Examples

Non Directional Hypothesis

Ai generator.

non directional hypothesis template

In the realm of hypothesis formulation, non-directional hypotheses offer a distinct perspective. These hypotheses suggest a relationship between variables without specifying the nature or direction of that relationship. This guide delves into non-directional hypothesis examples across various fields, outlines a step-by-step approach to crafting them, and provides expert tips to ensure your non-directional hypotheses are robust and insightful. Explore the world of Thesis statement hypotheses that explore connections without predetermined expectations.

What is the Non-Directional Hypothesis? – Definition

A non-directional hypothesis, also known as a two tailed hypothesis , is a type of hypothesis that predicts a relationship between variables without specifying the direction of that relationship. Unlike directional hypotheses that predict a specific outcome, non-directional hypotheses simply suggest that a relationship exists without indicating whether one variable will increase or decrease in response to changes in the other variable.

What is an Example of a Non-Directional Hypothesis Statement?

Non Directional Hypothesis Statement Examples

Size: 219 KB

“An increase in exercise frequency is associated with changes in weight.”

In this non-directional hypothesis, the statement suggests that a relationship exists between exercise frequency and weight changes but doesn’t specify whether increased exercise will lead to weight loss or weight gain. It leaves the direction of the relationship open for empirical investigation and data analysis.

100 Non Directional Hypothesis Statement Examples

Non-directional hypotheses explore relationships between variables without predicting the specific outcome. These simple hypothesis offer flexibility, allowing researchers to uncover unforeseen connections. Discover a range of non-directional hypothesis examples that span disciplines, enabling empirical exploration and evidence-based conclusions.

  • Impact of Stress on Sleep Quality : Stress levels are related to changes in sleep quality among college students.
  • Relationship Between Social Media Use and Loneliness : Social media use is associated with variations in reported feelings of loneliness.
  • Connection Between Parenting Styles and Adolescent Self-Esteem : Different parenting styles correlate with differences in adolescent self-esteem levels.
  • Effects of Temperature on Productivity : Temperature variations affect productivity levels in office environments.
  • Link Between Screen Time and Eye Strain : Screen time is related to variations in reported eye strain among digital device users.
  • Influence of Study Techniques on Exam Performance : Study techniques correlate with differences in exam performance among students.
  • Relationship Between Classroom Environment and Student Engagement : Classroom environment is associated with variations in student engagement levels.
  • Impact of Music Tempo on Heart Rate : Music tempo relates to changes in heart rate during exercise.
  • Connection Between Diet and Cholesterol Levels : Dietary choices are related to variations in cholesterol levels among adults.
  • Effects of Outdoor Exposure on Mood : Outdoor exposure is associated with changes in reported mood among urban dwellers.
  • Relationship Between Personality Traits and Leadership Styles : Personality traits are associated with differences in preferred leadership styles among professionals.
  • Impact of Time Management Strategies on Academic Performance : Time management strategies correlate with variations in academic performance among college students.
  • Connection Between Cultural Exposure and Empathy Levels : Cultural exposure relates to changes in reported empathy levels among individuals.
  • Effects of Nutrition Education on Dietary Choices : Nutrition education is associated with variations in dietary choices among adolescents.
  • Link Between Social Support and Stress Levels : Social support is related to differences in reported stress levels among working adults.
  • Influence of Exercise Intensity on Mood : Exercise intensity correlates with variations in reported mood among fitness enthusiasts.
  • Relationship Between Parental Involvement and Academic Achievement : Parental involvement is associated with differences in academic achievement among schoolchildren.
  • Impact of Sleep Duration on Cognitive Function : Sleep duration is related to changes in cognitive function among older adults.
  • Connection Between Environmental Factors and Creativity : Environmental factors correlate with variations in reported creative thinking abilities among artists.
  • Effects of Communication Styles on Conflict Resolution : Communication styles are associated with differences in conflict resolution outcomes among couples.
  • Relationship Between Social Interaction and Life Satisfaction : Social interaction is related to variations in reported life satisfaction among elderly individuals.
  • Impact of Classroom Seating Arrangements on Participation : Classroom seating arrangements correlate with differences in student participation levels.
  • Connection Between Smartphone Use and Sleep Quality : Smartphone use is associated with changes in reported sleep quality among young adults.
  • Effects of Mindfulness Practices on Stress Reduction : Mindfulness practices relate to variations in reported stress levels among participants.
  • Link Between Gender and Communication Styles : Gender is related to differences in communication styles among individuals in group discussions.
  • Influence of Advertising Exposure on Purchase Decisions : Advertising exposure correlates with variations in reported purchase decisions among consumers.
  • Relationship Between Job Satisfaction and Employee Productivity : Job satisfaction is associated with differences in employee productivity levels.
  • Impact of Social Support on Coping Mechanisms : Social support relates to variations in reported coping mechanisms among individuals facing challenges.
  • Connection Between Classroom Environment and Student Creativity : Classroom environment is related to changes in student creativity levels.
  • Effects of Exercise on Mood : Exercise is associated with variations in reported mood levels among participants.
  • Relationship Between Music Preferences and Stress Levels : Music preferences are related to variations in reported stress levels among individuals.
  • Impact of Nutrition Education on Food Choices : Nutrition education correlates with differences in dietary food choices among adolescents.
  • Connection Between Physical Activity and Cognitive Function : Physical activity is associated with changes in cognitive function among older adults.
  • Effects of Color Exposure on Mood : Color exposure relates to variations in reported mood levels among participants.
  • Link Between Personality Traits and Career Choice : Personality traits are related to differences in career choices among individuals.
  • Influence of Outdoor Recreation on Mental Well-being : Outdoor recreation is associated with variations in reported mental well-being among participants.
  • Relationship Between Social Media Use and Self-Esteem : Social media use correlates with changes in reported self-esteem levels among young adults.
  • Impact of Parenting Styles on Adolescent Risk Behavior : Parenting styles are related to variations in reported risk behaviors among adolescents.
  • Connection Between Sleep Quality and Cognitive Performance : Sleep quality relates to changes in cognitive performance among students.
  • Effects of Art Exposure on Creativity : Art exposure is associated with differences in reported creative thinking abilities among participants.
  • Relationship Between Social Support and Mental Health : Social support is related to variations in reported mental health outcomes among individuals.
  • Impact of Technology Use on Interpersonal Communication : Technology use correlates with differences in reported interpersonal communication skills among individuals.
  • Connection Between Parental Attachment and Romantic Relationships : Parental attachment is associated with variations in the quality of romantic relationships among adults.
  • Effects of Environmental Noise on Concentration : Environmental noise relates to changes in reported concentration levels among students.
  • Link Between Music Exposure and Memory Performance : Music exposure is related to differences in memory performance among participants.
  • Influence of Nutrition on Physical Fitness : Nutrition choices correlate with variations in reported physical fitness levels among athletes.
  • Relationship Between Stress and Health Outcomes : Stress levels are associated with changes in reported health outcomes among individuals.
  • Impact of Workplace Environment on Job Satisfaction : Workplace environment relates to differences in reported job satisfaction among employees.
  • Connection Between Humor and Stress Reduction : Humor is related to variations in reported stress reduction among participants.
  • Effects of Social Interaction on Emotional Well-being : Social interaction correlates with changes in reported emotional well-being among participants.
  • Relationship Between Cultural Exposure and Cognitive Flexibility : Cultural exposure is related to variations in reported cognitive flexibility among individuals.
  • Impact of Parent-Child Communication on Academic Achievement : Parent-child communication correlates with differences in academic achievement levels among students.
  • Connection Between Personality Traits and Prosocial Behavior : Personality traits are associated with variations in reported prosocial behaviors among individuals.
  • Effects of Nature Exposure on Stress Reduction : Nature exposure relates to changes in reported stress reduction among participants.
  • Link Between Sleep Duration and Cognitive Performance : Sleep duration is related to differences in cognitive performance among participants.
  • Influence of Social Media Use on Body Image : Social media use correlates with variations in reported body image satisfaction among young adults.
  • Relationship Between Exercise and Mental Well-being : Exercise levels are associated with changes in reported mental well-being among participants.
  • Impact of Cultural Competency Training on Patient Care : Cultural competency training relates to differences in patient care outcomes among healthcare professionals.
  • Connection Between Perceived Social Support and Resilience : Perceived social support is related to variations in reported resilience levels among individuals.
  • Effects of Environmental Factors on Mood : Environmental factors correlate with changes in reported mood levels among participants.
  • Relationship Between Cultural Diversity and Team Performance : Cultural diversity is related to variations in reported team performance outcomes among professionals.
  • Impact of Parental Involvement on Academic Motivation : Parental involvement correlates with differences in academic motivation levels among schoolchildren.
  • Connection Between Mindfulness Practices and Anxiety Reduction : Mindfulness practices are associated with changes in reported anxiety levels among participants.
  • Effects of Nutrition Education on Eating Habits : Nutrition education relates to variations in dietary eating habits among adolescents.
  • Link Between Personality Traits and Learning Styles : Personality traits are related to differences in preferred learning styles among students.
  • Influence of Nature Exposure on Creativity : Nature exposure correlates with variations in reported creative thinking abilities among individuals.
  • Relationship Between Extracurricular Activities and Social Skills : Extracurricular activities are associated with changes in reported social skills among adolescents.
  • Impact of Cultural Awareness Training on Stereotypes : Cultural awareness training relates to differences in perceived stereotypes among participants.
  • Connection Between Sleep Quality and Emotional Regulation : Sleep quality is related to variations in reported emotional regulation skills among individuals.
  • Effects of Music Exposure on Mood : Music exposure correlates with changes in reported mood levels among participants.
  • Relationship Between Cultural Sensitivity and Cross-Cultural Communication : Cultural sensitivity is related to variations in reported cross-cultural communication skills among professionals.
  • Impact of Parent-Child Bonding on Emotional Well-being : Parent-child bonding correlates with differences in reported emotional well-being levels among individuals.
  • Connection Between Personality Traits and Conflict Resolution Styles : Personality traits are associated with variations in preferred conflict resolution styles among individuals.
  • Effects of Mindfulness Practices on Focus and Concentration : Mindfulness practices relate to changes in reported focus and concentration levels among participants.
  • Link Between Gender Identity and Career Aspirations : Gender identity is related to differences in reported career aspirations among individuals.
  • Influence of Art Exposure on Emotional Expression : Art exposure correlates with variations in reported emotional expression abilities among participants.
  • Relationship Between Peer Influence and Risky Behavior : Peer influence is associated with changes in reported engagement in risky behaviors among adolescents.
  • Impact of Diversity Training on Workplace Harmony : Diversity training relates to differences in perceived workplace harmony among employees.
  • Connection Between Sleep Patterns and Cognitive Performance : Sleep patterns are related to variations in cognitive performance among students.
  • Effects of Exercise on Self-Esteem : Exercise correlates with changes in reported self-esteem levels among participants.
  • Relationship Between Social Interaction and Well-being : Social interaction is related to variations in reported well-being levels among individuals.
  • Impact of Parenting Styles on Adolescent Peer Relationships : Parenting styles correlate with differences in peer relationship quality among adolescents.
  • Connection Between Personality Traits and Communication Effectiveness : Personality traits are associated with variations in communication effectiveness among professionals.
  • Effects of Outdoor Activities on Stress Reduction : Outdoor activities relate to changes in reported stress reduction among participants.
  • Link Between Music Exposure and Emotional Regulation : Music exposure is related to differences in reported emotional regulation skills among individuals.
  • Influence of Family Dynamics on Academic Achievement : Family dynamics correlate with variations in academic achievement levels among students.
  • Relationship Between Cultural Engagement and Empathy : Cultural engagement is associated with changes in reported empathy levels among individuals.
  • Impact of Conflict Resolution Strategies on Relationship Satisfaction : Conflict resolution strategies relate to differences in reported relationship satisfaction levels among couples.
  • Connection Between Sleep Quality and Physical Health : Sleep quality is related to variations in reported physical health outcomes among individuals.
  • Effects of Social Support on Coping with Stress : Social support correlates with changes in reported coping strategies for stress among participants.
  • Relationship Between Cultural Sensitivity and Patient Care : Cultural sensitivity is related to variations in reported patient care outcomes among healthcare professionals.
  • Impact of Family Communication on Adolescent Well-being : Family communication correlates with differences in reported well-being levels among adolescents.
  • Connection Between Personality Traits and Leadership Styles : Personality traits are associated with variations in preferred leadership styles among professionals.
  • Effects of Nature Exposure on Attention Span : Nature exposure relates to changes in reported attention span among participants.
  • Link Between Music Preference and Emotional Expression : Music preference is related to differences in reported emotional expression abilities among individuals.
  • Influence of Peer Support on Academic Success : Peer support correlates with variations in reported academic success levels among students.
  • Relationship Between Cultural Engagement and Creativity : Cultural engagement is associated with changes in reported creative thinking abilities among individuals.
  • Impact of Conflict Resolution Skills on Relationship Satisfaction : Conflict resolution skills relate to differences in reported relationship satisfaction levels among couples.
  • Connection Between Sleep Patterns and Stress Levels : Sleep patterns are related to variations in reported stress levels among individuals.
  • Effects of Social Interaction on Happiness : Social interaction correlates with changes in reported happiness levels among participants.

Non-Directional Hypothesis Statement Examples for Psychology

These examples pertain to psychological studies and cover various relationships between psychological hypothesis concepts. For instance, the first example suggests that attachment styles might be related to romantic satisfaction, but it doesn’t specify whether attachment styles would increase or decrease satisfaction.

  • Relationship Between Attachment Styles and Romantic Satisfaction : Attachment styles are related to variations in reported romantic satisfaction levels among individuals in psychology studies.
  • Impact of Personality Traits on Career Success : Personality traits correlate with differences in reported career success outcomes among psychology study participants.
  • Connection Between Parenting Styles and Adolescent Self-Esteem : Parenting styles are associated with variations in reported self-esteem levels among adolescents in psychological research.
  • Effects of Social Media Use on Body Image : Social media use relates to changes in reported body image satisfaction among young adults in psychology experiments.
  • Link Between Sleep Patterns and Emotional Well-being : Sleep patterns are related to differences in reported emotional well-being levels among psychology research participants.
  • Influence of Mindfulness Practices on Stress Reduction : Mindfulness practices correlate with variations in reported stress reduction among psychology study participants.
  • Relationship Between Social Interaction and Mental Health : Social interaction is associated with changes in reported mental health outcomes among individuals in psychology studies.
  • Impact of Parent-Child Bonding on Emotional Resilience : Parent-child bonding relates to differences in reported emotional resilience levels among psychology research participants.
  • Connection Between Cultural Sensitivity and Empathy : Cultural sensitivity is related to variations in reported empathy levels among individuals in psychology experiments.
  • Effects of Exercise on Mood : Exercise correlates with changes in reported mood levels among psychology study participants.

Non-Directional Hypothesis Statement Examples in Research

These research hypothesis examples focus on research studies in general, covering a wide range of topics and relationships. For instance, the second example suggests that employee training might be related to workplace productivity, without indicating whether the training would lead to higher or lower productivity.

  • Relationship Between Time Management and Academic Performance : Time management is related to variations in academic performance levels among research participants.
  • Impact of Employee Training on Workplace Productivity : Employee training correlates with differences in reported workplace productivity outcomes among research subjects.
  • Connection Between Media Exposure and Political Knowledge : Media exposure is associated with variations in reported political knowledge levels among research participants.
  • Effects of Environmental Factors on Children’s Cognitive Development : Environmental factors relate to changes in reported cognitive development among research subjects.
  • Link Between Parental Involvement and Student Motivation : Parental involvement is related to differences in reported student motivation levels among research participants.
  • Influence of Cultural Immersion on Language Proficiency : Cultural immersion correlates with variations in reported language proficiency levels among research subjects.
  • Relationship Between Leadership Styles and Team Performance : Leadership styles are associated with changes in reported team performance outcomes among research participants.
  • Impact of Financial Literacy Education on Savings Habits : Financial literacy education relates to differences in reported savings habits among research subjects.
  • Connection Between Stress Levels and Physical Health : Stress levels are related to variations in reported physical health outcomes among research participants.
  • Effects of Music Exposure on Concentration : Music exposure correlates with changes in reported concentration levels among research subjects.

Non-Directional Hypothesis Statement Examples for Research Methodology

These examples are specific to the methods used in conducting research. The eighth example states that randomization might relate to group equivalence, but it doesn’t specify whether randomization would lead to more equivalent or less equivalent groups.

  • Relationship Between Sampling Techniques and Research Validity : Sampling techniques are related to variations in research validity outcomes in studies of research methodology.
  • Impact of Data Collection Methods on Data Accuracy : Data collection methods correlate with differences in reported data accuracy in research methodology experiments.
  • Connection Between Research Design and Study Reproducibility : Research design is associated with variations in reported study reproducibility in research methodology studies.
  • Effects of Questionnaire Format on Response Consistency : Questionnaire format relates to changes in reported response consistency in research methodology research.
  • Link Between Ethical Considerations and Research Credibility : Ethical considerations are related to differences in reported research credibility in studies of research methodology.
  • Influence of Measurement Scales on Data Precision : Measurement scales correlate with variations in reported data precision in research methodology experiments.
  • Relationship Between Experimental Controls and Internal Validity : Experimental controls are associated with changes in internal validity outcomes in research methodology studies.
  • Impact of Randomization on Group Equivalence : Randomization relates to differences in reported group equivalence in research methodology research.
  • Connection Between Qualitative Data Analysis Methods and Data Richness : Qualitative data analysis methods are related to variations in reported data richness in studies of research methodology.
  • Effects of Hypothesis Formulation on Research Focus : Hypothesis formulation correlates with changes in reported research focus in research methodology experiments.

These non-directional hypothesis statement examples offer insights into the diverse array of relationships explored in psychology, research, and research methodology studies, fostering empirical discovery and contributing to the advancement of knowledge across various fields.

Difference between Directional & Non-Directional Hypothesis

Directional and non-directional hypotheses are distinct approaches used in formulating hypotheses for research studies. Understanding the differences between them is essential for researchers to choose the appropriate type of causal hypothesis based on their study’s goals and prior knowledge.

  • Direction: Directional hypotheses predict a specific relationship direction, while non-directional hypotheses do not specify a direction.
  • Specificity: Directional hypotheses are more specific, while non-directional hypotheses are more general.
  • Flexibility: Non-directional hypotheses allow for open-ended exploration, while directional hypotheses focus on confirming or refuting specific expectations.

How to Write a Non-Directional Hypothesis Statement – Step by Step Guide

  • Identify Variables: Clearly define the variables you’re investigating—usually, an independent variable (the one manipulated) and a dependent variable (the one measured).
  • Indicate Relationship: State that a relationship exists between the variables without predicting a specific direction.
  • Use General Language: Craft the statement in a way that encompasses various possible outcomes.
  • Avoid Biased Language: Do not include words that suggest a stronger effect or specific outcome for either variable.
  • Connect to Research: If applicable, link the hypothesis to existing research or theories that justify exploring the relationship.

Tips for Writing a Non-Directional Hypothesis

  • Start with Inquiry: Frame your hypothesis as an answer to a research question.
  • Embrace Openness: Non-directional hypotheses are ideal when no strong expectation exists.
  • Be Succinct: Keep the hypothesis statement concise and clear.
  • Stay Neutral: Avoid implying that one variable will have a stronger impact.
  • Allow Exploration: Leave room for various potential outcomes without preconceived notions.
  • Tailor to Context: Ensure the hypothesis aligns with your research context and goals.

Non-directional hypotheses are particularly useful in exploratory research, where researchers aim to discover relationships without imposing specific expectations. They allow for unbiased investigation and the potential to uncover unexpected patterns or connections.

Remember that whether you choose a directional or non-directional hypothesis, both play critical roles in shaping the research process, guiding study design, data collection, and analysis. The choice depends on the research’s nature, goals, and existing knowledge in the field.  You may also be interested in our  science hypothesis .

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

Directional and non-directional hypothesis: A Comprehensive Guide

Karolina Konopka

Customer support manager

Karolina Konopka

Want to talk with us?

In the world of research and statistical analysis, hypotheses play a crucial role in formulating and testing scientific claims. Understanding the differences between directional and non-directional hypothesis is essential for designing sound experiments and drawing accurate conclusions. Whether you’re a student, researcher, or simply curious about the foundations of hypothesis testing, this guide will equip you with the knowledge and tools to navigate this fundamental aspect of scientific inquiry.

Understanding Directional Hypothesis

Understanding directional hypotheses is crucial for conducting hypothesis-driven research, as they guide the selection of appropriate statistical tests and aid in the interpretation of results. By incorporating directional hypotheses, researchers can make more precise predictions, contribute to scientific knowledge, and advance their fields of study.

Definition of directional hypothesis

Directional hypotheses, also known as one-tailed hypotheses, are statements in research that make specific predictions about the direction of a relationship or difference between variables. Unlike non-directional hypotheses, which simply state that there is a relationship or difference without specifying its direction, directional hypotheses provide a focused and precise expectation.

A directional hypothesis predicts either a positive or negative relationship between variables or predicts that one group will perform better than another. It asserts a specific direction of effect or outcome. For example, a directional hypothesis could state that “increased exposure to sunlight will lead to an improvement in mood” or “participants who receive the experimental treatment will exhibit higher levels of cognitive performance compared to the control group.”

