TutorialsTonight Logo

Python Conditional Assignment

When you want to assign a value to a variable based on some condition, like if the condition is true then assign a value to the variable, else assign some other value to the variable, then you can use the conditional assignment operator.

In this tutorial, we will look at different ways to assign values to a variable based on some condition.

1. Using Ternary Operator

The ternary operator is very special operator in Python, it is used to assign a value to a variable based on some condition.

It goes like this:

Here, the value of variable will be value_if_true if the condition is true, else it will be value_if_false .

Let's see a code snippet to understand it better.

You can see we have conditionally assigned a value to variable c based on the condition a > b .

2. Using if-else statement

if-else statements are the core part of any programming language, they are used to execute a block of code based on some condition.

Using an if-else statement, we can assign a value to a variable based on the condition we provide.

Here is an example of replacing the above code snippet with the if-else statement.

3. Using Logical Short Circuit Evaluation

Logical short circuit evaluation is another way using which you can assign a value to a variable conditionally.

The format of logical short circuit evaluation is:

It looks similar to ternary operator, but it is not. Here the condition and value_if_true performs logical AND operation, if both are true then the value of variable will be value_if_true , or else it will be value_if_false .

Let's see an example:

But if we make condition True but value_if_true False (or 0 or None), then the value of variable will be value_if_false .

So, you can see that the value of c is 20 even though the condition a < b is True .

So, you should be careful while using logical short circuit evaluation.

While working with lists , we often need to check if a list is empty or not, and if it is empty then we need to assign some default value to it.

Let's see how we can do it using conditional assignment.

Here, we have assigned a default value to my_list if it is empty.

Assign a value to a variable conditionally based on the presence of an element in a list.

Now you know 3 different ways to assign a value to a variable conditionally. Any of these methods can be used to assign a value when there is a condition.

The cleanest and fastest way to conditional value assignment is the ternary operator .

if-else statement is recommended to use when you have to execute a block of code based on some condition.

Happy coding! 😊

  • DigitalOcean
  • Sign up for:

How To Use Assignment Expressions in Python

author

DavidMuller and Kathryn Hancox

How To Use Assignment Expressions in Python

The author selected the COVID-19 Relief Fund to receive a donation as part of the Write for DOnations program.

Introduction

Python 3.8 , released in October 2019, adds assignment expressions to Python via the := syntax. The assignment expression syntax is also sometimes called “the walrus operator” because := vaguely resembles a walrus with tusks.

Assignment expressions allow variable assignments to occur inside of larger expressions. While assignment expressions are never strictly necessary to write correct Python code, they can help make existing Python code more concise. For example, assignment expressions using the := syntax allow variables to be assigned inside of if statements , which can often produce shorter and more compact sections of Python code by eliminating variable assignments in lines preceding or following the if statement.

In this tutorial, you will use assignment expressions in several examples to produce concise sections of code.

Prerequisites

To get the most out of this tutorial, you will need:

Python 3.8 or above. Assignment expressions are a new feature added starting in Python 3.8. You can view the How To Install Python 3 and Set Up a Programming Environment on an Ubuntu 18.04 Server tutorial for help installing and upgrading Python.

The Python Interactive Console. If you would like to try out the example code in this tutorial you can use the How To Work with the Python Interactive Console tutorial.

Some familiarity with while loops, if statements, list comprehensions, and functions in Python 3 is useful, but not necessary. You can review our How To Code in Python 3 tutorial series for background knowledge.

Using Assignment Expressions in if Statements

Let’s start with an example of how you can use assignment expressions in an if statement.

Consider the following code that checks the length of a list and prints a statement:

If you run the previous code, you will receive the following output:

You initialize a list named some_list that contains three elements. Then, the if statement uses the assignment expression ((list_length := len(some_list)) to bind the variable named list_length to the length of some_list . The if statement evaluates to True because list_length is greater than 2 . You print a string using the list_length variable, which you bound initially with the assignment expression, indicating the the three-element list is too long.

Note: Assignment expressions are a new feature introduced in Python 3.8 . To run the examples in this tutorial, you will need to use Python 3.8 or higher.

Had we not used assignment expression, our code might have been slightly longer. For example:

This code sample is equivalent to the first example, but this code requires one extra standalone line to bind the value of list_length to len(some_list) .

Another equivalent code sample might just compute len(some_list) twice: once in the if statement and once in the print statement. This would avoid incurring the extra line required to bind a variable to the value of len(some_list) :

Assignment expressions help avoid the extra line or the double calculation.

Note: Assignment expressions are a helpful tool, but are not strictly necessary. Use your judgement and add assignment expressions to your code when it significantly improves the readability of a passage.

In the next section, we’ll explore using assignment expressions inside of while loops.

Using Assignment Expressions in while Loops

Assignment expressions often work well in while loops because they allow us to fold more context into the loop condition.

Consider the following example that embeds a user input function inside the while loop condition:

If you run this code, Python will continually prompt you for text input from your keyboard until you type the word stop . One example session might look like:

The assignment expression (directive := input("Enter text: ")) binds the value of directive to the value retrieved from the user via the input function. You bind the return value to the variable directive , which you print out in the body of the while loop. The while loop exits whenever the you type stop .

Had you not used an assignment expression, you might have written an equivalent input loop like:

This code is functionally identical to the one with assignment expressions, but requires four total lines (as opposed to two lines). It also duplicates the input("Enter text: ") call in two places. Certainly, there are many ways to write an equivalent while loop, but the assignment expression variant introduced earlier is compact and captures the program’s intention well.

So far, you’ve used assignment expression in if statements and while loops. In the next section, you’ll use an assignment expression inside of a list comprehension.

Using Assignment Expressions in List Comprehensions

We can also use assignment expressions in list comprehensions . List comprehensions allow you to build lists succinctly by iterating over a sequence and potentially adding elements to the list that satisfy some condition. Like list comprehensions, we can use assignment expressions to improve readability and make our code more concise.

Consider the following example that uses a list comprehension and an assignment expression to build a list of multiplied integers:

If you run the previous code, you will receive the following:

You define a function named slow_calculation that multiplies the given number x with itself. A list comprehension then iterates through 0 , 1 , and 2 returned by range(3) . An assignment expression binds the value result to the return of slow_calculation with i . You add the result to the newly built list as long as it is greater than 0. In this example, 0 , 1 , and 2 are all multiplied with themselves, but only the results 1 ( 1 * 1 ) and 4 ( 2 * 2 ) satisfy the greater than 0 condition and become part of the final list [1, 4] .

The slow_calculation function isn’t necessarily slow in absolute terms, but is meant to illustrate an important point about effeciency. Consider an alternate implementation of the previous example without assignment expressions:

Running this, you will receive the following output:

In this variant of the previous code, you use no assignment expressions. Instead, you call slow_calculation up to two times: once to ensure slow_calculation(i) is greater than 0 , and potentially a second time to add the result of the calculation to the final list. 0 is only multiplied with itself once because 0 * 0 is not greater than 0 . The other results, however, are doubly calculated because they satisfy the greater than 0 condition, and then have their results recalculated to become part of the final list [1, 4] .

You’ve now combined assignment expressions with list comprehensions to create blocks of code that are both efficient and concise.

In this tutorial, you used assignment expressions to make compact sections of Python code that assign values to variables inside of if statements, while loops, and list comprehensions.

For more information on other assignment expressions, you can view PEP 572 —the document that initially proposed adding assignment expressions to Python.

You may also want to check out our other Python content on our topic page .

Thanks for learning with the DigitalOcean Community. Check out our offerings for compute, storage, networking, and managed databases.

Learn more about our products

Default avatar

Author of Intuitive Python

Check out Intuitive Python: Productive Development for Projects that Last

https://pragprog.com/titles/dmpython/intuitive-python/

Still looking for an answer?

This textbox defaults to using Markdown to format your answer.

You can type !ref in this text area to quickly search our full set of tutorials, documentation & marketplace offerings and insert the link!

Creative Commons

Try DigitalOcean for free

Click below to sign up and get $200 of credit to try our products over 60 days!

Popular Topics

  • Linux Basics
  • All tutorials
  • Talk to an expert

Join the Tech Talk

Please complete your information!

Featured on Community

python check assignment

Get our biweekly newsletter

Sign up for Infrastructure as a Newsletter.

python check assignment

Hollie's Hub for Good

Working on improving health and education, reducing inequality, and spurring economic growth? We'd like to help.

python check assignment

Become a contributor

Get paid to write technical tutorials and select a tech-focused charity to receive a matching donation.

Featured Tutorials

Digitalocean products, welcome to the developer cloud.

DigitalOcean makes it simple to launch in the cloud and scale up as you grow — whether you're running one virtual machine or ten thousand.

  • Hands-on Python Tutorial »
  • 1. Beginning With Python »

1.6. Variables and Assignment ¶

Each set-off line in this section should be tried in the Shell.

Nothing is displayed by the interpreter after this entry, so it is not clear anything happened. Something has happened. This is an assignment statement , with a variable , width , on the left. A variable is a name for a value. An assignment statement associates a variable name on the left of the equal sign with the value of an expression calculated from the right of the equal sign. Enter

Once a variable is assigned a value, the variable can be used in place of that value. The response to the expression width is the same as if its value had been entered.

The interpreter does not print a value after an assignment statement because the value of the expression on the right is not lost. It can be recovered if you like, by entering the variable name and we did above.

Try each of the following lines:

The equal sign is an unfortunate choice of symbol for assignment, since Python’s usage is not the mathematical usage of the equal sign. If the symbol ↤ had appeared on keyboards in the early 1990’s, it would probably have been used for assignment instead of =, emphasizing the asymmetry of assignment. In mathematics an equation is an assertion that both sides of the equal sign are already, in fact, equal . A Python assignment statement forces the variable on the left hand side to become associated with the value of the expression on the right side. The difference from the mathematical usage can be illustrated. Try:

so this is not equivalent in Python to width = 10 . The left hand side must be a variable, to which the assignment is made. Reversed, we get a syntax error . Try

This is, of course, nonsensical as mathematics, but it makes perfectly good sense as an assignment, with the right-hand side calculated first. Can you figure out the value that is now associated with width? Check by entering

In the assignment statement, the expression on the right is evaluated first . At that point width was associated with its original value 10, so width + 5 had the value of 10 + 5 which is 15. That value was then assigned to the variable on the left ( width again) to give it a new value. We will modify the value of variables in a similar way routinely.

Assignment and variables work equally well with strings. Try:

Try entering:

Note the different form of the error message. The earlier errors in these tutorials were syntax errors: errors in translation of the instruction. In this last case the syntax was legal, so the interpreter went on to execute the instruction. Only then did it find the error described. There are no quotes around fred , so the interpreter assumed fred was an identifier, but the name fred was not defined at the time the line was executed.

It is both easy to forget quotes where you need them for a literal string and to mistakenly put them around a variable name that should not have them!

Try in the Shell :

There fred , without the quotes, makes sense.

There are more subtleties to assignment and the idea of a variable being a “name for” a value, but we will worry about them later, in Issues with Mutable Objects . They do not come up if our variables are just numbers and strings.

Autocompletion: A handy short cut. Idle remembers all the variables you have defined at any moment. This is handy when editing. Without pressing Enter, type into the Shell just

Assuming you are following on the earlier variable entries to the Shell, you should see f autocompleted to be

This is particularly useful if you have long identifiers! You can press Alt-/ several times if more than one identifier starts with the initial sequence of characters you typed. If you press Alt-/ again you should see fred . Backspace and edit so you have fi , and then and press Alt-/ again. You should not see fred this time, since it does not start with fi .

1.6.1. Literals and Identifiers ¶

Expressions like 27 or 'hello' are called literals , coming from the fact that they literally mean exactly what they say. They are distinguished from variables, whose value is not directly determined by their name.

The sequence of characters used to form a variable name (and names for other Python entities later) is called an identifier . It identifies a Python variable or other entity.

There are some restrictions on the character sequence that make up an identifier:

The characters must all be letters, digits, or underscores _ , and must start with a letter. In particular, punctuation and blanks are not allowed.

There are some words that are reserved for special use in Python. You may not use these words as your own identifiers. They are easy to recognize in Idle, because they are automatically colored orange. For the curious, you may read the full list:

There are also identifiers that are automatically defined in Python, and that you could redefine, but you probably should not unless you really know what you are doing! When you start the editor, we will see how Idle uses color to help you know what identifies are predefined.

Python is case sensitive: The identifiers last , LAST , and LaSt are all different. Be sure to be consistent. Using the Alt-/ auto-completion shortcut in Idle helps ensure you are consistent.

What is legal is distinct from what is conventional or good practice or recommended. Meaningful names for variables are important for the humans who are looking at programs, understanding them, and revising them. That sometimes means you would like to use a name that is more than one word long, like price at opening , but blanks are illegal! One poor option is just leaving out the blanks, like priceatopening . Then it may be hard to figure out where words split. Two practical options are

  • underscore separated: putting underscores (which are legal) in place of the blanks, like price_at_opening .
  • using camel-case : omitting spaces and using all lowercase, except capitalizing all words after the first, like priceAtOpening

Use the choice that fits your taste (or the taste or convention of the people you are working with).

Table Of Contents

  • 1.6.1. Literals and Identifiers

Previous topic

1.5. Strings, Part I

1.7. Print Function, Part I

  • Show Source

Quick search

Enter search terms or a module, class or function name.

Python One Line Conditional Assignment

Problem : How to perform one-line if conditional assignments in Python?

Example : Say, you start with the following code.

You want to set the value of x to 42 if boo is True , and do nothing otherwise.

Let’s dive into the different ways to accomplish this in Python. We start with an overview:

Exercise : Run the code. Are all outputs the same?

Next, you’ll dive into each of those methods and boost your one-liner superpower !

Method 1: Ternary Operator

The most basic ternary operator x if c else y returns expression x if the Boolean expression c evaluates to True . Otherwise, if the expression c evaluates to False , the ternary operator returns the alternative expression y .

OperandDescription
<OnTrue>The return expression of the operator in case the condition evaluates to
<Condition>The condition that determines whether to return the <On True> or the <On False> branch.
<OnFalse>The return expression of the operator in case the condition evaluates to

Let’s go back to our example problem! You want to set the value of x to 42 if boo is True , and do nothing otherwise. Here’s how to do this in a single line:

While using the ternary operator works, you may wonder whether it’s possible to avoid the ...else x part for clarity of the code? In the next method, you’ll learn how!

If you need to improve your understanding of the ternary operator, watch the following video:

You can also read the related article:

  • Python One Line Ternary

Method 2: Single-Line If Statement

Like in the previous method, you want to set the value of x to 42 if boo is True , and do nothing otherwise. But you don’t want to have a redundant else branch. How to do this in Python?

The solution to skip the else part of the ternary operator is surprisingly simple— use a standard if statement without else branch and write it into a single line of code :

To learn more about what you can pack into a single line, watch my tutorial video “If-Then-Else in One Line Python” :

Method 3: Ternary Tuple Syntax Hack

A shorthand form of the ternary operator is the following tuple syntax .

Syntax : You can use the tuple syntax (x, y)[c] consisting of a tuple (x, y) and a condition c enclosed in a square bracket. Here’s a more intuitive way to represent this tuple syntax.

In fact, the order of the <OnFalse> and <OnTrue> operands is just flipped when compared to the basic ternary operator. First, you have the branch that’s returned if the condition does NOT hold. Second, you run the branch that’s returned if the condition holds.

Clever! The condition boo holds so the return value passed into the x variable is the <OnTrue> branch 42 .

