• Math Article

Graphical Representation

Class Registration Banner

Graphical Representation is a way of analysing numerical data. It exhibits the relation between data, ideas, information and concepts in a diagram. It is easy to understand and it is one of the most important learning strategies. It always depends on the type of information in a particular domain. There are different types of graphical representation. Some of them are as follows:

  • Line Graphs – Line graph or the linear graph is used to display the continuous data and it is useful for predicting future events over time.
  • Bar Graphs – Bar Graph is used to display the category of data and it compares the data using solid bars to represent the quantities.
  • Histograms – The graph that uses bars to represent the frequency of numerical data that are organised into intervals. Since all the intervals are equal and continuous, all the bars have the same width.
  • Line Plot – It shows the frequency of data on a given number line. ‘ x ‘ is placed above a number line each time when that data occurs again.
  • Frequency Table – The table shows the number of pieces of data that falls within the given interval.
  • Circle Graph – Also known as the pie chart that shows the relationships of the parts of the whole. The circle is considered with 100% and the categories occupied is represented with that specific percentage like 15%, 56%, etc.
  • Stem and Leaf Plot – In the stem and leaf plot, the data are organised from least value to the greatest value. The digits of the least place values from the leaves and the next place value digit forms the stems.
  • Box and Whisker Plot – The plot diagram summarises the data by dividing into four parts. Box and whisker show the range (spread) and the middle ( median) of the data.

Graphical Representation

General Rules for Graphical Representation of Data

There are certain rules to effectively present the information in the graphical representation. They are:

  • Suitable Title: Make sure that the appropriate title is given to the graph which indicates the subject of the presentation.
  • Measurement Unit: Mention the measurement unit in the graph.
  • Proper Scale: To represent the data in an accurate manner, choose a proper scale.
  • Index: Index the appropriate colours, shades, lines, design in the graphs for better understanding.
  • Data Sources: Include the source of information wherever it is necessary at the bottom of the graph.
  • Keep it Simple: Construct a graph in an easy way that everyone can understand.
  • Neat: Choose the correct size, fonts, colours etc in such a way that the graph should be a visual aid for the presentation of information.

Graphical Representation in Maths

In Mathematics, a graph is defined as a chart with statistical data, which are represented in the form of curves or lines drawn across the coordinate point plotted on its surface. It helps to study the relationship between two variables where it helps to measure the change in the variable amount with respect to another variable within a given interval of time. It helps to study the series distribution and frequency distribution for a given problem.  There are two types of graphs to visually depict the information. They are:

  • Time Series Graphs – Example: Line Graph
  • Frequency Distribution Graphs – Example: Frequency Polygon Graph

Principles of Graphical Representation

Algebraic principles are applied to all types of graphical representation of data. In graphs, it is represented using two lines called coordinate axes. The horizontal axis is denoted as the x-axis and the vertical axis is denoted as the y-axis. The point at which two lines intersect is called an origin ‘O’. Consider x-axis, the distance from the origin to the right side will take a positive value and the distance from the origin to the left side will take a negative value. Similarly, for the y-axis, the points above the origin will take a positive value, and the points below the origin will a negative value.

Principles of graphical representation

Generally, the frequency distribution is represented in four methods, namely

  • Smoothed frequency graph
  • Pie diagram
  • Cumulative or ogive frequency graph
  • Frequency Polygon

Merits of Using Graphs

Some of the merits of using graphs are as follows:

  • The graph is easily understood by everyone without any prior knowledge.
  • It saves time
  • It allows us to relate and compare the data for different time periods
  • It is used in statistics to determine the mean, median and mode for different data, as well as in the interpolation and the extrapolation of data.

Example for Frequency polygonGraph

Here are the steps to follow to find the frequency distribution of a frequency polygon and it is represented in a graphical way.

  • Obtain the frequency distribution and find the midpoints of each class interval.
  • Represent the midpoints along x-axis and frequencies along the y-axis.
  • Plot the points corresponding to the frequency at each midpoint.
  • Join these points, using lines in order.
  • To complete the polygon, join the point at each end immediately to the lower or higher class marks on the x-axis.

Draw the frequency polygon for the following data

10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
4 6 8 10 12 14 7 5

Mark the class interval along x-axis and frequencies along the y-axis.

Let assume that class interval 0-10 with frequency zero and 90-100 with frequency zero.

Now calculate the midpoint of the class interval.

0-10 5 0
10-20 15 4
20-30 25 6
30-40 35 8
40-50 45 10
50-60 55 12
60-70 65 14
70-80 75 7
80-90 85 5
90-100 95 0

Using the midpoint and the frequency value from the above table, plot the points A (5, 0), B (15, 4), C (25, 6), D (35, 8), E (45, 10), F (55, 12), G (65, 14), H (75, 7), I (85, 5) and J (95, 0).

To obtain the frequency polygon ABCDEFGHIJ, draw the line segments AB, BC, CD, DE, EF, FG, GH, HI, IJ, and connect all the points.

forms of graphical representation

Frequently Asked Questions

What are the different types of graphical representation.

Some of the various types of graphical representation include:

  • Line Graphs
  • Frequency Table
  • Circle Graph, etc.

Read More:  Types of Graphs

What are the Advantages of Graphical Method?

Some of the advantages of graphical representation are:

  • It makes data more easily understandable.
  • It saves time.
  • It makes the comparison of data more efficient.
MATHS Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

forms of graphical representation

Very useful for understand the basic concepts in simple and easy way. Its very useful to all students whether they are school students or college sudents

Thanks very much for the information

forms of graphical representation

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

forms of graphical representation

Guide On Graphical Representation of Data – Types, Importance, Rules, Principles And Advantages

forms of graphical representation

What are Graphs and Graphical Representation?

Graphs, in the context of data visualization, are visual representations of data using various graphical elements such as charts, graphs, and diagrams. Graphical representation of data , often referred to as graphical presentation or simply graphs which plays a crucial role in conveying information effectively.

Principles of Graphical Representation

Effective graphical representation follows certain fundamental principles that ensure clarity, accuracy, and usability:Clarity : The primary goal of any graph is to convey information clearly and concisely. Graphs should be designed in a way that allows the audience to quickly grasp the key points without confusion.

  • Simplicity: Simplicity is key to effective data visualization. Extraneous details and unnecessary complexity should be avoided to prevent confusion and distraction.
  • Relevance: Include only relevant information that contributes to the understanding of the data. Irrelevant or redundant elements can clutter the graph.
  • Visualization: Select a graph type that is appropriate for the supplied data. Different graph formats, like bar charts, line graphs, and scatter plots, are appropriate for various sorts of data and relationships.

Rules for Graphical Representation of Data

Creating effective graphical representations of data requires adherence to certain rules:

  • Select the Right Graph: Choosing the appropriate type of graph is essential. For example, bar charts are suitable for comparing categories, while line charts are better for showing trends over time.
  • Label Axes Clearly: Axis labels should be descriptive and include units of measurement where applicable. Clear labeling ensures the audience understands the data’s context.
  • Use Appropriate Colors: Colors can enhance understanding but should be used judiciously. Avoid overly complex color schemes and ensure that color choices are accessible to all viewers.
  • Avoid Misleading Scaling: Scale axes appropriately to prevent exaggeration or distortion of data. Misleading scaling can lead to incorrect interpretations.
  • Include Data Sources: Always provide the source of your data. This enhances transparency and credibility.

Importance of Graphical Representation of Data

Graphical representation of data in statistics is of paramount importance for several reasons:

  • Enhances Understanding: Graphs simplify complex data, making it more accessible and understandable to a broad audience, regardless of their statistical expertise.
  • Helps Decision-Making: Visual representations of data enable informed decision-making. Decision-makers can easily grasp trends and insights, leading to better choices.
  • Engages the Audience: Graphs capture the audience’s attention more effectively than raw data. This engagement is particularly valuable when presenting findings or reports.
  • Universal Language: Graphs serve as a universal language that transcends linguistic barriers. They can convey information to a global audience without the need for translation.

Advantages of Graphical Representation

The advantages of graphical representation of data extend to various aspects of communication and analysis:

  • Clarity: Data is presented visually, improving clarity and reducing the likelihood of misinterpretation.
  • Efficiency: Graphs enable the quick absorption of information. Key insights can be found in seconds, saving time and effort.
  • Memorability: Visuals are more memorable than raw data. Audiences are more likely to retain information presented graphically.
  • Problem-Solving: Graphs help in identifying and solving problems by revealing trends, correlations, and outliers that may require further investigation.

Use of Graphical Representations

Graphical representations find applications in a multitude of fields:

  • Business: In the business world, graphs are used to illustrate financial data, track performance metrics, and present market trends. They are invaluable tools for strategic decision-making.
  • Science: Scientists employ graphs to visualize experimental results, depict scientific phenomena, and communicate research findings to both colleagues and the general public.
  • Education: Educators utilize graphs to teach students about data analysis, statistics, and scientific concepts. Graphs make learning more engaging and memorable.
  • Journalism: Journalists rely on graphs to support their stories with data-driven evidence. Graphs make news articles more informative and impactful.

Types of Graphical Representation

There exists a diverse array of graphical representations, each suited to different data types and purposes. Common types include:

1.Bar Charts:

Used to compare categories or discrete data points, often side by side.

forms of graphical representation

2. Line Charts:

Ideal for showing trends and changes over time, such as stock market performance or temperature fluctuations.

forms of graphical representation

3. Pie Charts:

Display parts of a whole, useful for illustrating proportions or percentages.

forms of graphical representation

4. Scatter Plots:

Reveal relationships between two variables and help identify correlations.

forms of graphical representation

5. Histograms:

Depict the distribution of data, especially in the context of continuous variables.

forms of graphical representation

In conclusion, the graphical representation of data is an indispensable tool for simplifying complex information, aiding in decision-making, and enhancing communication across diverse fields. By following the principles and rules of effective data visualization, individuals and organizations can harness the power of graphs to convey their messages, support their arguments, and drive informed actions.

Download PPT of Graphical Representation

forms of graphical representation

Video On Graphical Representation

FAQs on Graphical Representation of Data

What is the purpose of graphical representation.

Graphical representation serves the purpose of simplifying complex data, making it more accessible and understandable through visual means.

Why are graphs and diagrams important?

Graphs and diagrams are crucial because they provide visual clarity, aiding in the comprehension and retention of information.

How do graphs help learning?

Graphs engage learners by presenting information visually, which enhances understanding and retention, particularly in educational settings.

Who uses graphs?

Professionals in various fields, including scientists, analysts, educators, and business leaders, use graphs to convey data effectively and support decision-making.

Where are graphs used in real life?

Graphs are used in real-life scenarios such as business reports, scientific research, news articles, and educational materials to make data more accessible and meaningful.

Why are graphs important in business?

In business, graphs are vital for analyzing financial data, tracking performance metrics, and making informed decisions, contributing to success.

Leave a comment

Cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Related Posts

forms of graphical representation

Best Google AdWords Consultants in India...

What is a Google Ads Consultant? A Google Ads Consultant is an expert who specializes in delivering expertise and advice on Google Ads, which is Google’s online advertising medium. Google Ads permits companies to develop and run ads that are visible on Google’s search engine and other Google platforms. The function of a Google Ads […]

forms of graphical representation

Best PPC Consultants in India –...

What Is a PPC Consultant? A PPC consultant or a pay per click consultant is an expert who specializes in handling and optimizing PPC advertisement drives for companies. PPC is a digital marketing model where advertisers pay a price each time their ad is clicked. Standard PPC mediums include Bing Ads, Google Ads, and social media advertisement platforms like […]

forms of graphical representation

Top 20 Generic Digital Marketing Interview...

1. What is Digital Marketing? Digital marketing is also known as online marketing which means promoting and selling products or services to potential customers using the internet and online platforms. It includes email, social media, and web-based advertising, but also text and multimedia messages as a marketing channel. 2. What are the types of Digital […]

forms of graphical representation

Best Social Media Consultants in India...

What Is a Social Media Consultant? A social media advisor is a specialist who delivers direction, recommendation, and assistance linked to the usage of social media for people, companies, or associations. Their prime objective is to support customers effectively by employing social media platforms to gain specific objectives, such as improving brand awareness, entertaining target […]

forms of graphical representation

Gaurav Mittal

Had a great time spent with some awesome learning at The Digital Education Institute. It really helped me to build my career and i am thankful to the institute for making me what i am today.

Company where our students are working

forms of graphical representation

Enroll Now for 2 Hour Free Digital Marketing Class

Lorem Ipsum is simply dummy text of the printing and typesetting industry

Lorem Ipsum is simply dummy text of the printing and typesetting industry . Lorem Ipsum is simply dummy text of the printing and typesetting industry

  • Data Visualizations
  • Most Recent
  • Presentations
  • Infographics
  • Forms and Surveys
  • Video & Animation
  • Case Studies
  • Design for Business
  • Digital Marketing
  • Design Inspiration
  • Visual Thinking
  • Product Updates
  • Visme Webinars
  • Artificial Intelligence

44 Types of Graphs Perfect for Every Top Industry

44 Types of Graphs Perfect for Every Top Industry

Written by: Samantha Lile

types of graphs - header wide

Graphs are a great way to visualize data and display numbers and statistics. In fact, they're essential to help your audience understand your points or key findings. 

They can help you visualize growth in a sales report , showcase demographics in a pitch deck or share industry statistics in an infographic . 

But with so many popular types of charts and graphs including line graphs, bar graphs, pie charts, bubble charts, scatter plots, and histograms, how do you know what are the best options for your industry, project, or data?

Picking the right chart or graph  doesn't have to be difficult. To help make your choice easier we’ve compiled a list of 44 types of graphs and charts, many of which can be made right in Visme. 

Find your industry below and check out the graph options available to you, then click the button below each template to start inputting your data and customizing it for your project.

Table of Contents

  • Business & Finance

Engineering and Technology

Political science and sociology, meteorology and environment.

And, if you’re short on time check out this  video tutorial on the ultimate guide to data visualization

forms of graphical representation

44 Types of Graphs and Charts

Line graphs.

Interest in Digital Marketing Line Graph

Line charts, or line graphs, are powerful visual tools that illustrate trends in data over a period of time or a particular correlation. For example, one axis of the graph might represent a variable value, while the other axis often displays a timeline.

Each value is plotted on the chart, then the points are connected to display a trend over the compared time span. Multiple trends can be compared by plotting lines of various colors.

For example, the interest of digital marketing over time can be visually shown with ease through the use of a line graph. Simply plot each number of searches along the timeline to view the trend.

Global Social Media Usage Bar Graph

The simplest and most straightforward way to compare various categories is the classic bar graph. The universally-recognized graph features a series of bars of varying lengths.

One axis of a bar graph features the categories being compared, while the other axis represents the value of each. The length of each bar is proportionate to the numerical value or percentage that it represents. 

For example, in the template below, each social media platform is represented by a bar. With just one quick glance, audiences can learn exactly which social media platform has the highest and lowest usage during the allotted time frame.

Bar graphs work great for visually presenting nearly any type of data, but they hold particular power in the marketing industry. The graphs are ideal for comparing any sort of numeric value, including group sizes, inventories, ratings and survey responses.

If you like this chart but you want to make it your own, you can easily customize your charts with your personal or company brand. You can use the AI-powered Brand Wizard : simply input your URL, and the wizard will create a brand kit of your colors, logos, and fonts, which you can easily access in any Visme project. 

Alternatively, you can add them manually. The upside to the wizard is that it also provides templates that match your brand, making it faster to find a chart that aligns with your brand.

types of graphs - most frequently used visuals pie chart

Customize this pie chart template and make it your own! Edit and Download

Pie charts are the simplest and most efficient visual tool for comparing parts of a whole. For example, a pie chart can quickly and effectively compare various budget allocations, population segments or market-research question responses.

Marketing content designers frequently rely on pie charts to compare the size of market segments. For example, a simple pie graph can clearly illustrate how the most popular mobile-phone manufacturers compare based on the sizes of their user-bases.

Audiences are able to quickly understand that stock photography is the most-used visual in marketing, with original graphics – like those that can be created with Visme – coming in as a close second.  The beauty of using Visme is that you can create animated charts to engage your audience and make complex information digestible.

Mosaic or Mekko Charts

Furniture Factory Mekko Chart

Basic line, bar and pie charts are excellent tools for comparing one or two variables in a few categories, but what happens when you need to compare multiple variables or multiple categories at the same time?

What if all those variables aren’t numeric even? A mosaic – or Mekko – chart plot might be the better choice.

Perhaps a production analyst wants to compare the amount of furniture produced, analyze the production percentages for multiple best-selling types of furniture, review their year-over-year growth of sales to decide how to allocate their production budget effectively.

A mosaic chart would allow said analysts to illustrate all the variables in a clear and straightforward manner.

In the above example, one axis of the chart represents the categories being compared – Tables, chairs, sofas, beds, bedroom sets, the year over year review – while the other axis lists various percentages.

The size and color of each cross-section of the chart corresponds with the market segment it represents, as depicted in the chart's legend.

Population Pyramids

Marketing-Population-Pyramids types of graphs and charts

Create your own charts and graphs with Visme! Try It For Free

Market segments are often divided based on age and gender, and a population pyramid is an ideal visual representation of the two groups.

The graph classically takes on the shape of a pyramid when a population is healthy and growing -- the largest groups are the youngest, and each gender dwindles somewhat equally as the population ages, leaving the smallest groups at the top of the graph.

A population pyramid that veers away from its classic shape might indicate an irregularity in a population during a particular period, such as a famine or an economic boom that led to an increase in deaths or births.

Of course, population pyramids aren’t always used to compare populations by age, and therefore don’t always take on the graph’s namesake shape.

A marketer, for example, might use the design to compare a population by income, weight or IQ, in which the smallest groups will often be at both the top and bottom. Regardless, the graph clearly depicts population trends, while it compares the sizes of two related groups.

Spider Charts

types of graphs - customer satisfaction spider chart

Create your own spider chart with Visme! Try It For Free

When a statistician needs to visually compare three or more quantitative variables, he or she might choose to use a  radar chart , also known as a spider or star chart.