Directional hypotheses are formulated based on existing theory, prior research, or logical reasoning, and they guide the researcher’s expectations and analysis. They allow for more targeted predictions and enable researchers to test specific hypotheses using appropriate statistical tests.

The role of directional hypothesis in research

Directional hypotheses also play a significant role in research surveys. Let’s explore their role specifically in the context of survey research:

  • Objective-driven surveys : Directional hypotheses help align survey research with specific objectives. By formulating directional hypotheses, researchers can focus on gathering data that directly addresses the predicted relationship or difference between variables of interest.
  • Question design and measurement : Directional hypotheses guide the design of survey question types and the selection of appropriate measurement scales. They ensure that the questions are tailored to capture the specific aspects related to the predicted direction, enabling researchers to obtain more targeted and relevant data from survey respondents.
  • Data analysis and interpretation : Directional hypotheses assist in data analysis by directing researchers towards appropriate statistical tests and methods. Researchers can analyze the survey data to specifically test the predicted relationship or difference, enhancing the accuracy and reliability of their findings. The results can then be interpreted within the context of the directional hypothesis, providing more meaningful insights.
  • Practical implications and decision-making : Directional hypotheses in surveys often have practical implications. When the predicted relationship or difference is confirmed, it informs decision-making processes, program development, or interventions. The survey findings based on directional hypotheses can guide organizations, policymakers, or practitioners in making informed choices to achieve desired outcomes.
  • Replication and further research : Directional hypotheses in survey research contribute to the replication and extension of studies. Researchers can replicate the survey with different populations or contexts to assess the generalizability of the predicted relationships. Furthermore, if the directional hypothesis is supported, it encourages further research to explore underlying mechanisms or boundary conditions.

By incorporating directional hypotheses in survey research, researchers can align their objectives, design effective surveys, conduct focused data analysis, and derive practical insights. They provide a framework for organizing survey research and contribute to the accumulation of knowledge in the field.

Examples of research questions for directional hypothesis

Here are some examples of research questions that lend themselves to directional hypotheses:

  • Does increased daily exercise lead to a decrease in body weight among sedentary adults?
  • Is there a positive relationship between study hours and academic performance among college students?
  • Does exposure to violent video games result in an increase in aggressive behavior among adolescents?
  • Does the implementation of a mindfulness-based intervention lead to a reduction in stress levels among working professionals?
  • Is there a difference in customer satisfaction between Product A and Product B, with Product A expected to have higher satisfaction ratings?
  • Does the use of social media influence self-esteem levels, with higher social media usage associated with lower self-esteem?
  • Is there a negative relationship between job satisfaction and employee turnover, indicating that lower job satisfaction leads to higher turnover rates?
  • Does the administration of a specific medication result in a decrease in symptoms among individuals with a particular medical condition?
  • Does increased access to early childhood education lead to improved cognitive development in preschool-aged children?
  • Is there a difference in purchase intention between advertisements with celebrity endorsements and advertisements without, with celebrity endorsements expected to have a higher impact?

These research questions generate specific predictions about the direction of the relationship or difference between variables and can be tested using appropriate research methods and statistical analyses.

Definition of non-directional hypothesis

Non-directional hypotheses, also known as two-tailed hypotheses, are statements in research that indicate the presence of a relationship or difference between variables without specifying the direction of the effect. Instead of making predictions about the specific direction of the relationship or difference, non-directional hypotheses simply state that there is an association or distinction between the variables of interest.

Non-directional hypotheses are often used when there is no prior theoretical basis or clear expectation about the direction of the relationship. They leave the possibility open for either a positive or negative relationship, or for both groups to differ in some way without specifying which group will perform better or worse.

Advantages and utility of non-directional hypothesis

Non-directional hypotheses in survey s offer several advantages and utilities, providing flexibility and comprehensive analysis of survey data. Here are some of the key advantages and utilities of using non-directional hypotheses in surveys:

  • Exploration of Relationships : Non-directional hypotheses allow researchers to explore and examine relationships between variables without assuming a specific direction. This is particularly useful in surveys where the relationship between variables may not be well-known or there may be conflicting evidence regarding the direction of the effect.
  • Flexibility in Question Design : With non-directional hypotheses, survey questions can be designed to measure the relationship between variables without being biased towards a particular outcome. This flexibility allows researchers to collect data and analyze the results more objectively.
  • Open to Unexpected Findings : Non-directional hypotheses enable researchers to be open to unexpected or surprising findings in survey data. By not committing to a specific direction of the effect, researchers can identify and explore relationships that may not have been initially anticipated, leading to new insights and discoveries.
  • Comprehensive Analysis : Non-directional hypotheses promote comprehensive analysis of survey data by considering the possibility of an effect in either direction. Researchers can assess the magnitude and significance of relationships without limiting their analysis to only one possible outcome.
  • S tatistical Validity : Non-directional hypotheses in surveys allow for the use of two-tailed statistical tests, which provide a more conservative and robust assessment of significance. Two-tailed tests consider both positive and negative deviations from the null hypothesis, ensuring accurate and reliable statistical analysis of survey data.
  • Exploratory Research : Non-directional hypotheses are particularly useful in exploratory research, where the goal is to gather initial insights and generate hypotheses. Surveys with non-directional hypotheses can help researchers explore various relationships and identify patterns that can guide further research or hypothesis development.

It is worth noting that the choice between directional and non-directional hypotheses in surveys depends on the research objectives, existing knowledge, and the specific variables being investigated. Researchers should carefully consider the advantages and limitations of each approach and select the one that aligns best with their research goals and survey design.

  • Share with others
  • Twitter Twitter Icon
  • LinkedIn LinkedIn Icon

Related posts

Mastering matrix questions: the complete guide + one special technique, microsurveys: complete guide, recurring surveys: the ultimate guide, close-ended questions: definition, types, and examples, top 10 typeform alternatives and competitors, 15 best google forms alternatives and competitors, get answers today.

  • No credit card required
  • No time limit on Free plan

You can modify this template in every possible way.

All templates work great on every device.

Directional vs Non-Directional Hypothesis: Key Difference

In statistics, a directional hypothesis, also known as a one-tailed hypothesis, is a type of hypothesis that predicts the direction of the relationship between variables or the direction of the difference between groups.

non directional hypothesis template

The introduction of a directional hypothesis in a research study provides an overview of the specific prediction being made about the relationship between variables or the difference between groups. It sets the stage for the research question and outlines the expected direction of the findings. The introduction typically includes the following elements:

Research Context: Begin by introducing the general topic or research area that the study is focused on. Provide background information and highlight the significance of the research question.

Research Question: Clearly state the specific research question that the study aims to answer. This question should be directly related to the variables being investigated.

Previous Research: Summarize relevant literature or previous studies that have explored similar or related topics. This helps establish the existing knowledge base and provides a rationale for the hypothesis.

Hypothesis Statement: Present the directional hypothesis clearly and concisely. State the predicted relationship between variables or the expected difference between groups. For example, if studying the impact of a new teaching method on student performance, a directional hypothesis could be, “Students who receive the new teaching method will demonstrate higher test scores compared to students who receive the traditional teaching method.”

Justification: Provide a logical explanation for the directional hypothesis based on the existing literature or theoretical framework . Discuss any previous findings, theories, or empirical evidence that support the predicted direction of the relationship or difference.

Objectives: Outline the specific objectives or aims of the study, which should align with the research question and hypothesis. These objectives help guide the research process and provide a clear focus for the study.

By including these elements in the introduction of a research study, the directional hypothesis is introduced effectively, providing a clear and justified prediction about the expected outcome of the research.

When formulating a directional hypothesis, researchers make a specific prediction about the expected relationship or difference between variables. They specify whether they expect an increase or decrease in the dependent variable, or whether one group will score higher or lower than another group

What is Directional Hypothesis?

With a correlational study, a directional hypothesis states that there is a positive (or negative) correlation between two variables. When a hypothesis states the direction of the results, it is referred to as a directional (one-tailed) hypothesis; this is because it states that the results go in one direction.

Definition:

A directional hypothesis is a one-tailed hypothesis that states the direction of the difference or relationship (e.g. boys are more helpful than girls).

Research Question: Does exercise have a positive impact on mood?

Directional Hypothesis: Engaging in regular exercise will result in an increase in positive mood compared to a sedentary lifestyle.

In this example, the directional hypothesis predicts that regular exercise will have a specific effect on mood, specifically leading to an increase in positive mood. The researcher expects that individuals who engage in regular exercise will experience improvements in their overall mood compared to individuals who lead a sedentary lifestyle.

It’s important to note that this is just one example, and directional hypotheses can be formulated in various research areas and contexts. The key is to make a specific prediction about the direction of the relationship or difference between variables based on prior knowledge or theoretical considerations.

Advantages of Directional Hypothesis

There are several advantages to using a directional hypothesis in research studies. Here are a few key benefits:

Specific Prediction:

A directional hypothesis allows researchers to make a specific prediction about the expected relationship or difference between variables. This provides a clear focus for the study and helps guide the research process. It also allows for more precise interpretation of the results.

Testable and Refutable:

Directional hypotheses can be tested and either supported or refuted by empirical evidence. Researchers can design their study and select appropriate statistical tests to specifically examine the predicted direction of the relationship or difference. This enhances the rigor and validity of the research.

Efficiency and Resource Allocation:

By making a specific prediction, researchers can allocate their resources more efficiently. They can focus on collecting data and conducting analyses that directly test the directional hypothesis, rather than exploring all possible directions or relationships. This can save time, effort, and resources.

Theory Development:

Directional hypotheses contribute to the development of theories and scientific knowledge. When a directional hypothesis is supported by empirical evidence, it provides support for existing theories or helps generate new theories. This advancement in knowledge can guide future research and understanding in the field.

Practical Applications:

Directional hypotheses can have practical implications and applications. If a hypothesis predicts a specific direction of change, such as the effectiveness of a treatment or intervention, it can inform decision-making and guide practical applications in fields such as medicine, psychology, or education.

Enhanced Communication:

Directional hypotheses facilitate clearer communication of research findings. When researchers have made specific predictions about the direction of the relationship or difference, they can effectively communicate their results to both academic and non-academic audiences. This promotes better understanding and application of the research outcomes.

It’s important to note that while directional hypotheses offer advantages, they also require stronger evidence to support them compared to non-directional hypotheses. Researchers should carefully consider the research context, existing literature, and theoretical considerations before formulating a directional hypothesis.

Disadvantages of Directional Hypothesis

While directional hypotheses have their advantages, there are also some potential disadvantages to consider:

Risk of Type I Error:

Directional hypotheses increase the risk of committing a Type I error , also known as a false positive. By focusing on a specific predicted direction, researchers may overlook the possibility of an opposite or null effect. If the actual relationship or difference does not align with the predicted direction, researchers may incorrectly conclude that there is no effect when, in fact, there may be.

Narrow Focus:

Directional hypotheses restrict the scope of investigation to a specific predicted direction. This narrow focus may overlook other potential relationships, nuances, or alternative explanations. Researchers may miss valuable insights or unexpected findings by excluding other possibilities from consideration.

Limited Generalizability:

Directional hypotheses may limit the generalizability of findings. If the study supports the predicted direction, the results may only apply to the specific context and conditions outlined in the hypothesis. Generalizing the findings to different populations, settings, or variables may require further research.

Biased Interpretation:

Directional hypotheses can introduce bias in the interpretation of results. Researchers may be inclined to selectively focus on evidence that supports the predicted direction while downplaying or ignoring contradictory evidence. This can hinder objectivity and lead to biased conclusions.

Increased Sample Size Requirements:

Directional hypotheses often require larger sample sizes compared to non-directional hypotheses. This is because statistical power needs to be sufficient to detect the predicted direction with a reasonable level of confidence. Larger samples can be more time-consuming and resource-intensive to obtain.

Reduced Flexibility:

Directional hypotheses limit flexibility in data analysis and statistical testing. Researchers may feel compelled to use specific statistical tests or analytical approaches that align with the predicted direction, potentially overlooking alternative methods that may be more appropriate or informative.

It’s important to weigh these disadvantages against the specific research context and objectives when deciding whether to use a directional hypothesis. In some cases, a non-directional hypothesis may be more suitable, allowing for a more exploratory and comprehensive investigation of the research question.

Non-Directional Hypothesis:

A non-directional hypothesis, also known as a two-tailed hypothesis, is a type of hypothesis that does not specify the direction of the relationship between variables or the difference between groups. Instead of predicting a specific direction, a non-directional hypothesis suggests that there will be a significant relationship or difference, without indicating whether it will be positive or negative, higher or lower, etc.

The introduction of a non-directional hypothesis in a research study provides an overview of the general prediction being made about the relationship between variables or the difference between groups, without specifying the direction. It sets the stage for the research question and outlines the expectation of a significant relationship or difference. The introduction typically includes the following elements:

Research Context:

Begin by introducing the general topic or research area that the study is focused on. Provide background information and highlight the significance of the research question.

Research Question:

Clearly state the specific research question that the study aims to answer. This question should be directly related to the variables being investigated.

Previous Research:

Summarize relevant literature or previous studies that have explored similar or related topics. This helps establish the existing knowledge base and provides a rationale for the hypothesis.

Hypothesis Statement:

Present the non-directional hypothesis clearly and concisely. State that there is an expected relationship or difference between variables or groups without specifying the direction. For example, if studying the relationship between socioeconomic status and academic achievement, a non-directional hypothesis could be, “There is a significant relationship between socioeconomic status and academic achievement.”

Justification:

Provide a logical explanation for the non-directional hypothesis based on the existing literature or theoretical framework. Discuss any previous findings, theories, or empirical evidence that support the notion of a relationship or difference between the variables or groups.

Objectives:

Outline the specific objectives or aims of the study, which should align with the research question and hypothesis. These objectives help guide the research process and provide a clear focus for the study.

By including these elements in the introduction of a research study, the non-directional hypothesis is introduced effectively, indicating the expectation of a significant relationship or difference without specifying the direction

What is Non-directional hypothesis?

In a non-directional hypothesis, researchers acknowledge that there may be an effect or relationship between variables but do not make a specific prediction about the direction of that effect. This allows for a more exploratory approach to data analysis and interpretation

If a hypothesis does not state a direction but simply says that one factor affects another, or that there is an association or correlation between two variables then it is called a non-directional (two-tailed) hypothesis.

Research Question: Is there a relationship between social media usage and self-esteem ?

Non-Directional Hypothesis: There is a significant relationship between social media usage and self-esteem.

In this example, the non-directional hypothesis suggests that there is a relationship between social media usage and self-esteem without specifying whether higher social media usage is associated with higher or lower self-esteem. The hypothesis acknowledges the possibility of an effect but does not make a specific prediction about the direction of that effect.

It’s important to note that this is just one example, and non-directional hypotheses can be formulated in various research areas and contexts. The key is to indicate the expectation of a significant relationship or difference without specifying the direction, allowing for a more exploratory approach to data analysis and interpretation.

Advantages of Non-directional hypothesis

Non-directional hypotheses, also known as two-tailed hypotheses, offer several advantages in research studies. Here are some of the key advantages:

Flexibility in Data Analysis:

Non-directional hypotheses allow for flexibility in data analysis. Researchers are not constrained by a specific predicted direction and can explore the relationship or difference in various ways. This flexibility enables a more comprehensive examination of the data, considering both positive and negative associations or differences.

Objective and Open-Minded Approach:

Non-directional hypotheses promote an objective and open-minded approach to research. Researchers do not have preconceived notions about the direction of the relationship or difference, which helps mitigate biases in data interpretation. They can objectively analyze the data without being influenced by their initial expectations.

Comprehensive Understanding:

By not specifying the direction, non-directional hypotheses facilitate a comprehensive understanding of the relationship or difference being investigated. Researchers can explore and consider all possible outcomes, leading to a more nuanced interpretation of the findings. This broader perspective can provide deeper insights into the research question.

Greater Sensitivity:

Non-directional hypotheses can be more sensitive to detecting unexpected or surprising relationships or differences. Researchers are not solely focused on confirming a specific predicted direction, but rather on uncovering any significant association or difference. This increased sensitivity allows for the identification of novel patterns and relationships that may have been overlooked with a directional hypothesis.

Replication and Generalizability:

Non-directional hypotheses support replication studies and enhance the generalizability of findings. By not restricting the investigation to a specific predicted direction, the results can be more applicable to different populations, contexts, or conditions. This broader applicability strengthens the validity and reliability of the research.

Hypothesis Generation:

Non-directional hypotheses can serve as a foundation for generating new hypotheses and research questions. Significant findings without a specific predicted direction can lead to further investigations and the formulation of more focused directional hypotheses in subsequent studies.

It’s important to consider the specific research context and objectives when deciding between a directional or non-directional hypothesis. Non-directional hypotheses are particularly useful when researchers are exploring new areas or when there is limited existing knowledge about the relationship or difference being studied.

Disadvantages of Non-directional hypothesis

Non-directional hypotheses have their advantages, there are also some potential disadvantages to consider:

Lack of Specificity: Non-directional hypotheses do not provide a specific prediction about the direction of the relationship or difference between variables. This lack of specificity may limit the interpretability and practical implications of the findings. Stakeholders may desire clear guidance on the expected direction of the effect.

Non-directional hypotheses often require larger sample sizes compared to directional hypotheses. This is because statistical power needs to be sufficient to detect any significant relationship or difference, regardless of the direction. Obtaining larger samples can be more time-consuming, resource-intensive, and costly.

Reduced Precision:

By not specifying the direction, non-directional hypotheses may result in less precise findings. Researchers may obtain statistically significant results indicating a relationship or difference, but the lack of direction may hinder their ability to understand the practical implications or mechanism behind the effect.

Potential for Post-hoc Interpretation:

Non-directional hypotheses can increase the risk of post-hoc interpretation of results. Researchers may be tempted to selectively interpret and highlight only the significant findings that support their preconceived notions or expectations, leading to biased interpretations.

Limited Theoretical Guidance:

Non-directional hypotheses may lack theoretical guidance in terms of understanding the underlying mechanisms or causal pathways. Without a specific predicted direction, it can be challenging to develop a comprehensive theoretical framework to explain the relationship or difference being studied.

Potential Missed Opportunities:

Non-directional hypotheses may limit the exploration of specific directions or subgroups within the data. By not focusing on a specific direction, researchers may miss important nuances or interactions that could contribute to a deeper understanding of the phenomenon under investigation.

It’s important to carefully consider the research question, available literature, and research objectives when deciding whether to use a non-directional hypothesis. Depending on the context and goals of the study, a non-directional hypothesis may be appropriate, but researchers should also be aware of the potential limitations and address them accordingly in their research design and interpretation of results.

Difference between directional and non-directional hypothesis

the main difference between a directional hypothesis and a non-directional hypothesis lies in the specificity of the prediction made about the relationship between variables or the difference between groups.

Directional Hypothesis:

A directional hypothesis, also known as a one-tailed hypothesis, makes a specific prediction about the direction of the relationship or difference. It states the expected outcome, whether it is a positive or negative relationship, a higher or lower value, an increase or decrease, etc. The directional hypothesis guides the research in a focused manner, specifying the direction to be tested.

Example: “Students who receive tutoring will demonstrate higher test scores compared to students who do not receive tutoring.”

A non-directional hypothesis, also known as a two-tailed hypothesis, does not specify the direction of the relationship or difference. It acknowledges the possibility of a relationship or difference between variables without predicting a specific direction. The non-directional hypothesis allows for exploration and analysis of both positive and negative associations or differences.

Example: “There is a significant relationship between sleep quality and academic performance.”

In summary, a directional hypothesis makes a specific prediction about the direction of the relationship or difference, while a non-directional hypothesis suggests a relationship or difference without specifying the direction. The choice between the two depends on the research question, existing literature, and the researcher’s objectives. Directional hypotheses provide a focused prediction, while non-directional hypotheses allow for more exploratory analysis .

When to use Directional Hypothesis?

A directional hypothesis is appropriate to use in specific situations where researchers have a clear theoretical or empirical basis for predicting the direction of the relationship or difference between variables. Here are some scenarios where a directional hypothesis is commonly employed:

Prior Research and Theoretical Framework: When previous studies, existing theories, or established empirical evidence strongly suggest a specific direction of the relationship or difference, a directional hypothesis can be formulated. Researchers can build upon the existing knowledge base and make a focused prediction based on this prior information.

Cause-and-Effect Relationships: In studies aiming to establish cause-and-effect relationships, directional hypotheses are often used. When there is a clear theoretical understanding of the causal relationship between variables, researchers can predict the expected direction of the effect based on the proposed mechanism.

Specific Research Objectives: If the research study has specific objectives that require a clear prediction about the direction, a directional hypothesis can be appropriate. For instance, if the aim is to test the effectiveness of a particular intervention or treatment, a directional hypothesis can guide the evaluation by predicting the expected positive or negative outcome.

Practical Applications: Directional hypotheses are useful when the research findings have direct practical implications. For example, in fields such as medicine, psychology, or education, researchers may formulate directional hypotheses to predict the effects of certain interventions or treatments on patient outcomes or educational achievement.

Hypothesis-Testing Approach: Researchers who adopt a hypothesis-testing approach, where they aim to confirm or disconfirm specific predictions, often use directional hypotheses. This approach involves formulating a specific hypothesis and conducting statistical tests to determine whether the data support or refute the predicted direction of the relationship or difference.