Don’t worry if this confuses you—you’re not alone. You can clarify the tuple syntax once and for all by studying my detailed blog article.

Related Article : Python Ternary — Tuple Syntax Hack

Python One-Liners Book: Master the Single Line First!

Python programmers will improve their computer science skills with these useful one-liners.

Python One-Liners will teach you how to read and write “one-liners”: concise statements of useful functionality packed into a single line of code. You’ll learn how to systematically unpack and understand any line of Python code, and write eloquent, powerfully compressed Python like an expert.

The book’s five chapters cover (1) tips and tricks, (2) regular expressions, (3) machine learning, (4) core data science topics, and (5) useful algorithms.

Detailed explanations of one-liners introduce key computer science concepts and boost your coding and analytical skills . You’ll learn about advanced Python features such as list comprehension , slicing , lambda functions , regular expressions , map and reduce functions, and slice assignments .

You’ll also learn how to:

  • Leverage data structures to solve real-world problems , like using Boolean indexing to find cities with above-average pollution
  • Use NumPy basics such as array , shape , axis , type , broadcasting , advanced indexing , slicing , sorting , searching , aggregating , and statistics
  • Calculate basic statistics of multidimensional data arrays and the K-Means algorithms for unsupervised learning
  • Create more advanced regular expressions using grouping and named groups , negative lookaheads , escaped characters , whitespaces, character sets (and negative characters sets ), and greedy/nongreedy operators
  • Understand a wide range of computer science topics , including anagrams , palindromes , supersets , permutations , factorials , prime numbers , Fibonacci numbers, obfuscation , searching , and algorithmic sorting

By the end of the book, you’ll know how to write Python at its most refined , and create concise, beautiful pieces of “Python art” in merely a single line.

Get your Python One-Liners on Amazon!!

  • Python »
  • 3.12.5 Documentation »
  • The Python Language Reference »
  • 7. Simple statements
  • Theme Auto Light Dark |

7. Simple statements ¶

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line separated by semicolons. The syntax for simple statements is:

7.1. Expression statements ¶

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a function that returns no meaningful result; in Python, procedures return the value None ). Other uses of expression statements are allowed and occasionally useful. The syntax for an expression statement is:

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None , it is converted to a string using the built-in repr() function and the resulting string is written to standard output on a line by itself (except if the result is None , so that procedure calls do not cause any output.)

7.2. Assignment statements ¶

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

(See section Primaries for the syntax definitions for attributeref , subscription , and slicing .)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object (an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types and the exceptions raised are given with the definition of the object types (see section The standard type hierarchy ).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined as follows.

If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to that target.

If the target list contains one target prefixed with an asterisk, called a “starred” target: The object must be an iterable with at least as many items as there are targets in the target list, minus one. The first items of the iterable are assigned, from left to right, to the targets before the starred target. The final items of the iterable are assigned to the targets after the starred target. A list of the remaining items in the iterable is then assigned to the starred target (the list can be empty).

Else: The object must be an iterable with the same number of items as there are targets in the target list, and the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.

If the target is an identifier (name):

If the name does not occur in a global or nonlocal statement in the current code block: the name is bound to the object in the current local namespace.

Otherwise: the name is bound to the object in the global namespace or the outer namespace determined by nonlocal , respectively.

The name is rebound if it was already bound. This may cause the reference count for the object previously bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be called.

If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an object with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but not necessarily AttributeError ).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator, the right-hand side expression, a.x can access either an instance attribute or (if no instance attribute exists) a class attribute. The left-hand side target a.x is always set as an instance attribute, creating it if necessary. Thus, the two occurrences of a.x do not necessarily refer to the same attribute: if the right-hand side expression refers to a class attribute, the left-hand side creates a new instance attribute as the target of the assignment:

This description does not necessarily apply to descriptor attributes, such as properties created with property() .

If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative, the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the mapping’s key type, and the mapping is then asked to create a key/value pair which maps the subscript to the assigned object. This can either replace an existing key/value pair with the same key value, or insert a new key/value pair (if no key with the same value existed).

For user-defined objects, the __setitem__() method is called with appropriate arguments.

If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be different from the length of the assigned sequence, thus changing the length of the target sequence, if the target sequence allows it.

CPython implementation detail: In the current implementation, the syntax for targets is taken to be the same as for expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are ‘simultaneous’ (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to variables occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2] :

The specification for the *target feature.

7.2.1. Augmented assignment statements ¶

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking) and the expression list, performs the binary operation specific to the type of assignment on the two operands, and assigns the result to the original target. The target is only evaluated once.

An augmented assignment statement like x += 1 can be rewritten as x = x + 1 to achieve a similar, but not exactly equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is performed in-place , meaning that rather than creating a new object and assigning that to the target, the old object is modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side. For example, a[i] += f(x) first looks-up a[i] , then it evaluates f(x) and performs the addition, and lastly, it writes the result back to a[i] .

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible in-place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same caveat about class and instance attributes applies as for regular assignments.

7.2.2. Annotated assignment statements ¶

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional assignment statement:

The difference from normal Assignment statements is that only a single target is allowed.

The assignment target is considered “simple” if it consists of a single name that is not enclosed in parentheses. For simple assignment targets, if in class or module scope, the annotations are evaluated and stored in a special class or module attribute __annotations__ that is a dictionary mapping from variable names (mangled if private) to evaluated annotations. This attribute is writable and is automatically created at the start of class or module body execution, if annotations are found statically.

If the assignment target is not simple (an attribute, subscript node, or parenthesized name), the annotation is evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and stored in function scopes.

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations (where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the target except for the last __setitem__() or __setattr__() call.

The proposal that added syntax for annotating the types of variables (including class variables and instance variables), instead of expressing them through comments.

The proposal that added the typing module to provide a standard syntax for type annotations that can be used in static analysis tools and IDEs.

Changed in version 3.8: Now annotated assignments allow the same expressions in the right hand side as regular assignments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3. The assert statement ¶

Assert statements are a convenient way to insert debugging assertions into a program:

The simple form, assert expression , is equivalent to

The extended form, assert expression1, expression2 , is equivalent to

These equivalences assume that __debug__ and AssertionError refer to the built-in variables with those names. In the current implementation, the built-in variable __debug__ is True under normal circumstances, False when optimization is requested (command line option -O ). The current code generator emits no code for an assert statement when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to __debug__ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4. The pass statement ¶

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is required syntactically, but no code needs to be executed, for example:

7.5. The del statement ¶

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the name occurs in a global statement in the same code block. If the name is unbound, a NameError exception will be raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a slicing is in general equivalent to assignment of an empty slice of the right type (but even this is determined by the sliced object).

Changed in version 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free variable in a nested block.

7.6. The return statement ¶

return may only occur syntactically nested in a function definition, not within a nested class definition.

If an expression list is present, it is evaluated, else None is substituted.

return leaves the current function call with the expression list (or None ) as return value.

When return passes control out of a try statement with a finally clause, that finally clause is executed before really leaving the function.

In a generator function, the return statement indicates that the generator is done and will cause StopIteration to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the StopIteration.value attribute.

In an asynchronous generator function, an empty return statement indicates that the asynchronous generator is done and will cause StopAsyncIteration to be raised. A non-empty return statement is a syntax error in an asynchronous generator function.

7.7. The yield statement ¶

A yield statement is semantically equivalent to a yield expression . The yield statement can be used to omit the parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield statements

are equivalent to the yield expression statements

Yield expressions and statements are only used when defining a generator function, and are only used in the body of the generator function. Using yield in a function definition is sufficient to cause that definition to create a generator function instead of a normal function.

For full details of yield semantics, refer to the Yield expressions section.

7.8. The raise statement ¶

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known as the active exception . If there isn’t currently an active exception, a RuntimeError exception is raised indicating that this is an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance of BaseException . If it is a class, the exception instance will be obtained when needed by instantiating the class with no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the __traceback__ attribute. You can create an exception and set your own traceback in one step using the with_traceback() exception method (which returns the same exception instance, with its traceback set to its argument), like so:

The from clause is used for exception chaining: if given, the second expression must be another exception class or instance. If the second expression is an exception instance, it will be attached to the raised exception as the __cause__ attribute (which is writable). If the expression is an exception class, the class will be instantiated and the resulting exception instance will be attached to the raised exception as the __cause__ attribute. If the raised exception is not handled, both exceptions will be printed:

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled. An exception may be handled when an except or finally clause, or a with statement, is used. The previous exception is then attached as the new exception’s __context__ attribute:

Exception chaining can be explicitly suppressed by specifying None in the from clause:

Additional information on exceptions can be found in section Exceptions , and information about handling exceptions is in section The try statement .

Changed in version 3.3: None is now permitted as Y in raise X from Y .

Added the __suppress_context__ attribute to suppress automatic display of the exception context.

Changed in version 3.11: If the traceback of the active exception is modified in an except clause, a subsequent raise statement re-raises the exception with the modified traceback. Previously, the exception was re-raised with the traceback it had when it was caught.

7.9. The break statement ¶

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition within that loop.

It terminates the nearest enclosing loop, skipping the optional else clause if the loop has one.

If a for loop is terminated by break , the loop control target keeps its current value.

When break passes control out of a try statement with a finally clause, that finally clause is executed before really leaving the loop.

7.10. The continue statement ¶

continue may only occur syntactically nested in a for or while loop, but not nested in a function or class definition within that loop. It continues with the next cycle of the nearest enclosing loop.

When continue passes control out of a try statement with a finally clause, that finally clause is executed before really starting the next loop cycle.

7.11. The import statement ¶

The basic import statement (no from clause) is executed in two steps:

find a module, loading and initializing it if necessary

define a name or names in the local namespace for the scope where the import statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for each clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules, are described in greater detail in the section on the import system , which also describes the various types of packages and modules that can be imported, as well as all the hooks that can be used to customize the import system. Note that failures in this step may indicate either that the module could not be located, or that an error occurred while initializing the module, which includes execution of the module’s code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three ways:

If the module name is followed by as , then the name following as is bound directly to the imported module.

If no other name is specified, and the module being imported is a top level module, the module’s name is bound in the local namespace as a reference to the imported module

If the module being imported is not a top level module, then the name of the top level package that contains the module is bound in the local namespace as a reference to the top level package. The imported module must be accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:

find the module specified in the from clause, loading and initializing it if necessary;

for each of the identifiers specified in the import clauses:

check if the imported module has an attribute by that name

if not, attempt to import a submodule with that name and then check the imported module again for that attribute

if the attribute is not found, ImportError is raised.

otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if it is present, otherwise using the attribute name

If the list of identifiers is replaced by a star ( '*' ), all public names defined in the module are bound in the local namespace for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named __all__ ; if defined, it must be a sequence of strings which are names defined or imported by that module. The names given in __all__ are all considered public and are required to exist. If __all__ is not defined, the set of public names includes all names found in the module’s namespace which do not begin with an underscore character ( '_' ). __all__ should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such as library modules which were imported and used within the module).

The wild card form of import — from module import * — is only allowed at the module level. Attempting to use it in class or function definitions will raise a SyntaxError .

When specifying what module to import you do not have to specify the absolute name of the module. When a module or package is contained within another package it is possible to make a relative import within the same top package without having to mention the package name. By using leading dots in the specified module or package after from you can specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot means the current package where the module making the import exists. Two dots means up one package level. Three dots is up two levels, etc. So if you execute from . import mod from a module in the pkg package then you will end up importing pkg.mod . If you execute from ..subpkg2 import mod from within pkg.subpkg1 you will import pkg.subpkg2.mod . The specification for relative imports is contained in the Package Relative Imports section.

importlib.import_module() is provided to support applications that determine dynamically the modules to be loaded.

Raises an auditing event import with arguments module , filename , sys.path , sys.meta_path , sys.path_hooks .

7.11.1. Future statements ¶

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to the language. It allows use of the new features on a per-module basis before the release in which the feature becomes standard.

A future statement must appear near the top of the module. The only lines that can appear before a future statement are:

the module docstring (if any),

blank lines, and

other future statements.

The only feature that requires using the future statement is annotations (see PEP 563 ).

All historical features enabled by the future statement are still recognized by Python 3. The list includes absolute_import , division , generators , generator_stop , unicode_literals , print_function , nested_scopes and with_statement . They are all redundant because they are always enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs are often implemented by generating different code. It may even be the case that a new feature introduces new incompatible syntax (such as a new reserved word), in which case the compiler may need to parse the module differently. Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module __future__ , described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec() and compile() that occur in a module M containing a future statement will, by default, use the new syntax or semantics associated with the future statement. This can be controlled by optional arguments to compile() — see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an interpreter is started with the -i option, is passed a script name to execute, and the script includes a future statement, it will be in effect in the interactive session started after the script is executed.

The original proposal for the __future__ mechanism.

7.12. The global statement ¶

The global statement is a declaration which holds for the entire current code block. It means that the listed identifiers are to be interpreted as globals. It would be impossible to assign to a global variable without global , although free variables may refer to globals without being declared global.

Names listed in a global statement must not be used in the same code block textually preceding that global statement.

Names listed in a global statement must not be defined as formal parameters, or as targets in with statements or except clauses, or in a for target list, class definition, function definition, import statement, or variable annotation.

CPython implementation detail: The current implementation does not enforce some of these restrictions, but programs should not abuse this freedom, as future implementations may enforce them or silently change the meaning of the program.

Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the global statement. In particular, a global statement contained in a string or code object supplied to the built-in exec() function does not affect the code block containing the function call, and code contained in such a string is unaffected by global statements in the code containing the function call. The same applies to the eval() and compile() functions.

7.13. The nonlocal statement ¶

When the definition of a function or class is nested (enclosed) within the definitions of other functions, its nonlocal scopes are the local scopes of the enclosing functions. The nonlocal statement causes the listed identifiers to refer to names previously bound in nonlocal scopes. It allows encapsulated code to rebind such nonlocal identifiers. If a name is bound in more than one nonlocal scope, the nearest binding is used. If a name is not bound in any nonlocal scope, or if there is no nonlocal scope, a SyntaxError is raised.

The nonlocal statement applies to the entire scope of a function or class body. A SyntaxError is raised if a variable is used or assigned to prior to its nonlocal declaration in the scope.

The specification for the nonlocal statement.

Programmer’s note: nonlocal is a directive to the parser and applies only to code parsed along with it. See the note for the global statement.

7.14. The type statement ¶

The type statement declares a type alias, which is an instance of typing.TypeAliasType .

For example, the following statement creates a type alias:

This code is roughly equivalent to:

annotation-def indicates an annotation scope , which behaves mostly like a function, but with several small differences.

The value of the type alias is evaluated in the annotation scope. It is not evaluated when the type alias is created, but only when the value is accessed through the type alias’s __value__ attribute (see Lazy evaluation ). This allows the type alias to refer to names that are not yet defined.

Type aliases may be made generic by adding a type parameter list after the name. See Generic type aliases for more.

type is a soft keyword .

Added in version 3.12.

Introduced the type statement and syntax for generic classes and functions.

Table of Contents

  • 7.1. Expression statements
  • 7.2.1. Augmented assignment statements
  • 7.2.2. Annotated assignment statements
  • 7.3. The assert statement
  • 7.4. The pass statement
  • 7.5. The del statement
  • 7.6. The return statement
  • 7.7. The yield statement
  • 7.8. The raise statement
  • 7.9. The break statement
  • 7.10. The continue statement
  • 7.11.1. Future statements
  • 7.12. The global statement
  • 7.13. The nonlocal statement
  • 7.14. The type statement

Previous topic

6. Expressions

8. Compound statements

  • Report a Bug
  • Show Source

Python Tutorial

File handling, python modules, python numpy, python pandas, python matplotlib, python scipy, machine learning, python mysql, python mongodb, python reference, module reference, python how to, python examples, python assignment operators.