The chart usually consists of a series of radii, each representing a different category, that splay out from a center point like spokes.

The length of each “spoke” is proportionate to the value being compared. For each category, the spokes are then connected with a line of a designated pattern or color, forming a star-like shape with points equal to the number of categories.

The result is a graphic representation that can reveal trends and compare categories all at the same time.

With Visme, you can not only easily populate your charts with pre-existing data from your Google Sheets, but also ensure that when values change in your Google Sheet, your Visme chart will be updated whenever the project is refreshed. This not only helps keep your charts up to date but also allows seamless design collaboration between team members in or outside of Visme.

Want to create your own radar chart?

  • Upload an Excel file or sync with live data from Google sheets
  • Choose from 16+ types of charts, from bar and line graphs to pyramid and Mekko charts
  • Customize anything, from backgrounds and placement of labels to font style and color

Business and Finance

Stock charts.

Business-and-Finance-Stock-Charts types of graphs and charts

Image source

One of the most vital of all financial graphs, stock charts help investors track the markets to determine profits and loss, as well as make buying and selling decisions.

While a variety of graphs are used to represent market changes, the most common is likely the basic line graph turned histogram.

The lines simply tracks changes in a particular stock’s or overall market’s value over a period of time. Multiple stocks can be tracked and compared at the same time by transforming the line graph into a stacked area chart or simply using multiple lines of various colors.

Whether you need to create stock charts for potential shareholders or whip up a quick visualization for your team, you can add hotspots or link documents to your charts to add additional reports. This lets you share more information at once rather than sending long emails or cluttering your chart design. 

This is just one of the many all-in-one approaches Visme provides that most data visualization tools fail to offer. Not only does it allow you to create professionally designed charts or graphs with little to no design experience, but it expands its use case to help you work more efficiently. 

But don’t take our word for it, see what MacKenzie Stonis, Economic Research Analyst at Greater Memphis Chamber had to say:

MacKenzie Stonis

Economic Research Analyst

Flow Charts

Payment Services Customer Rep Dichotomous Flowchart

Oftentimes in business – as well as other industries – a process must be diagrammed. A flow chart allows a process to be sequenced step-by-step, from beginning to end, for the purpose of analyzing, designing, documenting or managing it.

These flow charts can even feature multiple beginnings and ends, with countless pathways and journeys in between.

While a simple flow chart can certainly document a basic process from A to B to C, the diagrams are more frequently used to illustrate more complex sequences with multiple decisions or conditions along the way.

Each time a condition is met, the chart diagrams the various options, then the path continues following each choice.

Flowcharts are commonly used for organizational charts, training materials, customer onboarding, planning and execution, as well as SOPs, and more. 

So, whether you plan to share your flowcharts internally or externally, Visme allows you to publish and share them as live links. This means that viewers can review your charts like a website. And if you make any edits to your chart, simply refresh the page, and the changes are updated instantly.

Want to create your own flowchart?

  • Get a head start with pre-made flowchart blocks
  • Easily snap lines and objects together
  • Dozens of shapes and lines styles to choose from

Gantt Charts

types of graphs - gantt charts

Gantt charts are special types of bar graphs used to diagram projects and schedules. The use of colored bars of varying lengths reflect not only a project’s start and end dates, but also important events, tasks, milestones and their timeframes.

Modern Gantt charts can also illustrate activities’ dependency relationships.

If Team 3’s completion of task C, for example, is dependent upon the prior completion of task B by Team 2, the chart can not only reflect that relationship but also the scheduled dates and deadlines for each. Easily create beautiful Gantt charts to visualize your project schedule and streamline project management with Visme's Gantt Chart Maker .

Control Charts

Business-and-Finance-control-charts types of graphs and charts

Also commonly known as a process-behavior chart, a control chart helps determine if a data set falls within a mean or predetermined control range.

Frequently used in quality control processes, a typical control chart consists of points plotted on two axes, representing sample measurements.

The mean of each point is calculated, and a center line across the graph at the mean value. Then, a standard deviation from the mean is calculated using each sample.

Finally, upper and lower control limits are determined and diagrammed to reflect the points at which deviation is beyond the expected standard.

Waterfall Charts

Business-and-Finance-Waterfall-charts types of graphs and charts

Waterfall is one of the most commonly used data visualization techniques used in business. This chart is particularly useful in accounting and qualitative analysis; waterfall charts illustrate how an initial value is affected positively and negatively by various factors.

For example, a waterfall chart could clearly and efficiently communicate how an opening balance changes month by month over the course of a year.

Because they often appear as though bars are floating throughout the graph, waterfall charts are sometimes referred to as floating bricks or Mario charts.  

If your team uses a wide range of tools to gather data for charts like these, keep in mind that Visme offers a more integrated approach for all your data visualization needs. Integrate with apps like Tableau, Salesforce, Hubspot and Google Analytics and so much more. 

Hierarchy Diagrams

Creative Hierarchical Infographic

Similar in appearance to a flow chart, a hierarchical diagram, also known as an organizational chart or an organigram, illustrates the structure of an organization, as well as the relationships within it.

A typical company organigram, for example, lists the CEO at the top, followed by presidents, vice presidents, managers and so on.

An organizational chart can illustrate the chain of command from any employee all the way to the top. Hierarchy diagrams are similarly used to represent pedigrees, scientific classifications, demographics and any data set with a similar breakdown.

Take the above diagram as an example, where a project team is organized in an organizational hierarchy chart so that everyone knows who their supervisor is in a project.

Remember that if you’re using this for organizational purposes, it has to be updated regularly. To assist with this, you can add dynamic fields in Visme, for top positions in your hierarchy diagrams. 

With dynamic fields, you can instantly update names, positions, or business information across all projects with just one click. This significantly cuts down on the time that would otherwise be spent manually editing your chart .

Want to create your own organizational diagram?

  • Get a head start with pre-made diagram blocks

Scatter Plots

Also known as a scattergram , the graph consists of two axes, each representing a set of data. For example, o ne axis might represent the percentage of profits , while the second axis displays the total budget in millions.

For each budget and profit made is represented by a dot and plotted onto the graph. Once multiple dots are plotted, trends can be spotted and samples can be compared. The chart ultimately states that higher the budget the greater the possibility of increased profits.

A bubble chart is another variation of scatter plots. While both of them visualize relationships between two variables, a bubble chart adds an extra dimension by incorporating the size of the bubbles to represent a third variable.

Trellis Plots

Engineering-and-technology-Trellis-Plots types of graphs and charts

Sometimes a statistician will need to compare more data sets than can be  represented by a single graph. What if, for example, a graph needs to compare not only miles driven and gallons used, but also the number of gears and cylinders contained in each vehicle sample?

A trellis plot, also called a lattice graph or plot, can display and compare all of those variables. While the above example uses a series of scatter charts, trellis plots commonly feature series of bar or line graphs, as well.

Function Plots

types of graphs - probability density function graph

Mathematicians, engineers and statisticians often need to determine the value of an equation by graphing its result. The graph of a function is the set of all points whose coordinates satisfy the equation.  

Therefore, the function of an equation with variables of x and y would be drawn on a graph with an x and y axis. Likewise, an equation that also included a variable of z would need to be drawn on a three-dimensional graph with a third axis.

Function graphs of common shapes are visually associated with their corresponding algebraic formulas.

Binary Decision Diagrams

types of graphs - binary decision diagram

A binary decision is a choice between two alternatives, so a binary-decision diagram illustrates the path from one decision to another.

In computer science, binary decisions make up the Boolean data type, in which two values are associated with different actions within a process flow.

Outside of computer science, a binary-decision diagram can still be used to illustrate any process by which actions are based on a decision between two values, whether those conditions be yes or no, true or false, 1 or 0 or any other opposing choices.

Ultimately, the path taken will diagram how the process flowed, from beginning to end.

Circuit Diagrams

Engineering-and-technology-Circuit-Diagrams types of graphs and charts

Just as its name implies, a circuit diagram is a visual representation of an electrical circuit. Using simple shapes and images, the diagram illustrates the components and interconnections of a circuit, from start to finish.

While the pathways and connections are accurate, the diagram does not necessarily represent a proportionate spatial construction of the circuit. In computer science, circuit diagrams are useful in depicting data related to both hardware and software.

The graphics not only visualize the pathways of a circuit in the literal sense, but they are also closely related to the aforementioned binary-decision diagram -- both are used to diagram programming process flows.

Transform technical, complex information into easy-to-understand reports

  • Create detailed diagrams of workflows , systems and processes to see how they interset
  • Easily create and share resources for your team , from login credentials to security best practices
  • Get more visual with your communication to ensure intricate information is resonating and sinking in

Sign up. It’s free.

Transform technical, complex information into easy-to-understand reports

Customize this timeline template and make it your own! Edit and Download

Possibly the most self-explanatory of data visualizations, a timeline tracks data over a time period. Significant dates and events are highlighted at the point at which they appear on a chronological scale. Timelines can be used alone or in conjunction with other visualizations.

This History of Vincent Van Gogh timeline infographic is a great example of how you can create a timeline chart right in Visme.

Condensing historical timelines can be tough , especially when you have to cram a lot of  facts or events into a bit-sized timeline. The last thing you want to do is overwhelm your reader. To do the heavy lifting for you use Visme’s AI Writer . This tool can help you to  summarize your lengthy historical details and present them in a timeline bullet points. 

Plus, use it to proofread or revise your changes or additional writing so that it's grammatically correct and ready to be shared  with the world.

Want to create your own timeline?

Tree diagrams.

Types of Graphs

A form of hierarchical diagram, a genealogical tree illustrates the structure of a family. It can either begin with an ancestor, then diagram his or her descendants, their siblings, marriages and children, and so on.

A pedigree chart, on the other hand, begins with an individual and charts their ancestry, from parents to grandparents, and continues up.

Sunburst Charts

A Circular Organizational Chart Infographic

A type of multi-level pie chart, a sunburst chart is used to illustrate hierarchical data using concentric circles. Each ring of the “sunburst” represents a level in the hierarchy, with the root node represented by the center circle, and the hierarchy moving outward.

While a sunburst chart can be used to illustrate a familiar or company hierarchy, it can also break data down by time periods, creating a historical hierarchy.

Various branches of an organization can be represented by designated hues, with different levels often taking on varying shades of the same color family. Rings can also be divided further to represent multiple divisions within the same organizational level.

In fact, a traditional, complex color wheel, such as that used by paint stores, is another form of sunburst chart.

types of graphs - wildfire deaths line graph

Customize this line graph template and make it your own! Edit and Download

If a timeline is a form of graph, then it only makes sense that historians often employ it in displaying other data. By plotting immigration levels against a timeline, the resulting histogram illustrates population trends over a century or longer with a basic line graph.

Stacked Area Charts

History-Stacked-Area-Charts types of graphs and charts

Stacked area charts are frequently used to diagram changes of multiple variables across time. Multiple lines can be drawn, for example, to track the population changes of various states across time.

The area below each line can be colored a different hue to represent the state it signifies, resulting in a graph that clearly represents population trends, while at the same time displaying each state’s data in order from least to most populous.

Stacked Bar Graphs

Political-Science-and-Sociology-Stacked-Bar-Graphs types of graphs and charts

When studying groups of people, it’s common to compare multiple variables at once. After all, it’s enormously more useful to examine racial backgrounds, ages and gender in addition to total population.

A stacked bar graph combines elements of the traditional bar graph and the pie graph to communicate totals, trends and proportions in a single illustration.

Rather than simply illustrating changes in global population over time with a traditional column bar graph, a stacked bar graph can also represent the racial makeup of the population during each year and how those proportions have changed during the same period.

Want to create your own stacked bar chart?

Trellis bar graphs.

trellis bar graphs types of graphs and charts

When presenting data with three variables, a designer might try and create a three-dimensional bar graph, but adding an additional axis can sometimes appear cluttered and unclear, especially in printed form.

Instead, additional variables can be presented in a trellis – or lattice – format.

By combining a series of bar graphs in a modular design, additional sets of data can be easily compared. For example, a single bar graph could illustrate the political breakdown of Poland’s national elections over a period of five years.

But a trellis bar graph could depict the same data set for 16 European nations.

Political-Science-and-Sociology-Stacked-Area-Charts types of graphs and charts

Stacked area charts are ideal for comparing values that would normally require multiple line graphs. Each line represents a different category, and the area below each line is generally shaded a designated color so each data set can be easily compared.

For example, an area chart with one axis that represents a numeric value, and another axis that serves as a timeline, data for various categories over time can be tracked and compared with a single graphic. 

Multi-level Pie Charts

10 Years Sales Overview Line Graph

All too often a designer finds him or herself with more sets of data than can be presented in a single standard graph. Fortunately, in the case of a pie chart, multiple layers of data can be presented without the need for multiple images or a trellis design.

A multi-level pie chart, for example, consists of tiers, with each layer representing a separate set of data, and can be the perfect solution.

So while it would take three traditional pie graphs to illustrate the various sources of recorded words for three different decades, a multi-level pie graph can not only take the place of all three, but it also offers a clearer visual comparison of each year’s results.

Venn Diagrams

types of graphs - sustainable development venn diagram

Customize this Venn diagram template and make it your own! Edit and Download

The classic Venn diagram , also known as a logic diagram, illustrates all possible logical relationships between a designated collection of sets.

For example, the overlap of two or more circles – in this case there are three – visually represents the similarities and differences between the social, economical and environmental areas of sustainable development.

The more circles used, the more logical conclusions that can be represented by their overlap. The combined set of all data in the diagram is known as the union, while the areas that overlap are called intersections.

A Venn diagram in which the relative size and area of each shape is proportional to the size of the group it represents is known as an area-proportional or scaled Venn diagram.

Scattergrams

Science-Scattergrams types of graphs and charts

Scattergrams, also known as scatter plots, are graphs that show the relationship between two or more variables. The plots use mathematical coordinates to represent two variables of a data set.

Data is displayed in a scattergram as a collection of points, each representing the value variables plotted on the horizontal and vertical axes. If points are color-coded, an additional variable can be represented in a single chart.

By plotting certain data sets, scientists can discover trends of which they might not otherwise be aware. For example, a scattergram might allow a doctor to plot patients’ resting heart rates against their body-mass index figures.

The resulting graph reveals that a higher heart rate correlates with a higher BMI.

Trellis Line Graphs

Science-Trellis-Line-graphs types of graphs and charts

Trellis graphs allow scientists to examine complex, multi-variable data sets, comparing a greater deal of information at once.

While a single line graph can illustrate monthly UFO sightings in Tennessee over an 18-year period, a trellis line graph will display the same data for all 50 states in a single graphic.

A trellis line graph is based on the same principle as its simpler counterpart, plotting trends in a dataset consisting of two variables – numbers of UFO sightings and dates – through use of connecting points on two axes.

But by combining multiple line graphs in a modular format, an additional variable – location – is represented.

Pareto Charts

types of graphs - food defects pareto chart

You might be wondering what type of graph is this ? Well, sometimes a basic graph doesn’t display enough information to draw the necessary conclusion. A Pareto chart combines a bar graph with a line graph to illustrate not only categories’ individual values, but also the cumulative total of the entire set.

Pareto charts are designed to highlight the most important of a set of factors.

In a Pareto chart that tracks the type and frequency of food defects, the bars illustrate each type of defects’ total occurrences – as reported on one of the charts’ axes – while the line charts the cumulative frequency of all categories, from most to least prevalent.

The result is a graph that clearly reflects the most common food defects and what percentage of the whole each represents.

Radar Charts

Science-Radar-Charts types of graphs and charts

A radar chart, also commonly referred to as a spider chart or a star chart, displays data sets consisting of three or more variables on a two-dimensional graphic. Each variable’s quantitative value is reflected across an axis that usually starts in the chart’s center point.

As each item’s variables are charted, a line connects the points on each axis, forming an irregular polygon that may or may not resemble a star or spider web.

Multiple data sets can be compared on a single radar graph by representing each with a different color, identified by labels or in an accompanying key.

A radar chart can, for example, clearly compare and illustrate the costs and outcomes of various medical procedures as they relate to multiple conditions – all in a single graphic.

Spherical Contour Graphs

Science-Spherical-Contour-Graphs types of graphs and charts

Plotting planetary conditions on a basic two-axis graph can pose a problem. The Earth, after all, is a sphere. Instead, data can be plotted on a three-axis field using variables of x, y and z. The resulting plot, if completed, will take the form of a sphere.

A spherical plot can, for example, reveal global temperature or rainfall trends by assigning each value range with a particular color, then plotting the data with points of the corresponding hue.

Health and Wellness

Multi-line graphs.

Health-and-Wellness-Multi-Line-Graphs types of graphs and charts

Just as medical symptoms are rarely isolated, neither is the analysis of biometric data. After all, rarely does one statistic paint the entire medical picture.

Line graphs can reflect multiple data sets with lines of varying patterns or color. For example, a multi-line graph can illustrate changes in life expectancies of not just the population in general, but for each gender and multiple racial backgrounds.

Health-and-Wellness-Stacked-Bar-Graphs types of graphs and charts

Stacked bar graphs aren’t useful only in illustrating parts of of a whole. They can also be used to display additional variables.

While a basic bar graph could represent what portion of a population is classified as overweight over a designated time period, a stacked bar graph can also track how much of the total is obese.

types of graphs - should you nap flowchart

Customize this flow chart template and make it your own! Edit and Download

Following the proper process is probably more important in medicine than in any other field. After all, if the surgeon forgets a step, you might very well bleed to death while you sleep.

Flow charts are frequently used by hospitals, clinics and other medical facilities to ensure proper procedures are uniformly followed. There are different types of graphs that can be used but these are the most commonly used. 

Health-and-Wellness-Pictographs types of graphs and charts

In a pictogram, or pictograph, images and symbols are used to illustrate data. For example, a basic pictogram might use an image of the sun to signify each fair-weather day in a month and a rain cloud to symbolize each stormy day.

Because images are known to hold more emotional power than raw data, pictograms are often used to present medical data.

An illustration that shades five of 20 person symbols to represent a 20-percent death rate carries a more powerful message, for example, than a bar, line or pie that illustrates the same data.