When to use non directional hypothesis?

A non-directional hypothesis, also known as a two-tailed hypothesis, is appropriate to use in several situations where researchers do not have a specific prediction about the direction of the relationship or difference between variables. Here are some scenarios where a non-directional hypothesis is commonly employed:

Exploratory Research:

When the research aims to explore a new area or investigate a relationship that has limited prior research or theoretical guidance, a non-directional hypothesis is often used. It allows researchers to gather initial data and insights without being constrained by a specific predicted direction.

Preliminary Studies:

Non-directional hypotheses are useful in preliminary or pilot studies that seek to gather preliminary evidence and generate hypotheses for further investigation. By using a non-directional hypothesis, researchers can gather initial data to inform the development of more specific hypotheses in subsequent studies.

Neutral Expectations:

If researchers have no theoretical or empirical basis to predict the direction of the relationship or difference, a non-directional hypothesis is appropriate. This may occur in situations where there is a lack of prior research, conflicting findings, or inconclusive evidence to support a specific direction.

Comparative Studies:

In studies where the objective is to compare two or more groups or conditions, a non-directional hypothesis is commonly used. The focus is on determining whether a significant difference exists, without making specific predictions about which group or condition will have higher or lower values.

Data-Driven Approach:

When researchers adopt a data-driven or exploratory approach to analysis, non-directional hypotheses are preferred. Instead of testing specific predictions, the aim is to explore the data, identify patterns, and generate hypotheses based on the observed relationships or differences.

Hypothesis-Generating Studies:

Non-directional hypotheses are often used in studies aimed at generating new hypotheses and research questions. By exploring associations or differences without specifying the direction, researchers can identify potential relationships or factors that can serve as a basis for future research.

Strategies to improve directional and non-directional hypothesis

To improve the quality of both directional and non-directional hypotheses, researchers can employ various strategies. Here are some strategies to enhance the formulation of hypotheses:

Strategies to Improve Directional Hypotheses:

Review existing literature:.

Conduct a thorough review of relevant literature to identify previous research findings, theories, and empirical evidence related to the variables of interest. This will help inform and support the formulation of a specific directional hypothesis based on existing knowledge.

Develop a Theoretical Framework:

Build a theoretical framework that outlines the expected causal relationship between variables. The theoretical framework should provide a clear rationale for predicting the direction of the relationship based on established theories or concepts.

Conduct Pilot Studies:

Conducting pilot studies or preliminary research can provide valuable insights and data to inform the formulation of a directional hypothesis. Initial findings can help researchers identify patterns or relationships that support a specific predicted direction.

Seek Expert Input:

Seek input from experts or colleagues in the field who have expertise in the area of study. Discuss the research question and hypothesis with them to obtain valuable insights, perspectives, and feedback that can help refine and improve the directional hypothesis.

Clearly Define Variables:

Clearly define and operationalize the variables in the hypothesis to ensure precision and clarity. This will help avoid ambiguity and ensure that the hypothesis is testable and measurable.

Strategies to Improve Non-Directional Hypotheses:

Preliminary exploration:.

Conduct initial exploratory research to gather preliminary data and insights on the relationship or difference between variables. This can provide a foundation for formulating a non-directional hypothesis based on observed patterns or trends.

Analyze Existing Data:

Analyze existing datasets to identify potential relationships or differences. Exploratory data analysis techniques such as data visualization, descriptive statistics, and correlation analysis can help uncover initial insights that can guide the formulation of a non-directional hypothesis.

Use Exploratory Research Designs:

Employ exploratory research designs such as qualitative studies, case studies, or grounded theory approaches. These designs allow researchers to gather rich data and explore relationships or differences without preconceived notions about the direction.

Consider Alternative Explanations:

When formulating a non-directional hypothesis, consider alternative explanations or potential factors that may influence the relationship or difference between variables. This can help ensure a comprehensive and nuanced understanding of the phenomenon under investigation.

Refine Based on Initial Findings:

Refine the non-directional hypothesis based on initial findings and observations from exploratory analyses. These findings can guide the formulation of more specific hypotheses in subsequent studies or inform the direction of further research.

In conclusion, both directional and non-directional hypotheses have their merits and are valuable in different research contexts.

 Here’s a summary of the key points regarding directional and non-directional hypotheses:

  • A directional hypothesis makes a specific prediction about the direction of the relationship or difference between variables.
  • It is appropriate when there is a clear theoretical or empirical basis for predicting the direction.
  • Directional hypotheses provide a focused approach, guiding the research towards confirming or refuting a specific predicted direction.
  • They are useful in studies where cause-and-effect relationships are being examined or when specific practical implications are desired.
  • Directional hypotheses require careful consideration of prior research, theoretical frameworks, and available evidence.
  • A non-directional hypothesis does not specify the direction of the relationship or difference between variables.
  • It is employed when there is limited prior knowledge, conflicting findings, or a desire for exploratory analysis.
  • Non-directional hypotheses allow for flexibility and open-mindedness in exploring the data, considering both positive and negative associations or differences.
  • They are suitable for preliminary studies, exploratory research, or when the research question does not have a clear predicted direction.
  • Non-directional hypotheses are beneficial for generating new hypotheses, replication studies, and enhancing generalizability.

In both cases, it is essential to ensure that hypotheses are clear, testable, and aligned with the research objectives. Researchers should also be open to revising and refining hypotheses based on the findings and feedback obtained during the research process. The choice between a directional and non-directional hypothesis depends on factors such as the research question, available literature, theoretical frameworks, and the specific objectives of the study. Researchers should carefully consider these factors to determine the most appropriate type of hypothesis to use in their research

psychologyrocks

Hypotheses; directional and non-directional, what is the difference between an experimental and an alternative hypothesis.

Nothing much! If the study is a true experiment then we can call the hypothesis “an experimental hypothesis”, a prediction is made about how the IV causes an effect on the DV. In a study which does not involve the direct manipulation of an IV, i.e. a natural or quasi-experiment or any other quantitative research method (e.g. survey) has been used, then we call it an “alternative hypothesis”, it is the alternative to the null.

Directional hypothesis: A directional (or one-tailed hypothesis) states which way you think the results are going to go, for example in an experimental study we might say…”Participants who have been deprived of sleep for 24 hours will have more cold symptoms the week after exposure to a virus than participants who have not been sleep deprived”; the hypothesis compares the two groups/conditions and states which one will ….have more/less, be quicker/slower, etc.

If we had a correlational study, the directional hypothesis would state whether we expect a positive or a negative correlation, we are stating how the two variables will be related to each other, e.g. there will be a positive correlation between the number of stressful life events experienced in the last year and the number of coughs and colds suffered, whereby the more life events you have suffered the more coughs and cold you will have had”. The directional hypothesis can also state a negative correlation, e.g. the higher the number of face-book friends, the lower the life satisfaction score “

Non-directional hypothesis: A non-directional (or two tailed hypothesis) simply states that there will be a difference between the two groups/conditions but does not say which will be greater/smaller, quicker/slower etc. Using our example above we would say “There will be a difference between the number of cold symptoms experienced in the following week after exposure to a virus for those participants who have been sleep deprived for 24 hours compared with those who have not been sleep deprived for 24 hours.”

When the study is correlational, we simply state that variables will be correlated but do not state whether the relationship will be positive or negative, e.g. there will be a significant correlation between variable A and variable B.

Null hypothesis The null hypothesis states that the alternative or experimental hypothesis is NOT the case, if your experimental hypothesis was directional you would say…

Participants who have been deprived of sleep for 24 hours will NOT have more cold symptoms in the following week after exposure to a virus than participants who have not been sleep deprived and any difference that does arise will be due to chance alone.

or with a directional correlational hypothesis….

There will NOT be a positive correlation between the number of stress life events experienced in the last year and the number of coughs and colds suffered, whereby the more life events you have suffered the more coughs and cold you will have had”

With a non-directional or  two tailed hypothesis…

There will be NO difference between the number of cold symptoms experienced in the following week after exposure to a virus for those participants who have been sleep deprived for 24 hours compared with those who have not been sleep deprived for 24 hours.

or for a correlational …

there will be NO correlation between variable A and variable B.

When it comes to conducting an inferential stats test, if you have a directional hypothesis , you must do a one tailed test to find out whether your observed value is significant. If you have a non-directional hypothesis , you must do a two tailed test .

Exam Techniques/Advice

  • Remember, a decent hypothesis will contain two variables, in the case of an experimental hypothesis there will be an IV and a DV; in a correlational hypothesis there will be two co-variables
  • both variables need to be fully operationalised to score the marks, that is you need to be very clear and specific about what you mean by your IV and your DV; if someone wanted to repeat your study, they should be able to look at your hypothesis and know exactly what to change between the two groups/conditions and exactly what to measure (including any units/explanation of rating scales etc, e.g. “where 1 is low and 7 is high”)
  • double check the question, did it ask for a directional or non-directional hypothesis?
  • if you were asked for a null hypothesis, make sure you always include the phrase “and any difference/correlation (is your study experimental or correlational?) that does arise will be due to chance alone”

Practice Questions:

  • Mr Faraz wants to compare the levels of attendance between his psychology group and those of Mr Simon, who teaches a different psychology group. Which of the following is a suitable directional (one tailed) hypothesis for Mr Faraz’s investigation?

A There will be a difference in the levels of attendance between the two psychology groups.

B Students’ level of attendance will be higher in Mr Faraz’s group than Mr Simon’s group.

C Any difference in the levels of attendance between the two psychology groups is due to chance.

D The level of attendance of the students will depend upon who is teaching the groups.

2. Tracy works for the local council. The council is thinking about reducing the number of people it employs to pick up litter from the street. Tracy has been asked to carry out a study to see if having the streets cleaned at less regular intervals will affect the amount of litter the public will drop. She studies a street to compare how much litter is dropped at two different times, once when it has just been cleaned and once after it has not been cleaned for a month.

Write a fully operationalised non-directional (two-tailed) hypothesis for Tracy’s study. (2)

3. Jamila is conducting a practical investigation to look at gender differences in carrying out visuo-spatial tasks. She decides to give males and females a jigsaw puzzle and will time them to see who completes it the fastest. She uses a random sample of pupils from a local school to get her participants.

(a) Write a fully operationalised directional (one tailed) hypothesis for Jamila’s study. (2) (b) Outline one strength and one weakness of the random sampling method. You may refer to Jamila’s use of this type of sampling in your answer. (4)

4. Which of the following is a non-directional (two tailed) hypothesis?

A There is a difference in driving ability with men being better drivers than women

B Women are better at concentrating on more than one thing at a time than men

C Women spend more time doing the cooking and cleaning than men

D There is a difference in the number of men and women who participate in sports

Revision Activities

writing-hypotheses-revision-sheet

Quizizz link for teachers: https://quizizz.com/admin/quiz/5bf03f51add785001bc5a09e

By Psychstix by Mandy wood

Share this:

' src=

  • Already have a WordPress.com account? Log in now.
  • Subscribe Subscribed
  • Copy shortlink
  • Report this content
  • View post in Reader
  • Manage subscriptions
  • Collapse this bar

Research Hypothesis In Psychology: Types, & Examples

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

Some key points about hypotheses:

  • A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
  • It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
  • A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
  • Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
  • For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
  • Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

  • Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

Null Hypothesis

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

Directional Hypothesis

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

hypothesis

Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
  • Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
  • However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

How to Write a Hypothesis

  • Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
  • Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
  • Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
  • Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
  • Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

  • The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
  • The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

More Examples

  • Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
  • Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
  • Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
  • Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
  • Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
  • Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
  • Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
  • Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

Print Friendly, PDF & Email

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

non directional hypothesis template

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

directional and non-directional hypothesis in survey

Directional vs Non-Directional Hypothesis – Collect Feedback More Effectively 

To conduct a perfect survey, you should know the basics of good research . That’s why in Startquestion we would like to share with you our knowledge about basic terms connected to online surveys and feedback gathering . Knowing the basis you can create surveys and conduct research in more effective ways and thanks to this get meaningful feedback from your customers, employees, and users. That’s enough for the introduction – let’s get to work. This time we will tell you about the hypothesis .

What is a Hypothesis?

A Hypothesis can be described as a theoretical statement built upon some evidence so that it can be tested as if it is true or false. In other words, a hypothesis is a speculation or an idea, based on insufficient evidence that allows it further analysis and experimentation.  

The purpose of a hypothetical statement is to work like a prediction based on studied research and to provide some estimated results before it ha happens in a real position. There can be more than one hypothesis statement involved in a research study, where you need to question and explore different aspects of a proposed research topic. Before putting your research into directional vs non-directional hypotheses, let’s have some basic knowledge.

Most often, a hypothesis describes a relation between two or more variables. It includes:

An Independent variable – One that is controlled by the researcher

Dependent Variable – The variable that the researcher observes in association with the Independent variable.

Try one of the best survey tools for free!

Start trial period without any credit card or subscription. Easily conduct your research and gather feedback via link, social media, email, and more.

Create first survey

No credit card required · Cancel any time · GDRP Compilant

How to write an effective Hypothesis?

To write an effective hypothesis follow these essential steps.

  • Inquire a Question

The very first step in writing an effective hypothesis is raising a question. Outline the research question very carefully keeping your research purpose in mind. Build it in a precise and targeted way. Here you must be clear about the research question vs hypothesis. A research question is the very beginning point of writing an effective hypothesis.

Do Literature Review

Once you are done with constructing your research question, you can start the literature review. A literature review is a collection of preliminary research studies done on the same or relevant topics. There is a diversified range of literature reviews. The most common ones are academic journals but it is not confined to that. It can be anything including your research, data collection, and observation.

At this point, you can build a conceptual framework. It can be defined as a visual representation of the estimated relationship between two variables subjected to research.

Frame an Answer

After a collection of literature reviews, you can find ways how to answer the question. Expect this stage as a point where you will be able to make a stand upon what you believe might have the exact outcome of your research. You must formulate this answer statement clearly and concisely.

Build a Hypothesis

At this point, you can firmly build your hypothesis. By now, you knew the answer to your question so make a hypothesis that includes:

  • Applicable Variables                     
  • Particular Group being Studied (Who/What)
  • Probable Outcome of the Experiment

Remember, your hypothesis is a calculated assumption, it has to be constructed as a sentence, not a question. This is where research question vs hypothesis starts making sense.

Refine a Hypothesis

Make necessary amendments to the constructed hypothesis keeping in mind that it has to be targeted and provable. Moreover, you might encounter certain circumstances where you will be studying the difference between one or more groups. It can be correlational research. In such instances, you must have to testify the relationships that you believe you will find in the subject variables and through this research.

Build Null Hypothesis

Certain research studies require some statistical investigation to perform a data collection. Whenever applying any scientific method to construct a hypothesis, you must have adequate knowledge of the Null Hypothesis and an Alternative hypothesis.

Null Hypothesis: 

A null Hypothesis denotes that there is no statistical relationship between the subject variables. It is applicable for a single group of variables or two groups of variables. A Null Hypothesis is denoted as an H0. This is the type of hypothesis that the researcher tries to invalidate. Some of the examples of null hypotheses are:

–        Hyperactivity is not associated with eating sugar.

–        All roses have an equal amount of petals.

–        A person’s preference for a dress is not linked to its color.

Alternative Hypothesis: 

An alternative hypothesis is a statement that is simply inverse or opposite of the null hypothesis and denoted as H1. Simply saying, it is an alternative statement for the null hypothesis. The same examples will go this way as an alternative hypothesis:

–        Hyperactivity is associated with eating sugar.

–        All roses do not have an equal amount of petals.

–        A person’s preference for a dress is linked to its color.

Start your research right now: use professional survey templates

  • Brand Awareness Survey
  • Survey for the thesis
  • Website Evaluation Survey

See more templates

Types of Hypothesis

Apart from null and alternative hypotheses, research hypotheses can be categorized into different types. Let’s have a look at them:

Simple Hypothesis:

This type of hypothesis is used to state a relationship between a particular independent variable and only a dependent variable.

Complex Hypothesis:

A statement that states the relationship between two or more independent variables and two or more dependent variables, is termed a complex hypothesis.

Associative and Causal Hypothesis:

This type of hypothesis involves predicting that there is a point of interdependency between two variables. It says that any kind of change in one variable will cause a change in the other one.  Similarly, a casual hypothesis says that a change in the dependent variable is due to some variations in the independent variable.

Directional vs non-directional hypothesis

Directional hypothesis:.

A hypothesis that is built upon a certain directional relationship between two variables and constructed upon an already existing theory, is called a directional hypothesis. To understand more about what is directional hypothesis here is an example, Girls perform better than boys (‘better than’ shows the direction predicted)

Non-directional Hypothesis:

It involves an open-ended non-directional hypothesis that predicts that the independent variable will influence the dependent variable; however, the nature or direction of a relationship between two subject variables is not defined or clear.

For Example, there will be a difference in the performance of girls & boys (Not defining what kind of difference)

As a professional, we suggest you apply a non-directional alternative hypothesis when you are not sure of the direction of the relationship. Maybe you’re observing potential gender differences on some psychological test, but you don’t know whether men or women would have the higher ratio. Normally, this would say that you are lacking practical knowledge about the proposed variables. A directional test should be more common for tests. 

Urszula Kamburov-Niepewna

Author: Ula Kamburov-Niepewna

Updated: 18 November 2022

non directional hypothesis template

Receipt Survey: Customer Feedback at Your Fingertips

With Startquestion, collecting this data is effortless, and our specialists can help implement the receipt surveys in your company.

non directional hypothesis template

How to Build a Successful Closed-Loop Feedback System

A successful closed-loop system enhances the customer experience, drives innovation, strengthens brand loyalty, and boosts the bottom line. Learn how to harness the power of feedback, close the loop, and unlock your business's full potential.

non directional hypothesis template

Customer Journey Map: How to Create Them Easily?

Understanding your customers' experiences can elevate your business from good to great. Customer journey mapping, a powerful visual tool, uncovers every interaction customers have with your brand, highlighting pain points and opportunities for improvement.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Quantitative research questionsQuantitative research hypotheses
Descriptive research questionsSimple hypothesis
Comparative research questionsComplex hypothesis
Relationship research questionsDirectional hypothesis
Non-directional hypothesis
Associative hypothesis
Causal hypothesis
Null hypothesis
Alternative hypothesis
Working hypothesis
Statistical hypothesis
Logical hypothesis
Hypothesis-testing
Qualitative research questionsQualitative research hypotheses
Contextual research questionsHypothesis-generating
Descriptive research questions
Evaluation research questions
Explanatory research questions
Exploratory research questions
Generative research questions
Ideological research questions
Ethnographic research questions
Phenomenological research questions
Grounded theory questions
Qualitative case study questions

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Quantitative research questions
Descriptive research question
- Measures responses of subjects to variables
- Presents variables to measure, analyze, or assess
What is the proportion of resident doctors in the hospital who have mastered ultrasonography (response of subjects to a variable) as a diagnostic technique in their clinical training?
Comparative research question
- Clarifies difference between one group with outcome variable and another group without outcome variable
Is there a difference in the reduction of lung metastasis in osteosarcoma patients who received the vitamin D adjunctive therapy (group with outcome variable) compared with osteosarcoma patients who did not receive the vitamin D adjunctive therapy (group without outcome variable)?
- Compares the effects of variables
How does the vitamin D analogue 22-Oxacalcitriol (variable 1) mimic the antiproliferative activity of 1,25-Dihydroxyvitamin D (variable 2) in osteosarcoma cells?
Relationship research question
- Defines trends, association, relationships, or interactions between dependent variable and independent variable
Is there a relationship between the number of medical student suicide (dependent variable) and the level of medical student stress (independent variable) in Japan during the first wave of the COVID-19 pandemic?

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Quantitative research hypotheses
Simple hypothesis
- Predicts relationship between single dependent variable and single independent variable
If the dose of the new medication (single independent variable) is high, blood pressure (single dependent variable) is lowered.
Complex hypothesis
- Foretells relationship between two or more independent and dependent variables
The higher the use of anticancer drugs, radiation therapy, and adjunctive agents (3 independent variables), the higher would be the survival rate (1 dependent variable).
Directional hypothesis
- Identifies study direction based on theory towards particular outcome to clarify relationship between variables
Privately funded research projects will have a larger international scope (study direction) than publicly funded research projects.
Non-directional hypothesis
- Nature of relationship between two variables or exact study direction is not identified
- Does not involve a theory
Women and men are different in terms of helpfulness. (Exact study direction is not identified)
Associative hypothesis
- Describes variable interdependency
- Change in one variable causes change in another variable
A larger number of people vaccinated against COVID-19 in the region (change in independent variable) will reduce the region’s incidence of COVID-19 infection (change in dependent variable).
Causal hypothesis
- An effect on dependent variable is predicted from manipulation of independent variable
A change into a high-fiber diet (independent variable) will reduce the blood sugar level (dependent variable) of the patient.
Null hypothesis
- A negative statement indicating no relationship or difference between 2 variables
There is no significant difference in the severity of pulmonary metastases between the new drug (variable 1) and the current drug (variable 2).
Alternative hypothesis
- Following a null hypothesis, an alternative hypothesis predicts a relationship between 2 study variables
The new drug (variable 1) is better on average in reducing the level of pain from pulmonary metastasis than the current drug (variable 2).
Working hypothesis
- A hypothesis that is initially accepted for further research to produce a feasible theory
Dairy cows fed with concentrates of different formulations will produce different amounts of milk.
Statistical hypothesis
- Assumption about the value of population parameter or relationship among several population characteristics
- Validity tested by a statistical experiment or analysis
The mean recovery rate from COVID-19 infection (value of population parameter) is not significantly different between population 1 and population 2.
There is a positive correlation between the level of stress at the workplace and the number of suicides (population characteristics) among working people in Japan.
Logical hypothesis
- Offers or proposes an explanation with limited or no extensive evidence
If healthcare workers provide more educational programs about contraception methods, the number of adolescent pregnancies will be less.
Hypothesis-testing (Quantitative hypothesis-testing research)
- Quantitative research uses deductive reasoning.
- This involves the formation of a hypothesis, collection of data in the investigation of the problem, analysis and use of the data from the investigation, and drawing of conclusions to validate or nullify the hypotheses.