Assignment operators are used to assign values to variables:

Operator Example Same As Try it
= x = 5 x = 5
+= x += 3 x = x + 3
-= x -= 3 x = x - 3
*= x *= 3 x = x * 3
/= x /= 3 x = x / 3
%= x %= 3 x = x % 3
//= x //= 3 x = x // 3
**= x **= 3 x = x ** 3
&= x &= 3 x = x & 3
|= x |= 3 x = x | 3
^= x ^= 3 x = x ^ 3
>>= x >>= 3 x = x >> 3
<<= x <<= 3 x = x << 3

Related Pages

Get Certified

COLOR PICKER

colorpicker

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail: [email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail: [email protected]

Top Tutorials

Top references, top examples, get certified.

  • Python Course
  • Python Basics
  • Interview Questions
  • Python Quiz
  • Popular Packages
  • Python Projects
  • Practice Python
  • AI With Python
  • Learn Python3
  • Python Automation
  • Python Web Dev
  • DSA with Python
  • Python OOPs
  • Dictionaries

Different Forms of Assignment Statements in Python

We use Python assignment statements to assign objects to names. The target of an assignment statement is written on the left side of the equal sign (=), and the object on the right can be an arbitrary expression that computes an object.

There are some important properties of assignment in Python :-

  • Assignment creates object references instead of copying the objects.
  • Python creates a variable name the first time when they are assigned a value.
  • Names must be assigned before being referenced.
  • There are some operations that perform assignments implicitly.

Assignment statement forms :-

1. Basic form:

This form is the most common form.

2. Tuple assignment:

    

When we code a tuple on the left side of the =, Python pairs objects on the right side with targets on the left by position and assigns them from left to right. Therefore, the values of x and y are 50 and 100 respectively.

3. List assignment:

This works in the same way as the tuple assignment.

 

4. Sequence assignment:

In recent version of Python, tuple and list assignment have been generalized into instances of what we now call sequence assignment – any sequence of names can be assigned to any sequence of values, and Python assigns the items one at a time by position.

 

5. Extended Sequence unpacking:

It allows us to be more flexible in how we select portions of a sequence to assign.

Here, p is matched with the first character in the string on the right and q with the rest. The starred name (*q) is assigned a list, which collects all items in the sequence not assigned to other names.

This is especially handy for a common coding pattern such as splitting a sequence and accessing its front and rest part.

 

6. Multiple- target assignment:

 

In this form, Python assigns a reference to the same object (the object which is rightmost) to all the target on the left.

7. Augmented assignment :

The augmented assignment is a shorthand assignment that combines an expression and an assignment.

      

There are several other augmented assignment forms:

Please Login to comment...

Similar reads.

  • Python Programs
  • python-basics
  • Best Twitch Extensions for 2024: Top Tools for Viewers and Streamers
  • Discord Emojis List 2024: Copy and Paste
  • Best Adblockers for Twitch TV: Enjoy Ad-Free Streaming in 2024
  • PS4 vs. PS5: Which PlayStation Should You Buy in 2024?
  • Full Stack Developer Roadmap [2024 Updated]

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Python Enhancement Proposals

  • Python »
  • PEP Index »

PEP 572 – Assignment Expressions

The importance of real code, exceptional cases, scope of the target, relative precedence of :=, change to evaluation order, differences between assignment expressions and assignment statements, specification changes during implementation, _pydecimal.py, datetime.py, sysconfig.py, simplifying list comprehensions, capturing condition values, changing the scope rules for comprehensions, alternative spellings, special-casing conditional statements, special-casing comprehensions, lowering operator precedence, allowing commas to the right, always requiring parentheses, why not just turn existing assignment into an expression, with assignment expressions, why bother with assignment statements, why not use a sublocal scope and prevent namespace pollution, style guide recommendations, acknowledgements, a numeric example, appendix b: rough code translations for comprehensions, appendix c: no changes to scope semantics.

This is a proposal for creating a way to assign to variables within an expression using the notation NAME := expr .

As part of this change, there is also an update to dictionary comprehension evaluation order to ensure key expressions are executed before value expressions (allowing the key to be bound to a name and then re-used as part of calculating the corresponding value).

During discussion of this PEP, the operator became informally known as “the walrus operator”. The construct’s formal name is “Assignment Expressions” (as per the PEP title), but they may also be referred to as “Named Expressions” (e.g. the CPython reference implementation uses that name internally).

Naming the result of an expression is an important part of programming, allowing a descriptive name to be used in place of a longer expression, and permitting reuse. Currently, this feature is available only in statement form, making it unavailable in list comprehensions and other expression contexts.

Additionally, naming sub-parts of a large expression can assist an interactive debugger, providing useful display hooks and partial results. Without a way to capture sub-expressions inline, this would require refactoring of the original code; with assignment expressions, this merely requires the insertion of a few name := markers. Removing the need to refactor reduces the likelihood that the code be inadvertently changed as part of debugging (a common cause of Heisenbugs), and is easier to dictate to another programmer.

During the development of this PEP many people (supporters and critics both) have had a tendency to focus on toy examples on the one hand, and on overly complex examples on the other.

The danger of toy examples is twofold: they are often too abstract to make anyone go “ooh, that’s compelling”, and they are easily refuted with “I would never write it that way anyway”.

The danger of overly complex examples is that they provide a convenient strawman for critics of the proposal to shoot down (“that’s obfuscated”).

Yet there is some use for both extremely simple and extremely complex examples: they are helpful to clarify the intended semantics. Therefore, there will be some of each below.

However, in order to be compelling , examples should be rooted in real code, i.e. code that was written without any thought of this PEP, as part of a useful application, however large or small. Tim Peters has been extremely helpful by going over his own personal code repository and picking examples of code he had written that (in his view) would have been clearer if rewritten with (sparing) use of assignment expressions. His conclusion: the current proposal would have allowed a modest but clear improvement in quite a few bits of code.

Another use of real code is to observe indirectly how much value programmers place on compactness. Guido van Rossum searched through a Dropbox code base and discovered some evidence that programmers value writing fewer lines over shorter lines.

Case in point: Guido found several examples where a programmer repeated a subexpression, slowing down the program, in order to save one line of code, e.g. instead of writing:

they would write:

Another example illustrates that programmers sometimes do more work to save an extra level of indentation:

This code tries to match pattern2 even if pattern1 has a match (in which case the match on pattern2 is never used). The more efficient rewrite would have been:

Syntax and semantics

In most contexts where arbitrary Python expressions can be used, a named expression can appear. This is of the form NAME := expr where expr is any valid Python expression other than an unparenthesized tuple, and NAME is an identifier.

The value of such a named expression is the same as the incorporated expression, with the additional side-effect that the target is assigned that value:

There are a few places where assignment expressions are not allowed, in order to avoid ambiguities or user confusion:

This rule is included to simplify the choice for the user between an assignment statement and an assignment expression – there is no syntactic position where both are valid.

Again, this rule is included to avoid two visually similar ways of saying the same thing.

This rule is included to disallow excessively confusing code, and because parsing keyword arguments is complex enough already.

This rule is included to discourage side effects in a position whose exact semantics are already confusing to many users (cf. the common style recommendation against mutable default values), and also to echo the similar prohibition in calls (the previous bullet).

The reasoning here is similar to the two previous cases; this ungrouped assortment of symbols and operators composed of : and = is hard to read correctly.

This allows lambda to always bind less tightly than := ; having a name binding at the top level inside a lambda function is unlikely to be of value, as there is no way to make use of it. In cases where the name will be used more than once, the expression is likely to need parenthesizing anyway, so this prohibition will rarely affect code.

This shows that what looks like an assignment operator in an f-string is not always an assignment operator. The f-string parser uses : to indicate formatting options. To preserve backwards compatibility, assignment operator usage inside of f-strings must be parenthesized. As noted above, this usage of the assignment operator is not recommended.

An assignment expression does not introduce a new scope. In most cases the scope in which the target will be bound is self-explanatory: it is the current scope. If this scope contains a nonlocal or global declaration for the target, the assignment expression honors that. A lambda (being an explicit, if anonymous, function definition) counts as a scope for this purpose.

There is one special case: an assignment expression occurring in a list, set or dict comprehension or in a generator expression (below collectively referred to as “comprehensions”) binds the target in the containing scope, honoring a nonlocal or global declaration for the target in that scope, if one exists. For the purpose of this rule the containing scope of a nested comprehension is the scope that contains the outermost comprehension. A lambda counts as a containing scope.

The motivation for this special case is twofold. First, it allows us to conveniently capture a “witness” for an any() expression, or a counterexample for all() , for example:

Second, it allows a compact way of updating mutable state from a comprehension, for example:

However, an assignment expression target name cannot be the same as a for -target name appearing in any comprehension containing the assignment expression. The latter names are local to the comprehension in which they appear, so it would be contradictory for a contained use of the same name to refer to the scope containing the outermost comprehension instead.

For example, [i := i+1 for i in range(5)] is invalid: the for i part establishes that i is local to the comprehension, but the i := part insists that i is not local to the comprehension. The same reason makes these examples invalid too:

While it’s technically possible to assign consistent semantics to these cases, it’s difficult to determine whether those semantics actually make sense in the absence of real use cases. Accordingly, the reference implementation [1] will ensure that such cases raise SyntaxError , rather than executing with implementation defined behaviour.

This restriction applies even if the assignment expression is never executed:

For the comprehension body (the part before the first “for” keyword) and the filter expression (the part after “if” and before any nested “for”), this restriction applies solely to target names that are also used as iteration variables in the comprehension. Lambda expressions appearing in these positions introduce a new explicit function scope, and hence may use assignment expressions with no additional restrictions.

Due to design constraints in the reference implementation (the symbol table analyser cannot easily detect when names are re-used between the leftmost comprehension iterable expression and the rest of the comprehension), named expressions are disallowed entirely as part of comprehension iterable expressions (the part after each “in”, and before any subsequent “if” or “for” keyword):

A further exception applies when an assignment expression occurs in a comprehension whose containing scope is a class scope. If the rules above were to result in the target being assigned in that class’s scope, the assignment expression is expressly invalid. This case also raises SyntaxError :

(The reason for the latter exception is the implicit function scope created for comprehensions – there is currently no runtime mechanism for a function to refer to a variable in the containing class scope, and we do not want to add such a mechanism. If this issue ever gets resolved this special case may be removed from the specification of assignment expressions. Note that the problem already exists for using a variable defined in the class scope from a comprehension.)

See Appendix B for some examples of how the rules for targets in comprehensions translate to equivalent code.

The := operator groups more tightly than a comma in all syntactic positions where it is legal, but less tightly than all other operators, including or , and , not , and conditional expressions ( A if C else B ). As follows from section “Exceptional cases” above, it is never allowed at the same level as = . In case a different grouping is desired, parentheses should be used.

The := operator may be used directly in a positional function call argument; however it is invalid directly in a keyword argument.

Some examples to clarify what’s technically valid or invalid:

Most of the “valid” examples above are not recommended, since human readers of Python source code who are quickly glancing at some code may miss the distinction. But simple cases are not objectionable:

This PEP recommends always putting spaces around := , similar to PEP 8 ’s recommendation for = when used for assignment, whereas the latter disallows spaces around = used for keyword arguments.)

In order to have precisely defined semantics, the proposal requires evaluation order to be well-defined. This is technically not a new requirement, as function calls may already have side effects. Python already has a rule that subexpressions are generally evaluated from left to right. However, assignment expressions make these side effects more visible, and we propose a single change to the current evaluation order:

  • In a dict comprehension {X: Y for ...} , Y is currently evaluated before X . We propose to change this so that X is evaluated before Y . (In a dict display like {X: Y} this is already the case, and also in dict((X, Y) for ...) which should clearly be equivalent to the dict comprehension.)

Most importantly, since := is an expression, it can be used in contexts where statements are illegal, including lambda functions and comprehensions.

Conversely, assignment expressions don’t support the advanced features found in assignment statements:

  • Multiple targets are not directly supported: x = y = z = 0 # Equivalent: (z := (y := (x := 0)))
  • Single assignment targets other than a single NAME are not supported: # No equivalent a [ i ] = x self . rest = []
  • Priority around commas is different: x = 1 , 2 # Sets x to (1, 2) ( x := 1 , 2 ) # Sets x to 1
  • Iterable packing and unpacking (both regular or extended forms) are not supported: # Equivalent needs extra parentheses loc = x , y # Use (loc := (x, y)) info = name , phone , * rest # Use (info := (name, phone, *rest)) # No equivalent px , py , pz = position name , phone , email , * other_info = contact
  • Inline type annotations are not supported: # Closest equivalent is "p: Optional[int]" as a separate declaration p : Optional [ int ] = None
  • Augmented assignment is not supported: total += tax # Equivalent: (total := total + tax)

The following changes have been made based on implementation experience and additional review after the PEP was first accepted and before Python 3.8 was released:

  • for consistency with other similar exceptions, and to avoid locking in an exception name that is not necessarily going to improve clarity for end users, the originally proposed TargetScopeError subclass of SyntaxError was dropped in favour of just raising SyntaxError directly. [3]
  • due to a limitation in CPython’s symbol table analysis process, the reference implementation raises SyntaxError for all uses of named expressions inside comprehension iterable expressions, rather than only raising them when the named expression target conflicts with one of the iteration variables in the comprehension. This could be revisited given sufficiently compelling examples, but the extra complexity needed to implement the more selective restriction doesn’t seem worthwhile for purely hypothetical use cases.

Examples from the Python standard library

env_base is only used on these lines, putting its assignment on the if moves it as the “header” of the block.

  • Current: env_base = os . environ . get ( "PYTHONUSERBASE" , None ) if env_base : return env_base
  • Improved: if env_base := os . environ . get ( "PYTHONUSERBASE" , None ): return env_base

Avoid nested if and remove one indentation level.

  • Current: if self . _is_special : ans = self . _check_nans ( context = context ) if ans : return ans
  • Improved: if self . _is_special and ( ans := self . _check_nans ( context = context )): return ans

Code looks more regular and avoid multiple nested if. (See Appendix A for the origin of this example.)

  • Current: reductor = dispatch_table . get ( cls ) if reductor : rv = reductor ( x ) else : reductor = getattr ( x , "__reduce_ex__" , None ) if reductor : rv = reductor ( 4 ) else : reductor = getattr ( x , "__reduce__" , None ) if reductor : rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )
  • Improved: if reductor := dispatch_table . get ( cls ): rv = reductor ( x ) elif reductor := getattr ( x , "__reduce_ex__" , None ): rv = reductor ( 4 ) elif reductor := getattr ( x , "__reduce__" , None ): rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )

tz is only used for s += tz , moving its assignment inside the if helps to show its scope.

  • Current: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) tz = self . _tzstr () if tz : s += tz return s
  • Improved: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) if tz := self . _tzstr (): s += tz return s

Calling fp.readline() in the while condition and calling .match() on the if lines make the code more compact without making it harder to understand.

  • Current: while True : line = fp . readline () if not line : break m = define_rx . match ( line ) if m : n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v else : m = undef_rx . match ( line ) if m : vars [ m . group ( 1 )] = 0
  • Improved: while line := fp . readline (): if m := define_rx . match ( line ): n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v elif m := undef_rx . match ( line ): vars [ m . group ( 1 )] = 0

A list comprehension can map and filter efficiently by capturing the condition:

Similarly, a subexpression can be reused within the main expression, by giving it a name on first use:

Note that in both cases the variable y is bound in the containing scope (i.e. at the same level as results or stuff ).