Anatomical Diagrams

types of graphs - amazing fact anatomical diagram

Customize this anatomical diagram template and make it your own! Edit and Download

Medical diagrams are often used to illustrate anatomy, treatments or disease pathology in order to explain treatments for patients and others without an extensive biomedical background.

While medical diagrams are considered a combination of science and art, they can be just as technical as any other quantitative graph. And no matter how detailed the drawing, anatomical diagrams are designed to clearly and efficiently present data.

And just as with a complex contour diagram, the diagrams focus on key information, even if it was selected from voluminous amounts of medical or scientific data.

Multi-Pie Charts

Health-and-Wellness-Multi-Pie-Charts types of graphs and charts

Just as in the cases of multi-level pie graphs, stacked bar graphs and trellis plots, multi-pie graphs paint a more detailed portrait of the data set it illustrates.

While a single pie chart can display what portion of the total population has a particular condition, a multi-pie graph can break those statistics down to illustrate not only the portion of men and the portion of women, but also how the two groups compare.

Want to create your own pie chart?

  • Upload an Excel file or synch with live data from Google sheets

Health-and-Wellness-Scatter-Plots types of graphs and charts

It can be difficult to graphically represent medical data sets that consist of hundreds -- or more -- patients, as is the case in most medical studies.

But a scatter plot allows for the representation of each subject, plotted on the graph according to the variables on the chart’s two axes.

The pattern formed by the plotted dots can clearly determine trends in the data. By analyzing a scatter plot, for example, a researcher could easily identify a correlation between longer life expectancy and higher household income.

Contour Plots

Meteorology-and-Environment-Contour-Plots types of graphs and charts

Contour plots allow for the analysis of three variables in a two-dimensional format. Instead of plotting data along two main axes, the graph also presents a third value that is based on shading or color.

Just as a topographical map plots longitude, latitude and elevation in a two-dimensional design, a contour graph illustrates values of x , y and z .

With a contour graph, for example, a climatologist can not only plot ocean’s salinity on different dates, but its salinity at various depths on those dates.

Meteorology-and-Environment-Heat-Maps types of graphs and charts

A type of contour graph, a heat map specifically charts varying temperatures at different geographical points. While the graph’s two axes are a map’s latitude and longitude, the third variable – temperature – is represented by a spectrum of color.

There are different types of graphs you can use to show the varying temperatures on a global scale, such as bar graphs or line graphics. However, most people find heatmaps more effective and quicker to read than bars or line graphs.

That being said, while heat maps are most commonly used to illustrate weather, they can also represent web traffic, user engagement or behavior, financial indicators, and almost any other three-dimensional data.

Scatter-Line Combo

Meteorology-and-Environment-Scatter-Line-Combo types of graphs and charts

By combining a line graph with a scatter plot, meteorologists and other statisticians can illustrate the relationship between two data sets.

For example, the high and low temperatures of each day in a month can be displayed in a scatter plot, then a line graph can be added to plot the historic average high and low temperatures over the same period.

The resulting combination graph clearly displays how the temperature range each day compares to the historic average, and it even indicates how those measurements trend over the examined time period.

Meteorology-and-Environment-3D-Graphs types of graphs and charts

Technology now allows statisticians to display multi-dimensional data sets in true form. Three-dimensional graphs created with specialized software reflect the relationship between three variables plotted across three axes.

A meteorologist can, for example, graph the wind field of a hurricane.

Average Annual Temperature of a Region Histogram

By definition, a histogram is a special type of vertical bar graph that presents numeric data and its frequency distribution.

As its name suggests, the distribution is often illustrated across time, but the data could also be plotted based on any chronological scale, such as temperature, elevation or monetary value.

While histograms are typically a form of bar graph, the concept can also be applied to line graphs and other designs relying on plotting two axes.

Choose From These Types of Graphs to Create

Now that we've walked through the different charts and graphs used for data visualization, you have a better idea of how to select one based on your industry or needs.

Now it's time to take the next step: create your own.

Visme goes beyond simply being a data visualization tool with over 30+ design widgets and a wide variety of data visualization templates. It's an intuitive platform that allows you to plan, strategize, and translate statistics and figures into stunning and meaningful visuals.

You can seamlessly create reports, projects, presentations, visual content, and more, all while saving on cost, empowering your team with the power of design, and streamlining your content creation process.

Interested to see what Visme can do for you and your team? Request a demo or give Visme a free test run today and begin experiencing all that you can accomplish.

Create beautiful charts, graphs and data visualizations with ease.

forms of graphical representation

Trusted by leading brands

Capterra

Recommended content for you:

Interactive Data Visualization: Examples, Techniques & Tools

Create Stunning Content!

Design visual brand experiences for your business whether you are a seasoned designer or a total novice.

forms of graphical representation

About the Author

Samantha Lile is a web content creator with a journalism and mass media degree from Missouri State University. She contributes news and feature articles to various web publications, such as the Huffington Post. Currently, she resides in the beautiful Ozarks with her husband, four dogs and two cats.

forms of graphical representation

Robot

for World Environment Day with code NATURE30

Embibe Logo

Share this article

link

Table of Contents

Latest updates.

Ways To Improve Learning Outcomes: Learn Tips & Tricks

Ways To Improve Learning Outcomes: Learn Tips & Tricks

The Three States of Matter: Solids, Liquids, and Gases

The Three States of Matter: Solids, Liquids, and Gases

Types of Motion: Introduction, Parameters, Examples

Types of Motion: Introduction, Parameters, Examples

Understanding Frequency Polygon: Detailed Explanation

Understanding Frequency Polygon: Detailed Explanation

Uses of Silica Gel in Packaging?

Uses of Silica Gel in Packaging?

Visual Learning Style for Students: Pros and Cons

Visual Learning Style for Students: Pros and Cons

Air Pollution: Know the Causes, Effects & More

Air Pollution: Know the Causes, Effects & More

Sexual Reproduction in Flowering Plants

Sexual Reproduction in Flowering Plants

Integers Introduction: Check Detailed Explanation

Integers Introduction: Check Detailed Explanation

Human Respiratory System – Detailed Explanation

Human Respiratory System – Detailed Explanation

Tag cloud :.

  • entrance exams
  • engineering
  • ssc cgl 2024
  • Written By Sushma_P
  • Last Modified 22-06-2023

Graphical Representation: Advantages, Types & Examples

Graphical Representation: A graph is a categorised representation of data. It helps us understand the data easily. Data is a collection of numerical figures collected through surveying. The word data came from the Latin word ‘Datum’, which means ‘something given’. After developing a research question, data is being collected constantly through observation. Then the data collected is arranged, summarised, classified, and finally represented graphically. This is the concept of graphical representation of data.

Let’s study different kinds of graphical representations with examples, the types of graphical representation, and graphical representation of data in statistics, in this article.

What Are Graphical Representations?

Graphical representation refers to the use of intuitive charts to visualise clearly and simplify data sets. Data obtained from surveying is ingested into a graphical representation of data software. Then it is represented by some symbols, such as lines on a line graph, bars on a bar chart, or slices of a pie chart. In this way, users can achieve much more clarity and understanding than by numerical study alone. 

Advantages of Graphical Representation

Some of the advantages of using graphs are listed below:

  • The graph helps us understand the data or information even when we have no idea about it.
  • It saves time.
  • It makes it easier for us to compare the data for different time periods or different kinds.
  • It is mainly used in statistics to determine the mean, median and mode for different data and interpolation and extrapolation of data.

Use of Graphical Representations

The main agenda of presenting scientific data into graphs is to provide information efficiently to utilise the power of visual display while avoiding confusion or deception. This is important in communicating our findings to others and our understanding and analysis of the data.

Graphical data representation is crucial in understanding and identifying trends and patterns in the ever-increasing data flow. Graphical representation helps in quick analysis of large quantities and can support making predictions and informed decisions.

General Rules for Graphical Representation of Data

The following are a few rules to present the information in the graphical representation:

  • Suitable title:  The title of the graph should be appropriate that indicates the subject of the presentation.
  • Measurement unit:  The measurement unit in the graph should be mentioned.
  • Proper scale:   Choose a proper scale to represent the data accurately.
  • Index:  For better understanding, index the appropriate colours, shades, lines, and designs in the graphs. 
  • Data sources:  Data should be included wherever it is necessary at the bottom of the graph.
  • Keep it simple:  The construction of a graph should be such a way that it is effortlessly understood.
  • Neat:  The correct size, fonts, colours etc., should be chosen so that the graph should be a visual aid for presenting the information.

Types of Graphical Representation

1. Line graph 2. Histogram 3. Bar graph 4. Pie chart 5. Frequency polygon 6. Ogives or Cumulative frequency graphs

1. Line Graph

A line graph is a chart used to show information that changes over time. We plot line graphs by connecting several points with straight lines.  Another name is a line chart. The line graph contains two axes: \(x-\)axis and \(y-\)axis.

  • The horizontal axis is the \(x-\)axis.
  • The vertical axis is the \(y-\)axis.

Example: The following graph shows the number of motorbikes sold on different days of the week.

Line Graph

2. Histogram

Continuous data represented on the two-dimensional graph is called a histogram. In the histogram, the bars are placed continuously side by side without a gap between consecutive bars. In other words, rectangles are erected on the class intervals of the distribution. The areas of the rectangles formed by bars are proportional to the frequencies.

Example: Following is an example of a histogram showing the average pass percentage of students.

Histogram

3. Bar Graph

Bar graphs can be of two types – horizontal bar graphs and vertical bar graphs. While a horizontal bar graph is applied for qualitative data or data varying over space, the vertical bar graph is associated with quantitative data or time-series data.

Bars are rectangles of varying lengths and of equal width usually are drawn either horizontally or vertically. We consider multiple or grouped bar graphs to compare related series. Component or sub-divided bar diagrams are applied for representing data divided into several components. 

Example:  The following graph is an example of a bar graph representing the money spent month-wise

Bar Graph

4. Pie Chart

The sector of a circle represents various observations or components, and the whole circle represents the sum of the value of all the components. The total central angle of a circle is \({360^{\rm{o}}}\) and is divided according to the values of the components.

The central angle of a component\( = \frac{{{\rm{ value}}\,{\rm{of}}\,{\rm{the}}\,{\rm{component }}}}{{{\rm{total}}\,{\rm{value}}}} \times {360^{\rm{o}}}\)

Sometimes, the value of the components is expressed in percentages. In such cases, The central angle of a component\( = \frac{{{\rm{ percentage}}\,{\rm{value}}\,{\rm{of}}\,{\rm{the}}\,{\rm{component }}}}{{100}} \times {360^{\rm{o}}}\)

Example:  The following figure represents a pie-chart

Pie Chart

5. Frequency Polygon

A frequency polygon is another way of representing frequency distribution graphically. Follow the steps below to make a frequency polygon:

(i) Calculate and obtain the frequency distribution and the mid-points of each class interval. (ii) Represent the mid-points along the \(x-\)axis and the frequencies along the \(y-\)axis. (iii) Mark the points corresponding to the frequency at each midpoint. (iv) Now join these points in straight lines. (v) To finish the frequency polygon, join the consecutive points at each end (as the case may be at zero frequency) on the \(x-\)axis.

Example: The following graph is the frequency polygon showing the road race results.

Frequency Polygon

6. Ogives or Cumulative Frequency Graphs

By plotting cumulative frequency against the respective class intervals, we obtain ogives. There are two ogives – less than type ogives and more than type.

Less than type ogives is obtained by taking less than cumulative frequency on the vertical axis. We can obtain more than type ogives by plotting more than type cumulative frequency on the vertical axis and joining the plotted points successively by line segments.

Example: The below graph represents the less than and more than ogives for the entrance examination scores of \(60\) students.

Ogives or Cumulative Frequency Graphs

Solved Examples – Basic Graphical Representation

Q.1. The wildlife population in the following years, \(2013, 2014, 2015, 2016, 2017, 2018,\) and \(2019\) were \(300, 200, 400, 600, 500, 400\) and \(500,\) respectively. Represent these data using a line graph. Ans: We can represent the population for seven consecutive years by drawing a line diagram as given below. Let us consider years on the horizontal axis and population on the vertical axis.

For the year \(2013,\) the population was \(300.\) It can be written as a point \((2013, 300)\) Similarly, we can write the points for the succeeding years as follows: \((2014, 200), (2015, 400), (2016, 600), (2017, 500), (2018, 400)\) and \((2019, 500)\)

We can obtain the line graph by plotting all these points and joining them using a ruler. The following line diagram shows the population of wildlife from \(2013\) to \(2019.\)

 Basic Graphical Representation

Q.2. Draw a histogram for the following data that represents the marks scored by \(120\) students in an examination:

\(0-20\)\(20-40\)\(40-60\)\(60-80\)\(80-100\)
\(5\)\(10\)\(40\)\(45\)\(20\)

Ans: The class intervals are of an equal length of \(20\) marks. Let us indicate the class intervals along the \(x-\)axis and the number of students along the \(y-\)axis, with the appropriate scale. The histogram is given below.

 Basic Graphical Representation

Q.3. The total number of scoops of vanilla ice cream in the different months of a year is given below:

\(240\)\(400\)\(440\)\(320\)\(200\)

For the above data, draw a bar graph. Ans: The following graph represents the number of vanilla ice cream scoops sold from March to July. The month is indicated along the \(x-\)axis, and the number of scoops sold is represented along the \(y-\)axis.

 Basic Graphical Representation

Q.4. The number of hours spent by a working woman on various activities on a working day is given below. Using the angle measurement, draw a pie chart.

\(3\)\(7\)\(2\)\(9\)\(1\)\(2\)

Ans: The central angle of a component\( = \frac{{{\rm{ value}}\,{\rm{of}}\,{\rm{the}}\,{\rm{component }}}}{{{\rm{total}}\,{\rm{value}}}} \times {360^{\rm{o}}}\). We may calculate the central angles for various components as follow:

Household\(3\)\(\frac{3}{{24}} \times {360^{\rm{o}}} = {45^{\rm{o}}}\)
Sleep\(7\)\(\frac{7}{{24}} \times {360^{\rm{o}}} = {105^{\rm{o}}}\)
Cooking\(2\)\(\frac{2}{{24}} \times {360^{\rm{o}}} = {30^{\rm{o}}}\)
Office\(9\)\(\frac{9}{{24}} \times {360^{\rm{o}}} = {135^{\rm{o}}}\)
TV\(1\)\(\frac{1}{{24}} \times {360^{\rm{o}}} = {15^{\rm{o}}}\)
Other\(2\)\(\frac{2}{{24}} \times {360^{\rm{o}}} = {30^{\rm{o}}}\)
Total\(24\)\({360^{\rm{o}}}\)

By knowing the central angle, a pie chart is drawn,

 Basic Graphical Representation

Q.5. Draw a frequency polygon for the following data using a histogram.

\(140-145\)\(145-150\)\(150-155\)\(155-160\)\(160-165\)\(165-170\)\(170-175\)
\(35\)\(40\)\(55\)\(50\)\(40\)\(35\)\(20\)

Ans: To draw a frequency polygon, we take the imagined classes \(135-140\) at the beginning and \(175-180\) at the end, each with frequency zero. The following is the frequency table tabulated for the given data

\(140-145\)\(142.5\)\(35\)
\(145-150\)\(147.5\)\(40\)
\(150-155\)\(152.5\)\(55\)
\(155-160\)\(157.5\)\(50\)
\(160-165\)\(162.5\)\(40\)
\(165-170\)\(167.5\)\(35\)
\(170-175\)\(172.5\)\(20\)

Let’s mark the class intervals along the \(x-\)axis and the frequency along the \(y-\)axis.

 Basic Graphical Representation

Using the above table, plot the points on the histogram: \((137.5, 0), (142.5, 35), (147.5, 40), (152.5, 55), (157.5, 50), (162.5, 40),\) \((167.5, 35), (172.5, 20)\) and \((177.5, 0).\)

We join these points one after the other to obtain the required frequency polygon.

In this article, we have studied the details of the graphical representation of data. We learnt the meaning, uses, and advantages of using graphs . Then we studied the different types of graphs with examples. Lastly, we solved examples to help students understand the concept in a better way.

Frequently Asked Questions (FAQs) on Basic Graphical Representation

Q.1: What are graphical representations? Ans: Graphical representations represent given data using charts or graphs numerically and then visually analyse and interpret the information.

Q.2: What are the 6 types of graphs used? Ans: The following are the types of graphs we use commonly: 1. Line graph 2. Histogram 3. Bar graph 4. Pie chart 5. Frequency polygon 6. Ogives or cumulative frequency graphs

Q.3: What are the advantages of the graphical method? Ans: The advantages of using a graphical method are: 1. Facilitates improved learning 2. Knowing the content 3. Usage of flexibility 4. Increases thinking 5. Supports creative, personalised reports for more engaging and stimulating visual presentations 6. Better communication 7. It shows the whole picture

Q.4: What is the graphical representation of an idea? Ans: The graphical representations exhibit relationships between ideas, data, information and concepts in a visual graph or map. Graphical representations are effortless to acknowledge.

Q.5: How do you do frequency polygon? Ans: Frequency distribution is first obtained, and the midpoints of each class interval are found. Mark the midpoints along the \(x-\)axis and frequencies along the \(y-\)axis. Plot the points corresponding to the frequency. Join the points, using line segments in order.

Related Articles

Ways To Improve Learning Outcomes: With the development of technology, students may now rely on strategies to enhance learning outcomes. No matter how knowledgeable a...

The Three States of Matter: Anything with mass and occupied space is called ‘Matter’. Matters of different kinds surround us. There are some we can...

Motion is the change of a body's position or orientation over time. The motion of humans and animals illustrates how everything in the cosmos is...

Understanding Frequency Polygon: Students who are struggling with understanding Frequency Polygon can check out the details here. A graphical representation of data distribution helps understand...

When you receive your order of clothes or leather shoes or silver jewellery from any online shoppe, you must have noticed a small packet containing...

Visual Learning Style: We as humans possess the power to remember those which we have caught visually in our memory and that too for a...