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative research questions
Contextual research question
- Ask the nature of what already exists
- Individuals or groups function to further clarify and understand the natural context of real-world problems
What are the experiences of nurses working night shifts in healthcare during the COVID-19 pandemic? (natural context of real-world problems)
Descriptive research question
- Aims to describe a phenomenon
What are the different forms of disrespect and abuse (phenomenon) experienced by Tanzanian women when giving birth in healthcare facilities?
Evaluation research question
- Examines the effectiveness of existing practice or accepted frameworks
How effective are decision aids (effectiveness of existing practice) in helping decide whether to give birth at home or in a healthcare facility?
Explanatory research question
- Clarifies a previously studied phenomenon and explains why it occurs
Why is there an increase in teenage pregnancy (phenomenon) in Tanzania?
Exploratory research question
- Explores areas that have not been fully investigated to have a deeper understanding of the research problem
What factors affect the mental health of medical students (areas that have not yet been fully investigated) during the COVID-19 pandemic?
Generative research question
- Develops an in-depth understanding of people’s behavior by asking ‘how would’ or ‘what if’ to identify problems and find solutions
How would the extensive research experience of the behavior of new staff impact the success of the novel drug initiative?
Ideological research question
- Aims to advance specific ideas or ideologies of a position
Are Japanese nurses who volunteer in remote African hospitals able to promote humanized care of patients (specific ideas or ideologies) in the areas of safe patient environment, respect of patient privacy, and provision of accurate information related to health and care?
Ethnographic research question
- Clarifies peoples’ nature, activities, their interactions, and the outcomes of their actions in specific settings
What are the demographic characteristics, rehabilitative treatments, community interactions, and disease outcomes (nature, activities, their interactions, and the outcomes) of people in China who are suffering from pneumoconiosis?
Phenomenological research question
- Knows more about the phenomena that have impacted an individual
What are the lived experiences of parents who have been living with and caring for children with a diagnosis of autism? (phenomena that have impacted an individual)
Grounded theory question
- Focuses on social processes asking about what happens and how people interact, or uncovering social relationships and behaviors of groups
What are the problems that pregnant adolescents face in terms of social and cultural norms (social processes), and how can these be addressed?
Qualitative case study question
- Assesses a phenomenon using different sources of data to answer “why” and “how” questions
- Considers how the phenomenon is influenced by its contextual situation.
How does quitting work and assuming the role of a full-time mother (phenomenon assessed) change the lives of women in Japan?
Qualitative research hypotheses
Hypothesis-generating (Qualitative hypothesis-generating research)
- Qualitative research uses inductive reasoning.
- This involves data collection from study participants or the literature regarding a phenomenon of interest, using the collected data to develop a formal hypothesis, and using the formal hypothesis as a framework for testing the hypothesis.
- Qualitative exploratory studies explore areas deeper, clarifying subjective experience and allowing formulation of a formal hypothesis potentially testable in a future quantitative approach.

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

VariablesUnclear and weak statement (Statement 1) Clear and good statement (Statement 2) Points to avoid
Research questionWhich is more effective between smoke moxibustion and smokeless moxibustion?“Moreover, regarding smoke moxibustion versus smokeless moxibustion, it remains unclear which is more effective, safe, and acceptable to pregnant women, and whether there is any difference in the amount of heat generated.” 1) Vague and unfocused questions
2) Closed questions simply answerable by yes or no
3) Questions requiring a simple choice
HypothesisThe smoke moxibustion group will have higher cephalic presentation.“Hypothesis 1. The smoke moxibustion stick group (SM group) and smokeless moxibustion stick group (-SLM group) will have higher rates of cephalic presentation after treatment than the control group.1) Unverifiable hypotheses
Hypothesis 2. The SM group and SLM group will have higher rates of cephalic presentation at birth than the control group.2) Incompletely stated groups of comparison
Hypothesis 3. There will be no significant differences in the well-being of the mother and child among the three groups in terms of the following outcomes: premature birth, premature rupture of membranes (PROM) at < 37 weeks, Apgar score < 7 at 5 min, umbilical cord blood pH < 7.1, admission to neonatal intensive care unit (NICU), and intrauterine fetal death.” 3) Insufficiently described variables or outcomes
Research objectiveTo determine which is more effective between smoke moxibustion and smokeless moxibustion.“The specific aims of this pilot study were (a) to compare the effects of smoke moxibustion and smokeless moxibustion treatments with the control group as a possible supplement to ECV for converting breech presentation to cephalic presentation and increasing adherence to the newly obtained cephalic position, and (b) to assess the effects of these treatments on the well-being of the mother and child.” 1) Poor understanding of the research question and hypotheses
2) Insufficient description of population, variables, or study outcomes

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

VariablesUnclear and weak statement (Statement 1)Clear and good statement (Statement 2)Points to avoid
Research questionDoes disrespect and abuse (D&A) occur in childbirth in Tanzania?How does disrespect and abuse (D&A) occur and what are the types of physical and psychological abuses observed in midwives’ actual care during facility-based childbirth in urban Tanzania?1) Ambiguous or oversimplistic questions
2) Questions unverifiable by data collection and analysis
HypothesisDisrespect and abuse (D&A) occur in childbirth in Tanzania.Hypothesis 1: Several types of physical and psychological abuse by midwives in actual care occur during facility-based childbirth in urban Tanzania.1) Statements simply expressing facts
Hypothesis 2: Weak nursing and midwifery management contribute to the D&A of women during facility-based childbirth in urban Tanzania.2) Insufficiently described concepts or variables
Research objectiveTo describe disrespect and abuse (D&A) in childbirth in Tanzania.“This study aimed to describe from actual observations the respectful and disrespectful care received by women from midwives during their labor period in two hospitals in urban Tanzania.” 1) Statements unrelated to the research question and hypotheses
2) Unattainable or unexplorable objectives

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

helpful professor logo

Directional Hypothesis: Definition and 10 Examples

Directional Hypothesis: Definition and 10 Examples

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

Learn about our Editorial Process

directional hypothesis examples and definition, explained below

A directional hypothesis refers to a type of hypothesis used in statistical testing that predicts a particular direction of the expected relationship between two variables.

In simpler terms, a directional hypothesis is an educated, specific guess about the direction of an outcome—whether an increase, decrease, or a proclaimed difference in variable sets.

For example, in a study investigating the effects of sleep deprivation on cognitive performance, a directional hypothesis might state that as sleep deprivation (Independent Variable) increases, cognitive performance (Dependent Variable) decreases (Killgore, 2010). Such a hypothesis offers a clear, directional relationship whereby a specific increase or decrease is anticipated.

Global warming provides another notable example of a directional hypothesis. A researcher might hypothesize that as carbon dioxide (CO2) levels increase, global temperatures also increase (Thompson, 2010). In this instance, the hypothesis clearly articulates an upward trend for both variables. 

In any given circumstance, it’s imperative that a directional hypothesis is grounded on solid evidence. For instance, the CO2 and global temperature relationship is based on substantial scientific evidence, and not on a random guess or mere speculation (Florides & Christodoulides, 2009).

Directional vs Non-Directional vs Null Hypotheses

A directional hypothesis is generally contrasted to a non-directional hypothesis. Here’s how they compare:

  • Directional hypothesis: A directional hypothesis provides a perspective of the expected relationship between variables, predicting the direction of that relationship (either positive, negative, or a specific difference). 
  • Non-directional hypothesis: A non-directional hypothesis denotes the possibility of a relationship between two variables ( the independent and dependent variables ), although this hypothesis does not venture a prediction as to the direction of this relationship (Ali & Bhaskar, 2016). For example, a non-directional hypothesis might state that there exists a relationship between a person’s diet (independent variable) and their mood (dependent variable), without indicating whether improvement in diet enhances mood positively or negatively. Overall, the choice between a directional or non-directional hypothesis depends on the known or anticipated link between the variables under consideration in research studies.

Another very important type of hypothesis that we need to know about is a null hypothesis :

  • Null hypothesis : The null hypothesis stands as a universality—the hypothesis that there is no observed effect in the population under study, meaning there is no association between variables (or that the differences are down to chance). For instance, a null hypothesis could be constructed around the idea that changing diet (independent variable) has no discernible effect on a person’s mood (dependent variable) (Yan & Su, 2016). This proposition is the one that we aim to disprove in an experiment.

While directional and non-directional hypotheses involve some integrated expectations about the outcomes (either distinct direction or a vague relationship), a null hypothesis operates on the premise of negating such relationships or effects.

The null hypotheses is typically proposed to be negated or disproved by statistical tests, paving way for the acceptance of an alternate hypothesis (either directional or non-directional).

Directional Hypothesis Examples

1. exercise and heart health.

Research suggests that as regular physical exercise (independent variable) increases, the risk of heart disease (dependent variable) decreases (Jakicic, Davis, Rogers, King, Marcus, Helsel, Rickman, Wahed, Belle, 2016). In this example, a directional hypothesis anticipates that the more individuals maintain routine workouts, the lesser would be their odds of developing heart-related disorders. This assumption is based on the underlying fact that routine exercise can help reduce harmful cholesterol levels, regulate blood pressure, and bring about overall health benefits. Thus, a direction – a decrease in heart disease – is expected in relation with an increase in exercise. 

2. Screen Time and Sleep Quality

Another classic instance of a directional hypothesis can be seen in the relationship between the independent variable, screen time (especially before bed), and the dependent variable, sleep quality. This hypothesis predicts that as screen time before bed increases, sleep quality decreases (Chang, Aeschbach, Duffy, Czeisler, 2015). The reasoning behind this hypothesis is the disruptive effect of artificial light (especially blue light from screens) on melatonin production, a hormone needed to regulate sleep. As individuals spend more time exposed to screens before bed, it is predictably hypothesized that their sleep quality worsens. 

3. Job Satisfaction and Employee Turnover

A typical scenario in organizational behavior research posits that as job satisfaction (independent variable) increases, the rate of employee turnover (dependent variable) decreases (Cheng, Jiang, & Riley, 2017). This directional hypothesis emphasizes that an increased level of job satisfaction would lead to a reduced rate of employees leaving the company. The theoretical basis for this hypothesis is that satisfied employees often tend to be more committed to the organization and are less likely to seek employment elsewhere, thus reducing turnover rates.

4. Healthy Eating and Body Weight

Healthy eating, as the independent variable, is commonly thought to influence body weight, the dependent variable, in a positive way. For example, the hypothesis might state that as consumption of healthy foods increases, an individual’s body weight decreases (Framson, Kristal, Schenk, Littman, Zeliadt, & Benitez, 2009). This projection is based on the premise that healthier foods, such as fruits and vegetables, are generally lower in calories than junk food, assisting in weight management.

5. Sun Exposure and Skin Health

The association between sun exposure (independent variable) and skin health (dependent variable) allows for a definitive hypothesis declaring that as sun exposure increases, the risk of skin damage or skin cancer increases (Whiteman, Whiteman, & Green, 2001). The premise aligns with the understanding that overexposure to the sun’s ultraviolet rays can deteriorate skin health, leading to conditions like sunburn or, in extreme cases, skin cancer.

6. Study Hours and Academic Performance

A regularly assessed relationship in academia suggests that as the number of study hours (independent variable) rises, so too does academic performance (dependent variable) (Nonis, Hudson, Logan, Ford, 2013). The hypothesis proposes a positive correlation , with an increase in study time expected to contribute to enhanced academic outcomes.

7. Screen Time and Eye Strain

It’s commonly hypothesized that as screen time (independent variable) increases, the likelihood of experiencing eye strain (dependent variable) also increases (Sheppard & Wolffsohn, 2018). This is based on the idea that prolonged engagement with digital screens—computers, tablets, or mobile phones—can cause discomfort or fatigue in the eyes, attributing to symptoms of eye strain.

8. Physical Activity and Stress Levels

In the sphere of mental health, it’s often proposed that as physical activity (independent variable) increases, levels of stress (dependent variable) decrease (Stonerock, Hoffman, Smith, Blumenthal, 2015). Regular exercise is known to stimulate the production of endorphins, the body’s natural mood elevators, helping to alleviate stress.

9. Water Consumption and Kidney Health

A common health-related hypothesis might predict that as water consumption (independent variable) increases, the risk of kidney stones (dependent variable) decreases (Curhan, Willett, Knight, & Stampfer, 2004). Here, an increase in water intake is inferred to reduce the risk of kidney stones by diluting the substances that lead to stone formation.

10. Traffic Noise and Sleep Quality

In urban planning research, it’s often supposed that as traffic noise (independent variable) increases, sleep quality (dependent variable) decreases (Muzet, 2007). Increased noise levels, particularly during the night, can result in sleep disruptions, thus, leading to poor sleep quality.

11. Sugar Consumption and Dental Health

In the field of dental health, an example might be stating as one’s sugar consumption (independent variable) increases, dental health (dependent variable) decreases (Sheiham, & James, 2014). This stems from the fact that sugar is a major factor in tooth decay, and increased consumption of sugary foods or drinks leads to a decline in dental health due to the high likelihood of cavities.

See 15 More Examples of Hypotheses Here

A directional hypothesis plays a critical role in research, paving the way for specific predicted outcomes based on the relationship between two variables. These hypotheses clearly illuminate the expected direction—the increase or decrease—of an effect. From predicting the impacts of healthy eating on body weight to forecasting the influence of screen time on sleep quality, directional hypotheses allow for targeted and strategic examination of phenomena. In essence, directional hypotheses provide the crucial path for inquiry, shaping the trajectory of research studies and ultimately aiding in the generation of insightful, relevant findings.

Ali, S., & Bhaskar, S. (2016). Basic statistical tools in research and data analysis. Indian Journal of Anaesthesia, 60 (9), 662-669. doi: https://doi.org/10.4103%2F0019-5049.190623  

Chang, A. M., Aeschbach, D., Duffy, J. F., & Czeisler, C. A. (2015). Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proceeding of the National Academy of Sciences, 112 (4), 1232-1237. doi: https://doi.org/10.1073/pnas.1418490112  

Cheng, G. H. L., Jiang, D., & Riley, J. H. (2017). Organizational commitment and intrinsic motivation of regular and contractual primary school teachers in China. New Psychology, 19 (3), 316-326. Doi: https://doi.org/10.4103%2F2249-4863.184631  

Curhan, G. C., Willett, W. C., Knight, E. L., & Stampfer, M. J. (2004). Dietary factors and the risk of incident kidney stones in younger women: Nurses’ Health Study II. Archives of Internal Medicine, 164 (8), 885–891.

Florides, G. A., & Christodoulides, P. (2009). Global warming and carbon dioxide through sciences. Environment international , 35 (2), 390-401. doi: https://doi.org/10.1016/j.envint.2008.07.007

Framson, C., Kristal, A. R., Schenk, J. M., Littman, A. J., Zeliadt, S., & Benitez, D. (2009). Development and validation of the mindful eating questionnaire. Journal of the American Dietetic Association, 109 (8), 1439-1444. doi: https://doi.org/10.1016/j.jada.2009.05.006  

Jakicic, J. M., Davis, K. K., Rogers, R. J., King, W. C., Marcus, M. D., Helsel, D., … & Belle, S. H. (2016). Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: The IDEA randomized clinical trial. JAMA, 316 (11), 1161-1171.

Khan, S., & Iqbal, N. (2013). Study of the relationship between study habits and academic achievement of students: A case of SPSS model. Higher Education Studies, 3 (1), 14-26.

Killgore, W. D. (2010). Effects of sleep deprivation on cognition. Progress in brain research , 185 , 105-129. doi: https://doi.org/10.1016/B978-0-444-53702-7.00007-5  

Marczinski, C. A., & Fillmore, M. T. (2014). Dissociative antagonistic effects of caffeine on alcohol-induced impairment of behavioral control. Experimental and Clinical Psychopharmacology, 22 (4), 298–311. doi: https://psycnet.apa.org/doi/10.1037/1064-1297.11.3.228  

Muzet, A. (2007). Environmental Noise, Sleep and Health. Sleep Medicine Reviews, 11 (2), 135-142. doi: https://doi.org/10.1016/j.smrv.2006.09.001  

Nonis, S. A., Hudson, G. I., Logan, L. B., & Ford, C. W. (2013). Influence of perceived control over time on college students’ stress and stress-related outcomes. Research in Higher Education, 54 (5), 536-552. doi: https://doi.org/10.1023/A:1018753706925  

Sheiham, A., & James, W. P. (2014). A new understanding of the relationship between sugars, dental caries and fluoride use: implications for limits on sugars consumption. Public health nutrition, 17 (10), 2176-2184. Doi: https://doi.org/10.1017/S136898001400113X  

Sheppard, A. L., & Wolffsohn, J. S. (2018). Digital eye strain: prevalence, measurement and amelioration. BMJ open ophthalmology , 3 (1), e000146. doi: http://dx.doi.org/10.1136/bmjophth-2018-000146

Stonerock, G. L., Hoffman, B. M., Smith, P. J., & Blumenthal, J. A. (2015). Exercise as Treatment for Anxiety: Systematic Review and Analysis. Annals of Behavioral Medicine, 49 (4), 542–556. doi: https://doi.org/10.1007/s12160-014-9685-9  

Thompson, L. G. (2010). Climate change: The evidence and our options. The Behavior Analyst , 33 , 153-170. Doi: https://doi.org/10.1007/BF03392211  

Whiteman, D. C., Whiteman, C. A., & Green, A. C. (2001). Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes & Control, 12 (1), 69-82. doi: https://doi.org/10.1023/A:1008980919928

Yan, X., & Su, X. (2009). Linear regression analysis: theory and computing . New Jersey: World Scientific.

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 10 Reasons you’re Perpetually Single
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 20 Montessori Toddler Bedrooms (Design Inspiration)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 21 Montessori Homeschool Setups
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 101 Hidden Talents Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

non directional hypothesis template

Reference Library

Collections

  • See what's new
  • All Resources
  • Student Resources
  • Assessment Resources
  • Teaching Resources
  • CPD Courses
  • Livestreams

Study notes, videos, interactive activities and more!

Psychology news, insights and enrichment

Currated collections of free resources

Browse resources by topic

  • All Psychology Resources

Resource Selections

Currated lists of resources

Non-Directional Hypothesis

A non-directional hypothesis is a two-tailed hypothesis that does not predict the direction of the difference or relationship (e.g. girls and boys are different in terms of helpfulness).

  • Share on Facebook
  • Share on Twitter
  • Share by Email

Research Methods: MCQ Revision Test 1 for AQA A Level Psychology

Topic Videos

Example Answers for Research Methods: A Level Psychology, Paper 2, June 2018 (AQA)

Exam Support

Example Answer for Question 14 Paper 2: AS Psychology, June 2017 (AQA)

Model answer for question 11 paper 2: as psychology, june 2016 (aqa), a level psychology topic quiz - research methods.

Quizzes & Activities

Our subjects

  • › Criminology
  • › Economics
  • › Geography
  • › Health & Social Care
  • › Psychology
  • › Sociology
  • › Teaching & learning resources
  • › Student revision workshops
  • › Online student courses
  • › CPD for teachers
  • › Livestreams
  • › Teaching jobs

Boston House, 214 High Street, Boston Spa, West Yorkshire, LS23 6AD Tel: 01937 848885

  • › Contact us
  • › Terms of use
  • › Privacy & cookies

© 2002-2024 Tutor2u Limited. Company Reg no: 04489574. VAT reg no 816865400.

Directional vs. Non-Directional Hypothesis in Research

In the world of research and statistical analysis, formulating hypotheses is a crucial step in the scientific process. Hypotheses guide researchers in making predictions and testing relationships between variables. When it comes to hypotheses, there are two main types: directional and non-directional.

Directional Hypothesis

A directional hypothesis, also known as a one-tailed hypothesis, is formulated with a specific predicted direction of the relationship between variables. It indicates an expectation of the relationship being either positive or negative.

Example of Directional Hypothesis

Advantages of directional hypothesis, non-directional hypothesis.

Non-directional hypotheses are often used when there is insufficient prior knowledge or theoretical basis to predict the direction of the relationship. It allows for a more exploratory approach, where the researcher is open to discovering the nature of the relationship through data analysis .

Example of Non-Directional Hypothesis

Read More: Population vs Sample | Examples

Advantages of Non-Directional Hypothesis:

Difference between directional and non-directional hypotheses.