Assignment expressions can be used to good effect in the header of an if or while statement:

Particularly with the while loop, this can remove the need to have an infinite loop, an assignment, and a condition. It also creates a smooth parallel between a loop which simply uses a function call as its condition, and one which uses that as its condition but also uses the actual value.

An example from the low-level UNIX world:

Rejected alternative proposals

Proposals broadly similar to this one have come up frequently on python-ideas. Below are a number of alternative syntaxes, some of them specific to comprehensions, which have been rejected in favour of the one given above.

A previous version of this PEP proposed subtle changes to the scope rules for comprehensions, to make them more usable in class scope and to unify the scope of the “outermost iterable” and the rest of the comprehension. However, this part of the proposal would have caused backwards incompatibilities, and has been withdrawn so the PEP can focus on assignment expressions.

Broadly the same semantics as the current proposal, but spelled differently.

Since EXPR as NAME already has meaning in import , except and with statements (with different semantics), this would create unnecessary confusion or require special-casing (e.g. to forbid assignment within the headers of these statements).

(Note that with EXPR as VAR does not simply assign the value of EXPR to VAR – it calls EXPR.__enter__() and assigns the result of that to VAR .)

Additional reasons to prefer := over this spelling include:

  • In if f(x) as y the assignment target doesn’t jump out at you – it just reads like if f x blah blah and it is too similar visually to if f(x) and y .
  • import foo as bar
  • except Exc as var
  • with ctxmgr() as var

To the contrary, the assignment expression does not belong to the if or while that starts the line, and we intentionally allow assignment expressions in other contexts as well.

  • NAME = EXPR
  • if NAME := EXPR

reinforces the visual recognition of assignment expressions.

This syntax is inspired by languages such as R and Haskell, and some programmable calculators. (Note that a left-facing arrow y <- f(x) is not possible in Python, as it would be interpreted as less-than and unary minus.) This syntax has a slight advantage over ‘as’ in that it does not conflict with with , except and import , but otherwise is equivalent. But it is entirely unrelated to Python’s other use of -> (function return type annotations), and compared to := (which dates back to Algol-58) it has a much weaker tradition.

This has the advantage that leaked usage can be readily detected, removing some forms of syntactic ambiguity. However, this would be the only place in Python where a variable’s scope is encoded into its name, making refactoring harder.

Execution order is inverted (the indented body is performed first, followed by the “header”). This requires a new keyword, unless an existing keyword is repurposed (most likely with: ). See PEP 3150 for prior discussion on this subject (with the proposed keyword being given: ).

This syntax has fewer conflicts than as does (conflicting only with the raise Exc from Exc notation), but is otherwise comparable to it. Instead of paralleling with expr as target: (which can be useful but can also be confusing), this has no parallels, but is evocative.

One of the most popular use-cases is if and while statements. Instead of a more general solution, this proposal enhances the syntax of these two statements to add a means of capturing the compared value:

This works beautifully if and ONLY if the desired condition is based on the truthiness of the captured value. It is thus effective for specific use-cases (regex matches, socket reads that return '' when done), and completely useless in more complicated cases (e.g. where the condition is f(x) < 0 and you want to capture the value of f(x) ). It also has no benefit to list comprehensions.

Advantages: No syntactic ambiguities. Disadvantages: Answers only a fraction of possible use-cases, even in if / while statements.

Another common use-case is comprehensions (list/set/dict, and genexps). As above, proposals have been made for comprehension-specific solutions.

This brings the subexpression to a location in between the ‘for’ loop and the expression. It introduces an additional language keyword, which creates conflicts. Of the three, where reads the most cleanly, but also has the greatest potential for conflict (e.g. SQLAlchemy and numpy have where methods, as does tkinter.dnd.Icon in the standard library).

As above, but reusing the with keyword. Doesn’t read too badly, and needs no additional language keyword. Is restricted to comprehensions, though, and cannot as easily be transformed into “longhand” for-loop syntax. Has the C problem that an equals sign in an expression can now create a name binding, rather than performing a comparison. Would raise the question of why “with NAME = EXPR:” cannot be used as a statement on its own.

As per option 2, but using as rather than an equals sign. Aligns syntactically with other uses of as for name binding, but a simple transformation to for-loop longhand would create drastically different semantics; the meaning of with inside a comprehension would be completely different from the meaning as a stand-alone statement, while retaining identical syntax.

Regardless of the spelling chosen, this introduces a stark difference between comprehensions and the equivalent unrolled long-hand form of the loop. It is no longer possible to unwrap the loop into statement form without reworking any name bindings. The only keyword that can be repurposed to this task is with , thus giving it sneakily different semantics in a comprehension than in a statement; alternatively, a new keyword is needed, with all the costs therein.

There are two logical precedences for the := operator. Either it should bind as loosely as possible, as does statement-assignment; or it should bind more tightly than comparison operators. Placing its precedence between the comparison and arithmetic operators (to be precise: just lower than bitwise OR) allows most uses inside while and if conditions to be spelled without parentheses, as it is most likely that you wish to capture the value of something, then perform a comparison on it:

Once find() returns -1, the loop terminates. If := binds as loosely as = does, this would capture the result of the comparison (generally either True or False ), which is less useful.

While this behaviour would be convenient in many situations, it is also harder to explain than “the := operator behaves just like the assignment statement”, and as such, the precedence for := has been made as close as possible to that of = (with the exception that it binds tighter than comma).

Some critics have claimed that the assignment expressions should allow unparenthesized tuples on the right, so that these two would be equivalent:

(With the current version of the proposal, the latter would be equivalent to ((point := x), y) .)

However, adopting this stance would logically lead to the conclusion that when used in a function call, assignment expressions also bind less tight than comma, so we’d have the following confusing equivalence:

The less confusing option is to make := bind more tightly than comma.

It’s been proposed to just always require parentheses around an assignment expression. This would resolve many ambiguities, and indeed parentheses will frequently be needed to extract the desired subexpression. But in the following cases the extra parentheses feel redundant:

Frequently Raised Objections

C and its derivatives define the = operator as an expression, rather than a statement as is Python’s way. This allows assignments in more contexts, including contexts where comparisons are more common. The syntactic similarity between if (x == y) and if (x = y) belies their drastically different semantics. Thus this proposal uses := to clarify the distinction.

The two forms have different flexibilities. The := operator can be used inside a larger expression; the = statement can be augmented to += and its friends, can be chained, and can assign to attributes and subscripts.

Previous revisions of this proposal involved sublocal scope (restricted to a single statement), preventing name leakage and namespace pollution. While a definite advantage in a number of situations, this increases complexity in many others, and the costs are not justified by the benefits. In the interests of language simplicity, the name bindings created here are exactly equivalent to any other name bindings, including that usage at class or module scope will create externally-visible names. This is no different from for loops or other constructs, and can be solved the same way: del the name once it is no longer needed, or prefix it with an underscore.

(The author wishes to thank Guido van Rossum and Christoph Groth for their suggestions to move the proposal in this direction. [2] )

As expression assignments can sometimes be used equivalently to statement assignments, the question of which should be preferred will arise. For the benefit of style guides such as PEP 8 , two recommendations are suggested.

  • If either assignment statements or assignment expressions can be used, prefer statements; they are a clear declaration of intent.
  • If using assignment expressions would lead to ambiguity about execution order, restructure it to use statements instead.

The authors wish to thank Alyssa Coghlan and Steven D’Aprano for their considerable contributions to this proposal, and members of the core-mentorship mailing list for assistance with implementation.

Appendix A: Tim Peters’s findings

Here’s a brief essay Tim Peters wrote on the topic.

I dislike “busy” lines of code, and also dislike putting conceptually unrelated logic on a single line. So, for example, instead of:

instead. So I suspected I’d find few places I’d want to use assignment expressions. I didn’t even consider them for lines already stretching halfway across the screen. In other cases, “unrelated” ruled:

is a vast improvement over the briefer:

The original two statements are doing entirely different conceptual things, and slamming them together is conceptually insane.

In other cases, combining related logic made it harder to understand, such as rewriting:

as the briefer:

The while test there is too subtle, crucially relying on strict left-to-right evaluation in a non-short-circuiting or method-chaining context. My brain isn’t wired that way.

But cases like that were rare. Name binding is very frequent, and “sparse is better than dense” does not mean “almost empty is better than sparse”. For example, I have many functions that return None or 0 to communicate “I have nothing useful to return in this case, but since that’s expected often I’m not going to annoy you with an exception”. This is essentially the same as regular expression search functions returning None when there is no match. So there was lots of code of the form:

I find that clearer, and certainly a bit less typing and pattern-matching reading, as:

It’s also nice to trade away a small amount of horizontal whitespace to get another _line_ of surrounding code on screen. I didn’t give much weight to this at first, but it was so very frequent it added up, and I soon enough became annoyed that I couldn’t actually run the briefer code. That surprised me!

There are other cases where assignment expressions really shine. Rather than pick another from my code, Kirill Balunov gave a lovely example from the standard library’s copy() function in copy.py :

The ever-increasing indentation is semantically misleading: the logic is conceptually flat, “the first test that succeeds wins”:

Using easy assignment expressions allows the visual structure of the code to emphasize the conceptual flatness of the logic; ever-increasing indentation obscured it.

A smaller example from my code delighted me, both allowing to put inherently related logic in a single line, and allowing to remove an annoying “artificial” indentation level:

That if is about as long as I want my lines to get, but remains easy to follow.

So, in all, in most lines binding a name, I wouldn’t use assignment expressions, but because that construct is so very frequent, that leaves many places I would. In most of the latter, I found a small win that adds up due to how often it occurs, and in the rest I found a moderate to major win. I’d certainly use it more often than ternary if , but significantly less often than augmented assignment.

I have another example that quite impressed me at the time.

Where all variables are positive integers, and a is at least as large as the n’th root of x, this algorithm returns the floor of the n’th root of x (and roughly doubling the number of accurate bits per iteration):

It’s not obvious why that works, but is no more obvious in the “loop and a half” form. It’s hard to prove correctness without building on the right insight (the “arithmetic mean - geometric mean inequality”), and knowing some non-trivial things about how nested floor functions behave. That is, the challenges are in the math, not really in the coding.

If you do know all that, then the assignment-expression form is easily read as “while the current guess is too large, get a smaller guess”, where the “too large?” test and the new guess share an expensive sub-expression.

To my eyes, the original form is harder to understand:

This appendix attempts to clarify (though not specify) the rules when a target occurs in a comprehension or in a generator expression. For a number of illustrative examples we show the original code, containing a comprehension, and the translation, where the comprehension has been replaced by an equivalent generator function plus some scaffolding.

Since [x for ...] is equivalent to list(x for ...) these examples all use list comprehensions without loss of generality. And since these examples are meant to clarify edge cases of the rules, they aren’t trying to look like real code.

Note: comprehensions are already implemented via synthesizing nested generator functions like those in this appendix. The new part is adding appropriate declarations to establish the intended scope of assignment expression targets (the same scope they resolve to as if the assignment were performed in the block containing the outermost comprehension). For type inference purposes, these illustrative expansions do not imply that assignment expression targets are always Optional (but they do indicate the target binding scope).

Let’s start with a reminder of what code is generated for a generator expression without assignment expression.

  • Original code (EXPR usually references VAR): def f (): a = [ EXPR for VAR in ITERABLE ]
  • Translation (let’s not worry about name conflicts): def f (): def genexpr ( iterator ): for VAR in iterator : yield EXPR a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a simple assignment expression.

  • Original code: def f (): a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): if False : TARGET = None # Dead code to ensure TARGET is a local variable def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a global TARGET declaration in f() .

  • Original code: def f (): global TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): global TARGET def genexpr ( iterator ): global TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Or instead let’s add a nonlocal TARGET declaration in f() .

  • Original code: def g (): TARGET = ... def f (): nonlocal TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def g (): TARGET = ... def f (): nonlocal TARGET def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Finally, let’s nest two comprehensions.

  • Original code: def f (): a = [[ TARGET := i for i in range ( 3 )] for j in range ( 2 )] # I.e., a = [[0, 1, 2], [0, 1, 2]] print ( TARGET ) # prints 2
  • Translation: def f (): if False : TARGET = None def outer_genexpr ( outer_iterator ): nonlocal TARGET def inner_generator ( inner_iterator ): nonlocal TARGET for i in inner_iterator : TARGET = i yield i for j in outer_iterator : yield list ( inner_generator ( range ( 3 ))) a = list ( outer_genexpr ( range ( 2 ))) print ( TARGET )

Because it has been a point of confusion, note that nothing about Python’s scoping semantics is changed. Function-local scopes continue to be resolved at compile time, and to have indefinite temporal extent at run time (“full closures”). Example:

This document has been placed in the public domain.

Source: https://github.com/python/peps/blob/main/peps/pep-0572.rst

Last modified: 2023-10-11 12:05:51 GMT

Python Programming

Practice Python Exercises and Challenges with Solutions

Free Coding Exercises for Python Developers. Exercises cover Python Basics , Data structure , to Data analytics . As of now, this page contains 18 Exercises.

What included in these Python Exercises?

Each exercise contains specific Python topic questions you need to practice and solve. These free exercises are nothing but Python assignments for the practice where you need to solve different programs and challenges.

  • All exercises are tested on Python 3.
  • Each exercise has 10-20 Questions.
  • The solution is provided for every question.
  • Practice each Exercise in Online Code Editor

These Python programming exercises are suitable for all Python developers. If you are a beginner, you will have a better understanding of Python after solving these exercises. Below is the list of exercises.

Select the exercise you want to solve .

Basic Exercise for Beginners

Practice and Quickly learn Python’s necessary skills by solving simple questions and problems.

Topics : Variables, Operators, Loops, String, Numbers, List

Python Input and Output Exercise

Solve input and output operations in Python. Also, we practice file handling.

Topics : print() and input() , File I/O

Python Loop Exercise

This Python loop exercise aims to help developers to practice branching and Looping techniques in Python.

Topics : If-else statements, loop, and while loop.

Python Functions Exercise

Practice how to create a function, nested functions, and use the function arguments effectively in Python by solving different questions.

Topics : Functions arguments, built-in functions.

Python String Exercise

Solve Python String exercise to learn and practice String operations and manipulations.

Python Data Structure Exercise

Practice widely used Python types such as List, Set, Dictionary, and Tuple operations in Python

Python List Exercise

This Python list exercise aims to help Python developers to learn and practice list operations.

Python Dictionary Exercise

This Python dictionary exercise aims to help Python developers to learn and practice dictionary operations.

Python Set Exercise

This exercise aims to help Python developers to learn and practice set operations.

Python Tuple Exercise

This exercise aims to help Python developers to learn and practice tuple operations.

Python Date and Time Exercise

This exercise aims to help Python developers to learn and practice DateTime and timestamp questions and problems.

Topics : Date, time, DateTime, Calendar.

Python OOP Exercise

This Python Object-oriented programming (OOP) exercise aims to help Python developers to learn and practice OOP concepts.

Topics : Object, Classes, Inheritance

Python JSON Exercise

Practice and Learn JSON creation, manipulation, Encoding, Decoding, and parsing using Python

Python NumPy Exercise

Practice NumPy questions such as Array manipulations, numeric ranges, Slicing, indexing, Searching, Sorting, and splitting, and more.

Python Pandas Exercise

Practice Data Analysis using Python Pandas. Practice Data-frame, Data selection, group-by, Series, sorting, searching, and statistics.