Air Pollution: In the past, the air we inhaled was pure and clean. But as industrialisation grows and the number of harmful chemicals in the...

In biology, flowering plants are known by the name angiosperms. Male and female reproductive organs can be found in the same plant in flowering plants....

Integers Introduction: To score well in the exam, students must check out the Integers introduction and understand them thoroughly. The collection of negative numbers and whole...

Human Respiratory System: Students preparing for the NEET and Biology-related exams must have an idea about the human respiratory system. It is a network of tissues...

Place Value of Numbers: Detailed Explanation

Place Value of Numbers: Students must understand the concept of the place value of numbers to score high in the exam. In mathematics, place value...

The Leaf: Types, Structures, Parts

The Leaf: Students who want to understand everything about the leaf can check out the detailed explanation provided by Embibe experts. Plants have a crucial role...

Factors Affecting Respiration: Definition, Diagrams with Examples

In plants, respiration can be regarded as the reversal of the photosynthetic process. Like photosynthesis, respiration involves gas exchange with the environment. Unlike photosynthesis, respiration...

General Terms Related to Spherical Mirrors

General terms related to spherical mirrors: A mirror with the shape of a portion cut out of a spherical surface or substance is known as a...

Number System: Types, Conversion and Properties

Number System: Numbers are highly significant and play an essential role in Mathematics that will come up in further classes. In lower grades, we learned how...

Types of Respiration

Every living organism has to "breathe" to survive. The process by which the living organisms use their food to get energy is called respiration. It...

Animal Cell: Definition, Diagram, Types of Animal Cells

Animal Cell: An animal cell is a eukaryotic cell with membrane-bound cell organelles without a cell wall. We all know that the cell is the fundamental...

Conversion of Percentages: Conversion Method & Examples

Conversion of Percentages: To differentiate and explain the size of quantities, the terms fractions and percent are used interchangeably. Some may find it difficult to...

Arc of a Circle: Definition, Properties, and Examples

Arc of a circle: A circle is the set of all points in the plane that are a fixed distance called the radius from a fixed point...

Ammonia (NH3): Preparation, Structure, Properties and Uses

Ammonia, a colourless gas with a distinct odour, is a chemical building block and a significant component in producing many everyday items. It is found...

CGPA to Percentage: Calculator for Conversion, Formula, & More

CGPA to Percentage: The average grade point of a student is calculated using their cumulative grades across all subjects, omitting any supplemental coursework. Many colleges,...

Uses of Ether – Properties, Nomenclature, Uses, Disadvantages

Uses of Ether:  Ether is an organic compound containing an oxygen atom and an ether group connected to two alkyl/aryl groups. It is formed by the...

General and Middle Terms: Definitions, Formula, Independent Term, Examples

General and Middle terms: The binomial theorem helps us find the power of a binomial without going through the tedious multiplication process. Further, the use...

Mutually Exclusive Events: Definition, Formulas, Solved Examples

Mutually Exclusive Events: In the theory of probability, two events are said to be mutually exclusive events if they cannot occur simultaneously or at the...

Geometry: Definition, Shapes, Structure, Examples

Geometry is a branch of mathematics that is largely concerned with the forms and sizes of objects, their relative positions, and the qualities of space....

Bohr’s Model of Hydrogen Atom: Expressions for Radius, Energy

Rutherford’s Atom Model was undoubtedly a breakthrough in atomic studies. However, it was not wholly correct. The great Danish physicist Niels Bohr (1885–1962) made immediate...

Types of Functions: Definition, Classification and Examples

Types of Functions: Functions are the relation of any two sets. A relation describes the cartesian product of two sets. Cartesian products of two sets...

forms of graphical representation

39 Insightful Publications

World Economic Forum

Embibe Is A Global Innovator

accenture

Innovator Of The Year Education Forever

Interpretable And Explainable AI

Interpretable And Explainable AI

Tedx

Revolutionizing Education Forever

Amazon AI Conclave

Best AI Platform For Education

Forbes India

Enabling Teachers Everywhere

ACM

Decoding Performance

World Education Summit

Leading AI Powered Learning Solution Provider

Journal of Educational Data Mining

Auto Generation Of Tests

BW Disrupt

Disrupting Education In India

Springer

Problem Sequencing Using DKT

Fortune India Forty Under Fourty

Help Students Ace India's Toughest Exams

Edtech Digest

Best Education AI Platform

Nasscom Product Connect

Unlocking AI Through Saas

Tech In Asia

Fixing Student’s Behaviour With Data Analytics

Your Story

Leveraging Intelligence To Deliver Results

City AI

Brave New World Of Applied AI

vccircle

You Can Score Higher

INK Talks

Harnessing AI In Education

kstart

Personalized Ed-tech With AI

StartUpGrind

Exciting AI Platform, Personalizing Education

Digital Women Award

Disruptor Award For Maximum Business Impact

The Mumbai Summit 2020 AI

Top 20 AI Influencers In India

USPTO

Proud Owner Of 9 Patents

StartUpGrind

Innovation in AR/VR/MR

StartUpGrind

Best Animated Frames Award 2024

Close

Trending Searches

Previous year question papers, sample papers.

Unleash Your True Potential With Personalised Learning on EMBIBE

Pattern

Ace Your Exam With Personalised Learning on EMBIBE

Enter mobile number.

By signing up, you agree to our Privacy Policy and Terms & Conditions

18 Best Types of Charts and Graphs for Data Visualization [+ Guide]

Erica Santiago

Published: May 22, 2024

As a writer for the marketing blog, I frequently use various types of charts and graphs to help readers visualize the data I collect and better understand their significance. And trust me, there's a lot of data to present.

Person on laptop researching the types of graphs for data visualization

In fact, the volume of data in 2025 will be almost double the data we create, capture, copy, and consume today.

Download Now: Free Excel Graph Generators

This makes data visualization essential for businesses. Different types of graphs and charts can help you:

  • Motivate your team to take action.
  • Impress stakeholders with goal progress.
  • Show your audience what you value as a business.

Data visualization builds trust and can organize diverse teams around new initiatives. So, I'm going to talk about the types of graphs and charts that you can use to grow your business.

And, if you still need a little more guidance by the end of this post, check out our data visualization guide for more information on how to design visually stunning and engaging charts and graphs.  

forms of graphical representation

Free Excel Graph Templates

Tired of struggling with spreadsheets? These free Microsoft Excel Graph Generator Templates can help.

  • Simple, customizable graph designs.
  • Data visualization tips & instructions.
  • Templates for two, three, four, and five-variable graph templates.

Download Free

All fields are required.

You're all set!

Click this link to access this resource at any time.

Charts vs Graphs: What's the Difference?

A lot of people think charts and graphs are synonymous (I know I did), but they're actually two different things.

Charts visually represent current data in the form of tables and diagrams, but graphs are more numerical in data and show how one variable affects another.

For example, in one of my favorite sitcoms, How I Met Your Mother, Marshall creates a bunch of charts and graphs representing his life. One of these charts is a Venn diagram referencing the song "Cecilia" by Simon and Garfunkle. 

Marshall says, "This circle represents people who are breaking my heart, and this circle represents people who are shaking my confidence daily. Where they overlap? Cecilia."

The diagram is a chart and not a graph because it doesn't track how these people make him feel over time or how these variables are influenced by each other.

It may show where the two types of people intersect but not how they influence one another.

marshall

Later, Marshall makes a line graph showing how his friends' feelings about his charts have changed in the time since presenting his "Cecilia diagram.

Note: He calls the line graph a chart on the show, but it's acceptable because the nature of line graphs and charts makes the terms interchangeable. I'll explain later, I promise.

The line graph shows how the time since showing his Cecilia chart has influenced his friends' tolerance for his various graphs and charts. 

Marshall graph

Image source

I can't even begin to tell you all how happy I am to reference my favorite HIMYM joke in this post.

Now, let's dive into the various types of graphs and charts. 

Different Types of Graphs for Data Visualization

1. bar graph.

I strongly suggest using a bar graph to avoid clutter when one data label is long or if you have more than 10 items to compare. Also, fun fact: If the example below was vertical it would be a column graph.

Customer bar graph example

Best Use Cases for These Types of Graphs

Bar graphs can help track changes over time. I've found that bar graphs are most useful when there are big changes or to show how one group compares against other groups.

The example above compares the number of customers by business role. It makes it easy to see that there is more than twice the number of customers per role for individual contributors than any other group.

A bar graph also makes it easy to see which group of data is highest or most common.

For example, at the start of the pandemic, online businesses saw a big jump in traffic. So, if you want to look at monthly traffic for an online business, a bar graph would make it easy to see that jump.

Other use cases for bar graphs include:

  • Product comparisons.
  • Product usage.
  • Category comparisons.
  • Marketing traffic by month or year.
  • Marketing conversions.

Design Best Practices for Bar Graphs

  • Use consistent colors throughout the chart, selecting accent colors to highlight meaningful data points or changes over time.

You should also use horizontal labels to improve its readability, and start the y-axis at 0 to appropriately reflect the values in your graph.

2. Line Graph

A line graph reveals trends or progress over time, and you can use it to show many different categories of data. You should use it when you track a continuous data set.

This makes the terms line graphs and line charts interchangeable because the very nature of both is to track how variables impact each other, particularly how something changes over time. Yeah, it confused me, too.

Types of graphs — example of a line graph.

Line graphs help users track changes over short and long periods. Because of this, I find these types of graphs are best for seeing small changes.

Line graphs help me compare changes for more than one group over the same period. They're also helpful for measuring how different groups relate to each other.

A business might use this graph to compare sales rates for different products or services over time.

These charts are also helpful for measuring service channel performance. For example, a line graph that tracks how many chats or emails your team responds to per month.

Design Best Practices for Line Graphs

  • Use solid lines only.
  • Don't plot more than four lines to avoid visual distractions.
  • Use the right height so the lines take up roughly 2/3 of the y-axis' height.

3. Bullet Graph

A bullet graph reveals progress towards a goal, compares this to another measure, and provides context in the form of a rating or performance.

Types of graph — example of a bullet graph.

In the example above, the bullet graph shows the number of new customers against a set customer goal. Bullet graphs are great for comparing performance against goals like this.

These types of graphs can also help teams assess possible roadblocks because you can analyze data in a tight visual display.

For example, I could create a series of bullet graphs measuring performance against benchmarks or use a single bullet graph to visualize these KPIs against their goals:

  • Customer satisfaction.
  • Average order size.
  • New customers.

Seeing this data at a glance and alongside each other can help teams make quick decisions.

Bullet graphs are one of the best ways to display year-over-year data analysis. YBullet graphs can also visualize:

  • Customer satisfaction scores.
  • Customer shopping habits.
  • Social media usage by platform.

Design Best Practices for Bullet Graphs

  • Use contrasting colors to highlight how the data is progressing.
  • Use one color in different shades to gauge progress.

4. Column + Line Graph

Column + line graphs are also called dual-axis charts. They consist of a column and line graph together, with both graphics on the X axis but occupying their own Y axis.

Download our FREE Excel Graph Templates for this graph and more!

Best Use Cases

These graphs are best for comparing two data sets with different measurement units, such as rate and time. 

As a marketer, you may want to track two trends at once.

Design Best Practices 

Use individual colors for the lines and colors to make the graph more visually appealing and to further differentiate the data. 

The Four Basic Types of Charts

Before we get into charts, I want to touch on the four basic chart types that I use the most. 

1. Bar Chart

Bar charts are pretty self-explanatory. I use them to indicate values by the length of bars, which can be displayed horizontally or vertically. Vertical bar charts, like the one below, are sometimes called column charts. 

bar chart examples

2. Line Chart 

I use line charts to show changes in values across continuous measurements, such as across time, generations, or categories. For example, the chart below shows the changes in ice cream sales throughout the week.

line chart example

3. Scatter Plot

A scatter plot uses dotted points to compare values against two different variables on separate axes. It's commonly used to show correlations between values and variables. 

scatter plot examples

4. Pie Chart

Pie charts are charts that represent data in a circular (pie-shaped) graphic, and each slice represents a percentage or portion of the whole. 

Notice the example below of a household budget. (Which reminds me that I need to set up my own.)

Notice that the percentage of income going to each expense is represented by a slice. 

pie chart

Different Types of Charts for Data Visualization

To better understand chart types and how you can use them, here's an overview of each:

1. Column Chart

Use a column chart to show a comparison among different items or to show a comparison of items over time. You could use this format to see the revenue per landing page or customers by close date.

Types of charts — example of a column chart.

Best Use Cases for This Type of Chart

I use both column charts to display changes in data, but I've noticed column charts are best for negative data. The main difference, of course, is that column charts show information vertically while bar charts  show data horizontally.

For example, warehouses often track the number of accidents on the shop floor. When the number of incidents falls below the monthly average, a column chart can make that change easier to see in a presentation.

In the example above, this column chart measures the number of customers by close date. Column charts make it easy to see data changes over a period of time. This means that they have many use cases, including:

  • Customer survey data, like showing how many customers prefer a specific product or how much a customer uses a product each day.
  • Sales volume, like showing which services are the top sellers each month or the number of sales per week.
  • Profit and loss, showing where business investments are growing or falling.

Design Best Practices for Column Charts

  • Use horizontal labels to improve readability.
  • Start the y-axis at 0 to appropriately reflect the values in your chart .

2. Area Chart

Okay, an area chart is basically a line chart, but I swear there's a meaningful difference.

The space between the x-axis and the line is filled with a color or pattern. It is useful for showing part-to-whole relations, like showing individual sales reps’ contributions to total sales for a year.

It helps me analyze both overall and individual trend information.

Types of charts — example of an area chart.

Best Use Cases for These Types of Charts

Area charts help show changes over time. They work best for big differences between data sets and help visualize big trends.

For example, the chart above shows users by creation date and life cycle stage.

A line chart could show more subscribers than marketing qualified leads. But this area chart emphasizes how much bigger the number of subscribers is than any other group.

These charts make the size of a group and how groups relate to each other more visually important than data changes over time.

Area charts  can help your business to:

  • Visualize which product categories or products within a category are most popular.
  • Show key performance indicator (KPI) goals vs. outcomes.
  • Spot and analyze industry trends.

Design Best Practices for Area Charts

  • Use transparent colors so information isn't obscured in the background.
  • Don't display more than four categories to avoid clutter.
  • Organize highly variable data at the top of the chart to make it easy to read.

3. Stacked Bar Chart

I suggest using this chart to compare many different items and show the composition of each item you’re comparing.

Types of charts — example of a stacked bar chart.

These charts  are helpful when a group starts in one column and moves to another over time.

For example, the difference between a marketing qualified lead (MQL) and a sales qualified lead (SQL) is sometimes hard to see. The chart above helps stakeholders see these two lead types from a single point of view — when a lead changes from MQL to SQL.

Stacked bar charts are excellent for marketing. They make it simple to add a lot of data on a single chart or to make a point with limited space.

These charts  can show multiple takeaways, so they're also super for quarterly meetings when you have a lot to say but not a lot of time to say it.

Stacked bar charts are also a smart option for planning or strategy meetings. This is because these charts can show a lot of information at once, but they also make it easy to focus on one stack at a time or move data as needed.

You can also use these charts to:

  • Show the frequency of survey responses.
  • Identify outliers in historical data.
  • Compare a part of a strategy to its performance as a whole.

Design Best Practices for Stacked Bar Charts

  • Best used to illustrate part-to-whole relationships.
  • Use contrasting colors for greater clarity.
  • Make the chart scale large enough to view group sizes in relation to one another.

4. Mekko Chart

Also known as a Marimekko chart, this type of chart  can compare values, measure each one's composition, and show data distribution across each one.

It's similar to a stacked bar, except the Mekko's x-axis can capture another dimension of your values — instead of time progression, like column charts often do. In the graphic below, the x-axis compares the cities to one another.

Types of charts — example of a Mekko chart.

Image Source

I typically use a Mekko chart to show growth, market share, or competitor analysis.

For example, the Mekko chart above shows the market share of asset managers grouped by location and the value of their assets. This chart clarifies which firms manage the most assets in different areas.

It's also easy to see which asset managers are the largest and how they relate to each other.

Mekko charts can seem more complex than other types of charts, so it's best to use these in situations where you want to emphasize scale or differences between groups of data.

Other use cases for Mekko charts include:

  • Detailed profit and loss statements.
  • Revenue by brand and region.
  • Product profitability.
  • Share of voice by industry or niche.

Design Best Practices for Mekko Charts

  • Vary your bar heights if the portion size is an important point of comparison.
  • Don't include too many composite values within each bar. Consider reevaluating your presentation if you have a lot of data.
  • Order your bars from left to right in such a way that exposes a relevant trend or message.

5. Pie Chart

Remember, a pie chart represents numbers in percentages, and the total sum of all segments needs to equal 100%.

Types of charts — example of a pie chart.

The image above shows another example of customers by role in the company.

The bar chart  example shows you that there are more individual contributors than any other role. But this pie chart makes it clear that they make up over 50% of customer roles.

Pie charts make it easy to see a section in relation to the whole, so they are good for showing:

  • Customer personas in relation to all customers.
  • Revenue from your most popular products or product types in relation to all product sales.
  • Percent of total profit from different store locations.

Design Best Practices for Pie Charts

  • Don't illustrate too many categories to ensure differentiation between slices.
  • Ensure that the slice values add up to 100%.
  • Order slices according to their size.

6. Scatter Plot Chart

As I said earlier, a scatter plot or scattergram chart will show the relationship between two different variables or reveal distribution trends.

Use this chart when there are many different data points, and you want to highlight similarities in the data set. This is useful when looking for outliers or understanding your data's distribution.

Types of charts — example of a scatter plot chart.

Scatter plots are helpful in situations where you have too much data to see a pattern quickly. They are best when you use them to show relationships between two large data sets.

In the example above, this chart shows how customer happiness relates to the time it takes for them to get a response.

This type of chart  makes it easy to compare two data sets. Use cases might include:

  • Employment and manufacturing output.
  • Retail sales and inflation.
  • Visitor numbers and outdoor temperature.
  • Sales growth and tax laws.