Choosing Between Directional and Non-Directional Hypotheses: The choice between a directional and non-directional hypothesis depends on the research question, existing knowledge, and theoretical background. Here are a few considerations for selecting the appropriate type of hypothesis:

Directional vs. Non-Directional Hypothesis

AspectDirectional HypothesisNon-Directional Hypothesis
Specifies the expected direction of the effectDoes not specify the expected direction
One-tailed (focuses on one direction)Two-tailed (considers both positive and negative effects)
Often based on prior research or theoryMay lack prior knowledge or theoretical basis
Higher power to detect the specified directionPower is divided between both directions
Less flexible in exploring alternative outcomesMore flexible in considering different outcomes.
Higher confidence in the predicted directionEqual confidence in both positive and negative effects

Directional hypotheses offer specific predictions about the expected direction of the relationship, whereas non-directional hypotheses allow for more exploratory investigations without preconceived notions of the direction.

Remember, hypotheses serve as a roadmap for research, and regardless of their type, they play a crucial role in scientific inquiry and the pursuit of knowledge.

Other articles

Related posts, types of research questions, 8 types of validity in research | examples, operationalization of variables in research | examples | benefits, 10 types of variables in research: definitions and examples, what is a theoretical framework examples, types of reliability in research | example | ppt, independent vs. dependent variable, 4 research proposal examples | proposal sample, how to write a literature review in research: a step-by-step guide, how to write an abstract for a research paper, leave a reply cancel reply.

  • Dissertation Proofreading and Editing
  • Dissertation Service
  • Dissertation Proposal Service
  • Dissertation Chapter
  • Dissertation Topic and Outline
  • Statistical Analysis Services
  • Model Answers and Exam Notes
  • Dissertation Samples
  • Essay Writing Service
  • Assignment Service
  • Report Service
  • Coursework Service
  • Literature Review Service
  • Reflective Report Service
  • Presentation Service
  • Poster Service
  • Criminal Psychology Dissertation Topics | List of Trending Ideas With Research Aims
  • Cognitive Psychology Dissertation Topics | 10 Top Ideas For Research in 2024
  • Social Psychology Dissertation Topics | 10 Latest Research Ideas
  • Top 10 Clinical Psychology Dissertation Topics with Research Aims
  • Educational Psychology Dissertation Topics | 10 Interesting Ideas For Research
  • Customer Service Dissertation Topics | List of Latest Ideas For Students
  • 15 Interesting Music Dissertation Topics
  • Business Intelligence Dissertation Topics | List of Top Ideas With Research Aims
  • Physical Education Dissertation Topics | 15 Interesting Title Examples
  • 15 Top Forensic Science Dissertation Topics with Research Aims
  • Islamic Finance Dissertation Topics | List of 15 Top Ideas With Research Aims
  • Dissertation Examples
  • Dissertation Proposal Examples
  • Essay Examples
  • Report Examples
  • Coursework Examples
  • Assignment Examples
  • Literature Review Examples
  • Dissertation Topic and Outline Examples
  • Dissertation Chapter Examples
  • Dissertation Help
  • Dissertation Topics
  • Academic Library
  • Assignment Plagiarism Checker
  • Coursework Plagiarism Checke
  • Dissertation Plagiarism Checker
  • Thesis Plagiarism Checker
  • Report Plagiarism Checke
  • Plagiarism Remover Service
  • Plagiarism Checker Free Service
  • Turnitin Plagiarism Checker Free Service
  • Free Plagiarism Checker for Students
  • Difference Between Paraphrasing & Plagiarism
  • Free Similarity Checker
  • How Plagiarism Checkers Work?
  • How to Cite Sources to Avoid Plagiarism?
  • Free Topics
  • Get a Free Quote

Premier-Dissertations-Logo-1

  • Report Generating Service
  • Model Answers and Exam Notes Writing
  • Reflective or Personal Report Writing
  • Poster Writing
  • Literature Review Writing
  • Premier Sample Dissertations
  • Course Work
  • Cognitive Psychology Dissertation Topics
  • Physical Education Dissertation Topics
  • 15 Top Forensic Science Dissertation Topics
  • Top 10 Clinical Psychology Dissertation Topics
  • Islamic Finance Dissertation Topics
  • Social Psychology Dissertation Topics
  • Educational Psychology Dissertation Topics
  • Business Intelligence Dissertation Topics
  • Customer Service Dissertation Topics
  • Criminal Psychology Dissertation Topics

non directional hypothesis template

  • Literature Review Example
  • Report Example
  • Assignment Example
  • Coursework Example

non directional hypothesis template

  • Coursework Plagiarism Checker
  • Turnitin Plagiarism Checker
  • Paraphrasing and Plagiarism
  • Best Dissertation Plagiarism Checker
  • Report Plagiarism Checker
  • Similarity Checker
  • Plagiarism Checker Free
  • FREE Topics

Get an experienced writer start working

Review our examples before placing an order, learn how to draft academic papers, research hypotheses: directional vs. non-directional hypotheses.

Is AP Psychology Hard? Exploring the Challenges and Rewards

Is AP Psychology Hard? Exploring the Challenges and Rewards

Quantitative Research Titles and Topics

280+ Quantitative Research Titles and Topics

non directional hypothesis template

  • Dissertation

Research Hypotheses: Directional vs. Non-Directional Hypotheses

A research hypothesis is a statement that predicts or expects a relationship between variables, and it is tested through research. To create a hypothesis, researchers often review existing literature on the topic. This hypothesis is based on theories, observations, or empirical evidence. It guides the research process, including experiment design, data collection, and analysis. Ultimately, the hypothesis aims to predict the outcome of the study.

What is a Hypothesis in a Dissertation?

This article compares directional and non-directional hypotheses and provides guidelines for writing an effective hypothesis in research. The study explores the differences in predictions and research design implications between the two hypotheses.

3-Step  Dissertation Process!

non directional hypothesis template

Get 3+ Topics

non directional hypothesis template

Dissertation Proposal

non directional hypothesis template

Get Final Dissertation

Types of hypothesis.

There are two main types of hypotheses in research:

Null Hypothesis (H0) 

The null hypothesis is the default assumption in statistical analysis that there is no significant relationship or effect between the variables being studied. It suggests that any observed differences or relationships are due to chance.

Alternative Hypothesis (Ha or H1)

The alternative hypothesis proposes a significant relationship or effect between variables, contradicting the null hypothesis. It reflects the researcher's expectations based on existing theories or observations.

What is Directional Hypotheses?

A directional hypothesis is a type of hypothesis that is used to predict a specific change or outcome in a research study. It is typically used when researchers have a clear idea of the direction in which they expect their results to go, either an increase or decrease, and want to test this prediction. By making a directional hypothesis, researchers can focus their research efforts and design studies that are more likely to uncover meaningful results. In essence, a directional hypothesis is a statement that predicts the direction of the change that is expected to occur between two groups or variables that are being investigated.

Examples of Directional Hypothesis

Example 1: Online versus Traditional Classroom Learning

For instance, consider a study comparing the average study time of college students in online courses versus those in traditional classroom settings. Drawing on prior research indicating that online learning might lead to reduced engagement, a potential directional hypothesis could be: "Students enrolled in online classes will spend fewer weekly study hours than those in traditional classrooms."

In this scenario, our hypothesis presents a clear expectation—that the average number of weekly study hours among online learners will be lower than that of traditional learners. If the actual findings reveal no significant difference or even higher study times among online learners, then our hypothesis would be refuted.

Example 2: Carbon Dioxide Levels and Global Warming

A directional hypothesis in this scenario would propose a specific change in direction between these two variables. For instance, a directional hypothesis might state that as carbon dioxide levels increase, global temperatures will also rise. This hypothesis suggests a causal relationship between the increase in CO2 levels and the phenomenon of global warming, indicating a direction of change in global temperatures corresponding to changes in CO2 levels.

What is a Non-Directional Hypotheses?

In scientific research, a non-directional hypothesis, or null hypothesis, is a statement that suggests the absence of a relationship or difference between the variables being studied. This type of hypothesis is used to test the validity of a research question by assuming that there is no significant effect or relationship between the variables under investigation. The null hypothesis is typically tested against an alternative hypothesis, which proposes that there is a significant effect or relationship between the variables. If the null hypothesis is rejected, it means that there is enough evidence to suggest that the alternative hypothesis is true, and the variables are indeed related or different from each other.

Non-Directional Hypothesis Example

Example: Is there a difference in anxiety levels between students who receive traditional classroom instruction and those who participate in online learning?

In this non-directional hypothesis, researchers are interested in understanding if there's a disparity in anxiety levels between students who are taught in traditional classrooms versus those who learn online. The non-directional hypothesis posits that there won't be any notable variance in anxiety levels between the two groups. This means that the researchers are not predicting whether one group will have higher or lower anxiety levels; rather, they are exploring if there's any difference at all.

Testimonials

Very satisfied students

This is our reason for working. We want to make all students happy, every day. Review us on Sitejabber

Directional vs. Non-Directional Hypotheses in Research

Both directional and non directional hypothesis have their place in research, and choosing the appropriate type depends on the research question being investigated. Researchers can use directional or non-directional hypotheses in their studies, depending on their specific expectations about the relationship between variables. A directional hypothesis predicts a specific direction of change, while a non-directional hypothesis predicts that there will be a difference between groups or conditions without specifying the direction of that difference. It's important to understand the difference between these types of hypotheses to conduct rigorous and insightful research. Directional hypotheses are useful when researchers want to test a specific expectation about the relationship between variables, while non-directional hypotheses are more appropriate when researchers simply want to test if there is any difference between groups or conditions.

How to Write an Effective Hypothesis in Research?

Writing an effective hypothesis involves several key steps to ensure clarity, testability, and relevance to the research question. Here's a guide on how to write an effective hypothesis:

  • Identify the Research Question: Start by clearly defining the research question or problem you want to investigate. Your hypothesis should directly address this question.
  • State the Null Hypothesis: The null hypothesis (H0) is a statement that there is no relationship or effect between the variables being studied. It serves as the default assumption and is typically stated as the absence of an effect or difference.
  • Formulate the Alternative Hypothesis: The alternative hypothesis (H1 or Ha) is the statement that contradicts the null hypothesis and suggests that there is a relationship or effect between the variables. It reflects what you expect to find in your research.
  • Make it Testable: Your hypothesis should be testable through empirical observation or experimentation. This means that there must be a way to collect data or evidence to support or refute the hypothesis.
  • Be Specific and Clear: Clearly state the variables involved and the expected relationship between them. Avoid vague or ambiguous language to ensure that your hypothesis is easy to understand and interpret.
  • Use Quantifiable Terms: Whenever possible, use quantifiable terms or measurable variables in your hypothesis. This makes it easier to collect data and analyze results objectively.
  • Consider the Scope: Ensure that your hypothesis is focused and specific to the research hypothesis at hand. Avoid making broad generalizations that are difficult to test or validate.
  • Revise and Refine: Once you've drafted your hypothesis, review it carefully to ensure accuracy and coherence. Revise as needed to clarify any ambiguities or inconsistencies.

Need Help with Academic Writing? Get a Response within 24 Hours!

How Does It Work ?

non directional hypothesis template

Fill the Form

Please fill the free topic form and share your requirements

non directional hypothesis template

Writer Starts Working

The writer starts to find a topic for you (based on your requirements)

non directional hypothesis template

3+ Topics Emailed!

The writer shared custom topics with you within 24 hours

In conclusion, directional hypotheses predict whether variables will increase or decrease, providing a definite expectation about the direction of the relationship under investigation. Non-directional hypotheses, on the other hand, only claim that there is a difference between variables without specifying the direction of the change, leaving it open to any possibility. Both types of hypotheses play an important role in guiding research investigations and developing testable predictions.

Get 3+ Free   Dissertation Topics within 24 hours?

Your Number

Academic Level Select Academic Level Undergraduate Masters PhD

Area of Research

Editor Arsalan

Editor Arsalan

Related posts.

Dissertation Interview Questions Everything You Need To Know

Dissertation Interview Questions | Everything You Need To Know

Conducting Interviews for Your Dissertation A Comprehensive Guide

Conducting Interviews for Your Dissertation | A Comprehensive Guide

Gibbs' Reflective Cycle

What is Gibbs’ Reflective Cycle and How Can It Benefit You? | Applications and Example

Comments are closed.

Research Hypotheses: Directional vs. Non-Directional Hypotheses

8.3.2 - Hypothesis Testing

Below are the procedures for conducting a hypothesis test for two paired means. This is often referred to as a "paired means \(t\) test," "dependent means \(t\) test," or "matched pairs \(t\) test." 

Data must be paired. The difference between the two groups must be normally distributed in the population or the sample size must be at least 30.

The possible combinations of null and alternative hypotheses are:

Research Question Is the mean difference different from 0? Is the mean difference greater than 0? Is the mean difference less than 0?
Null Hypothesis, \(H_{0}\) \(\mu_d = 0 \) \(\mu_d = 0 \) \(\mu_d = 0 \)
Alternative Hypothesis, \(H_{a}\) \(\mu_d \neq 0 \) \(\mu_d > 0 \) \(\mu_d < 0 \)
Type of Hypothesis Test Two-tailed, non-directional Right-tailed, directional Left-tailed, directional

Where \( \mu_d \) is the hypothesized difference in the population.

The calculation of the test statistic for dependent samples is similar to the calculation you performed earlier in this lesson for a single sample mean. In this formula, \(\overline{x}_d\) is used in place of \(\overline{x}\) and \(s_d\) is used in place of \(s\):

\(t=\frac{\bar{x}_d-\mu_0}{\dfrac{s_d}{\sqrt{n}}}\)

\(\overline{x}_d\) = observed sample mean difference \(\mu_0\) = mean difference specified in the null hypothesis \(s_d\) = standard deviation of the differences \(n\) = sample size (i.e., number of unique individuals)

When testing hypotheses about a mean difference, a \(t\) distribution is used to find the \(p\) value. The degrees of freedom are equal to \(n-1\) where \(n\) is the number of pairs. 

 If \(p \leq \alpha\) reject the null hypothesis. If \(p>\alpha\) fail to reject the null hypothesis.

Based on your decision in Step 4, write a conclusion in terms of the original research question.

8.3.2.1 - Example: Quiz Scores

Below is an example of conducting a paired means \(t\) test by hand using raw data. Next, you will learn how this can be conducted most efficiently in Minitab.

Research question:  Are scores on two quizzes different?

Data were collected from 9 students and a paired means \(t\) test was performed using hand calculations:

Student ID Quiz 1 Quiz 2
001 98 94
002 100 98
003 95 98
004 90 88
005 90 89
006 92 91
007 80 84
008 78 80
009 88 88

There are two assumptions: (1) data are paired and (2) distribution of differences is normally distribution in the population or the sample size is at least 30. The data are paired because for each student we have a quiz 1 and a quiz 2 score. We do not know if the differences are normally distributed in the population and the sample size is small, but in the video above we created a histogram of the differences and found that the sample was approximately normally distributed, so this assumption has been met and we can perform a paired means \(t\) test.

Given \(\mu_d = \mu_1 - \mu_2\), our hypotheses are: \(H_0: \mu_d = 0\) \(H_a: \mu_d \ne 0\)

\(t=\frac{\bar{x}_d-\mu_0}{\frac{s_d}{\sqrt{n}}}\)

Student ID Quiz 1 Quiz 2 Difference (\(X_d\)) \(X_d - \overline{X}_d\) \((X_d - \overline{X}_d)^2\)
001 98 94 4 3.889 15.123
002 100 98 2 1.889 3.568
003 95 98 -3 -3.111 9.679
004 90 88 2 1.889 3.568
005 90 89 1 0.889 0.790
006 92 91 1 0.889 0.790
007 80 84 -4 -4.111 16.901
008 78 80 -2 -2.111 4.457
009 88 88 0 -0.111 0.012

Mean of the differences: \(\overline{X}_d=\frac{\Sigma{X}_d}{n}=\frac{1}{9}\)

For a review of computing standard deviation, see  Lesson 2 .

Sum of squares: \(\Sigma (X_d - \overline{X}_d)^2 = 54.889\)

Standard deviation of the differences: \(s_d=\sqrt{\frac{\sum (X_d-\overline{X}_d)^{2}}{n-1}} = \sqrt{\frac{54.889}{9-1}}=2.619\)

Test statistic: \(t=\frac{\overline{X}_d- \mu_0}{\frac{s_d}{\sqrt{n}}}=\frac{\frac{1}{9}}{\frac{2.619}{\sqrt{9}}}=0.127\)

\(df=n-1=9-1=8\)

We can construct a \(t\) distribution with 8 degrees of freedom and determine what proportion of the curve falls beyond a \(t\) score of 0.127. This is a two-tailed test, so we need to take into account both the left and right sides of the curve. 

Distribution Plot of Density vs X - T, df=8

\(p=0.4510+0.4510=0.9020\)

We will compare our \(p\)-value from step 3 to a standard alpha level of 0.05.

Because \(p>\alpha\), we fail to reject the null hypothesis.

There is not sufficient evidence to state that scores on the two quizzes are different.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Null and Alternative Hypotheses | Definitions & Examples

Null & Alternative Hypotheses | Definitions, Templates & Examples

Published on May 6, 2022 by Shaun Turney . Revised on June 22, 2023.

The null and alternative hypotheses are two competing claims that researchers weigh evidence for and against using a statistical test :

  • Null hypothesis ( H 0 ): There’s no effect in the population .
  • Alternative hypothesis ( H a or H 1 ) : There’s an effect in the population.

Table of contents

Answering your research question with hypotheses, what is a null hypothesis, what is an alternative hypothesis, similarities and differences between null and alternative hypotheses, how to write null and alternative hypotheses, other interesting articles, frequently asked questions.

The null and alternative hypotheses offer competing answers to your research question . When the research question asks “Does the independent variable affect the dependent variable?”:

  • The null hypothesis ( H 0 ) answers “No, there’s no effect in the population.”
  • The alternative hypothesis ( H a ) answers “Yes, there is an effect in the population.”

The null and alternative are always claims about the population. That’s because the goal of hypothesis testing is to make inferences about a population based on a sample . Often, we infer whether there’s an effect in the population by looking at differences between groups or relationships between variables in the sample. It’s critical for your research to write strong hypotheses .

You can use a statistical test to decide whether the evidence favors the null or alternative hypothesis. Each type of statistical test comes with a specific way of phrasing the null and alternative hypothesis. However, the hypotheses can also be phrased in a general way that applies to any test.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

non directional hypothesis template

The null hypothesis is the claim that there’s no effect in the population.

If the sample provides enough evidence against the claim that there’s no effect in the population ( p ≤ α), then we can reject the null hypothesis . Otherwise, we fail to reject the null hypothesis.

Although “fail to reject” may sound awkward, it’s the only wording that statisticians accept . Be careful not to say you “prove” or “accept” the null hypothesis.

Null hypotheses often include phrases such as “no effect,” “no difference,” or “no relationship.” When written in mathematical terms, they always include an equality (usually =, but sometimes ≥ or ≤).

You can never know with complete certainty whether there is an effect in the population. Some percentage of the time, your inference about the population will be incorrect. When you incorrectly reject the null hypothesis, it’s called a type I error . When you incorrectly fail to reject it, it’s a type II error.

Examples of null hypotheses

The table below gives examples of research questions and null hypotheses. There’s always more than one way to answer a research question, but these null hypotheses can help you get started.

( )
Does tooth flossing affect the number of cavities? Tooth flossing has on the number of cavities. test:

The mean number of cavities per person does not differ between the flossing group (µ ) and the non-flossing group (µ ) in the population; µ = µ .

Does the amount of text highlighted in the textbook affect exam scores? The amount of text highlighted in the textbook has on exam scores. :

There is no relationship between the amount of text highlighted and exam scores in the population; β = 0.

Does daily meditation decrease the incidence of depression? Daily meditation the incidence of depression.* test:

The proportion of people with depression in the daily-meditation group ( ) is greater than or equal to the no-meditation group ( ) in the population; ≥ .

*Note that some researchers prefer to always write the null hypothesis in terms of “no effect” and “=”. It would be fine to say that daily meditation has no effect on the incidence of depression and p 1 = p 2 .

The alternative hypothesis ( H a ) is the other answer to your research question . It claims that there’s an effect in the population.

Often, your alternative hypothesis is the same as your research hypothesis. In other words, it’s the claim that you expect or hope will be true.

The alternative hypothesis is the complement to the null hypothesis. Null and alternative hypotheses are exhaustive, meaning that together they cover every possible outcome. They are also mutually exclusive, meaning that only one can be true at a time.

Alternative hypotheses often include phrases such as “an effect,” “a difference,” or “a relationship.” When alternative hypotheses are written in mathematical terms, they always include an inequality (usually ≠, but sometimes < or >). As with null hypotheses, there are many acceptable ways to phrase an alternative hypothesis.

Examples of alternative hypotheses

The table below gives examples of research questions and alternative hypotheses to help you get started with formulating your own.

Does tooth flossing affect the number of cavities? Tooth flossing has an on the number of cavities. test:

The mean number of cavities per person differs between the flossing group (µ ) and the non-flossing group (µ ) in the population; µ ≠ µ .

Does the amount of text highlighted in a textbook affect exam scores? The amount of text highlighted in the textbook has an on exam scores. :

There is a relationship between the amount of text highlighted and exam scores in the population; β ≠ 0.

Does daily meditation decrease the incidence of depression? Daily meditation the incidence of depression. test:

The proportion of people with depression in the daily-meditation group ( ) is less than the no-meditation group ( ) in the population; < .

Null and alternative hypotheses are similar in some ways:

  • They’re both answers to the research question.
  • They both make claims about the population.
  • They’re both evaluated by statistical tests.