Python Matplotlib Exercise

Practice Data visualization using Python Matplotlib. Line plot, Style properties, multi-line plot, scatter plot, bar chart, histogram, Pie chart, Subplot, stack plot.

Random Data Generation Exercise

Practice and Learn the various techniques to generate random data in Python.

Topics : random module, secrets module, UUID module

Python Database Exercise

Practice Python database programming skills by solving the questions step by step.

Use any of the MySQL, PostgreSQL, SQLite to solve the exercise

Exercises for Intermediate developers

The following practice questions are for intermediate Python developers.

If you have not solved the above exercises, please complete them to understand and practice each topic in detail. After that, you can solve the below questions quickly.

Exercise 1: Reverse each word of a string

Expected Output

  • Use the split() method to split a string into a list of words.
  • Reverse each word from a list
  • finally, use the join() function to convert a list into a string

Steps to solve this question :

  • Split the given string into a list of words using the split() method
  • Use a list comprehension to create a new list by reversing each word from a list.
  • Use the join() function to convert the new list into a string
  • Display the resultant string

Exercise 2: Read text file into a variable and replace all newlines with space

Given : Assume you have a following text file (sample.txt).

Expected Output :

  • First, read a text file.
  • Next, use string replace() function to replace all newlines ( \n ) with space ( ' ' ).

Steps to solve this question : -

  • First, open the file in a read mode
  • Next, read all content from a file using the read() function and assign it to a variable.
  • Display final string

Exercise 3: Remove items from a list while iterating

Description :

In this question, You need to remove items from a list while iterating but without creating a different copy of a list.

Remove numbers greater than 50

Expected Output : -

  • Get the list's size
  • Iterate list using while loop
  • Check if the number is greater than 50
  • If yes, delete the item using a del keyword
  • Reduce the list size

Solution 1: Using while loop

Solution 2: Using for loop and range()

Exercise 4: Reverse Dictionary mapping

Exercise 5: display all duplicate items from a list.

  • Use the counter() method of the collection module.
  • Create a dictionary that will maintain the count of each item of a list. Next, Fetch all keys whose value is greater than 2

Solution 1 : - Using collections.Counter()

Solution 2 : -

Exercise 6: Filter dictionary to contain keys present in the given list

Exercise 7: print the following number pattern.

Refer to Print patterns in Python to solve this question.

  • Use two for loops
  • The outer loop is reverse for loop from 5 to 0
  • Increment value of x by 1 in each iteration of an outer loop
  • The inner loop will iterate from 0 to the value of i of the outer loop
  • Print value of x in each iteration of an inner loop
  • Print newline at the end of each outer loop

Exercise 8: Create an inner function

Question description : -

  • Create an outer function that will accept two strings, x and y . ( x= 'Emma' and y = 'Kelly' .
  • Create an inner function inside an outer function that will concatenate x and y.
  • At last, an outer function will join the word 'developer' to it.

Exercise 9: Modify the element of a nested list inside the following list

Change the element 35 to 3500

Exercise 10: Access the nested key increment from the following dictionary

Under Exercises: -

Python Object-Oriented Programming (OOP) Exercise: Classes and Objects Exercises

Updated on:  December 8, 2021 | 52 Comments

Python Date and Time Exercise with Solutions

Updated on:  December 8, 2021 | 10 Comments

Python Dictionary Exercise with Solutions

Updated on:  May 6, 2023 | 56 Comments

Python Tuple Exercise with Solutions

Updated on:  December 8, 2021 | 96 Comments

Python Set Exercise with Solutions

Updated on:  October 20, 2022 | 27 Comments

Python if else, for loop, and range() Exercises with Solutions

Updated on:  September 3, 2024 | 298 Comments

Updated on:  August 2, 2022 | 155 Comments

Updated on:  September 6, 2021 | 109 Comments

Python List Exercise with Solutions

Updated on:  December 8, 2021 | 201 Comments

Updated on:  December 8, 2021 | 7 Comments

Python Data Structure Exercise for Beginners

Updated on:  December 8, 2021 | 116 Comments

Python String Exercise with Solutions

Updated on:  October 6, 2021 | 221 Comments

Updated on:  March 9, 2021 | 23 Comments

Updated on:  March 9, 2021 | 51 Comments

Updated on:  July 20, 2021 | 29 Comments

Python Basic Exercise for Beginners

Updated on:  August 29, 2024 | 498 Comments

Useful Python Tips and Tricks Every Programmer Should Know

Updated on:  May 17, 2021 | 23 Comments

Python random Data generation Exercise

Updated on:  December 8, 2021 | 13 Comments

Python Database Programming Exercise

Updated on:  March 9, 2021 | 17 Comments

  • Online Python Code Editor

Updated on:  June 1, 2022 |

About PYnative

PYnative.com is for Python lovers. Here, You can get Tutorials, Exercises, and Quizzes to practice and improve your Python skills .

Explore Python

  • Learn Python
  • Python Basics
  • Python Databases
  • Python Exercises
  • Python Quizzes
  • Python Tricks

To get New Python Tutorials, Exercises, and Quizzes

Legal Stuff

We use cookies to improve your experience. While using PYnative, you agree to have read and accepted our Terms Of Use , Cookie Policy , and Privacy Policy .

Copyright © 2018–2024 pynative.com

Operators and Expressions in Python

Operators and Expressions in Python

Table of Contents

Getting Started With Operators and Expressions

The assignment operator and statements, arithmetic operators and expressions in python, comparison of integer values, comparison of floating-point values, comparison of strings, comparison of lists and tuples, boolean expressions involving boolean operands, evaluation of regular objects in a boolean context, boolean expressions involving other types of operands, compound logical expressions and short-circuit evaluation, idioms that exploit short-circuit evaluation, compound vs chained expressions, conditional expressions or the ternary operator, identity operators and expressions in python, membership operators and expressions in python, concatenation and repetition operators and expressions, the walrus operator and assignment expressions, bitwise operators and expressions in python, operator precedence in python, augmented assignment operators and expressions.

In Python, operators are special symbols, combinations of symbols, or keywords that designate some type of computation. You can combine objects and operators to build expressions that perform the actual computation. So, operators are the building blocks of expressions, which you can use to manipulate your data. Therefore, understanding how operators work in Python is essential for you as a programmer.

In this tutorial, you’ll learn about the operators that Python currently supports. You’ll also learn the basics of how to use these operators to build expressions.

In this tutorial, you’ll:

  • Get to know Python’s arithmetic operators and use them to build arithmetic expressions
  • Explore Python’s comparison , Boolean , identity , and membership operators
  • Build expressions with comparison, Boolean, identity, and membership operators
  • Learn about Python’s bitwise operators and how to use them
  • Combine and repeat sequences using the concatenation and repetition operators
  • Understand the augmented assignment operators and how they work

To get the most out of this tutorial, you should have a basic understanding of Python programming concepts, such as variables , assignments , and built-in data types .

Free Bonus: Click here to download your comprehensive cheat sheet covering the various operators in Python.

Take the Quiz: Test your knowledge with our interactive “Python Operators and Expressions” quiz. You’ll receive a score upon completion to help you track your learning progress:

Interactive Quiz

Test your understanding of Python operators and expressions.

In programming, an operator is usually a symbol or combination of symbols that allows you to perform a specific operation. This operation can act on one or more operands . If the operation involves a single operand, then the operator is unary . If the operator involves two operands, then the operator is binary .

For example, in Python, you can use the minus sign ( - ) as a unary operator to declare a negative number. You can also use it to subtract two numbers:

In this code snippet, the minus sign ( - ) in the first example is a unary operator, and the number 273.15 is the operand. In the second example, the same symbol is a binary operator, and the numbers 5 and 2 are its left and right operands.

Programming languages typically have operators built in as part of their syntax. In many languages, including Python, you can also create your own operator or modify the behavior of existing ones, which is a powerful and advanced feature to have.

In practice, operators provide a quick shortcut for you to manipulate data, perform mathematical calculations, compare values, run Boolean tests, assign values to variables, and more. In Python, an operator may be a symbol, a combination of symbols, or a keyword , depending on the type of operator that you’re dealing with.

For example, you’ve already seen the subtraction operator, which is represented with a single minus sign ( - ). The equality operator is a double equal sign ( == ). So, it’s a combination of symbols:

In this example, you use the Python equality operator ( == ) to compare two numbers. As a result, you get True , which is one of Python’s Boolean values.

Speaking of Boolean values, the Boolean or logical operators in Python are keywords rather than signs, as you’ll learn in the section about Boolean operators and expressions . So, instead of the odd signs like || , && , and ! that many other programming languages use, Python uses or , and , and not .

Using keywords instead of odd signs is a really cool design decision that’s consistent with the fact that Python loves and encourages code’s readability .

You’ll find several categories or groups of operators in Python. Here’s a quick list of those categories:

  • Assignment operators
  • Arithmetic operators
  • Comparison operators
  • Boolean or logical operators
  • Identity operators
  • Membership operators
  • Concatenation and repetition operators
  • Bitwise operators

All these types of operators take care of specific types of computations and data-processing tasks. You’ll learn more about these categories throughout this tutorial. However, before jumping into more practical discussions, you need to know that the most elementary goal of an operator is to be part of an expression . Operators by themselves don’t do much:

As you can see in this code snippet, if you use an operator without the required operands, then you’ll get a syntax error . So, operators must be part of expressions, which you can build using Python objects as operands.

So, what is an expression anyway? Python has simple and compound statements. A simple statement is a construct that occupies a single logical line , like an assignment statement. A compound statement is a construct that occupies multiple logical lines, such as a for loop or a conditional statement. An expression is a simple statement that produces and returns a value.

You’ll find operators in many expressions. Here are a few examples:

In the first two examples, you use the addition and division operators to construct two arithmetic expressions whose operands are integer numbers. In the last example, you use the equality operator to create a comparison expression. In all cases, you get a specific value after executing the expression.

Note that not all expressions use operators. For example, a bare function call is an expression that doesn’t require any operator:

In the first example, you call the built-in abs() function to get the absolute value of -7 . Then, you compute 2 to the power of 8 using the built-in pow() function. These function calls occupy a single logical line and return a value. So, they’re expressions.

Finally, the call to the built-in print() function is another expression. This time, the function doesn’t return a fruitful value, but it still returns None , which is the Python null type . So, the call is technically an expression.

Note: All Python functions have a return value, either explicit or implicit. If you don’t provide an explicit return statement when defining a function, then Python will automatically make the function return None .

Even though all expressions are statements, not all statements are expressions. For example, pure assignment statements don’t return any value, as you’ll learn in a moment. Therefore, they’re not expressions. The assignment operator is a special operator that doesn’t create an expression but a statement.

Note: Since version 3.8, Python also has what it calls assignment expressions. These are special types of assignments that do return a value. You’ll learn more about this topic in the section The Walrus Operator and Assignment Expressions .

Okay! That was a quick introduction to operators and expressions in Python. Now it’s time to dive deeper into the topic. To kick things off, you’ll start with the assignment operator and statements.

The assignment operator is one of the most frequently used operators in Python. The operator consists of a single equal sign ( = ), and it operates on two operands. The left-hand operand is typically a variable , while the right-hand operand is an expression.

Note: As you already learned, the assignment operator doesn’t create an expression. Instead, it creates a statement that doesn’t return any value.

The assignment operator allows you to assign values to variables . Strictly speaking, in Python, this operator makes variables or names refer to specific objects in your computer’s memory. In other words, an assignment creates a reference to a concrete object and attaches that reference to the target variable.

Note: To dive deeper into using the assignment operator, check out Python’s Assignment Operator: Write Robust Assignments .

For example, all the statements below create new variables that hold references to specific objects:

In the first statement, you create the number variable, which holds a reference to the number 42 in your computer’s memory. You can also say that the name number points to 42 , which is a concrete object.

In the rest of the examples, you create other variables that point to other types of objects, such as a string , tuple , and list , respectively.

You’ll use the assignment operator in many of the examples that you’ll write throughout this tutorial. More importantly, you’ll use this operator many times in your own code. It’ll be your forever friend. Now you can dive into other Python operators!

Arithmetic operators are those operators that allow you to perform arithmetic operations on numeric values. Yes, they come from math, and in most cases, you’ll represent them with the usual math signs. The following table lists the arithmetic operators that Python currently supports:

Operator Type Operation Sample Expression Result
Unary Positive without any transformation since this is simply a complement to negation
Binary Addition The arithmetic sum of and
Unary Negation The value of but with the opposite sign
Binary Subtraction subtracted from
Binary Multiplication The product of and
Binary Division The quotient of divided by , expressed as a float
Binary Modulo The remainder of divided by
Binary Floor division or integer division The quotient of divided by , rounded to the next smallest whole number
Binary Exponentiation raised to the power of

Note that a and b in the Sample Expression column represent numeric values, such as integer , floating-point , complex , rational , and decimal numbers.

Here are some examples of these operators in use:

In this code snippet, you first create two new variables, a and b , holding 5 and 2 , respectively. Then you use these variables to create different arithmetic expressions using a specific operator in each expression.

Note: The Python REPL will display the return value of an expression as a way to provide immediate feedback to you. So, when you’re in an interactive session, you don’t need to use the print() function to check the result of an expression. You can just type in the expression and press Enter to get the result.

Again, the standard division operator ( / ) always returns a floating-point number, even if the dividend is evenly divisible by the divisor:

In the first example, 10 is evenly divisible by 5 . Therefore, this operation could return the integer 2 . However, it returns the floating-point number 2.0 . In the second example, 10.0 is a floating-point number, and 5 is an integer. In this case, Python internally promotes 5 to 5.0 and runs the division. The result is a floating-point number too.

Note: With complex numbers, the division operator doesn’t return a floating-point number but a complex one:

Here, you run a division between an integer and a complex number. In this case, the standard division operator returns a complex number.

Finally, consider the following examples of using the floor division ( // ) operator:

Floor division always rounds down . This means that the result is the greatest integer that’s smaller than or equal to the quotient. For positive numbers, it’s as though the fractional portion is truncated, leaving only the integer portion.

Comparison Operators and Expressions in Python

The Python comparison operators allow you to compare numerical values and any other objects that support them. The table below lists all the currently available comparison operators in Python:

Operator Operation Sample Expression Result
Equal to • if the value of is equal to the value of
• otherwise
Not equal to • if isn’t equal to
• otherwise
Less than • if is less than
• otherwise
Less than or equal to • if is less than or equal to
• otherwise
Greater than • if is greater than
• otherwise
Greater than or equal to • if is greater than or equal to
• otherwise

The comparison operators are all binary. This means that they require left and right operands. These operators always return a Boolean value ( True or False ) that depends on the truth value of the comparison at hand.

Note that comparisons between objects of different data types often don’t make sense and sometimes aren’t allowed in Python. For example, you can compare a number and a string for equality with the == operator. However, you’ll get False as a result:

The integer 2 isn’t equal to the string "2" . Therefore, you get False as a result. You can also use the != operator in the above expression, in which case you’ll get True as a result.

Non-equality comparisons between operands of different data types raise a TypeError exception:

In this example, Python raises a TypeError exception because a less than comparison ( < ) doesn’t make sense between an integer and a string. So, the operation isn’t allowed.

It’s important to note that in the context of comparisons, integer and floating-point values are compatible, and you can compare them.

You’ll typically use and find comparison operators in Boolean contexts like conditional statements and while loops . They allow you to make decisions and define a program’s control flow .

The comparison operators work on several types of operands, such as numbers, strings, tuples, and lists. In the following sections, you’ll explore the differences.

