predictions about future needs and optimize city resources.

As more and more cities strive to become “smart,” the demand for data scientists with expertise in smart city applications is only growing.

21.) Internet Of Things (IoT)

The Internet of Things, or IoT, is exciting and new data science and sustainability research topic.

IoT is a network of physical objects embedded with sensors and connected to the internet.

These objects can include everything from alarm clocks to refrigerators; they’re all connected to the internet.

That means that they can share data with computers.

And that’s where data science comes in.

Data scientists are using IoT data to learn everything from how people use energy to how traffic flows through a city.

They’re also using IoT data to predict when an appliance will break down or when a road will be congested.

Really, the possibilities are endless.

With such a wide-open field, it’s easy to see why IoT is being researched by some of the top professionals in the world.

internet of things

22.) Cybersecurity

Cybersecurity is a relatively new research topic in data science and in general, but it’s already garnering a lot of attention from businesses and organizations.

After all, with the increasing number of cyber attacks in recent years, it’s clear that we need to find better ways to protect our data.

While most of cybersecurity focuses on infrastructure, data scientists can leverage historical events to find potential exploits to protect their companies.

Sometimes, looking at a problem from a different angle helps, and that’s what data science brings to cybersecurity.

Also, data science can help to develop new security technologies and protocols.

As a result, cybersecurity is a crucial data science research area and one that will only become more important in the years to come.

23.) Blockchain

Blockchain is an incredible new research topic in data science for several reasons.

First, it is a distributed database technology that enables secure, transparent, and tamper-proof transactions.

Did someone say transmitting data?

This makes it an ideal platform for tracking data and transactions in various industries.

Second, blockchain is powered by cryptography, which not only makes it highly secure – but is a familiar foe for data scientists.

Finally, blockchain is still in its early stages of development, so there is much room for research and innovation.

As a result, blockchain is a great new research topic in data science that vows to revolutionize how we store, transmit and manage data.

blockchain

24.) Sustainability

Sustainability is a relatively new research topic in data science, but it is gaining traction quickly.

To keep up with this demand, The Wharton School of the University of Pennsylvania has  started to offer an MBA in Sustainability .

This demand isn’t shocking, and some of the reasons include the following:

Sustainability is an important issue that is relevant to everyone.

Datasets on sustainability are constantly growing and changing, making it an exciting challenge for data scientists.

There hasn’t been a “set way” to approach sustainability from a data perspective, making it an excellent opportunity for interdisciplinary research.

As data science grows, sustainability will likely become an increasingly important research topic.

25.) Educational Data

Education has always been a great topic for research, and with the advent of big data, educational data has become an even richer source of information.

By studying educational data, researchers can gain insights into how students learn, what motivates them, and what barriers these students may face.

Besides, data science can be used to develop educational interventions tailored to individual students’ needs.

Imagine being the researcher that helps that high schooler pass mathematics; what an incredible feeling.

With the increasing availability of educational data, data science has enormous potential to improve the quality of education.

online education

26.) Politics

As data science continues to evolve, so does the scope of its applications.

Originally used primarily for business intelligence and marketing, data science is now applied to various fields, including politics.

By analyzing large data sets, political scientists (data scientists with a cooler name) can gain valuable insights into voting patterns, campaign strategies, and more.

Further, data science can be used to forecast election results and understand the effects of political events on public opinion.

With the wealth of data available, there is no shortage of research opportunities in this field.

As data science evolves, so does our understanding of politics and its role in our world.

27.) Cloud Technologies

Cloud technologies are a great research topic.

It allows for the outsourcing and sharing of computer resources and applications all over the internet.

This lets organizations save money on hardware and maintenance costs while providing employees access to the latest and greatest software and applications.

I believe there is an argument that AWS could be the greatest and most technologically advanced business ever built (Yes, I know it’s only part of the company).

Besides, cloud technologies can help improve team members’ collaboration by allowing them to share files and work on projects together in real-time.

As more businesses adopt cloud technologies, data scientists must stay up-to-date on the latest trends in this area.

By researching cloud technologies, data scientists can help organizations to make the most of this new and exciting technology.

cloud technologies

28.) Robotics

Robotics has recently become a household name, and it’s for a good reason.

First, robotics deals with controlling and planning physical systems, an inherently complex problem.

Second, robotics requires various sensors and actuators to interact with the world, making it an ideal application for machine learning techniques.

Finally, robotics is an interdisciplinary field that draws on various disciplines, such as computer science, mechanical engineering, and electrical engineering.

As a result, robotics is a rich source of research problems for data scientists.

29.) HealthCare

Healthcare is an industry that is ripe for data-driven innovation.

Hospitals, clinics, and health insurance companies generate a tremendous amount of data daily.

This data can be used to improve the quality of care and outcomes for patients.

This is perfect timing, as the healthcare industry is undergoing a significant shift towards value-based care, which means there is a greater need than ever for data-driven decision-making.

As a result, healthcare is an exciting new research topic for data scientists.

There are many different ways in which data can be used to improve healthcare, and there is a ton of room for newcomers to make discoveries.

healthcare

30.) Remote Work

There’s no doubt that remote work is on the rise.

In today’s global economy, more and more businesses are allowing their employees to work from home or anywhere else they can get a stable internet connection.

But what does this mean for data science? Well, for one thing, it opens up a whole new field of research.

For example, how does remote work impact employee productivity?

What are the best ways to manage and collaborate on data science projects when team members are spread across the globe?

And what are the cybersecurity risks associated with working remotely?

These are just a few of the questions that data scientists will be able to answer with further research.

So if you’re looking for a new topic to sink your teeth into, remote work in data science is a great option.

31.) Data-Driven Journalism

Data-driven journalism is an exciting new field of research that combines the best of both worlds: the rigor of data science with the creativity of journalism.

By applying data analytics to large datasets, journalists can uncover stories that would otherwise be hidden.

And telling these stories compellingly can help people better understand the world around them.

Data-driven journalism is still in its infancy, but it has already had a major impact on how news is reported.

In the future, it will only become more important as data becomes increasingly fluid among journalists.

It is an exciting new topic and research field for data scientists to explore.

journalism

32.) Data Engineering

Data engineering is a staple in data science, focusing on efficiently managing data.

Data engineers are responsible for developing and maintaining the systems that collect, process, and store data.

In recent years, there has been an increasing demand for data engineers as the volume of data generated by businesses and organizations has grown exponentially.

Data engineers must be able to design and implement efficient data-processing pipelines and have the skills to optimize and troubleshoot existing systems.

If you are looking for a challenging research topic that would immediately impact you worldwide, then improving or innovating a new approach in data engineering would be a good start.

33.) Data Curation

Data curation has been a hot topic in the data science community for some time now.

Curating data involves organizing, managing, and preserving data so researchers can use it.

Data curation can help to ensure that data is accurate, reliable, and accessible.

It can also help to prevent research duplication and to facilitate the sharing of data between researchers.

Data curation is a vital part of data science. In recent years, there has been an increasing focus on data curation, as it has become clear that it is essential for ensuring data quality.

As a result, data curation is now a major research topic in data science.

There are numerous books and articles on the subject, and many universities offer courses on data curation.

Data curation is an integral part of data science and will only become more important in the future.

businessman

34.) Meta-Learning

Meta-learning is gaining a ton of steam in data science. It’s learning how to learn.

So, if you can learn how to learn, you can learn anything much faster.

Meta-learning is mainly used in deep learning, as applications outside of this are generally pretty hard.

In deep learning, many parameters need to be tuned for a good model, and there’s usually a lot of data.

You can save time and effort if you can automatically and quickly do this tuning.

In machine learning, meta-learning can improve models’ performance by sharing knowledge between different models.

For example, if you have a bunch of different models that all solve the same problem, then you can use meta-learning to share the knowledge between them to improve the cluster (groups) overall performance.

I don’t know how anyone looking for a research topic could stay away from this field; it’s what the  Terminator  warned us about!

35.) Data Warehousing

A data warehouse is a system used for data analysis and reporting.

It is a central data repository created by combining data from multiple sources.

Data warehouses are often used to store historical data, such as sales data, financial data, and customer data.

This data type can be used to create reports and perform statistical analysis.

Data warehouses also store data that the organization is not currently using.

This type of data can be used for future research projects.

Data warehousing is an incredible research topic in data science because it offers a variety of benefits.

Data warehouses help organizations to save time and money by reducing the need for manual data entry.

They also help to improve the accuracy of reports and provide a complete picture of the organization’s performance.

Data warehousing feels like one of the weakest parts of the Data Science Technology Stack; if you want a research topic that could have a monumental impact – data warehousing is an excellent place to look.

data warehousing

36.) Business Intelligence

Business intelligence aims to collect, process, and analyze data to help businesses make better decisions.

Business intelligence can improve marketing, sales, customer service, and operations.

It can also be used to identify new business opportunities and track competition.

BI is business and another tool in your company’s toolbox to continue dominating your area.

Data science is the perfect tool for business intelligence because it combines statistics, computer science, and machine learning.

Data scientists can use business intelligence to answer questions like, “What are our customers buying?” or “What are our competitors doing?” or “How can we increase sales?”

Business intelligence is a great way to improve your business’s bottom line and an excellent opportunity to dive deep into a well-respected research topic.

37.) Crowdsourcing

One of the newest areas of research in data science is crowdsourcing.

Crowdsourcing is a process of sourcing tasks or projects to a large group of people, typically via the internet.

This can be done for various purposes, such as gathering data, developing new algorithms, or even just for fun (think: online quizzes and surveys).

But what makes crowdsourcing so powerful is that it allows businesses and organizations to tap into a vast pool of talent and resources they wouldn’t otherwise have access to.

And with the rise of social media, it’s easier than ever to connect with potential crowdsource workers worldwide.

Imagine if you could effect that, finding innovative ways to improve how people work together.

That would have a huge effect.

crowd sourcing

Final Thoughts, Are These Research Topics In Data Science For You?

Thirty-seven different research topics in data science are a lot to take in, but we hope you found a research topic that interests you.

If not, don’t worry – there are plenty of other great topics to explore.

The important thing is to get started with your research and find ways to apply what you learn to real-world problems.

We wish you the best of luck as you begin your data science journey!

Other Data Science Articles

We love talking about data science; here are a couple of our favorite articles:

  • Why Are You Interested In Data Science?
  • Recent Posts

Stewart Kaplan

  • Are Software Engineers Easy to Get Internships? Insider Tips Revealed [Must-Read] - May 28, 2024
  • How to Protect Yourself from Google in Data Science [Essential Tips Inside] - May 28, 2024
  • What Editing Software Does Netflix Use? [Unveiling Netflix’s Top Tools] - May 27, 2024

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

Machine learning.

  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

Download RSS feed: News Articles / In the Media / Audio

Three rows of five portrait photos

School of Engineering welcomes new faculty

Fifteen new faculty members join six of the school’s academic departments.

May 23, 2024

Read full story →

Ten portrait photos are featured in geometrical shapes on a dark blue background. Text indicates "2024 Design Fellows"

2024 MAD Design Fellows announced

The 10 Design Fellows are MIT graduate students working at the intersection of design and multiple disciplines across the Institute.

May 21, 2024

A cute robot is at the chalkboard. The chalkboard is filled with complex charts, waves and shapes.

Scientists use generative AI to answer complex questions in physics

A new technique that can automatically classify phases of physical systems could help scientists investigate novel materials.

May 16, 2024

A digital illustration featuring two stylized humanlike figures engaged in a conversation over a tabletop board game.

Using ideas from game theory to improve the reliability of language models

A new “consensus game,” developed by MIT CSAIL researchers, elevates AI’s text comprehension and generation skills.

May 14, 2024

Three orange blobs turn into the letters and spell “MIT.” Two cute cartoony blobs are in the corner smiling.

A better way to control shape-shifting soft robots

A new algorithm learns to squish, bend, or stretch a robot’s entire body to accomplish diverse tasks like avoiding obstacles or retrieving items.

May 10, 2024

Underwater photo of a large sperm whale diving with two small baby whales near her

Exploring the mysterious alphabet of sperm whales

MIT CSAIL and Project CETI researchers reveal complex communication patterns in sperm whales, deepening our understanding of animal language systems.

May 7, 2024

Sally Kornbluth and Sam Altman are sitting on stage in conversation.

President Sally Kornbluth and OpenAI CEO Sam Altman discuss the future of AI

The conversation in Kresge Auditorium touched on the promise and perils of the rapidly evolving technology.

May 6, 2024

Jonathan Ragan-Kelley stands outdoors in Budapest, with the city as a backdrop

Creating bespoke programming languages for efficient visual AI systems

Associate Professor Jonathan Ragan-Kelley optimizes how computer graphics and images are processed for the hardware of today and tomorrow.

May 3, 2024

A group of 30 people stand in Lobby 7 at MIT, a large atrium with multiple floors

HPI-MIT design research collaboration creates powerful teams

Together, the Hasso Plattner Institute and MIT are working toward novel solutions to the world’s problems as part of the Designing for Sustainability research program.

Two researchers sit at a desk looking at computer screens showing tornado radar images

An AI dataset carves new paths to tornado detection

TorNet, a public artificial intelligence dataset, could help models reveal when and why tornadoes form, improving forecasters' ability to issue warnings.

April 29, 2024

Five people seated in a row in front of an audience smile and listen intently to someone out of the frame.

MIT faculty, instructors, students experiment with generative AI in teaching and learning

At MIT’s Festival of Learning 2024, panelists stressed the importance of developing critical thinking skills while leveraging technologies like generative AI.

Photos of Roger Levy, Tracy Slatyer, and Martin Wainwright

Three from MIT awarded 2024 Guggenheim Fellowships

MIT professors Roger Levy, Tracy Slatyer, and Martin Wainwright appointed to the 2024 class of “trail-blazing fellows.”

April 26, 2024

Collage of about 40 random thumbnail photos with one large illustration of a human brain overlaid in the center.

Mapping the brain pathways of visual memorability

For the first time, researchers use a combination of MEG and fMRI to map the spatio-temporal human brain dynamics of a visual image being recognized.

April 23, 2024

A purple chip with a stylized machine learning background and lock icon.

This tiny chip can safeguard user data while enabling efficient computing on a smartphone

Researchers have developed a security solution for power-hungry AI models that offers protection against two common attacks.

Illustration against a starry background. Two radio dishes are in the lower left, six 3D molecule models are in the center.

Researchers detect a new molecule in space

Such discoveries help researchers better understand the development of molecular complexity in space during star formation.

April 22, 2024

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

machine learning Recently Published Documents

Total documents.

  • Latest Documents
  • Most Cited Documents
  • Contributed Authors
  • Related Sources
  • Related Keywords

An explainable machine learning model for identifying geographical origins of sea cucumber Apostichopus japonicus based on multi-element profile

A comparison of machine learning- and regression-based models for predicting ductility ratio of rc beam-column joints, alexa, is this a historical record.

Digital transformation in government has brought an increase in the scale, variety, and complexity of records and greater levels of disorganised data. Current practices for selecting records for transfer to The National Archives (TNA) were developed to deal with paper records and are struggling to deal with this shift. This article examines the background to the problem and outlines a project that TNA undertook to research the feasibility of using commercially available artificial intelligence tools to aid selection. The project AI for Selection evaluated a range of commercial solutions varying from off-the-shelf products to cloud-hosted machine learning platforms, as well as a benchmarking tool developed in-house. Suitability of tools depended on several factors, including requirements and skills of transferring bodies as well as the tools’ usability and configurability. This article also explores questions around trust and explainability of decisions made when using AI for sensitive tasks such as selection.

Automated Text Classification of Maintenance Data of Higher Education Buildings Using Text Mining and Machine Learning Techniques

Data-driven analysis and machine learning for energy prediction in distributed photovoltaic generation plants: a case study in queensland, australia, modeling nutrient removal by membrane bioreactor at a sewage treatment plant using machine learning models, big five personality prediction based in indonesian tweets using machine learning methods.

<span lang="EN-US">The popularity of social media has drawn the attention of researchers who have conducted cross-disciplinary studies examining the relationship between personality traits and behavior on social media. Most current work focuses on personality prediction analysis of English texts, but Indonesian has received scant attention. Therefore, this research aims to predict user’s personalities based on Indonesian text from social media using machine learning techniques. This paper evaluates several machine learning techniques, including <a name="_Hlk87278444"></a>naive Bayes (NB), K-nearest neighbors (KNN), and support vector machine (SVM), based on semantic features including emotion, sentiment, and publicly available Twitter profile. We predict the personality based on the big five personality model, the most appropriate model for predicting user personality in social media. We examine the relationships between the semantic features and the Big Five personality dimensions. The experimental results indicate that the Big Five personality exhibit distinct emotional, sentimental, and social characteristics and that SVM outperformed NB and KNN for Indonesian. In addition, we observe several terms in Indonesian that specifically refer to each personality type, each of which has distinct emotional, sentimental, and social features.</span>

Compressive strength of concrete with recycled aggregate; a machine learning-based evaluation

Temperature prediction of flat steel box girders of long-span bridges utilizing in situ environmental parameters and machine learning, computer-assisted cohort identification in practice.

The standard approach to expert-in-the-loop machine learning is active learning, where, repeatedly, an expert is asked to annotate one or more records and the machine finds a classifier that respects all annotations made until that point. We propose an alternative approach, IQRef , in which the expert iteratively designs a classifier and the machine helps him or her to determine how well it is performing and, importantly, when to stop, by reporting statistics on a fixed, hold-out sample of annotated records. We justify our approach based on prior work giving a theoretical model of how to re-use hold-out data. We compare the two approaches in the context of identifying a cohort of EHRs and examine their strengths and weaknesses through a case study arising from an optometric research problem. We conclude that both approaches are complementary, and we recommend that they both be employed in conjunction to address the problem of cohort identification in health research.

Export Citation Format

Share document.

Available Master's thesis topics in machine learning

Main content.

Here we list topics that are available. You may also be interested in our list of completed Master's theses .

Learning and inference with large Bayesian networks

Most learning and inference tasks with Bayesian networks are NP-hard. Therefore, one often resorts to using different heuristics that do not give any quality guarantees.

Task: Evaluate quality of large-scale learning or inference algorithms empirically.

Advisor: Pekka Parviainen

Sum-product networks

Traditionally, probabilistic graphical models use a graph structure to represent dependencies and independencies between random variables. Sum-product networks are a relatively new type of a graphical model where the graphical structure models computations and not the relationships between variables. The benefit of this representation is that inference (computing conditional probabilities) can be done in linear time with respect to the size of the network.

Potential thesis topics in this area: a) Compare inference speed with sum-product networks and Bayesian networks. Characterize situations when one model is better than the other. b) Learning the sum-product networks is done using heuristic algorithms. What is the effect of approximation in practice?

Bayesian Bayesian networks

The naming of Bayesian networks is somewhat misleading because there is nothing Bayesian in them per se; A Bayesian network is just a representation of a joint probability distribution. One can, of course, use a Bayesian network while doing Bayesian inference. One can also learn Bayesian networks in a Bayesian way. That is, instead of finding an optimal network one computes the posterior distribution over networks.

Task: Develop algorithms for Bayesian learning of Bayesian networks (e.g., MCMC, variational inference, EM)

Large-scale (probabilistic) matrix factorization

The idea behind matrix factorization is to represent a large data matrix as a product of two or more smaller matrices.They are often used in, for example, dimensionality reduction and recommendation systems. Probabilistic matrix factorization methods can be used to quantify uncertainty in recommendations. However, large-scale (probabilistic) matrix factorization is computationally challenging.

Potential thesis topics in this area: a) Develop scalable methods for large-scale matrix factorization (non-probabilistic or probabilistic), b) Develop probabilistic methods for implicit feedback (e.g., recommmendation engine when there are no rankings but only knowledge whether a customer has bought an item)

Bayesian deep learning

Standard deep neural networks do not quantify uncertainty in predictions. On the other hand, Bayesian methods provide a principled way to handle uncertainty. Combining these approaches leads to Bayesian neural networks. The challenge is that Bayesian neural networks can be cumbersome to use and difficult to learn.

The task is to analyze Bayesian neural networks and different inference algorithms in some simple setting.

Deep learning for combinatorial problems

Deep learning is usually applied in regression or classification problems. However, there has been some recent work on using deep learning to develop heuristics for combinatorial optimization problems; see, e.g., [1] and [2].

Task: Choose a combinatorial problem (or several related problems) and develop deep learning methods to solve them.

References: [1] Vinyals, Fortunato and Jaitly: Pointer networks. NIPS 2015. [2] Dai, Khalil, Zhang, Dilkina and Song: Learning Combinatorial Optimization Algorithms over Graphs. NIPS 2017.

Advisors: Pekka Parviainen, Ahmad Hemmati

Estimating the number of modes of an unknown function

Mode seeking considers estimating the number of local maxima of a function f. Sometimes one can find modes by, e.g., looking for points where the derivative of the function is zero. However, often the function is unknown and we have only access to some (possibly noisy) values of the function. 

In topological data analysis,  we can analyze topological structures using persistent homologies. For 1-dimensional signals, this can translate into looking at the birth/death persistence diagram, i.e. the birth and death of connected topological components as we expand the space around each point where we have observed our function. These observations turn out to be closely related to the modes (local maxima) of the function. A recent paper [1] proposed an efficient method for mode seeking.

In this project, the task is to extend the ideas from [1] to get a probabilistic estimate on the number of modes. To this end, one has to use probabilistic methods such as Gaussian processes.

[1] U. Bauer, A. Munk, H. Sieling, and M. Wardetzky. Persistence barcodes versus Kolmogorov signatures: Detecting modes of one-dimensional signals. Foundations of computational mathematics17:1 - 33, 2017.

Advisors:  Pekka Parviainen ,  Nello Blaser

Causal Abstraction Learning

We naturally make sense of the world around us by working out causal relationships between objects and by representing in our minds these objects with different degrees of approximation and detail. Both processes are essential to our understanding of reality, and likely to be fundamental for developing artificial intelligence. The first process may be expressed using the formalism of structural causal models, while the second can be grounded in the theory of causal abstraction [1].      This project will consider the problem of learning an abstraction between two given structural causal models. The primary goal will be the development of efficient algorithms able to learn a meaningful abstraction between the given causal models.      [1] Rubenstein, Paul K., et al. "Causal consistency of structural equation models." arXiv preprint arXiv:1707.00819 (2017).

Advisor: Fabio Massimo Zennaro

Causal Bandits

"Multi-armed bandit" is an informal name for slot machines, and the formal name of a large class of problems where an agent has to choose an action among a range of possibilities without knowing the ensuing rewards. Multi-armed bandit problems are one of the most essential reinforcement learning problems where an agent is directly faced with an exploitation-exploration trade-off.       This project will consider a class of multi-armed bandits where an agent, upon taking an action, interacts with a causal system [1]. The primary goal will be the development of learning strategies that takes advantage of the underlying causal system in order to learn optimal policies in a shortest amount of time.      [1] Lattimore, Finnian, Tor Lattimore, and Mark D. Reid. "Causal bandits: Learning good interventions via causal inference." Advances in neural information processing systems 29 (2016).

Causal Modelling for Battery Manufacturing

Lithium-ion batteries are poised to be one of the most important sources of energy in the near future. Yet, the process of manufacturing these batteries is very hard to model and control. Optimizing the different phases of production to maximize the lifetime of the batteries is a non-trivial challenge since physical models are limited in scope and collecting experimental data is extremely expensive and time-consuming [1].      This project will consider the problem of aggregating and analyzing data regarding a few stages in the process of battery manufacturing. The primary goal will be the development of algorithms for transporting and integrating data collected in different contexts, as well as the use of explainable algorithms to interpret them.      [1] Niri, Mona Faraji, et al. "Quantifying key factors for optimised manufacturing of Li-ion battery anode and cathode via artificial intelligence." Energy and AI 7 (2022): 100129.

Advisor: Fabio Massimo Zennaro ,  Mona Faraji Niri

Reinforcement Learning for Computer Security

The field of computer security presents a wide variety of challenging problems for artificial intelligence and autonomous agents. Guaranteeing the security of a system against attacks and penetrations by malicious hackers has always been a central concern of this field, and machine learning could now offer a substantial contribution. Security capture-the-flag simulations are particularly well-suited as a testbed for the application and development of reinforcement learning algorithms [1].       This project will consider the use of reinforcement learning for the preventive purpose of testing systems and discovering vulnerabilities before they can be exploited. The primary goal will be the modelling of capture-the-flag challenges of interest and the development of reinforcement learning algorithms that can solve them.      [1] Erdodi, Laszlo, and Fabio Massimo Zennaro. "The Agent Web Model--Modelling web hacking for reinforcement learning." arXiv preprint arXiv:2009.11274 (2020).

Advisor: Fabio Massimo Zennaro ,  Laszlo Tibor Erdodi

Approaches to AI Safety

The world and the Internet are more and more populated by artificial autonomous agents carrying out tasks on our behalf. Many of these agents are provided with an objective and they learn their behaviour trying to achieve their objective as better as they can. However, this approach can not guarantee that an agent, while learning its behaviour, will not undertake actions that may have unforeseen and undesirable effects. Research in AI safety tries to design autonomous agent that will behave in a predictable and safe way [1].      This project will consider specific problems and novel solution in the domain of AI safety and reinforcement learning. The primary goal will be the development of innovative algorithms and their implementation withing established frameworks.      [1] Amodei, Dario, et al. "Concrete problems in AI safety." arXiv preprint arXiv:1606.06565 (2016).

Reinforcement Learning for Super-modelling

Super-modelling [1] is a technique designed for combining together complex dynamical models: pre-trained models are aggregated with messages and information being exchanged in order synchronize the behavior  of the different modles and produce more accurate and reliable predictions. Super-models are used, for instance, in weather or climate science, where pre-existing models are ensembled together and their states dynamically aggregated to generate more realistic simulations. 

This project will consider how reinforcement learning algorithms may be used to solve the coordination problem among the individual models forming a super-model. The primary goal will be the formulation of the super-modelling problem within the reinforcement learning framework and the study of custom RL algorithms to improve the overall performance of super-models.

[1] Schevenhoven, Francine, et al. "Supermodeling: improving predictions with an ensemble of interacting models." Bulletin of the American Meteorological Society 104.9 (2023): E1670-E1686.

Advisor: Fabio Massimo Zennaro ,  Francine Janneke Schevenhoven

The Topology of Flight Paths

Air traffic data tells us the position, direction, and speed of an aircraft at a given time. In other words, if we restrict our focus to a single aircraft, we are looking at a multivariate time-series. We can visualize the flight path as a curve above earth's surface quite geometrically. Topological data analysis (TDA) provides different methods for analysing the shape of data. Consequently, TDA may help us to extract meaningful features from the air traffic data. Although the typical flight path shapes may not be particularly intriguing, we can attempt to identify more intriguing patterns or “abnormal” manoeuvres, such as aborted landings, go-arounds, or diverts.

Advisor:  Odin Hoff Gardå , Nello Blaser

Automatic hyperparameter selection for isomap

Isomap is a non-linear dimensionality reduction method with two free hyperparameters (number of nearest neighbors and neighborhood radius). Different hyperparameters result in dramatically different embeddings. Previous methods for selecting hyperparameters focused on choosing one optimal hyperparameter. In this project, you will explore the use of persistent homology to find parameter ranges that result in stable embeddings. The project has theoretic and computational aspects.

Advisor: Nello Blaser

Validate persistent homology

Persistent homology is a generalization of hierarchical clustering to find more structure than just the clusters. Traditionally, hierarchical clustering has been evaluated using resampling methods and assessing stability properties. In this project you will generalize these resampling methods to develop novel stability properties that can be used to assess persistent homology. This project has theoretic and computational aspects.

Topological Ancombs quartet

This topic is based on the classical Ancombs quartet and families of point sets with identical 1D persistence ( https://arxiv.org/abs/2202.00577 ). The goal is to generate more interesting datasets using the simulated annealing methods presented in ( http://library.usc.edu.ph/ACM/CHI%202017/1proc/p1290.pdf ). This project is mostly computational.

Persistent homology vectorization with cycle location

There are many methods of vectorizing persistence diagrams, such as persistence landscapes, persistence images, PersLay and statistical summaries. Recently we have designed algorithms to in some cases efficiently detect the location of persistence cycles. In this project, you will vectorize not just the persistence diagram, but additional information such as the location of these cycles. This project is mostly computational with some theoretic aspects.

Divisive covers

Divisive covers are a divisive technique for generating filtered simplicial complexes. They original used a naive way of dividing data into a cover. In this project, you will explore different methods of dividing space, based on principle component analysis, support vector machines and k-means clustering. In addition, you will explore methods of using divisive covers for classification. This project will be mostly computational.

Learning Acquisition Functions for Cost-aware Bayesian Optimization

This is a follow-up project of an earlier Master thesis that developed a novel method for learning Acquisition Functions in Bayesian Optimization through the use of Reinforcement Learning. The goal of this project is to further generalize this method (more general input, learned cost-functions) and apply it to hyperparameter optimization for neural networks.

Advisors: Nello Blaser , Audun Ljone Henriksen

Stable updates

This is a follow-up project of an earlier Master thesis that introduced and studied empirical stability in the context of tree-based models. The goal of this project is to develop stable update methods for deep learning models. You will design sevaral stable methods and empirically compare them (in terms of loss and stability) with a baseline and with one another.

Advisors:  Morten Blørstad , Nello Blaser

Multimodality in Bayesian neural network ensembles

One method to assess uncertainty in neural network predictions is to use dropout or noise generators at prediction time and run every prediction many times. This leads to a distribution of predictions. Informatively summarizing such probability distributions is a non-trivial task and the commonly used means and standard deviations result in the loss of crucial information, especially in the case of multimodal distributions with distinct likely outcomes. In this project, you will analyze such multimodal distributions with mixture models and develop ways to exploit such multimodality to improve training. This project can have theoretical, computational and applied aspects.

Learning a hierarchical metric

Often, labels have defined relationships to each other, for instance in a hierarchical taxonomy. E.g. ImageNet labels are derived from the WordNet graph, and biological species are taxonomically related, and can have similarities depending on life stage, sex, or other properties.

ArcFace is an alternative loss function that aims for an embedding that is more generally useful than softmax. It is commonly used in metric learning/few shot learning cases.

Here, we will develop a metric learning method that learns from data with hierarchical labels. Using multiple ArcFace heads, we will simultaneously learn to place representations to optimize the leaf label as well as intermediate labels on the path from leaf to root of the label tree. Using taxonomically classified plankton image data, we will measure performance as a function of ArcFace parameters (sharpness/temperature and margins -- class-wise or level-wise), and compare the results to existing methods.

Advisor: Ketil Malde ( [email protected] )

Self-supervised object detection in video

One challenge with learning object detection is that in many scenes that stretch off into the distance, annotating small, far-off, or blurred objects is difficult. It is therefore desirable to learn from incompletely annotated scenes, and one-shot object detectors may suffer from incompletely annotated training data.

To address this, we will use a region-propsal algorithm (e.g. SelectiveSearch) to extract potential crops from each frame. Classification will be based on two approaches: a) training based on annotated fish vs random similarly-sized crops without annotations, and b) using a self-supervised method to build a representation for crops, and building a classifier for the extracted regions. The method will be evaluated against one-shot detectors and other training regimes.

If successful, the method will be applied to fish detection and tracking in videos from baited and unbaited underwater traps, and used to estimate abundance of various fish species.

See also: Benettino (2016): https://link.springer.com/chapter/10.1007/978-3-319-48881-3_56

Representation learning for object detection

While traditional classifiers work well with data that is labeled with disjoint classes and reasonably balanced class abundances, reality is often less clean. An alternative is to learn a vectors space embedding that reflects semantic relationships between objects, and deriving classes from this representation. This is especially useful for few-shot classification (ie. very few examples in the training data).

The task here is to extend a modern object detector (e.g. Yolo v8) to output an embedding of the identified object. Instead of a softmax classifier, we can learn the embedding either in a supervised manner (using annotations on frames) by attaching an ArcFace or other supervised metric learning head. Alternatively, the representation can be learned from tracked detections over time using e.g. a contrastive loss function to keep the representation for an object (approximately) constant over time. The performance of the resulting object detector will be measured on underwater videos, targeting species detection and/or indiviual recognition (re-ID).

Time-domain object detection

Object detectors for video are normally trained on still frames, but it is evident (from human experience) that using time domain information is more effective. I.e., it can be hard to identify far-off or occluded objects in still images, but movement in time often reveals them.

Here we will extend a state of the art object detector (e.g. yolo v8) with time domain data. Instead of using a single frame as input, the model will be modified to take a set of frames surrounding the annotated frame as input. Performance will be compared to using single-frame detection.

Large-scale visualization of acoustic data

The Institute of Marine Research has decades of acoustic data collected in various surveys. These data are in the process of being converted to data formats that can be processed and analyzed more easily using packages like Xarray and Dask.

The objective is to make these data more accessible to regular users by providing a visual front end. The user should be able to quickly zoom in and out, perform selection, export subsets, apply various filters and classifiers, and overlay annotations and other relevant auxiliary data.

Learning acoustic target classification from simulation

Broadband echosounders emit a complex signal that spans a large frequency band. Different targets will reflect, absorb, and generate resonance at different amplitudes and frequencies, and it is therefore possible to classify targets at much higher resolution and accuracy than before. Due to the complexity of the received signals, deriving effective profiles that can be used to identify targets is difficult.

Here we will use simulated frequency spectra from geometric objects with various shapes, orientation, and other properties. We will train ML models to estimate (recover) the geometric and material properties of objects based on these spectra. The resulting model will be applied to read broadband data, and compared to traditional classification methods.

Online learning in real-time systems

Build a model for the drilling process by using the Virtual simulator OpenLab ( https://openlab.app/ ) for real-time data generation and online learning techniques. The student will also do a short survey of existing online learning techniques and learn how to cope with errors and delays in the data.

Advisor: Rodica Mihai

Building a finite state automaton for the drilling process by using queries and counterexamples

Datasets will be generated by using the Virtual simulator OpenLab ( https://openlab.app/ ). The student will study the datasets and decide upon a good setting to extract a finite state automaton for the drilling process. The student will also do a short survey of existing techniques for extracting finite state automata from process data. We present a novel algorithm that uses exact learning and abstraction to extract a deterministic finite automaton describing the state dynamics of a given trained RNN. We do this using Angluin's L*algorithm as a learner and the trained RNN as an oracle. Our technique efficiently extracts accurate automata from trained RNNs, even when the state vectors are large and require fine differentiation.arxiv.org

Scaling Laws for Language Models in Generative AI

Large Language Models (LLM) power today's most prominent language technologies in Generative AI like ChatGPT, which, in turn, are changing the way that people access information and solve tasks of many kinds.

A recent interest on scaling laws for LLMs has shown trends on understanding how well they perform in terms of factors like the how much training data is used, how powerful the models are, or how much computational cost is allocated. (See, for example, Kaplan et al. - "Scaling Laws for Neural Language Models”, 2020.)

In this project, the task will consider to study scaling laws for different language models and with respect with one or multiple modeling factors.

Advisor: Dario Garigliotti

Applications of causal inference methods to omics data

Many hard problems in machine learning are directly linked to causality [1]. The graphical causal inference framework developed by Judea Pearl can be traced back to pioneering work by Sewall Wright on path analysis in genetics and has inspired research in artificial intelligence (AI) [1].

The Michoel group has developed the open-source tool Findr [2] which provides efficient implementations of mediation and instrumental variable methods for applications to large sets of omics data (genomics, transcriptomics, etc.). Findr works well on a recent data set for yeast [3].

We encourage students to explore promising connections between the fiels of causal inference and machine learning. Feel free to contact us to discuss projects related to causal inference. Possible topics include: a) improving methods based on structural causal models, b) evaluating causal inference methods on data for model organisms, c) comparing methods based on causal models and neural network approaches.

References:

1. Schölkopf B, Causality for Machine Learning, arXiv (2019):  https://arxiv.org/abs/1911.10500

2. Wang L and Michoel T. Efficient and accurate causal inference with hidden confounders from genome-transcriptome variation data. PLoS Computational Biology 13:e1005703 (2017).  https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005703

3. Ludl A and and Michoel T. Comparison between instrumental variable and mediation-based methods for reconstructing causal gene networks in yeast. arXiv:2010.07417  https://arxiv.org/abs/2010.07417

Advisors: Adriaan Ludl ,  Tom Michoel

Space-Time Linkage of Fish Distribution to Environmental Conditions

Conditions in the marine environment, such as, temperature and currents, influence the spatial distribution and migration patterns of marine species. Hence, understanding the link between environmental factors and fish behavior is crucial in predicting, e.g., how fish populations may respond to climate change.   Deriving this link is challenging because it requires analysis of two types of datasets (i) large environmental (currents, temperature) datasets that vary in space and time, and (ii) sparse and sporadic spatial observations of fish populations.

Project goal   

The primary goal of the project is to develop a methodology that helps predict how spatial distribution of two fish stocks (capelin and mackerel) change in response to variability in the physical marine environment (ocean currents and temperature).  The information can also be used to optimize data collection by minimizing time spent in spatial sampling of the populations.

The project will focus on the use of machine learning and/or causal inference algorithms.  As a first step, we use synthetic (fish and environmental) data from analytic models that couple the two data sources.  Because the ‘truth’ is known, we can judge the efficiency and error margins of the methodologies. We then apply the methodologies to real world (empirical) observations.

Advisors:  Tom Michoel , Sam Subbey . 

Towards precision medicine for cancer patient stratification

On average, a drug or a treatment is effective in only about half of patients who take it. This means patients need to try several until they find one that is effective at the cost of side effects associated with every treatment. The ultimate goal of precision medicine is to provide a treatment best suited for every individual. Sequencing technologies have now made genomics data available in abundance to be used towards this goal.

In this project we will specifically focus on cancer. Most cancer patients get a particular treatment based on the cancer type and the stage, though different individuals will react differently to a treatment. It is now well established that genetic mutations cause cancer growth and spreading and importantly, these mutations are different in individual patients. The aim of this project is use genomic data allow to better stratification of cancer patients, to predict the treatment most likely to work. Specifically, the project will use machine learning approach to integrate genomic data and build a classifier for stratification of cancer patients.

Advisor: Anagha Joshi

Unraveling gene regulation from single cell data

Multi-cellularity is achieved by precise control of gene expression during development and differentiation and aberrations of this process leads to disease. A key regulatory process in gene regulation is at the transcriptional level where epigenetic and transcriptional regulators control the spatial and temporal expression of the target genes in response to environmental, developmental, and physiological cues obtained from a signalling cascade. The rapid advances in sequencing technology has now made it feasible to study this process by understanding the genomewide patterns of diverse epigenetic and transcription factors as well as at a single cell level.

Single cell RNA sequencing is highly important, particularly in cancer as it allows exploration of heterogenous tumor sample, obstructing therapeutic targeting which leads to poor survival. Despite huge clinical relevance and potential, analysis of single cell RNA-seq data is challenging. In this project, we will develop strategies to infer gene regulatory networks using network inference approaches (both supervised and un-supervised). It will be primarily tested on the single cell datasets in the context of cancer.

Developing a Stress Granule Classifier

To carry out the multitude of functions 'expected' from a human cell, the cell employs a strategy of division of labour, whereby sub-cellular organelles carry out distinct functions. Thus we traditionally understand organelles as distinct units defined both functionally and physically with a distinct shape and size range. More recently a new class of organelles have been discovered that are assembled and dissolved on demand and are composed of liquid droplets or 'granules'. Granules show many properties characteristic of liquids, such as flow and wetting, but they can also assume many shapes and indeed also fluctuate in shape. One such liquid organelle is a stress granule (SG). 

Stress granules are pro-survival organelles that assemble in response to cellular stress and important in cancer and neurodegenerative diseases like Alzheimer's. They are liquid or gel-like and can assume varying sizes and shapes depending on their cellular composition. 

In a given experiment we are able to image the entire cell over a time series of 1000 frames; from which we extract a rough estimation of the size and shape of each granule. Our current method is susceptible to noise and a granule may be falsely rejected if the boundary is drawn poorly in a small majority of frames. Ideally, we would also like to identify potentially interesting features, such as voids, in the accepted granules.

We are interested in applying a machine learning approach to develop a descriptor for a 'classic' granule and furthermore classify them into different functional groups based on disease status of the cell. This method would be applied across thousands of granules imaged from control and disease cells. We are a multi-disciplinary group consisting of biologists, computational scientists and physicists. 

Advisors: Sushma Grellscheid , Carl Jones

Machine Learning based Hyperheuristic algorithm

Develop a Machine Learning based Hyper-heuristic algorithm to solve a pickup and delivery problem. A hyper-heuristic is a heuristics that choose heuristics automatically. Hyper-heuristic seeks to automate the process of selecting, combining, generating or adapting several simpler heuristics to efficiently solve computational search problems [Handbook of Metaheuristics]. There might be multiple heuristics for solving a problem. Heuristics have their own strength and weakness. In this project, we want to use machine-learning techniques to learn the strength and weakness of each heuristic while we are using them in an iterative search for finding high quality solutions and then use them intelligently for the rest of the search. Once a new information is gathered during the search the hyper-heuristic algorithm automatically adjusts the heuristics.

Advisor: Ahmad Hemmati

Machine learning for solving satisfiability problems and applications in cryptanalysis

Advisor: Igor Semaev

Hybrid modeling approaches for well drilling with Sintef

Several topics are available.

"Flow models" are first-principles models simulating the flow, temperature and pressure in a well being drilled. Our project is exploring "hybrid approaches" where these models are combined with machine learning models that either learn from time series data from flow model runs or from real-world measurements during drilling. The goal is to better detect drilling problems such as hole cleaning, make more accurate predictions and correctly learn from and interpret real-word data.

The "surrogate model" refers to  a ML model which learns to mimic the flow model by learning from the model inputs and outputs. Use cases for surrogate models include model predictions where speed is favoured over accuracy and exploration of parameter space.

Surrogate models with active Learning

While it is possible to produce a nearly unlimited amount of training data by running the flow model, the surrogate model may still perform poorly if it lacks training data in the part of the parameter space it operates in or if it "forgets" areas of the parameter space by being fed too much data from a narrow range of parameters.

The goal of this thesis is to build a surrogate model (with any architecture) for some restricted parameter range and implement an active learning approach where the ML requests more model runs from the flow model in the parts of the parameter space where it is needed the most. The end result should be a surrogate model that is quick and performs acceptably well over the whole defined parameter range.

Surrogate models trained via adversarial learning

How best to train surrogate models from runs of the flow model is an open question. This master thesis would use the adversarial learning approach to build a surrogate model which to its "adversary" becomes indistinguishable from the output of an actual flow model run.

GPU-based Surrogate models for parameter search

While CPU speed largely stalled 20 years ago in terms of working frequency on single cores, multi-core CPUs and especially GPUs took off and delivered increases in computational power by parallelizing computations.

Modern machine learning such as deep learning takes advantage this boom in computing power by running on GPUs.

The SINTEF flow models in contrast, are software programs that runs on a CPU and does not happen to utilize multi-core CPU functionality. The model runs advance time-step by time-step and each time step relies on the results from the previous time step. The flow models are therefore fundamentally sequential and not well suited to massive parallelization.

It is however of interest to run different model runs in parallel, to explore parameter spaces. The use cases for this includes model calibration, problem detection and hypothesis generation and testing.

The task of this thesis is to implement an ML-based surrogate model in such a way that many surrogate model outputs can be produced at the same time using a single GPU. This will likely entail some trade off with model size and maybe some coding tricks.

Uncertainty estimates of hybrid predictions (Lots of room for creativity, might need to steer it more, needs good background literature)

When using predictions from a ML model trained on time series data, it is useful to know if it's accurate or should be trusted. The student is challenged to develop hybrid approaches that incorporates estimates of uncertainty. Components could include reporting variance from ML ensembles trained on a diversity of time series data, implementation of conformal predictions, analysis of training data parameter ranges vs current input, etc. The output should be a "traffic light signal" roughly indicating the accuracy of the predictions.

Transfer learning approaches

We're assuming an ML model is to be used for time series prediction

It is possible to train an ML on a wide range of scenarios in the flow models, but we expect that to perform well, the model also needs to see model runs representative of the type of well and drilling operation it will be used in. In this thesis the student implements a transfer learning approach, where the model is trained on general model runs and fine-tuned on a most representative data set.

(Bonus1: implementing one-shot learning, Bonus2: Using real-world data in the fine-tuning stage)

ML capable of reframing situations

When a human oversees an operation like well drilling, she has a mental model of the situation and new data such as pressure readings from the well is interpreted in light of this model. This is referred to as "framing" and is the normal mode of work. However, when a problem occurs, it becomes harder to reconcile the data with the mental model. The human then goes into "reframing", building a new mental model that includes the ongoing problem. This can be seen as a process of hypothesis generation and testing.

A computer model however, lacks re-framing. A flow model will keep making predictions under the assumption of no problems and a separate alarm system will use the deviation between the model predictions and reality to raise an alarm. This is in a sense how all alarm systems work, but it means that the human must discard the computer model as a tool at the same time as she's handling a crisis.

The student is given access to a flow model and a surrogate model which can learn from model runs both with and without hole cleaning and is challenged to develop a hybrid approach where the ML+flow model continuously performs hypothesis generation and testing and is able to "switch" into predictions of  a hole cleaning problem and different remediations of this.

Advisor: Philippe Nivlet at Sintef together with advisor from UiB

Explainable AI at Equinor

In the project Machine Teaching for XAI (see  https://xai.w.uib.no ) a master thesis in collaboration between UiB and Equinor.

Advisor: One of Pekka Parviainen/Jan Arne Telle/Emmanuel Arrighi + Bjarte Johansen from Equinor.

Explainable AI at Eviny

In the project Machine Teaching for XAI (see  https://xai.w.uib.no ) a master thesis in collaboration between UiB and Eviny.

Advisor: One of Pekka Parviainen/Jan Arne Telle/Emmanuel Arrighi + Kristian Flikka from Eviny.

If you want to suggest your own topic, please contact Pekka Parviainen ,  Fabio Massimo Zennaro or Nello Blaser .

Graph

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Research: What Companies Don’t Know About How Workers Use AI

  • Jeremie Brecheisen

research topics in machine learning

Three Gallup studies shed light on when and why AI is being used at work — and how employees and customers really feel about it.

Leaders who are exploring how AI might fit into their business operations must not only navigate a vast and ever-changing landscape of tools, but they must also facilitate a significant cultural shift within their organizations. But research shows that leaders do not fully understand their employees’ use of, and readiness for, AI. In addition, a significant number of Americans do not trust business’ use of AI. This article offers three recommendations for leaders to find the right balance of control and trust around AI, including measuring how their employees currently use AI, cultivating trust by empowering managers, and adopting a purpose-led AI strategy that is driven by the company’s purpose instead of a rules-heavy strategy that is driven by fear.

If you’re a leader who wants to shift your workforce toward using AI, you need to do more than manage the implementation of new technologies. You need to initiate a profound cultural shift. At the heart of this cultural shift is trust. Whether the use case for AI is brief and experimental or sweeping and significant, a level of trust must exist between leaders and employees for the initiative to have any hope of success.

  • Jeremie Brecheisen is a partner and managing director of The Gallup CHRO Roundtable.

Partner Center

A Trend Analysis of Significant Topics Over Time in Machine Learning Research

  • Original Research
  • Published: 22 September 2021
  • Volume 2 , article number  469 , ( 2021 )

Cite this article

research topics in machine learning

  • Deepak Sharma   ORCID: orcid.org/0000-0002-6132-1719 1 ,
  • Bijendra Kumar 1 ,
  • Satish Chand 2 &
  • Rajiv Ratn Shah 3  

4 Citations

Explore all metrics

A vast number of research papers on numerous topics publish every year in different conferences and journals. Thus, it is difficult for new researchers to identify research problems and topics manually, which research community is currently focusing on. Since such research problems and topics help researchers to be updated with new topics in research, it is essential to know trends in research based on topic significance over time. Therefore, in this paper, we propose a method to identify the trends in machine learning research based on significant topics over time automatically. Specifically, we apply a topic coherence model with latent Dirichlet allocation (LDA) to evaluate the optimal number of topics and significant topics for a dataset. The LDA model results in topic proportion over documents where each topic has its probability (i.e., topic weight) related to each document. Subsequently, the topic weights are processed to compute average topic weights per year, trend analysis using rolling mean, topic prevalence per year, and topic proportion per journal title. To evaluate our method, we prepare a new dataset comprising of 21,906 scientific research articles from top six journals in the area of machine learning published from 1988 to 2017. Extensive experimental results on the dataset demonstrate that our technique is efficient, and can help upcoming researchers to explore the research trends and topics in different research areas, say machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

research topics in machine learning

Similar content being viewed by others

research topics in machine learning

Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey

research topics in machine learning

Identifying interdisciplinary topics and their evolution based on BERTopic

research topics in machine learning

Systematic reviews in sentiment analysis: a tertiary study

Aletras N, Stevenson M. Evaluating topic coherence using distributional semantics. In: Proceedings of the 10th international conference on computational semantics (IWCS 2013)–long papers. 2013. p. 13–22.

Alghamdi R, Alfalqi K. A survey of topic modeling in text mining. Int J Adv Comput Sci Appl (IJACSA). 2015;6(1), Citeseer.

Alston J, Pardey P. Six decades of agricultural and resource economics in Australia: an analysis of trends in topics, authorship and collaboration. Aust J Agric Resour Econ. 2016;60(4):554–68.

Article   Google Scholar  

Loper E, Bird S. Nltk: the natural language toolkit. 2002. arXiv:cs/0205028 .

Blei DM, Lafferty JD. Topic models. In: Text mining. Chapman and Hall/CRC; 2009. p. 101–124.

Blei DM, Ng AY, Jordan MI. Latent Dirichlet allocation. J Mach Learn Res. 2003;3(Jan):993–1022.

MATH   Google Scholar  

Blei DM, Jordan MI, et al. Variational inference for Dirichlet process mixtures. Bayesian Anal. 2006;1(1):121–43.

Article   MathSciNet   Google Scholar  

Boyack KW, Klavans R. Creation of a highly detailed, dynamic, global model and map of science. J Am Soc Inf Sci. 2014;65(4):670–85.

Google Scholar  

Bradford RB. An empirical study of required dimensionality for large-scale latent semantic indexing applications. In: Proceedings of the 17th ACM conference on information and knowledge management. ACM; 2008. p. 153–62.

Buckley C, Salton G. Stopword list 2. 1995. http://www.lextek.com/manuals/onix/stopwords2.html .

Campbell JC, Hindle A, Stroulia E. Latent Dirichlet allocation: extracting topics from software engineering data. In: The art and science of analyzing software data. Elsevier; 2016. p. 139–59.

Canini K, Shi L, Griffiths T. Online inference of topics with latent Dirichlet allocation. In: Artificial intelligence and statistics. 2009. p. 65–72.

Carbonell JG, Michalski RS, Mitchell TM. Machine learning: a historical and methodological analysis. AI Mag. 1983;4(3):69.

Chang J, Gerrish S, Wang C, Boyd-Graber JL, Blei DM. Reading tea leaves: how humans interpret topic models. In: Advances in neural information processing systems. 2009. p. 288–96.

Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R. Indexing by latent semantic analysis. J Am Soc Inf Sci. 1990;41(6):391–407.

Domingos P. A few useful things to know about machine learning. Commun ACM. 2012;55(10):78–87.

Erosheva E, Fienberg S, Lafferty J. Mixed-membership models of scientific publications. Proc Natl Acad Sci. 2004;101(suppl 1):5220–7.

Evangelopoulos N, Zhang X, Prybutok VR. Latent semantic analysis: five methodological recommendations. Eur J Inf Syst. 2012;21(1):70–86.

Gatti CJ, Brooks JD, Nurre SG. A historical analysis of the field of or/ms using topic models. 2015. arXiv:1510.05154

Griffiths TL, Steyvers M. Finding scientific topics. Proc Natl Acad Sci. 2004;101(suppl 1):5228–35.

Grimmer J, Stewart BM. Text as data: the promise and pitfalls of automatic content analysis methods for political texts. Polit Anal. 2013;21(3):267–97.

Hall D, Jurafsky D, Manning CD. Studying the history of ideas using topic models. In: Proceedings of the 2008 conference on empirical methods in natural language processing. 2008. p. 363–71.

Harris ZS. Distributional structure. Word. 1954;10(2–3):146–62.

Hoffman M, Bach FR, Blei DM. Online learning for latent Dirichlet allocation. In: Advances in neural information processing systems. 2010. p. 856–64.

Hofmann T. Probabilistic latent semantic indexing. In: Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval. 1999. p. 50–7.

Hwang MH, Ha S, In M, Lee K. A method of trend analysis using latent Dirichlet allocation. Int J Control Autom. 2018;11(5):173–82.

Larsen P, Von Ins M. The rate of growth in scientific publication and the decline in coverage provided by science citation index. Scientometrics. 2010;84(3):575–603.

Marr B. A short history of machine learning—every manager should read. 2016. https://www.forbescom/sites/bernardmarr/2016/02/19/a-shorthistory-of-machine-learning-every-managershould-read .

Mavridis T, Symeonidis AL. Semantic analysis of web documents for the generation of optimal content. Eng Appl Artif Intell. 2014;35:114–30.

Newman D, Lau JH, Grieser K, Baldwin T. Automatic evaluation of topic coherence. In: Human language technologies: The 2010 annual conference of the North American chapter of the association for computational linguistics. 2010. p. 100–8.

Porter MF. An algorithm for suffix stripping. Program. 1980;14(3):130–7.

Rehurek R, Sojka P. Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks, Citeseer. 2010.

Röder M, Both A, Hinneburg A. Exploring the space of topic coherence measures. In: Proceedings of the eighth ACM international conference on Web search and data mining. 2015. p. 399–408.

Rusch T, Hofmarcher P, Hatzinger R, Hornik K, et al. Model trees with topic model preprocessing: an approach for data journalism illustrated with the wikileaks Afghanistan war logs. Ann Appl Stat. 2013;7(2):613–39.

Saini S, Kasliwal B, Bhatia S, et al. Language identification using g-lda. Int J Res Eng Technol. 2013;2(11):42–5. Citeseer.

Sehra SK, Brar YS, Kaur N, Sehra SS. Research patterns and trends in software effort estimation. Inf Softw Technol. 2017;91:1–21.

Srivastava AN, Sahami M. Text mining: classification, clustering, and applications. Boca Raton: Chapman and Hall/CRC; 2009.

Book   Google Scholar  

Steyvers M, Griffiths T. Probabilistic topic models. In: Handbook of latent semantic analysis, vol 427, no 7. 2007. p. 424–40.

Sun L, Yin Y. Discovering themes and trends in transportation research using topic modeling. Transport Res Part C Emerg Technol. 2017;77:49–66.

Wallach HM, Murray I, Salakhutdinov R, Mimno D. Evaluation methods for topic models. In: Proceedings of the 26th annual international conference on machine learning. ACM; 2009. p. 1105–12.

Wang X, McCallum A. Topics over time: a non-Markov continuous-time model of topical trends. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM; 2006. p. 424–33.

Westgate MJ, Barton PS, Pierson JC, Lindenmayer DB. Text analysis tools for identification of emerging topics and research gaps in conservation science. Conserv Biol. 2015;29(6):1606–14.

Yalcinkaya M, Singh V. Patterns and trends in building information modeling (bim) research: a latent semantic analysis. Autom Constr. 2015;59:68–80.

Zhao W, Chen JJ, Perkins R, Liu Z, Ge W, Ding Y, Zou W. A heuristic approach to determine an appropriate number of topics in topic modeling. BMC Bioinform BioMed Central. 2015;16:S8.

Download references

Author information

Authors and affiliations.

Department of Computer Engineering, Netaji Subash Institute of Technology, University of Delhi, Sector-3, Dwarka, New Delhi, 110078, India

Deepak Sharma & Bijendra Kumar

School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, 110067, India

Satish Chand

Multimodal Digital Media Analysis Lab, Indraprastha Institute of Information Technology, New Delhi, 110020, India

Rajiv Ratn Shah

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Deepak Sharma .

Ethics declarations

Conflict of interest.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Sharma, D., Kumar, B., Chand, S. et al. A Trend Analysis of Significant Topics Over Time in Machine Learning Research. SN COMPUT. SCI. 2 , 469 (2021). https://doi.org/10.1007/s42979-021-00876-2

Download citation

Received : 26 July 2020

Accepted : 13 September 2021

Published : 22 September 2021

DOI : https://doi.org/10.1007/s42979-021-00876-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Research trend analysis
  • Information retrieval
  • Machine learning
  • Latent Dirichlet allocation
  • Find a journal
  • Publish with us
  • Track your research
  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

May 24, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

Scientists leverage machine learning to decode gene regulation in the developing human brain

by Gladstone Institutes

Scientists leverage machine learning to decode gene regulation in the developing human brain

In a scientific feat that broadens our knowledge of genetic changes that shape brain development or lead to psychiatric disorders, a team of researchers combined high-throughput experiments and machine learning to analyze more than 100,000 sequences in human brain cells—and identify over 150 variants that likely cause disease.

The study, from scientists at Gladstone Institutes and University of California, San Francisco (UCSF), establishes a comprehensive catalog of genetic sequences involved in brain development and opens the door to new diagnostics or treatments for neurological conditions such as schizophrenia and autism spectrum disorder . The paper, "Massively Parallel Characterization of Regulatory Elements in the Developing Human Cortex," appears in the journal Science

"We collected a massive amount of data from sequences in noncoding regions of DNA that were already suspected to play a big role in brain development or disease," says Senior Investigator Katie Pollard, Ph.D., who also serves as director of the Gladstone Institute for Data Science and Biotechnology.

"We were able to functionally test more than 100,000 of them to find out whether they affect gene activity , and then pinpoint sequence changes that could alter their activity in disease."

Pollard co-led the sweeping study with Nadav Ahituv, Ph.D., professor in the Department of Bioengineering and Therapeutic Sciences at UCSF and director of the UCSF Institute for Human Genetics. Much of the experimental work on brain tissue was led by Tomasz Nowakowski, Ph.D., associate professor of neurological surgery in the UCSF Department of Medicine.

In all, the team found 164 variants associated with psychiatric disorders and 46,802 sequences with enhancer activity in developing neurons, meaning they control the function of a given gene.

These "enhancers" could be leveraged to treat psychiatric diseases in which one copy of a gene is not fully functional, Ahituv says, "Hundreds of diseases result from one gene not working properly, and it may be possible to take advantage of these enhancers to make them do more."

Organoids and machine learning take the spotlight

Beyond identifying enhancers and disease-linked sequences, the study holds significance in two other key areas.

First, the scientists repeated parts of their experiment using a brain organoid developed from human stem cells and found that the organoid was an effective stand-in for the real thing. Notably, most of the genetic variants detected in the human brain tissue replicated in the cerebral organoid.

"Our organoid compared very well against the human brain," Ahituv says. "As we expand our work to test more sequences for other neurodevelopmental diseases, we now know that the organoid is a good model for understanding gene regulatory activity."

Second, by feeding massive amounts of DNA sequence data and gene regulatory activity to a machine learning model , the team was able to train the computer to successfully predict the activity of a given sequence. This type of program can enable "in-silico" experiments that allow researchers to predict the outcomes of experiments before doing them in the lab. This strategy enables scientists to make discoveries faster while using fewer resources, especially when large quantities of biological data are involved.

Sean Whalen, Ph.D., a senior research scientist in the Pollard Lab at Gladstone and a co-first author of the study, says the team tested the machine learning model using sequences held out from model training to see if it could predict the results already gathered on gene expression activity.

"The model had never seen this data before and was able to make predictions with great accuracy, showing it had learned the general principles for how genes are impacted by noncoding regions of DNA in developing brain cells," Whalen says. "You can imagine how this could open up a lot of new possibilities in research, even predicting how combinations of variants might function together."

A new chapter for brain discoveries

The study was completed as part of the PsychENCODE Consortium, which brings together multidisciplinary teams to generate large-scale gene expression and regulatory data from human brains across several major psychiatric disorders and stages of brain development.

Through the consortium's publication of multiple studies, it seeks to shed light on poorly understood psychiatric conditions, from autism to bipolar disorder, and ultimately jumpstart new treatment approaches.

"Our study contributes to this growing body of knowledge, showing the utility of using human cells, organoids, functional screening methods, and deep learning to investigate regulatory elements and variants involved in human brain development," says Chengyu Deng, Ph.D., a postdoctoral researcher at UCSF and a co-first author of the study.

Explore further

Feedback to editors

research topics in machine learning

Research identifies brain network link to stuttering

16 hours ago

research topics in machine learning

Researchers identify immune dysfunction as a possible aspect of polycystic ovary syndrome pathology

research topics in machine learning

The case for omega-3 supplementation to lower aggression

17 hours ago

research topics in machine learning

New study shows heat waves increase risk of preterm, early-term birth

19 hours ago

research topics in machine learning

New therapy proven effective against rejection in kidney transplantation

20 hours ago

research topics in machine learning

Cell-targeting technology can isolate neuronal subpopulations and link them to behavioral states

research topics in machine learning

First seizure clinics reduce the need for future health care, researchers find

research topics in machine learning

International study reveals surprising twist in how diabetes drugs help the heart

research topics in machine learning

Sanfilippo syndrome: Research team resolves structure of crucial enzyme for the first time

research topics in machine learning

Physical frailty may put people at greater risk of depression, study finds

21 hours ago

Related Stories

research topics in machine learning

Evolution of uniquely human DNA was a balancing act, study concludes

Jan 13, 2023

research topics in machine learning

Tracking the cellular and genetic roots of neuropsychiatric disease

May 23, 2024

research topics in machine learning

New genomic atlas of the developing human brain

Jun 30, 2020

research topics in machine learning

Study suggests catalyst for human brain evolution

Apr 27, 2023

research topics in machine learning

A stem cell model could help unravel the complex biology behind some psychiatric disorders

Jun 1, 2022

research topics in machine learning

Scientists take next big step in understanding genetics of schizophrenia

Sep 15, 2023

Recommended for you

research topics in machine learning

Improving AI large language models helps them better align with human brain activity

research topics in machine learning

Brain damage study reveals part of the brain necessary for helping others

May 27, 2024

research topics in machine learning

Altering cellular interactions around amyloid plaques may offer novel Alzheimer's treatment strategies

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

NASA and IBM Research Apply AI to Weather and Climate

A collaboration involving NASA and IBM Research has led to the development of a new artificial intelligence (AI) foundation model for weather and climate: Prithvi-weather-climate (Prithvi is the Sanskrit name for Earth). The model is pre-trained on 40 years of weather and climate data from NASA's Modern-Era Retrospective analysis for Research and Applications, Version 2 ( MERRA-2 ), and fills a need to infuse AI and machine learning (ML) methods into weather and climate applications, such as storm tracking, forecasting, and historical analysis.

In keeping with NASA's open science policies , Prithvi-weather-climate will be openly available. The model and the code will be released later in 2024 through Hugging Face , a public repository for open-source ML models.

Global map with colors indicating temperature, with red indicating warm areas and purple/blue indicating cool areas

The Role of Foundation Models

Using AI to sift through data to find solutions requires not only massive amounts of data, but also large amounts of time. As noted by IBM Research, the next stage in AI model development is to create models pre-trained on a broad set of unlabeled data that can be used as the foundation for different tasks that require minimal fine-tuning. These are called foundation models, or FMs.

FMs are the basis for enabling AI and ML systems to ingest large amounts of data and generate results based on associations among the data. They serve as a baseline from which scientists can develop a diverse set of applications that can result in powerful and efficient solutions. Once an FM is created, it can be trained on a small amount of data to perform a specific task.

But creating and pre-training FMs still requires lots of data. When it comes to addressing the need for massive amounts openly available Earth science data, NASA's Earth Science Data Systems ( ESDS ) Program is a logical source. The more than 100 petabytes (PB) of data the program distributes openly and without restriction is the secret sauce that helps make open-source Earth science-based FM development possible. This combination of open NASA Earth science data and IBM Research's state-of-the-art computational power led to the groundbreaking work using NASA Harmonized Landsat and Sentinel-2 ( HLS ) data to create the Prithvi Geospatial FM , the first open-source geospatial FM, in 2023. Prithvi-weather-climate builds on this achievement.

"Foundation models offer amazing prospects for expanding the use of NASA’s vast archive of Earth observations," says NASA Earth Data Officer Katie Baynes. "The Prithvi-weather-climate model holds promise to advance our understanding of atmospheric dynamics and developing new applications. We're excited to see how the community can leverage this work to enhance resilience to climate and weather-related hazards."

Creating Prithvi-weather-climate

Outside image of people standing in front of a stone wall during daytime

Work on Prithvi-weather-climate began in September 2023 with a workshop at NASA's Marshall Space Flight Center in Huntsville, AL. Marshall is the home of NASA's Interagency Implementation and Advanced Concepts Team ( IMPACT ), a NASA ESDS element charged with expanding the use of NASA Earth observation data through innovation, partnerships, and technology—including the application of AI to these data. 

"This model is part of our overall strategy to openly and collaboratively develop a family of AI foundation models to support NASA's science mission goals," says IMPACT Manager Dr. Rahul Ramachandran. "These models will augment our capabilities to draw insights from our vast archives of Earth observations."

Joining the IMPACT and IBM Research teams in developing Prithvi-weather-climate were participants from NASA Headquarters, NASA's Global Modeling and Assimilation Office ( GMAO ), NASA's Center for Climate Simulation ( NCCS ), the NASA Advanced Supercomputing ( NAS ) Facility, Oak Ridge National Laboratory (ORNL), and NVIDIA Corporation. Several universities engaged in various aspects of AI or large-scale computing and weather/climate science participated as well, including the University of Alabama in Huntsville, Colorado State University, and Stanford University.

The focus of the Marshall workshop was to plan the next six to eight months of work necessary to develop and pre-train the model. It was decided that the FM would contain parameters such as wind speed and direction, air temperature, specific humidity, cloud mass variables, and longwave and shortwave radiation variables. To be valuable to the broader science community, the team agreed that the focus should not be on forecasting; rather, the FM should enable many different types of downstream science applications.

Map of western Africa with red, purple, and green colors indicating transport of dust off the coast of Africa and across the Atlantic Ocean.

The foundation of Prithvi-weather-climate is 40 years of MERRA-2 data. MERRA-2 is the first long-term global reanalysis to assimilate space-based observations of aerosols and represent their interactions with other physical processes in the climate system. These data are available through NASA's Earthdata Search . MERRA-2 was created by NASA's GMAO to replace and enhance the original MERRA and to sustain GMAO's commitment to having an ongoing near real-time climate analysis.

"With the Prithvi-weather-climate FM, NASA and IBM have led the creation of a unique AI representation of all knowledge available in 40 years' worth of MERRA-2 data," says Dr. Juan Bernabé-Moreno, director of IBM Research Europe and IBM’s accelerated discovery lead for climate and sustainability. "The IBM-NASA collaboration highlights how open-source technologies are essential to advancing crucial research into areas such as climate change. By merging IBM's foundation model technology with NASA's deep expertise and specialized climate datasets, we've developed flexible, reusable AI systems for broader use."

Applications to Science and Society

The Prithvi-weather-climate FM has broad applications for both science and society.

From a scientific and research standpoint, the model has been fine-tuned to increase the resolution of long-term climate models by a factor of 12x, a process known as "downscaling." Using an AI model in this context avoids the high costs associated with the conventional approach using high performance computing (HPC). The FM also improves the use of AI for better representation of small-scale physical processes in numerical weather and climate models. Through the insertion of tokens in the model at wind turbine locations, Prithvi-weather-climate can generate targeted forecasts using hyper-localized, asset-specific observations, further improving the accuracy of short to medium-range forecasts.

The application of AI to weather and climate data also can lead to improvements in public safety. Uses being developed by the research team for Prithvi-weather-climate include more precise hurricane track and intensity forecasts along with better seasonal precipitation forecasting. As the model continues to be trained, future applications include the detection and prediction of severe weather patterns, more detailed wildfire behavior forecasts, finer turbulence detection and prediction, urban heatwave prediction, and improved solar radiation assessment.

"Our ambition is to accelerate and advance the impact of NASA's Earth science to meet this moment of changing climate for the benefit of all humankind," says Dr. Karen St. Germain, director of NASA's Earth Science Division. "The [NASA/IBM Research] foundation model for weather and climate will enable this Earth Science to Action strategy."

Meet the Team

Along with the participants noted in the Creating Prithvi-weather-climate section, the development of the FM was accomplished by a diverse team with deep experience representing varied aspects of AI and ML.

  • Building an AI Foundation Model for Weather and Climate
  • NASA, IBM Research Release New AI Foundation Model for Weather, Climate Forecasts
  • IBM and NASA are building an AI foundation model for weather and climate
  • Blog: Environmental analysis made easier with IBM’s Geospatial Studio
  • Mukkavilli, S.K., et al. (2023). AI Foundation Models for Weather and Climate: Applications, Design, and Implementation. Cornell University arXiv. doi:10.48550/arXiv.2309.10808
  • Gelaro, R., et al. (2017). The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14): 5419-5414. doi:10.1175%2FJCLI-D-16-0758.1

Technologies

NASA tracks nearly every aspect of the water cycle

You might also be interested in

This is an image showing simulated chlorophyll concentrations in the ocean on March 21, 2022. The image has a black background. Regions colored in blue represent areas of low chlorophyll concentration, green are medium, and red areas have high levels. The image has strips of black running through the colored areas from the upper left to the lower right to show PACE’s orbital track around the globe and places across the ocean where it has not scanned.

research topics in machine learning

  • AI " target="_blank" title="Share on Reddit">

Picture of chemistry teacher, Melissa Higgason working with a group of students in a classroom setting.

Khan Academy and Microsoft partner to expand access to AI tools that personalize teaching and help make learning fun

Tech box illustration

10 more AI terms everyone should know 

AI generated decorative image.

7 takeaways from a year of building generative AI responsibly and at scale

Woman in a headscarf on a scooter

Equipped with AI and technology skills, women across Southeast Asia find new career opportunities

Man in a hat squatting on a wooden plank over a pond hauling a catch of shrimp

To keep fish and shrimp healthy, farmers in Indonesia now have a copilot to help

  • Frontiers in Molecular Biosciences
  • Biological Modeling and Simulation
  • Research Topics

Decoding Cis-regulatory Code with Machine Learning and Experimental Assay

Total Downloads

Total Views and Downloads

About this Research Topic

The cis-regulatory code is to quantify the gene expression level to represent the transcriptional activity from DNA sequence. The cis-regulatory sequence includes enhancers, promoters, silencers, insulators, et al. Enhancers can contact target gene promoter to regulate gene expression which involves DNA methylation, histone modifications (HMs), transcription factors (TFs), coactivators, mediators, et al. It’s important to decipher the cis-regulatory elements and the epigenomic features regulate gene expression. Recently, many artificial intelligence algorithms have been developed to predict predicting genomic features which include transcription factor binding, chromatin accessibility, enhancers, 3D chromatin structures, gene expression, et al. The most important method is predicting these features from DNA sequence alone based on Convolutional/recurrent neural networks (CNN, RNN) or Transformer model. The large-scale published datasets provide the possibility to advance the prediction accuracy of these models. The main purpose of these models is to interpret the prediction results and experimental assays to understand the cis-regulatory code. This Research Topic welcomes the submission of Original Research articles, Review, Mini Review, Perspective articles, Editorial, Brief Research Report, and Method articles. We aim to bring state-of-the-art research contributions in computational or experimental models to address new problems and improve existing methods to decipher the cis-regulatory mechanisms, but not limited to: 1. Create benchmark datasets or databases for cis-regulatory elements. 2. Interpreting and explaining the prediction models and experimental assays. 3. Develop new prediction models for cis-regulatory code with multi-omics datasets. 4. Large-scale validation of the prediction cis-regulatory elements with experimental assays. 5. Determine key factors in cis-regulation code and their relationships. 6. Apply published prediction models to discover cell-type specific cis-regulatory elements in development and diseases.

Keywords : cis-regulatory elements, machine learning, massively parallel reporter assays (MPRA) and CRISPR-based perturbations

Important Note : All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Topic coordinators, submission deadlines, participating journals.

Manuscripts can be submitted to this Research Topic via the following journals:

total views

  • Demographics

No records found

total views article views downloads topic views

Top countries

Top referring sites, about frontiers research topics.

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

ScienceDaily

How AI helps programming a quantum computer

Researchers from the University of Innsbruck have unveiled a novel method to prepare quantum operations on a given quantum computer, using a machine learning generative model to find the appropriate sequence of quantum gates to execute a quantum operation. The study, recently published in Nature Machine Intelligence , marks a significant step forward in unleashing the full extent of quantum computing.

Generative models like diffusion models are one of the most important recent developments in Machine Learning (ML), with models as Stable Diffusion and Dall.e revolutionizing the field of image generation. These models are able to produce high quality images based on some text description. "Our new model for programming quantum computers does the same but, instead of generating images, it generates quantum circuits based on the text description of the quantum operation to be performed," explains Gorka Muñoz-Gil from the Department of Theoretical Physics of the University of Innsbruck, Austria.

To prepare a certain quantum state or execute an algorithm on a quantum computer, one needs to find the appropriate sequence of quantum gates to perform such operations. While this is rather easy in classical computing, it is a great challenge in quantum computing, due to the particularities of the quantum world. Recently, many scientists have proposed methods to build quantum circuits with many relying machine learning methods. However, training of these ML models is often very hard due to the necessity of simulating quantum circuits as the machine learns.

Diffusion models avoid such problems due to the way how they are trained. "This provides a tremendous advantage," explains Gorka Muñoz-Gil, who developed the novel method together with Hans J. Briegel and Florian Fürrutter. "Moreover, we show that denoising diffusion models are accurate in their generation and also very flexible, allowing to generate circuits with different numbers of qubits, as well as types and numbers of quantum gates." The models also can be tailored to prepare circuits that take into consideration the connectivity of the quantum hardware, i.e. how qubits are connected in the quantum computer. "As producing new circuits is very cheap once the model is trained, one can use it to discover new insights about quantum operations of interest," Gorka Muñoz-Gil names another potential of the new method.

The method developed at the University of Innsbruck produces quantum circuits based on user specifications and tailored to the features of the quantum hardware the circuit will be run on. This marks a significant step forward in unleashing the full extent of quantum computing. The work has now been published in Nature Machine Intelligence and was financially supported by the Austrian Science Fund FWF and the European Union, among others.

  • Quantum Computers
  • Computers and Internet
  • Spintronics Research
  • Computer Modeling
  • Computer Science
  • Mathematical Modeling
  • Quantum entanglement
  • Quantum computer
  • Quantum tunnelling
  • Quantum dot
  • John von Neumann
  • Quantum mechanics
  • Introduction to quantum mechanics
  • Supercomputer

Story Source:

Materials provided by University of Innsbruck . Note: Content may be edited for style and length.

Journal Reference :

  • Florian Fürrutter, Gorka Muñoz-Gil, Hans J. Briegel. Quantum circuit synthesis with diffusion models . Nature Machine Intelligence , 2024; DOI: 10.1038/s42256-024-00831-9

Cite This Page :

Explore More

  • Future Climate Impacts Put Whale Diet at Risk
  • Charge Your Laptop in a Minute?
  • Caterpillars Detect Predators by Electricity
  • 'Electronic Spider Silk' Printed On Human Skin
  • Engineered Surfaces Made to Shed Heat
  • Innovative Material for Sustainable Building
  • Human Brain: New Gene Transcripts
  • Epstein-Barr Virus and Resulting Diseases
  • Origins of the Proton's Spin
  • Symbiotic Bacteria Communicate With Plants

Trending Topics

Strange & offbeat.

IMAGES

  1. 101 Machine Learning Algorithms for Data Science with Cheat Sheets

    research topics in machine learning

  2. Latest Thesis Topics in Machine Learning for Research Scholars

    research topics in machine learning

  3. 249+ Innovative Machine Learning Research Topics for Students

    research topics in machine learning

  4. Machine Learning Algorithms & their Use Cases

    research topics in machine learning

  5. Overview of PhD Research Thesis Topics in Machine Learning (Guidance)

    research topics in machine learning

  6. What Are the Topics in Machine Learning?

    research topics in machine learning

VIDEO

  1. Extreme Learning Machine: Learning Without Iterative Tuning

  2. Project

  3. Project: Language Detection with Machine Learning

  4. What's new in Mathematica 14 Version (Webinar recording)

  5. Reinforcement Learning: Bringing Together Computation, Behavior and Neural Coding

  6. MACHINE LEARNING IMPORTANT TOPICS // BTECH 2023

COMMENTS

  1. Exploring 250+ Machine Learning Research Topics

    Machine learning research is at the heart of the AI revolution. It underpins the development of intelligent systems capable of making predictions, automating tasks, and improving decision-making across industries. The importance of this research can be summarized as follows: Advancements in Technology.

  2. Machine learning

    Machine learning articles from across Nature Portfolio. Machine learning is the ability of a machine to improve its performance based on previous results. Machine learning methods enable computers ...

  3. AI & Machine Learning Research Topics (+ Free Webinar)

    Get 1-On-1 Help. If you're still unsure about how to find a quality research topic, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic. A comprehensive list of research topics ideas in the AI and machine learning area. Includes access to a free webinar ...

  4. The Future of AI Research: 20 Thesis Ideas for Undergraduate ...

    Each thesis idea includes an introduction, which presents a brief overview of the topic and the research objectives. The ideas provided are related to different areas of machine learning and deep learning, such as computer vision, natural language processing, robotics, finance, drug discovery, and more.

  5. Machine Learning: Algorithms, Real-World Applications and Research

    To discuss the applicability of machine learning-based solutions in various real-world application domains. To highlight and summarize the potential research directions within the scope of our study for intelligent data analysis and services. The rest of the paper is organized as follows.

  6. Journal of Machine Learning Research

    The Journal of Machine Learning Research (JMLR), , provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online. JMLR has a commitment to rigorous yet rapid reviewing. Final versions are (ISSN 1533-7928) immediately ...

  7. Artificial Intelligence and Machine Learning

    Artificial Intelligence and Machine Learning. Our research covers a wide range of topics of this fast-evolving field, advancing how machines learn, predict, and control, while also making them secure, robust and trustworthy. Research covers both the theory and applications of ML.

  8. Machine Intelligence

    Machine Intelligence. Google is at the forefront of innovation in Machine Intelligence, with active research exploring virtually all aspects of machine learning, including deep learning and more classical algorithms. Exploring theory as well as application, much of our work on language, speech, translation, visual processing, ranking and ...

  9. Home

    Machine Learning is an international forum focusing on computational approaches to learning. Reports substantive results on a wide range of learning methods applied to various learning problems. Provides robust support through empirical studies, theoretical analysis, or comparison to psychological phenomena. Demonstrates how to apply learning ...

  10. Forecasting the future of artificial intelligence with machine learning

    The most connected nodes and the years they became so include decision tree (1994), machine learning (1996), logic program (2000), neural network (2005), experimental result (2011), machine ...

  11. Artificial intelligence and machine learning research ...

    A variety of innovative topics are included in the agenda of the published papers in this special issue including topics such as: Stock market Prediction using Machine learning ... Z., Brahimi, T. et al. Artificial intelligence and machine learning research: towards digital transformation at a global scale. J Ambient Intell Human Comput 13 ...

  12. Machine Learning for Science of Science and Innovations

    This Research Topic solicits perspectives and survey pieces, blue-sky proposals, empirical analyses, and methodological contributions that cover insights into a range of topics in no particular order: AI for understanding and advancing the scientific process - Data mining and machine learning tools can harness user data, user/researcher ...

  13. Top 10 Research and Thesis Topics for ML Projects in 2022

    In this tech-driven world, selecting research and thesis topics in machine learning projects is the first choice of masters and Doctorate scholars. Selecting and working on a thesis topic in machine learning is not an easy task as machine learning uses statistical algorithms to make computers work in a certain way without being explicitly ...

  14. 37 Research Topics In Data Science To Stay On Top Of » EML

    3.) Auto Machine Learning. Auto machine learning is a research topic in data science concerned with developing algorithms that can automatically learn from data without intervention. This area of research is vital because it allows data scientists to automate the process of writing code for every dataset.

  15. Machine learning

    Topic Machine learning. Download RSS feed: News Articles / In the Media / Audio. Displaying 1 - 15 of 898 news articles related to this topic. Show: News Articles. In the Media. Audio. School of Engineering welcomes new faculty ... HPI-MIT design research collaboration creates powerful teams. Together, the Hasso Plattner Institute and MIT are ...

  16. Machine Learning

    We study a range of research areas related to machine learning and their applications for robotics, health care, language processing, information retrieval and more. Among these subjects include precision medicine, motion planning, computer vision, Bayesian inference, graphical models, statistical inference and estimation. Our work is ...

  17. machine learning Latest Research Papers

    Find the latest published documents for machine learning, Related hot topics, top authors, the most cited documents, and related journals. ScienceGate; Advanced Search; Author Search ... This article examines the background to the problem and outlines a project that TNA undertook to research the feasibility of using commercially available ...

  18. Available Master's thesis topics in machine learning

    Towards precision medicine for cancer patient stratification. Unraveling gene regulation from single cell data. Developing a Stress Granule Classifier. Machine Learning based Hyperheuristic algorithm. Machine learning for solving satisfiability problems and applications in cryptanalysis. Hybrid modeling approaches for well drilling with Sintef.

  19. 25 Machine Learning Projects for All Levels

    8. The Hottest Topics in Machine Learning. In the Hottest Topics in Machine Learning project, you will use text processing and LDA(Linear Discriminant Analysis) to discover the latest trend in machine learning from the large collection of NIPS research papers. You will perform text analysis, process the data for word cloud, prepare data for LDA ...

  20. Machine Learning in Neuroscience

    In this Research Topic, we are seeking to bring together researchers from machine learning and computational neuroscience and to stimulate collaboration between researchers in these fields. More specifically, this collection of articles is intended to cover recent directions and activities in the field of machine learning, especially the recent ...

  21. Emerging research topics detection with multiple machine learning

    In this article, several machine learning models (cf. Fig. 1) are together used to detect and foresight the emerging research topics.More specifically, thematic structures are extracted firstly with Dynamic Influence Model (DIM) (Gerrish & Blei, 2010) from the scientific publications.Then, the growth, coherence, influence and novelty indicators are calculated, in which the first three ...

  22. Research: What Companies Don't Know About How Workers Use AI

    Read more on AI and machine learning or related topics Leadership, Organizational culture, Corporate strategy, Leadership vision, Digital transformation and Technology and analytics Partner Center

  23. A Trend Analysis of Significant Topics Over Time in Machine Learning

    The topics generated by the LDA model has widely spread across different journals. Thus, the trend analysis of significant topics in machine learning research for the period was analyzed. This analysis can motivate the future researchers to understand the trends of the machine learning topics and give them the opportunity to explore further.

  24. Scientists leverage machine learning to decode gene regulation in the

    Sean Whalen, Ph.D., a senior research scientist in the Pollard Lab at Gladstone and a co-first author of the study, says the team tested the machine learning model using sequences held out from ...

  25. Machine Learning for Software Engineering

    Keywords: Artificial Intelligence, Machine Learning, Software Engineering, Software Development . Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements.Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of ...

  26. NASA and IBM Research Apply AI to Weather and Climate

    The model is pre-trained on 40 years of weather and climate data from NASA's Modern-Era Retrospective analysis for Research and Applications, Version 2 , and fills a need to infuse AI and machine learning (ML) methods into weather and climate applications, such as storm tracking, forecasting, and historical analysis.

  27. Interpretability of Machine Learning Algorithms for News Category

    Our research underscores the significance of considering accuracy and interpretability when selecting a machine-learning approach for resolving data-driven insurance challenges.

  28. AI

    AI. Microsoft's advancements in AI are grounded in our company's mission to help every person and organization on the planet to achieve more — from helping people be more productive to helping solve society's most pressing problems.

  29. Decoding Cis-regulatory Code with Machine Learning and ...

    Keywords: cis-regulatory elements, machine learning, massively parallel reporter assays (MPRA) and CRISPR-based perturbations . Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements.

  30. How AI helps programming a quantum computer

    Researchers have unveiled a novel method to prepare quantum operations on a given quantum computer, using a machine learning generative model to find the appropriate sequence of quantum gates to ...