However, there are important differences between the two types of hypotheses, summarized in the following table.

A claim that there is in the population. A claim that there is in the population.

Equality symbol (=, ≥, or ≤) Inequality symbol (≠, <, or >)
Rejected Supported
Failed to reject Not supported

Prevent plagiarism. Run a free check.

To help you write your hypotheses, you can use the template sentences below. If you know which statistical test you’re going to use, you can use the test-specific template sentences. Otherwise, you can use the general template sentences.

General template sentences

The only thing you need to know to use these general template sentences are your dependent and independent variables. To write your research question, null hypothesis, and alternative hypothesis, fill in the following sentences with your variables:

Does independent variable affect dependent variable ?

  • Null hypothesis ( H 0 ): Independent variable does not affect dependent variable.
  • Alternative hypothesis ( H a ): Independent variable affects dependent variable.

Test-specific template sentences

Once you know the statistical test you’ll be using, you can write your hypotheses in a more precise and mathematical way specific to the test you chose. The table below provides template sentences for common statistical tests.

( )
test 

with two groups

The mean dependent variable does not differ between group 1 (µ ) and group 2 (µ ) in the population; µ = µ . The mean dependent variable differs between group 1 (µ ) and group 2 (µ ) in the population; µ ≠ µ .
with three groups The mean dependent variable does not differ between group 1 (µ ), group 2 (µ ), and group 3 (µ ) in the population; µ = µ = µ . The mean dependent variable of group 1 (µ ), group 2 (µ ), and group 3 (µ ) are not all equal in the population.
There is no correlation between independent variable and dependent variable in the population; ρ = 0. There is a correlation between independent variable and dependent variable in the population; ρ ≠ 0.
There is no relationship between independent variable and dependent variable in the population; β = 0. There is a relationship between independent variable and dependent variable in the population; β ≠ 0.
Two-proportions test The dependent variable expressed as a proportion does not differ between group 1 ( ) and group 2 ( ) in the population; = . The dependent variable expressed as a proportion differs between group 1 ( ) and group 2 ( ) in the population; ≠ .

Note: The template sentences above assume that you’re performing one-tailed tests . One-tailed tests are appropriate for most studies.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

The null hypothesis is often abbreviated as H 0 . When the null hypothesis is written using mathematical symbols, it always includes an equality symbol (usually =, but sometimes ≥ or ≤).

The alternative hypothesis is often abbreviated as H a or H 1 . When the alternative hypothesis is written using mathematical symbols, it always includes an inequality symbol (usually ≠, but sometimes < or >).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (“ x affects y because …”).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses . In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Turney, S. (2023, June 22). Null & Alternative Hypotheses | Definitions, Templates & Examples. Scribbr. Retrieved September 4, 2024, from https://www.scribbr.com/statistics/null-and-alternative-hypotheses/

Is this article helpful?

Shaun Turney

Shaun Turney

Other students also liked, inferential statistics | an easy introduction & examples, hypothesis testing | a step-by-step guide with easy examples, type i & type ii errors | differences, examples, visualizations, what is your plagiarism score.

Tools, Technologies and Training for Healthcare Laboratories

Westgard

  • Z-Stats / Basic Statistics

Z-8: Two-Sample and Directional Hypothesis Testing

This lesson describes some refinements to the hypothesis testing approach that was introduced in the previous lesson. The truth of the matter is that the previous lesson was somewhat oversimplified in order to focus on the concept and general steps in the hypothesis testing procedure. With that background, we can now get into some of the finer points of hypothesis testing.

EdD, Assistant Professor Clinical Laboratory Science Program, University of Louisville Louisville, Kentucky October 1999

Refinements in calculations, refinements in procedure, a two-tailed test for our mice, a one-tailed test for our mice.

  • Critical t-values for one-tailed and two-tailed tests
  • About the Author

Two sample case

The "two sample case" is a special case in which the difference between two sample means is examined. This sounds like what we did in the last lesson, but we actually looked at the difference between an observed or sample group mean and a control group mean, which was treated as if it were a population mean (rather than an observed or sample mean). There are some fine points that need to be considered about the calculations and the procedure.

Mathematically, there are some differences in the formula that should be used. Recall the form of the equation for calculating a t-value:

where Xbar is the mean of the experimental group, and µ is a population parameter or the mean of the population. In the last lesson, we substituted the control group mean XbarB for µ. However, the control group was actually a sample from the population of all such mice (in this example) and following suit, the experimental group was also just a sample from its population. Phrasing the situation this way, there are now two sets of differences that must be considered: the difference between sample means or XbarA-XbarB and the difference between population means from which these samples came or µA-µB. Those expressions should be substituted into the t calc formula to give the proper mathematical form:

  • In this new equation, the difference between means (Xbar A - XbarB) is called bias and is important in determining test accuracy, so even though this discussion is getting more complicated, the statistic that we are deriving is very important.
  • When the square root is taken, the result is called the standard deviation of the difference between means , SDd , which is shown by the formula:
  • The proper equation for calculating the t-value for the two-sample case then becomes:

Remember the steps for testing a hypothesis are: (1) State the hypotheses; (2) Set the criterion for rejection of Ho; (3) Compute the test statistic; (4) Decide about Ho.

  • The null hypothesis can be stated as: Ho: µA = µB or µA - µB = 0. But it may be more revealing to say Ho: (XbarA-XbarB) - (µA - µB) = 0. The difference between the sample means minus the difference between the population means equals zero.
  • The alternative hypothesis can be stated as: Ha: µA is not equal to µB or Ha: (XbarA-XbarB) - (µA - µB) is not equal to 0, i.e., the means of the two groups are not equal.
  • The criteria for rejection or the alpha level is 0.05.
  • The test statistic is computed as:
  • Since it is hypothesized that the two methods are comparable and the difference between the means of the two populations is zero (µA - µB = 0), the calculation can be simplified as follows:
  • If this t calc is greater than 1.96 then the null hypothesis of no difference can be overturned (p0.05).
  • Even though we have used several different mathematical formulae, the interpretations are the same as before.

Directional hypothesis testing vs non-directional testing

Remember the example of testing the effect of antibiotics on mice in Lesson 7. The point of the study was to find out if the mice who were treated with the antibiotic would outlive those who were not treated (i.e., the control group). Are you surprised that the researcher did not hypothesize that the control group might outlive the treatment group? Would it make any difference in how the hypothesis testing were carried out? These questions raise the issue of directional testing, or one-tailed vs two-tailed tests.

The issue of two-side vs one-side tests becomes important when selecting the critical t-value. In the earlier discussion of this example, the alpha level was set to 0.05, but that 0.05 was actually divided equally between the left and right tails of the distribution curve. The condition being tested is that group A has a "different" life span as compared to group B, which represents a two-tailed test as illustrated in Figure 8-2.

Critical t-values for one-tailed and two tailed tests

This can be confusing and it should be helpful to think about having one or two gates on the curve. For example, for an alpha level of 0.05 and a two-tail test, there are two gates - one at -1.96 and one at +1.96. If you "walk" out of either of those gates, then you have demonstrated significance at p=0.05 or less. For a one-tail test, there is only one gate at +1.65. If you "walk" out of this gate, you have demonstrated significance at p=0.05 or less.

To reiterate, if you are standing right at the gate (1.96) for a two-tail test, then you have just barely met the p=0.05 requirement. However, if you are standing at the 1.96 point when running a one-tail test, then you have already exceeded the 1.65 gate and the probability must be even more significant, say p=0.025. It's important to find the critical t-value that is correct for the intended directional nature of the test.

About the author: Madelon F. Zady

Madelon F. Zady is an Assistant Professor at the University of Louisville, School of Allied Health Sciences Clinical Laboratory Science program and has over 30 years experience in teaching. She holds BS, MAT and EdD degrees from the University of Louisville, has taken other advanced course work from the School of Medicine and School of Education, and also advanced courses in statistics. She is a registered MT(ASCP) and a credentialed CLS(NCA) and has worked part-time as a bench technologist for 14 years. She is a member of the: American Society for Clinical Laboratory Science, Kentucky State Society for Clinical Laboratory Science, American Educational Research Association, and the National Science Teachers Association. Her teaching areas are clinical chemistry and statistics. Her research areas are metacognition and learning theory.

  • "Westgard Rules"
  • Basic QC Practices
  • High Reliability
  • "Housekeeping"
  • Maryland General
  • Method Validation
  • Quality Requirements and Standards
  • Quality of Laboratory Testing
  • Guest Essay
  • Risk Management
  • Sigma Metric Analysis
  • Quality Standards
  • Basic Planning for Quality
  • Basic Method Validation
  • Quality Management
  • Advanced Quality Management / Six Sigma
  • Patient Safety Concepts
  • Quality Requirements
  • CLIA Final Rule
  • Course Orders
  • Feedback Form
  • Open access
  • Published: 03 September 2024

Daily Bi-directional effects of women’s social media-based appearance comparisons, body satisfaction, and disordered eating urges

  • Jade Portingale 1 ,
  • Simone Girardin 1 ,
  • Shanshan Liu 1 ,
  • Matthew Fuller-Tyszkiewicz 2 , 3 &
  • Isabel Krug 1  

Journal of Eating Disorders volume  12 , Article number:  129 ( 2024 ) Cite this article

Metrics details

We assessed the bi-directional relationships between upward appearance comparisons on social media with body dissatisfaction (BD) and disordered eating (DE) in women’s daily lives and the potential moderating effect of trait self-objectification on these relationships. Women ( N  = 315) completed a baseline measure of trait self-objectification, then reported momentary experiences of social media-based appearance comparisons (upward, lateral, downward), body satisfaction, and DE urges (restrict food intake, exercise, overeat) for seven days. We hypothesized that upward (relative to no) comparisons would predict lower body satisfaction and higher DE urges, while lateral and downward (relative to no) comparisons would predict higher body satisfaction and lower DE urges. We expected these relationships to be bi-directional and moderated by trait self-objectification. Multilevel modelling results revealed complex bi-directional relationships. Upward comparisons predicted lower body satisfaction and increased urges to restrict food intake, which in turn predicted increased upward comparisons. Unexpectedly, urges to restrict food intake predicted all comparison types. We observed somewhat unanticipated bi-directional relationships between lateral comparisons and exercise urges, and between downward comparisons and body satisfaction. Uni-directional relationships emerged between upward comparisons and the urge to overeat. Trait self-objectification moderated very few of these relationships. These findings support the non-uniform impact of appearance comparisons on body image and eating concerns and highlight the complexity of daily social media-body image dynamics. Future research using refined measures over extended periods is needed to elucidate these relationships further and inform targeted interventions.

Plain English Summary

This study examined how comparing oneself to others on social media relates to body satisfaction and disordered eating urges in women’s daily lives, and whether self-objectification influences these relationships. For seven days, 315 women reported their social media appearance comparisons, body satisfaction, and urges related to eating and exercise. Results revealed complex, bi-directional relationships. Upward comparisons (viewing others as more attractive) predicted lower body satisfaction and increased urges to restrict food intake, which in turn led to more upward comparisons. Unexpectedly, urges to restrict food intake predicted all types of comparisons. The study found some surprising bi-directional relationships between lateral comparisons and exercise urges, and between downward comparisons and body satisfaction. Self-objectification had limited moderating effects. These findings highlight the intricate dynamics between social media use and body image concerns, emphasizing the need for further research to inform targeted interventions.

Introduction

As of 2023, 80.4% of Australians were active social media users, with adults spending approximately 2.5 h on social media per day [ 1 ]. However, growing research has implicated social media use—specifically, certain forms of engagement and content exposure—in women’s body dissatisfaction (BD) and disordered eating (DE) [ 2 , 3 ]. Online social appearance comparison is argued to be a central mechanism underlying the detrimental impact of women’s social media use on body image and eating concerns [ 2 , 4 ]. Research, although scant, has also suggested that high (relative to low) levels of body image concerns and DE symptoms may increase engagement in appearance comparison [ 5 ].

According to social comparison theory [ 6 ] individuals have an intrinsic desire to evaluate their social standing in various aspects of life and, without objective standards, compare themselves to others. Central to this process is the selection of the comparison target: upward, lateral, or downward which refers to comparisons to other’s self-perceived as better, similar, or less than oneself, respectively (e.g., in terms of physical attractiveness or body weight/shape). Upward comparisons are believed to result in negative body image (e.g., lowered self-perceived attractiveness), whilst downward or lateral comparisons are assumed to improve body image by relieving anxiety about appearance (e.g., weight). Accordingly, research has shown that upward appearance comparisons are associated with body image and eating pathology among women; however, most of these studies were cross-sectional (e.g., [ 7 ]) and very few directly contrasted the effects of different directions of comparisons, with some producing mixed findings [ 8 ]. Moreover, lateral appearance comparisons remain less examined in this realm (e.g. [ 5 ]). Further research is needed to differentiate the direction of appearance comparison in conjunction with other factors, such as the medium of comparison (e.g., online, in-person).

Evidence supports the adverse effect of traditional media (e.g., television, magazines) on women’s body image concerns [ 8 ], though this effect may be amplified by social media use. Unlike traditional media, social media offers women the opportunity to compare their appearance with various known targets (e.g., friends, peers, and family), not just celebrities and strangers [ 9 ]. Research has demonstrated that appearance comparisons to peers are more strongly associated with young women’s body image concerns, presumably because their attractive appearance is perceived to be more personally attainable (and thus, worthy of pursuit) than that of celebrities [ 7 ]. Social media also invites users to create their own content [ 10 ] which could facilitate and enhance the desire to obtain appearance ideals. Moreover, unlike traditional media, social media makes users both constant sources and recipients of appearance-related feedback (e.g., via likes and comments) which may encourage greater appearance comparisons [ 10 , 11 ].

Social media-based appearance comparisons influencing BD and DE

Experimental studies have increasingly shown that frequent upward appearance comparisons on social media led to immediate increases in negative mood and BD (e.g., [ 12 , 13 ]). However, these studies often lack ecological validity. A handful of studies have explored whether these lab-based effects generalise to patterns of behaviour in daily life using ecological momentary assessment (EMA) methodology. EMA involves collecting self-report data on current affective and cognitive states and recent behaviours. These studies demonstrated that women were more likely to make upward (relative to downward or lateral) comparisons and these tended to have the most adverse impact on BD and DE outcomes (e.g., [ 11 , 14 , 15 , 16 , 17 ]).

To date, only one EMA study by Fardouly et al. [ 11 ] has assessed whether and how the context of appearance comparison (social media, magazines, in-person) affected appearance satisfaction, mood, and diet and exercise thoughts and behaviours. This study ( N  = 146) demonstrated that undergraduate women engaged in more appearance comparison through social media than traditional media and that upward appearance comparisons through social media were associated with more appearance dissatisfaction and thoughts about dieting and exercise (than in-person comparisons) and more negative mood (than comparisons in any other context). This small body of research suggests that upward social media-based appearance comparisons may be particularly harmful to young women’s physical and mental health.

BD and DE influencing social media-based appearance comparisons

Theoretically, momentary experiences of BD and DE may foster or heighten one’s desire to compare themselves against the standard they aspire to or display selective attention towards individuals they perceive as more attractive due to an underlying tendency to engage in behaviours that confirm their dysfunctional, negative body-related schema. However, the effects of BD and DE on appearance comparison have been comparatively less examined. Nonetheless, in a review of EMA-based studies, Fuller-Tyszkiewicz [ 5 ] noted that individuals with elevated DE pathology and/or body dissatisfaction are more likely to report more frequent upward appearance comparisons. These findings suggest a bi-directional relationship between BD/DE and upward appearance comparisons that may reinforce these negative experiences [ 5 ].

Moderating effect of self-objectification

Although informative, social comparison theory [ 6 ] does not explain why certain women are particularly susceptible to increases in BD and DE after engaging in appearance comparisons [ 18 ]. Fredrickson and Roberts’ [ 19 ] objectification theory offers a complementary perspective for elucidating this individual variability. The theory proposes that women in cultures that sexualize the female body are socialized to internalize an observer’s perspective, self-objectifying by habitually monitoring and evaluating their appearance against idealized media standards.

Strelan and Hargreaves’ [ 20 ] ‘circle of objectification’ theory suggests a bidirectional, cyclical relationship between this self-objectification and negative psychological consequences like BD and DE. Empirically, self-objectification has been linked to heightened BD [ 20 ] and DE symptoms [ 21 ], moderating relationships between specific appearance-focused behaviours like posting selfies and eating disorder symptoms [ 22 ].

Integrating social comparison and objectification theories may increase understanding of processes underlying appearance-related body image disturbances in women [ 23 ]. Theoretically, trait-level (i.e., stable) self-objectification may moderate (strengthen) the relationship between appearance comparisons and body image/eating concerns (and vice versa). Specifically, those high in self-objectification may place greater importance on appearance, potentially amplifying the negative impact of upward comparisons relative to those low in self-objectification. Empirically, Yang et al. [ 24 ] found that self-objectification moderated (strengthened) the indirect relationship between selfie viewing and BD via appearance comparisons.

The current study

The present study was the first to use EMA to examine the bi-directional relationships between social media-based appearance comparisons (upward, lateral, downward) with body satisfaction and DE throughout daily life in a community-based sample of women. We also explored a premise of the ‘circle of objectification’ [ 20 ] theory by examining the novel moderating effect of self-objectification on these relationships. Given our community-based sample, urges to engage in DE were measured as a substitute for actual engagement, as the former has been shown to precede the latter and may shed light on the aetiology of eating disorders [ 25 ]. We separated DE into the urge to restrict food intake, exercise, and overeat which are common DE practices used to address BD and control body weight/shape among women from the general community (e.g., [ 14 ]).

We hypothesized that engaging in upward social media-based appearance comparisons (relative to no comparison) would predict lower levels of body satisfaction and higher levels of DE urges at the state level, while lateral or downward comparisons (relative to no comparison) would have opposite effects on body satisfaction and DE urges (H1). We expected these state-level relationships to be bidirectional (H2). Additionally, we explored the potential moderating role of trait-based self-objectification in these relationships. While we anticipated that self-objectification would amplify the effects of upward comparisons, its impact on lateral and downward comparisons was less clear. Therefore, we examined whether trait-level self-objectification would moderate the associations between all types of appearance comparisons and body satisfaction/DE urges (H3a), as well as their reciprocal influences (H3b), without specifying directional hypotheses for lateral and downward comparisons.

Participants

Following ethical approval from a university in Melbourne, we recruited participants from the Research Experience Program (REP) at the university and various sources within the broader community via online advertisements, including social media posts. From 2019 to 2022, 779 women signed up for the study, of which 488 completed both baseline and EMA surveys; however, 173 were excluded as they completed less than 50% of the EMA surveys. This approach was employed to reduce potentially biased results due to missing data (Shiffman et al., 2008) by preserving a spacing of 1–2 h between assessment intervals. This ensured that the participants retained in the sample completed a comparable number of surveys to related studies that have observed effects between EMA-assessed variables within the body image and eating disorder literature [ 5 ]. Lastly, 58 participants were excluded as they did not engage in appearance comparisons during the EMA phase.

As displayed in Table  1 , retained participants and those excluded due to low compliance did not significantly differ in sociodemographic variables apart from age, the highest level of education completed, and sexual orientation. Retained participants were more likely to be younger and pansexual, whilst excluded participants were more likely to sexually identify as ‘other’ and have a Bachelor’s degree. The final sample comprised 315 participants. On average, women were 20 years old with a body mass index (BMI) of 21.9. Most participants were Caucasian or Asian, spoke English as their primary language, were heterosexual, single, and had completed year 12 or below. Moreover, 30% of participants were classified as at-risk for an eating disorder according to the Eating Attitude Test-26 (EAT-26; [ 26 ]) and 8% reported a lifetime eating disorder diagnosis.

Baseline and trait-based measures

Demographics . Participants provided self-report information regarding age, weight and height (to calculate BMI; kg/m 2 ), primary language, the highest level of education completed, ethnicity, marital status, sexual orientation, and lifetime eating disorder diagnosis.

Self-objectification . The Self-Objectification Questionnaire (SOQ; [ 27 ]) was used to assess participant’s trait-level self-objectification. Participants ranked 12 body attributes based on importance to their self-concept along a 12-point response scale from 1 ( least impact ) to 12 ( greatest impact ). Scores were computed by subtracting the sum of the six competence-based attributes (e.g., health, muscular strength etc.) from the sum of the six appearance-based attributes (e.g., sex appeal, physical attractiveness etc.). Scores ranged from − 36 to 36, with higher scores indicating greater self-objectification. Construct validity for this measure has been verified [ 27 ].

Eating disorder risk . Participants also completed the Eating Attitudes Test-26 (EAT-26; [ 26 ]), which assessed their attitudes and behaviours related to eating: 26 items were rated on a 6-point scale from 0 ( never ) to 5 ( always ). A total score ≥ 20 indicated a high level of eating disorder risk [ 26 ]. Internal consistency in the current study was strong: omega = 0.95.