Probably, the more straightforward comparisons in Python and in math are those involving integer numbers. They allow you to count real objects, which is a familiar day-to-day task. In fact, the non-negative integers are also called natural numbers . So, comparing this type of number is probably pretty intuitive, and doing so in Python is no exception.

Consider the following examples that compare integer numbers:

In the first set of examples, you define two variables, a and b , to run a few comparisons between them. The value of a is less than the value of b . So, every comparison expression returns the expected Boolean value. The second set of examples uses two values that are equal, and again, you get the expected results.

Comparing floating-point numbers is a bit more complicated than comparing integers. The value stored in a float object may not be precisely what you’d think it would be. For that reason, it’s bad practice to compare floating-point values for exact equality using the == operator.

Consider the example below:

Yikes! The internal representation of this addition isn’t exactly equal to 3.3 , as you can see in the final example. So, comparing x to 3.3 with the equality operator returns False .

To compare floating-point numbers for equality, you need to use a different approach. The preferred way to determine whether two floating-point values are equal is to determine whether they’re close to one another, given some tolerance.

The math module from the standard library provides a function conveniently called isclose() that will help you with float comparison. The function takes two numbers and tests them for approximate equality:

In this example, you use the isclose() function to compare x and 3.3 for approximate equality. This time, you get True as a result because both numbers are close enough to be considered equal.

For further details on using isclose() , check out the Find the Closeness of Numbers With Python isclose() section in The Python math Module: Everything You Need to Know .

You can also use the comparison operators to compare Python strings in your code. In this context, you need to be aware of how Python internally compares string objects. In practice, Python compares strings character by character using each character’s Unicode code point . Unicode is Python’s default character set .

You can use the built-in ord() function to learn the Unicode code point of any character in Python. Consider the following examples:

The uppercase "A" has a lower Unicode point than the lowercase "a" . So, "A" is less than "a" . In the end, Python compares characters using integer numbers. So, the same rules that Python uses to compare integers apply to string comparison.

When it comes to strings with several characters, Python runs the comparison character by character in a loop.

The comparison uses lexicographical ordering , which means that Python compares the first item from each string. If their Unicode code points are different, this difference determines the comparison result. If the Unicode code points are equal, then Python compares the next two characters, and so on, until either string is exhausted:

In this example, Python compares both operands character by character. When it reaches the end of the string, it compares "o" and "O" . Because the lowercase letter has a greater Unicode code point, the first version of the string is greater than the second.

You can also compare strings of different lengths:

In this example, Python runs a character-by-character comparison as usual. If it runs out of characters, then the shorter string is less than the longer one. This also means that the empty string is the smallest possible string.

In your Python journey, you can also face the need to compare lists with other lists and tuples with other tuples. These data types also support the standard comparison operators. Like with strings, when you use a comparison operator to compare two lists or two tuples, Python runs an item-by-item comparison.

Note that Python applies specific rules depending on the type of the contained items. Here are some examples that compare lists and tuples of integer values:

In these examples, you compare lists and tuples of numbers using the standard comparison operators. When comparing these data types, Python runs an item-by-item comparison.

For example, in the first expression above, Python compares the 2 in the left operand and the 2 in the right operand. Because they’re equal, Python continues comparing 3 and 3 to conclude that both lists are equal. The same thing happens in the second example, where you compare tuples containing the same data.

It’s important to note that you can actually compare lists to tuples using the == and != operators. However, you can’t compare lists and tuples using the < , > , <= , and >= operators:

Python supports equality comparison between lists and tuples. However, it doesn’t support the rest of the comparison operators, as you can conclude from the final two examples. If you try to use them, then you get a TypeError telling you that the operation isn’t supported.

You can also compare lists and tuples of different lengths:

In the first two examples, you get True as a result because 5 is less than 8 . That fact is sufficient for Python to solve the comparison. In the second pair of examples, you get False . This result makes sense because the compared sequences don’t have the same length, so they can’t be equal.

In the final pair of examples, Python compares 5 with 5 . They’re equal, so the comparison continues. Because there are no more values to compare in the right-hand operands, Python concludes that the left-hand operands are greater.

As you can see, comparing lists and tuples can be tricky. It’s also an expensive operation that, in the worst case, requires traversing two entire sequences. Things get more complex and expensive when the contained items are also sequences. In those situations, Python will also have to compare items in a value-by-value manner, which adds cost to the operation.

Boolean Operators and Expressions in Python

Python has three Boolean or logical operators: and , or , and not . They define a set of operations denoted by the generic operators AND , OR , and NOT . With these operators, you can create compound conditions.

In the following sections, you’ll learn how the Python Boolean operators work. Especially, you’ll learn that some of them behave differently when you use them with Boolean values or with regular objects as operands.

You’ll find many objects and expressions that are of Boolean type or bool , as Python calls this type. In other words, many objects evaluate to True or False , which are the Python Boolean values.

For example, when you evaluate an expression using a comparison operator, the result of that expression is always of bool type:

In this example, the expression age > 18 returns a Boolean value, which you store in the is_adult variable. Now is_adult is of bool type, as you can see after calling the built-in type() function.

You can also find Python built-in and custom functions that return a Boolean value. This type of function is known as a predicate function. The built-in all() , any() , callable() , and isinstance() functions are all good examples of this practice.

Consider the following examples:

In this code snippet, you first define a variable called number using your old friend the assignment operator. Then you create another variable called validation_conditions . This variable holds a tuple of expressions. The first expression uses isinstance() to check whether number is an integer value.

The second is a compound expression that combines the modulo ( % ) and equality ( == ) operators to create a condition that checks whether the input value is an even number. In this condition, the modulo operator returns the remainder of dividing number by 2 , and the equality operator compares the result with 0 , returning True or False as the comparison’s result.

Then you use the all() function to determine if all the conditions are true. In this example, because number = 42 , the conditions are true, and all() returns True . You can play with the value of number if you’d like to experiment a bit.

In the final two examples, you use the callable() function. As its name suggests, this function allows you to determine whether an object is callable . Being callable means that you can call the object with a pair of parentheses and appropriate arguments, as you’d call any Python function.

The number variable isn’t callable, and the function returns False , accordingly. In contrast, the print() function is callable, so callable() returns True .

All the previous discussion is the basis for understanding how the Python logical operators work with Boolean operands.

Logical expressions involving and , or , and not are straightforward when the operands are Boolean. Here’s a summary. Note that x and y represent Boolean operands:

Operator Sample Expression Result
• if both and are
• otherwise
• if either or is
• otherwise
• if is
• if is

This table summarizes the truth value of expressions that you can create using the logical operators with Boolean operands. There’s something to note in this summary. Unlike and and or , which are binary operators, the not operator is unary, meaning that it operates on one operand. This operand must always be on the right side.

Now it’s time to take a look at how the operators work in practice. Here are a few examples of using the and operator with Boolean operands:

In the first example, both operands return True . Therefore, the and expression returns True as a result. In the second example, the left-hand operand is True , but the right-hand operand is False . Because of this, the and operator returns False .

In the third example, the left-hand operand is False . In this case, the and operator immediately returns False and never evaluates the 3 == 3 condition. This behavior is called short-circuit evaluation . You’ll learn more about it in a moment.

Note: Short-circuit evaluation is also called McCarthy evaluation in honor of computer scientist John McCarthy .

In the final example, both conditions return False . Again, and returns False as a result. However, because of the short-circuit evaluation, the right-hand expression isn’t evaluated.

What about the or operator? Here are a few examples that demonstrate how it works:

In the first three examples, at least one of the conditions returns True . In all cases, the or operator returns True . Note that if the left-hand operand is True , then or applies short-circuit evaluation and doesn’t evaluate the right-hand operand. This makes sense. If the left-hand operand is True , then or already knows the final result. Why would it need to continue the evaluation if the result won’t change?

In the final example, both operands are False , and this is the only situation where or returns False . It’s important to note that if the left-hand operand is False , then or has to evaluate the right-hand operand to arrive at a final conclusion.

Finally, you have the not operator, which negates the current truth value of an object or expression:

If you place not before an expression, then you get the inverse truth value. When the expression returns True , you get False . When the expression evaluates to False , you get True .

There is a fundamental behavior distinction between not and the other two Boolean operators. In a not expression, you always get a Boolean value as a result. That’s not always the rule that governs and and or expressions, as you’ll learn in the Boolean Expressions Involving Other Types of Operands section.

In practice, most Python objects and expressions aren’t Boolean. In other words, most objects and expressions don’t have a True or False value but a different type of value. However, you can use any Python object in a Boolean context, such as a conditional statement or a while loop.

In Python, all objects have a specific truth value. So, you can use the logical operators with all types of operands.

Python has well-established rules to determine the truth value of an object when you use that object in a Boolean context or as an operand in an expression built with logical operators. Here’s what the documentation says about this topic:

By default, an object is considered true unless its class defines either a __bool__() method that returns False or a __len__() method that returns zero, when called with the object. Here are most of the built-in objects considered false: constants defined to be false: None and False . zero of any numeric type: 0 , 0.0 , 0j , Decimal(0) , Fraction(0, 1) empty sequences and collections: '' , () , [] , {} , set() , range(0) ( Source )

You can determine the truth value of an object by calling the built-in bool() function with that object as an argument. If bool() returns True , then the object is truthy . If bool() returns False , then it’s falsy .

For numeric values, you have that a zero value is falsy, while a non-zero value is truthy:

Python considers the zero value of all numeric types falsy. All the other values are truthy, regardless of how close to zero they are.

Note: Instead of a function, bool() is a class. However, because Python developers typically use this class as a function, you’ll find that most people refer to it as a function rather than as a class. Additionally, the documentation lists this class on the built-in functions page. This is one of those cases where practicality beats purity .

When it comes to evaluating strings, you have that an empty string is always falsy, while a non-empty string is truthy:

Note that strings containing white spaces are also truthy in Python’s eyes. So, don’t confuse empty strings with whitespace strings.

Finally, built-in container data types, such as lists, tuples, sets , and dictionaries , are falsy when they’re empty. Otherwise, Python considers them truthy objects:

To determine the truth value of container data types, Python relies on the .__len__() special method . This method provides support for the built-in len() function, which you can use to determine the number of items in a given container.

In general, if .__len__() returns 0 , then Python considers the container a falsy object, which is consistent with the general rules you’ve just learned before.

All the discussion about the truth value of Python objects in this section is key to understanding how the logical operators behave when they take arbitrary objects as operands.

You can also use any objects, such as numbers or strings, as operands to and , or , and not . You can even use combinations of a Boolean object and a regular one. In these situations, the result depends on the truth value of the operands.

Note: Boolean expressions that combine two Boolean operands are a special case of a more general rule that allows you to use the logical operators with all kinds of operands. In every case, you’ll get one of the operands as a result.

You’ve already learned how Python determines the truth value of objects. So, you’re ready to dive into creating expressions with logic operators and regular objects.

To start off, below is a table that summarizes what you get when you use two objects, x and y , in an and expression:

If is returns
Truthy
Falsy

It’s important to emphasize a subtle detail in the above table. When you use and in an expression, you don’t always get True or False as a result. Instead, you get one of the operands. You only get True or False if the returned operand has either of these values.

Here are some code examples that use integer values. Remember that in Python, the zero value of numeric types is falsy. The rest of the values are truthy:

In the first expression, the left-hand operand ( 3 ) is truthy. So, you get the right-hand operand ( 4 ) as a result.

In the second example, the left-hand operand ( 0 ) is falsy, and you get it as a result. In this case, Python applies the short-circuit evaluation technique. It already knows that the whole expression is false because 0 is falsy, so Python returns 0 immediately without evaluating the right-hand operand.

In the final expression, the left-hand operand ( 3 ) is truthy. Therefore Python needs to evaluate the right-hand operand to make a conclusion. As a result, you get the right-hand operand, no matter what its truth value is.

Note: To dive deeper into the and operator, check out Using the “and” Boolean Operator in Python .

When it comes to using the or operator, you also get one of the operands as a result. This is what happens for two arbitrary objects, x and y :

Again, the expression x or y doesn’t evaluate to either True or False . Instead, it returns one of its operands, x or y .

As you can conclude from the above table, if the left-hand operand is truthy, then you get it as a result. Otherwise, you get the second operand. Here are some examples that demonstrate this behavior:

In the first example, the left-hand operand is truthy, and or immediately returns it. In this case, Python doesn’t evaluate the second operand because it already knows the final result. In the second example, the left-hand operand is falsy, and Python has to evaluate the right-hand one to determine the result.

In the last example, the left-hand operand is truthy, and that fact defines the result of the expression. There’s no need to evaluate the right-hand operand.

An expression like x or y is truthy if either x or y is truthy, and falsy if both x and y are falsy. This type of expression returns the first truthy operand that it finds. If both operands are falsy, then the expression returns the right-hand operand. To see this latter behavior in action, consider the following example:

In this specific expression, both operands are falsy. So, the or operator returns the right-hand operand, and the whole expression is falsy as a result.

Note: To learn more about the or operator, check out Using the “or” Boolean Operator in Python .

Finally, you have the not operator. You can also use this one with any object as an operand. Here’s what happens:

The not operator has a uniform behavior. It always returns a Boolean value. This behavior differs from its sibling operators, and and or .

Here are some code examples:

In the first example, the operand, 3 , is truthy from Python’s point of view. So, the operator returns False . In the second example, the operand is falsy, and not returns True .

Note: To better understand the not operator, check out Using the “not” Boolean Operator in Python .

In summary, the Python not operator negates the truth value of an object and always returns a Boolean value. This latter behavior differs from the behavior of its sibling operators and and or , which return operands rather than Boolean values.

So far, you’ve seen expressions with only a single or or and operator and two operands. However, you can also create compound logical expressions with multiple logical operators and operands.

To illustrate how to create a compound expression using or , consider the following toy example:

This expression returns the first truthy value. If all the preceding x variables are falsy, then the expression returns the last value, xn .

Note: In an expression like the one above, Python uses short-circuit evaluation . The operands are evaluated in order from left to right. As soon as one is found to be true, the entire expression is known to be true. At that point, Python stops evaluating operands. The value of the entire expression is that of the x that terminates the evaluation.

To help demonstrate short-circuit evaluation, suppose that you have an identity function , f() , that behaves as follows:

  • Takes a single argument
  • Displays the function and its argument on the screen
  • Returns the argument as its return value

Here’s the code to define this function and also a few examples of how it works:

The f() function displays its argument, which visually confirms whether you called the function. It also returns the argument as you passed it in the call. Because of this behavior, you can make the expression f(arg) be truthy or falsy by specifying a value for arg that’s truthy or falsy, respectively.

Now, consider the following compound logical expression:

In this example, Python first evaluates f(0) , which returns 0 . This value is falsy. The expression isn’t true yet, so the evaluation continues from left to right. The next operand, f(False) , returns False . That value is also falsy, so the evaluation continues.

Next up is f(1) . That evaluates to 1 , which is truthy. At that point, Python stops the evaluation because it already knows that the entire expression is truthy. Consequently, Python returns 1 as the value of the expression and never evaluates the remaining operands, f(2) and f(3) . You can confirm from the output that the f(2) and f(3) calls don’t occur.

A similar behavior appears in an expression with multiple and operators like the following one:

This expression is truthy if all the operands are truthy. If at least one operand is falsy, then the expression is also falsy.

In this example, short-circuit evaluation dictates that Python stops evaluating as soon as an operand happens to be falsy. At that point, the entire expression is known to be false. Once that’s the case, Python stops evaluating operands and returns the falsy operand that terminated the evaluation.