Try to choose two data sets that already have a positive or negative relationship. That said, this type of chart  can also make it easier to see data that falls outside of normal patterns.

Design Best Practices for Scatter Plots

  • Include more variables, like different sizes, to incorporate more data.
  • Start the y-axis at 0 to represent data accurately.
  • If you use trend lines, only use a maximum of two to make your plot easy to understand.

7. Bubble Chart

A bubble chart is similar to a scatter plot in that it can show distribution or relationship. There is a third data set shown by the size of the bubble or circle.

 Types of charts — example of a bubble chart.

In the example above, the number of hours spent online isn't just compared to the user's age, as it would be on a scatter plot chart.

Instead, you can also see how the gender of the user impacts time spent online.

This makes bubble charts useful for seeing the rise or fall of trends over time. It also lets you add another option when you're trying to understand relationships between different segments or categories.

For example, if you want to launch a new product, this chart could help you quickly see your new product's cost, risk, and value. This can help you focus your energies on a low-risk new product with a high potential return.

You can also use bubble charts for:

  • Top sales by month and location.
  • Customer satisfaction surveys.
  • Store performance tracking.
  • Marketing campaign reviews.

Design Best Practices for Bubble Charts

  • Scale bubbles according to area, not diameter.
  • Make sure labels are clear and visible.
  • Use circular shapes only.

8. Waterfall Chart

I sometimes use a waterfall chart to show how an initial value changes with intermediate values — either positive or negative — and results in a final value.

Use this chart to reveal the composition of a number. An example of this would be to showcase how different departments influence overall company revenue and lead to a specific profit number.

Types of charts — example of a waterfall chart.

The most common use case for a funnel chart is the marketing or sales funnel. But there are many other ways to use this versatile chart.

If you have at least four stages of sequential data, this chart can help you easily see what inputs or outputs impact the final results.

For example, a funnel chart can help you see how to improve your buyer journey or shopping cart workflow. This is because it can help pinpoint major drop-off points.

Other stellar options for these types of charts include:

  • Deal pipelines.
  • Conversion and retention analysis.
  • Bottlenecks in manufacturing and other multi-step processes.
  • Marketing campaign performance.
  • Website conversion tracking.

Design Best Practices for Funnel Charts

  • Scale the size of each section to accurately reflect the size of the data set.
  • Use contrasting colors or one color in graduated hues, from darkest to lightest, as the size of the funnel decreases.

10. Heat Map

A heat map shows the relationship between two items and provides rating information, such as high to low or poor to excellent. This chart displays the rating information using varying colors or saturation.

 Types of charts — example of a heat map.

Best Use Cases for Heat Maps

In the example above, the darker the shade of green shows where the majority of people agree.

With enough data, heat maps can make a viewpoint that might seem subjective more concrete. This makes it easier for a business to act on customer sentiment.

There are many uses for these types of charts. In fact, many tech companies use heat map tools to gauge user experience for apps, online tools, and website design .

Another common use for heat map charts  is location assessment. If you're trying to find the right location for your new store, these maps can give you an idea of what the area is like in ways that a visit can't communicate.

Heat maps can also help with spotting patterns, so they're good for analyzing trends that change quickly, like ad conversions. They can also help with:

  • Competitor research.
  • Customer sentiment.
  • Sales outreach.
  • Campaign impact.
  • Customer demographics.

Design Best Practices for Heat Map

  • Use a basic and clear map outline to avoid distracting from the data.
  • Use a single color in varying shades to show changes in data.
  • Avoid using multiple patterns.

11. Gantt Chart

The Gantt chart is a horizontal chart that dates back to 1917. This chart maps the different tasks completed over a period of time.

Gantt charting is one of the most essential tools for project managers. It brings all the completed and uncompleted tasks into one place and tracks the progress of each.

While the left side of the chart displays all the tasks, the right side shows the progress and schedule for each of these tasks.

This chart type allows you to:

  • Break projects into tasks.
  • Track the start and end of the tasks.
  • Set important events, meetings, and announcements.
  • Assign tasks to the team and individuals.

Gantt Chart - product creation strategy

I use donut charts for the same use cases as pie charts, but I tend to prefer the former because of the added benefit that the data is easier to read.

Another benefit to donut charts is that the empty center leaves room for extra layers of data, like in the examples above. 

Design Best Practices for Donut Charts 

Use varying colors to better differentiate the data being displayed, just make sure the colors are in the same palette so viewers aren't put off by clashing hues. 

14. Sankey Diagram

A Sankey Diagram visually represents the flow of data between categories, with the link width reflecting the amount of flow. It’s a powerful tool for uncovering the stories hidden in your data.

As data grows more complex, charts must evolve to handle these intricate relationships. Sankey Diagrams excel at this task.

Sankey Diagram

With ChartExpo , you can create a Sankey Chart with up to eight levels, offering multiple perspectives for analyzing your data. Even the most complicated data sets become manageable and easy to interpret.

You can customize your Sankey charts and every component including nodes, links, stats, text, colors, and more. ChartExpo is an add-in in Microsoft Excel, Google Sheets, and Power BI, you can create beautiful Sankey diagrams while keeping your data safe in your favorite tools.

Sankey diagrams can be used to visualize all types of data which contain a flow of information. It beautifully connects the flows and presents the data in an optimum way.

Here are a few use cases:

  • Sankey diagrams are widely used to visualize energy production, consumption, and distribution. They help in tracking how energy flows from one source (like oil or gas) to various uses (heating, electricity, transportation).
  • Businesses use Sankey diagrams to trace customer interactions across different channels and touchpoints. It highlights the flow of users through a funnel or process, revealing drop-off points and success paths.
  • I n supply chain management, these diagrams show how resources, products, or information flow between suppliers, manufacturers, and retailers, identifying bottlenecks and inefficiencies.

Design Best Practices for Sankey Diagrams 

When utilizing a Sankey diagram, it is essential to maintain simplicity while ensuring accuracy in proportions. Clear labeling and effective color usage are key factors to consider. Emphasizing the logical flow direction and highlighting significant flows will enhance the visualization.

How to Choose the Right Chart or Graph for Your Data

Channels like social media or blogs have multiple data sources, and managing these complex content assets can get overwhelming. What should you be tracking? What matters most?

How do you visualize and analyze the data so you can extract insights and actionable information?

1. Identify your goals for presenting the data.

Before creating any data-based graphics, I ask myself if I want to convince or clarify a point. Am I trying to visualize data that helped me solve a problem? Or am I trying to communicate a change that's happening?

A chart or graph can help compare different values, understand how different parts impact the whole, or analyze trends. Charts and graphs can also be useful for recognizing data that veers away from what you’re used to or help you see relationships between groups.

So, clarify your goals then use them to guide your chart selection.

2. Figure out what data you need to achieve your goal.

Different types of charts and graphs use different kinds of data. Graphs usually represent numerical data, while charts are visual representations of data that may or may not use numbers.

So, while all graphs are a type of chart, not all charts are graphs. If you don't already have the kind of data you need, you might need to spend some time putting your data together before building your chart.

3. Gather your data.

Most businesses collect numerical data regularly, but you may need to put in some extra time to collect the right data for your chart.

Besides quantitative data tools that measure traffic, revenue, and other user data, you might need some qualitative data.

These are some other ways you can gather data for your data visualization:

  • Interviews 
  • Quizzes and surveys
  • Customer reviews
  • Reviewing customer documents and records
  • Community boards

Fill out the form to get your templates.

4. select the right type of graph or chart..

Choosing the wrong visual aid or defaulting to the most common type of data visualization could confuse your viewer or lead to mistaken data interpretation.

But a chart is only useful to you and your business if it communicates your point clearly and effectively.

Ask yourself the questions below to help find the right chart or graph type.

Download the Excel templates mentioned in the video here.

5 Questions to Ask When Deciding Which Type of Chart to Use

1. do you want to compare values.

Charts and graphs are perfect for comparing one or many value sets, and they can easily show the low and high values in the data sets. To create a comparison chart, use these types of graphs:

  • Scatter plot

2. Do you want to show the composition of something?

Use this type of chart to show how individual parts make up the whole of something, like the device type used for mobile visitors to your website or total sales broken down by sales rep.

To show composition, use these charts:

  • Stacked bar

3. Do you want to understand the distribution of your data?

Distribution charts help you to understand outliers, the normal tendency, and the range of information in your values.

Use these charts to show distribution:

4. Are you interested in analyzing trends in your data set?

If you want more information about how a data set performed during a specific time, there are specific chart types that do extremely well.

You should choose one of the following:

  • Dual-axis line

5. Do you want to better understand the relationship between value sets?

Relationship charts can show how one variable relates to one or many different variables. You could use this to show how something positively affects, has no effect, or negatively affects another variable.

When trying to establish the relationship between things, use these charts:

Featured Resource: The Marketer's Guide to Data Visualization

Types of chart — HubSpot tool for making charts.

Don't forget to share this post!

Related articles.

9 Great Ways to Use Data in Content Creation

9 Great Ways to Use Data in Content Creation

Data Visualization: Tips and Examples to Inspire You

Data Visualization: Tips and Examples to Inspire You

17 Data Visualization Resources You Should Bookmark

17 Data Visualization Resources You Should Bookmark

An Introduction to Data Visualization: How to Create Compelling Charts & Graphs [Ebook]

An Introduction to Data Visualization: How to Create Compelling Charts & Graphs [Ebook]

Why Data Is The Real MVP: 7 Examples of Data-Driven Storytelling by Leading Brands

Why Data Is The Real MVP: 7 Examples of Data-Driven Storytelling by Leading Brands

How to Create an Infographic Using Poll & Survey Data [Infographic]

How to Create an Infographic Using Poll & Survey Data [Infographic]

Data Storytelling 101: Helpful Tools for Gathering Ideas, Designing Content & More

Data Storytelling 101: Helpful Tools for Gathering Ideas, Designing Content & More

Tired of struggling with spreadsheets? These free Microsoft Excel Graph Generator Templates can help

Marketing software that helps you drive revenue, save time and resources, and measure and optimize your investments — all on one easy-to-use platform

Graphical Representation

  • Reference work entry
  • Cite this reference work entry

forms of graphical representation

882 Accesses

Graphical representations encompass a wide variety of techniques that are used to clarify, interpret and analyze data by plotting points and drawing line segments, surfaces and other geometric forms or symbols.

The purpose of a graph is a rapid visualization of a data set. For instance, it should clearly illustrate the general behavior of the phenomenon investigated and highlight any important factors. It can be used, for example, as a means to translate or to complete a  frequency table .

Therefore, graphical representation is a form of data representation.

The concept of plotting a point in coordinate space dates back to at least the ancient Greeks, but we had to wait until the work of Descartes, René for mathematicians to investigate this concept.

According to Royston, E. (1970), a German mathematician named Crome, A.W. was among the first to use graphical representation in statistics . He initially used it as a teaching tool.

In his works Geographisch-statistische Darstellung...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Crome, A.F.W.: Ueber die Grösse und Bevölkerung der sämtlichen Europäischen Staaten. Weygand, Leipzig (1785)

Google Scholar  

Crome, A.F.W.: Geographisch-statistische Darstellung der Staatskräfte. Weygand, Leipzig (1820)

Fienberg, S.E.: Graphical method in statistics. Am. Stat. 33 , 165–178 (1979)

Article   Google Scholar  

Guerry, A.M.: Essai sur la statistique morale de la France. Crochard, Paris (1833)

Playfair, W.: The Commercial and Political Atlas. Playfair, London (1786)

Royston, E.: A note on the history of the graphical presentation of data. In: Pearson, E.S., Kendall, M. (eds.) Studies in the History of Statistics and Probability, vol. I. Griffin, London (1970)

Schmid, C.F.: Handbook of Graphic Presentation. Ronald Press, New York (1954)

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry.

(2008). Graphical Representation. In: The Concise Encyclopedia of Statistics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-32833-1_174

Download citation

DOI : https://doi.org/10.1007/978-0-387-32833-1_174

Publisher Name : Springer, New York, NY

Print ISBN : 978-0-387-31742-7

Online ISBN : 978-0-387-32833-1

eBook Packages : Mathematics and Statistics Reference Module Computer Science and Engineering

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

forms of graphical representation

Graphical Representation

Graphical representation definition.

Graphical representation refers to the use of charts and graphs to visually display, analyze, clarify, and interpret numerical data, functions, and other qualitative structures. ‍

forms of graphical representation

What is Graphical Representation?

Graphical representation refers to the use of intuitive charts to clearly visualize and simplify data sets. Data is ingested into graphical representation of data software and then represented by a variety of symbols, such as lines on a line chart, bars on a bar chart, or slices on a pie chart, from which users can gain greater insight than by numerical analysis alone. 

Representational graphics can quickly illustrate general behavior and highlight phenomenons, anomalies, and relationships between data points that may otherwise be overlooked, and may contribute to predictions and better, data-driven decisions. The types of representational graphics used will depend on the type of data being explored.

Types of Graphical Representation

Data charts are available in a wide variety of maps, diagrams, and graphs that typically include textual titles and legends to denote the purpose, measurement units, and variables of the chart. Choosing the most appropriate chart depends on a variety of different factors -- the nature of the data, the purpose of the chart, and whether a graphical representation of qualitative data or a graphical representation of quantitative data is being depicted. There are dozens of different formats for graphical representation of data. Some of the most popular charts include:

  • Bar Graph -- contains a vertical axis and horizontal axis and displays data as rectangular bars with lengths proportional to the values that they represent; a useful visual aid for marketing purposes
  • Choropleth -- thematic map in which an aggregate summary of a geographic characteristic within an area is represented by patterns of shading proportionate to a statistical variable
  • Flow Chart -- diagram that depicts a workflow graphical representation with the use of arrows and geometric shapes; a useful visual aid for business and finance purposes
  • Heatmap -- a colored, two-dimensional matrix of cells in which each cell represents a grouping of data and each cell’s color indicates its relative value
  • Histogram – frequency distribution and graphical representation uses adjacent vertical bars erected over discrete intervals to represent the data frequency within a given interval; a useful visual aid for meteorology and environment purposes
  • Line Graph – displays continuous data; ideal for predicting future events over time;  a useful visual aid for marketing purposes
  • Pie Chart -- shows percentage values as a slice of pie; a useful visual aid for marketing purposes
  • Pointmap -- CAD & GIS contract mapping and drafting solution that visualizes the location of data on a map by plotting geographic latitude and longitude data
  • Scatter plot -- a diagram that shows the relationship between two sets of data, where each dot represents individual pieces of data and each axis represents a quantitative measure
  • Stacked Bar Graph -- a graph in which each bar is segmented into parts, with the entire bar representing the whole, and each segment representing different categories of that whole; a useful visual aid for political science and sociology purposes
  • Timeline Chart -- a long bar labelled with dates paralleling it that display a list of events in chronological order, a useful visual aid for history charting purposes
  • Tree Diagram -- a hierarchical genealogical tree that illustrates a family structure; a useful visual aid for history charting purposes
  • Venn Diagram -- consists of multiple overlapping usually circles, each representing a set; the default inner join graphical representation

Proprietary and open source software for graphical representation of data is available in a wide variety of programming languages. Software packages often provide spreadsheets equipped with built-in charting functions.

Advantages and Disadvantages of Graphical Representation of Data

Tabular and graphical representation of data are a vital component in analyzing and understanding large quantities of numerical data and the relationship between data points. Data visualization is one of the most fundamental approaches to data analysis, providing an intuitive and universal means to visualize, abstract, and share complex data patterns. The primary advantages of graphical representation of data are:

  • Facilitates and improves learning: graphics make data easy to understand and eliminate language and literacy barriers
  • Understanding content: visuals are more effective than text in human understanding
  • Flexibility of use: graphical representation can be leveraged in nearly every field involving data
  • Increases structured thinking: users can make quick, data-driven decisions at a glance with visual aids
  • Supports creative, personalized reports for more engaging and stimulating visual  presentations 
  • Improves communication: analyzing graphs that highlight relevant themes is significantly faster than reading through a descriptive report line by line
  • Shows the whole picture: an instantaneous, full view of all variables, time frames, data behavior and relationships

Disadvantages of graphical representation of data typically concern the cost of human effort and resources, the process of selecting the most appropriate graphical and tabular representation of data, greater design complexity of visualizing data, and the potential for human bias.

Why Graphical Representation of Data is Important

Graphic visual representation of information is a crucial component in understanding and identifying patterns and trends in the ever increasing flow of data. Graphical representation enables the quick analysis of large amounts of data at one time and can aid in making predictions and informed decisions. Data visualizations also make collaboration significantly more efficient by using familiar visual metaphors to illustrate relationships and highlight meaning, eliminating complex, long-winded explanations of an otherwise chaotic-looking array of figures. 

Data only has value once its significance has been revealed and consumed, and its consumption is best facilitated with graphical representation tools that are designed with human cognition and perception in mind. Human visual processing is very efficient at detecting relationships and changes between sizes, shapes, colors, and quantities. Attempting to gain insight from numerical data alone, especially in big data instances in which there may be billions of rows of data, is exceedingly cumbersome and inefficient.

Does HEAVY.AI Offer a Graphical Representation Solution?

HEAVY.AI's visual analytics platform is an interactive data visualization client that works seamlessly with server-side technologies HEAVY.AIDB and Render to enable data science analysts to easily visualize and instantly interact with massive datasets. Analysts can interact with conventional charts and data tables, as well as big data graphical representations such as massive-scale scatterplots and geo charts. Data visualization contributes to a broad range of use cases, including performance analysis in business and guiding research in academia.

  • Privacy Policy

Research Method

Home » Graphical Methods – Types, Examples and Guide

Graphical Methods – Types, Examples and Guide

Table of Contents

Graphical Methods

Graphical Methods

Definition:

Graphical methods refer to techniques used to visually represent data, relationships, or processes using charts, graphs, diagrams, or other graphical formats. These methods are widely used in various fields such as science, engineering, business, and social sciences, among others, to analyze, interpret and communicate complex information in a concise and understandable way.

Types of Graphical Methods

Here are some of the most common types of graphical methods for data analysis and visual presentation:

Line Graphs

These are commonly used to show trends over time, such as the stock prices of a particular company or the temperature over a certain period. They consist of a series of data points connected by a line that shows the trend of the data over time. Line graphs are useful for identifying patterns in data, such as seasonal changes or long-term trends.

These are commonly used to compare values of different categories, such as sales figures for different products or the number of students in different grade levels. Bar charts use bars that are either horizontal or vertical and represent the data values. They are useful for comparing data visually and identifying differences between categories.

These are used to show how a whole is divided into parts, such as the percentage of students in a school who are enrolled in different programs. Pie charts use a circle that is divided into sectors, with each sector representing a portion of the whole. They are useful for showing proportions and identifying which parts of a whole are larger or smaller.

Scatter Plots

These are used to visualize the relationship between two variables, such as the correlation between a person’s height and weight. Scatter plots consist of a series of data points that are plotted on a graph and connected by a line or curve. They are useful for identifying trends and relationships between variables.

These are used to show the distribution of data across a two-dimensional plane, such as a map of a city showing the density of population in different areas. Heat maps use color-coded cells to represent different levels of data, with darker colors indicating higher values. They are useful for identifying areas of high or low density and for highlighting patterns in data.

These are used to show the distribution of data in a single variable, such as the distribution of ages of a group of people. Histograms use bars that represent the frequency of each data value, with taller bars indicating a higher frequency. They are useful for identifying the shape of a distribution and for identifying outliers or unusual data values.

Network Diagrams

These are used to show the relationships between different entities or nodes, such as the relationships between people in a social network. Network diagrams consist of nodes that are connected by lines that represent the relationship. They are useful for identifying patterns in complex data and for understanding the structure of a network.

Box plots, also known as box-and-whisker plots, are a type of graphical method used to show the distribution of data in a single variable. They consist of a box with whiskers extending from the top and bottom of the box. The box represents the middle 50% of the data, with the median value indicated by a line inside the box. The whiskers represent the range of the data, with any data points outside the whiskers indicated as outliers. Box plots are useful for identifying the spread and shape of a distribution and for identifying outliers or unusual data values.

Applications of Graphical Methods

Graphical methods have a wide range of applications in various fields, including:

  • Business : Graphical methods are commonly used in business to analyze sales data, financial data, and other types of data. They are useful for identifying trends, patterns, and outliers, as well as for presenting data in a clear and concise manner to stakeholders.
  • Science and engineering: Graphical methods are used extensively in scientific and engineering fields to analyze data and to present research findings. They are useful for visualizing complex data sets and for identifying relationships between variables.
  • Social sciences: Graphical methods are used in social sciences to analyze and present data related to human behavior, such as demographics, survey results, and statistical analyses. They are useful for identifying trends and patterns in large data sets and for communicating findings to a broader audience.
  • Education : Graphical methods are used in education to present information to students and to help them understand complex concepts. They are useful for visualizing data and for presenting information in a way that is easy to understand.
  • Healthcare : Graphical methods are used in healthcare to analyze patient data, to track disease outbreaks, and to present medical information to patients. They are useful for identifying patterns and trends in patient data and for communicating medical information in a clear and concise manner.
  • Sports : Graphical methods are used in sports to analyze and present data related to player performance, team statistics, and game outcomes. They are useful for identifying trends and patterns in player and team data and for communicating this information to coaches, players, and fans.

Examples of Graphical Methods

Here are some examples of real-time applications of graphical methods:

  • Stock Market: Line graphs, candlestick charts, and bar charts are widely used in real-time trading systems to display stock prices and trends over time. Traders use these charts to analyze historical data and make informed decisions about buying and selling stocks in real-time.
  • Weather Forecasting : Heat maps and radar maps are commonly used in weather forecasting to display current weather conditions and to predict future weather patterns. These maps are useful for tracking the movement of storms, identifying areas of high and low pressure, and predicting the likelihood of severe weather events.
  • Social Media Analytics: Scatter plots and network diagrams are commonly used in social media analytics to track the spread of information across social networks. Analysts use these graphs to identify patterns in user behavior, to track the popularity of specific topics or hashtags, and to monitor the influence of key opinion leaders.
  • Traffic Analysis: Heat maps and network diagrams are used in traffic analysis to visualize traffic flow patterns and to identify areas of congestion or accidents. These graphs are useful for predicting traffic patterns, optimizing traffic flow, and improving transportation infrastructure.
  • Medical Diagnostics: Box plots and histograms are commonly used in medical diagnostics to display the distribution of patient data, such as blood pressure, heart rate, or blood sugar levels. These graphs are useful for identifying patterns in patient data, diagnosing medical conditions, and monitoring the effectiveness of treatments in real-time.
  • Cybersecurity: Heat maps and network diagrams are used in cybersecurity to visualize network traffic patterns and to identify potential security threats. These graphs are useful for identifying anomalies in network traffic, detecting and mitigating cyber attacks, and improving network security protocols.

How to use Graphical Methods

Here are some general steps to follow when using graphical methods to analyze and present data:

  • Identify the research question: Before creating any graphs, it’s important to identify the research question or hypothesis you want to explore. This will help you select the appropriate type of graph and ensure that the data you collect is relevant to your research question.
  • Collect and organize the data: Collect the data you need to answer your research question and organize it in a way that makes it easy to work with. This may involve sorting, filtering, or cleaning the data to ensure that it is accurate and relevant.
  • Select the appropriate graph : There are many different types of graphs available, each with its own strengths and weaknesses. Select the appropriate graph based on the type of data you have and the research question you are exploring. For example, a scatterplot may be appropriate for exploring the relationship between two continuous variables, while a bar chart may be appropriate for comparing categorical data.
  • Create the graph: Once you have selected the appropriate graph, create it using software or a tool that allows you to customize the graph based on your needs. Be sure to include appropriate labels and titles, and ensure that the graph is clearly legible.
  • Analyze the graph: Once you have created the graph, analyze it to identify patterns, trends, and relationships in the data. Look for outliers or other anomalies that may require further investigation.
  • Draw conclusions: Based on your analysis of the graph, draw conclusions about the research question you are exploring. Use the graph to support your conclusions and to communicate your findings to others.
  • Iterate and refine: Finally, refine your graph or create additional graphs as needed to further explore your research question. Iteratively refining and revising your graphs can help to ensure that you are accurately representing the data and that you are drawing the appropriate conclusions.

When to use Graphical Methods

Graphical methods can be used in a variety of situations to help analyze, interpret, and communicate data. Here are some general guidelines on when to use graphical methods:

  • To identify patterns and trends: Graphical methods are useful for identifying patterns and trends in data, which may be difficult to see in raw data tables or spreadsheets. Graphs can reveal trends that may not be immediately apparent in the data, making it easier to draw conclusions and make predictions.
  • To compare data: Graphs can be used to compare data from different sources or over different time periods. Graphical comparisons can make it easier to identify differences or similarities in the data, which can be useful for making decisions and taking action.
  • To summarize data : Graphs can be used to summarize large amounts of data in a single visual display. This can be particularly useful when presenting data to a broad audience, as it can help to simplify complex data sets and make them more accessible.
  • To communicate data: Graphs can be used to communicate data and findings to a variety of audiences, including stakeholders, colleagues, and the general public. Graphs can be particularly useful in situations where data needs to be presented quickly and in a way that is easy to understand.
  • To identify outliers: Graphical methods are useful for identifying outliers or anomalies in the data. Outliers can be indicative of errors or unusual events, and may warrant further investigation.

Purpose of Graphical Methods

The purpose of graphical methods is to help people analyze, interpret, and communicate data in a way that is both accurate and understandable. Graphical methods provide visual representations of data that can be easier to interpret than tables of numbers or raw data sets. Graphical methods help to reveal patterns and trends that may not be immediately apparent in the data, making it easier to draw conclusions and make predictions. They can also help to identify outliers or unusual data points that may warrant further investigation.

In addition to helping people analyze and interpret data, graphical methods also serve an important communication function. Graphs can be used to present data to a wide range of audiences, including stakeholders, colleagues, and the general public. Graphs can help to simplify complex data sets, making them more accessible and easier to understand. By presenting data in a clear and concise way, graphical methods can help people make informed decisions and take action based on the data.

Overall, the purpose of graphical methods is to provide a powerful tool for analyzing, interpreting, and communicating data. Graphical methods help people to better understand the data they are working with, to identify patterns and trends, and to make informed decisions based on the data.

Characteristics of Graphical Methods

Here are some characteristics of graphical methods:

  • Visual Representation: Graphical methods provide a visual representation of data, which can be easier to interpret than tables of numbers or raw data sets. Graphs can help to reveal patterns and trends that may not be immediately apparent in the data.
  • Simplicity : Graphical methods simplify complex data sets, making them more accessible and easier to understand. By presenting data in a clear and concise way, graphical methods can help people make informed decisions and take action based on the data.
  • Comparability : Graphical methods can be used to compare data from different sources or over different time periods. This can help to identify differences or similarities in the data, which can be useful for making decisions and taking action.
  • Flexibility : Graphical methods can be adapted to different types of data, including continuous, categorical, and ordinal data. Different types of graphs can be used to display different types of data, depending on the characteristics of the data and the research question.
  • Accuracy : Graphical methods should accurately represent the data being analyzed. Graphs should be properly scaled and labeled to avoid distorting the data or misleading viewers.
  • Clarity : Graphical methods should be clear and easy to read. Graphs should be designed with the viewer in mind, using appropriate colors, labels, and titles to ensure that the message of the graph is conveyed effectively.

Advantages of Graphical Methods

Graphical methods offer several advantages for analyzing and presenting data, including:

  • Clear visualization: Graphical methods provide a clear and intuitive visual representation of data that can help people understand complex relationships, trends, and patterns in the data. This can be particularly useful when dealing with large and complex data sets.
  • Efficient communication: Graphical methods can help to communicate complex data sets in an efficient and accessible way. Visual representations can be easier to understand than numerical data alone, and can help to convey key messages quickly.
  • Effective comparison: Graphical methods allow for easy comparison between different data sets, making it easier to identify trends, patterns, and differences. This can help in making decisions, identifying areas for improvement, or developing new insights.
  • Improved decision-making: Graphical methods can help to inform decision-making by presenting data in a clear and easy-to-understand format. They can also help to identify key areas of focus, enabling individuals or teams to make more informed decisions.
  • Increased engagement: Graphical methods can help to engage audiences by presenting data in an engaging and interactive way. This can be particularly useful in presentations or reports, where visual representations can help to maintain audience attention and interest.
  • Better understanding: Graphical methods can help individuals to better understand the data they are working with, by providing a clear and intuitive visual representation of the data. This can lead to improved insights and decision-making, as well as better understanding of the implications of the data.

Limitations of Graphical Methods

Here are a few limitations to consider:

  • Misleading representation: Graphical methods can potentially misrepresent data if they are not designed properly. For example, inappropriate scaling or labeling of the axes or the use of certain types of graphs can create a distorted view of the data.
  • Limited scope: Graphical methods can only display a limited amount of data, which can make it difficult to capture the full complexity of a data set. Additionally, some types of data may be difficult to represent visually.
  • Time-consuming : Creating graphs can be a time-consuming process, particularly if multiple graphs need to be created and analyzed. This can be a limitation in situations where time is limited or resources are scarce.
  • Technical skills: Some graphical methods require technical skills to create and interpret. For example, certain types of graphs may require knowledge of specialized software or programming languages.
  • Interpretation : Interpreting graphs can be subjective, and the same graph can be interpreted in different ways by different people. This can lead to confusion or disagreements when using graphs to communicate data.
  • Accessibility : Some graphical methods may not be accessible to all audiences, particularly those with visual impairments. Additionally, some types of graphs may not be accessible to those with limited literacy or numeracy skills.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Documentary Analysis

Documentary Analysis – Methods, Applications and...

Data Analysis

Data Analysis – Process, Methods and Types

Descriptive Statistics

Descriptive Statistics – Types, Methods and...

Regression Analysis

Regression Analysis – Methods, Types and Examples

Narrative Analysis

Narrative Analysis – Types, Methods and Examples

Bimodal Histogram

Bimodal Histogram – Definition, Examples

Introduction to Graphs

Table of Contents

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

15 December 2020                 

Read time: 6 minutes

Introduction

What are graphs?

What are the different types of data?

What are the different types of graphical representations?

The graph is nothing but an organized representation of data. It helps us to understand the data. Data are the numerical information collected through observation.

The word data came from the Latin word Datum which means “something given”

After a research question is developed, data is being collected continuously through observation. Then it is organized, summarized, classified, and then represented graphically.

Differences between Data and information: Data is the raw fact without any add on but the information is the meaning derived from data.

Data

Information

Raw facts of things

Data with exact meaning

No contextual meaning

Processed data and organized context

Just numbers and text

 

Introduction to Graphs-PDF

The graph is nothing but an organized representation of data. It helps us to understand the data. Data are the numerical information collected through observation. Here is a downloadable PDF to explore more.

📥

  • Line and Bar Graphs Application
  • Graphs in Mathematics & Statistics

What are the different Types of Data?

There are two types of Data :

Types of Data

Quantitative

The data which are statistical or numerical are known as Quantitive data. Quantitive data is generated through. Quantitative data is also known as Structured data. Experiments, Tests, Surveys, Market Report.

Quantitive data is again divided into Continuous data and Discrete data.

Continuous Data

Continuous data is the data which can have any value. That means Continuous data can give infinite outcomes so it should be grouped before representing on a graph.

  • The speed of a vehicle as it passes a checkpoint
  • The mass of a cooking apple
  • The time taken by a volunteer to perform a task

Discrete Data

Discrete data can have certain values. That means only a finite number can be categorized as discrete data.

  • Numbers of cars sold at a dealership during a given month
  • Number of houses in certain block
  • Number of fish caught on a fishing trip
  • Number of complaints received at the office of airline on a given day
  • Number of customers who visit at bank during any given hour
  • Number of heads obtained in three tosses of a coin

Differences between Discrete and Continuous data

  • Numerical data could be either discrete or continuous
  • Continuous data can take any numerical value (within a range); For example, weight, height, etc.
  • There can be an infinite number of possible values in continuous data
  • Discrete data can take only certain values by finite ‘jumps’, i.e., it ‘jumps’ from one value to another but does not take any intermediate value between them (For example, number of students in the class)

Qualitative

Data that deals with description or quality instead of numbers are known as Quantitative data. Qualitative data is also known as unstructured data. Because this type of data is loosely compact and can’t be analyzed conventionally.

Different Types of Graphical Representations

There are many types of graph we can use to represent data. They are as follows,

A bar graph or chart is a way to represent data by rectangular column or bar. The heights or length of the bar is proportional to the values.

A bar graph or chart

A line graph is a type of graph where the information or data is plotted as some dots which are known as markers and then they are added to each other by a straight line.

The line graph is normally used to represent the data that changes over time.

A line graph

A histogram graph is a graph where the information is represented along with the height of the rectangular bar. Though it does look like a bar graph, there is a fundamental difference between them. With the histogram, each column represents a range of quantitative data when a bar graph represents categorical variables.

Histogram and Piechart

The other name of the pie chart is a circle graph. It is a circular chart where numerical information represents as slices or in fractional form or percentage where the whole circle is 100%.

Pie chart

  • Stem and leaf plot

The stem and leaf plot is a way to represents quantitative data according to frequency ranges or frequency distribution.

In the stem and leaf plot, each data is split into stem and leaf, which is 32 will be split into 3 stems and 2 leaves.

Stem and leaf plot

Frequency table: Frequency means the number of occurrences of an event. A frequency distribution table is a graph or chart which shows the frequency of events. It is denoted as ‘f’ .

Frequency table

Pictograph or Pictogram is the earliest way to represents data in a pictorial form or by using symbols or images. And each image represents a particular number of things.

Pictograph or Pictogram

According to the above-mentioned Pictograph, the number of Appels sold on Monday is 6x2=12.

  • Scatter diagrams

Scatter diagram or scatter plot is a way of graphical representation by using cartesian coordinates of two variables. The plot shows the relationship between two variables. Below there is a data table as well as a Scattergram as per the given data.

ºc
14.2º $215
16.4º $325
11.9º $185
15.2º $332
18.5º $406
22.1º $522
19.4º $412
25.1º $614

What is the meaning of Graphical representation?

Graphical representation is a way to represent and analyze quantitive data. A graph is a kind of a chart where data are plotted as variables across the coordinate. It became easy to analyze the extent of change of one variable based on the change of other variables.

Principles of graphical representation

The principles of graphical representation are algebraic. In a graph, there are two lines known as Axis or Coordinate axis. These are the X-axis and Y-axis. The horizontal axis is the X-axis and the vertical axis is the Y-axis. They are perpendicular to each other and intersect at O or point of Origin.

On the right side of the Origin, the Xaxis has a positive value and on the left side, it has a negative value. In the same way, the upper side of the Origin Y-axis has a positive value where the down one is with a negative value.

When X-axis and y-axis intersected each other at the origin it divides the plane into four parts which are called Quadrant I, Quadrant II, Quadrant III, Quadrant IV.

Principles of graphical representation

The location on the coordinate plane is known as the ordered pair and it is written as (x,y). That means the first value will be on the x-axis and the second one is on the y-axis. When we will plot any coordinate, we always have to start counting from the origin and have to move along the x-axis, if it is positive then to the right side, and if it is negative then to the left side. Then from the x-axis, we have to plot the y’s value, which means we have to move up for positive value or down if the value is negative along with the y-axis.

In the following graph, 1st ordered pair (2,3) where both the values of x and y are positive and it is on quadrant I. 2nd ordered pair (-3,1), here the value of x is negative and value of y is positive and it is in quadrant II. 3rd ordered pair (-1.5, -2.5), here the value of x as well as y both are Negative and in quadrant III.

Principles of graphical representation

Methods of representing a frequency distribution

There are four methods to represent a frequency distribution graphically. These are,

  • Smoothed Frequency graph
  • Cumulative frequency graph or Ogive.
  • Pie diagram.

Advantages and Disadvantages of Graphical representation of data

  • It improves the way of analyzing and learning as the graphical representation makes the data easy to understand.
  • It can be used in almost all fields from mathematics to physics to psychology and so on.
  • It is easy to understand for its visual impacts.
  • It shows the whole and huge data in an instance.

The main disadvantage of graphical representation of data is that it takes a lot of effort as well as resources to find the most appropriate data and then represents it graphically.

You may also like:

  • Graphing a Quadratic Function
  • Empirical Relationship Between Mean, Median, and Mode

Not only in mathematics but almost in every field the graph is a very important way to store, analyze, and represents information. After any research work or after any survey the next step is to organize the observation or information and plotting them on a graph paper or plane. The visual representation of information makes the understanding of crucial components or trends easier.

A huge amount of data can be store or analyze in a small space.

The graphical representation of data helps to decide by following the trend.

A complete Idea: Graphical representation constitutes a clear and comprehensive idea in the minds of the audience. Reading a large number (say hundreds) of pages may not help to make a decision. Anyone can get a clear idea just by looking into the graph or design.

Graphs are a very conceptual topic, so it is essential to get a complete understanding of the concept. Graphs are great visual aids and help explain numerous things better, they are important in everyday life. Get better at graphs with us, sign up for a free trial . 

About Cuemath

Cuemath, a student-friendly mathematics and coding platform, conducts regular Online Classes for academics and skill-development, and their Mental Math App, on both iOS and Android , is a one-stop solution for kids to develop multiple skills. Understand the Cuemath Fee structure and sign up for a free trial.

Frequently Asked Questions (FAQs)

What is data.

Data are characteristics or information, usually numerical, that are collected through observation.

How do you differentiate between data and information?

Data is the raw fact without any add on but the information is the meaning derived from data.

What are the types of data?

There are two types of Data:

Two types of Data

What are the ways to represent data?

Tables, charts and graphs are all ways of representing data , and they can be used for two broad purposes. The first is to support the collection, organisation and analysis of data as part of the process of a scientific study.

- Tables, charts and graphs are all ways of representing data, and they can be used for two broad purposes. The first is to support the collection, organisation and analysis of data as part of the process of a scientific study.

What are the different types of graphs?

Different types of graphs include:

Types of Graphs and Charts And Their Uses

If you are wondering what are the different types of graphs and charts ,   their uses and names, this page summarizes them with examples and pictures.

Although it is hard to tell what are all the types of graphs, this page consists all of the common types of statistical graphs and charts (and their meanings) widely used in any science.

1. Line Graphs

A line chart graphically displays data that changes continuously over time. Each line graph consists of points that connect data to show a trend (continuous change). Line graphs have an x-axis and a y-axis. In the most cases, time is distributed on the horizontal axis.

Uses of line graphs:

  • When you want  to show trends . For example, how house prices have increased over time.
  • When you want  to make predictions based on a data history over time.
  • When comparing  two or more different variables, situations, and information over a given period of time.

The following line graph shows annual sales of a particular business company for the period of six consecutive years:

Note: the above example is with 1 line. However, one line chart can compare multiple trends by several distributing lines.

2. Bar Charts

Bar charts represent categorical data with rectangular bars (to understand what is categorical data see categorical data examples ). Bar graphs are among the most popular types of graphs and charts in economics, statistics, marketing, and visualization in digital customer experience . They are commonly used to compare several categories of data.

Each rectangular bar has length and height proportional to the values that they represent.

One axis of the bar chart presents the categories being compared. The other axis shows a measured value.

Bar Charts Uses:

  • When you want to display data that are grouped into nominal or ordinal categories (see nominal vs ordinal data ).
  • To compare data among different categories.
  • Bar charts can also show large   data changes over time.
  • Bar charts are ideal for visualizing the distribution of data when we have more than three categories.

The bar chart below represents the total sum of sales for Product A and Product B over three years.

The bars are 2 types: vertical or horizontal. It doesn’t matter which kind you will use. The above one is a vertical type.

3. Pie Charts

When it comes to statistical types of graphs and charts, the pie chart (or the circle chart) has a crucial place and meaning. It displays data and statistics in an easy-to-understand ‘pie-slice’ format and illustrates numerical proportion.

Each pie slice is relative to the size of a particular category in a given group as a whole. To say it in another way, the pie chart brakes down a group into smaller pieces. It shows part-whole relationships.

To make a pie chart, you need a list of categorical variables and numerical variables.

Pie Chart Uses:

  • When you want to create and represent the composition of something.
  • It is very useful for displaying nominal or ordinal categories of data.
  • To show percentage or proportional data.
  • When comparing areas of growth within a business such as profit.
  • Pie charts work best for displaying data for 3 to 7 categories.

The pie chart below represents the proportion of types of transportation used by 1000 students to go to their school.

Pie charts are widely used by data-driven marketers for displaying marketing data.

4. Histogram

A histogram shows continuous data in ordered rectangular columns (to understand what is continuous data see our post discrete vs continuous data ). Usually, there are no gaps between the columns.

The histogram displays a frequency distribution (shape) of a data set. At first glance, histograms look alike to bar graphs. However, there is a key difference between them. Bar Chart represents categorical data and histogram represent continuous data.

Histogram Uses:

  • When the data is continuous .
  • When you want to represent the shape of the data’s distribution .
  • When you want to see whether the outputs of two or more processes are different.
  • To summarize large data sets graphically.
  • To communicate the data distribution quickly to others.

The histogram below represents per capita income for five age groups.

Histograms are very widely used in statistics, business, and economics.

5. Scatter plot

The scatter plot is an X-Y diagram that shows a relationship between two variables. It is used to plot data points on a vertical and a horizontal axis. The purpose is to show how much one variable affects another.

Usually, when there is a relationship between 2 variables, the first one is called independent. The second variable is called dependent because its values depend on the first variable.

Scatter plots also help you predict the behavior of one variable (dependent) based on the measure of the other variable (independent).

Scatter plot uses:

  • When trying to find out whether there is a relationship between 2 variables .
  • To predict  the behavior of dependent variable based on the measure of the independent variable.
  • When having paired numerical data.
  • When working with  root cause analysis tools  to identify the potential for problems.
  • When you just want to visualize the correlation between 2 large datasets without regard to time .

The below Scatter plot presents data for 7 online stores, their monthly e-commerce sales, and online advertising costs for the last year.

The orange line you see in the plot is called “line of best fit” or a “trend line”. This line is used to help us make predictions that are based on past data.

The Scatter plots are used widely in data science and statistics. They are a great tool for visualizing linear regression models .

More examples and explanation for scatter plots you can see in our post what does a scatter plot show and simple linear regression examples .

6. Venn Chart

Venn Diagram (also called primary diagram, set diagram or logic diagrams) uses overlapping circles to visualize the logical relationships between two or more group of items.

Venn Diagram is one of the types of graphs and charts used in scientific and engineering presentations, in computer applications, in maths, and in statistics.

The basic structure of the Venn diagram is usually overlapping circles. The items in the overlapping section have specific common characteristics. Items in the outer portions of the circles do not have common traits.

Venn Chart Uses:

  • When you want to compare and contrast groups of things.
  • To categorize or group items.
  • To illustrate logical relationships from various datasets.
  • To identify all the possible relationships between collections of datasets.

The following science example of Venn diagram compares the features of birds and bats.

7. Area Charts 

Area Chart Uses:

  • When you want to show trends , rather than express specific values.
  • To show a simple comparison of the trend of data sets over the period of time.
  • To display the magnitude of a change.
  • To compare a small number of categories.

The area chart has 2 variants: a variant with data plots overlapping each other and a variant with data plots stacked on top of each other (known as stacked area chart – as the shown in the following example).

The area chart below shows quarterly sales for product categories A and B for the last year.

This area chart shows you a quick comparison of the trend in the quarterly sales of Product A and Product B over the period of the last year.

8. Spline Chart

The Spline Chart is one of the most widespread types of graphs and charts used in statistics. It is a form of the line chart that represent smooth curves through the different data points.

Spline charts possess all the characteristics of a line chart except that spline charts have a fitted curved line to join the data points. In comparison, line charts connect data points with straight lines.

Spline Chart   Uses:

  • When you want to plot data that requires the usage of curve-fitting such as a product lifecycle chart or an impulse-response chart.
  • Spline charts are often used in designing Pareto charts .
  • Spline chart also is often used for data modeling by when you have limited number of data points and estimating the intervening values.

The following spline chart example shows sales of a company through several months of a year:

9. Box and Whisker Chart

A box and whisker chart is a statistical graph for displaying sets of numerical data through their quartiles. It displays a frequency distribution of the data.

The box and whisker chart helps you to display the spread and skewness for a given set of data using the five number summary principle: minimum, maximum, median, lower and upper quartiles. The ‘five-number summary’ principle allows providing a statistical summary for a particular set of numbers. It shows you the range (minimum and maximum numbers), the spread (upper and lower quartiles), and the center (median) for the set of data numbers.

A very simple figure of a box and whisker plot you can see below:

Box and Whisker Chart Uses:

  • When you want to observe the upper, lower quartiles, mean, median, deviations, etc. for a large set of data.
  • When you want to see a quick view of the dataset distribution .
  • When you have multiple data sets that come from independent sources and relate to each other in some way.
  • When you need to compare data from different categories.

The table and box-and-whisker plots below shows test scores for Maths and Literature for the same class.

3577924355667370
3543404350607092

Box and Whisker charts have applications in many scientific areas and types of analysis such as statistical analysis, test results analysis, marketing analysis, data analysis, and etc.

10. Bubble Chart

Bubble charts are super useful types of graphs for making a comparison of the relationships between data in 3 numeric-data dimensions: the Y-axis data, the X-axis data, and data depicting the bubble size.

Bubble charts are very similar to XY Scatter plots but the bubble chart adds more functionality – a third dimension of data that can be extremely valuable.

Both axes (X and Y) of a bubble chart are numeric.

Bubble Chart Uses:

  • When you have to display three or four dimensions of data.
  • When you want to compare and display the relationships between categorized circles, by the use of proportions.

The bubble chart below shows the relationship between Cost (X-Axis), Profit (Y-Axis), and Probability of Success (%) (Bubble Size).

11. Pictographs

The pictograph or a pictogram is one of the more visually appealing types of graphs and charts that display numerical information with the use of icons or picture symbols to represent data sets.

They are very easy to read statistical way of data visualization. A pictogram shows the frequency of data as images or symbols. Each image/symbol may represent one or more units of a given dataset.

Pictograph Uses:

  • When your audience prefers and understands better displays that include icons and illustrations. Fun can promote learning.
  • It’s habitual for infographics to use of a pictogram.
  • When you want to compare two points  in an emotionally powerful way.

The following pictographic represents the number of computers sold by a business company for the period from January to March.

The pictographic example above shows that in January are sold 20 computers (4×5 = 20), in February are sold 30 computers (6×5 = 30) and in March are sold 15 computers.

12. Dot Plot

Dot plot or dot graph is just one of the many types of graphs and charts to organize statistical data. It uses dots to represent data. A Dot Plot is used for relatively small sets of data and the values fall into a number of discrete categories.

If a value appears more than one time, the dots are ordered one above the other. That way the column height of dots shows the frequency for that value.

Dot Plot Uses:

  • To plot frequency counts when you have a small number of categories .
  • Dot plots are very useful when the variable is quantitative or categorical .
  • Dot graphs are also used for univariate data (data with only one variable that you can measure).

Suppose you have a class of 26 students. They are asked to tell their favorite color. The dot plot below represents their choices:

It is obvious that blue is the most preferred color by the students in this class.

13. Radar Chart

A radar chart is one of the most modern types of graphs and charts – ideal for multiple comparisons. Radar charts use a circular display with several different quantitative axes looking like spokes on a wheel. Each axis shows a quantity for a different categorical value.

Radar charts are also known as spider charts, web charts, star plots, irregular polygons, polar charts, cobweb charts or Kiviat diagram.

Radar Chart has many applications nowadays in statistics, maths, business, sports analysis, data intelligence, and etc.

Radar Chart Uses:

  • When you want to observe which variables have similar values or whether there are any outliers amongst each variable.
  • To represent  multiple comparisons .
  • When you want to see which variables are scoring low or high within a dataset. This makes radar chart ideal for displaying performance .

For example, we can compare employee’s performance with the scale of 1-8 on subjects such as Punctuality, Problem-solving, Meeting Deadlines, Marketing Knowledge, Communications. A point that is closer to the center on an axis shows a lower value and a worse performance.

PunctualityProblem-solvingMeeting DeadlinesMarketing KnowledgeCommunications
65878
75548

It is obvious that Jane has a better performance than Samanta.

14. Pyramid Graph

When it comes to easy to understand and good looking types of graphs and charts, pyramid graph has a top place.

A pyramid graph is a chart in a pyramid shape or triangle shape. These types of charts are best for data that is organized in some kind of hierarchy. The levels show a progressive order.

Pyramid Graph Uses:

  • When you want to indicate a hierarchy level among the topics or other types of data.
  • Pyramid graph is often used to represent progressive orders such as: “older to newer”, “more important to least important”, “specific to least specific”‘ and etc.
  • When you have a proportional or interconnected relationship between data sets.

A classic pyramid graph example is the healthy food pyramid that shows fats, oils, and sugar (at the top) should be eaten less than many other foods such as vegetables and fruits (at the bottom of the pyramid).

Conclusion:

You might know that choosing the right type of chart is some kind of tricky business.

Anyway, you have a wide choice of types of graphs and charts. Used in the right way, they are a powerful weapon to help you make your reports and presentations both professional and clear.

What are your favorite types of graphs and charts? Share your thoughts on the field below.

About The Author

forms of graphical representation

Silvia Valcheva

Silvia Valcheva is a digital marketer with over a decade of experience creating content for the tech industry. She has a strong passion for writing about emerging software and technologies such as big data, AI (Artificial Intelligence), IoT (Internet of Things), process automation, etc.

10 Comments

' src=

I have learned a lot from your presentation. Very informative

' src=

Nicely described different graphs, I learned a lot.

' src=

very useful. exiting

' src=

I love this. I learned a lot.

' src=

Very good representation of date. I would suggest an addition of “stem and leaf” diagrams.

' src=

I have only one thing to say and that is this is the best representation of every graphs and charts I have ever seen 😀

' src=

Very well described. Great learning article for beginners on Charts.

' src=

Really helpful thanks

' src=

Very Helpful text; Thanks Silvia Valcheva for your hard work

Leave a Reply Cancel Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Talk to our experts

1800-120-456-456

  • Graphical Representation

ffImage

What is a Graph

In mathematics, a graph is a diagrammatic illustration that is used to represent data values in a systematic, organized and understandable manner.  It is indeed a very tedious task to analyze lots of data. However, when the same numerical data is represented in a pictorial form, it becomes easy to understand the relationship between the provided data objects and the concepts represented. It is often said that a picture is worth a thousand words. Therefore, graphs are particularly useful when it comes to displaying and analyzing data. 

The data have shown on the graph usually represents a relationship between various things for comparison among them. It could also help us to understand the changing trends over some time. With the help of graphs, it becomes easier to comprehend information.

Types of Graphical Representation 

To represent various kinds of data, different kinds of graphs are used. Some of the commonly used graphs are as follows: 

In a line graph, a line shows trends in data. It can also be used to predict the changing trends of the displayed data objects in the future. 

A bar graph is used when data has been categorized or sorted. It is the best kind of graph for comparing data. In this, solid bars are used to represent different categories or data values.

A histogram is similar to a bar graph. However, instead of making comparisons, it groups the numerical data into ranges. It is most commonly used to show frequency distributions. 

Pie or Circle Graph

In a pie chart, a circle represents statistical graphics. It is divided into many slices or pies to represent the proportion of numbers. The length of the arc of each pipe corresponds to the quantity represented by it.

Stem and Leaf Graph

A stem and leaf plot is a special type of table in which the data values are divided into a stem, which represents the initial digit or digits, and a leaf, which usually represents the last digit. 

How to plot the Data Accurately on Graphs?

It is of utmost importance that the information which is being represented graphically should be accurate and easy to understand. The various points that should be kept in mind are: 

The scale chosen to plot the graph should be according to the data values that have to be represented.

The index makes it easier for the reader to read and interpret the data represented by various colours, patterns, designs, etc.

The Source of Data

As and when necessary, the source of data can be mentioned at the bottom of the graph. 

The purpose of making the graph is defeated if the representation does not look tidy. Hence, it must be ensured that the data so represented is neat and visually appealing. 

There is no need to unnecessarily complicate the graph. The simpler, the better.

Basics of Graphical Representation

A graph usually consists of two lines called the coordinate axes. The horizontal line is called the x-axis, and the vertical line is called the y axis. The intersection of the two axes is the point of origin. The values on the x-axis towards the right of the origin are considered positive, and towards the left are negative. Similarly, on the y-axis, the values above the origin will be positive and the values below the origin will be negative. 

 Benefits of using Graphs 

Graphs save time. If the same information is written down, it becomes a period process to spot the trends and be able to analyze the data properly. 

A graph can be used to represent information neatly and also takes less space.

It is easy to understand.

Analysing a graphical representation of data does not take much and helps in making quick decisions. 

Graphs give you a summarized version of a long report that contains a large amount of data. 

Graphs and tables are less likely to have any errors and mistakes. 

Graphical representation of two or more data sets will allow you to compare the information and take preventive measures to avoid mistakes in the future. 

By making the data easy to understand, graphs eliminate the literacy barriers so that anyone can analyse and interpret the presented data. 

With just a glance at the graphical representation, a person can make quick and informed decisions.  

Some Rules for Graphical Representation of Data 

Like any other mathematical concept, graphical representation also has some rules you must follow. These rules will help you present the information on a graph effectively. Below are the rules for graphical representation of data: 

When you are making a graph, you should give it an appropriate title that highlights the subject of the given data.

While making a graph, do not forget to mention the measurement unit. 

Make an index using colours, designs, shades, lines, etc. to make the graphical representation easier to understand.  

You have to choose an appropriate scale to represent the given set of data. 

Construct the graph as simple as possible so that everyone can easily understand the presented data.

Whether you are making a pie chart or a bar graph, it should look neat and clean so that the teacher can easily read the figures. 

Importance of Graphical Representation 

Graphical representation gives you a visual presentation of the given data to make it easier to understand. Graphs help you identify different patterns over a short and long period. It assists you in the interpretation of data and comparison of two or more data sets. Here are reasons why graphical representation is important: 

Graphs are widely accepted in the corporate world as it summarises the data into an understandable format and avoids wastage of time. 

When you want to compare two or more different data sets, graphs are your best choice. A graphical representation of all the data sets will allow you to quickly analyze the information and help you in making quick decisions. 

Through descriptive reports and information, it becomes difficult to make decisions. However, with graphs, the management can analyse the situation more clearly and make the right decisions. 

With tables and graphs, the information can be presented in an organised and logical manner, making it easier to understand for anyone. 

Graphical representation of data does not demand much of your time, improving the overall efficiency. You can quickly make the graphs within minutes and focus on other important work. 

Qualitative representation might include many grammatical errors and other mistakes that can mislead the person reading it. Since graphs involve numerical representation of data, there are fewer chances of errors and mistakes. 

Graphs give you the entire summary of a large amount of data.    

arrow-right

FAQs on Graphical Representation

1. What is a frequency polygon graph?

A frequency polygon graph can be used to represent the same set of data which is represented by a histogram. In this type of graph, lines are used to connect the midpoints of each interval. The frequencies of the data interval are represented by the height at which the midpoints are plotted in the graph. A frequency polygon can be created using the already drawn histogram, or by calculating the midpoint from the intervals of the frequency distribution table. To calculate the midpoint, we need to find the average of the upper and the lower values of the interval/range. 

Frequency polygon gives us an idea regarding the shape of the data and the trends that it follows during a particular duration of time. 

Steps to draw a frequency polygon: 

Calculate the classmark for each interval, which is equal to (upper limit + lower limit)/2. 

Represent the class marks on the x-axis and their corresponding frequencies on the y-axis. 

For every class mark on the x-axis, plot the frequencies of the y-axis.  

Join all the obtained points to get a curve.

The figure obtained is called a frequency polygon. 

2. What is the difference between a Bar Graph and a Histogram?

The most commonly visible difference between a bar graph and a histogram is that, in a bar graph, the bars have spaces between them, whereas, in a histogram, the bars are drawn adjacent to each other, without leaving any spaces. 

As they both make use of bars to represent the data, it becomes slightly difficult to understand the fundamental difference between the two. A histogram is a graphical representation that uses bars to demonstrate the frequency of numerical data. In a histogram, elements are grouped, so they can be considered as ranges.

A bar graph is a diagrammatic representation that uses bars for the comparison of different categories of data.  The plotted elements are treated as individual entities, and not as a range. The bars can be drawn horizontally or vertically. The height of the bar corresponds to the size of the data object.

3. From which platform can I learn Graphical Representation?

Vedantu is the best e-learning platform from where you can learn Graphical Representation. To start studying the concept of graphical representations, you can visit our official website or download our mobile app from the app store or play store. Our learning platform is available to all students across the globe for absolutely free. Apart from the Graphical Representation, you will find plenty of study material for different topics of Maths. From the website, you can learn concepts, such as Number System, Area of Triangle, Factorisation, and much more.    

4. What are the advantages of a Bar Graph?

A bar graph is the most widely used method of graphical representation. Below are some of the advantages of a bar graph: 

A bar graph shows every category from the given frequency distribution. 

Bar graphs summarize a large chunk of data into a simple, understandable, and interpretable form. 

With a bar graph, you can easily compare two or more different data sets. 

You can study the varying patterns in a bar graph over a long period. 

A bar graph makes the trends easier to highlight than other types of graphical representation.  

5. How to decide which graph is suitable for a situation?

Sometimes, the question does not specify which type of graph you have to use. In these cases, you will have to analyze the given data and decide which graph will be more suitable. When you have to compare two different categories of data sets, you should use a bar graph as it makes the data easy to interpret. If you have to find the trends and progress over a short period, you can use line graphs. Moreover, when you have to represent a whole graphically, a pie chart is the best option.   

  • Interview Problems on Graph
  • Practice Graph
  • MCQs on Graph
  • Graph Tutorial
  • Graph Representation
  • Graph Properties
  • Types of Graphs
  • Graph Applications
  • BFS on Graph
  • DFS on Graph
  • Graph VS Tree
  • Transpose Graph
  • Dijkstra's Algorithm
  • Minimum Spanning Tree
  • Prim’s Algorithm
  • Topological Sorting
  • Floyd Warshall Algorithm
  • Strongly Connected Components
  • Advantages & Disadvantages

Graph and its representations

What is graph data structure.

A Graph is a non-linear data structure consisting of vertices and edges. The vertices are sometimes also referred to as nodes and the edges are lines or arcs that connect any two nodes in the graph. More formally a Graph is composed of a set of vertices( V ) and a set of edges( E ). The graph is denoted by G(V, E) .

Representations of Graph

Here are the two most common ways to represent a graph : For simplicity, we are going to consider only unweighted graphs in this post.

Adjacency Matrix

Adjacency list.

An adjacency matrix is a way of representing a graph as a matrix of boolean (0’s and 1’s)

Let’s assume there are n vertices in the graph So, create a 2D matrix adjMat[n][n] having dimension n x n.

If there is an edge from vertex i to j , mark adjMat[i][j] as 1 . If there is no edge from vertex i to j , mark adjMat[i][j] as 0 .

Representation of Undirected Graph as Adjacency Matrix:

The below figure shows an undirected graph. Initially, the entire Matrix is ​​initialized to 0 . If there is an edge from source to destination, we insert 1 to both cases ( adjMat[destination] and adjMat [ destination]) because we can go either way.

Undirected_to_Adjacency_matrix

Undirected Graph to Adjacency Matrix

Representation of Directed Graph as Adjacency Matrix:

The below figure shows a directed graph. Initially, the entire Matrix is ​​initialized to 0 . If there is an edge from source to destination, we insert 1 for that particular adjMat[destination] .

Directed_to_Adjacency_matrix

Directed Graph to Adjacency Matrix

An array of Lists is used to store edges between two vertices. The size of array is equal to the number of vertices (i.e, n) . Each index in this array represents a specific vertex in the graph. The entry at the index i of the array contains a linked list containing the vertices that are adjacent to vertex i .

Let’s assume there are n vertices in the graph So, create an array of list of size n as adjList[n].

adjList[0] will have all the nodes which are connected (neighbour) to vertex 0 . adjList[1] will have all the nodes which are connected (neighbour) to vertex 1 and so on.

Representation of Undirected Graph as Adjacency list:

The below undirected graph has 3 vertices. So, an array of list will be created of size 3, where each indices represent the vertices. Now, vertex 0 has two neighbours (i.e, 1 and 2). So, insert vertex 1 and 2 at indices 0 of array. Similarly, For vertex 1, it has two neighbour (i.e, 2 and 0) So, insert vertices 2 and 0 at indices 1 of array. Similarly, for vertex 2, insert its neighbours in array of list.

Graph-Representation-of-Undirected-graph-to-Adjacency-List

Undirected Graph to Adjacency list

Representation of Directed Graph as Adjacency list:

The below directed graph has 3 vertices. So, an array of list will be created of size 3, where each indices represent the vertices. Now, vertex 0 has no neighbours. For vertex 1, it has two neighbour (i.e, 0 and 2) So, insert vertices 0 and 2 at indices 1 of array. Similarly, for vertex 2, insert its neighbours in array of list.

Graph-Representation-of-Directed-graph-to-Adjacency-List

Directed Graph to Adjacency list

Please Login to comment...

Similar reads.

  • graph-basics
  • Best PS5 SSDs in 2024: Top Picks for Expanding Your Storage
  • Best Nintendo Switch Controllers in 2024
  • Xbox Game Pass Ultimate: Features, Benefits, and Pricing in 2024
  • Xbox Game Pass vs. Xbox Game Pass Ultimate: Which is Right for You?
  • #geekstreak2024 – 21 Days POTD Challenge Powered By Deutsche Bank

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

GTRL: An Entity Group-Aware Temporal Knowledge Graph Representation Learning Method

New citation alert added.

This alert has been successfully added and will be sent to:

You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below.

New Citation Alert!

Please log in to your account

Information & Contributors

Bibliometrics & citations, view options, index terms.

Computing methodologies

Artificial intelligence

Natural language processing

Information extraction

Machine learning

Learning settings

Machine learning approaches

Learning latent representations

Information systems

Data management systems

Database design and models

Data model extensions

Temporal data

Graph-based database models

Information integration

Information systems applications

Data mining

Recommendations

Temporal knowledge graph entity alignment via representation learning.

Entity alignment aims to construct a complete knowledge graph (KG) by matching the same entities in multi-source KGs. Existing methods mainly focused on the static KG, which assumes that the relationship between entities is permanent. However, ...

Entity alignment for temporal knowledge graphs via adaptive graph networks

The temporal entity alignment task aims to discover entities with the same meaning but belonging to different temporal knowledge graphs (KGs). Most existing entity alignment studies mainly focus on static entity alignment, while temporal entity ...

Knowledge Graph Entity Typing with Contrastive Learning

Knowledge graph entity typing is an important way to complete knowledge graphs (KGs), aims at predicting the associating types of certain given entities. However, previous methods suppose that many (entity, entity type) pairs can be obtained for each ...

Information

Published in.

IEEE Educational Activities Department

United States

Publication History

  • Research-article

Contributors

Other metrics, bibliometrics, article metrics.

  • 0 Total Citations
  • 0 Total Downloads
  • Downloads (Last 12 months) 0
  • Downloads (Last 6 weeks) 0

View options

Login options.

Check if you have access through your login credentials or your institution to get full access on this article.

Full Access

Share this publication link.

Copying failed.

Share on social media

Affiliations, export citations.

  • Please download or close your previous search result export first before starting a new bulk export. Preview is not available. By clicking download, a status dialog will open to start the export process. The process may take a few minutes but once it finishes a file will be downloadable from your browser. You may continue to browse the DL while the export process is in progress. Download
  • Download citation
  • Copy citation

We are preparing your search results for download ...

We will inform you here when the file is ready.

Your file of search results citations is now ready.

Your search export query has expired. Please try again.

IMAGES

  1. Graphical Representation

    forms of graphical representation

  2. Graphical Representation

    forms of graphical representation

  3. Graphical Representation of Data

    forms of graphical representation

  4. NEA

    forms of graphical representation

  5. Graphical Representation

    forms of graphical representation

  6. Graphical Representation Detailed Notes for the Competitive Exam

    forms of graphical representation

VIDEO

  1. The New BRBC Forms ... Buyer Representation Forms

  2. Diagrammatic and Graphical Representation

  3. Graphical Representation of Data🙂🙂||#ytshorts#graphicalrepresentation #maths

  4. Updated & Revised Forms Review

  5. Diagrammatic and Graphical Representation of Data

  6. Lecture #6 |Elasticity of Demand

COMMENTS

  1. Graphical Representation

    Graphical Representation is a way of analysing numerical data. It exhibits the relation between data, ideas, information and concepts in a diagram. It is easy to understand and it is one of the most important learning strategies. It always depends on the type of information in a particular domain. There are different types of graphical ...

  2. Graphical Representation of Data

    Graphical representation is a form of visually displaying data through various methods like graphs, diagrams, charts, and plots. It helps in sorting, visualizing, and presenting data in a clear manner through different types of graphs. Statistics mainly use graphical representation to show data.

  3. Graphical Representation of Data

    A bar graph is a type of graphical representation of the data in which bars of uniform width are drawn with equal spacing between them on one axis (x-axis usually), depicting the variable. The values of the variables are represented by the height of the bars. Histograms.

  4. What Is Graphical Representation Of Data

    Types of Graphical Representation. There exists a diverse array of graphical representations, each suited to different data types and purposes. Common types include: 1.Bar Charts: Used to compare categories or discrete data points, often side by side. 2. Line Charts:

  5. 44 Types of Graphs & Charts [& How to Choose the Best One]

    Market segments are often divided based on age and gender, and a population pyramid is an ideal visual representation of the two groups. The graph classically takes on the shape of a pyramid when a population is healthy and growing -- the largest groups are the youngest, and each gender dwindles somewhat equally as the population ages, leaving the smallest groups at the top of the graph.

  6. Graphical Representation, Its Advantages & Uses

    Types of Graphical Representation. 1. Line graph 2. Histogram 3. Bar graph 4. Pie chart 5. Frequency polygon 6. Ogives or Cumulative frequency graphs. 1. Line Graph. A line graph is a chart used to show information that changes over time. We plot line graphs by connecting several points with straight lines. Another name is a line chart.

  7. 18 Best Types of Charts and Graphs for Data Visualization [+ Guide]

    Mekko charts can seem more complex than other types of charts, so it's best to use these in situations where you want to emphasize scale or differences between groups of data. Other use cases for Mekko charts include: Detailed profit and loss statements. Revenue by brand and region.

  8. Graphical Representation: Types, Rules, Principles & Examples

    A graphical representation is the geometrical image of a set of data that preserves its characteristics and displays them at a glance. It is a mathematical picture of data points. It enables us to think about a statistical problem in visual terms. It is an effective tool for the preparation, understanding and interpretation of the collected data.

  9. 21 Data Visualization Types: Examples of Graphs and Charts

    6. Scatter Plot. The scatter plot is also among the popular data visualization types and has other names such as a scatter diagram, scatter graph, and correlation chart. Scatter plot helps in many areas of today's world - business, biology, social statistics, data science and etc.

  10. Graphical Representation

    Graphical Representation. Graphical representations encompass a wide variety of techniques that are used to clarify, interpret and analyze data by plotting points and drawing line segments, surfaces and other geometric forms or symbols. The purpose of a graph is a rapid visualization of a data set. For instance, it should clearly illustrate the ...

  11. What is Graphical Representation? Definition and FAQs

    Types of Graphical Representation. Data charts are available in a wide variety of maps, diagrams, and graphs that typically include textual titles and legends to denote the purpose, measurement units, and variables of the chart. Choosing the most appropriate chart depends on a variety of different factors -- the nature of the data, the purpose ...

  12. Graphical Methods

    Here are some examples of real-time applications of graphical methods: Stock Market: Line graphs, candlestick charts, and bar charts are widely used in real-time trading systems to display stock prices and trends over time. Traders use these charts to analyze historical data and make informed decisions about buying and selling stocks in real-time.

  13. Chart

    Chart. A pie chart showing the composition of the 38th Parliament of Canada. A chart (sometimes known as a graph) is a graphical representation for data visualization, in which "the data is represented by symbols, such as bars in a bar chart, lines in a line chart, or slices in a pie chart ". [1] A chart can represent tabular numeric data ...

  14. Introduction to Graphs

    Principles of graphical representation . The principles of graphical representation are algebraic. In a graph, there are two lines known as Axis or Coordinate axis. These are the X-axis and Y-axis. The horizontal axis is the X-axis and the vertical axis is the Y-axis. They are perpendicular to each other and intersect at O or point of Origin.

  15. What Is Data Visualization? Definition & Examples

    Data visualization is the graphical representation of information and data. By using v isual elements like charts, graphs, and maps, data visualization tools provide an accessible way to see and understand trends, outliers, and patterns in data. Additionally, it provides an excellent way for employees or business owners to present data to non ...

  16. Types of Graphs and Charts And Their Uses

    Every type of graph is a visual representation of data on diagram plots (ex. bar, pie, line chart) that show different types of graph trends and relationships between variables. Although it is hard to tell what are all the types of graphs, this page consists all of the common types of statistical graphs and charts (and their meanings) widely ...

  17. 17 Important Data Visualization Techniques

    Bullet Graph. Choropleth Map. Word Cloud. Network Diagram. Correlation Matrices. 1. Pie Chart. Pie charts are one of the most common and basic data visualization techniques, used across a wide range of applications. Pie charts are ideal for illustrating proportions, or part-to-whole comparisons.

  18. Data Visualization: Definition, Benefits, and Examples

    Data visualization is the representation of information and data using charts, graphs, maps, and other visual tools. These visualizations allow us to easily understand any patterns, trends, or outliers in a data set. Data visualization also presents data to the general public or specific audiences without technical knowledge in an accessible ...

  19. Graphical Representation of Data

    Graphical representation helps in forecasting, as it indicates the trend of the data in the past. Some of the types of graphs that are used to summarize and organize data are the dot plot, the bar graph, the histogram, the stem-and-leaf plot, the frequency polygon (a type of broken line graph), the pie chart, and the box plot.

  20. Graphs and Graphical Representation

    The graphical presentation is always dependent on the type of information conveyed. There are different types of graphical representation. These are as follows: Line Graphs: Also denoted as linear graphs are used to examine continuous data and are also useful in predicting future events in time. Histograms: This graph uses bars to represent the ...

  21. Graphical Representation

    Types of Graphical Representation . To represent various kinds of data, different kinds of graphs are used. Some of the commonly used graphs are as follows: Line Graph. In a line graph, a line shows trends in data. It can also be used to predict the changing trends of the displayed data objects in the future.

  22. Types of Graphs with Examples

    Types of Graphs: 1. Finite Graphs A graph is said to be finite if it has a finite number of vertices and a finite number of edges. A finite graph is a graph with a finite number of vertices and edges. ... Class 8 RD Sharma Solutions - Chapter 25 Data Handling III (Pictorial Representation Of Data As Pie Charts Or Circle Graphs) - Exercise 25.1 ...

  23. Graph and its representations

    A Graph is a non-linear data structure consisting of vertices and edges. The vertices are sometimes also referred to as nodes and the edges are lines or arcs that connect any two nodes in the graph. More formally a Graph is composed of a set of vertices ( V ) and a set of edges ( E ). The graph is denoted by G (V, E).

  24. GTRL: An Entity Group-Aware Temporal Knowledge Graph Representation

    Temporal Knowledge Graph (TKG) representation learning embeds entities and event types into a continuous low-dimensional vector space by integrating the temporal information, which is essential for downstream tasks, e.g., event prediction and question answering.