State-based measures

Social media-based appearance comparisons . Participants’ engagement in appearance comparisons was measured by first asking “ Since the last survey , how much have you engaged in appearance comparisons?” which was rated on an 11-point response scale from 0 ( not at all ) to 10 ( constantly ). Participants who made appearance comparisons (i.e., scored ≥ 1) were asked two additional questions regarding their most recent comparison: (1) “ In what context was this made?” with response options of social media (e.g., Facebook, Instagram etc.), magazine, television/movie, in person, or other; and (ii) “ How did you think you looked compared to the other individual? ”, with responses rated on a 5-point response scale ( much worse , worse , the same , better , or much better ). For our study, analyses were restricted to social media-based comparisons. For the direction-of-comparison measure, responses of worse and much worse were coded as upward comparisons; responses of same were coded as lateral comparisons; and responses of better and much better were coded as downward comparisons. These items have been successfully utilised in previous EMA studies [ 11 ].

Body satisfaction . Body satisfaction was measured using the item “How satisfied are you with your body right now?” , rated on an 11-point response scale from 0 ( not at all ) to 10 ( completely satisfied ). This single-item approach has been shown to capture momentary fluctuations in body satisfaction in prior EMA studies [ 28 , 29 ].

Urges to engage in disordered eating . DE urges were captured by asking participants whether they experienced an urge since the last survey to (1) “consciously restrict food intake to control weight/shape” (restrict food intake); (2) “eat a large amount of food relative to what others would eat in the same situation/time” (overeat); or (3) “engage in at least 15 minutes of exercise to control weight/shape” (exercise). Items were scored 1 ( yes ) and 0 ( no ). All current DE items have been previously utilised in EMA studies assessing DE urges [ 28 , 29 , 30 ].

The university’s ethics committee approved this study. Participants were provided with a web link to access the online survey platform, Qualtrics. After consenting, participants received a self-generated unique identifier and then completed the baseline survey collecting demographic information and trait-based (self-objectification, eating disorder risk) measures. Following completion, participants were emailed comprehensive instructions on how to use the custom-built EMA smartphone application, SEMA3 [ 31 ]. SEMA3 generated a unique code per participant which the researcher manually entered into Qualtrics to link the baseline and EMA data. Participants were asked to engage with the survey as much as possible and advised that their compliance was monitored; those with low compliance (< 50%) were emailed friendly reminders to complete more surveys.

Designed to commence the morning after completion of the baseline survey, SEMA3 initiated push notifications at semi-random intervals, six times a day, between 9:00 AM and 10:00 PM, for seven days (maximum 42 assessments). At each signal, participants were asked to complete a 2-minute assessment of appearance comparison, body satisfaction, and DE urges. Random interval scheduling functioned to optimise the representativeness of the sample and reduce habituation, and the brief design was intended to minimise participant burden [ 32 ]. Upon completion of the entire study, REP-based participants received 2 units of course credit, whilst community-based participants entered a draw to win one of five $100 (AUD) vouchers.

Data analytical plan

Data screening and preliminary analyses.

Data pre-processing and analyses were performed in R version 4.0.3 [ 33 ]. The quality of the baseline and EMA-based data was examined before running the main analysis. As the baseline survey required complete responses (i.e., participants who failed to complete the baseline survey were removed from the sample), trait self-objectification data was not missing. There was no missing state-based (Level 1) within time points as participants either completed or did not start an EMA survey, and we did not impute for the EMA time points that were omitted. Although time points may have been missed due to a significant event (e.g., binge episode) or demographic trait (e.g., age) this cannot be ascertained directly from the data. To rectify this, we assessed reporting bias by correlating compliance (i.e., the proportion of EMA-based surveys completed out of the possible 42) with scores on demographic and trait (eating disorder risk) variables [ 34 ] and found no real basis for bias.

State-based outcome measures in the current hypotheses (social media-based appearance comparison, body satisfaction, DE urges) were examined for reactivity and time-related effects, on the presumption that these outcomes may vary depending on the time of the day, day of the week, and order of the assessment across the total 7-day period (i.e., Day 1, Day 2 etc.; [ 35 ]). Any significant time-related or reactivity effects were retained as covariates in the final models to account for any effects on the outcome measures. Order of assessment and/or time of day were identified as significant across different models. Results of these analyses may be obtained from the corresponding author upon reasonable request.

Hypothesis testing

Given the hierarchical nature of EMA data, multilevel modelling was deemed most suitable for our analysis [ 36 ]. Our main analyses (Hypotheses 1 and 2) focused on within-person effects to examine how momentary changes in our variables of interest related to subsequent changes in outcomes. Hypotheses regarding state-based associations [Hypotheses 1 (appearance comparison ◊ body satisfaction/DE urges) and 2 (body satisfaction/DE urges ◊ appearance comparisons)] involved regressing outcome variables onto predictor variables at the previous time point to enable the evaluation of prospective effects. In these models, predictor variables were group-mean-centred to disambiguate within-person effects. As the EMA items for appearance comparisons referred to behaviour since the prior assessment point, scores on body satisfaction and DE urges when modelled as predictors were lagged ( t – 1) to ensure that predictor data reflected time preceding outcome data, which is consistent with prior EMA research [ 5 ]. The lmer function with a Gaussian distribution was used for continuous outcomes (body satisfaction), while the glmer function with a binomial distribution was used for binary outcomes (social media-based appearance comparisons; DE urges). Bi-directionality was inferred from two significant uni-directional relationships for the relevant variables.

In all models, comparisons (upward; downward; lateral) concerned those made via social media. To test Hypothesis 3, we examined cross-level interactions by including interaction terms with trait self-objectification (a between-person variable) in a subsequent step. This allowed us to investigate how a stable individual difference factor might moderate the within-person relationships explored in Hypotheses 1 and 2. Effect sizes for odds ratios (ORs) were interpreted according to Cohen’s [ 37 ] rule of thumb: OR = 1.68, 3.47, and 6.71 where equivalent to Cohen’s d  = 0.2 (small), 0.5 (medium), and 0.8 (large), ORs less than 1 (indicating a negative association) were converted into numbers greater than 1 (positive association) to assist with comparability across ORs.

Power analyses

Using the powerlmm package [ 38 ] in R to estimate post hoc power for a multilevel model, the final sample of 315 participants was deemed sufficient to detect small effects (> 5% variance explained) with > 0.80 power (alpha = 0.05) under the following plausible assumptions: (1) intraclass correlations ranging 0.4–0.7; (2) average cluster size of 25–34 reflecting EMA compliance rates of ~ 60%–~80%; and (3) small variance in random slope for Level 1 effects. These effects are consistent with the results from EMA studies on body image (e.g., [ 28 ]).

Preliminary analysis

Participants in the final sample ( N  = 315) completed an average of 33.4 ( SD  = 5.85) out of 42 possible EMA surveys (78.8%) across the 7-day assessment period. Compliance rates were not significantly related to trait self-objectification ( r  = .00, p  = .970), age ( r  = .05, p  = .388), BMI ( r  = − .03, p  = .604), primary language ( t = -0.78, p  = .437), ethnicity ( F  = 0.39, p  = .817), educational attainment ( F  = 0.13, p  = .941), sexual orientation ( F  = 1.06, p  = .383), marital status ( F  = 2.01, p  = .112), eating disorder risk ( t  = 1.44, p  = .153), or lifetime eating disorder diagnosis ( t = -0.32, p  = .752). Before exclusions, the full sample ( N  = 488) completed an average of 28.3 ( SD  = 11.3) out of 42 surveys (67.4%). In this sample, only sexual orientation was significantly related to compliance ( F  = 2.72, p  = .046). Full compliance analyses for all variables are available in the Supplementary Material.

Descriptive statistics

As displayed in Table  2 , across the sample, at the state level, levels of body satisfaction were slightly below the scale’s midpoint. Regarding DE urges, those to restrict food intake were reported the most frequently, followed by urges to exercise, and lastly urges to overeat. Upward social media-based appearance comparisons were reported most frequently, followed by lateral comparisons which were recorded approximately a third of as much of the time. Downward social media-based appearance comparisons were reported the least frequently. At the trait level, the sample as a whole reported levels of self-objectification that were above the scale’s midpoint (i.e., suggesting a general tendency to self-objectify).

Before removing participants who did not engage in social media-based appearance comparisons across the EMA phase, we also compared appearance comparisons across contexts (in-person, traditional media, social media, and ‘other’). The frequency of appearance comparisons on social media far exceeded any other context, but the direction of these comparisons (upward, lateral, downward) was comparable across contexts (data available upon request from the corresponding author).

Multilevel models

Upward , lateral , and downward appearance comparisons predicting body satisfaction and de urges at the state level (h1).

All effects reported in Tables  3 and 4 represent within-person associations. As shown in Table  3 , engaging in upward social media-based appearance comparisons, relative to no comparison, predicted a subsequent decrease in state body satisfaction and an increase in urges to restrict food intake, exercise, and overeat. Additionally, engaging in lateral and downward comparisons, relative to no comparison, predicted a subsequent increase in state body satisfaction. Unexpectedly, lateral and downward comparisons, relative to no comparison, also predicted a subsequent increase in urges to exercise. Lateral and downward comparisons did not significantly predict changes in urges to restrict food intake or overeat. Effect sizes for most significant associations were small.

Body satisfaction and DE urges predicting upward , lateral , and downward appearance comparisons at the state level (H2)

As displayed in Table  4 , lower levels of state body satisfaction predicted an increased likelihood of engaging in upward and downward social media-based appearance comparison, relative to no comparison. Higher levels of urges to restrict food intake predicted an increased likelihood of engaging in all types of social media-based appearance comparison (upward, lateral, and downward), relative to no comparison. A stronger urge to exercise was associated with increased odds of lateral comparison versus no comparison. Effect sizes for these significant associations were negligible to small, except for the association between urge to restrict food intake and downward comparison, which was medium (OR = 4.87). No other predictor effects were significant.

Moderating effect of trait-based self-objectification (H3)

As seen in Tables  5 and 6 depicting cross-level interactions, trait self-objectification (between-person) significantly moderated only four of the possible 24 within-person state-based effects of appearance comparisons on body satisfaction and DE urges (H1) and vice versa (H2). Specifically, trait self-objectification moderated the effect of lateral comparisons (relative to no comparison) on state body satisfaction. Higher trait self-objectification was associated with a stronger positive relationship between lateral comparisons and state body satisfaction, though the effect size was negligible. Additionally, trait self-objectification moderated the effect of state body satisfaction on engagement in upward comparisons (relative to no comparison). For individuals with higher trait self-objectification, lower state body satisfaction was more strongly associated with an increased likelihood of engaging in upward comparisons, though the effect size was negligible. Furthermore, trait self-objectification moderated the effect of the urge to overeat on engagement in both upward and lateral comparisons (relative to no comparison). Higher trait self-objectification was associated with greater odds of engaging in upward and lateral comparisons when experiencing urges to overeat. No other moderation effects were significant, indicating that the relationship between appearance comparisons and body satisfaction/DE urges, as well as the reverse relationships, were mostly consistent across levels of trait self-objectification.

The present study was the first to use EMA to examine the bi-directional relationships between social media-based appearance comparison (upward, lateral, and downward) with body satisfaction and DE urges throughout women’s daily lives, as moderated by self-objectification [ 20 , 21 ]. We hypothesised that (1) upward comparisons would predict lower levels of body satisfaction and higher levels of DE urges, while lateral and downward comparisons would predict higher body satisfaction and lower DE urges; (2) lower body satisfaction and higher DE urges would predict upward comparisons, while higher body satisfaction and lower DE urges would predict lateral or downward comparisons; and (3) self-objectification would moderate these relationships, strengthening the effects. Consistent with expectations, we observed significant bi-directional relationships in the expected directions between upward comparisons and body satisfaction (negative) and urges to restrict food intake (positive). Unexpectedly, greater urges to restrict food intake predicted an increased likelihood of all types of comparisons, not just upward comparisons. Additionally, we found a significant bi-directional relationship between state body satisfaction and downward comparisons, though in partially unexpected directions. Contrary to expectations, we also found a significant bi-directional relationship between lateral comparisons and urges to exercise in an unexpected positive direction. We observed a uni-directional relationship between upward comparisons and urges to overeat. Most observed effects were small. Self-objectification only moderated four of the possible relationships, with negligible effects.

Bi-directional effects of social media-based appearance comparisons with body satisfaction and DE urges at the state level

Consistent with expectations, our findings revealed significant micro-longitudinal bi-directional relationships between upward social media-based appearance comparisons and both body satisfaction and urges to restrict food intake. Engaging in upward (relative to no) comparisons predicted lower body satisfaction and increased restrictive urges, while these states in turn predicted increased engagement in upward comparisons. These cyclical within-person effects broadly align with previous EMA research observing unidirectional effects between these constructs [ 5 , 11 ] and support the circle of objectification framework [ 20 ].

Theoretically, for example, engaging in upward appearance comparisons on social media may reinforce a perceived discrepancy between oneself and sociocultural appearance ideals, increasing the desire to restrict food intake and control body weight/shape. This, in turn, may prompt continued comparison with the idealised standard, creating an unhealthy circular process.

Unexpectedly, urges to restrict food intake predicted an increased likelihood of all comparison types, not just upward, suggesting a more complex relationship between DE urges and appearance comparisons than initially hypothesized. Theoretically, individuals experiencing urges to restrict may engage in various types of comparisons as part of a broader pattern of appearance-focused behaviour [ 39 , 40 ], regardless of the direction of comparison.

Additionally and unexpectedly, we observed a bi-directional positive relationship between lateral comparisons (relative to no comparison) and urges to exercise. Theoretically, lateral comparisons may motivate exercise as a means of maintaining or slightly improving one’s perceived status relative to peers. Conversely, higher exercise urges may prompt lateral comparisons to gauge one’s progress.

Lastly, contrary to expectations, we found a negative bi-directional relationship between state body satisfaction and downward comparisons (relative to no comparisons). Engaging in downward comparisons predicted higher body satisfaction, whilst higher body satisfaction predicted a lower likelihood of engaging in downward comparisons. These findings suggest a more complex relationship than initially hypothesized. While downward comparisons may boost state body satisfaction in the short term, when individuals experience higher momentary body satisfaction, they may not feel the immediate need to compare themselves to others they perceive as less attractive. Collectively, current findings challenge any assumptions that all appearance comparisons are uniformly and/or necessarily detrimental and highlight the potential for some types of comparisons to have positive effects on body image. Present findings also highlight the fluctuating nature of body satisfaction/DE urges and comparison behaviours within individuals over time, emphasizing the importance of considering these constructs at the state level rather than as stable traits.

Partially consistent with expectations, uni-directional relationships were found between upward appearance comparisons and urges to overeat, as well as between lateral comparisons and urges to exercise. Within persons, engaging in upward (relative to no) appearance comparisons predicted increased urges for overeating at the subsequent assessment point, aligning with previous research linking upward comparisons to DE behaviours [ 5 , 11 ]. However, these urges did not predict subsequent upward comparisons. Additionally and unexpectedly, lateral comparisons predicted increased urges to exercise, but not vice versa. These findings challenge our initial assumption about the directionality of these relationships and highlight the need for a more nuanced understanding of how different types of comparisons relate to specific eating and exercise behaviours.

The observed patterns may be influenced by personality traits. The unique predictive relationship between restrictive urges and all comparison types may be partially explained by trait-level harm avoidance, which has been linked to restrictive eating behaviours [ 41 ]. Individuals high in harm avoidance may engage in various types of comparisons as a strategy to minimize perceived risks related to body image and weight; e.g., curating one’s social media feed in a way that keeps inspiration/strategies to reach the desired appearance goal nearby, such as seeking workout/meal plans from fitness influencers, paradoxically reinforcing negative body-related schemas. Conversely, the absence of predictive relationships between overeating urges and comparisons might relate to trait level impulsivity which has been associated with binge eating [ 42 ], potentially leading to less deliberate comparative behaviour. Future research should investigate the possible influence of these personality traits to better elucidate the complex interplay between social media use, body image, and eating behaviours, potentially informing targeted interventions.

Moderating effects of self-objectification

Contrary to predictions, trait-level self-objectification only moderated four out of a possible 24 state-level relationships; all were uni-directional. In other words, self-objectification was a significant moderator when the predictor and outcome were modelled in one direction (i.e., the predictor and outcome were positively or negatively related). Although current findings provided limited support for our proposed moderation model, four moderation effects were observed. For women with higher trait-level self-objectification, lateral (relative to no) appearance comparisons predicted increased body satisfaction and urges to overeat; whilst reduced body satisfaction predicted increased engagement in upward (relative to no) comparisons. The latter finding is broadly consistent with research supporting the moderating effect of self-objectification on the indirect relationship between selfie-viewing and BD via appearance comparisons [ 24 ]. The findings regarding DE were novel as prior researchers have not assessed the moderating effect of self-objectification on the relationship between appearance comparisons and eating concerns.

Drawing from notions by Fuller-Tyszkiewicz [ 5 ], the unexpected and small number of moderating effects for trait self-objectification observed in our study may suggest that self-objectification (and other dispositional traits associated with elevated appearance investment) make certain appearance-related behaviours (e.g., upward appearance comparisons) more common—with subsequent impact on body satisfaction and DE—rather than making the effects of these behaviours larger. Nonetheless, current conclusions are tentative pending replication. Future studies should assess whether the current model (i.e., moderation) or an alternative model (i.e., mediation) better explains the relationships.

Limitations, strengths, and future directions

several limitations that should be acknowledged. First, our findings were derived from a predominately undergraduate cohort of heterosexual women of Caucasian or Asian ethnicity. Future research must evaluate generalisability to other important populations such as men [ 43 ], other sexual orientations [ 44 ], and other ethnicities [ 45 ] that may experience heightened vulnerability to eating disorders. For instance, sexual minorities experience greater DE behaviours than their heterosexual counterparts [ 46 ]. Future research must also ultimately test and verify these relationships in a clinical eating disorder sample.

Second, our state-based DE items may not have adequately captured DE, and thus, effects should be interpreted with caution. For instance, we did not clearly define the degree of food restriction and the ‘urge to engage in at least 15 min of exercise to control weight/shape’ may not have accurately captured excessive/dysregulated exercise. Additionally, our overeating variable did not meet the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criterion of a binge eating episode (e.g. eating a larger amount in a discrete period [i.e., 2-hour period] and losing control over eating; [ 47 ]). Future EMA studies should define the degree of restriction and measure the attitudes and affect (e.g., guilt) motivating the exercise urge for more nuanced and intentional research into the effects. Future EMA studies should also capture binge eating according to the DSM-5 [ 47 ] criterion, and assess purging as binge eating/purging offers the closest representation of bulimic symptomatology.

Third, our broad, single-item measure of social media-based appearance comparisons failed to capture other aspects of interest, such as; specific comparison targets (e.g., friend, close peer, acquaintance, celebrity/model), the perceived attainability of different targets; and differences across platforms which are more visual/appearance-based (e.g., Instagram, Facebook) versus those more text-based (e.g., Twitter; [ 48 ]). Moreover, participants reported on their most recent comparison, however, it is plausible that participants compared themselves to multiple targets since the last survey, given the amount of visual information on social media. Future EMA researchers should consider incorporating more detailed assessment items to assess the influence of these factors.

Fourth, future research should consider including all appearance comparison contexts (e.g., in-person, traditional media, social media) and examining context as a potential moderator. This could provide insights into whether comparison effects differ across contexts, further refining our understanding of these relationships.

Finally, our data were collected throughout the coronavirus disease 2019 (COVID-19) pandemic, and thus, might not generalise to other contexts. Indeed, the frequency of appearance comparisons on social media far exceeded those in other contexts, but the direction of these comparisons (upward, lateral, downward) was comparable across contexts.

Notwithstanding the aforementioned limitations, our study had notable strengths. First, in a field dominated by experimental methodology (e.g., [ 12 , 49 ]) we employed EMA which provided naturalistic, micro-longitudinal data. This enabled the novel assessment of temporal bi-directional patterns and momentary processes, whilst increasing ecological validity and the generalisability of findings [ 50 ]. Second, our study had a much larger sample size than other EMA studies in the field with a similarly demanding protocol (e.g., [ 11 ]), which increased the statistical power to undertake meaningful analyses.

Conclusions

This study reveals complex, bi-directional relationships between social media-based appearance comparisons, body satisfaction, and DE urges in women’s daily lives. Our findings challenge simplistic views of appearance comparisons, highlighting that their effects can vary based on comparison direction and specific outcomes. Notably, upward comparisons were linked to lower body satisfaction and increased restrictive urges, with these states predicting further upward comparisons, perpetuating a potentially harmful cycle. Unexpectedly, restrictive urges predicted all comparison types, suggesting a pervasive influence of DE tendencies on social media behaviour. Also unexpectedly, lateral comparisons were associated with increased exercise urges, with these states predicting further lateral comparisons. These unexpected findings may reflect underlying cognitive biases and coping strategies observed in eating disorder populations, at least in the short term, and suggest that future ED research and possibly interventions should consider the varied roles of downward and lateral comparisons. Moreover, the reciprocal nature of these relationships highlights the potential importance of targeting both comparison behaviours and body image/eating concerns simultaneously in prevention and/or intervention strategies. Our findings provide limited support for the moderating effect of trait self-objectification. Future studies should explore these dynamics across diverse populations, employ more refined measures over extended periods, and examine the influence of various personality traits to increase understanding and ultimately inform targeted strategies to improve body image and eating concerns in the context of social media use.

Data code and availability

The data is available upon request.

Chaffey D. Global social media statistics research summary 2023 [January 2023]. Smart Insights; January. 2023. p. 7. https://www.smartinsights.com/social-media-marketing/social-media-strategy/new-global-social-media-research/ .

Holland G, Tiggemann M. A systematic review of the impact of the use of social networking sites on body image and disordered eating outcomes. Body Image. 2016;17:100–10. https://doi.org/10.1016/j.bodyim.2016.02.008 .

Article   PubMed   Google Scholar  

Frieiro Padin P, González Rodríguez R, Verde Diego MD, Vázquez Pérez R. Social media and eating disorder psychopathology: a systematic review. Cyberpsychology J Psychosocial Res Cyberspace. 2021 Aug 24. https://doi.org/10.5817/CP2021-3-6

Fardouly J, Vartanian LR. Social media and body image concerns: current research and future directions. Curr Opin Psychol. 2016;9:1–5. https://doi.org/10.1016/j.copsyc.2015.09.005 .

Article   Google Scholar  

Fuller-Tyszkiewicz M. Body image states in everyday life: Evidence from ecological momentary assessment methodology. Body Image. 2019;31. https://doi.org/10.1016/j.bodyim.2019.02.010 . :245 – 72.

Festinger L. A theory of social comparison processes. Hum Relat. 1954;7(2):117–40.

Fardouly J, Vartanian LR. Negative comparisons about one’s appearance mediate the relationship between Facebook usage and body image concerns. Body Image. 2015;12:82–8. https://doi.org/10.1016/j.bodyim.2014.10.004 .

Laker V, Waller G. Does comparison of self with others influence body image among adult women? An experimental study in naturalistic settings. Eating and Weight disorders-studies on Anorexia. Bulimia Obes. 2022;27(2):597–604. https://doi.org/10.1007/s40519-021-01196-3 .

Grabe S, Ward LM, Hyde JS. The role of the media in body image concerns among women: a meta-analysis of experimental and correlational studies. Psychol Bull. 2008;134(3):460. https://doi.org/10.1037/0033-2909.134.3.460 .

Perloff RM. Social media effects on young women’s body image concerns: theoretical perspectives and an agenda for research. Sex Roles. 2014;71:363–77. https://doi.org/10.1007/s11199-014-0384-6 .

Fardouly J, Pinkus RT, Vartanian LR. The impact of appearance comparisons made through social media, traditional media, and in person in women’s everyday lives. Body Image. 2017;20:31–9. https://doi.org/10.1016/j.bodyim.2016.11.002 .

Brown Z, Tiggemann M. Attractive celebrity and peer images on Instagram: Effect on women’s mood and body image. Body Image. 2016;19:37–43. https://doi.org/10.1016/j.bodyim.2016.08.007 .

Haferkamp N, Krämer NC, Cyberpsychology. Behav Social Netw. 2011;14(5):309–14. https://doi.org/10.1089/cyber.2010.0120 .

Fitzsimmons-Craft EE, Ciao AC, Accurso EC. A naturalistic examination of social comparisons and disordered eating thoughts, urges, and behaviors in college women. Int J Eat Disord. 2016;49(2):141–50. https://doi.org/10.1002/eat.22486 .

Fitzsimmons-Craft EE. Eating disorder‐related social comparison in college women’s everyday lives. Int J Eat Disord. 2017;50(8):893–905. https://doi.org/10.1002/eat.22725 .

Article   PubMed   PubMed Central   Google Scholar  

Myers TA, Ridolfi DR, Crowther JH, Ciesla JA. The impact of appearance-focused social comparisons on body image disturbance in the naturalistic environment: the roles of thin-ideal internalization and feminist beliefs. Body Image. 2012;9(3):342–51. https://doi.org/10.1016/j.bodyim.2012.03.005 .

Ridolfi DR, Myers TA, Crowther JH, Ciesla JA. Do appearance focused cognitive distortions moderate the relationship between social comparisons to peers and media images and body image disturbance? Sex Roles. 2011;65:491–505. https://doi.org/10.1007/s11199-011-9961-0 .

Scully M, Swords L, Nixon E. Social comparisons on social media: online appearance-related activity and body dissatisfaction in adolescent girls. Ir J Psychol Med. 2023;40(1):31–42. https://doi.org/10.1017/ipm.2020.93 .

Fredrickson BL, Roberts TA. Objectification theory: toward understanding women’s lived experiences and mental health risks. Psychol Women Q. 1997;21(2):173–206. https://doi.org/10.1111/j.1471-6402.1997.tb00108.x .

Strelan P, Hargreaves D. Women who objectify other women: the vicious circle of objectification? Sex Roles. 2005;52:707–12. https://doi.org/10.1007/s11199-005-3737-3 .

Lindner D, Tantleff-Dunn S, Jentsch F. Social comparison and the ‘circle of objectification’. Sex Roles. 2012;67:222–35. https://doi.org/10.1007/s11199-012-0175-x .

Cohen R, Newton-John T, Slater A. Selfie’-objectification: the role of selfies in self-objectification and disordered eating in young women. Comput Hum Behav. 2018;79:68–74. https://doi.org/10.1016/j.chb.2017.10.027 .

Hesse-Biber S, Leavy P, Quinn CE, Zoino J. The mass marketing of disordered eating and eating disorders: The social psychology of women, thinness and culture. InWomen’s studies international forum 2006 Mar 1 (Vol. 29, No. 2, pp. 208–224). Pergamon. https://doi.org/10.1016/j.wsif.2006.03.007

Yang J, Fardouly J, Wang Y, Shi W. Selfie-viewing and facial dissatisfaction among emerging adults: a moderated mediation model of appearance comparisons and self-objectification. Int J Environ Res Public Health. 2020;17(2):672. https://doi.org/10.3390/ijerph17020672 .

Tasca GA, Illing V, Balfour L, Krysanski V, Demidenko N, Nowakowski J, Bissada H. Psychometric properties of self-monitoring of eating disorder urges among treatment seeking women: ecological momentary assessment using a daily diary method. Eat Behav. 2009;10(1):59–61. https://doi.org/10.1016/j.eatbeh.2008.10.004 .

Garner DM, Olmsted MP, Bohr Y, Garfinkel PE. The eating attitudes test: psychometric features and clinical correlates. Psychol Med. 1982;12(4):871–8. https://doi.org/10.1017/S0033291700049163 .

Noll SM, Fredrickson BL. A mediational model linking self-objectification, body shame, and disordered eating. Psychol Women Q. 1998;22(4):623–36. https://doi.org/10.1111/j.1471-6402.1998.tb00181.x .

Fuller-Tyszkiewicz M, Richardson B, Lewis V, Smyth J, Krug I. Do women with greater trait body dissatisfaction experience body dissatisfaction states differently? An experience sampling study. Body Image. 2018;25:1–8. https://doi.org/10.1016/j.bodyim.2018.01.004b .

Portingale J, Fuller-Tyszkiewicz M, Liu S, Eddy S, Liu X, Giles S, Krug I. Love me Tinder: the effects of women’s lifetime dating app use on daily body dissatisfaction, disordered eating urges, and negative mood. Body Image. 2022;40:310–21. https://doi.org/10.1016/j.bodyim.2022.01.005 .

Berg KC, Crosby RD, Cao L, Peterson CB, Engel SG, Mitchell JE, Wonderlich SA. Facets of negative affect prior to and following binge-only, purge-only, and binge/purge events in women with bulimia nervosa. J Abnorm Psychol. 2013;122(1):111. https://doi.org/10.1037%2Fa0029703.

Koval P, Holland E, Zyphur MJ, Stratemeyer M, Knight JM, Bailen NH, Thompson RJ, Roberts TA, Haslam N. How does it feel to be treated like an object? Direct and indirect effects of exposure to sexual objectification on women’s emotions in daily life. J Personal Soc Psychol. 2019;116(6):885. https://doi.org/10.1037/pspa0000161 .

Eisele G, Vachon H, Lafit G, Kuppens P, Houben M, Myin-Germeys I, Viechtbauer W. The effects of sampling frequency and questionnaire length on perceived burden, compliance, and careless responding in experience sampling data in a student population. Assessment. 2022;29(2):136–51. https://doi.org/10.1177/1073191120957102 .

Team R, RStudio. Integrated development environment for R. RStudio, PBC. Retrieved from http://www.rstudio.com/

Howard D, Klettke B, Ling M, Krug I, Fuller-Tyszkiewicz M. Does body dissatisfaction influence sexting behaviors in daily life? Comput Hum Behav. 2019;101:320–6. https://doi.org/10.1016/j.chb.2019.07.033 .

Fuller-Tyszkiewicz M, Vuong H, Linardon J, Krug I, Broadbent J, Rodgers RF. Body image in and out of the lab: correspondence between lab-based attentional bias data and body shape dissatisfaction experiences in daily life. Body Image. 2020;32:62–9. https://doi.org/10.1016/j.bodyim.2019.11.002 .

Schwartz JE, Stone AA. Strategies for analyzing ecological momentary assessment data. Health Psychol. 1998;17(1):6. https://doi.org/10.1037/0278-6133.17.1.6 .

Cohen J. Statistical power analysis for the behavioral sciences 2nd ed.(Hillsdale, NJ: L. Erlbaum Associates).

Magnusson K, Powerlmm. Power analysis for longitudinal multilevel models. R package version 0.4. 0.9000.

Nikodijevic A, Buck K, Fuller-Tyszkiewicz M, de Paoli T, Krug I. Body checking and body avoidance in eating disorders: S ystematic review and meta‐analysis. Eur Eat Disorders Rev. 2018;26(3):159–85. https://doi.org/10.1002/erv.2585 .

Lee M, Shafran R. Information processing biases in eating disorders. Clin Psychol Rev. 2004;24(2):215–. https://doi.org/10.1016/j.cpr.2003.10.004 .  38.

Atiye M, Miettunen J, Raevuori-Helkamaa A. A meta‐analysis of temperament in eating disorders. Eur Eat Disorders Rev. 2015;23(2):89–99. https://doi.org/10.1002/erv.2342 .

Giel KE, Teufel M, Junne F, Zipfel S, Schag K. Food-related impulsivity in obesity and binge eating disorder—a systematic update of the evidence. Nutrients. 2017;9(11):1170. https://doi.org/10.3390/nu9111170 .

Schaefer LM, Rodgers RF, Thompson JK, Griffiths S. A test of the tripartite influence model of disordered eating among men. Body Image. 2021;36:172–9. https://doi.org/10.1016%2Fj.bodyim.2020.11.009.

Parker LL, Harriger JA. Eating disorders and disordered eating behaviors in the LGBT population: a review of the literature. J Eat Disorders. 2020;8:1–20. https://doi.org/10.1186/s40337-020-00327-y .

Frederick DA, Reynolds TA, Barrera CA, Murray SB. Demographic and sociocultural predictors of face image satisfaction: the US Body Project I. Body Image. 2022;41:1–6. https://doi.org/10.1016/j.bodyim.2022.01.016 .

Calzo JP, Blashill AJ, Brown TA, Argenal RL. Eating disorders and disordered weight and shape control behaviors in sexual minority populations. Curr Psychiatry Rep. 2017;19:1–0. https://doi.org/10.1007/s11920-017-0801-y .

Dsm IV. Diagnostic and statistical manual of mental disorders. Washington, DC: American psychiatric association. 1994;968:33 – 6.

Marengo D, Longobardi C, Fabris MA, Settanni M. Highly-visual social media and internalizing symptoms in adolescence: the mediating role of body image concerns. Comput Hum Behav. 2018;82:63–9. https://doi.org/10.1016/j.chb.2018.01.003 .

Tiggemann M, Zaccardo M. Exercise to be fit, not skinny: the effect of fitspiration imagery on women’s body image. Body Image. 2015;15:61–7. https://doi.org/10.1016/j.bodyim.2015.06.003 .

Shiffman S, Stone AA, Hufford MR. Ecological momentary assessment. Annu Rev Clin Psychol. 2008;4:1–32. https://doi.org/10.1146/annurev.clinpsy.3.022806.091415 .

Download references

No funding was received for conducting this study.

Author information

Authors and affiliations.

Melbourne School of Psychological Sciences, The University of Melbourne, North Melbourne VIC 3051, Melbourne, VIC, Australia

Jade Portingale, Simone Girardin, Shanshan Liu & Isabel Krug

School of Psychology, Deakin University, Geelong, VIC, Australia

Matthew Fuller-Tyszkiewicz

Centre for Social and Early Emotional Development, Deakin University, Burwood, VIC, Australia

You can also search for this author in PubMed   Google Scholar

Contributions

J.P. and S.G. wrote the first draft of the manuscript text and J.P., S.L., M.F.T., and I.K. reviewed and edited the manuscript text. M.F.T. and J.P. conducted the formal analyses and validated the results. J.P., S.L., S.G., and I.K. investigated the study. All authors conceptualised the study and developed the methodology. I.K. supervised the project.

Corresponding author

Correspondence to Jade Portingale .

Ethics declarations

Conflict of interest.

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Approval was granted by the Behavioural and Social Science Human Ethics Sub-Committee of the University of Melbourne (Date: 5.12.2014; ID: 1441553).

Informed consent was obtained from all individual participants included in the study.

Compliance with ethical standards

This study was performed in line with the principles of the Declaration of Helsinki.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Portingale, J., Girardin, S., Liu, S. et al. Daily Bi-directional effects of women’s social media-based appearance comparisons, body satisfaction, and disordered eating urges. J Eat Disord 12 , 129 (2024). https://doi.org/10.1186/s40337-024-01096-8

Download citation

Received : 11 May 2024

Accepted : 28 August 2024

Published : 03 September 2024

DOI : https://doi.org/10.1186/s40337-024-01096-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Appearance comparison
  • Social media
  • Body satisfaction
  • Disordered eating, ecological momentary assessment
  • Daily monitoring

Journal of Eating Disorders

ISSN: 2050-2974

non directional hypothesis template

IMAGES

  1. Non-Directional Hypothesis

    non directional hypothesis template

  2. Non Directional Hypothesis

    non directional hypothesis template

  3. Non Directional Hypothesis

    non directional hypothesis template

  4. Non-Directional Hypothesis

    non directional hypothesis template

  5. Hypotheses AO1 AO2

    non directional hypothesis template

  6. 💋 Non directional research hypothesis example. When would a non. 2022-10-04

    non directional hypothesis template

VIDEO

  1. How to frame the Hypothesis statement in your Research

  2. Hypothesis Testing: the null and alternative hypotheses

  3. Chapter 09: One sample hypothesis testing-worked examples

  4. Hypothesis,characteristics,Types & functions

  5. What does hypothesis mean?

  6. Types of Hypothesis difference between Directional hypothesis and Non-directional hypothesis?

COMMENTS

  1. Non Directional Hypothesis

    Tips for Writing a Non-Directional Hypothesis. Start with Inquiry: Frame your hypothesis as an answer to a research question. Embrace Openness: Non-directional hypotheses are ideal when no strong expectation exists. Be Succinct: Keep the hypothesis statement concise and clear.

  2. Directional and non-directional hypothesis: A Comprehensive Guide

    Directional hypotheses, also known as one-tailed hypotheses, are statements in research that make specific predictions about the direction of a relationship or difference between variables. Unlike non-directional hypotheses, which simply state that there is a relationship or difference without specifying its direction, directional hypotheses ...

  3. Directional vs Non-Directional Hypothesis: Key Difference

    In summary, a directional hypothesis makes a specific prediction about the direction of the relationship or difference, while a non-directional hypothesis suggests a relationship or difference without specifying the direction. The choice between the two depends on the research question, existing literature, and the researcher's objectives.

  4. Hypotheses; directional and non-directional

    The directional hypothesis can also state a negative correlation, e.g. the higher the number of face-book friends, the lower the life satisfaction score ". Non-directional hypothesis: A non-directional (or two tailed hypothesis) simply states that there will be a difference between the two groups/conditions but does not say which will be ...

  5. 5.2

    5.2 - Writing Hypotheses. The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis (H 0) and an alternative hypothesis (H a). Null Hypothesis. The statement that there is not a difference in the population (s), denoted as H 0.

  6. What is a Directional Hypothesis? (Definition & Examples)

    Null Hypothesis (H 0): The sample data occurs purely from chance. Alternative Hypothesis (H A): The sample data is influenced by some non-random cause. A hypothesis test can either contain a directional hypothesis or a non-directional hypothesis: Directional hypothesis: The alternative hypothesis contains the less than ("<") or greater than ...

  7. 7.3: The Research Hypothesis and the Null Hypothesis

    The Research Hypothesis. A research hypothesis is a mathematical way of stating a research question. A research hypothesis names the groups (we'll start with a sample and a population), what was measured, and which we think will have a higher mean. The last one gives the research hypothesis a direction. In other words, a research hypothesis ...

  8. Research Hypothesis In Psychology: Types, & Examples

    Research Hypothesis In Psychology: Types, & Examples

  9. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Research Hypothesis: Definition, Types, Examples and ...

  10. 8.4: The Alternative Hypothesis

    Thus, our alternative hypothesis is the mathematical way of stating our research question. If we expect our obtained sample mean to be above or below the null hypothesis value, which we call a directional hypothesis, then our alternative hypothesis takes the form: HA: μ > 7.47 or HA: μ < 7.47 H A: μ > 7.47 or H A: μ < 7.47.

  11. 16.3: The Process of Null Hypothesis Testing

    A non-directional hypothesis simply predicts that there will be a difference, without predicting which direction it will go. For the BMI/activity example, a non-directional null hypothesis would be: ... ## ## Two Sample t-test ## ## data: squat by group ## t = 5, df = 8, p-value = 4e-04 ## alternative hypothesis: true difference in means is ...

  12. Directional & Non-Directional Hypothesis

    A Null Hypothesis is denoted as an H0. This is the type of hypothesis that the researcher tries to invalidate. Some of the examples of null hypotheses are: - Hyperactivity is not associated with eating sugar. - All roses have an equal amount of petals. - A person's preference for a dress is not linked to its color.

  13. A Practical Guide to Writing Quantitative and Qualitative Research

    A Practical Guide to Writing Quantitative and Qualitative ...

  14. Directional Hypothesis: Definition and 10 Examples

    Directional Hypothesis Examples. 1. Exercise and Heart Health. Research suggests that as regular physical exercise (independent variable) increases, the risk of heart disease (dependent variable) decreases (Jakicic, Davis, Rogers, King, Marcus, Helsel, Rickman, Wahed, Belle, 2016). In this example, a directional hypothesis anticipates that the ...

  15. 8.1.2

    Given that the null hypothesis is true, the p value is the probability that a randomly selected sample of n would have a sample proportion as different, or more different, than the one in our sample, in the direction of the alternative hypothesis. We can find the p value by mapping the test statistic from step 2 onto the z distribution. Note that p-values are also symbolized by \(p\).

  16. PDF Task 4

    I can state why a directional or non-directional hypothesis is predicted I can write a non-directional hypothesis I can write a directional hypothesis Don [t worry if you have ticked any of the not yet boxes. Press on with the following tasks and you might find it begins to make more sense Task 4: write a hypothesis for each of these two ...

  17. Non-Directional Hypothesis

    A non-directional hypothesis is a two-tailed hypothesis that does not predict the direction of the difference or relationship (e.g. girls and boys are different in terms of helpfulness). Share on Facebook; Share on Twitter; Share by Email; Research Methods: MCQ Revision Test 1 for AQA A Level Psychology

  18. Directional vs. Non-Directional Hypothesis in Research

    Example of Non-Directional Hypothesis. For example, a non-directional hypothesis might state that "there is a relationship between caffeine consumption and reaction time." Here, the researcher expects a relationship between the variables but does not specify the direction. Read More: Population vs Sample | Examples

  19. Research Hypotheses: Directional vs. Non-Directional Hypotheses

    A directional hypothesis predicts a specific direction of change, while a non-directional hypothesis predicts that there will be a difference between groups or conditions without specifying the direction of that difference. It's important to understand the difference between these types of hypotheses to conduct rigorous and insightful research ...

  20. 8.3.2

    Type of Hypothesis Test: Two-tailed, non-directional: Right-tailed, directional: Left-tailed, directional: Where \( \mu_d \) is the hypothesized difference in the population. 2. Calculate an appropriate test statistic. ... We do not know if the differences are normally distributed in the population and the sample size is small, but in the video ...

  21. Null & Alternative Hypotheses

    The null hypothesis (H0) answers "No, there's no effect in the population.". The alternative hypothesis (Ha) answers "Yes, there is an effect in the population.". The null and alternative are always claims about the population. That's because the goal of hypothesis testing is to make inferences about a population based on a sample.

  22. Z-8: Two-Sample and Directional Hypothesis Testing

    If this t calc is greater than 1.96 then the null hypothesis of no difference can be overturned (p0.05). Even though we have used several different mathematical formulae, the interpretations are the same as before. Directional hypothesis testing vs non-directional testing. Remember the example of testing the effect of antibiotics on mice in ...

  23. Hypotheses: Directional and Non-Directional Flashcards

    Hypotheses: Directional and Non-Directional. Define hypothesis. A clear, precise, testable statement that states the relationship between the variables being investigated. Stated at the outset of any study.

  24. Daily Bi-directional effects of women's social media-based appearance

    We assessed the bi-directional relationships between upward appearance comparisons on social media with body dissatisfaction (BD) and disordered eating (DE) in women's daily lives and the potential moderating effect of trait self-objectification on these relationships. Women (N = 315) completed a baseline measure of trait self-objectification, then reported momentary experiences of social ...