Here are two examples that confirm the short-circuiting behavior:

In both examples, the evaluation stops at the first falsy term— f(False) in the first case, f(0.0) in the second case—and neither the f(2) nor the f(3) call occurs. In the end, the expressions return False and 0.0 , respectively.

If all the operands are truthy, then Python evaluates them all and returns the last (rightmost) one as the value of the expression:

In the first example, all the operands are truthy. The expression is also truthy and returns the last operand. In the second example, all the operands are truthy except for the last one. The expression is falsy and returns the last operand.

As you dig into Python, you’ll find that there are some common idiomatic patterns that exploit short-circuit evaluation for conciseness of expression, performance, and safety. For example, you can take advantage of this type of evaluation for:

  • Avoiding an exception
  • Providing a default value
  • Skipping a costly operation

To illustrate the first point, suppose you have two variables, a and b , and you want to know whether the division of b by a results in a number greater than 0 . In this case, you can run the following expression or condition:

This code works. However, you need to account for the possibility that a might be 0 , in which case you’ll get an exception :

In this example, the divisor is 0 , which makes Python raise a ZeroDivisionError exception. This exception breaks your code. You can skip this error with an expression like the following:

When a is 0 , a != 0 is false. Python’s short-circuit evaluation ensures that the evaluation stops at that point, which means that (b / a) never runs, and the error never occurs.

Using this technique, you can implement a function to determine whether an integer is divisible by another integer:

In this function, if b is 0 , then a / b isn’t defined. So, the numbers aren’t divisible. If b is different from 0 , then the result will depend on the remainder of the division.

Selecting a default value when a specified value is falsy is another idiom that takes advantage of the short-circuit evaluation feature of Python’s logical operators.

For example, say that you have a variable that’s supposed to contain a country’s name. At some point, this variable can end up holding an empty string. If that’s the case, then you’d like the variable to hold a default county name. You can also do this with the or operator:

If country is non-empty, then it’s truthy. In this scenario, the expression will return the first truthy value, which is country in the first or expression. The evaluation stops, and you get "Canada" as a result.

On the other hand, if country is an empty string , then it’s falsy. The evaluation continues to the next operand, default_country , which is truthy. Finally, you get the default country as a result.

Another interesting use case for short-circuit evaluation is to avoid costly operations while creating compound logical expressions. For example, if you have a costly operation that should only run if a given condition is false, then you can use or like in the following snippet:

In this construct, your clean_data() function represents a costly operation. Because of short-circuit evaluation, this function will only run when data_is_clean is false, which means that your data isn’t clean.

Another variation of this technique is when you want to run a costly operation if a given condition is true. In this case, you can use the and operator:

In this example, the and operator evaluates data_is_updated . If this variable is true, then the evaluation continues, and the process_data() function runs. Otherwise, the evaluation stops, and process_data() never runs.

Sometimes you have a compound expression that uses the and operator to join comparison expressions. For example, say that you want to determine if a number is in a given interval. You can solve this problem with a compound expression like the following:

In this example, you use the and operator to join two comparison expressions that allow you to find out if number is in the interval from 0 to 10 , both included.

In Python, you can make this compound expression more concise by chaining the comparison operators together. For example, the following chained expression is equivalent to the previous compound one:

This expression is more concise and readable than the original expression. You can quickly realize that this code is checking if the number is between 0 and 10 . Note that in most programming languages, this chained expression doesn’t make sense. In Python, it works like a charm.

In other programming languages, this expression would probably start by evaluating 0 <= number , which is true. This true value would then be compared with 10 , which doesn’t make much sense, so the expression fails.

Python internally processes this type of expression as an equivalent and expression, such as 0 <= number and number <= 10 . That’s why you get the correct result in the example above.

Python has what it calls conditional expressions . These kinds of expressions are inspired by the ternary operator that looks like a ? b : c and is used in other programming languages. This construct evaluates to b if the value of a is true, and otherwise evaluates to c . Because of this, sometimes the equivalent Python syntax is also known as the ternary operator.

However, in Python, the expression looks more readable:

This expression returns expression_1 if the condition is true and expression_2 otherwise. Note that this expression is equivalent to a regular conditional like the following:

So, why does Python need this syntax? PEP 308 introduced conditional expressions as an effort to avoid the prevalence of error-prone attempts to achieve the same effect of a traditional ternary operator using the and and or operators in an expression like the following:

However, this expression doesn’t work as expected, returning expression_2 when expression_1 is falsy.

Some Python developers would avoid the syntax of conditional expressions in favor of a regular conditional statement. In any case, this syntax can be handy in some situations because it provides a concise tool for writing two-way conditionals.

Here’s an example of how to use the conditional expression syntax in your code:

When day is equal to "Sunday" , the condition is true and you get the first expression, "11AM" , as a result. If the condition is false, then you get the second expression, "9AM" . Note that similarly to the and and or operators, the conditional expression returns the value of one of its expressions rather than a Boolean value.

Python provides two operators, is and is not , that allow you to determine whether two operands have the same identity . In other words, they let you check if the operands refer to the same object. Note that identity isn’t the same thing as equality. The latter aims to check whether two operands contain the same data.

Note: To learn more about the difference between identity and equality, check out Python ‘!=’ Is Not ‘is not’: Comparing Objects in Python .

Here’s a summary of Python’s identity operators. Note that x and y are variables that point to objects:

Operator Sample Expression Result
• if and hold a reference to the same in-memory object
• otherwise
• if points to an object different from the object that points to
• otherwise

These two Python operators are keywords instead of odd symbols. This is part of Python’s goal of favoring readability in its syntax.

Here’s an example of two variables, x and y , that refer to objects that are equal but not identical:

In this example, x and y refer to objects whose value is 1001 . So, they’re equal. However, they don’t reference the same object. That’s why the is operator returns False . You can check an object’s identity using the built-in id() function:

As you can conclude from the id() output, x and y don’t have the same identity. So, they’re different objects, and because of that, the expression x is y returns False . In other words, you get False because you have two different instances of 1001 stored in your computer’s memory.

When you make an assignment like y = x , Python creates a second reference to the same object. Again, you can confirm that with the id() function or the is operator:

In this example, a and b hold references to the same object, the string "Hello, Pythonista!" . Therefore, the id() function returns the same identity when you call it with a and b . Similarly, the is operator returns True .

Note: You should note that, on your computer, you’ll get a different identity number when you call id() in the example above. The key detail is that the identity number will be the same for a and b .

Finally, the is not operator is the opposite of is . So, you can use is not to determine if two names don’t refer to the same object:

In the first example, because x and y point to different objects in your computer’s memory, the is not operator returns True . In the second example, because a and b are references to the same object, the is not operator returns False .

Note: The syntax not x is y also works the same as x is not y . However, the former syntax looks odd and is difficult to read. That’s why Python recognizes is not as an operator and encourages its use for readability.

Again, the is not operator highlights Python’s readability goals. In general, both identity operators allow you to write checks that read as plain English.

Sometimes you need to determine whether a value is present in a container data type, such as a list, tuple, or set. In other words, you may need to check if a given value is or is not a member of a collection of values. Python calls this kind of check a membership test .

Note: For a deep dive into how Python’s membership tests work, check out Python’s “in” and “not in” Operators: Check for Membership .

Membership tests are quite common and useful in programming. As with many other common operations, Python has dedicated operators for membership tests. The table below lists the membership operators in Python:

Operator Sample Expression Result
• if present in
• otherwise
• if present in of values
• otherwise

As usual, Python favors readability by using English words as operators instead of potentially confusing symbols or combinations of symbols.

Note: The syntax not value in collection also works in Python. However, this syntax looks odd and is difficult to read. So, to keep your code clean and readable, you should use value not in collection , which almost reads as plain English.

The Python in and not in operators are binary. This means that you can create membership expressions by connecting two operands with either operator. However, the operands in a membership expression have particular characteristics:

  • Left operand : The value that you want to look for in a collection of values
  • Right operand : The collection of values where the target value may be found

To better understand the in operator, below you have two demonstrative examples consisting of determining whether a value is in a list:

The first expression returns True because 5 is in the list of numbers. The second expression returns False because 8 isn’t in the list.

The not in membership operator runs the opposite test as the in operator. It allows you to check whether an integer value is not in a collection of values:

In the first example, you get False because 5 is in the target list. In the second example, you get True because 8 isn’t in the list of values. This may sound like a tongue twister because of the negative logic. To avoid confusion, remember that you’re trying to determine if the value is not part of a given collection of values.

There are two operators in Python that acquire a slightly different meaning when you use them with sequence data types, such as lists, tuples, and strings. With these types of operands, the + operator defines a concatenation operator , and the * operator represents the repetition operator :

Operator Operation Sample Expression Result
Concatenation A new sequence containing all the items from both operands
Repetition A new sequence containing the items of repeated times

Both operators are binary. The concatenation operator takes two sequences as operands and returns a new sequence of the same type. The repetition operator takes a sequence and an integer number as operands. Like in regular multiplication, the order of the operands doesn’t alter the repetition’s result.

Note: To learn more about concatenating string objects, check out Efficient String Concatenation in Python .

Here are some examples of how the concatenation operator works in practice:

In the first example, you use the concatenation operator ( + ) to join two strings together. The operator returns a completely new string object that combines the two original strings.

In the second example, you concatenate two tuples of letters together. Again, the operator returns a new tuple object containing all the items from the original operands. In the final example, you do something similar but this time with two lists.

Note: To learn more about concatenating lists, check out the Concatenating Lists section in the tutorial Python’s list Data Type: A Deep Dive With Examples .

When it comes to the repetition operator, the idea is to repeat the content of a given sequence a certain number of times. Here are a few examples:

In the first example, you use the repetition operator ( * ) to repeat the "Hello" string three times. In the second example, you change the order of the operands by placing the integer number on the left and the target string on the right. This example shows that the order of the operands doesn’t affect the result.

The next examples use the repetition operators with a tuple and a list, respectively. In both cases, you get a new object of the same type containing the items in the original sequence repeated three times.

Regular assignment statements with the = operator don’t have a return value, as you already learned. Instead, the assignment operator creates or updates variables. Because of this, the operator can’t be part of an expression.

Since Python 3.8 , you have access to a new operator that allows for a new type of assignment. This new assignment is called assignment expression or named expression . The new operator is called the walrus operator , and it’s the combination of a colon and an equal sign ( := ).

Note: The name walrus comes from the fact that this operator resembles the eyes and tusks of a walrus lying on its side. For a deep dive into how this operator works, check out The Walrus Operator: Python’s Assignment Expressions .

Unlike regular assignments, assignment expressions do have a return value, which is why they’re expressions . So, the operator accomplishes two tasks:

  • Returns the expression’s result
  • Assigns the result to a variable

The walrus operator is also a binary operator. Its left-hand operand must be a variable name, and its right-hand operand can be any Python expression. The operator will evaluate the expression, assign its value to the target variable, and return the value.

The general syntax of an assignment expression is as follows:

This expression looks like a regular assignment. However, instead of using the assignment operator ( = ), it uses the walrus operator ( := ). For the expression to work correctly, the enclosing parentheses are required in most use cases. However, in certain situations, you won’t need them. Either way, they won’t hurt you, so it’s safe to use them.

Assignment expressions come in handy when you want to reuse the result of an expression or part of an expression without using a dedicated assignment to grab this value beforehand. It’s particularly useful in the context of a conditional statement. To illustrate, the example below shows a toy function that checks the length of a string object:

In this example, you use a conditional statement to check whether the input string has fewer than 8 characters.

The assignment expression, (n := len(string)) , computes the string length and assigns it to n . Then it returns the value that results from calling len() , which finally gets compared with 8 . This way, you guarantee that you have a reference to the string length to use in further operations.

Bitwise operators treat operands as sequences of binary digits and operate on them bit by bit. Currently, Python supports the following bitwise operators:

Operator Operation Sample Expression Result
Bitwise AND • Each bit position in the result is the logical AND of the bits in the corresponding position of the operands.
• if both bits are , otherwise .
Bitwise OR • Each bit position in the result is the logical of the bits in the corresponding position of the operands.
• if either bit is , otherwise .
Bitwise NOT • Each bit position in the result is the logical negation of the bit in the corresponding position of the operand.
• if the bit is and if the bit is .
Bitwise XOR (exclusive OR) • Each bit position in the result is the logical of the bits in the corresponding position of the operands.
• if the bits in the operands are different, if they’re equal.
Bitwise right shift Each bit is shifted right places.
Bitwise left shift Each bit is shifted left places.

As you can see in this table, most bitwise operators are binary, which means that they expect two operands. The bitwise NOT operator ( ~ ) is the only unary operator because it expects a single operand, which should always appear at the right side of the expression.

You can use Python’s bitwise operators to manipulate your data at its most granular level, the bits. These operators are commonly useful when you want to write low-level algorithms, such as compression, encryption, and others.

Note: For a deep dive into the bitwise operators, check out Bitwise Operators in Python . You can also check out Build a Maze Solver in Python Using Graphs for an example of using bitwise operators to construct a binary file format.

Here are some examples that illustrate how some of the bitwise operators work in practice:

In the first example, you use the bitwise AND operator. The commented lines begin with # and provide a visual representation of what happens at the bit level. Note how each bit in the result is the logical AND of the bits in the corresponding position of the operands.

The second example shows how the bitwise OR operator works. In this case, the resulting bits are the logical OR test of the corresponding bits in the operands.

In all the examples, you’ve used the built-in bin() function to display the result as a binary object. If you don’t wrap the expression in a call to bin() , then you’ll get the integer representation of the output.

Up to this point, you’ve coded sample expressions that mostly use one or two different types of operators. However, what if you need to create compound expressions that use several different types of operators, such as comparison, arithmetic, Boolean, and others? How does Python decide which operation runs first?

Consider the following math expression:

There might be ambiguity in this expression. Should Python perform the addition 20 + 4 first and then multiply the result by 10 ? Should Python run the multiplication 4 * 10 first, and the addition second?

Because the result is 60 , you can conclude that Python has chosen the latter approach. If it had chosen the former, then the result would be 240 . This follows a standard algebraic rule that you’ll find in virtually all programming languages.

All operators that Python supports have a precedence compared to other operators. This precedence defines the order in which Python runs the operators in a compound expression.

In an expression, Python runs the operators of highest precedence first. After obtaining those results, Python runs the operators of the next highest precedence. This process continues until the expression is fully evaluated. Any operators of equal precedence are performed in left-to-right order.

Here’s the order of precedence of the Python operators that you’ve seen so far, from highest to lowest:

Operators Description
Exponentiation
, , Unary positive, unary negation, bitwise negation
, , , Multiplication, division, floor division,
, Addition, subtraction
, Bitwise shifts
Bitwise AND
Bitwise XOR
Bitwise OR
, , , , , , , , , Comparisons, identity, and membership
Boolean NOT
Boolean AND
Boolean OR
Walrus

Operators at the top of the table have the highest precedence, and those at the bottom of the table have the lowest precedence. Any operators in the same row of the table have equal precedence.

Getting back to your initial example, Python runs the multiplication because the multiplication operator has a higher precedence than the addition one.

Here’s another illustrative example:

In the example above, Python first raises 3 to the power of 4 , which equals 81 . Then, it carries out the multiplications in order from left to right: 2 * 81 = 162 and 162 * 5 = 810 .

You can override the default operator precedence using parentheses to group terms as you do in math. The subexpressions in parentheses will run before expressions that aren’t in parentheses.

Here are some examples that show how a pair of parentheses can affect the result of an expression:

In the first example, Python computes the expression 20 + 4 first because it’s wrapped in parentheses. Then Python multiplies the result by 10 , and the expression returns 240 . This result is completely different from what you got at the beginning of this section.

In the second example, Python evaluates 4 * 5 first. Then it raises 3 to the power of the resulting value. Finally, Python multiplies the result by 2 , returning 6973568802 .

There’s nothing wrong with making liberal use of parentheses, even when they aren’t necessary to change the order of evaluation. Sometimes it’s a good practice to use parentheses because they can improve your code’s readability and relieve the reader from having to recall operator precedence from memory.

Consider the following example:

Here the parentheses are unnecessary, as the comparison operators have higher precedence than and . However, some might find the parenthesized version clearer than the version without parentheses:

On the other hand, some developers might prefer this latter version of the expression. It’s a matter of personal preference. The point is that you can always use parentheses if you feel that they make your code more readable, even if they aren’t necessary to change the order of evaluation.

So far, you’ve learned that a single equal sign ( = ) represents the assignment operator and allows you to assign a value to a variable. Having a right-hand operand that contains other variables is perfectly valid, as you’ve also learned. In particular, the expression to the right of the assignment operator can include the same variable that’s on the left of the operand.

That last sentence may sound confusing, so here’s an example that clarifies the point:

In this example, total is an accumulator variable that you use to accumulate successive values. You should read this example as total is equal to the current value of total plus 5 . This expression effectively increases the value of total , which is now 15 .

Note that this type of assignment only makes sense if the variable in question already has a value. If you try the assignment with an undefined variable, then you get an error:

In this example, the count variable isn’t defined before the assignment, so it doesn’t have a current value. In consequence, Python raises a NameError exception to let you know about the issue.

This type of assignment helps you create accumulators and counter variables, for example. Therefore, it’s quite a common task in programming. As in many similar cases, Python offers a more convenient solution. It supports a shorthand syntax called augmented assignment :

In the highlighted line, you use the augmented addition operator ( += ). With this operator, you create an assignment that’s fully equivalent to total = total + 5 .

Python supports many augmented assignment operators. In general, the syntax for this type of assignment looks something like this:

Note that the dollar sign ( $ ) isn’t a valid Python operator. In this example, it’s a placeholder for a generic operator. The above statement works as follows:

  • Evaluate expression to produce a value.
  • Run the operation defined by the operator that prefixes the assignment operator ( = ), using the current value of variable and the return value of expression as operands.
  • Assign the resulting value back to variable .

The table below shows a summary of the augmented operators for arithmetic operations:

Operator Description Sample Expression Equivalent Expression
Adds the right operand to the left operand and stores the result in the left operand
Subtracts the right operand from the left operand and stores the result in the left operand
Multiplies the right operand with the left operand and stores the result in the left operand
Divides the left operand by the right operand and stores the result in the left operand
Performs of the left operand by the right operand and stores the result in the left operand
Finds the remainder of dividing the left operand by the right operand and stores the result in the left operand
Raises the left operand to the power of the right operand and stores the result in the left operand

As you can conclude from this table, all the arithmetic operators have an augmented version in Python. You can use these augmented operators as a shortcut when creating accumulators, counters, and similar objects.

Did the augmented arithmetic operators look neat and useful to you? The good news is that there are more. You also have augmented bitwise operators in Python:

Operator Operation Example Equivalent
Augmented bitwise AND ( )
Augmented bitwise OR ( )
Augmented bitwise XOR ( )
Augmented bitwise right shift
Augmented bitwise left shift

Finally, the concatenation and repetition operators have augmented variations too. These variations behave differently with mutable and immutable data types:

Operator Description Example
• Runs an augmented concatenation operation on the target sequence.
• Mutable sequences are updated in place.
• If the sequence is immutable, then a new sequence is created and assigned back to the target name.
• Adds to itself times.
• Mutable sequences are updated in place.
• If the sequence is immutable, then a new sequence is created and assigned back to the target name.

Note that the augmented concatenation operator works on two sequences, while the augmented repetition operator works on a sequence and an integer number.

Now you know what operators Python supports and how to use them. Operators are symbols, combinations of symbols, or keywords that you can use along with Python objects to build different types of expressions and perform computations in your code.

In this tutorial, you’ve learned:

  • What Python’s arithmetic operators are and how to use them in arithmetic expressions
  • What Python’s comparison , Boolean , identity , membership operators are
  • How to write expressions using comparison, Boolean, identity, and membership operators
  • Which bitwise operators Python supports and how to use them
  • How to combine and repeat sequences using the concatenation and repetition operators
  • What the augmented assignment operators are and how they work

In other words, you’ve covered an awful lot of ground! If you’d like a handy cheat sheet that can jog your memory on all that you’ve learned, then click the link below:

With all this knowledge about operators, you’re better prepared as a Python developer. You’ll be able to write better and more robust expressions in your code.

🐍 Python Tricks 💌

Get a short & sweet Python Trick delivered to your inbox every couple of days. No spam ever. Unsubscribe any time. Curated by the Real Python team.

Python Tricks Dictionary Merge

About Leodanis Pozo Ramos

Leodanis Pozo Ramos

Leodanis is an industrial engineer who loves Python and software development. He's a self-taught Python developer with 6+ years of experience. He's an avid technical writer with a growing number of articles published on Real Python and other sites.

Each tutorial at Real Python is created by a team of developers so that it meets our high quality standards. The team members who worked on this tutorial are:

Dan Bader

Master Real-World Python Skills With Unlimited Access to Real Python

Join us and get access to thousands of tutorials, hands-on video courses, and a community of expert Pythonistas:

Join us and get access to thousands of tutorials, hands-on video courses, and a community of expert Pythonistas:

What Do You Think?

What’s your #1 takeaway or favorite thing you learned? How are you going to put your newfound skills to use? Leave a comment below and let us know.

Commenting Tips: The most useful comments are those written with the goal of learning from or helping out other students. Get tips for asking good questions and get answers to common questions in our support portal . Looking for a real-time conversation? Visit the Real Python Community Chat or join the next “Office Hours” Live Q&A Session . Happy Pythoning!

Keep Learning

Related Topics: basics python

Keep reading Real Python by creating a free account or signing in:

Already have an account? Sign-In

Almost there! Complete this form and click the button below to gain instant access:

Operators and Expressions in Python (Cheat Sheet)

🔒 No spam. We take your privacy seriously.

python check assignment

Basic tkinter inter-thread communication?

I’ve got a Python+Tkinter program in which I need to send rather heavy objects from a worker thread to the main thread at a pretty fast rate. The objects happen to be bytearray s up to 1MiB, and we currently need to send these objects at a rate of around 20Hz, but I expect these requirements to increase in the future.

However, tkinter only seems to support attaching strings to messages, not arbitrary Python objects, so it looks like I’ll need to send the objects “out-of-band” relative to tkinter.

So I’m wondering: is this below code, using a regular dict with a threading.Lock , the best way to send arbitrary Python objects to the main thread in tkinter?

This approach was inspired by TkDocs Tutorial - Event Loop :

If you need to communicate from another thread to the thread running Tkinter, keep it as simple as possible. Use event_generate to post a virtual event to the Tkinter event queue, and then bind to that event in your code.

but of course the problem is that no major Python implementation currently supports attachments to synthetic events, so there aren’t any major codebases showing how this would be done.

You do not need to attach the object to the event.

You can use a queue.Queue to send the objects from worked to main thread. Each time you add a item to the queue send an event to main thread so that it knows to read the queue.

Doesn’t that introduce unnecessary “footgun” potential, since it opens up the possibility for desync between the event-handling code and the event-sending code?

I’ve always used a queue, and I’ve never had a problem with it.

  • Stack Overflow for Teams Where developers & technologists share private knowledge with coworkers
  • Advertising & Talent Reach devs & technologists worldwide about your product, service or employer brand
  • OverflowAI GenAI features for Teams
  • OverflowAPI Train & fine-tune LLMs
  • Labs The future of collective knowledge sharing
  • About the company Visit the blog

Collectives™ on Stack Overflow

Find centralized, trusted content and collaborate around the technologies you use most.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

Get early access and see previews of new features.

Assign and check a variable in a single line in Python? [duplicate]

Sometimes, in C, I like to assign and check a conditional variable on the same line - mostly for the purposes of self-documentation while isolating a code portion (e.g. instead of just writing if ( 1 ) { ... } ), without having to write an #ifdef . Let me give an example:

This does what you'd expect: if you have if ( (mytest = true) ) { , the output of the program is:

... while if you write if ( (mytest = false) ) { , the output of the program is:

(This seems like a standard technique, considering that leaving out the inner parentheses in the if might cause " warning: using the result of an assignment as a condition without parentheses [-Wparentheses] ")

So, I was wondering if there is an equivalent syntax in Python?

The naive approach does not seem to work:

... however, for a long time I also thought Python did not have a syntax for a ternary expression, but then it turned out, it has - which is why I'm asking this question.

sdbbs's user avatar

  • 3 I think you're looking for the walrus operator := –  rdas Commented Dec 8, 2021 at 6:06

Till Python 3.8, there was no way to do this, as statements in Python don't have a return value, so it was invalid to use them where an expression was expected.

Python 3.8 introduced assignment expressions , also called walrus operator:

Ashwini Chaudhary's user avatar

Not the answer you're looking for? Browse other questions tagged python syntax or ask your own question .

  • The Overflow Blog
  • The hidden cost of speed
  • The creator of Jenkins discusses CI/CD and balancing business with open source
  • Featured on Meta
  • Announcing a change to the data-dump process
  • Bringing clarity to status tag usage on meta sites
  • What does a new user need in a homepage experience on Stack Overflow?
  • Feedback requested: How do you use tag hover descriptions for curating and do...
  • Staging Ground Reviewer Motivation

Hot Network Questions

  • Are fuel efficiency charts available for mainstream engines?
  • How to clean a female disconnect spade connector
  • Spin-Spin Correlation Function
  • How to fold or expand the wingtips on Boeing 777?
  • What prevents random software installation popups from mis-interpreting our consents
  • Could they free up a docking port on ISS by undocking the emergency vehicle and letting it float next to the station for a little while
  • Question about word (relationship between language and thought)
  • Can you move between an attack and the attack granted by Horde Breaker?
  • How would you read this time change with the given note equivalence?
  • Would it be out of style to start a history book with a poem I wrote?
  • Why do "modern" languages not provide argv and exit code in main?
  • What is the missing fifth of the missing fifths?
  • Multi Level Access
  • Colossians 1:16 New World Translation renders τα πάντα as “all other things” but why is this is not shown in their Kingdom Interlinear?
  • Starting with 2014 "+" signs and 2015 "−" signs, you delete signs until one remains. What’s left?
  • At what point is the best to switch instruction language to the target language
  • Replacement derailleur for Schwinn
  • What are the most common types of FOD (Foreign Object Debris)?
  • What does こんなところ refer to here
  • Is the 2024 Ukrainian invasion of the Kursk region the first time since WW2 Russia was invaded?
  • \documentclass in separate .tex file
  • Do you believe something to be the truth or do you know the truth?
  • Do US universities invite faculty applicants from outside the US for an interview?
  • Multiplicity of the smallest non-zero Laplacian eigenvalue for tree graphs

python check assignment

IMAGES

  1. Python Type Check with Examples

    python check assignment

  2. 02 Multiple assignments in python

    python check assignment

  3. #5 Python 3 Tutorial

    python check assignment

  4. What are Python Assignment Expressions and Using the Walrus Operator

    python check assignment

  5. Lecture14 :- Special Operators || Assignment operators || Bitwise

    python check assignment

  6. First And Last Digits In Python

    python check assignment

VIDEO

  1. Assignment

  2. INFYTQ Python Assignment-8 Day-1

  3. Reading Urllib Documentation

  4. Python

  5. اختبار التكرارات

  6. Assignment Operators in Python

COMMENTS

  1. python

    For the future time traveler from Google, here is a new way (available from Python 3.8 onward): b = 1 if a := b: # this section is only reached if b is not 0 or false. # Also, a is set to b print(a, b) This is known as "the walrus operator". More info at the What's New In Python 3.8 page.

  2. python

    PEP 572 seeks to add assignment expressions (or "inline assignments") to the language, but it has seen a prolonged discussion over multiple huge threads on the python-dev mailing list—even after multiple rounds on python-ideas. Those threads were often contentious and were clearly voluminous to the point where many probably just tuned them out.

  3. Python Conditional Assignment (in 3 Ways)

    While working with lists, we often need to check if a list is empty or not, and if it is empty then we need to assign some default value to it. Let's see how we can do it using conditional assignment. my_list = [] # assigning default value to my_list if it is empty. my_list = my_list or [1, 2, 3] print(my_list) # output: [1, 2, 3] Here, we have ...

  4. Python's Assignment Operator: Write Robust Assignments

    Python's Assignment Operator: Write Robust Assignments

  5. How To Use Assignment Expressions in Python

    The author selected the COVID-19 Relief Fund to receive a donation as part of the Write for DOnations program.. Introduction. Python 3.8, released in October 2019, adds assignment expressions to Python via the := syntax. The assignment expression syntax is also sometimes called "the walrus operator" because := vaguely resembles a walrus with tusks. ...

  6. The Walrus Operator: Python's Assignment Expressions

    The Walrus Operator: Python 3.8 Assignment Expressions

  7. Assignment Expressions: The Walrus Operator

    Assignment Expressions: The Walrus Operator

  8. 1.6. Variables and Assignment

    A variable is a name for a value. An assignment statement associates a variable name on the left of the equal sign with the value of an expression calculated from the right of the equal sign. Enter. width. Once a variable is assigned a value, the variable can be used in place of that value. The response to the expression width is the same as if ...

  9. Python One Line Conditional Assignment

    Python One Line Conditional Assignment

  10. 7. Simple statements

    7. Simple statements — Python 3.12.4 documentation

  11. Assignment Operators in Python

    Assignment Operators in Python

  12. Python Assignment Operators

    Python Assignment Operators

  13. Different Forms of Assignment Statements in Python

    Different Forms of Assignment Statements in Python

  14. PEP 572

    Unparenthesized assignment expressions are prohibited for the value of a keyword argument in a call. Example: foo(x = y := f(x)) # INVALID foo(x=(y := f(x))) # Valid, though probably confusing. This rule is included to disallow excessively confusing code, and because parsing keyword arguments is complex enough already.

  15. Conditional Statements in Python

    Conditional Statements in Python

  16. Python for loop and if else Exercises [10 Exercise Programs]

    Python if else, for loop, and range() Exercises with Solutions

  17. Python Exercises, Practice, Challenges

    Practice Python Exercises and Challenges with Solutions

  18. python

    You should initialize variables to None and then check it: var1 = None. if var1 is None: var1 = 4. Which can be written in one line as: var1 = 4 if var1 is None else var1. or using shortcut (but checking against None is recommended) var1 = var1 or 4. alternatively if you will not have anything assigned to variable that variable name doesn't ...

  19. Operators and Expressions in Python

    Operators and Expressions in Python

  20. Basic tkinter inter-thread communication?

    I've got a Python+Tkinter program in which I need to send rather heavy objects from a worker thread to the main thread at a pretty fast rate. The objects happen to be bytearrays up to 1MiB, and we currently need to send these objects at a rate of around 20Hz, but I expect these requirements to increase in the future. However, tkinter only seems to support attaching strings to messages, not ...

  21. Assign and check a variable in a single line in Python?

    Till Python 3.8, there was no way to do this, as statements in Python don't have a return value, so it was invalid to use them where an expression was expected. Python 3.8 introduced assignment expressions , also called walrus operator: