Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Editorial and Peer Review Process

PLOS ONE is a peer reviewed scientific journal with a rigorous editorial screening and assessment process made up of several stages.

PLOS ONE considers original research articles from all disciplines within the journal’s scope in the natural sciences, medical research, engineering, as well as the related social sciences and humanities. The editors make decisions on submissions based on scientific rigor, regardless of novelty.

All authors, editors, and reviewers are expected to reply to journal queries in a timely manner, and to comply with  PLOS’ Code of Conduct for Editorial Board Members  and our policies on Ethical Peer Review and  Standards for Professional Conduct . Any concerns about the content of correspondence or reviews should be raised to the attention of journal staff by emailing  [email protected] .

Understanding Manuscript Statuses

Initial checks, editorial review, peer review, editorial decisions, accepted manuscripts, peer review history.

article review process time

Transferring to Other Journals

If you have questions at any stage in the process, please  email us .

The peer review process

The peer review process can be broadly summarized into 10 steps, although these steps can vary slightly between journals. Explore what’s involved, below.

Editor Feedback: “Reviewers should remember that they are representing the readers of the journal. Will the readers of this particular journal find this informative and useful?”

Peer Review Process

1. Submission of Paper

The corresponding or submitting author submits the paper to the journal. This is usually via an online system such as ScholarOne Manuscripts. Occasionally, journals may accept submissions by email.

2. Editorial Office Assessment

The Editorial Office checks that the paper adheres to the requirements described in the journal’s Author Guidelines. The quality of the paper is not assessed at this point.

3. Appraisal by the Editor-in-Chief (EIC)

The EIC checks assesses the paper, considering its scope, originality and merits. The EiC may reject the paper at this stage.

4. EIC Assigns an Associate Editor (AE)

Some journals have Associate Editors ( or equivalent ) who handle the peer review. If they do, they would be assigned at this stage.

5. Invitation to Reviewers

The handling editor sends invitations to individuals he or she believes would be appropriate reviewers. As responses are received, further invitations are issued, if necessary, until the required number of reviewers is secured– commonly this is 2, but there is some variation between journals.

6. Response to Invitations

Potential reviewers consider the invitation against their own expertise, conflicts of interest and availability. They then accept or decline the invitation to review. If possible, when declining, they might also suggest alternative reviewers.

7. Review is Conducted

The reviewer sets time aside to read the paper several times. The first read is used to form an initial impression of the work. If major problems are found at this stage, the reviewer may feel comfortable rejecting the paper without further work. Otherwise, they will read the paper several more times, taking notes to build a detailed point-by-point review. The review is then submitted to the journal, with the reviewer’s recommendation (e.g. to revise, accept or reject the paper).

8. Journal Evaluates the Reviews

The handling editor considers all the returned reviews before making a decision. If the reviews differ widely, the editor may invite an additional reviewer so as to get an extra opinion before making a decision.

9. The Decision is Communicated

The editor sends a decision email to the author including any relevant reviewer comments. Comments will be anonymous if the journal follows a single-anonymous or double-anonymous peer review model. Journals with following an open or transparent peer review model will share the identities of the reviewers with the author(s).

10. Next Steps

An editor's perspective.

Listen to a podcast from Roger Watson, Editor-in-Chief of Journal of Advanced Nursing, as he discusses 'The peer review process'.

If accepted , the paper is sent to production. If the article is rejected or sent back for either major or minor revision , the handling editor should include constructive comments from the reviewers to help the author improve the article. At this point, reviewers should also be sent an email or letter letting them know the outcome of their review. If the paper was sent back for revision , the reviewers should expect to receive a new version, unless they have opted out of further participation. However, where only minor changes were requested this follow-up review might be done by the handling editor.

How long does the review process take?

Definition of the typical length of the review process and indication of the reasons 2 feb 2023 • knowledge, information.

The review process currently averages at  77 days  from submission to acceptance across our 50+ journals. It varies across journals for a number of reasons (e.g. some fields have reviewers who are on field work and out of contact for a time, and some fields do more iterations in the discussion forum). The time period also depends on the article type selected from the broad range Frontiers offers its authors.

Based on the surveys conducted with authors, reviewers and editors regarding the review process,  73-76% of respondents “Strongly agreed” or “Agreed” that  Frontiers’ peer-review process  is a significant improvement on traditional peer review, and 86-91% of respondents rated the peer-review process as “Excellent” or “Good” (view more details of the survey here).  But even with these exceptional survey results, we believe we can always improve.

Based on feedback we get from the authors, reviewers and editors who use our  Collaborative Peer Review platform , we are continuously releasing new features to make the process even more effective and engaging for all involved.

Article Details

Recently viewed articles.

  • What reference style does each journal use?
  • How do I submit my proof corrections?
  • Why is it valuable to have a profile picture on Loop and how do I add/edit?
  • Contact Frontiers
  • Where can I find the "Supplementary Material" (if any) for a published article?

About Frontiers   |   Contact   |   Terms & Conditions

© 2007 - 2022 Frontiers Media SA. All Rights Reserved

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Understanding Peer Review in Science

Peer Review Process

Peer review is an essential element of the scientific publishing process that helps ensure that research articles are evaluated, critiqued, and improved before release into the academic community. Take a look at the significance of peer review in scientific publications, the typical steps of the process, and and how to approach peer review if you are asked to assess a manuscript.

What Is Peer Review?

Peer review is the evaluation of work by peers, who are people with comparable experience and competency. Peers assess each others’ work in educational settings, in professional settings, and in the publishing world. The goal of peer review is improving quality, defining and maintaining standards, and helping people learn from one another.

In the context of scientific publication, peer review helps editors determine which submissions merit publication and improves the quality of manuscripts prior to their final release.

Types of Peer Review for Manuscripts

There are three main types of peer review:

  • Single-blind review: The reviewers know the identities of the authors, but the authors do not know the identities of the reviewers.
  • Double-blind review: Both the authors and reviewers remain anonymous to each other.
  • Open peer review: The identities of both the authors and reviewers are disclosed, promoting transparency and collaboration.

There are advantages and disadvantages of each method. Anonymous reviews reduce bias but reduce collaboration, while open reviews are more transparent, but increase bias.

Key Elements of Peer Review

Proper selection of a peer group improves the outcome of the process:

  • Expertise : Reviewers should possess adequate knowledge and experience in the relevant field to provide constructive feedback.
  • Objectivity : Reviewers assess the manuscript impartially and without personal bias.
  • Confidentiality : The peer review process maintains confidentiality to protect intellectual property and encourage honest feedback.
  • Timeliness : Reviewers provide feedback within a reasonable timeframe to ensure timely publication.

Steps of the Peer Review Process

The typical peer review process for scientific publications involves the following steps:

  • Submission : Authors submit their manuscript to a journal that aligns with their research topic.
  • Editorial assessment : The journal editor examines the manuscript and determines whether or not it is suitable for publication. If it is not, the manuscript is rejected.
  • Peer review : If it is suitable, the editor sends the article to peer reviewers who are experts in the relevant field.
  • Reviewer feedback : Reviewers provide feedback, critique, and suggestions for improvement.
  • Revision and resubmission : Authors address the feedback and make necessary revisions before resubmitting the manuscript.
  • Final decision : The editor makes a final decision on whether to accept or reject the manuscript based on the revised version and reviewer comments.
  • Publication : If accepted, the manuscript undergoes copyediting and formatting before being published in the journal.

Pros and Cons

While the goal of peer review is improving the quality of published research, the process isn’t without its drawbacks.

  • Quality assurance : Peer review helps ensure the quality and reliability of published research.
  • Error detection : The process identifies errors and flaws that the authors may have overlooked.
  • Credibility : The scientific community generally considers peer-reviewed articles to be more credible.
  • Professional development : Reviewers can learn from the work of others and enhance their own knowledge and understanding.
  • Time-consuming : The peer review process can be lengthy, delaying the publication of potentially valuable research.
  • Bias : Personal biases of reviews impact their evaluation of the manuscript.
  • Inconsistency : Different reviewers may provide conflicting feedback, making it challenging for authors to address all concerns.
  • Limited effectiveness : Peer review does not always detect significant errors or misconduct.
  • Poaching : Some reviewers take an idea from a submission and gain publication before the authors of the original research.

Steps for Conducting Peer Review of an Article

Generally, an editor provides guidance when you are asked to provide peer review of a manuscript. Here are typical steps of the process.

  • Accept the right assignment: Accept invitations to review articles that align with your area of expertise to ensure you can provide well-informed feedback.
  • Manage your time: Allocate sufficient time to thoroughly read and evaluate the manuscript, while adhering to the journal’s deadline for providing feedback.
  • Read the manuscript multiple times: First, read the manuscript for an overall understanding of the research. Then, read it more closely to assess the details, methodology, results, and conclusions.
  • Evaluate the structure and organization: Check if the manuscript follows the journal’s guidelines and is structured logically, with clear headings, subheadings, and a coherent flow of information.
  • Assess the quality of the research: Evaluate the research question, study design, methodology, data collection, analysis, and interpretation. Consider whether the methods are appropriate, the results are valid, and the conclusions are supported by the data.
  • Examine the originality and relevance: Determine if the research offers new insights, builds on existing knowledge, and is relevant to the field.
  • Check for clarity and consistency: Review the manuscript for clarity of writing, consistent terminology, and proper formatting of figures, tables, and references.
  • Identify ethical issues: Look for potential ethical concerns, such as plagiarism, data fabrication, or conflicts of interest.
  • Provide constructive feedback: Offer specific, actionable, and objective suggestions for improvement, highlighting both the strengths and weaknesses of the manuscript. Don’t be mean.
  • Organize your review: Structure your review with an overview of your evaluation, followed by detailed comments and suggestions organized by section (e.g., introduction, methods, results, discussion, and conclusion).
  • Be professional and respectful: Maintain a respectful tone in your feedback, avoiding personal criticism or derogatory language.
  • Proofread your review: Before submitting your review, proofread it for typos, grammar, and clarity.
  • Couzin-Frankel J (September 2013). “Biomedical publishing. Secretive and subjective, peer review proves resistant to study”. Science . 341 (6152): 1331. doi: 10.1126/science.341.6152.1331
  • Lee, Carole J.; Sugimoto, Cassidy R.; Zhang, Guo; Cronin, Blaise (2013). “Bias in peer review”. Journal of the American Society for Information Science and Technology. 64 (1): 2–17. doi: 10.1002/asi.22784
  • Slavov, Nikolai (2015). “Making the most of peer review”. eLife . 4: e12708. doi: 10.7554/eLife.12708
  • Spier, Ray (2002). “The history of the peer-review process”. Trends in Biotechnology . 20 (8): 357–8. doi: 10.1016/S0167-7799(02)01985-6
  • Squazzoni, Flaminio; Brezis, Elise; Marušić, Ana (2017). “Scientometrics of peer review”. Scientometrics . 113 (1): 501–502. doi: 10.1007/s11192-017-2518-4

Related Posts

Review articles: purpose, process, and structure

  • Published: 02 October 2017
  • Volume 46 , pages 1–5, ( 2018 )

Cite this article

article review process time

  • Robert W. Palmatier 1 ,
  • Mark B. Houston 2 &
  • John Hulland 3  

231k Accesses

440 Citations

65 Altmetric

Explore all metrics

Avoid common mistakes on your manuscript.

Many research disciplines feature high-impact journals that are dedicated outlets for review papers (or review–conceptual combinations) (e.g., Academy of Management Review , Psychology Bulletin , Medicinal Research Reviews ). The rationale for such outlets is the premise that research integration and synthesis provides an important, and possibly even a required, step in the scientific process. Review papers tend to include both quantitative (i.e., meta-analytic, systematic reviews) and narrative or more qualitative components; together, they provide platforms for new conceptual frameworks, reveal inconsistencies in the extant body of research, synthesize diverse results, and generally give other scholars a “state-of-the-art” snapshot of a domain, often written by topic experts (Bem 1995 ). Many premier marketing journals publish meta-analytic review papers too, though authors often must overcome reviewers’ concerns that their contributions are limited due to the absence of “new data.” Furthermore, relatively few non-meta-analysis review papers appear in marketing journals, probably due to researchers’ perceptions that such papers have limited publication opportunities or their beliefs that the field lacks a research tradition or “respect” for such papers. In many cases, an editor must provide strong support to help such review papers navigate the review process. Yet, once published, such papers tend to be widely cited, suggesting that members of the field find them useful (see Bettencourt and Houston 2001 ).

In this editorial, we seek to address three topics relevant to review papers. First, we outline a case for their importance to the scientific process, by describing the purpose of review papers . Second, we detail the review paper editorial initiative conducted over the past two years by the Journal of the Academy of Marketing Science ( JAMS ), focused on increasing the prevalence of review papers. Third, we describe a process and structure for systematic ( i.e. , non-meta-analytic) review papers , referring to Grewal et al. ( 2018 ) insights into parallel meta-analytic (effects estimation) review papers. (For some strong recent examples of marketing-related meta-analyses, see Knoll and Matthes 2017 ; Verma et al. 2016 ).

Purpose of review papers

In their most general form, review papers “are critical evaluations of material that has already been published,” some that include quantitative effects estimation (i.e., meta-analyses) and some that do not (i.e., systematic reviews) (Bem 1995 , p. 172). They carefully identify and synthesize relevant literature to evaluate a specific research question, substantive domain, theoretical approach, or methodology and thereby provide readers with a state-of-the-art understanding of the research topic. Many of these benefits are highlighted in Hanssens’ ( 2018 ) paper titled “The Value of Empirical Generalizations in Marketing,” published in this same issue of JAMS.

The purpose of and contributions associated with review papers can vary depending on their specific type and research question, but in general, they aim to

Resolve definitional ambiguities and outline the scope of the topic.

Provide an integrated, synthesized overview of the current state of knowledge.

Identify inconsistencies in prior results and potential explanations (e.g., moderators, mediators, measures, approaches).

Evaluate existing methodological approaches and unique insights.

Develop conceptual frameworks to reconcile and extend past research.

Describe research insights, existing gaps, and future research directions.

Not every review paper can offer all of these benefits, but this list represents their key contributions. To provide a sufficient contribution, a review paper needs to achieve three key standards. First, the research domain needs to be well suited for a review paper, such that a sufficient body of past research exists to make the integration and synthesis valuable—especially if extant research reveals theoretical inconsistences or heterogeneity in its effects. Second, the review paper must be well executed, with an appropriate literature collection and analysis techniques, sufficient breadth and depth of literature coverage, and a compelling writing style. Third, the manuscript must offer significant new insights based on its systematic comparison of multiple studies, rather than simply a “book report” that describes past research. This third, most critical standard is often the most difficult, especially for authors who have not “lived” with the research domain for many years, because achieving it requires drawing some non-obvious connections and insights from multiple studies and their many different aspects (e.g., context, method, measures). Typically, after the “review” portion of the paper has been completed, the authors must spend many more months identifying the connections to uncover incremental insights, each of which takes time to detail and explicate.

The increasing methodological rigor and technical sophistication of many marketing studies also means that they often focus on smaller problems with fewer constructs. By synthesizing these piecemeal findings, reconciling conflicting evidence, and drawing a “big picture,” meta-analyses and systematic review papers become indispensable to our comprehensive understanding of a phenomenon, among both academic and practitioner communities. Thus, good review papers provide a solid platform for future research, in the reviewed domain but also in other areas, in that researchers can use a good review paper to learn about and extend key insights to new areas.

This domain extension, outside of the core area being reviewed, is one of the key benefits of review papers that often gets overlooked. Yet it also is becoming ever more important with the expanding breadth of marketing (e.g., econometric modeling, finance, strategic management, applied psychology, sociology) and the increasing velocity in the accumulation of marketing knowledge (e.g., digital marketing, social media, big data). Against this backdrop, systematic review papers and meta-analyses help academics and interested managers keep track of research findings that fall outside their main area of specialization.

JAMS’ review paper editorial initiative

With a strong belief in the importance of review papers, the editorial team of JAMS has purposely sought out leading scholars to provide substantive review papers, both meta-analysis and systematic, for publication in JAMS . Many of the scholars approached have voiced concerns about the risk of such endeavors, due to the lack of alternative outlets for these types of papers. Therefore, we have instituted a unique process, in which the authors develop a detailed outline of their paper, key tables and figures, and a description of their literature review process. On the basis of this outline, we grant assurances that the contribution hurdle will not be an issue for publication in JAMS , as long as the authors execute the proposed outline as written. Each paper still goes through the normal review process and must meet all publication quality standards, of course. In many cases, an Area Editor takes an active role to help ensure that each paper provides sufficient insights, as required for a high-quality review paper. This process gives the author team confidence to invest effort in the process. An analysis of the marketing journals in the Financial Times (FT 50) journal list for the past five years (2012–2016) shows that JAMS has become the most common outlet for these papers, publishing 31% of all review papers that appeared in the top six marketing journals.

As a next step in positioning JAMS as a receptive marketing outlet for review papers, we are conducting a Thought Leaders Conference on Generalizations in Marketing: Systematic Reviews and Meta-Analyses , with a corresponding special issue (see www.springer.com/jams ). We will continue our process of seeking out review papers as an editorial strategy in areas that could be advanced by the integration and synthesis of extant research. We expect that, ultimately, such efforts will become unnecessary, as authors initiate review papers on topics of their own choosing to submit them to JAMS . In the past two years, JAMS already has increased the number of papers it publishes annually, from just over 40 to around 60 papers per year; this growth has provided “space” for 8–10 review papers per year, reflecting our editorial target.

Consistent with JAMS ’ overall focus on managerially relevant and strategy-focused topics, all review papers should reflect this emphasis. For example, the domains, theories, and methods reviewed need to have some application to past or emerging managerial research. A good rule of thumb is that the substantive domain, theory, or method should attract the attention of readers of JAMS .

The efforts of multiple editors and Area Editors in turn have generated a body of review papers that can serve as useful examples of the different types and approaches that JAMS has published.

Domain-based review papers

Domain-based review papers review, synthetize, and extend a body of literature in the same substantive domain. For example, in “The Role of Privacy in Marketing” (Martin and Murphy 2017 ), the authors identify and define various privacy-related constructs that have appeared in recent literature. Then they examine the different theoretical perspectives brought to bear on privacy topics related to consumers and organizations, including ethical and legal perspectives. These foundations lead in to their systematic review of privacy-related articles over a clearly defined date range, from which they extract key insights from each study. This exercise of synthesizing diverse perspectives allows these authors to describe state-of-the-art knowledge regarding privacy in marketing and identify useful paths for research. Similarly, a new paper by Cleeren et al. ( 2017 ), “Marketing Research on Product-Harm Crises: A Review, Managerial Implications, and an Agenda for Future Research,” provides a rich systematic review, synthesizes extant research, and points the way forward for scholars who are interested in issues related to defective or dangerous market offerings.

Theory-based review papers

Theory-based review papers review, synthetize, and extend a body of literature that uses the same underlying theory. For example, Rindfleisch and Heide’s ( 1997 ) classic review of research in marketing using transaction cost economics has been cited more than 2200 times, with a significant impact on applications of the theory to the discipline in the past 20 years. A recent paper in JAMS with similar intent, which could serve as a helpful model, focuses on “Resource-Based Theory in Marketing” (Kozlenkova et al. 2014 ). The article dives deeply into a description of the theory and its underlying assumptions, then organizes a systematic review of relevant literature according to various perspectives through which the theory has been applied in marketing. The authors conclude by identifying topical domains in marketing that might benefit from additional applications of the theory (e.g., marketing exchange), as well as related theories that could be integrated meaningfully with insights from the resource-based theory.

Method-based review papers

Method-based review papers review, synthetize, and extend a body of literature that uses the same underlying method. For example, in “Event Study Methodology in the Marketing Literature: An Overview” (Sorescu et al. 2017 ), the authors identify published studies in marketing that use an event study methodology. After a brief review of the theoretical foundations of event studies, they describe in detail the key design considerations associated with this method. The article then provides a roadmap for conducting event studies and compares this approach with a stock market returns analysis. The authors finish with a summary of the strengths and weaknesses of the event study method, which in turn suggests three main areas for further research. Similarly, “Discriminant Validity Testing in Marketing: An Analysis, Causes for Concern, and Proposed Remedies” (Voorhies et al. 2016 ) systematically reviews existing approaches for assessing discriminant validity in marketing contexts, then uses Monte Carlo simulation to determine which tests are most effective.

Our long-term editorial strategy is to make sure JAMS becomes and remains a well-recognized outlet for both meta-analysis and systematic managerial review papers in marketing. Ideally, review papers would come to represent 10%–20% of the papers published by the journal.

Process and structure for review papers

In this section, we review the process and typical structure of a systematic review paper, which lacks any long or established tradition in marketing research. The article by Grewal et al. ( 2018 ) provides a summary of effects-focused review papers (i.e., meta-analyses), so we do not discuss them in detail here.

Systematic literature review process

Some review papers submitted to journals take a “narrative” approach. They discuss current knowledge about a research domain, yet they often are flawed, in that they lack criteria for article inclusion (or, more accurately, article exclusion), fail to discuss the methodology used to evaluate included articles, and avoid critical assessment of the field (Barczak 2017 ). Such reviews tend to be purely descriptive, with little lasting impact.

In contrast, a systematic literature review aims to “comprehensively locate and synthesize research that bears on a particular question, using organized, transparent, and replicable procedures at each step in the process” (Littell et al. 2008 , p. 1). Littell et al. describe six key steps in the systematic review process. The extent to which each step is emphasized varies by paper, but all are important components of the review.

Topic formulation . The author sets out clear objectives for the review and articulates the specific research questions or hypotheses that will be investigated.

Study design . The author specifies relevant problems, populations, constructs, and settings of interest. The aim is to define explicit criteria that can be used to assess whether any particular study should be included in or excluded from the review. Furthermore, it is important to develop a protocol in advance that describes the procedures and methods to be used to evaluate published work.

Sampling . The aim in this third step is to identify all potentially relevant studies, including both published and unpublished research. To this end, the author must first define the sampling unit to be used in the review (e.g., individual, strategic business unit) and then develop an appropriate sampling plan.

Data collection . By retrieving the potentially relevant studies identified in the third step, the author can determine whether each study meets the eligibility requirements set out in the second step. For studies deemed acceptable, the data are extracted from each study and entered into standardized templates. These templates should be based on the protocols established in step 2.

Data analysis . The degree and nature of the analyses used to describe and examine the collected data vary widely by review. Purely descriptive analysis is useful as a starting point but rarely is sufficient on its own. The examination of trends, clusters of ideas, and multivariate relationships among constructs helps flesh out a deeper understanding of the domain. For example, both Hult ( 2015 ) and Huber et al. ( 2014 ) use bibliometric approaches (e.g., examine citation data using multidimensional scaling and cluster analysis techniques) to identify emerging versus declining themes in the broad field of marketing.

Reporting . Three key aspects of this final step are common across systematic reviews. First, the results from the fifth step need to be presented, clearly and compellingly, using narratives, tables, and figures. Second, core results that emerge from the review must be interpreted and discussed by the author. These revelatory insights should reflect a deeper understanding of the topic being investigated, not simply a regurgitation of well-established knowledge. Third, the author needs to describe the implications of these unique insights for both future research and managerial practice.

A new paper by Watson et al. ( 2017 ), “Harnessing Difference: A Capability-Based Framework for Stakeholder Engagement in Environmental Innovation,” provides a good example of a systematic review, starting with a cohesive conceptual framework that helps establish the boundaries of the review while also identifying core constructs and their relationships. The article then explicitly describes the procedures used to search for potentially relevant papers and clearly sets out criteria for study inclusion or exclusion. Next, a detailed discussion of core elements in the framework weaves published research findings into the exposition. The paper ends with a presentation of key implications and suggestions for the next steps. Similarly, “Marketing Survey Research Best Practices: Evidence and Recommendations from a Review of JAMS Articles” (Hulland et al. 2017 ) systematically reviews published marketing studies that use survey techniques, describes recent trends, and suggests best practices. In their review, Hulland et al. examine the entire population of survey papers published in JAMS over a ten-year span, relying on an extensive standardized data template to facilitate their subsequent data analysis.

Structure of systematic review papers

There is no cookie-cutter recipe for the exact structure of a useful systematic review paper; the final structure depends on the authors’ insights and intended points of emphasis. However, several key components are likely integral to a paper’s ability to contribute.

Depth and rigor

Systematic review papers must avoid falling in to two potential “ditches.” The first ditch threatens when the paper fails to demonstrate that a systematic approach was used for selecting articles for inclusion and capturing their insights. If a reader gets the impression that the author has cherry-picked only articles that fit some preset notion or failed to be thorough enough, without including articles that make significant contributions to the field, the paper will be consigned to the proverbial side of the road when it comes to the discipline’s attention.

Authors that fall into the other ditch present a thorough, complete overview that offers only a mind-numbing recitation, without evident organization, synthesis, or critical evaluation. Although comprehensive, such a paper is more of an index than a useful review. The reviewed articles must be grouped in a meaningful way to guide the reader toward a better understanding of the focal phenomenon and provide a foundation for insights about future research directions. Some scholars organize research by scholarly perspectives (e.g., the psychology of privacy, the economics of privacy; Martin and Murphy 2017 ); others classify the chosen articles by objective research aspects (e.g., empirical setting, research design, conceptual frameworks; Cleeren et al. 2017 ). The method of organization chosen must allow the author to capture the complexity of the underlying phenomenon (e.g., including temporal or evolutionary aspects, if relevant).

Replicability

Processes for the identification and inclusion of research articles should be described in sufficient detail, such that an interested reader could replicate the procedure. The procedures used to analyze chosen articles and extract their empirical findings and/or key takeaways should be described with similar specificity and detail.

We already have noted the potential usefulness of well-done review papers. Some scholars always are new to the field or domain in question, so review papers also need to help them gain foundational knowledge. Key constructs, definitions, assumptions, and theories should be laid out clearly (for which purpose summary tables are extremely helpful). An integrated conceptual model can be useful to organize cited works. Most scholars integrate the knowledge they gain from reading the review paper into their plans for future research, so it is also critical that review papers clearly lay out implications (and specific directions) for research. Ideally, readers will come away from a review article filled with enthusiasm about ways they might contribute to the ongoing development of the field.

Helpful format

Because such a large body of research is being synthesized in most review papers, simply reading through the list of included studies can be exhausting for readers. We cannot overstate the importance of tables and figures in review papers, used in conjunction with meaningful headings and subheadings. Vast literature review tables often are essential, but they must be organized in a way that makes their insights digestible to the reader; in some cases, a sequence of more focused tables may be better than a single, comprehensive table.

In summary, articles that review extant research in a domain (topic, theory, or method) can be incredibly useful to the scientific progress of our field. Whether integrating the insights from extant research through a meta-analysis or synthesizing them through a systematic assessment, the promised benefits are similar. Both formats provide readers with a useful overview of knowledge about the focal phenomenon, as well as insights on key dilemmas and conflicting findings that suggest future research directions. Thus, the editorial team at JAMS encourages scholars to continue to invest the time and effort to construct thoughtful review papers.

Barczak, G. (2017). From the editor: writing a review article. Journal of Product Innovation Management, 34 (2), 120–121.

Article   Google Scholar  

Bem, D. J. (1995). Writing a review article for psychological bulletin. Psychological Bulletin, 118 (2), 172–177.

Bettencourt, L. A., & Houston, M. B. (2001). Assessing the impact of article method type and subject area on citation frequency and reference diversity. Marketing Letters, 12 (4), 327–340.

Cleeren, K., Dekimpe, M. G., & van Heerde, H. J. (2017). Marketing research on product-harm crises: a review, managerial implications. Journal of the Academy of Marketing Science, 45 (5), 593–615.

Grewal, D., Puccinelli, N. M., & Monroe, K. B. (2018). Meta-analysis: error cancels and truth accrues. Journal of the Academy of Marketing Science, 46 (1).

Hanssens, D. M. (2018). The value of empirical generalizations in marketing. Journal of the Academy of Marketing Science, 46 (1).

Huber, J., Kamakura, W., & Mela, C. F. (2014). A topical history of JMR . Journal of Marketing Research, 51 (1), 84–91.

Hulland, J., Baumgartner, H., & Smith, K. M. (2017). Marketing survey research best practices: evidence and recommendations from a review of JAMS articles. Journal of the Academy of Marketing Science. https://doi.org/10.1007/s11747-017-0532-y .

Hult, G. T. M. (2015). JAMS 2010—2015: literature themes and intellectual structure. Journal of the Academy of Marketing Science, 43 (6), 663–669.

Knoll, J., & Matthes, J. (2017). The effectiveness of celebrity endorsements: a meta-analysis. Journal of the Academy of Marketing Science, 45 (1), 55–75.

Kozlenkova, I. V., Samaha, S. A., & Palmatier, R. W. (2014). Resource-based theory in marketing. Journal of the Academy of Marketing Science, 42 (1), 1–21.

Littell, J. H., Corcoran, J., & Pillai, V. (2008). Systematic reviews and meta-analysis . New York: Oxford University Press.

Book   Google Scholar  

Martin, K. D., & Murphy, P. E. (2017). The role of data privacy in marketing. Journal of the Academy of Marketing Science, 45 (2), 135–155.

Rindfleisch, A., & Heide, J. B. (1997). Transaction cost analysis: past, present, and future applications. Journal of Marketing, 61 (4), 30–54.

Sorescu, A., Warren, N. L., & Ertekin, L. (2017). Event study methodology in the marketing literature: an overview. Journal of the Academy of Marketing Science, 45 (2), 186–207.

Verma, V., Sharma, D., & Sheth, J. (2016). Does relationship marketing matter in online retailing? A meta-analytic approach. Journal of the Academy of Marketing Science, 44 (2), 206–217.

Voorhies, C. M., Brady, M. K., Calantone, R., & Ramirez, E. (2016). Discriminant validity testing in marketing: an analysis, causes for concern, and proposed remedies. Journal of the Academy of Marketing Science, 44 (1), 119–134.

Watson, R., Wilson, H. N., Smart, P., & Macdonald, E. K. (2017). Harnessing difference: a capability-based framework for stakeholder engagement in environmental innovation. Journal of Product Innovation Management. https://doi.org/10.1111/jpim.12394 .

Download references

Author information

Authors and affiliations.

Foster School of Business, University of Washington, Box: 353226, Seattle, WA, 98195-3226, USA

Robert W. Palmatier

Neeley School of Business, Texas Christian University, Fort Worth, TX, USA

Mark B. Houston

Terry College of Business, University of Georgia, Athens, GA, USA

John Hulland

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Robert W. Palmatier .

Rights and permissions

Reprints and permissions

About this article

Palmatier, R.W., Houston, M.B. & Hulland, J. Review articles: purpose, process, and structure. J. of the Acad. Mark. Sci. 46 , 1–5 (2018). https://doi.org/10.1007/s11747-017-0563-4

Download citation

Published : 02 October 2017

Issue Date : January 2018

DOI : https://doi.org/10.1007/s11747-017-0563-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

Peer review process

Introduction to peer review.

Peer review exists to ensure that journals publish good science. This benefits the entire scientific community.

Sometimes scientists find the peer review process intimidating because it can lead to the rejection of their manuscript. Keep in mind that revisions and improvement are part of the publication process and actually help raise the quality of your manuscript.

Peer review is a positive process

Peer review is an integral part of scientific publishing that confirms the validity of the science reported. Peer reviewers are experts who volunteer their time to help improve the journal manuscripts they review-they offer authors free advice.

Through the peer review process, manuscripts should become:

  • More robust: Peer reviewers may point out gaps in your paper that require more explanation or additional experiments.
  • Easier to read: If parts of your paper are difficult to understand, reviewers can tell you so that you can fix them.
  • More useful: Peer reviewers also consider the importance of your paper to others in your field.

Of course, in addition to offering authors advice, another important purpose of peer review is to make sure that the manuscripts the journal eventually publishes are of high quality. If a journal publishes too many low-quality manuscripts, its reputation and number of readers will decline.

Editorial rejection

Your journal manuscript can be rejected if it:

  • Lacks proper structureLacks the necessary detail for readers to fully understand the authors' analysis
  • Has no new science
  • Does not clearly explain which parts of the findings are new science, versus what was already known
  • Lacks up-to-date references
  • Contains theories, concepts, or conclusions that are not fully supported by its data, arguments, and information
  • Does not provide enough details about materials and methods to allow other scientists to repeat the experiment

  - Hypotheses tested   - The experimental design   - Sample characteristics and descriptive statistics

  • Has a weak study design or faulty statistical analysis

Has poor language quality

Publication is a difficult process, and you must be prepared to defend your submission against rejection from both editors and peer reviewers. However, do not be too persistent. Generally, only one letter defending your submission will be accepted for each of the review stages (editorial review and peer review). If you are unsuccessful after sending a response letter, then you should strongly consider selecting another journal .

When revising your manuscript and responding to peer review comments:

  • Address all points raised by the editor and reviewers
  • Describe the revisions to your manuscript in your response letter
  • Perform any additional experiments or analyses the reviewers recommend (unless you feel that they would not make your paper better; if this is the case, explain why in your response letter)
  • Provide a polite and scientific rebuttal to any points or comments you disagree with
  • Differentiate between reviewer comments and your responses in your letter
  • Clearly show the major revisions in the text, either with a different color text, by highlighting the changes, or with Microsoft Word's Track Changes feature
  • Return the revised manuscript and response letter within the time period the editor tells you

Reviewer comment: "In your analysis of the data you have chosen to use a somewhat obscure fitting function (regression). In my opinion, a simple Gaussian function would have sufficed. Moreover, the results would be more instructive and easier to compare to previous results."

Response in agreement with the reviewer: "We agree with the reviewer's assessment of the analysis. Our tailored function does make it impossible to fully interpret the data in terms of the prevailing theories. In addition, in its current form, we agree it would be difficult to tell that this measurement constitutes a significant improvement over previously reported values. We have therefore re-analyzed the data using a Gaussian fitting function."

Response disagreeing with the reviewer: "We agree with the reviewer that a simple Gaussian fit would facilitate comparison with the results of other studies. However, our tailored function allows for the analysis of the data in terms of the Smith model [Smith et al, 1998]. We have added two sentences to the paper (page 3, paragraph 2) to explain the use of this function and Smith's model."

Note that in both comments (agreeing and disagreeing) the author is polite and shows respect for the reviewer's opinion. Also, in both circumstances the author makes a change to the manuscript that addresses the reviewer's question.

Remember, the reviewer is probably a highly knowledgeable person. If their suggestion is incorrect, it is likely because they misunderstood your manuscript, indicating that you should make your text clearer.

Use the Response letter template from Edanz to make writing your reply easier.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Published: 26 February 2016

Improving the peer-review process from the perspective of an author and reviewer

  • C. M. Faggion Jr 1  

British Dental Journal volume  220 ,  pages 167–168 ( 2016 ) Cite this article

9089 Accesses

12 Citations

28 Altmetric

Metrics details

  • Peer review

Discusses limitations of the peer-review process.

Suggests conflict of interests can interfere with peer-review quality.

Proposes ideas to improve the peer-review process.

The peer-review process is a fundamental component in the advancement of science. In this process, independent reviewers evaluate the quality of a manuscript and its suitability for publication in a particular scientific journal. Thus, to favour the publication of the highest-level information, the peer-review system should be as unbiased as possible. Although the peer-review system is the most commonly used method to select manuscripts for publication, it has several potential limitations. The main objective of this manuscript is to discuss some limitations of the peer-review system and suggest potential solutions from the perspective of an author and reviewer. This article may contribute to the always-dynamic development of the peer-review process.

In high-level scientific journals, manuscripts are published usually after a careful assessment of their quality and suitability for the journal through a system known as peer-review. Although some controversy exists about the rationale of the peer-review process, 1 it is the most commonly used method of selecting scientific manuscripts for publication. Given the importance of this issue for the advancement of science, editors of eminent medical journals have supported the notion of an international congress where various topics related to improving the peer-review process can be discussed. 2 , 3 This opinion article discusses real-life information about the peer-review process from the perspective of an author and reviewer for scientific journals, with the aim of improving the peer-review process.

The peer review process

Although peer-review systems may differ slightly across different journals, they all possess a similar structure. Initially, the paper is submitted to a journal's editor-in-chief (EIC), or sometimes an associate editor (AE), for initial assessment of whether the paper should be forwarded for further review, as described below, or rejected immediately (the so-called desk rejection) ( Fig. 1 ).

figure 1

Scheme of the usual peer review process (EIC: Editor-in-Chief; AE: Associate Editor)

Communication between reviewers

Editors normally invite more than one reviewer to evaluate a scientific manuscript. Accordingly, editors may receive more unbiased opinions to inform their decision of whether to accept or reject a paper. Generally, invited reviewers do not know how many peers are involved in the review process and there is no interaction between reviewers. This scenario sometimes leads to reviewers providing diametrically opposed opinions on a manuscript. These divergent opinions create difficulty both for the authors, who need to address sometimes incompatible, opposite reviews; and for the editors, who must decide the fate of the manuscript. One possible solution would be to make reviewers' comments available to all reviewers. In this way, reviewers would be able to discuss the heterogeneities in their evaluations, helping to clarify whether an update of the manuscript by the authors is, in fact, a reasonable task. Moreover, points of strong disagreement could be resolved by consensus among reviewers before the comments are sent back to the authors. A potential disadvantage of this solution would be a longer peer-review process.

Peer-review should be focused on the original idea only

Sometimes reviewers recommend that the authors update a manuscript in the way they 'would do' the manuscript, instead of analysing the quality of the manuscript per se . For example, one of the options for the EIC's decision in some scientific journals is a 'reject and resubmit' option. This option means that the manuscript was rejected because of pivotal flaws, but a new version, usually totally changed (sometimes including new eligibility criteria), would be considered for further review. Moreover, these changes sometimes require further analysis and even the incorporation of new data to please the reviewers/editors. In other words, 'reject and resubmit' means, in many cases, a largely new project. One may ask whether a new project induced by reviewers or editors creates a great source of bias in the future manuscript. Furthermore, one could argue that reviewers who suggest pivotal changes to a study should be acknowledged in the updated manuscript. To avoid this conundrum, editors can recommend that reviewers focus on the quality and relevance of the original project, and not be allowed to request the change of pivotal aspects of the project, such as eligibility criteria. This limitation would prevent the review process from changing the core of the work, and reviewer bias would be reduced. Alternatively, it may be prudent for editors to eliminate the 'reject and resubmit' option from the peer-review process altogether.

No chance for dispute

Journals receive a great many submissions each day or month and it is likely that some manuscripts of good quality will be not evaluated in depth. Some scientific journals do not allow any chance for dispute with the EIC's initial decision being final. The refusal of any chance for dispute may contribute to important research being overlooked. 4 Hence, a dispute procedure should be a standard option for any journal. Authors should have the opportunity to explain in detail why they think their manuscript would be suitable for publication in the journal. Obviously the chance for dispute does not give certainty of acceptance, but in some cases the true value of the manuscript would be recognised and the material published, reducing reporting bias. 5

Suggesting reviewers

During the online submission process, many journals ask or even require the nomination of preferred and non-preferred reviewers. This procedure is very likely to add bias to the review process. If authors suggest preferred reviewers, they are apt to recommend reviewers they know or reviewers who share their way of thinking. At the very least, they will try to suggest reviewers who may provide positive comments about their manuscript. In contrast, authors will suggest non-preferred reviewers who have some kind of conflict of interest, or reviewers whom authors anticipate will provide potentially negative comments. Journal editors indicate that they are not obligated to accept author recommendations regarding reviewers. Nevertheless, this potential bias in reviewer selection could be removed by journal editors selecting reviewers without any recommendations from authors.

Paper acceptance

Often, it is difficult for authors to understand how a manuscript was accepted or rejected based on reviewers' comments. Sometimes the EIC ignores the recommendations of the reviewers completely and makes a decision that contradicts reviewers' suggestions, for example, in the situation where two reviewers provide positive reviews on the manuscript. In other cases the opinions of reviewers may be contradictory and, therefore, a third reviewer is contacted to resolve the dispute. Nevertheless, an EIC may act as the third reviewer and make the final decision by taking into account his/her personal view on the manuscript. One may argue whether some bias is introduced when the EIC interferes in the 'field' of reviewers by using his/her own review to make the decision. Anyway, if this policy is used by an AE or EIC, it should be clearly stated in the journal´s information to authors and readers.

Single-blind or double-blind peer-review process?

A large study evaluated the opinions of more than 4,000 reviewers on the peer-review process. 6 Among other questions, the reviewers were asked about advantages and disadvantages of blinding or double-blinding the peer-review process. Some reviewers answered that, in the single-blind review (when reviewers know the identity of authors, but authors do not know the identity of reviewers), more prestigious group researchers may be favoured in the peer-review process. Nevertheless, some authors argue that there is in fact no true double-blind peer-review because reviewers can 'guess' the identity of the authors by checking the writing style, self-citations etc. I believe that the double-blind approach is the most ethical approach, because the policy of blinding is fair for both sides. One may argue that the identity of the authors will not be recognised in a percentage of submissions. Thus, the evaluation will be less biased, at least when compared to the single-blind review where the identity of the authors is always recognised. Thus, for these cases, where reviewers recognise the identity of authors in the double-blind peer-review process, editors should recommend reviewers to inform them about any potential conflict of interest (COI).

To Open or not to Open the peer-review process?

Making the whole peer-review process public may bring advantages and disadvantages. For example, some junior reviewers could be inhibited to perform a detailed and judicious review to not challenge senior researchers due to their own COIs. 6 On the other hand, some evidence suggests that the quality of the review might not be affected by making the signed review public. 7 The logistics, however, would be more complicated because an open peer-review process might be associated with a low acceptance rate of potential reviewers. Furthermore, those reviewers who accept the task may take longer to complete their reviews. 7 Finally, some reviewers may feel uncomfortable to expose some personal limitations such as poor written English. Therefore, editors should try to identify potential reasons for the low rate of acceptance of reviewers (in the open peer-review process) to provide better assistance and support to reviewers. For instance, in this specific situation, the journal could provide English professional editing for the review to be published along with the paper. In an ethical perspective, an open peer-review would be the best alternative for a more transparent peer-review process.

Conclusions

This opinion article describes some common situations that arise in the peer-review process that have the potential to interfere with peer-review quality. Many of these situations are related to potential conflicts of interest of the parties involved in the process. Some suggestions for dealing with these situations are described.

Birukou A, Wakeling J R, Bartolini C et al. Alternatives to peer review: novel approaches for research evaluation. Front Comput Neurosci 2011; 5 : 56.

Article   Google Scholar  

Rennie D, Flanagin A, Godlee F, Bloom T . The Eighth International Congress on Peer Review and Biomedical Publication: A call for research. JAMA 2015; 313 : 2031–2032.

Rennie D, Flanagin A, Godlee F, Bloom T . Eighth international congress on peer review in biomedical publication. BMJ 2015; 350 : h2411.

O'Dowd A . Journals' peer review system sometimes overlooks important research. BMJ 2014; 349 : g7797.

Sterne J A C, Egger M, Moher D (eds). Chapter 10: Addressing reporting biases. In Higgins J P T, Green S (eds) Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available online at http://handbook.cochrane.org/ (accessed January 2016).

Mulligan A, Hall L, Raphael E . Peer review in a changing world: An international study measuring the attitudes of researchers. J Am Soc Inf Sci 2013; 64 : 132–161.

van Rooyen S, Delamothe T, Evans S J . Effect on peer review of telling reviewers that their signed reviews might be posted on the web: randomised controlled trial. BMJ 2010; 341 : c5729.

Download references

Author information

Authors and affiliations.

Department of Periodontology and Restorative Dentistry, Faculty of Dentistry, University of Münster, Münster, Germany

C. M. Faggion Jr

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to C. M. Faggion Jr .

Additional information

Refereed Paper

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Faggion, C. Improving the peer-review process from the perspective of an author and reviewer. Br Dent J 220 , 167–168 (2016). https://doi.org/10.1038/sj.bdj.2016.131

Download citation

Accepted : 21 December 2015

Published : 26 February 2016

Issue Date : 26 February 2016

DOI : https://doi.org/10.1038/sj.bdj.2016.131

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

On novel peer review system for academic journals: analysis based on social computing.

Nonlinear Dynamics (2023)

Dental publishing: Peer review reviewed

  • K. K. Mahawar

British Dental Journal (2016)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

article review process time

Review the scientific review process and find an efficient journal to publish your work in

Journal pages.

Each journal has its own page with information about the review process. Data on experienced duration and quality of the review process are provided by researchers. Journal popularity scores are calculated based on the number of visits to the journal page, and editorial information is provided by the editor.

article review process time

Compare journals

Compare journals within and between research fields on several aspects such as duration of first review round and decision time for desk rejections. Other interesting statistics include total handling time of accepted manuscripts, journal popularity score, and overall quality of the review process. Many reviews come with a motivation for the overall rating.

article review process time

Share your experience

After receiving the final decision of a review process, visit the journal's page, click on 'Review this journal' and share your experience by filling out the SciRev questionnaire. All review experiences are provided by registered members of the academic community, and checked for systematic errors by the SciRev team.

article review process time

Support our work

Our website is meant to be a service by researchers for researchers. As a non-profit organization, SciRev is one of the few players in the scientific field that is completely independent of any other party. That means that we depend on donations to cover our costs. Please help us remain independent by supporting us with a donation.

article review process time

Elsevier QRcode Wechat

  • Research Process

Writing a good review article

  • 3 minute read
  • 78.5K views

Table of Contents

As a young researcher, you might wonder how to start writing your first review article, and the extent of the information that it should contain. A review article is a comprehensive summary of the current understanding of a specific research topic and is based on previously published research. Unlike research papers, it does not contain new results, but can propose new inferences based on the combined findings of previous research.

Types of review articles

Review articles are typically of three types: literature reviews, systematic reviews, and meta-analyses.

A literature review is a general survey of the research topic and aims to provide a reliable and unbiased account of the current understanding of the topic.

A systematic review , in contrast, is more specific and attempts to address a highly focused research question. Its presentation is more detailed, with information on the search strategy used, the eligibility criteria for inclusion of studies, the methods utilized to review the collected information, and more.

A meta-analysis is similar to a systematic review in that both are systematically conducted with a properly defined research question. However, unlike the latter, a meta-analysis compares and evaluates a defined number of similar studies. It is quantitative in nature and can help assess contrasting study findings.

Tips for writing a good review article

Here are a few practices that can make the time-consuming process of writing a review article easier:

  • Define your question: Take your time to identify the research question and carefully articulate the topic of your review paper. A good review should also add something new to the field in terms of a hypothesis, inference, or conclusion. A carefully defined scientific question will give you more clarity in determining the novelty of your inferences.
  • Identify credible sources: Identify relevant as well as credible studies that you can base your review on, with the help of multiple databases or search engines. It is also a good idea to conduct another search once you have finished your article to avoid missing relevant studies published during the course of your writing.
  • Take notes: A literature search involves extensive reading, which can make it difficult to recall relevant information subsequently. Therefore, make notes while conducting the literature search and note down the source references. This will ensure that you have sufficient information to start with when you finally get to writing.
  • Describe the title, abstract, and introduction: A good starting point to begin structuring your review is by drafting the title, abstract, and introduction. Explicitly writing down what your review aims to address in the field will help shape the rest of your article.
  • Be unbiased and critical: Evaluate every piece of evidence in a critical but unbiased manner. This will help you present a proper assessment and a critical discussion in your article.
  • Include a good summary: End by stating the take-home message and identify the limitations of existing studies that need to be addressed through future studies.
  • Ask for feedback: Ask a colleague to provide feedback on both the content and the language or tone of your article before you submit it.
  • Check your journal’s guidelines: Some journals only publish reviews, while some only publish research articles. Further, all journals clearly indicate their aims and scope. Therefore, make sure to check the appropriateness of a journal before submitting your article.

Writing review articles, especially systematic reviews or meta-analyses, can seem like a daunting task. However, Elsevier Author Services can guide you by providing useful tips on how to write an impressive review article that stands out and gets published!

What are Implications in Research

  • Manuscript Preparation

What are Implications in Research?

how to write the results section of a research paper

How to write the results section of a research paper

You may also like.

what is a descriptive research design

Descriptive Research Design and Its Myriad Uses

Doctor doing a Biomedical Research Paper

Five Common Mistakes to Avoid When Writing a Biomedical Research Paper

Writing in Environmental Engineering

Making Technical Writing in Environmental Engineering Accessible

Risks of AI-assisted Academic Writing

To Err is Not Human: The Dangers of AI-assisted Academic Writing

Importance-of-Data-Collection

When Data Speak, Listen: Importance of Data Collection and Analysis Methods

choosing the Right Research Methodology

Choosing the Right Research Methodology: A Guide for Researchers

Why is data validation important in research

Why is data validation important in research?

Scholarly Sources What are They and Where can You Find Them

Scholarly Sources: What are They and Where can You Find Them?

Input your search keywords and press Enter.

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

4 Common Types of Team Conflict — and How to Resolve Them

  • Randall S. Peterson,
  • Priti Pradhan Shah,
  • Amanda J. Ferguson,
  • Stephen L. Jones

article review process time

Advice backed by three decades of research into thousands of team conflicts around the world.

Managers spend 20% of their time on average managing team conflict. Over the past three decades, the authors have studied thousands of team conflicts around the world and have identified four common patterns of team conflict. The first occurs when conflict revolves around a single member of a team (20-25% of team conflicts). The second is when two members of a team disagree (the most common team conflict at 35%). The third is when two subgroups in a team are at odds (20-25%). The fourth is when all members of a team are disagreeing in a whole-team conflict (less than 15%). The authors suggest strategies to tailor a conflict resolution approach for each type, so that managers can address conflict as close to its origin as possible.

If you have ever managed a team or worked on one, you know that conflict within a team is as inevitable as it is distracting. Many managers avoid dealing with conflict in their team where possible, hoping reasonable people can work it out. Despite this, research shows that managers spend upwards of 20% of their time on average managing conflict.

article review process time

  • Randall S. Peterson is the academic director of the Leadership Institute and a professor of organizational behavior at London Business School. He teaches leadership on the School’s Senior Executive and Accelerated Development Program.
  • PS Priti Pradhan Shah is a professor in the Department of Work and Organization at the Carlson School of Management at the University of Minnesota. She teaches negotiation in the School’s Executive Education and MBA Programs.
  • AF Amanda J. Ferguson  is an associate professor of Management at Northern Illinois University. She teaches Organizational Behavior and Leading Teams in the School’s MBA programs.
  • SJ Stephen L. Jones is an associate professor of Management at the University of Washington Bothell. He teaches Organizational and Strategic Management at the MBA level.

Partner Center

article review process time

Cultural Relativity and Acceptance of Embryonic Stem Cell Research

Article sidebar.

article review process time

Main Article Content

There is a debate about the ethical implications of using human embryos in stem cell research, which can be influenced by cultural, moral, and social values. This paper argues for an adaptable framework to accommodate diverse cultural and religious perspectives. By using an adaptive ethics model, research protections can reflect various populations and foster growth in stem cell research possibilities.

INTRODUCTION

Stem cell research combines biology, medicine, and technology, promising to alter health care and the understanding of human development. Yet, ethical contention exists because of individuals’ perceptions of using human embryos based on their various cultural, moral, and social values. While these disagreements concerning policy, use, and general acceptance have prompted the development of an international ethics policy, such a uniform approach can overlook the nuanced ethical landscapes between cultures. With diverse viewpoints in public health, a single global policy, especially one reflecting Western ethics or the ethics prevalent in high-income countries, is impractical. This paper argues for a culturally sensitive, adaptable framework for the use of embryonic stem cells. Stem cell policy should accommodate varying ethical viewpoints and promote an effective global dialogue. With an extension of an ethics model that can adapt to various cultures, we recommend localized guidelines that reflect the moral views of the people those guidelines serve.

Stem cells, characterized by their unique ability to differentiate into various cell types, enable the repair or replacement of damaged tissues. Two primary types of stem cells are somatic stem cells (adult stem cells) and embryonic stem cells. Adult stem cells exist in developed tissues and maintain the body’s repair processes. [1] Embryonic stem cells (ESC) are remarkably pluripotent or versatile, making them valuable in research. [2] However, the use of ESCs has sparked ethics debates. Considering the potential of embryonic stem cells, research guidelines are essential. The International Society for Stem Cell Research (ISSCR) provides international stem cell research guidelines. They call for “public conversations touching on the scientific significance as well as the societal and ethical issues raised by ESC research.” [3] The ISSCR also publishes updates about culturing human embryos 14 days post fertilization, suggesting local policies and regulations should continue to evolve as ESC research develops. [4]  Like the ISSCR, which calls for local law and policy to adapt to developing stem cell research given cultural acceptance, this paper highlights the importance of local social factors such as religion and culture.

I.     Global Cultural Perspective of Embryonic Stem Cells

Views on ESCs vary throughout the world. Some countries readily embrace stem cell research and therapies, while others have stricter regulations due to ethical concerns surrounding embryonic stem cells and when an embryo becomes entitled to moral consideration. The philosophical issue of when the “someone” begins to be a human after fertilization, in the morally relevant sense, [5] impacts when an embryo becomes not just worthy of protection but morally entitled to it. The process of creating embryonic stem cell lines involves the destruction of the embryos for research. [6] Consequently, global engagement in ESC research depends on social-cultural acceptability.

a.     US and Rights-Based Cultures

In the United States, attitudes toward stem cell therapies are diverse. The ethics and social approaches, which value individualism, [7] trigger debates regarding the destruction of human embryos, creating a complex regulatory environment. For example, the 1996 Dickey-Wicker Amendment prohibited federal funding for the creation of embryos for research and the destruction of embryos for “more than allowed for research on fetuses in utero.” [8] Following suit, in 2001, the Bush Administration heavily restricted stem cell lines for research. However, the Stem Cell Research Enhancement Act of 2005 was proposed to help develop ESC research but was ultimately vetoed. [9] Under the Obama administration, in 2009, an executive order lifted restrictions allowing for more development in this field. [10] The flux of research capacity and funding parallels the different cultural perceptions of human dignity of the embryo and how it is socially presented within the country’s research culture. [11]

b.     Ubuntu and Collective Cultures

African bioethics differs from Western individualism because of the different traditions and values. African traditions, as described by individuals from South Africa and supported by some studies in other African countries, including Ghana and Kenya, follow the African moral philosophies of Ubuntu or Botho and Ukama , which “advocates for a form of wholeness that comes through one’s relationship and connectedness with other people in the society,” [12] making autonomy a socially collective concept. In this context, for the community to act autonomously, individuals would come together to decide what is best for the collective. Thus, stem cell research would require examining the value of the research to society as a whole and the use of the embryos as a collective societal resource. If society views the source as part of the collective whole, and opposes using stem cells, compromising the cultural values to pursue research may cause social detachment and stunt research growth. [13] Based on local culture and moral philosophy, the permissibility of stem cell research depends on how embryo, stem cell, and cell line therapies relate to the community as a whole. Ubuntu is the expression of humanness, with the person’s identity drawn from the “’I am because we are’” value. [14] The decision in a collectivistic culture becomes one born of cultural context, and individual decisions give deference to others in the society.

Consent differs in cultures where thought and moral philosophy are based on a collective paradigm. So, applying Western bioethical concepts is unrealistic. For one, Africa is a diverse continent with many countries with different belief systems, access to health care, and reliance on traditional or Western medicines. Where traditional medicine is the primary treatment, the “’restrictive focus on biomedically-related bioethics’” [is] problematic in African contexts because it neglects bioethical issues raised by traditional systems.” [15] No single approach applies in all areas or contexts. Rather than evaluating the permissibility of ESC research according to Western concepts such as the four principles approach, different ethics approaches should prevail.

Another consideration is the socio-economic standing of countries. In parts of South Africa, researchers have not focused heavily on contributing to the stem cell discourse, either because it is not considered health care or a health science priority or because resources are unavailable. [16] Each country’s priorities differ given different social, political, and economic factors. In South Africa, for instance, areas such as maternal mortality, non-communicable diseases, telemedicine, and the strength of health systems need improvement and require more focus. [17] Stem cell research could benefit the population, but it also could divert resources from basic medical care. Researchers in South Africa adhere to the National Health Act and Medicines Control Act in South Africa and international guidelines; however, the Act is not strictly enforced, and there is no clear legislation for research conduct or ethical guidelines. [18]

Some parts of Africa condemn stem cell research. For example, 98.2 percent of the Tunisian population is Muslim. [19] Tunisia does not permit stem cell research because of moral conflict with a Fatwa. Religion heavily saturates the regulation and direction of research. [20] Stem cell use became permissible for reproductive purposes only recently, with tight restrictions preventing cells from being used in any research other than procedures concerning ART/IVF.  Their use is conditioned on consent, and available only to married couples. [21] The community's receptiveness to stem cell research depends on including communitarian African ethics.

c.     Asia

Some Asian countries also have a collective model of ethics and decision making. [22] In China, the ethics model promotes a sincere respect for life or human dignity, [23] based on protective medicine. This model, influenced by Traditional Chinese Medicine (TCM), [24] recognizes Qi as the vital energy delivered via the meridians of the body; it connects illness to body systems, the body’s entire constitution, and the universe for a holistic bond of nature, health, and quality of life. [25] Following a protective ethics model, and traditional customs of wholeness, investment in stem cell research is heavily desired for its applications in regenerative therapies, disease modeling, and protective medicines. In a survey of medical students and healthcare practitioners, 30.8 percent considered stem cell research morally unacceptable while 63.5 percent accepted medical research using human embryonic stem cells. Of these individuals, 89.9 percent supported increased funding for stem cell research. [26] The scientific community might not reflect the overall population. From 1997 to 2019, China spent a total of $576 million (USD) on stem cell research at 8,050 stem cell programs, increased published presence from 0.6 percent to 14.01 percent of total global stem cell publications as of 2014, and made significant strides in cell-based therapies for various medical conditions. [27] However, while China has made substantial investments in stem cell research and achieved notable progress in clinical applications, concerns linger regarding ethical oversight and transparency. [28] For example, the China Biosecurity Law, promoted by the National Health Commission and China Hospital Association, attempted to mitigate risks by introducing an institutional review board (IRB) in the regulatory bodies. 5800 IRBs registered with the Chinese Clinical Trial Registry since 2021. [29] However, issues still need to be addressed in implementing effective IRB review and approval procedures.

The substantial government funding and focus on scientific advancement have sometimes overshadowed considerations of regional cultures, ethnic minorities, and individual perspectives, particularly evident during the one-child policy era. As government policy adapts to promote public stability, such as the change from the one-child to the two-child policy, [30] research ethics should also adapt to ensure respect for the values of its represented peoples.

Japan is also relatively supportive of stem cell research and therapies. Japan has a more transparent regulatory framework, allowing for faster approval of regenerative medicine products, which has led to several advanced clinical trials and therapies. [31] South Korea is also actively engaged in stem cell research and has a history of breakthroughs in cloning and embryonic stem cells. [32] However, the field is controversial, and there are issues of scientific integrity. For example, the Korean FDA fast-tracked products for approval, [33] and in another instance, the oocyte source was unclear and possibly violated ethical standards. [34] Trust is important in research, as it builds collaborative foundations between colleagues, trial participant comfort, open-mindedness for complicated and sensitive discussions, and supports regulatory procedures for stakeholders. There is a need to respect the culture’s interest, engagement, and for research and clinical trials to be transparent and have ethical oversight to promote global research discourse and trust.

d.     Middle East

Countries in the Middle East have varying degrees of acceptance of or restrictions to policies related to using embryonic stem cells due to cultural and religious influences. Saudi Arabia has made significant contributions to stem cell research, and conducts research based on international guidelines for ethical conduct and under strict adherence to guidelines in accordance with Islamic principles. Specifically, the Saudi government and people require ESC research to adhere to Sharia law. In addition to umbilical and placental stem cells, [35] Saudi Arabia permits the use of embryonic stem cells as long as they come from miscarriages, therapeutic abortions permissible by Sharia law, or are left over from in vitro fertilization and donated to research. [36] Laws and ethical guidelines for stem cell research allow the development of research institutions such as the King Abdullah International Medical Research Center, which has a cord blood bank and a stem cell registry with nearly 10,000 donors. [37] Such volume and acceptance are due to the ethical ‘permissibility’ of the donor sources, which do not conflict with religious pillars. However, some researchers err on the side of caution, choosing not to use embryos or fetal tissue as they feel it is unethical to do so. [38]

Jordan has a positive research ethics culture. [39] However, there is a significant issue of lack of trust in researchers, with 45.23 percent (38.66 percent agreeing and 6.57 percent strongly agreeing) of Jordanians holding a low level of trust in researchers, compared to 81.34 percent of Jordanians agreeing that they feel safe to participate in a research trial. [40] Safety testifies to the feeling of confidence that adequate measures are in place to protect participants from harm, whereas trust in researchers could represent the confidence in researchers to act in the participants’ best interests, adhere to ethical guidelines, provide accurate information, and respect participants’ rights and dignity. One method to improve trust would be to address communication issues relevant to ESC. Legislation surrounding stem cell research has adopted specific language, especially concerning clarification “between ‘stem cells’ and ‘embryonic stem cells’” in translation. [41] Furthermore, legislation “mandates the creation of a national committee… laying out specific regulations for stem-cell banking in accordance with international standards.” [42] This broad regulation opens the door for future global engagement and maintains transparency. However, these regulations may also constrain the influence of research direction, pace, and accessibility of research outcomes.

e.     Europe

In the European Union (EU), ethics is also principle-based, but the principles of autonomy, dignity, integrity, and vulnerability are interconnected. [43] As such, the opportunity for cohesion and concessions between individuals’ thoughts and ideals allows for a more adaptable ethics model due to the flexible principles that relate to the human experience The EU has put forth a framework in its Convention for the Protection of Human Rights and Dignity of the Human Being allowing member states to take different approaches. Each European state applies these principles to its specific conventions, leading to or reflecting different acceptance levels of stem cell research. [44]

For example, in Germany, Lebenzusammenhang , or the coherence of life, references integrity in the unity of human culture. Namely, the personal sphere “should not be subject to external intervention.” [45]  Stem cell interventions could affect this concept of bodily completeness, leading to heavy restrictions. Under the Grundgesetz, human dignity and the right to life with physical integrity are paramount. [46] The Embryo Protection Act of 1991 made producing cell lines illegal. Cell lines can be imported if approved by the Central Ethics Commission for Stem Cell Research only if they were derived before May 2007. [47] Stem cell research respects the integrity of life for the embryo with heavy specifications and intense oversight. This is vastly different in Finland, where the regulatory bodies find research more permissible in IVF excess, but only up to 14 days after fertilization. [48] Spain’s approach differs still, with a comprehensive regulatory framework. [49] Thus, research regulation can be culture-specific due to variations in applied principles. Diverse cultures call for various approaches to ethical permissibility. [50] Only an adaptive-deliberative model can address the cultural constructions of self and achieve positive, culturally sensitive stem cell research practices. [51]

II.     Religious Perspectives on ESC

Embryonic stem cell sources are the main consideration within religious contexts. While individuals may not regard their own religious texts as authoritative or factual, religion can shape their foundations or perspectives.

The Qur'an states:

“And indeed We created man from a quintessence of clay. Then We placed within him a small quantity of nutfa (sperm to fertilize) in a safe place. Then We have fashioned the nutfa into an ‘alaqa (clinging clot or cell cluster), then We developed the ‘alaqa into mudgha (a lump of flesh), and We made mudgha into bones, and clothed the bones with flesh, then We brought it into being as a new creation. So Blessed is Allah, the Best of Creators.” [52]

Many scholars of Islam estimate the time of soul installment, marked by the angel breathing in the soul to bring the individual into creation, as 120 days from conception. [53] Personhood begins at this point, and the value of life would prohibit research or experimentation that could harm the individual. If the fetus is more than 120 days old, the time ensoulment is interpreted to occur according to Islamic law, abortion is no longer permissible. [54] There are a few opposing opinions about early embryos in Islamic traditions. According to some Islamic theologians, there is no ensoulment of the early embryo, which is the source of stem cells for ESC research. [55]

In Buddhism, the stance on stem cell research is not settled. The main tenets, the prohibition against harming or destroying others (ahimsa) and the pursuit of knowledge (prajña) and compassion (karuna), leave Buddhist scholars and communities divided. [56] Some scholars argue stem cell research is in accordance with the Buddhist tenet of seeking knowledge and ending human suffering. Others feel it violates the principle of not harming others. Finding the balance between these two points relies on the karmic burden of Buddhist morality. In trying to prevent ahimsa towards the embryo, Buddhist scholars suggest that to comply with Buddhist tenets, research cannot be done as the embryo has personhood at the moment of conception and would reincarnate immediately, harming the individual's ability to build their karmic burden. [57] On the other hand, the Bodhisattvas, those considered to be on the path to enlightenment or Nirvana, have given organs and flesh to others to help alleviate grieving and to benefit all. [58] Acceptance varies on applied beliefs and interpretations.

Catholicism does not support embryonic stem cell research, as it entails creation or destruction of human embryos. This destruction conflicts with the belief in the sanctity of life. For example, in the Old Testament, Genesis describes humanity as being created in God’s image and multiplying on the Earth, referencing the sacred rights to human conception and the purpose of development and life. In the Ten Commandments, the tenet that one should not kill has numerous interpretations where killing could mean murder or shedding of the sanctity of life, demonstrating the high value of human personhood. In other books, the theological conception of when life begins is interpreted as in utero, [59] highlighting the inviolability of life and its formation in vivo to make a religious point for accepting such research as relatively limited, if at all. [60] The Vatican has released ethical directives to help apply a theological basis to modern-day conflicts. The Magisterium of the Church states that “unless there is a moral certainty of not causing harm,” experimentation on fetuses, fertilized cells, stem cells, or embryos constitutes a crime. [61] Such procedures would not respect the human person who exists at these stages, according to Catholicism. Damages to the embryo are considered gravely immoral and illicit. [62] Although the Catholic Church officially opposes abortion, surveys demonstrate that many Catholic people hold pro-choice views, whether due to the context of conception, stage of pregnancy, threat to the mother’s life, or for other reasons, demonstrating that practicing members can also accept some but not all tenets. [63]

Some major Jewish denominations, such as the Reform, Conservative, and Reconstructionist movements, are open to supporting ESC use or research as long as it is for saving a life. [64] Within Judaism, the Talmud, or study, gives personhood to the child at birth and emphasizes that life does not begin at conception: [65]

“If she is found pregnant, until the fortieth day it is mere fluid,” [66]

Whereas most religions prioritize the status of human embryos, the Halakah (Jewish religious law) states that to save one life, most other religious laws can be ignored because it is in pursuit of preservation. [67] Stem cell research is accepted due to application of these religious laws.

We recognize that all religions contain subsets and sects. The variety of environmental and cultural differences within religious groups requires further analysis to respect the flexibility of religious thoughts and practices. We make no presumptions that all cultures require notions of autonomy or morality as under the common morality theory , which asserts a set of universal moral norms that all individuals share provides moral reasoning and guides ethical decisions. [68] We only wish to show that the interaction with morality varies between cultures and countries.

III.     A Flexible Ethical Approach

The plurality of different moral approaches described above demonstrates that there can be no universally acceptable uniform law for ESC on a global scale. Instead of developing one standard, flexible ethical applications must be continued. We recommend local guidelines that incorporate important cultural and ethical priorities.

While the Declaration of Helsinki is more relevant to people in clinical trials receiving ESC products, in keeping with the tradition of protections for research subjects, consent of the donor is an ethical requirement for ESC donation in many jurisdictions including the US, Canada, and Europe. [69] The Declaration of Helsinki provides a reference point for regulatory standards and could potentially be used as a universal baseline for obtaining consent prior to gamete or embryo donation.

For instance, in Columbia University’s egg donor program for stem cell research, donors followed standard screening protocols and “underwent counseling sessions that included information as to the purpose of oocyte donation for research, what the oocytes would be used for, the risks and benefits of donation, and process of oocyte stimulation” to ensure transparency for consent. [70] The program helped advance stem cell research and provided clear and safe research methods with paid participants. Though paid participation or covering costs of incidental expenses may not be socially acceptable in every culture or context, [71] and creating embryos for ESC research is illegal in many jurisdictions, Columbia’s program was effective because of the clear and honest communications with donors, IRBs, and related stakeholders.  This example demonstrates that cultural acceptance of scientific research and of the idea that an egg or embryo does not have personhood is likely behind societal acceptance of donating eggs for ESC research. As noted, many countries do not permit the creation of embryos for research.

Proper communication and education regarding the process and purpose of stem cell research may bolster comprehension and garner more acceptance. “Given the sensitive subject material, a complete consent process can support voluntary participation through trust, understanding, and ethical norms from the cultures and morals participants value. This can be hard for researchers entering countries of different socioeconomic stability, with different languages and different societal values. [72]

An adequate moral foundation in medical ethics is derived from the cultural and religious basis that informs knowledge and actions. [73] Understanding local cultural and religious values and their impact on research could help researchers develop humility and promote inclusion.

IV.     Concerns

Some may argue that if researchers all adhere to one ethics standard, protection will be satisfied across all borders, and the global public will trust researchers. However, defining what needs to be protected and how to define such research standards is very specific to the people to which standards are applied. We suggest that applying one uniform guide cannot accurately protect each individual because we all possess our own perceptions and interpretations of social values. [74] Therefore, the issue of not adjusting to the moral pluralism between peoples in applying one standard of ethics can be resolved by building out ethics models that can be adapted to different cultures and religions.

Other concerns include medical tourism, which may promote health inequities. [75] Some countries may develop and approve products derived from ESC research before others, compromising research ethics or drug approval processes. There are also concerns about the sale of unauthorized stem cell treatments, for example, those without FDA approval in the United States. Countries with robust research infrastructures may be tempted to attract medical tourists, and some customers will have false hopes based on aggressive publicity of unproven treatments. [76]

For example, in China, stem cell clinics can market to foreign clients who are not protected under the regulatory regimes. Companies employ a marketing strategy of “ethically friendly” therapies. Specifically, in the case of Beike, China’s leading stem cell tourism company and sprouting network, ethical oversight of administrators or health bureaus at one site has “the unintended consequence of shifting questionable activities to another node in Beike's diffuse network.” [77] In contrast, Jordan is aware of stem cell research’s potential abuse and its own status as a “health-care hub.” Jordan’s expanded regulations include preserving the interests of individuals in clinical trials and banning private companies from ESC research to preserve transparency and the integrity of research practices. [78]

The social priorities of the community are also a concern. The ISSCR explicitly states that guidelines “should be periodically revised to accommodate scientific advances, new challenges, and evolving social priorities.” [79] The adaptable ethics model extends this consideration further by addressing whether research is warranted given the varying degrees of socioeconomic conditions, political stability, and healthcare accessibilities and limitations. An ethical approach would require discussion about resource allocation and appropriate distribution of funds. [80]

While some religions emphasize the sanctity of life from conception, which may lead to public opposition to ESC research, others encourage ESC research due to its potential for healing and alleviating human pain. Many countries have special regulations that balance local views on embryonic personhood, the benefits of research as individual or societal goods, and the protection of human research subjects. To foster understanding and constructive dialogue, global policy frameworks should prioritize the protection of universal human rights, transparency, and informed consent. In addition to these foundational global policies, we recommend tailoring local guidelines to reflect the diverse cultural and religious perspectives of the populations they govern. Ethics models should be adapted to local populations to effectively establish research protections, growth, and possibilities of stem cell research.

For example, in countries with strong beliefs in the moral sanctity of embryos or heavy religious restrictions, an adaptive model can allow for discussion instead of immediate rejection. In countries with limited individual rights and voice in science policy, an adaptive model ensures cultural, moral, and religious views are taken into consideration, thereby building social inclusion. While this ethical consideration by the government may not give a complete voice to every individual, it will help balance policies and maintain the diverse perspectives of those it affects. Embracing an adaptive ethics model of ESC research promotes open-minded dialogue and respect for the importance of human belief and tradition. By actively engaging with cultural and religious values, researchers can better handle disagreements and promote ethical research practices that benefit each society.

This brief exploration of the religious and cultural differences that impact ESC research reveals the nuances of relative ethics and highlights a need for local policymakers to apply a more intense adaptive model.

[1] Poliwoda, S., Noor, N., Downs, E., Schaaf, A., Cantwell, A., Ganti, L., Kaye, A. D., Mosel, L. I., Carroll, C. B., Viswanath, O., & Urits, I. (2022). Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice.  Orthopedic reviews ,  14 (3), 37498. https://doi.org/10.52965/001c.37498

[2] Poliwoda, S., Noor, N., Downs, E., Schaaf, A., Cantwell, A., Ganti, L., Kaye, A. D., Mosel, L. I., Carroll, C. B., Viswanath, O., & Urits, I. (2022). Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice.  Orthopedic reviews ,  14 (3), 37498. https://doi.org/10.52965/001c.37498

[3] International Society for Stem Cell Research. (2023). Laboratory-based human embryonic stem cell research, embryo research, and related research activities . International Society for Stem Cell Research. https://www.isscr.org/guidelines/blog-post-title-one-ed2td-6fcdk ; Kimmelman, J., Hyun, I., Benvenisty, N.  et al.  Policy: Global standards for stem-cell research.  Nature   533 , 311–313 (2016). https://doi.org/10.1038/533311a

[4] International Society for Stem Cell Research. (2023). Laboratory-based human embryonic stem cell research, embryo research, and related research activities . International Society for Stem Cell Research. https://www.isscr.org/guidelines/blog-post-title-one-ed2td-6fcdk

[5] Concerning the moral philosophies of stem cell research, our paper does not posit a personal moral stance nor delve into the “when” of human life begins. To read further about the philosophical debate, consider the following sources:

Sandel M. J. (2004). Embryo ethics--the moral logic of stem-cell research.  The New England journal of medicine ,  351 (3), 207–209. https://doi.org/10.1056/NEJMp048145 ; George, R. P., & Lee, P. (2020, September 26). Acorns and Embryos . The New Atlantis. https://www.thenewatlantis.com/publications/acorns-and-embryos ; Sagan, A., & Singer, P. (2007). The moral status of stem cells. Metaphilosophy , 38 (2/3), 264–284. http://www.jstor.org/stable/24439776 ; McHugh P. R. (2004). Zygote and "clonote"--the ethical use of embryonic stem cells.  The New England journal of medicine ,  351 (3), 209–211. https://doi.org/10.1056/NEJMp048147 ; Kurjak, A., & Tripalo, A. (2004). The facts and doubts about beginning of the human life and personality.  Bosnian journal of basic medical sciences ,  4 (1), 5–14. https://doi.org/10.17305/bjbms.2004.3453

[6] Vazin, T., & Freed, W. J. (2010). Human embryonic stem cells: derivation, culture, and differentiation: a review.  Restorative neurology and neuroscience ,  28 (4), 589–603. https://doi.org/10.3233/RNN-2010-0543

[7] Socially, at its core, the Western approach to ethics is widely principle-based, autonomy being one of the key factors to ensure a fundamental respect for persons within research. For information regarding autonomy in research, see: Department of Health, Education, and Welfare, & National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research (1978). The Belmont Report. Ethical principles and guidelines for the protection of human subjects of research.; For a more in-depth review of autonomy within the US, see: Beauchamp, T. L., & Childress, J. F. (1994). Principles of Biomedical Ethics . Oxford University Press.

[8] Sherley v. Sebelius , 644 F.3d 388 (D.C. Cir. 2011), citing 45 C.F.R. 46.204(b) and [42 U.S.C. § 289g(b)]. https://www.cadc.uscourts.gov/internet/opinions.nsf/6c690438a9b43dd685257a64004ebf99/$file/11-5241-1391178.pdf

[9] Stem Cell Research Enhancement Act of 2005, H. R. 810, 109 th Cong. (2001). https://www.govtrack.us/congress/bills/109/hr810/text ; Bush, G. W. (2006, July 19). Message to the House of Representatives . National Archives and Records Administration. https://georgewbush-whitehouse.archives.gov/news/releases/2006/07/20060719-5.html

[10] National Archives and Records Administration. (2009, March 9). Executive order 13505 -- removing barriers to responsible scientific research involving human stem cells . National Archives and Records Administration. https://obamawhitehouse.archives.gov/the-press-office/removing-barriers-responsible-scientific-research-involving-human-stem-cells

[11] Hurlbut, W. B. (2006). Science, Religion, and the Politics of Stem Cells.  Social Research ,  73 (3), 819–834. http://www.jstor.org/stable/40971854

[12] Akpa-Inyang, Francis & Chima, Sylvester. (2021). South African traditional values and beliefs regarding informed consent and limitations of the principle of respect for autonomy in African communities: a cross-cultural qualitative study. BMC Medical Ethics . 22. 10.1186/s12910-021-00678-4.

[13] Source for further reading: Tangwa G. B. (2007). Moral status of embryonic stem cells: perspective of an African villager. Bioethics , 21(8), 449–457. https://doi.org/10.1111/j.1467-8519.2007.00582.x , see also Mnisi, F. M. (2020). An African analysis based on ethics of Ubuntu - are human embryonic stem cell patents morally justifiable? African Insight , 49 (4).

[14] Jecker, N. S., & Atuire, C. (2021). Bioethics in Africa: A contextually enlightened analysis of three cases. Developing World Bioethics , 22 (2), 112–122. https://doi.org/10.1111/dewb.12324

[15] Jecker, N. S., & Atuire, C. (2021). Bioethics in Africa: A contextually enlightened analysis of three cases. Developing World Bioethics, 22(2), 112–122. https://doi.org/10.1111/dewb.12324

[16] Jackson, C.S., Pepper, M.S. Opportunities and barriers to establishing a cell therapy programme in South Africa.  Stem Cell Res Ther   4 , 54 (2013). https://doi.org/10.1186/scrt204 ; Pew Research Center. (2014, May 1). Public health a major priority in African nations . Pew Research Center’s Global Attitudes Project. https://www.pewresearch.org/global/2014/05/01/public-health-a-major-priority-in-african-nations/

[17] Department of Health Republic of South Africa. (2021). Health Research Priorities (revised) for South Africa 2021-2024 . National Health Research Strategy. https://www.health.gov.za/wp-content/uploads/2022/05/National-Health-Research-Priorities-2021-2024.pdf

[18] Oosthuizen, H. (2013). Legal and Ethical Issues in Stem Cell Research in South Africa. In: Beran, R. (eds) Legal and Forensic Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32338-6_80 , see also: Gaobotse G (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[19] United States Bureau of Citizenship and Immigration Services. (1998). Tunisia: Information on the status of Christian conversions in Tunisia . UNHCR Web Archive. https://webarchive.archive.unhcr.org/20230522142618/https://www.refworld.org/docid/3df0be9a2.html

[20] Gaobotse, G. (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[21] Kooli, C. Review of assisted reproduction techniques, laws, and regulations in Muslim countries.  Middle East Fertil Soc J   24 , 8 (2020). https://doi.org/10.1186/s43043-019-0011-0 ; Gaobotse, G. (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[22] Pang M. C. (1999). Protective truthfulness: the Chinese way of safeguarding patients in informed treatment decisions. Journal of medical ethics , 25(3), 247–253. https://doi.org/10.1136/jme.25.3.247

[23] Wang, L., Wang, F., & Zhang, W. (2021). Bioethics in China’s biosecurity law: Forms, effects, and unsettled issues. Journal of law and the biosciences , 8(1).  https://doi.org/10.1093/jlb/lsab019 https://academic.oup.com/jlb/article/8/1/lsab019/6299199

[24] Wang, Y., Xue, Y., & Guo, H. D. (2022). Intervention effects of traditional Chinese medicine on stem cell therapy of myocardial infarction.  Frontiers in pharmacology ,  13 , 1013740. https://doi.org/10.3389/fphar.2022.1013740

[25] Li, X.-T., & Zhao, J. (2012). Chapter 4: An Approach to the Nature of Qi in TCM- Qi and Bioenergy. In Recent Advances in Theories and Practice of Chinese Medicine (p. 79). InTech.

[26] Luo, D., Xu, Z., Wang, Z., & Ran, W. (2021). China's Stem Cell Research and Knowledge Levels of Medical Practitioners and Students.  Stem cells international ,  2021 , 6667743. https://doi.org/10.1155/2021/6667743

[27] Luo, D., Xu, Z., Wang, Z., & Ran, W. (2021). China's Stem Cell Research and Knowledge Levels of Medical Practitioners and Students.  Stem cells international ,  2021 , 6667743. https://doi.org/10.1155/2021/6667743

[28] Zhang, J. Y. (2017). Lost in translation? accountability and governance of Clinical Stem Cell Research in China. Regenerative Medicine , 12 (6), 647–656. https://doi.org/10.2217/rme-2017-0035

[29] Wang, L., Wang, F., & Zhang, W. (2021). Bioethics in China’s biosecurity law: Forms, effects, and unsettled issues. Journal of law and the biosciences , 8(1).  https://doi.org/10.1093/jlb/lsab019 https://academic.oup.com/jlb/article/8/1/lsab019/6299199

[30] Chen, H., Wei, T., Wang, H.  et al.  Association of China’s two-child policy with changes in number of births and birth defects rate, 2008–2017.  BMC Public Health   22 , 434 (2022). https://doi.org/10.1186/s12889-022-12839-0

[31] Azuma, K. Regulatory Landscape of Regenerative Medicine in Japan.  Curr Stem Cell Rep   1 , 118–128 (2015). https://doi.org/10.1007/s40778-015-0012-6

[32] Harris, R. (2005, May 19). Researchers Report Advance in Stem Cell Production . NPR. https://www.npr.org/2005/05/19/4658967/researchers-report-advance-in-stem-cell-production

[33] Park, S. (2012). South Korea steps up stem-cell work.  Nature . https://doi.org/10.1038/nature.2012.10565

[34] Resnik, D. B., Shamoo, A. E., & Krimsky, S. (2006). Fraudulent human embryonic stem cell research in South Korea: lessons learned.  Accountability in research ,  13 (1), 101–109. https://doi.org/10.1080/08989620600634193 .

[35] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: interviews with researchers from Saudi Arabia. BMC medical ethics, 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6

[36] Association for the Advancement of Blood and Biotherapies.  https://www.aabb.org/regulatory-and-advocacy/regulatory-affairs/regulatory-for-cellular-therapies/international-competent-authorities/saudi-arabia

[37] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: Interviews with researchers from Saudi Arabia.  BMC medical ethics ,  21 (1), 35. https://doi.org/10.1186/s12910-020-00482-6

[38] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: Interviews with researchers from Saudi Arabia. BMC medical ethics , 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6

Culturally, autonomy practices follow a relational autonomy approach based on a paternalistic deontological health care model. The adherence to strict international research policies and religious pillars within the regulatory environment is a great foundation for research ethics. However, there is a need to develop locally targeted ethics approaches for research (as called for in Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: interviews with researchers from Saudi Arabia. BMC medical ethics, 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6), this decision-making approach may help advise a research decision model. For more on the clinical cultural autonomy approaches, see: Alabdullah, Y. Y., Alzaid, E., Alsaad, S., Alamri, T., Alolayan, S. W., Bah, S., & Aljoudi, A. S. (2022). Autonomy and paternalism in Shared decision‐making in a Saudi Arabian tertiary hospital: A cross‐sectional study. Developing World Bioethics , 23 (3), 260–268. https://doi.org/10.1111/dewb.12355 ; Bukhari, A. A. (2017). Universal Principles of Bioethics and Patient Rights in Saudi Arabia (Doctoral dissertation, Duquesne University). https://dsc.duq.edu/etd/124; Ladha, S., Nakshawani, S. A., Alzaidy, A., & Tarab, B. (2023, October 26). Islam and Bioethics: What We All Need to Know . Columbia University School of Professional Studies. https://sps.columbia.edu/events/islam-and-bioethics-what-we-all-need-know

[39] Ababneh, M. A., Al-Azzam, S. I., Alzoubi, K., Rababa’h, A., & Al Demour, S. (2021). Understanding and attitudes of the Jordanian public about clinical research ethics.  Research Ethics ,  17 (2), 228-241.  https://doi.org/10.1177/1747016120966779

[40] Ababneh, M. A., Al-Azzam, S. I., Alzoubi, K., Rababa’h, A., & Al Demour, S. (2021). Understanding and attitudes of the Jordanian public about clinical research ethics.  Research Ethics ,  17 (2), 228-241.  https://doi.org/10.1177/1747016120966779

[41] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[42] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[43] The EU’s definition of autonomy relates to the capacity for creating ideas, moral insight, decisions, and actions without constraint, personal responsibility, and informed consent. However, the EU views autonomy as not completely able to protect individuals and depends on other principles, such as dignity, which “expresses the intrinsic worth and fundamental equality of all human beings.” Rendtorff, J.D., Kemp, P. (2019). Four Ethical Principles in European Bioethics and Biolaw: Autonomy, Dignity, Integrity and Vulnerability. In: Valdés, E., Lecaros, J. (eds) Biolaw and Policy in the Twenty-First Century. International Library of Ethics, Law, and the New Medicine, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-030-05903-3_3

[44] Council of Europe. Convention for the protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine (ETS No. 164) https://www.coe.int/en/web/conventions/full-list?module=treaty-detail&treatynum=164 (forbidding the creation of embryos for research purposes only, and suggests embryos in vitro have protections.); Also see Drabiak-Syed B. K. (2013). New President, New Human Embryonic Stem Cell Research Policy: Comparative International Perspectives and Embryonic Stem Cell Research Laws in France.  Biotechnology Law Report ,  32 (6), 349–356. https://doi.org/10.1089/blr.2013.9865

[45] Rendtorff, J.D., Kemp, P. (2019). Four Ethical Principles in European Bioethics and Biolaw: Autonomy, Dignity, Integrity and Vulnerability. In: Valdés, E., Lecaros, J. (eds) Biolaw and Policy in the Twenty-First Century. International Library of Ethics, Law, and the New Medicine, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-030-05903-3_3

[46] Tomuschat, C., Currie, D. P., Kommers, D. P., & Kerr, R. (Trans.). (1949, May 23). Basic law for the Federal Republic of Germany. https://www.btg-bestellservice.de/pdf/80201000.pdf

[47] Regulation of Stem Cell Research in Germany . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-germany

[48] Regulation of Stem Cell Research in Finland . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-finland

[49] Regulation of Stem Cell Research in Spain . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-spain

[50] Some sources to consider regarding ethics models or regulatory oversights of other cultures not covered:

Kara MA. Applicability of the principle of respect for autonomy: the perspective of Turkey. J Med Ethics. 2007 Nov;33(11):627-30. doi: 10.1136/jme.2006.017400. PMID: 17971462; PMCID: PMC2598110.

Ugarte, O. N., & Acioly, M. A. (2014). The principle of autonomy in Brazil: one needs to discuss it ...  Revista do Colegio Brasileiro de Cirurgioes ,  41 (5), 374–377. https://doi.org/10.1590/0100-69912014005013

Bharadwaj, A., & Glasner, P. E. (2012). Local cells, global science: The rise of embryonic stem cell research in India . Routledge.

For further research on specific European countries regarding ethical and regulatory framework, we recommend this database: Regulation of Stem Cell Research in Europe . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-europe   

[51] Klitzman, R. (2006). Complications of culture in obtaining informed consent. The American Journal of Bioethics, 6(1), 20–21. https://doi.org/10.1080/15265160500394671 see also: Ekmekci, P. E., & Arda, B. (2017). Interculturalism and Informed Consent: Respecting Cultural Differences without Breaching Human Rights.  Cultura (Iasi, Romania) ,  14 (2), 159–172.; For why trust is important in research, see also: Gray, B., Hilder, J., Macdonald, L., Tester, R., Dowell, A., & Stubbe, M. (2017). Are research ethics guidelines culturally competent?  Research Ethics ,  13 (1), 23-41.  https://doi.org/10.1177/1747016116650235

[52] The Qur'an  (M. Khattab, Trans.). (1965). Al-Mu’minun, 23: 12-14. https://quran.com/23

[53] Lenfest, Y. (2017, December 8). Islam and the beginning of human life . Bill of Health. https://blog.petrieflom.law.harvard.edu/2017/12/08/islam-and-the-beginning-of-human-life/

[54] Aksoy, S. (2005). Making regulations and drawing up legislation in Islamic countries under conditions of uncertainty, with special reference to embryonic stem cell research. Journal of Medical Ethics , 31: 399-403.; see also: Mahmoud, Azza. "Islamic Bioethics: National Regulations and Guidelines of Human Stem Cell Research in the Muslim World." Master's thesis, Chapman University, 2022. https://doi.org/10.36837/ chapman.000386

[55] Rashid, R. (2022). When does Ensoulment occur in the Human Foetus. Journal of the British Islamic Medical Association , 12 (4). ISSN 2634 8071. https://www.jbima.com/wp-content/uploads/2023/01/2-Ethics-3_-Ensoulment_Rafaqat.pdf.

[56] Sivaraman, M. & Noor, S. (2017). Ethics of embryonic stem cell research according to Buddhist, Hindu, Catholic, and Islamic religions: perspective from Malaysia. Asian Biomedicine,8(1) 43-52.  https://doi.org/10.5372/1905-7415.0801.260

[57] Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[58] Lecso, P. A. (1991). The Bodhisattva Ideal and Organ Transplantation.  Journal of Religion and Health ,  30 (1), 35–41. http://www.jstor.org/stable/27510629 ; Bodhisattva, S. (n.d.). The Key of Becoming a Bodhisattva . A Guide to the Bodhisattva Way of Life. http://www.buddhism.org/Sutras/2/BodhisattvaWay.htm

[59] There is no explicit religious reference to when life begins or how to conduct research that interacts with the concept of life. However, these are relevant verses pertaining to how the fetus is viewed. (( King James Bible . (1999). Oxford University Press. (original work published 1769))

Jerimiah 1: 5 “Before I formed thee in the belly I knew thee; and before thou camest forth out of the womb I sanctified thee…”

In prophet Jerimiah’s insight, God set him apart as a person known before childbirth, a theme carried within the Psalm of David.

Psalm 139: 13-14 “…Thou hast covered me in my mother's womb. I will praise thee; for I am fearfully and wonderfully made…”

These verses demonstrate David’s respect for God as an entity that would know of all man’s thoughts and doings even before birth.

[60] It should be noted that abortion is not supported as well.

[61] The Vatican. (1987, February 22). Instruction on Respect for Human Life in Its Origin and on the Dignity of Procreation Replies to Certain Questions of the Day . Congregation For the Doctrine of the Faith. https://www.vatican.va/roman_curia/congregations/cfaith/documents/rc_con_cfaith_doc_19870222_respect-for-human-life_en.html

[62] The Vatican. (2000, August 25). Declaration On the Production and the Scientific and Therapeutic Use of Human Embryonic Stem Cells . Pontifical Academy for Life. https://www.vatican.va/roman_curia/pontifical_academies/acdlife/documents/rc_pa_acdlife_doc_20000824_cellule-staminali_en.html ; Ohara, N. (2003). Ethical Consideration of Experimentation Using Living Human Embryos: The Catholic Church’s Position on Human Embryonic Stem Cell Research and Human Cloning. Department of Obstetrics and Gynecology . Retrieved from https://article.imrpress.com/journal/CEOG/30/2-3/pii/2003018/77-81.pdf.

[63] Smith, G. A. (2022, May 23). Like Americans overall, Catholics vary in their abortion views, with regular mass attenders most opposed . Pew Research Center. https://www.pewresearch.org/short-reads/2022/05/23/like-americans-overall-catholics-vary-in-their-abortion-views-with-regular-mass-attenders-most-opposed/

[64] Rosner, F., & Reichman, E. (2002). Embryonic stem cell research in Jewish law. Journal of halacha and contemporary society , (43), 49–68.; Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[65] Schenker J. G. (2008). The beginning of human life: status of embryo. Perspectives in Halakha (Jewish Religious Law).  Journal of assisted reproduction and genetics ,  25 (6), 271–276. https://doi.org/10.1007/s10815-008-9221-6

[66] Ruttenberg, D. (2020, May 5). The Torah of Abortion Justice (annotated source sheet) . Sefaria. https://www.sefaria.org/sheets/234926.7?lang=bi&with=all&lang2=en

[67] Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[68] Gert, B. (2007). Common morality: Deciding what to do . Oxford Univ. Press.

[69] World Medical Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA , 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053 Declaration of Helsinki – WMA – The World Medical Association .; see also: National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. (1979).  The Belmont report: Ethical principles and guidelines for the protection of human subjects of research . U.S. Department of Health and Human Services.  https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html

[70] Zakarin Safier, L., Gumer, A., Kline, M., Egli, D., & Sauer, M. V. (2018). Compensating human subjects providing oocytes for stem cell research: 9-year experience and outcomes.  Journal of assisted reproduction and genetics ,  35 (7), 1219–1225. https://doi.org/10.1007/s10815-018-1171-z https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063839/ see also: Riordan, N. H., & Paz Rodríguez, J. (2021). Addressing concerns regarding associated costs, transparency, and integrity of research in recent stem cell trial. Stem Cells Translational Medicine , 10 (12), 1715–1716. https://doi.org/10.1002/sctm.21-0234

[71] Klitzman, R., & Sauer, M. V. (2009). Payment of egg donors in stem cell research in the USA.  Reproductive biomedicine online ,  18 (5), 603–608. https://doi.org/10.1016/s1472-6483(10)60002-8

[72] Krosin, M. T., Klitzman, R., Levin, B., Cheng, J., & Ranney, M. L. (2006). Problems in comprehension of informed consent in rural and peri-urban Mali, West Africa.  Clinical trials (London, England) ,  3 (3), 306–313. https://doi.org/10.1191/1740774506cn150oa

[73] Veatch, Robert M.  Hippocratic, Religious, and Secular Medical Ethics: The Points of Conflict . Georgetown University Press, 2012.

[74] Msoroka, M. S., & Amundsen, D. (2018). One size fits not quite all: Universal research ethics with diversity.  Research Ethics ,  14 (3), 1-17.  https://doi.org/10.1177/1747016117739939

[75] Pirzada, N. (2022). The Expansion of Turkey’s Medical Tourism Industry.  Voices in Bioethics ,  8 . https://doi.org/10.52214/vib.v8i.9894

[76] Stem Cell Tourism: False Hope for Real Money . Harvard Stem Cell Institute (HSCI). (2023). https://hsci.harvard.edu/stem-cell-tourism , See also: Bissassar, M. (2017). Transnational Stem Cell Tourism: An ethical analysis.  Voices in Bioethics ,  3 . https://doi.org/10.7916/vib.v3i.6027

[77] Song, P. (2011) The proliferation of stem cell therapies in post-Mao China: problematizing ethical regulation,  New Genetics and Society , 30:2, 141-153, DOI:  10.1080/14636778.2011.574375

[78] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[79] International Society for Stem Cell Research. (2024). Standards in stem cell research . International Society for Stem Cell Research. https://www.isscr.org/guidelines/5-standards-in-stem-cell-research

[80] Benjamin, R. (2013). People’s science bodies and rights on the Stem Cell Frontier . Stanford University Press.

Mifrah Hayath

SM Candidate Harvard Medical School, MS Biotechnology Johns Hopkins University

Olivia Bowers

MS Bioethics Columbia University (Disclosure: affiliated with Voices in Bioethics)

Article Details

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License .

  • Open access
  • Published: 24 February 2024

Physical activity improves stress load, recovery, and academic performance-related parameters among university students: a longitudinal study on daily level

  • Monika Teuber 1 ,
  • Daniel Leyhr 1 , 2 &
  • Gorden Sudeck 1 , 3  

BMC Public Health volume  24 , Article number:  598 ( 2024 ) Cite this article

3857 Accesses

30 Altmetric

Metrics details

Physical activity has been proven to be beneficial for physical and psychological health as well as for academic achievement. However, especially university students are insufficiently physically active because of difficulties in time management regarding study, work, and social demands. As they are at a crucial life stage, it is of interest how physical activity affects university students' stress load and recovery as well as their academic performance.

Student´s behavior during home studying in times of COVID-19 was examined longitudinally on a daily basis during a ten-day study period ( N  = 57, aged M  = 23.5 years, SD  = 2.8, studying between the 1st to 13th semester ( M  = 5.8, SD  = 4.1)). Two-level regression models were conducted to predict daily variations in stress load, recovery and perceived academic performance depending on leisure-time physical activity and short physical activity breaks during studying periods. Parameters of the individual home studying behavior were also taken into account as covariates.

While physical activity breaks only positively affect stress load (functional stress b = 0.032, p  < 0.01) and perceived academic performance (b = 0.121, p  < 0.001), leisure-time physical activity affects parameters of stress load (functional stress: b = 0.003, p  < 0.001, dysfunctional stress: b = -0.002, p  < 0.01), recovery experience (b = -0.003, p  < 0.001) and perceived academic performance (b = 0.012, p  < 0.001). Home study behavior regarding the number of breaks and longest stretch of time also shows associations with recovery experience and perceived academic performance.

Conclusions

Study results confirm the importance of different physical activities for university students` stress load, recovery experience and perceived academic performance in home studying periods. Universities should promote physical activity to keep their students healthy and capable of performing well in academic study: On the one hand, they can offer opportunities to be physically active in leisure time. On the other hand, they can support physical activity breaks during the learning process and in the immediate location of study.

Peer Review reports

Introduction

Physical activity (PA) takes a particularly key position in health promotion and prevention. It reduces risks for several diseases, overweight, and all-cause mortality [ 1 ] and is beneficial for physical, psychological and social health [ 2 , 3 , 4 , 5 ] as well as for academic achievement [ 6 , 7 ]. However, PA levels decrease from childhood through adolescence and into adulthood [ 8 , 9 , 10 ]. Especially university students are insufficiently physically active according to health-oriented PA guidelines [ 11 ] because of academic workloads as well as difficulties in time management regarding study, work, and social demands [ 12 ]. Due to their independence and increasing self-responsibility, university students are at a crucial life stage. In this essential and still educational stage of the students´ development, it is important to study their PA behavior. Furthermore, PA as health behavior represents one influencing factor which is considered in the analytical framework of the impact of health and health behaviors on educational outcomes which was developed by the authors Suhrcke and de Paz Nieves [ 13 , 14 ]. In light of this, the present study examines how PA affects university students' academic situations.

Along with the promotion of PA, the reduction of sedentary behavior has also become a crucial part of modern health promotion and prevention strategies. Spending too much time sitting increases many health risks, including the risk of obesity [ 15 ], diabetes [ 16 ] and other chronic diseases [ 15 ], damage to muscular balances, bone metabolism and musculoskeletal system [ 17 ] and even early death [ 15 ]. University students are a population that has shown the greatest increase in sedentary behavior over the last two decades [ 18 ]. In Germany, they show the highest percentage of sitting time among all working professional groups [ 19 ]. Long times sitting in classes, self-study learning, and through smartphone use, all of which are connected to the university setting and its associated behaviors, might be the cause of this [ 20 , 21 ]. This goes along with technological advances which allow students to study in the comfort of their own homes without changing locations [ 22 ].

To counter a sedentary lifestyle, PA is crucial. In addition to its physical health advantages, PA is essential for coping with the intellectual and stress-related demands of academic life. PA shows positive associations with stress load and academic performance. It is positively associated with learning and educational success [ 6 ] and even shows stress-regulatory potential [ 23 ]. In contrast, sedentary behavior is associated with lower cognitive performance [ 24 ]. Moreover, theoretical derivations show that too much sitting could have a negative impact on brain health and diminish the positive effects of PA [ 16 ]. Given the theoretical background of the stressor detachment model [ 25 ] and the cybernetic approach to stress management in the workplace [ 26 ], PA can promote recovery experience, it can enhance academic performance, and it is a way to reduce the impact of study-related stressors on strain. Load-related stress response can be bilateral: On the one hand, it can be functional if it is beneficial to help cope with the study demands. On the other hand, it can be dysfunctional if it puts a strain on personal resources and can lead to load-related states of strain [ 27 ]. Thus, both, the promotion of PA and reduction of sedentary behavior are important for stress load, recovery, and performance in student life, which can be of particular importance for students in an academic context.

A simple but (presumably) effective way to integrate PA and reduce sedentary behavior in student life are short PA breaks. Due to the exercises' simplicity and short duration, students can perform them wherever they are — together in a lecture or alone at home. Short PA breaks could prevent an accumulation of negative stressors during the day and can help with prolonged sitting as well as inactivity. Especially in the university setting, evidence of the positive effects of PA breaks exists for self-perceived physical and psychological well-being of the university students [ 28 ]. PA breaks buffer university students’ perceived stress [ 29 ] and show positive impacts on recovery need [ 30 ] and better mood ratings [ 31 , 32 ]. In addition, there is evidence for reduction in tension [ 30 ], overall muscular discomfort [ 33 ], daytime sleepiness or fatigue [ 33 , 34 ] and increase in vigor [ 34 ] and experienced energy [ 30 ]. This is in line with cognitive, affective, behavioral, and biological effects of PA, all categorized as palliative-regenerative coping strategies, which addresses the consequences of stress-generating appraisal processes aiming to alleviate these consequences (palliative) or restore the baseline of the relevant reaction parameter (regenerative) [ 35 , 36 ]. This is achieved by, for example, reducing stress-induced cortisol release or tension through physical activity (reaction reduction) [ 35 ]. Such mechanisms are also in accordance with the previously mentioned stressor detachment model [ 25 ]. Lastly, there is a health-strengthening effect that impacts the entire stress-coping-health process, relying on the compensatory effects of PA which is in accordance to the stress-buffering effect of exercise [ 37 ]. Health, in turn, effects educational outcomes [ 13 , 14 ]. Therefore, stress regulating effects are also accompanied with the before mentioned analytical framework of the impact of health and health behaviors on educational outcomes [ 13 , 14 ].

Focusing on the effects of PA, this study is guided by an inquiry into how PA affects university students' stress load and recovery as well as their perceived academic performance. For that reason, the student´s behavior during home studying in times of COVID-19 is examined, a time in which reinforced prolonged sitting, inactivity, and a negative stress load response was at a high [ 38 , 39 , 40 , 41 , 42 ]. Looking separately on the relation of PA with different parameters based on the mentioned evidence, we assume that PA has a positive impact on stress load, recovery, and perceived academic performance-related parameters. Furthermore, a side effect of the home study behavior on the mentioned parameters is assumed regarding the accumulation of negative stressors during home studying. These associations are presented in Fig.  1 and summarized in the following hypotheses:

figure 1

Overview of the assumed effects and investigated hypotheses of physical activity (PA) behavior on variables of stress load and recovery and perceived academic performance-related parameters

Hypothesis 1 (path 1): Given that stress load always occurs as a duality—beneficial if it is functional for coping, or exhausting if it puts a strain on personal resources [ 27 ] – we consider two variables for stress load: functional stress and dysfunctional stress. In order to reduce the length of the daily surveys, we focused the measure of recovery only on the most obvious and accessible component of recovery experience, namely psychological detachment. PA (whether performed in leisure-time or during PA breaks) encourages functional stress and reduce dysfunctional stress (1.A) and has a positive effect on recovery experience through psychological detachment (1.B).

Hypothesis 2 (path 2): The academic performance-related parameters attention difficulties and study ability are positively influenced by PA (whether done in leisure-time or during PA breaks). We have chosen to assess attention difficulties for a cognitive parameter because poor control over the stream of occurring stimuli have been associated with impairment in executive functions or academic failure [ 43 , 44 , 45 , 46 ]. Furthermore, we have assessed the study ability to refer to the self-perceived feeling of functionality regarding the demands of students. PA reduces self-reported attention difficulties (2.A) and improves perceived study ability, indicating that a student feels capable of performing well in academic study (2.B).

Hypothesis 3: We assume that a longer time spent on studying at home (so called home studying) could result in higher accumulation of stressors throughout the day which could elicit immediate stress responses, while breaks in general could reduce the influence of work-related stressors on strain and well-being [ 47 , 48 ]. Therefore, the following covariates are considered for secondary effects:

the daily longest stretch of time without a break spent on home studying

the daily number of breaks during home studying

Study setting

The study was carried out during the COVID-19 pandemic containment phase. It took place in the middle of the lecture period between 25th of November and 4th of December 2020. Student life was characterized by home studying and digital learning. A so called “digital semester” was in effect at the University of Tübingen when the study took place. Hence, courses were mainly taught online (e.g., live or via a recorded lecture). Other events and actions at the university were not permitted. As such, the university sports department closed in-person sports activities. For leisure time in general, there were contact restrictions (social distancing), the performance of sports activities in groups was not permitted, and sports facilities were closed.

Thus, the university sports department of the University of Tübingen launched various online sports courses and the student health management introduced an opportunity for a new digital form of PA breaks. This opportunity provided PA breaks via videos with guided physical exercises and health-promoting explanations for a PA break for everyday home studying: the so called “Bewegungssnack digital” [in English “exercise snack digital” (ESD)] [ 49 ]. The ESD videos took 5–7 min and were categorized into three thematic foci: activation, relaxation, and coordination. Exercises were demonstrated by one or two student exercise leaders, accompanied by textual descriptions of the relevant execution features of each exercise.

Participants

Participants were recruited within the framework of an intervention study, which was conducted to investigate whether a digital nudging intervention has a beneficial effect on taking PA breaks during home study periods [ 49 ]. Students at the University of Tübingen which counts 27,532 enrolled students were approached for participation through a variety of digital means: via an email sent to those who registered for ESD course on the homepage of the university sports department and to all students via the university email distribution list; via advertisement on social media of the university sports department (Facebook, Instagram, YouTube, homepage). Five tablets, two smart watches, and one iPad were raffled off to participants who engaged actively during the full study period in an effort to motivate them to stick with it to the end. In any case, participants knew that the study was voluntary and that they would not suffer any personal disadvantages should they opt out. There was a written informed consent prompt together with a prompt for the approval of the data protection regulations immediately within the first questionnaire (T0) presented in a mandatory selection field. Positive ethical approval for the study was given by the first author´s institution´s ethics committee of the faculty of the University of Tübingen.

Participants ( N  = 57) who completed the daily surveys on at least half of the days of the study period, were included in the sample (male = 6, female = 47, diverse = 1, not stated = 3). As not all subjects provided data on all ten study days, the total number of observations was between 468 and 540, depending on the variable under study (see Table  1 ). The average number of observations per subject was around eight. Their age was between 18 and 32 years ( M  = 23.52, SD  = 2.81) and they were studying between the 1st to 13th semester ( M  = 5.76, SD  = 4.11) within the following major courses of study: mathematical-scientific majors (34.0%), social science majors (22.6%), philosophical majors (18.9%), medicine (13.2%), theology (5.7%), economics (3.8%), or law (1.9%). 20.4% of the students had on-site classroom teaching on university campus for at least one day a week despite the mandated digital semester, as there were exceptions for special forms of teaching.

Design and procedures

To examine these hypothesized associations, a longitudinal study design with daily surveys was chosen following the suggestion of the day-level study of Feuerhahn et al. (2014) and also of Sonnentag (2001) measuring recovery potential of (exercise) activities during leisure time [ 50 , 51 ]. Considering that there are also differences between people at the beginning of the study period, initial base-line value variables respective to the outcomes measured before the study period were considered as independent covariates. Therefore, the well-being at baseline serves as a control for stress load (2.A), the psychological detachment at baseline serves as a control for daily psychological detachment (2.B), the perception of study demands serves as a control for self-reported attention difficulties (1.A), and the perceived study ability at baseline serves as a control for daily study ability (2.B).

Subjects were asked to continue with their normal home study routine and additionally perform ESD at any time in their daily routine. Data were collected one to two days before (T0) as well as daily during the ten-day study period (Wednesday to Friday). The daily surveys (t 1 -t 10 ) were sent by email at 7 p.m. every evening. Each day, subjects were asked to answer questions about their home studying behavior, study related requirements, recovery experience from study tasks, attention, and PA, including ESD participation. The surveys were conducted online using the UNIPARK software and were recorded and analyzed anonymously.

Measures and covariates

In total, five outcome variables, two independent variables, and seven covariates were included in different analyses: three variables were used for stress load and recovery parameters, two variables for academic performance-related parameters, two variables for PA behavior, two variables for study behavior, four variables for outcome specific baseline values and one variable for age.

Outcome variables

Stress load & recovery parameters (hypothesis 1).

Stress load was included in the analysis with two variables: functional stress and dysfunctional stress. Followingly, a questionnaire containing a word list of adjectives for the recording of emotions and stress during work (called “Erfassung von Emotionen und Beanspruchung “ in German, also known as EEB [ 52 ]) was used. It is an instrument which were developed and validated in the context of occupational health promotion. The items are based on mental-workload research and the assessment of the stress potential of work organization [ 52 ]. Within the questionnaire, four mental and motivational stress items were combined to form a functional stress scale (energetic, willing to perform, attentive, focused) (α = 0.89) and four negative emotional and physical stress items were combined to form dysfunctional stress scale (nervous, physically tensioned, excited, physically unwell) (α = 0.71). Participants rated the items according to how they felt about home studying in general on the following scale (adjustment from “work” to “home studying”): hardly, somewhat, to some extent, fairly, strongly, very strongly, exceptionally.

Recovery experience was measured via psychological detachment. Therefore, the dimension “detachment” of the Recovery Experience Questionnaire (RECQ [ 53 ]) was adjusted to home studying. The introductory question was "How did you experience your free time (including short breaks between learning) during home studying today?". Students responded to four statements based on the extent to which they agreed or disagreed (not at all true, somewhat true, moderately true, mostly true, completely true). The statements covered subjects such as forgetting about studying, not thinking about studying, detachment from studying, and keeping a distance from student tasks. The four items were combined into a score for psychological detachment (α = 0.94).

Academic performance-related parameters (hypothesis 2)

Attention was assessed via the subscale “difficulty maintaining focused attention performance” of the “Attention and Performance Self-Assessment” (ASPA, AP-F2 [ 54 ]). It contains nine items with statements about disturbing situations regarding concentration (e.g. “Even a small noise from the environment could disturb me while reading.”). Participants had to answer how often such situations happened to them on a given day on the following scale: never, rarely, sometimes, often, always. The nine items were combined into the AP-F2 score (α = 0.87).

The perceived study ability was assessed using the study ability index (SAI [ 55 ]). The study ability index captures the current state of perceived functioning in studying. It is based on the Work Ability Index by Hasselhorn and Freude ([ 56 ]) and consists of an adjusted short scale of three adapted items in the context of studying. Firstly, (a) the perceived academic performance was asked after in comparison to the best study-related academic performance ever achieved (from 0 = completely unable to function to 10 = currently best functioning). Secondly, the other two items were aimed at assessing current study-related performance in relation to (b) study tasks that have to be mastered cognitively and (c) the psychological demands of studying. Both items were answered on a five-point Likert scale (1 = very poor, 2 = rather poor, 3 = moderate, 4 = rather good, 5 = very good). A sum index, the SAI, was formed which can indicate values between 2 and 20, with higher values corresponding to higher assessed functioning in studies (α = 0.86). In a previous study it already showed satisfying reliability (α = 0.72) [ 55 ].

Independent variables

Pa behavior.

Two indicators for PA behavior were included via self-reports: the time spent on ESD and the time spent on leisure-time PA (LTPA). Participants were asked the following overarching question daily: “How much time did you spend on physical activity today and in what context”. For the independent variable time spent on PA breaks, participants could answer the option “I participated in the Bewegungssnack digital” with the amount of time they spent on it (in minutes). To assess the time spent on LTPA besides PA breaks, participants could report their time for four different contexts of PA which comprised two forms: Firstly, structured supervised exercise was reported via time spent on (a) university sports courses and (b) other organized sports activities. Secondly, self-organized PA was indicated via (c) independent PA at home, such as a workout or other physically demanding activity such as cleaning or tidying up, as well as via (d) independent PA outside, like walking, cycling, jogging, a workout or something similar. Referring to the different domains of health enhancing PA [ 57 ], the reported minutes of these four types of PA were summed up to a total LTPA value. The total LTPA value was included in the analysis as a metric variable in minutes.

Covariates (hypothesis 3)

Regarding hypothesis 3 and home study behavior, the longest daily stretch of time without a break spent on home studying (in hours) and the daily number of breaks during home studying was assessed. Therein, participants had to answer the overarching question “How much time did you spend on your home studying today?” and give responses to the items: (1) longest stretch of time for home studying (without a break), and (2) number of short and long breaks you took during home studying.

In principle, efforts were made to control for potential confounders at the individual level (level 2) either by including the baseline measure (T0) of the respective variable or by including variables assessing related trait-like characteristics for respective outcomes. The reason why related trait-like characteristics were used for the outcomes was because brief assessments were used for daily surveys that were not concurrently employed in the baseline assessment. To enable the continued use of controlling for person-specific baseline characteristics in the analysis of daily associations, trait-like characteristics available from the baseline assessment were utilized as the best possible approximation.To sum up, four outcome specific baseline value variables were measured before the study period (at T0). The psychological detachment with the RECQ (α = 0.87) [ 53 ] was assessed at the beginning to monitor daily psychological detachment. Further, the SAI [ 55 ] was assessed at the beginning of the study period to monitor daily study ability. To monitor daily stress load, which in part measures mental stress aspects and negative emotional stress aspects, the well-being was assessed at the beginning using the WHO-Five Well-being Index (WHO-5 [ 58 ]). It is a one-dimensional self-report measure with five items. The index value is the sum of all items, with higher values indicating better well-being. As the well-being and stress load tolerance may linked with each other, this variable was assumed to be a good fit with the daily stress load indicating mental and emotional stress aspects. With respect to student life, daily academic performance-related attention was monitored with an instrument for the perception of study demands and resources (termed “Berliner Anforderungen Ressourcen-Inventar – Studierende” in German, the so-called BARI-S [ 59 ]). It contains eight items which capture overwork in studies, time pressure during studies, and the incompatibility of studies and private life. All together they form the BARI-S demand scale (α = 0.85) which was included in the analysis. As overwork and time pressure may result in attention difficulties (e.g. Elfering et al., 2013), this variable was assumed to have a good fit with academic performance-related attention [ 60 ]. Additionally, age in years at T0 was considered as a sociodemographic factor.

Statistical analysis

Since the study design provided ten measurement points for various people, the hierarchical structure of the nested data called for two-level analyses. Pre-analyses of Random-Intercept-Only models for each of the outcome variables (hypothesis 1 to 3) revealed an Intra-Class-Correlation ( ICC ) of at least 0.10 (range 0.26 – 0.64) and confirmed the necessity to perform multilevel analyses [ 61 ]. Specifically, the day-level variables belong to Level 1 (ESD time, LTPA time, longest stretch of time without a break spent on home studying, daily number of breaks during home studying). To analyze day-specific effects within the person, these variables were centered on the person mean (cw = centered within) [ 50 , 62 , 63 , 64 ]. This means that the analyses’ findings are based on a person’s deviations from their average values. The variables assessed at T0 belong to Level 2, which describe the person level (psychological detachment baseline, SAI baseline, well-being, study demands scale, age). These covariates on person level were centered around the grand mean [ 50 ] indicating that the analyses’ findings are based how far an individual deviates from the sample's mean values. As a result, the models’ intercept reflects the outcome value of an average student in the sample at his/her daily average behavior in PA and home study when all parameters are zero. For descriptive statistics SPSS 28.0.1.1 (IBM) and for inferential statistics R (version 4.1.2) were used. The hierarchical models were calculated using the package lme4 with the lmer-function in R in the following steps [ 65 ]. The Null Model was analyzed for all models first, with the corresponding intercept as the only predictor. Afterwards, all variables were entered. The regression coefficient estimates (”b”) were considered for statistical significance for the models and the respective BIC was provided.

In total, five regression models with ‘PA break time’ and ‘LTPA time’ as independent variables were computed due to the five measured outcomes of the present study. Three models belonged to hypothesis 1 and two models to hypothesis 2.

Hypothesis 1: To test hypothesis 1.A two outcome variables were chosen for two separate models: ‘functional stress’ and ‘dysfunctional stress’. Besides the PA behavior variables, the ‘number of breaks’, the ‘longest stretch of time without a break spent on home studying’, ‘age’, and the ‘well-being’ at the beginning of the study as corresponding baseline variable to the output variable were also included as independent variables in both models. The outcome variable ‘psychological detachment’ was utilized in conjunction with the aforementioned independent variables to test hypotheses 1.B, with one exception: psychological detachment at the start of the study was chosen as the corresponding baseline variable.

Hypothesis 2: To investigate hypothesis 2.A the outcome variable ‘attention difficulties’ was selected. Hypothesis 2.B was tested with the outcome variables ‘study ability’. Both models included both PA behavior variables as well as the ‘number of breaks’, the ‘longest stretch of time without a break spent on home studying’, ‘age’ and one corresponding baseline variable each: the ‘study demand scale’ at the start of the study for ‘attention difficulties’ and the ‘SAI’ at the beginning of the study for the daily ‘study ability’.

Hypothesis 3: In addition to both PA behavior variables, age and one baseline variable that matched the outcome variable, the covariates ‘daily longest stretch of time spent on home studying’ and ‘daily number of breaks during home studying’ were included in the models for all five outcome variables.

Handling missing data

The dataset had up to 18% missing values (most exhibit the variables ‘daily longest stretch of time without a break spent on home studying’ with 17.89% followed by ‘daily number of breaks during homes studying’ with 16.67%, and ‘functional / dysfunctional stress’ with 12.45%). Therefore, a sensitivity analysis was performed using the multiple imputation mice-package in the statistical program R [ 66 ], the package howManyImputation based on Von Hippel (2020, [ 67 ]), and the additional broom package [ 68 ]. The results of the models remained the same, with one exception for the Attention Difficulties Model: The daily longest stretch of time without a break spent on home studying showed a significant association (Table  1 in supplement). Due to this almost perfect consistency of results between analyses based on the dataset with missing data and those with imputed data alongside the lack of information provided by the packages for imputed datasets, we decided to stick with the main analysis including the missing data. Thus, in the following the results of the main analysis without imputations are presented.

Table 1 shows the descriptive statistics of the variables used in the analysis. An overview of the analysed models is presented in Table  2 .

Effects on stress load and recovery (hypothesis 1)

Hypothesis 1.A: The Model Functional Stress explained 13% of the variance by fixed factors (marginal R 2  = 0.13), and 52% by both fixed and random factors (conditional R 2  = 0.52). The time spent on ESD as well as the time spent on PA in leisure showed a positive significant influence on functional stress (b = 0.032, p  < 0.01). The same applied to LTPA (b = 0.003, p  < 0.001). The Model Dysfunctional Stress (marginal R 2  = 0.027, conditional R 2  = 0.647) showed only one significant result. The dysfunctional stress was only significantly negatively influenced by the time spent on LTPA (b = 0.002, p  < 0.01).

Hypothesis 1.B: With the Model Detachment, fixed factors contributed 18% of the explained variance and fixed and random factors 46% of the explained variance for psychological detachment. Only the amount of time spent on LTPA revealed a positive impact on psychological detachment (b = 0.003, p  < 0.001).

Effects on academic performance-related parameters (hypothesis 2)

Hypothesis 2.A: The Model Attention Difficulties showed 13% of the variance explained by fixed factors, and 51% explained by both fixed and random factors. It showed a significant negative association only for the time spent on LTPA (b = 0.003, p  < 0.001).

Hypothesis 2.B: The Model SAI showed 18% of the variance explained by fixed factors, and 39% explained by both fixed and random factors. There were significant positive associations for time spent on ESD (b = 0.121, p  < 0.001) and time spent on LTPA (b = 0.012, p  < 0.001). The same applied to LTPA (b = 0.012, p  < 0.001).

Effects of home study behavior (hypothesis 3)

Regarding the independent covariates for the outcome variables functional and dysfunctional stress, there were no significant results for the number of breaks during homes studying or the longest stretch of time without a break spent on home studying. Considering the outcome variable ‘psychological detachment’, there were significant results with negative impact for both study behavior variables: breaks during home studying (b = 0.058, p  < 0.01) and daily longest stretch of time without a break (b = 0.120, p  < 0.01). Evaluating the outcome variables ‘attention difficulties’, there were no significant results for the number of breaks during home studying or the longest stretch of time without a break spent on home studying. Testing the independent study behavior variables for the SAI, it increased with increasing number in daily breaks during homes studying relative to the person´s mean (b = 0.183, p  < 0.05). No significant effect was found for the longest stretch of time without a break spent on home studying ( p  = 0.07).

The baseline covariates of the models showed expected associations and thus confirmed their inclusion. The baseline variables well-being showed a significant impact on functional stress (b = 0.089, p  < 0.001), psychological detachment showed a positive effect on the daily output variables psychological detachment (b = 0.471, p  < 0.001), study demand scale showed a positive association on difficulties in attention (b = 0.240, p  < 0.01), and baseline SAI had a positive effect on the daily SAI (b = 0.335, p  < 0.001).

The present study theorized that PA breaks and LTPA positively influence the academic situation of university students. Therefore, impact on stress load (‘functional stress’ and ‘dysfunctional stress’) and ‘psychological detachment’ as well as academic performance-related parameters ‘self-reported attention difficulties’ and ‘perceived study ability’ was taken into account. The first and second hypotheses assumed that both PA breaks and LTPA are positively associated with the aforementioned parameters and were confirmed for LTPA for all parameters and for PA breaks for functional stress and perceived study ability. The third hypothesis assumed that home study behavior regarding the daily number of breaks during home studying and longest stretch of time without a break spent on home studying has side effects. Detected negative effects for both covariates on psychological detachment and positive effects for the daily number of breaks on perceived study ability were partly unexpected in their direction. These results emphasize the key position of PA in the context of modern health promotion especially for students in an academic context.

Regarding hypothesis 1 and the detected positive associations for stress load and recovery parameters with PA, the results are in accordance with the stress-regulatory potential of PA from the state of research [ 23 ]. For hypothesis 1.A, there is a positive influence of PA breaks and LTPA on functional stress and a negative influence of LTPA on dysfunctional stress. Given the bilateral role of stress load, the results indicate that PA breaks and LTPA are beneficial for coping with study demands, and may help to promote feelings of joy, pride, and learning progress [ 27 ]. This is in line with previous evidence that PA breaks in lectures can buffer university students’ perceived stress [ 29 ], lead to better mood ratings [ 29 , 31 ], and increase in motivation [ 28 , 69 ], vigor [ 34 ], energy [ 30 ], and self-perceived physical and psychological well-being [ 28 ]. Looking at dysfunctional stress, the result point that LTPA counteract load-related states of strain such as inner tension, irritability and nervous restlessness or feelings of boredom [ 27 ]. In contrast, short PA breaks during the day could not have enough impact in countering dysfunctional stress at the end of the day regarding the accumulation of negative stressors during home studying which might have occurred after the participant took PA breaks. Other studies have been able to show a reduction in tension [ 30 ] and general muscular discomfort [ 33 ] after PA breaks. However, this was measured as an immediate effect of PA breaks and not with general evening surveys. Blasche and colleagues [ 34 ] measured effects immediately and 20 min after different kind of breaks and found that PA breaks led to an additional short‐ and medium‐term increase in vigor while the relaxation break lead to an additional medium‐term decrease in fatigue compared to an unstructured open break. This is consistent with the results of the present study that an effect of PA breaks is only observed for functional stress and not for dysfunctional stress. Furthermore, there is evidence that long sitting during lectures leads to increased fatigue and lower concentration [ 31 , 70 ], which could be counteracted by PA breaks. For both types of stress loads, functional and dysfunctional stress, there is an influence of students´ well-being in this study. This shows that the stress load is affected by the way students have mentally felt over the last two weeks. The relevance of monitoring this seems important especially in the time of COVID-19 as, for example, 65.3% of the students of a cross-sectional online survey at an Australian university reported low to very low well-being during that time [ 71 ]. However, since PA and well-being can support functional stress load, they should be of the highest priority—not only as regards the pandemic, but also in general.

Looking at hypothesis 1.B; while there is a positive influence of LTPA on experienced psychological detachment, no significant influence for PA breaks was detected. The fact that only LTPA has a positive effect can be explained by the voluntary character of the activity [ 50 ]. The voluntary character ensures that stressors no longer affect the student and, thus, recovery as detachment can take place. Home studying is not present in leisure times, and thus detachment from study is easier. The PA break videos, on the other hand, were shot in a university setting, which would have made it more difficult to detach from study. In order to further understand how PA breaks affect recovery and whether there is a distinction between PA breaks and LTPA, future research should also consider other types of recovery (e.g. relaxation, mastery, and control). Additionally, different types of PA breaks, such as group PA breaks taken on-site versus video-based PA breaks, should be taken into account.

Considering the confirmed positive associations for academic performance-related parameters of hypothesis 2, the results are in accordance with the evidence of positive associations between PA and learning and educational success [ 6 ], as well as between PA breaks and better cognitive functioning [ 28 ]. Looking at the self-reported attention difficulties of hypothesis 2.A, only LTPA can counteract it. PA breaks showed no effects, contrary to the results of a study of Löffler and collegues (2011, [ 31 ]), in which acute effects of PA breaks could be found for higher attention and cognitive performance. Furthermore, the perception of study demands before the study periods has a positive impact on difficulties in attention. That means that overload in studies, time pressure during studies, and incompatibility of studies and private life leads to higher difficulties with attention in home studying. In these conditions, PA breaks might have been seen as interfering, resulting in the expected beneficial effects of exercise on attention and task-related participation behavior [ 72 , 73 ] therefore remaining undetected. With respect to the COVID-19 pandemic, accompanying education changes, and an increase in student´s worries [ 74 , 75 ], the perception of study demands could be affected. This suggests that especially in times of constraint and changes, it is important to promote PA in order to counteract attention difficulties. This also applies to post-pandemic phase.

Regarding the perceived academic performance of hypothesis 2.B, both PA breaks and LTPA have a positive effect on perceived study ability. This result confirms the positive short-term effects on cognition tasks [ 76 ]. It is also in line with the positive function of PA breaks in interrupting sedentary behavior and therefore counteracting the negative association between sitting behavior and lower cognitive performance [ 24 ]. Additionally, this result also fits with the previously mentioned positive relationship between LTPA and functional stress and between PA breaks and functional stress.

According to hypothesis 3, in relation to the mentioned stress load and recovery parameters, there are negative effects of the daily number of breaks during home studying and the longest stretch of time without a break spent on home studying on psychological detachment. As stressors result in negative activation, which impede psychological detachment from study during non-studying time [ 25 ], it was expected and confirmed that the longest stretch of time without a break spent on home studying has a negative effect on detachment. Initially unexpected, the number of breaks has a negative influence on psychological detachment, as breaks could prevent the accumulation of strain reactions. However, if the breaks had no recovery effect through successful detachment, the number might not have any influence on recovery via detachment. This is indicated by the PA breaks, which had no impact on psychological detachment. Since there are other ways to recover from stress besides psychological detachment, such as relaxation, mastery, and control [ 53 ], PA breaks must have had an additional impact in relation to the positive results for functional stress.

In relation to the mentioned academic performance-related parameters, only the number of breaks has a positive influence on the perceived study ability. This indicates that not only PA breaks but also breaks in general lead to better perceived functionality in studying. Paulus and colleagues (2021) found out that an increase in cognitive skills is not only attributed to PA breaks and standing breaks, but also to open breaks with no special instructions [ 28 ]. Either way, they found better improvement in self-perceived physical and psychological well-being of the university students with PA breaks than with open breaks. This is also reflected in the present study with the aforementioned positive effects of PA breaks on functional stress, which does not apply to the number of breaks.

Overall, it must be considered that the there is a more complex network of associations between the examined parameters. The hypothesized separate relation of PA with different parameters do not consider associations between parameters of stress load / recovery and academic performance although there might be a interdependency. Furthermore, moderation aspects were not examined. For example, PA could be a moderator which buffer negative effects of stress on the study ability [ 55 ]. Moreover, perceived study ability might moderate stress levels and academic performance. Further studies should try to approach and understand the different relationships between the parameters in its complexity.

Limitations

Certain limitations must be taken into account. Regarding the imbalanced design toward more female students in the sample (47 female versus 6 male), possible sampling bias cannot be excluded. Gender research on students' emotional states during COVID-19, when this study took place, or students´ acceptance of PA breaks is diverse and only partially supplied with inconsistent findings. For example, during the COVID-19 pandemic, some studies reported that female students were associated with lower well-being [ 71 ] or worse mental health trajectories [ 75 , 77 ]. Another study with a large sample of students from 62 countries reported that male students were more strongly affected by the pandemic because they were significantly less satisfied with their academic life [ 74 ]. However, Keating and colleges (2020) discovered that, despite the COVID-19 pandemic, females rated some aspects of PA breaks during lectures more positively than male students did. However, this was also based on a female slanted sample [ 78 ]. Further studies are needed to get more insights into gender bias.

Furthermore, the small sample size combined with up to 16% missing values comprises a significant short-coming. There were a lot of possibilities which could cause such missing data, like refused, forgotten or missed participation, technical problems, or deviation of the personal code for the questionnaire between survey times. Although the effects could be excluded by sensitive analysis due to missing data, the sample is still small. To generalize the findings, future replication studies are needed.

Additionally, PA breaks were only captured through participation in the ESD, the specially instructed PA break via video. Effects of other short PA breaks were not include in the study. However, participants were called to participate in ESD whenever possible, so the likelihood that they did take part in PA breaks in addition to the ESD could be ignored.

With respect to the baseline variables, it must be considered that two variables (stress load, attention difficulties) were adjusted not with their identical variable in T0, but with other conceptually associated variables (well-being index, BARI-S). Indeed, contrary to the assumption the well-being index does only show an association with functional stress, indicating that it does not control dysfunctional stress. Although the other three assumed associations were confirmed there might be a discrepancy between the daily measured variables and the variables measured in T0. Further studies should either proof the association between these used variables or measure the same variables in T0 for control the daily value of these variables.

Moreover, the measuring instruments comprised the self-assessed perception of the students and thus do not provide an objective information. This must be considered, especially for measuring cognitive and academic-performance-related measures. Here, existing objective tests, such as multiple choice exams after a video-taped lecture [ 72 ] might have also been used. Nevertheless, such methods were mostly used in a lab setting and do not reflect reality. Due to economic reasons and the natural learning environment, such procedures were not applied in this study. However, the circumstances of COVID-19 pandemic allowed a kind of lab setting in real life, as there were a lot of restrictions in daily life which limited the influence of other covariates. The study design provides a real natural home studying environment, producing results that are applicable to the healthy way that students learn in the real world. As this study took place under the conditions of COVID-19, new transformations in studying were also taken into account, as home studying and digital learning are increasingly part of everyday study.

However, the restrictions during the COVID-19 pandemic could result in a greater extent of leisure time per se. As the available leisure time in general was not measured on daily level, it is not possible to distinguish if the examined effects on the outcomes are purely attributable to PA. It is possible that being more physical active is the result of having a greater extent of leisure time and not that PA but the leisure time itself effected the examined outcomes. To address this issue in future studies, it is necessary to measure the proportion of PA in relation to the leisure time available.

Furthermore, due to the retrospective nature of the daily assessments of the variables, there may be overstated associations which must be taken into account. Anyway, the daily level of the study design provides advantages regarding the ability to observe changes in an individual's characteristics over the period of the study. This design made it possible to find out the necessity to analyze the hierarchical structure of the intraindividual data nested within the interindividual data. The performed multilevel analyses made it possible to reflect the outcome of an average student in the sample at his/her daily average behavior in PA and home study.

Conclusion and practical implications

The current findings confirm the importance of PA for university students` stress load, recovery experience, and academic performance-related parameters in home studying. Briefly summarized, it can be concluded that PA breaks positively affect stress load and perceived study ability. LTPA has a positive impact on stress load, recovery experience, and academic performance-related parameters regarding attention difficulties and perceived study ability. Following these results, universities should promote PA in both fashions in order to keep their students healthy and functioning: On the one hand, they should offer opportunities to be physically active in leisure time. This includes time, environment, and structural aspects. The university sport department, which offers sport courses and provides sport facilities on university campuses for students´ leisure time, is one good example. On the other hand, they should support PA breaks during the learning process and in the immediate location of study. This includes, for example, providing instructor videos for PA breaks to use while home studying, and furthermore having instructors to lead in-person PA breaks in on-site learning settings like universities´ libraries or even lectures and seminars. This not only promotes PA, but also reduces sedentary behavior and thereby reduces many other health risks. Further research should focus not only on the effect of PA behavior but also of sedentary behavior as well as the amount of leisure time per se. They should also try to implement objective measures for example on academic performance parameters and investigate different effect directions and possible moderation effects to get a deeper understanding of the complex network of associations in which PA plays a crucial role.

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

Attention and Performance Self-Assessment

"Berliner Anforderungen Ressourcen-Inventar – Studierende" (instrument for the perception of study demands and resources)

Centered within

Grand centered

“Erfassung von Emotionen und Beanspruchung “ (questionnaire containing a word list of adjectives for the recording of emotions and stress during work)

Exercise snack digital (special physical activity break offer)

Intra-Class-Correlation

Leisure time physical activity

  • Physical activity

Recovery Experience Questionnaire

Study ability index

World Health Organization-Five Well-being index

Knight JA. Physical inactivity: associated diseases and disorders. Ann Clin Lab Sci. 2012;42(3):320–37.

PubMed   Google Scholar  

Kemel PN, Porter JE, Coombs N. Improving youth physical, mental and social health through physical activity: a systematic literature review. Health Promot J Austr. 2002;33(3):590–601.

Article   Google Scholar  

Gothe NP, Ehlers DK, Salerno EA, Fanning J, Kramer AF, McAuley E. Physical activity, sleep and quality of life in older adults: influence of physical, mental and social well-being. Behav Sleep Med. 2020;18(6):797–808.

Article   PubMed   Google Scholar  

Eime RM, Young JA, Harvey JT, Charity MJ, Payne WR. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: informing development of a conceptual model of health through sport. Int J Behav Nutr Phys Act. 2013;10(1):1–21.

Google Scholar  

Iannotti RJ, Janssen I, Haug E, Kololo H, Annaheim B, Borraccino A. Interrelationships of adolescent physical activity, screen-based sedentary behaviour, and social and psychological health. Int J Public Health. 2009;54:191–8.

Dadaczynski K, Schiemann S. Welchen Einfluss haben körperliche Aktivität und Fitness im Kindes-und Jugendalter auf Bildungsoutcomes? German J Exerc Sport Res. 2015;4(45):190–9.

Kari JT, Pehkonen J, Hutri-Kähönen N, Raitakari OT, Tammelin TH. Longitudinal associations between physical activity and educational outcomes. Med Sci Sports  Exerc. 2017;49(11).

Grim M, Hortz B, Petosa R. Impact evaluation of a pilot web-based intervention to increase physical activity. Am J Health Promot. 2011;25(4):227–30.

Irwin JD. Prevalence of university students’ sufficient physical activity: A systematic review. Percept Mot Skills. 2004;98:927–43.

Kwan MY, Cairney J, Faulkner GE, Pullenayegum EE. Physical activity and other health-risk behaviors during the transition into early adulthood: a longitudinal cohort study. Am J Prev Med. 2012;42(1):14–20.

John JM, Gropper H, Thiel A. The role of critical life events in the talent development pathways of athletes and musicians: A systematic review. Psychol Sport Exerc. 2019;45.

Bopp M, Bopp C, Schuchert M. Active transportation to and on campus is associated with objectively measured fitness outcomes among college students. J Phys Act Health. 2015;12(3):418–23.

Dadaczynski K. Stand der Forschung zum Zusammenhang von Gesundheit und Bildung. Überblick und Implikationen für die schulische Gesundheitsförderung. Zeitschrift für Gesundheitspsychologie. 2012;20(3):141–53

Suhrcke M, de Paz NC. The impact of health and health behaviours on educational outcomes in high-income countries: a review of the evidence. Copenhagen: WHO Regional Offi ce for Europe; 2011.

Lynch BM, Owen N. Too much sitting and chronic disease risk: steps to move the science forward. Ann Intern Med. 2015;16(2):146–7.

Voss MW, Carr LJ, Clark R, Weng T. Revenge of the “sit” II: Does lifestyle impact neuronal and cognitive health through distinct mechanisms associated with sedentary behavior and physical activity? Ment Health Phys Act. 2014;7(1):9–24.

Huber G. Ist Sitzen eine tödliche Aktivität? B&G Bewegungstherapie und Gesundheitssport. 2014;30(01):13–6.

Peterson NE, Sirard JR, Kulbok PA, DeBoer MD, Erickson JM. Sedentary behavior and physical activity of young adult university students. Res Nurs Health. 2018;4(1):30–8.

Rupp R, Dold C, Bucksch J. Sitzzeitreduktion und Bewegungsaktivierung in der Hochschullehre – Entwicklung und Implementierung der Mehrebenen-Intervention Kopf-Stehen. Die Hochschullehre. 2019;5:525–42.

Ickes MJ, McMullen J, Pflug C, Westgate PM. Impact of a University-based Program on Obese College Students’ Physical Activity Behaviors, Attitudes, and Self-efficacy. Am J Health Educ. 2016;47(1):47–55.

Lepp A, Barkley JE, Karpinski AC. The relationship between cell phone use and academic performance in a sample of US college students. Sage Open. 2015;5(1).

Stapp AC, Prior LF. The Impact of Physically Active Brain Breaks on College Students’ Activity Levels and Perceptions. J Physic Activ Res. 2018;3(1):60–7.

Fuchs R, Klaperski S. Sportliche Aktivität und Stressregulation. In: Fuchs R, Schlicht W, editors. Sportaktivität und seelische Gesundheit Göttingen: Hogrefe; 2012. p. 100–21.

Falck RS, Davis JC, Liu-Ambrose T. What is the association between sedentary behaviour and cognitive function? A systematic review. Br J Sports Med. 2017;51(10):800–11.

Sonnentag S, Fritz C. Recovery from job stress: The stressor-detachment model as an integrative framework. J Organ Behav. 2015;36:72–103.

Edwards JR. A cybernetic theory of stress, coping, and well-being in organizations. Acad Manag Rev. 1992;17(2):238–74.

Wieland R. Status-Bericht: Psychische Gesundheit in der betrieblichen Gesundheitsförderung – eine arbeitspsychologische Perspektive. In: Nold H, Wenninger G, editors. Rückengesundheit und psychische Gesundheit. Rückengesundheit und psychische Gesundheit.: Asanger Verlag; 2013.

Paulus M, Kunkel J, Schmidt SCE, Bachert P, Wäsche H, Neumann R, et al. Standing breaks in lectures improve university students’ self-perceived physical, mental, and cognitive condition. Int J Environ Res Public Health. 2021;18.

Marschin V, Herbert C. A Short, Multimodal Activity Break Incorporated Into the Learning Context During the Covid-19 Pandemic: Effects of Physical Activity and Positive Expressive Writing on University Students’ Mental Health — Results and Recommendations From a Pilot Study. Front Psychol. 2021;12.

Gollner E, Savil M, Schnabel F, Braun C, Blasche G. Unterschiede in der Wirksamkeit von Kurzpausenaktivitäten im Vergleich von Bewegungspausen zu psychoregulativen Pausen bei kognitiver Belastung. Bewegungstherapie Gesundheitssport. 2019;35:134–43.

Löffler SN, Dominok E, von Haaren B, Schellhorn R, Gidion G. Aktivierung, Konzentration, Entspannung: Interventionsmöglichkeiten zur Förderung fitnessrelevanter Kompetenzen im Studium: KIT Scientific Publishing; 2011.

Marschin V, Herbert C. A short, multimodal activity break incorporated into the learning context during the Covid-19 pandemic: effects of physical activity and positive expressive writing on university students' mental health—results and recommendations from a pilot study. Front Psychol. 2021.

Kowalsky RJ, Farney TM, Hearon CM. Resistance Exercise Breaks Improve Ratings of Discomfort and Sleepiness in College Students. Res Q Exerc Sport. 2022;94(1):210–5.

Blasche G, Szabo B, Wagner-Menghin M, Ekmekcioglu C, Gollner E. Comparison of rest-break interventions during a mentally demanding task. Stress Health. 2018;34(5):629–38.

Article   PubMed   PubMed Central   Google Scholar  

Fuchs R, Klaperski S. Stressregulation durch Sport und Bewegung. In: Fuchs R, Gerber M, editors. Handbuch Stressregulation und Sport. Berlin: Springer; 2018. p. 205–26.

Chapter   Google Scholar  

Kaluza G, Renneberg B. Stressbewältigung. In: Bengel J, Jerusalem M, editors. HandbuchGesundheitspsychologie und medizinische Psychologie. Göttingen: Hogrefe; 2009. p. 265–72.

Klaperski S. Exercise, Stress and Health: The Stress-Buffering Effect of Exercise. In: Fuchs R, Gerber M, editors. Handbuch Stressregulation und Sport. Berlin: Springer; 2018. p. 227–50.

Lesser IA, Nienhuis CP. The impact of COVID-19 on physical activity behavior and well-being of Canadians. Int J Environ Res Public Health. 2020;17(11):3899.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Moore SA, Faulkner G, Rhodes RE, Brussoni M, Chulak-Bozzer T, Ferguson LJ, et al. Impact of the COVID-19 virus outbreak on movement and play behaviours of Canadian children and youth: a national survey. Int J Behav Nutr Phys Act. 2020;17(1):1–11.

Rodríguez-Larrad A, Mañas A, Labayen I, González-Gross M, Espin A, Aznar S, et al. Impact of COVID-19 confinement on physical activity and sedentary behaviour in Spanish university students: Role of gender. Int J Environ Res Public Health. 2021;18(2):369.

Stanton R, To QG, Khalesi S, Williams SL, Alley SJ, Thwaite TL, et al. Depression, anxiety and stress during COVID-19: associations with changes in physical activity, sleep, tobacco and alcohol use in Australian adults. Int J Environ Res Public Health. 2020;17(11):4065.

Zheng C, Huang WY, Sheridan S, Sit CHP, Chen XK, Wong SHS. COVID-19 pandemic brings a sedentary lifestyle in young adults: a cross-sectional and longitudinal study. Int J Environ Res Public Health. 2020;17(17):6035.

Commodari E. Attention Skills and Risk of Developing Learning Difficulties. Curr Psychol. 2012;31:17–34.

Commodari E, Guarnera M. Attention and reading skills. Percept Mot Skills. 2005;100:3753–86.

Raaijmakers MAJ, Smidts DP, Sergeant JA, Maassen GH, Posthumus JA, van Engeland H, et al. Executive functions in preschool children with aggressive behavior: impairments in inhibitory control. J Abnorm Child Psychol. 2008;36:1097–107.

Vellutino FR, Scanlon DM, Sipay ER, Small SG, Pratt A, Chen RS, et al. Cognitive profiles of difficulty to remediate and readily remediate poor readers: early intervention as a vehicle for distinguishing between cognitive and experiential deficits as basic of specific reading disability. J Educ Psychol. 1996;88:601–38.

Ilies R, Dimotakis N, De Pater IE. Psychological and physiological reactions to high workloads: Implications for well-being. Pers Psychol. 2010;63(2):407–36.

Rodell JB, Judge TA. Can “good” stressors spark “bad” behaviors? The mediating role of emotions in links of challenge and hindrance stressors with citizenship and counterproductive behaviors. J Appl Psychol. 2009;94(6).

Teuber M, Leyhr D, Moll J, Sudeck G. Nudging digital physical activity breaks for home studying of university students—A randomized controlled trial during the COVID-19 pandemic with daily activity measures. Front Sports Active Living. 2022;4.

Feuerhahn N, Sonnentag S, Woll A. Exercise after work, psychological mediators, and affect: A day-level study. Eur J Work Organ Psy. 2014;23(1):62–79.

Sonnentag S. Work, Recovery Activities, ans Individual Well-Being: A Diary Study. J Occup Health Psychol. 2001;6(3):196–210.

Article   CAS   PubMed   Google Scholar  

Wieland R. Gestaltung gesundheitsförderlicher Arbeitsbedingungen. In: Kleinbeck U, Schmidt K-H, editors. Arbeitspsychologie (Enzyklopädie der Psychologie, Serie Wirtschafts-, Organisations- und Arbeitspsychologie). 1. Göttingen: Hogrefe; 2010. p. 869–919.

Sonnentag S, Fritz C. The Recovery Experience Questionnaire: development and validation of a measure for assessing recuperation and unwinding from work. J Occup Health Psychol. 2007;12(3):204–21.

Bankstahl US, Görtelmeyer R. Measuring subjective complaints of attention and performance failures development and psychometric validation in tinnitus of the self-assessment scale APSA. Health and Quality of Life Outcomes. 2013;11(86).

Teuber M, Arzberger I, Sudeck G. Körperliche Aktivität, Gesundheit und Funktionsfähigkeit im Studium: Sportliche Freizeitaktivitäten und aktive Fortbewegung als Ressource im Studium? In: Göring A, Mayer J, Jetzke M, editors. Sport und Studienerfolg - Analysen zur Bedeutung sportlicher Aktivität im Setting Hochschule. Hochschulsport: Bildung und Wissenschaft, 4. Göttingen: Universitätsverlag Göttingen; 2020. p. 27–49.

Hasselhorn H-M, Freude G. Der Work-Ability-Index: ein Leitfaden In: Arbeitsmedizin BfAu, editor. Dortmund/Berlin/Dresden: Wirtschaftsverl. NW, Verlag für Neue Wissenschaft GmbH; 2007.

Rütten A, Pfeifer K. Nationale Empfehlungen für Bewegung und Bewegungsförderung. Köln: Bundeszentrale für Gesundheitliche Aufklärung (BZgA); 2017.

Brähler E, Mühlan H, Albani C, Schmidt S. Teststatistische Prüfung und Normierung der deutschen Versionen des EUROHIS-QOL Lebensqualität-Index und des WHO-5 Wohlbefindens-Index. Diagnostica. 2007;53(2):83–96.

Gusy B, Wörfel F, Lohmann K. Erschöpfung und Engagement im Studium. Zeitschrift für Gesundheitspsychologie. 2016;24(1):41–53.

Elfering A, Grebner S, de Tribolet-Hardy F. The long arm of time pressure at work: Cognitive failure and commuting near-accidents. Eur J Work Organ Psy. 2013;22(6):737–49.

Kreft IG, de Leeuw J. Introducing multilevel modeling. London: Sage; 1998.

Book   Google Scholar  

Bates D, Mächler M, Bolker BM, Walker SC. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 2015;67(1):1–48.

Hofmann DA, Gavin MB. Centering decisions in hierarchical linear models: Implications for research in organizations. J Manag. 1998;24(5):623–41.

Nezlek J. Diary Studies in Social and Personality Psychology: An Introduction With Some Recommendations and Suggestions. Social Psychological Bulletin. 2020;15(2).

Knapp G. Gemischte Modelle in R. Begleitskriptum zur Weiterbildung. In: Dortmund TU, editor. Braunschweig2019.

Van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate imputation by chained equations in R. J Stat Softw. 2011;45:1–67.

von Hippel PT. How Many Imputations Do You Need? A Twostage Calculation Using a Quadratic Rule. Sociological Methods & Research. 2020;49(3):699–718.

Article   MathSciNet   Google Scholar  

Robinson D. broom: An R package for converting statistical analysis objects into tidy data frames. arXiv preprint arXiv:14123565. 2014.

Young-Jones A, McCain J, Hart B. Let’s Take a Break: The Impact of Physical Activity on Academic Motivation. Int J Teach Learn High Educ. 2022;33(3):110–8.

Barr-Anderson DJ, AuYoung M, Whitt-Glover MC, Glenn BA, Yancey AK. Integration of short bouts of physical activity into organizational routine: A systematic review of the literature. Am J Prev Med. 2011;40(1):76–93.

Dodd RH, Dadaczynski K, Okan O, McCaffery KJ, Pickles K. Psychological Wellbeing and Academic Experience of University Students in Australia during COVID-19. Int J Environ Res Public Health 2021;18.

Fenesi B, Lucibello K, Kim JA, Heisz JJ. Sweat so you don’t forget: exercise breaks during a university lecture increase on-task attention and learning. J Appl Res Mem Cogn. 2018;7(2):261–9.

Ruhland S, Lange KW. Effect of classroom-based physical activity interventions on attention and on-task behavior in schoolchildren: A systematic review. Sports Med Health Sci. 2021;3:125–33.

Aristovnik A, Keržič D, Ravšelj D, Tomaževič N, Umek L. Impacts of the COVID-19 Pandemic on Life of Higher Education Students: A Global Perspective. Sustainability. 2020;12(20).

Browning MHEM, Larson LR, Sharaievska I, Rigolon A, McAnirlin O, Mullenbach L, et al. Psychological impacts from COVID-19 among university students: Risk factors across seven states in the United States. PLoS ONE 2021;16(1).

Chang Y-K, Labban JD, Gapin JI, Etnier JL. The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 2012;1453:87–101.

Elmer T, Mepham K, Stadtfeld C. Students under lockdown: Comparisons of students’ social networks and mental health before and during the COVID-19 crisis in Switzerland. PLoS ONE. 2020;15(7):e0236337.

Keating R, Ahern S, Bisgood L, Mernagh K, Nicolson GH, Barrett EM. Stand up, stand out. Feasibility of an active break targeting prolonged sitting in university students. J Am Coll Health. 2020;70(7).

Download references

Acknowledgements

We would like to thank Juliane Moll, research associate of the Student Health Management of University of Tübingen, for the support in the coordination and realization study. We would like to express our thanks also to Ingrid Arzberger, Head of University Sports at the University of Tübingen, for providing the resources and co-applying for the funding. We acknowledge support by Open Access Publishing Fund of University of Tübingen.

Open Access funding enabled and organized by Projekt DEAL. This research regarding the conduction of the study was funded by the Techniker Krankenkasse, health insurance fund.

Author information

Authors and affiliations.

Institute of Sports Science, Faculty of Economics and Social Sciences, University of Tübingen, Tübingen, Germany

Monika Teuber, Daniel Leyhr & Gorden Sudeck

Methods Center, Faculty of Economics and Social Sciences, University of Tübingen, Tübingen, Germany

Daniel Leyhr

Interfaculty Research Institute for Sports and Physical Activity, University of Tübingen, Tübingen, Germany

Gorden Sudeck

You can also search for this author in PubMed   Google Scholar

Contributions

M.T. and G.S. designed the study. M.T. coordinated and carried out participant recruitment and data collection. M.T. analyzed the data and M.T. and D.L. interpreted the data. M.T. drafted the initial version of the manuscript and prepared the figure and all tables. All authors contributed to reviewing and editing the manuscript and have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Monika Teuber .

Ethics declarations

Ethics approval and consent to participate.

The study involves human participants and was reviewed and approved by the Ethics Committee of the Faculty of Social Sciences and Economics, University of Tübingen (ref. A2.54-127_kr). The participants provided their written informed consent to participate in this study. All methods were carried out in accordance with relevant guidelines and regulations.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary file 1., supplementary file 2., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Teuber, M., Leyhr, D. & Sudeck, G. Physical activity improves stress load, recovery, and academic performance-related parameters among university students: a longitudinal study on daily level. BMC Public Health 24 , 598 (2024). https://doi.org/10.1186/s12889-024-18082-z

Download citation

Received : 30 June 2023

Accepted : 12 February 2024

Published : 24 February 2024

DOI : https://doi.org/10.1186/s12889-024-18082-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Physical activity breaks
  • Stress load
  • Psychological detachment
  • Academic performance
  • Study ability
  • University students

BMC Public Health

ISSN: 1471-2458

article review process time

US State Dept moves $1 bln weapons aid for Israel to congressional review, officials say

  • Medium Text

Looming deadline to avert US government shutdown on the hill in Washington, U.S.

Sign up here.

Reporting by Mike Stone and Steve Holland; Writing by Eric Beech; Editing by Costas and Sandra Maler

Our Standards: The Thomson Reuters Trust Principles. New Tab , opens new tab

Former U.S. President Trump's criminal trial on charges of falsifying business records continues in New York

World Chevron

The 77th Cannes Film Festival - Screening of the film

Style from the Cannes red carpet

Fashion highlights from the 77th Cannes Film Festival.

North Korean leader Kim Jong Un oversees a tactical missile weapons system

At least one person was killed and eight wounded on Friday in an Israeli air strike on the Jenin refugee camp in the occupied West Bank, the Palestinian health ministry and Israeli military said.

Canada's Minister of the Environment and Climate Change Steven Guilbeault speaks during Question Period in the House of Commons on Parliament Hill in Ottawa

an image, when javascript is unavailable

‘The Second Act’ Review: Léa Seydoux and Louis Garrel Question Their Choices in Slight, Self-Aware Cannes Opener

'Deerskin' director Quentin Dupieux kicks off the festival with a meta-textual amuse bouche, in which four French actors squabble about why they've agreed to make such a formulaic movie.

By Peter Debruge

Peter Debruge

Chief Film Critic

  • ‘Oh, Canada’ Review: Paul Schrader Separates the Art From the Artist in Prismatic Portrait of a Dying Director 15 mins ago
  • ‘Megalopolis’ Review: Francis Ford Coppola’s Bold, Ungainly Epic Crams in Half a Dozen Stars and Decades’ Worth of Ideas 1 day ago
  • ‘The Damned’ Review: In His Latest Look at America’s Margins, Roberto Minervini Travels Back to the Civil War 1 day ago

The Second Act

In France, the concept of irony is referred to as “deuxième degré” (second degree), where the “premier degré” is the literal or surface meaning, which can be twisted as audiences read an entirely different, often contrary meaning into the material. But the game doesn’t necessarily stop there. There is also “troisième degré,” “quatrième degré” and so on, as deep as you want to go.

Popular on Variety

At one point, operating at what is at least the fourth degree, Seydoux declares, “Reality is reality. Period.” Dupieux has been toying with self-conscious devices since at least 2014, when his film “Reality” hit the Venice Film Festival. I hated that movie — an aggressively unfunny amalgam of sketches in which Alain Chabat played an aspiring filmmaker in search of the perfect groan — though contrarian French culture mag Les Inrockuptibles just ranked it as Dupieux’s best. You say tomato, I say rotten.

“Yannick” centers around a blue-collar worker who interrupts a boring “boulevard” play he’s paid to attend, ordering the actors (at gunpoint) to make it more interesting. Or, as Edouard Baer (one of six actors Dupieux cast in the role of Salvador Dalí in “Daaaaaali!”) postulates, “No one is an actor. It’s a nonexistent profession. ‘Actor’ is a total invention.” The Surrealist painter goes on to complain about the “unbearable” and “appalling banality” of the film-within-a-film.

Is Dupieux bored with movies? Clearly not, or he wouldn’t keep making them, but he seems to recognize (more than most) that audiences have gotten savvy to the codes and clichés, and so he seeks to subvert them, to weaponize convention against itself, while folding in barbs about the contemporary state of cinema. For example, if the scenes sampled here sound lousy, why not imply that this movie was the first to be written and directed entirely by artificial intelligence?

Improvising the dialogue for a long walk-and-talk scene in which David (Garrel) asks Willy (Quenard) to seduce his clingy girlfriend Florence (Seydoux), the actors riff about political correctness, “cancel culture” and trans identity. “You can’t say that!” David abruptly interrupts Willy. “We’re being filmed.” Cute, except the English subtitles have softened the dialogue (the word “travelo” does not mean “trans,” though sensitivity has scrubbed its equivalent from English usage).

Willy’s lines are meant to be offensive (as David/Garrel makes clear), and it may be instructive for moviegoers to note who around them laughs and at what “level.” The third-degree payoff to that exchange comes nearly an hour later in the film. In the meantime, the characters bicker constantly, as when Guillaume (Lindon) storms out of his first scene, complaining that he’s lost faith in the dying art form … until his agent calls to say he’s been cast in Paul Thomas Anderson’s next film.

The problem with irony at any level is that it makes sincerity almost impossible to judge. The resulting ambiguity serves as a cornerstone of zoomer humor, where the concepts of meta-irony and post-irony obscure the author’s intent so completely that audiences can interpret the material however they like. Some take offense, while others see the too-far elements as deliberate subversions of upsetting concepts. Alas, Dupieux doesn’t take anything too far. If anything, he falls short, getting stuck in the infinite loop of his own cleverness.

Oddly enough, considering the film’s tight running time, practically every scene overstays its welcome, including the otherwise smart final shot — an inspired end punctuation, stretched out like all those “a”’s in “Daaaaaali!” Dupieux’s strategy seems to be flipping or repeating certain punchlines for fresh effect, which is fine for a while, until you realize that neither “The Second Act” nor those second-degree readings have much to say.

Reviewed at Cannes Film Festival (opener), May 14, 2024. Running time: 80 MIN. (Original title: “Le deuxième acte”)

  • Production: A Chi-Fou-Mi Prods, Arte France Cinéma production, with the participation of Netflix, Arte France, Cine+, in association with Kinology, Diaphana, Cineaxe 5, Cofinova 21. (International sales: Kinology, Paris.) Producer: Hugo Sélignac.
  • Crew: Director, writer, camera, editor: Quentin Dupieux.
  • With: Léa Seydoux, Vincent Lindon, Louis Garrel, Raphaël Quenard, Manuel Guillot.

More From Our Brands

Here’s how to watch ‘snl’ this weekend without cable, hennessy’s new master blender selection cognac is one of its best, pbr goes live with cbs sports, dr. phil’s merit street media, the best loofahs and body scrubbers, according to dermatologists, get starz semi-annual plan for just $20 — binge bmf, outlander, mary & george and more, verify it's you, please log in.

Quantcast

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Res Integr Peer Rev

Logo of ripv

The changing forms and expectations of peer review

S. p. j. m. ( serge) horbach.

Faculty of Science, Institute for Science in Society, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

W. ( Willem) Halffman

The quality and integrity of the scientific literature have recently become the subject of heated debate. Due to an apparent increase in cases of scientific fraud and irreproducible research, some have claimed science to be in a state of crisis. A key concern in this debate has been the extent to which science is capable of self-regulation. Among various mechanisms, the peer review system in particular is considered an essential gatekeeper of both quality and sometimes even integrity in science.

However, the allocation of responsibility for integrity to the peer review system is fairly recent and remains controversial. In addition, peer review currently comes in a wide variety of forms, developed in the expectation they can address specific problems and concerns in science publishing. At present, there is a clear need for a systematic analysis of peer review forms and the concerns underpinning them, especially considering a wave of experimentation fuelled by internet technologies and their promise to improve research integrity and reporting.

We describe the emergence of current peer review forms by reviewing the scientific literature on peer review and by adding recent developments based on information from editors and publishers. We analyse the rationale for developing new review forms and discuss how they have been implemented in the current system. Finally, we give a systematisation of the range of discussed peer review forms. We pay detailed attention to the emergence of the expectation that peer review can maintain ‘the integrity of science’s published record’, demonstrating that this leads to tensions in the academic debate about the responsibilities and abilities of the peer review system.

Quality and integrity in science

Recently, there has been heated debate on the quality, credibility and integrity of scientific literature. Due to a perceived increase in scientific fraud and irreproducible research, some claim the publication system, or even science in general, to be in crisis [ 9 , 25 ]. This rising concern has become obvious in the media, in policy initiatives, as well as in scientific literature. Concerned scientists as well as policymakers increasingly express their worry about data manipulation, plagiarism, or questionable research practices that affect the functioning of science [ 56 ].

A key issue in the debate on scientific integrity has been the extent to which processes of institutional self-regulation are able to track and prevent misconduct (e.g. [ 54 , 108 ]). It has long been assumed that misconduct could hardly occur in the sciences due to well-established self-regulating mechanisms [ 64 ]. Sociologists of science in the tradition of Merton assumed that any form of research misconduct would sooner or later come to light due to scientists’ motivation to challenge competing knowledge claims via the peer review system, replication studies, or the presence of a whistle-blower, at least in as far as misconduct involves the misrepresentation of the research process [ 118 ].

The system of peer reviewing research papers in particular has long been central to these notions of self-regulation [ 57 ]. However, the expectation and ability of the peer review system to detect fraudulent and erroneous research is contentious and has developed and changed over time. While some currently argue that ‘safeguarding the scientific integrity of published articles’ is one of peer review’s core responsibilities [ 51 , 67 , 90 , 108 ], others argue that the system was never designed, nor meant to do so [ 11 , 105 , 109 ]. Some even claim that peer review ‘ensures the state of good science’ and ‘assures that science is trustworthy, relevant and valuable’ [ 20 , 113 , 114 ], while others regard these claims as mere ‘myths’, and find peer review to be conservative, biased, and putting a burden on (unpaid and unrecognised) reviewers [ 11 , 105 , 108 , 109 ].

Nevertheless, most scholars seem to agree that peer review serves as a filter in distinguishing between ‘good’ and ‘bad’ science [ 86 , 110 ]. Despite an ever-growing number of concerns about its effectiveness, fairness and reliability [ 28 , 38 , 71 , 72 , 105 , 109 , 114 , 116 ], peer review is still considered the best available practice to ensure the quality and correctness of the scientific literature. However, the devil is in the detail: specific features have been added to the peer review process in the expectation they would address specific problems obscured by blanket notions such as ‘quality’. Currently, there is a clear need for a systematic analysis of peer review forms and their underlying concerns, especially in light of a wave of experimentation fuelled by new internet technologies.

Ever since being established, journal peer review has developed in a quite disorderly fashion so that currently it comes in many shapes and sizes [ 16 , 110 ]. For various reasons, different journals and publishers tend to adhere to different forms of peer review. Among others, the increased specialisation in areas of science [ 11 , 90 ], the rapid growth of science [ 15 , 112 ], the changing financial foundation and incentives in scientific publishing [ 49 , 51 , 67 , 69 ] and the advent of novel technological possibilities [ 12 , 50 , 69 , 106 ] all have had a major impact on the structure of peer review. By now, so many forms of peer review exist that some claim we can no longer call it a single system [ 11 , 86 , 90 ]. While peer review is used in many contexts, including in grant assessment and career advancement, we will focus here on peer review of journal articles only. In addition, we will focus on the aspects directly affecting the review of a paper’s content in the editorial process (i.e. the intellectual exercise), rather than on the (technical) infrastructure that facilitates it (i.e. contemporary digital review submission systems or the analogue predecessors in which reviews were communicated via e-mail.)

This article has three objectives. First, we describe the diversity of current peer review practices and innovations in the section ‘ Main text—the historic development of peer review ’. We review the academic literature to analyse the various rationales for developing these new forms, and discuss how they have been implemented. In doing so, we add some of the latest innovations to a new overview that improves on existing ones. Second, using our updated overview, we will identify some common patterns in the various peer review forms in a typology that systematises this diversity. This typology, presented in the section ‘ Diversity of forms ’, can serve as a useful tool for future research on peer review instruments, e.g. in considering the quality and effectiveness of review forms. Third, in the section ‘ Main text—diversity of expectations ’, we will pay detailed attention to the emergence of novel expectations some have of peer review, specifically for maintaining ‘the integrity of science’s published record’. We will also indicate how these expectations have inspired peer review innovations.

We will demonstrate that these new expectations are not always entirely compatible with one another and hence lead to tensions in the current academic debate about what peer review can and should do. Underlying this debate, we note a growing expectation that the scientific literature will serve as a database of established knowledge, rather than as a collection of research reports, pointing to more fundamental disagreement about the nature of scientific knowledge. At least some of the expectations of peer review are not just about the practicalities of ‘how to make it work better’; many also expect the process to address the functions of the publication system and even what it means to publish an account of a research project.

Main text—the historic development of peer review

The appearance of peers.

Many accounts of the peer review process’ origins locate its beginnings in the seventeenth century, coinciding with Henry van Oldenburg’s establishment of an academic journal [ 11 , 16 , 66 , 90 ]. However, historians of science have increasingly rejected this claim. In fact, they argue that many journals did not introduce peer review in the sense of ‘peers judging the publishability of a manuscript’ until after the Second World War [ 6 , 7 , 42 ]. Earlier, decisions on acceptance or rejection would commonly be made by a single editor or a small editorial committee, frequently based on their personal preferences [ 6 ]. In fact, the term ‘peer review’ only emerged in the scientific press in the 1960s and even then was initially used to describe grant review processes, rather than journal article reviewing [ 7 , 77 ].

The practice of assessing or commenting on manuscripts prior to publication primarily arose in learned societies in the early and mid-nineteenth century [ 77 ]. In their early forms, reviews were commonly performed by other society members and hardly intended to act as a gatekeeping mechanism. Instead, comments or reports about manuscripts were aimed, for instance, at increasing the public visibility of science or evaluating new findings in service of the king [ 21 ]. Only in the late nineteenth century, by the time some review practices were well-established [ 77 ], was the referee gradually ‘reimagined as a sort of universal gatekeeper with a duty to science’ [ 21 ]. Despite some early concerns, the system remained in use and was slowly adopted by independent journals, also outside the scope of academic societies.

In the late nineteenth century, the British Medical Journal (BMJ) was one of the independent journals to pioneer the novel practice of using external reviewers to assess submitted manuscripts. Since 1893, its editor-in-chief, Ernest Hart, called upon the specialised knowledge of a reviewer, whom he labelled as ‘an expert having knowledge and being a recognised authority in the matter’. Although Hart acknowledged the fact that such a system was labour intensive, requiring ‘heavy daily correspondence and constant vigilance to guard against personal eccentricity or prejudice’, he believed that his system of selecting outside reviewers was ‘the only system that seems adequate to the real needs of professional readers’ [ 16 ].

In bringing outside expertise to the review process, extending its scope to actual peers, rather than a closed group of editorial committee members, the peer review process began to take the shape that is still very common today. However, this system of employing other peers than the journal’s or publisher’s committee members only became regular practice after the Second World War [ 7 ], with a major journal such as Nature adopting such a peer review system as late as 1973 [ 6 ].

In addition, differences between scientific fields were substantial. From the outset, (external) reviewing practices were considered time-consuming, costly and labour intensive. Especially in fast-developing fields, peer reviews were considered so burdensome that they prohibited quick knowledge exchange, and so made journals reluctant to use review mechanisms akin to those in learned societies [ 5 , 77 ]. Moreover, different publishing formats, e.g. monographs as opposed to journal articles, have resulted, even today, in distinct review practices in different research fields [ 77 , 86 ].

Several factors have been at the heart of journals’ and societies’ rationales for starting to use external reviewers in their review practices. Specialisation and growth in science were two such motivating factors. As growing numbers of manuscripts covering a wider range of topics and specialisations were submitted, editors had to select which they would publish and were less and less capable of judging all submitted work themselves. This led to them soliciting external, expert opinions [ 11 , 16 , 74 ]. Other factors, including a shift in the role of science in society, could have been equally important in establishing review systems. Specifically, the practice of external referees assessing and judging submitted manuscripts was taken up most prominently in the UK and North America, while other regions remained very hesitant until well after the Second World War [ 21 ]. And then, even between the UK and USA, there are differences. In the USA, review practices were perceived (among others) as mechanisms for providing scientific legitimacy that would answer to growing requirements of public accountability. These expectations were less pronounced in other regions, which partly explains the slower development of external review systems [ 6 , 21 ]. However, the gradual spread of publications being peer-reviewed as a quality indicator supervised by research managers provided a strong incentive for researchers to publish in peer-reviewed journals.

In spite of currently being revered in some sciences, peer review still has a remarkably short history. The work of luminaries such as Einstein, for example, was often published without being peer reviewed [ 61 ]. Peer review practices were varied and often contentious. In the debates on peer review, specific concerns led to innovations and modifications, to which we will now turn our attention.

The concern for fairness and bias

Blind justice.

After the system using external reviewers became widely implemented in the 1960s and 1970s, developments in peer review succeeded each other with increasing speed. The first major developments concerned the level of anonymity in review. Initial peer review practices (nearly) always disclosed authors’ identities to editors and reviewers, whereas authors knew the identity of the editor-in-chief, but not necessarily of the editorial committee or invited outside reviewers [ 77 ]. Already in the 1950s, in the framework of sociology journals, the matter of blinding authors’ and reviewers’ identities was raised. The American Sociological Review was the first to install regulations in which authors were required to attach a detachable cover page to their manuscript so that their identities could be obscured. The rest of the paper had to ‘bear the title as a means of identification, but not name and institution’ [ 2 ]. From sociology, the anonymization of authors spread to other social sciences and the humanities.

Starting in the 1970s and continuing to the present, various researchers have examined the bias in selecting and accepting manuscripts of authors of different demographics and status [ 119 ]. In response to this debate, various categories describing different forms of author and reviewer anonymity in peer review were established in the mid-1980s [ 85 , 88 ]. These categories are still in place and frequently show up in discussion regarding peer review (Table  1 ):

Forms of peer review blinding

The single-blind and double-blind systems have continued to be the most common forms of evaluating articles, with a tendency to use the single-blind format in the biomedical and natural sciences, and a the double-blind system more frequently in the social sciences and humanities [ 85 , 113 , 114 ]. In addition, a triple-blind review process has been proposed, in which the identity of the author is not only concealed from the reviewers, but also from the handling editors [ 94 ]. Currently, a few journals use this system, but it remains fairly uncommon in designing review processes [ 110 ].

The rationale for developing the system of double-blind review was simple: in the new system, only the journal’s secretariat would know the author’s identity; therefore, peer evaluation and editorial committee decisions would rely only on the content of the manuscript and not on the reputation of the author or his/her institute [ 85 ]. Subsequently, when author anonymisation spread to other social sciences and humanities, a different rationale emerged. The extension was introduced not only on editorial initiative as had been the case when the American Sociological Review established the system in sociology, but also resulted from demands for fair and equal treatment of minority groups in science, most notably women [ 10 ]. As such, this development is part of a broader societal movement, including the second feminist wave, which demands equity between different members of society [ 115 ].

The call for more equal treatment of minority groups was strengthened by various assessments of bias in peer review. Although evidence of such bias remains slightly indecisive [ 110 ], there are strong indications that it exists, especially regarding gender and status/affiliations. This was confirmed in a famous study by Peters and Ceci [ 83 ], in which they resubmitted published manuscripts with different authors’ and institutions’ names and paraphrased titles to the very same journals that had published them. The vast majority of the manuscripts (8 out of 12) was rejected on grounds of poor quality or ‘methodological flaws’ [ 83 ]. Similar effects were reported in later studies [ 80 , 96 ]. The initial report by Peters and Ceci initiated a fierce debate, with dozens of letters in response. Specifically, the perception that manuscripts were judged not merely on their content, but also according to ‘circumstantial’ factors such as the author’s affiliation, background and personal characteristics invoked debate leading to the spread of double-blind review [ 85 ]. This format of review now presents a way of combatting referees’ bias. However, in the digital age, critics have repeatedly pointed to the ineffectiveness of blinding author identities as a simple Google-search commonly enables identifying the authors of a ‘blinded’ manuscript.

Transparency: in reviewers we trust?

Interestingly, the issue of reviewer bias as a threat to the quality and fairness of peer review has not only led to the establishment of double-blind peer review, but also to its radical opposite: the system of open review. Currently, the term ‘open review’ is used for many different models and encompasses a wide variety of characteristics of peer review. A recent systematic review of the definitions for ‘open peer review’ demonstrates that scholars use the term to indicate processes in which, among others, the identity of the authors and reviewers are public, the review reports themselves are openly available, or the review process allows reviewers and/or authors to interact with each other [ 95 ]. In this paper, we use the term ‘open review’ merely to indicate that the identity of the authors and reviewers are mutually known to each other.

Open review gained momentum in the late 1990s, with the decision of the British Medical Journal to publish both reviewer names and reviews [ 104 ]. Other initiatives followed, most notably in the biomedical sciences [ 3 ].

The rationale for choosing an open system of peer review is transparency. Its advocates argue that open review leads to more constructive feedback, reduces reviewers’ bias and gives credit to the reviewer [ 46 ]. Thereby, it addresses some of the same concerns as those raised by the double-blind format, but with a radically opposite strategy. In addition, open review could reduce the chance of reviewers taking unfair advantage of their position as reviewer, either by plagiarising the manuscript under review, unjustly delaying its publication or advising rejection for unjust reasons [ 46 , 86 , 110 , 112 ].

The system of open peer review claims to contribute to reviewer evaluation, in response also to questions regarding the integrity or fairness of reviewers, rather than the integrity or quality of the evaluated manuscript. This is especially pertinent in systems that communicate reviewers’ identities not only to the authors, but also to the general readership. In addition, formats of open review, in which the review reports are published alongside the article, provide another measure to increase transparency and therefore invoke scrutiny of reviewers. The emergence of the open review format hence allows surveillance of a system that has criticism as its major task.

In contrast, opponents of the system have stressed that open review could pose a threat to the quality of reviewing. This would especially be a concern when junior researchers are to review manuscripts by more senior colleagues, fearing professional reprisal if they submit negative reviews. In general, scholars have expressed concern about reviewers being milder in open review forms, thereby leading to more and, potentially poorer, manuscripts being published [ 95 ].

Technological advances in peer review

From the 1990s onwards, various technological advances paved the way for novel development of the peer review system. This opened possibilities which include new timing of the process, such as post-publication peer review (see 2.3.1); publishing more articles, while allowing a shift of review criteria from importance to rigour (see 2.3.2); the advent of automated checks and similar software tools (see 2.3.3); further specialisation of peer review (see 2.3.4); and more communication during the review process (see 2.3.5). Using these headings, we will attempt to describe the bewildering experimentation that erupted in the age of the internet. As we will show, these changes were not just driven by technological possibilities, but also by the interplay between technological potential and specific concerns about peer review’s imperfections.

Even so, besides opening up possibilities for a wide range of novel peer review formats, arguably, the most important development brought on by the advent of digitization, lies in the technical infrastructure facilitating review. This mainly affected the possibility of contacting and finding suitable reviewers much more quickly than before. Accessing researcher’s webpages and email addresses allowed for much faster circulation of manuscripts and review reports, potentially increasing the speed and efficiency of the review process enormously. In the remainder of this section we will focus on the intellectual aspects that, facilitated by new technologies, affect the actual review process.

The timing of peer review in the publication process

Traditionally, peer review occurs between the submission and publication of a manuscript. In this format, editors receive a manuscript and possibly send it to outside reviewers or an editorial committee, who advise whether a manuscript is good enough to be published. Over the last two decades, two new forms of peer review have emerged that change the chronology of the reviewing. Firstly, there is a format in which manuscripts are evaluated after publication, the post-publication peer review , and secondly, a system in which articles are reviewed prior to submission to the journal, a format called registered reports .

Post-publication review and preprint servers

In the 1990s, several studies demonstrated that peer review is potentially biased, slow, unreliable and inconsistent (e.g. [ 28 , 29 , 72 , 83 ]), thereby nourishing the desire for alternative models and the formation of preprint archives. Especially, the system’s indolence and inconsistency were indicated as reasons for the formation of post-publication peer review. Preprint servers were established, based on already existing archives of print-based mail exchanges in high-energy physics. Even though some forms of disseminating preprint articles have been in place since the 1960s [ 70 ], the advent of the internet and digital technologies enabled the establishment of large and fast-operating archives in which authors could freely upload their manuscripts, thereby bypassing publishers. In these archives, manuscripts usually go through a minor evaluation to check whether they meet minimal standards of academic writing [ 50 , 112 ]. Subsequently, the actual review is done by community members who comment on the manuscript, either via personal or public communication. Authors can then improve the manuscript and upload new versions to the archive [ 14 , 50 ]. Originating in physics, astronomy and mathematics, the preprint servers have found their way to other scientific disciplines, with similar servers set up for biology, engineering and psychology [ 110 ].

At first, these preprint servers were mainly used by authors to make preliminary versions of their articles available, before submitting the final version to a peer-reviewed journal. However, with the enormous increase in submissions to preprint archives recently [ 112 ], these servers have themselves become a major communication channel in, which some authors use as a sole venue for their manuscripts [ 36 ]. This fast dissemination method allows scholars to keep up with each other’s work, provides a way of crediting the first author(s) for presenting novel findings and thereby solving priority issues, and allows readers to comment on early drafts of a paper. Ideally, this results in exchanging ideas and improving the manuscript [ 14 , 50 ]. However, despite an increased number of papers being deposited in arXiv and other preprint servers, the proportion of scientific literature made available in this fashion is still very low and limited to only a few academic fields [ 112 ].

Besides being used in preprint servers, post-publication review has gradually also been taken up by journals and publishers. The first journal to implement this format was Electronic Transactions in Artificial Intelligence in 1997 [ 36 , 87 ]. Introducing this new review form served mainly to accelerate knowledge distribution. Especially in the last few years, a number of journals have switched to this post-publication model of peer review. Finally, several independent platforms such as PubPeer were established, in which post-publication review of any published manuscript can be done, independent of what kind of review it went through during the publication process [ 62 ]. These platforms will be discussed in more depth in the section ‘ Novel actors and cooperation in the review process ’.

Besides responding to concerns of speed and consistency, introducing open archives resulted in several new expectations of peer review. Rather than being a selection or gatekeeping mechanism, according to some scholars, reviewing should be transformed into a filtering process that presents relevant literature to researchers in the right fields: ‘… peer review needs to be put not in the service of gatekeeping, or determining what should be published for any scholar to see, but of filtering, or determining what of the vast amount of material that has been published is of interest or value to a particular scholar’ [ 37 ]. Hence, the peer review system should not be thought of as a way of stopping ‘irrelevant’ research from being published, but merely as a way of directing the right literature to the right reader. By lowering the threshold for publishing manuscripts, including those reporting negative results, this system also serves as a response to the apparent bias in published manuscripts towards positive results [ 27 ]. Some consider countering this bias an important measure to restore the integrity of the scientific literature [ 111 ].

The system of publishing articles prior to being reviewed serves to enhance research integrity in two additional ways. Firstly, the publication of preprints can improve the detection of fraudulent research. There are several cases in which authors, often after previous rejections from journals, alter their data and/or conclusions to deliver a more positive result. Such cases of spin or data manipulation are more easily detected if preprints of a manuscript have been published. In this way, preprints serve as a means of detecting authors’ improper behaviour. Secondly, preprints also serve a function in recognising reviewer misbehaviour, such as plagiarising manuscripts under review or delaying review to obtain an advantage in priority issues.

Besides these advantages, establishing preprint servers and introducing electronic publishing in general have had a major effect on the costs of publishing and of obtaining access to scientific literature. Continuing a trend started by large publishing companies that created a publishing market in the 1980s, the introduction of electronic publishing in the mid-1990s brought a massive increase in the number of journals, articles and citations [ 69 ]. This number shows a concentration of articles and citations in the outlets of large commercial publishers. In the fields of both medicine and natural science, as well as in the social sciences, large commercial publishers bought journals from smaller publishers and established new journals themselves, in order to drastically increase their market share in academic publishing [ 41 ]. One of its consequences has been a sharp increase in journal prices and the establishment of ‘big deals’ with (university) libraries [ 69 ].

Registered reports

A second major development regarding the timing of peer review in the publication process has been the establishment of the registered reports system, first introduced by the journal Cortex in 2013 [ 17 , 76 ]. In this form of peer review, which is still restricted mainly to medical fields and psychology, manuscripts are usually reviewed in two stages. The initial and most important review stage takes place after the study has been designed, but prior to data collection. At this stage, only the rationale for undertaking the research, the research questions and the research methodology are reviewed. On the basis of these criteria, a study is either accepted or rejected, before any data has been collected. In the subsequent stage, after data collection and analysis have taken place, authors compose their manuscript by adding their results and conclusions to the registered report. The final manuscript can then be reviewed on the basis of consistency and adequately having drawn conclusions from the data. Taking this further, BioMed Central (BMC) Psychology recently published the first articles that had been through a completely ‘results-free review’, in which the second phase of peer review was entirely omitted [ 19 ].

The main reason for introducing registered reports lies in the alleged ‘replication crisis’ in several areas of science. Registered reports are a means of making the execution of replication studies more attractive: ‘Peer review prior to data collection lowered the barrier to conduct replications because authors received editorial feedback about publication likelihood before much of the work was done’ [ 79 ]. Generally, many journals are reluctant to publish replication studies, which potentially deters scientists from performing them: ‘If journals will not publish replications, why would researchers bother doing them?’ [ 79 ]. Prior clarity about publication chances based on research design, and not on the novelty of results, could encourage replication studies. In addition, registered reports can alter incentives for authors and reviewers to act with more integrity, in the sense that methodological accuracy and transparency become more important than pleasing possible readers: ‘Because the study is accepted in advance, the incentives for authors change from producing the most beautiful story to the most accurate one’ [ 18 ] and ‘review prior to data collection focused researchers and reviewers to evaluate the methodological quality of the research, rather than the results’ [ 79 ]. Hence, contrary to innovations that are mainly designed to allow additional scrutiny of the reviewer, registered reports address the integrity of the author and promise to reduce researchers’ rewards for dubious behaviour.

The changing peer review criteria

Besides yielding the system of pre-print archives, the advent of the internet and large databases further enabled journals to publish nearly unlimited numbers of articles. Novel publishing strategies and related peer review models became possible. A major development in this respect came with the launch of the open access journal PLoS ONE , by the Public Library of Science (PLoS), in 2006. In this journal’s review process and business model, reviewers are asked to base their recommendation for acceptance or rejection purely on the soundness and validity of the research, comprising the methodology, soundness of results and reporting. According to the journals’ philosophy, reviewers should not judge the novelty, relevance, or importance of research, which should be left to the reader and wider community [ 52 ]. By focussing on rigour and (ethical) soundness of research, the journal aims to ensure that useful results will all be published, and to prevent subjective assessment of a study’s importance or relevance.

Since its launch, PLoS ONE has been one of the most rapidly growing publication venues. In 2013, it published over 30,000 articles [ 24 , 48 ], turning itself into the largest open access publisher and one of the largest scientific journals worldwide. Subsequently, other journals and publishers, such as BMJ Open and SAGE Open , have adopted the same non-restrictive review model [ 52 ].

These changes in review criteria content and in how they select have their roots in discussions on scientific integrity. Several motives have prompted PLOS and other outlets to focus on rigour and soundness of research [ 13 , 84 , 98 ]. First, it ensures the publication of all ‘valid’ research, irrespective of the study’s perceived importance by reviewers. This, among other things, facilitates the publication of replication studies and negative results [ 13 ]. In addition, the journals aim to deter authors from overstating results or otherwise engaging in questionable research practices in order to meet reviewer standards of importance. This review format was therefore partly set up to promote scientific integrity, not so much by increasing the detectability of fraudulent research or misconduct, as by stimulating scientific integrity from the outset [ 52 ]. However, this system could unintentionally also create new concerns regarding the literature’s integrity, for instance by overloading it with research of little relevance, or by creating incentives and opportunities to publish (irresponsibly) high numbers of articles.

Partly due to the less restrictive review process, the number of papers published in outlets employing this non-restrictive review model has grown rapidly. As a result, new challenges have emerged in the publication process. One of them is finding enough qualified reviewers to handle all submissions. For example, by 2014, PLoS ONE used more than 70,000 reviewers to process all submissions and the average review time drastically increased since PLoS’ s launch in 2006 [ 24 , 48 ]. In addition, the high number of published articles generates a growing concern about the scientific literature becoming unmanageably large, resulting from an abundance of articles many of which add little to the stock of knowledge. At the least, this creates a growing need for further filtering to ensure researchers can cope with the enormous number of potentially interesting papers. Novel systems will need to be established to draw readers’ attention to articles that are most likely to be useful to them.

Introduction of software tools to the review process

In addition to the possibilities of preprints and virtually unlimited numbers of publications, the advances of the internet and new digital technologies also offered dedicated technical support to assess whether papers are publishable. Technical assistance in various formats has by now become standard practice and most certainly will be extended in the (near) future [ 12 ]. The first major technical assistance to be implemented in peer review was plagiarism detection software. Copying text from various sources became easier than before once electronic publishing was introduced, and with internet assistance added concerns about plagiarism spread throughout academia, regarding student papers as well as research articles [ 4 ]. However, the first versions of plagiarism detection tools originated in the context not of textual plagiarism, but the copying of parts of programming code [ 35 ]. Only in later phases did this evolve into plagiarism detection tools for journals to recognise unwarranted copying in research articles [ 33 ]. Currently, the vast majority of journals and publishers use some form of plagiarism detection tool to assist in peer review [ 30 ], the CrossCheck system being the most common [ 117 ].

Besides assisting with plagiarism detection, online tools have recently come to assist reviewers in several other ways. Most notably, some automatic analysis that checks for the correct use of statistics in manuscripts has been introduced [ 32 ]. Aided by artificial intelligence technologies, software protocols have been developed to assess completeness, consistency and validity of statistical tests in academic writing, thereby specifically targeting the (intentional) misuse of statistics in research, which some believe to be a major factor in the alleged integrity and reproducibility crisis [ 78 ]. Additionally, the assistance of software in detecting image manipulation, which is considered an increasing form of fraud in various research areas, has successfully been implemented by several journals [ 100 ]. However, we should note that the use of image and statistics scanners is still rare and limited to specific research areas, most notably the medical sciences, physics and psychology.

In the future, automated computer software could well play an even more substantive role in the review process. Aided by machine-learning techniques, it has already become possible to check for bad reporting (failing to report key information or inconsistencies in reporting), data fabrication and image manipulation. In addition, Chedwich deVoss, the director of StatReviewer, even claims: ‘In the not-too-distant future, these budding technologies will blossom into extremely powerful tools that will make many of the things we struggle with today seem trivial. In the future, software will be able to complete subject-oriented review of manuscripts. […] this would enable a fully automated publishing process – including the decision to publish.’ [ 12 ] Although one should have some reservations on such predictions of a technological future, they do reveal some of the current expectations for peer review.

The implementation of software-aided detection mechanisms requires us to increasingly distinguish the ‘peer review process’ from ‘peer review’. Due to digital technologies and software tools normally not being imposed on the reviewer, but handled by the journal’s staff or editorial team, the review process now entails much more than individual reviewers merely doing quality assessment. Therefore, the use of these tools should be considered an additional step in the review process, rather than an integral part of the actual review by a ‘peer’.

In sum, digital technologies and software tools based on machine learning and artificial intelligence have been incorporated in some parts of the peer review process. Their primary use currently is to detect plagiarism, text recycling and duplicate publication; to analyse and review statistics and statistical analysis in specific fields; and to a lesser extent to detect figure or data manipulation [ 12 , 32 , 41 , 110 ]. All of these clearly target the integrity of research and authors under review and specifically target those practices that have traditionally been labelled as outright fraud, namely falsification, fabrication and plagiarism. Hence, these digital technologies are a primary example of innovations in peer review specifically targeted to increase the detectability of fraudulent or erroneous research.

Novel actors and cooperation in the review process

Over the past decades, new actors have joined the review process, thereby compelling peer review itself to become more specialised. This applies to its content, for example introducing specialised statistical reviewers, as well as to the process, with commercial parties specialising in the reviewing process.

Statistical review

During the second half of the twentieth century, the use of statistics in research articles has drastically increased, especially in medical and psychological research [ 1 ]. The use of ever more complex, statistical models raised concerns about the validity of some statistical methods. In response to the publication of reviews demonstrating that published articles often report statistically unsound analyses, journals and publishers set out to dedicate more attention to statistical analyses in their review processes. From the 1960s onwards, several journals included specialist statistical reviewers to judge the soundness and quality of methodology and statistics in submitted manuscripts, again mainly in medicine and psychology [ 1 , 101 ].

Despite repeated demonstration of widespread statistical and methodological errors in (medical) research, increasing the use of specialist reviewers to check for such errors has been slow. A 1985 survey of journals and publishers showed that only a very small proportion of journals paid specific attention to those factors in their review process [ 45 ]. Fuelled by current issues regarding research reproducibility and replicability [ 58 , 78 ], many still agitate for intensifying the scrutiny of statistics. One consequence was the formation of a project called SMARTA, which brings together members of international statistical societies to assess the use of statistics in biomedical literature [ 47 ]. Such developments may well lead to statistics being given more attention in review, and even to further specialisation of reviewers.

Commercial review platforms

Besides the introduction of specialist statisticians to the review process, a new set of refereeing bodies has recently emerged [ 110 ]. In these new initiatives, review is dissociated from the journal in which the article is published. Several formats have emerged, of which one arranges the reviewing of articles prior to publication by independent third parties. Platforms such as Peerage of Science , RUBRIQ and Axios Review [ 82 , 92 ] provide tools and services to conduct reviews and forward submitted manuscripts along with referee reports to a journal. In this way, reviews can be done faster and more efficiently, also by reducing the likelihood of a manuscript going through multiple reviews for various journals.

Notably, one of the commercial services providing independent review, Research Square , specifically focuses on the promotion of scientific integrity with the assistance of software tools. The platform attaches badges to manuscripts that pass various tests addressing specific ‘aspects of a research manuscript that [are] critical for ensuring the integrity and utility of the scholarly record’ [ 91 ]. It awards such badges after an ‘integrity precheck’, ‘statistical check’, ‘figcheck’ and ‘sound science check’, to name just a few. Thereby, the platform explicitly claims that such assessments can indeed be made as part of the peer review process. In a pilot study on submissions to two medical journals, Research Square actually reports detecting integrity issues much more frequently than would be expected considering current estimates on the extent of misconduct in science [ 81 ].

In addition to the systems providing pre-publication review, other independent platforms have emerged, such as PubPeer [ 89 ], in which any reader can comment on any published manuscript. These systems constitute examples of post-publication review independent of journals and publishers. These new trends have increasingly widened the definition of a peer , so that the term now refers not only to a small cluster of editor-selected experts, but to anyone who feels capable of understanding and evaluating a given piece of research. This emergence of an ‘extended peer community’ gives rise to novel challenges concerning the role of expertise in peer review, as well as to questions regarding who has the right and competence to judge the quality, soundness and relevance of scientific research [ 40 ]. In addition, some scholars have expressed concern about the role of public forums in signalling cases of problematic research, as this can lead to stigmatising researchers without them having due opportunity to defend themselves.

Cooperation in review

Another way of reducing the burden on peer review lies in the concept of ‘cascading peer review’. This model, which was first consistently used at the beginning of the twenty-first century, became common practice in the BMJ journals in 2010 [ 23 ] and is now widely used, especially by larger publishing houses. The system aims to avoid final rejection of a manuscript after peer review by redirecting critically reviewed manuscripts to potentially more suitable journals. In practice, larger publishing houses often use this system of redirecting manuscripts that are rejected for publication in top-tier journals to lower-tier journals within their portfolio. However, currently, peer review consortiums are formed to facilitate the practice of cascading review in smaller publishing houses as well [ 8 ]. The system of cascading reviews responds to the growing expectation of the review system to not necessarily act as a gatekeeper, but rather serve as a mechanism to direct relevant research to the right audience. As the system of cascading reviews is designed to avoid final rejection, it potentially focuses on the relevance of a manuscript, rather than its soundness, quality or integrity. This could have major implications for the scientific publishing system. Low rejection rates can raise questions about the veracity of knowledge, tolerance for ‘alternative facts’ [ 103 ] and rating the value of publications in research career assessment.

Both of these peer review models, cascading review and review by third parties, are designed to assure that one single manuscript does not have to go through multiple rounds of peer review. Sharing review reports, either from a commercial party or from a rejecting journal, with a potentially interested journal, decreases the number of reviewers assessing a single manuscript [ 8 , 110 ]. This answers to a concern of the past few decades, that the peer review system is getting overloaded [ 65 ]. In addition, automatically (re-) directing manuscripts to the most suitable journal after review could reduce perverse incentives for authors, such as rewarding work in which conclusions are overstated to get the study published. On the other hand, it could also work in the opposite direction in that relaxing review standards might tempt authors to neglect nuances in the confidence that their work will eventually get published somewhere anyway.

New openness: discussion during review

Finally, the advent of digital technologies has paved the way for new levels of openness in the review process. Some journals, most notably journals at EMBO ( European Molecular Biology Organization ) and the elife journal, have attempted to improve editorial decision making by introducing interactive stages in the review process, during which reviewers and editors can share or discuss their reports and opinions on a manuscript before communicating a final decision to the author [ 31 , 99 ]. In 2011, the elife journal pioneered this new model, referring to movements concerning transparency and accountability in peer review as rationale [ 99 ]. Later, other journals followed suit, partly related to the open science movements in which review reports are not only shared among reviewers, but also with the general readership.

The Frontiers journals launched in 2013 later established a more radical variant of this peer review model, labelled the ‘collaborative peer review’. This process set up a review forum for interaction between authors and reviewers. Such forums serve as an interactive stage in the review process, during which authors and reviewers discuss the paper online until they reach agreement on the most effective way to improve its quality [ 39 , 52 ].

Diversity of forms

Concluding from the overview in the previous subsections, the diversity of peer review forms has clearly increased significantly over the past few decades, thereby also diversifying the practice of quality control in research.

Structuring the discussion in the preceding subsections, the distinguishing attributes of various review forms can be classified along four dimensions, namely the selection conditions, the identity and access among actors involved, the level of specialisation in the review process, and the extent to which technological tools have been introduced. Each of the attributes has a range of possibilities, as presented in Table  2 . The typology discloses a clear ordering of the current variety in peer review, providing a solid foundation for further research on, e.g., how often various forms are used, or how various peer review forms relate to other properties of the publication system.

Forms of peer review categorised by dimension and attributes

Main text—diversity of expectations

What is the publication system for.

The overwhelming variety of current forms reflects the substantial variation in what is expected of peer review. Some of these expectations relate closely to diverging purposes of scientific publishing, which have also shifted over time and are more disparate than one might expect. At first, the main purpose of scientific journals was to settle priority claims, as a social device to establish and maintain intellectual recognition. Specifically using journals for the publication of essentially new knowledge is a relatively recent phenomenon [ 41 , 73 ]. The main motivation for the prototype of the modern scientific manuscript was ‘the establishment and maintenance of intellectual property. It was the need which scientists felt to lay claim to newly won knowledge as their own, the never-gentle art of establishing priority claims’ [ 26 ]. This original purpose of journals became even more apparent in the system of pli cacheté that was in place in many journals during the eighteenth, nineteenth and even twentieth century [ 34 ]. In this system, authors sent their manuscripts to journals in sealed envelopes, to be opened only at the author’s request. This allowed researchers to submit discoveries about which they were uncertain, while allowing them to claim priority in case other researchers wanted to publish the same or very similar results [ 34 ].

Besides settling priority issues and providing due credit to authors, scientific publishing has given rise to three other major expectations. The first is to facilitate the exchange of knowledge and ideas among scholars working in the same narrow field, providing the specialised communication on which research progress depends. The second is to form a constantly evolving historical archive of scholarly thought [ 106 ]. The third is to provide a hierarchy of published results based on peer-defined excellence [ 11 , 20 , 106 , 114 ]. Or, more briefly stated: ‘In their ideal, journals do not just transmit information; they filter, evaluate, [store] and unify it’ [ 67 ].

Peer review plays a major role in two of these functions, namely in facilitating the exchange of ideas among scholars and providing a hierarchy of published results. Firstly, regarding the exchange of knowledge there ‘slowly developed the practice of having the substance of manuscripts legitimated, principally before publication although sometimes after, through evaluation by institutionally assigned and ostensibly competent reviewers’ [ 119 ]. As such, peer review is ‘the instrument for ensuring trustworthiness’ in science [ 20 ]. Kassirer and Campion explained that the review process ‘is probably best described as an intellectual exercise to detect flaws in experimental design, presentation, interpretation, and the overall importance of a study; at a certain point a manuscript reaches the rejection threshold, which tips the editorial scale toward its rejection’ [ 60 ]. That peer review plays a pivotal role in validating research and is widely accepted [ 12 , 15 , 90 , 113 , 114 ]. This could be the most important aspect of scientific publishing. ‘Ensuring the accuracy and quality of the information contained in a manuscript as well as the clarity of the writing and quality of the presentation is far more important and in some cases crucial’ [ 106 ]. The role of quality assurance is attributed to all involved in the review process, not only to reviewers, but specifically also to editors [ 43 ].

Secondly, academic publishing provides a hierarchy of published results. Peer review is particularly instrumental in sustaining this hierarchy, by establishing a continuum ranging from top-tier journals to outlets of lower status. An interesting example, in which this expectation of peer review becomes particularly visible, is the mathematics ‘ arXiv overlay’ journal SIGMA ( Symmetry, Integrability and Geometry: Methods and Applications ). This electronic journal, does not ‘publish’ or archive its own articles, but merely adds a signature to articles on arXiv , after having reviewed them [ 102 ]. As such, the journal does not facilitate the spread or storage of knowledge, but rather assesses articles’ quality and classifies them as sound science. Such classification distinguishes reviewed articles from other manuscripts on arXiv, thereby raising them in the hierarchy of published results. This is not merely an epistemological exercise, but also a quest for recognition of published manuscripts. ‘Peer reviewed publications’ increasingly serve as the basis of research evaluation, be it in grant applications, organisational audits, job interviews or tenure decisions (e.g. [ 53 ]). Therefore, elevating manuscripts from the status of preprints to peer reviewed articles serves as a mechanism that not only warrants quality, but also establishes a form of recognition and credit.

Given this hierarchical allocation of recognition, the content of review criteria has become increasingly contentious. Questions arise regarding whether journals merely judge adequacy, consistency and methodological accuracy (e.g. the PLoS format), or whether they also account for relevance, perceived impact or usefulness to future research. As a result, tensions have arisen regarding the expectations of what peer review can establish.

Thirdly, the academic publishing system is expected to provide equal and fair opportunities to all participants. As was indicated in the section ‘ Main text—the historic development of peer review ’, due to the central role peer review has played in its development, this major expectation evolved more gradually [ 46 , 95 ]. Equal assessment opportunities required submitted manuscripts to be judged on content only, without attention to circumstantial information such as the authors’ affiliation, gender or background. Here, referring to peer-reviewed articles in research career assessment is crucial.

A fourth major expectation of the academic publishing system, and of peer review in particular, emerged in a debate regarding the system’s effectiveness in tracing misconduct. Despite the recognition of peer review’s crucial role in ensuring the accuracy and quality of scientific work, since the late 1980s its capacity to detect fraud has been a growing concern [ 93 ]. The discussion was fuelled by reports on major scandals in science, followed by substantial public outcry, including on the Darsee and Baltimore cases [ 67 , 68 , 107 ]. Under the threat of intensified congressional involvement in the USA, the scientific community used the peer review system as one of their main defence arguments. Former National Academy of Sciences (NAS) president Philip Handler called the problem ‘grossly exaggerated’ and expressed complete confidence in the existing system ‘that operates in an effective, democratic and self-correcting mode’ [ 51 ]. Similarly, National Institutes of Health (NIH) director Donald S. Fredrickson testified ‘misconduct was not and would never be a problem because of scientific self-regulation’ [ 51 ]. In this context, the late 1980s started to exhibit the first major signs of peer review being put forward as a means of safeguarding the scientific enterprise from fraud and misconduct.

However, this argument received criticism from the outset [ 44 , 63 , 67 ]. In the founding days of scientific societies and scientific journals in the seventeenth century, general consensus maintained that the responsibility to guarantee the credibility and soundness of the research record did not lie with the professional society or the publisher [ 66 , 74 ]. Editors and publishers who still agree that ‘the peer review system was never designed to detect fraud’ [ 67 ], implicitly rely on other institutions and whistle-blowers to detect fraudulent data or plagiarised material [ 116 ].

Regarding journals’ responsibility to act against misconduct, several actors arrived at different opinions. Even though many journals introduced some measures to address misconduct, for example by issuing retractions and corrections, many believed that more should be done, especially in journals taking a gatekeeper role. In the same period, mainly driven by considerable increases in subscription and submission fees, librarians and authors became more demanding regarding the validity and integrity of published research. At the 1989 annual meeting of the Society for Scholarly Publishing, Hendrik Edelman of Rutgers University declared to generous support of fellow librarians that “given the high costs of subscriptions, publishers should guarantee ‘fraud-free’ products” [ 67 ]. The dramatic price increases resulted in heightened agitation for quality control, which was later reinforced by other scholars and librarians [ 97 ].

Tensions regarding peer review and research integrity

The expectation that publishers should be responsible for ensuring the integrity of the scientific literature comes from two sides. Firstly, politicians and funding agencies demand their money be put to good use and thus insist on quality control for the work they finance. From this perspective, peer review plays a role in public accountability. Secondly, authors and librarians increasingly demand value for money, given the high submission and subscription fees of academic journals. Peer review then becomes a matter of product quality.

Despite this twofold call for editors and publishers to take responsibility, many actors, primarily editors and publishers themselves, express disquiet about peer review’s ability to detect fraudulent research. This became strikingly clear in [ 114 ] seminal work on the peer review system in which she argues that ‘the underlying strength of editorial peer review is the concerted effort by large numbers of researchers and scholars who work to assure that valid and valuable works are published, and conversely, to assure that invalid or non-valuable works are not published’. At the same time, just a few paragraphs later, she asserts: ‘Fraudulent behavio[u]r on the part of a researcher has not been discussed, primarily because of the limited ability of reviewers or editors to identify fraudulent activities or fabricated data’ [ 114 ]. This clearly points to the tension between actors’ desires and expectations regarding the peer review system and the abilities that can reasonably be attributed to it.

In spite of such diverging expectations, some of the current innovations clearly move towards peer review as a factor in improved research integrity. The novel pilot by Research Square, providing badges for ‘research with integrity’, arguably indicates that peer review can detect fraudulent behaviour if it is specifically designed to do so [ 81 , 100 ]. In addition, different forms of fraudulent behaviour should be properly differentiated. As has been noted before, it is notoriously difficult for peer reviewers to detect cases of intentional data manipulation or fabrication. However, one can expect several kinds of questionable research practices that are thought to be much more common [ 59 , 75 ] to be detected by reviewers, as in cases of spin, inappropriate use of statistical analysis or data cooking. In addition, the use of software tools to detect (self-)plagiarism [ 55 ], image manipulation and poor statistical analyses has recently increased the detectability of outright misconduct. Detecting these forms of misbehaviour might not reasonably be expected of a single peer reviewer, but can increasingly be expected from the peer review process .

Conclusions

Our review demonstrates the remarkable diversity in contemporary models of peer review. Ever since its establishment, peer review has developed into a wide and expanding variety of forms. The development of review forms can be systematised along four dimensions: (i) the selection conditions, including the timing of the review and its selectiveness; (ii) the identity of and interaction between the actors involved; (iii) the levels of specialisation within the review process; and (iv) the extent to which technological assistance has been implemented in the review system. These four dimensions cover an array of peer review processes than can map both the historic and current forms of peer review, and suggest some axes of possible future development. In addition, this classification can serve as the basis for future empirical research assessing the quality, effectiveness or feasibility of the diverse peer review forms.

Many of the recent innovations have come about as a response to shifting expectations of what peer review can or should achieve. Whereas the post-war dissemination of the system was presented as a form of quality-guarantee, it later responded to concerns regarding inequality in science, the efficiency of the publication system and a perceived increase in scientific misconduct. Currently, four major expectations of the peer review system can be distinguished: (i) assuring quality and accuracy of research, (ii) establishing a hierarchy of published work, (iii) providing fair and equal opportunities to all actors and (iv) assuring a fraud-free research record. Different peer review formats will be preferred, depending on which of these expectations take precedence, as not all of these expectations can be easily combined. For example, a hierarchy of published work through a review process that favours highly relevant, high-impact research can jeopardise equal opportunity, and potentially even accuracy or integrity, as authors go to extreme lengths competing for attention at the top.

To date, very little systematic research has investigated whether peer review can live up to these differing expectations. There is limited evidence on peer review’s capacity to guarantee accurate and high-quality research. Additionally, the potential of peer review to distinguish between possibly relevant and seemingly irrelevant research, or between fraudulent and non-fraudulent research, has not been adequately studied. This leaves a clear knowledge gap to be addressed in future empirical research. Our classification of review forms can constitute a useful tool to set up such comparisons between review practices.

The existing discrepancy between what some expect of the system and what others believe it is capable of has led to several current tensions. Most notably, the expectation that the peer review system should be used in gatekeeping to prevent erroneous or fraudulent research is problematic. Many have blamed peer review for not properly detecting erroneous research; however, simultaneously, others claim it was never designed to do so. Recent new developments and tools in peer review suggest that it is increasingly possible to detect and filter erroneous or fraudulent research in the peer review process. However, more research is needed to investigate the extent to which these innovations can live up to the expectations.

Meanwhile, some of the fraud detection innovations in peer review seem to shift the modalities of knowledge validation. Whereas peer review used to rely on the inter-subjectivity of colleagues to check the objectivity of research, currently, statistics scanners or image-checkers permit more automated judgement in peer review, which aims to reduce human judgement. From inter-subjective checking, the focus is shifting towards more mechanical forms of objectivity, with automated discovery as an uncomfortable asymptote [ 22 ].

These tensions about peer review’s expectations and abilities point to more fundamental shifts in ambitions for the scientific publication system. At first, the scientific literature was primarily perceived as a large (public) library containing reports on scientific research, review papers, discussion papers and the like. While this view still prevails, we would argue that an additional frame has appeared, which presents the scientific literature as a database of accurate knowledge or ‘facts’. This new frame, which seems specifically attractive to those holding realist and positivist views of knowledge, is witnessed, for example, in the belief that ‘inaccurate knowledge’ should be retracted from the literature. In the library frame, questioned research was addressed through further publications, referencing and commenting on earlier publications, without removing them. Propositions and knowledge claims, as well as their denials, co-existed in an inter-textual universe of scientific knowledge claims—some more, some less veracious. The publication system as a database insists on removing erroneous records and replacing them with newer, corrected versions through innovative technologies such as corrections, retractions, statistics-checks, or post-publication reviews, facilitated by the digital revolution in publishing. The publication system as database creates new expectations about a body of reliable knowledge, including the possibility of meta-studies or systematic reviews, which are in turn used as arguments to shift further towards a database model. Seemingly technical innovations in the peer review system could therefore be signs of far more fundamental shifts in notions of objectivity or the status of the knowledge contained in ‘the scientific literature’.

Acknowledgements

We are thankful to Prof. dr. Paul Wouters (Center for Science and Technology Studies, Leiden University) and Vincent Coumans (Radboud University), along with reviewers Prof. Melinda Baldwin and Prof. Aileen Fyfe for commenting on earlier drafts of this paper. We also thank Christine Anthonissen for copy editing.

This project has received funding from ZonMw’s ‘Fostering Responsible Research Practices’ programme, under grant agreement no. 445001001 (IMPER). The funder had no role in the design nor the collection, analysis and interpretation of data in this study.

Abbreviations

Authors’ contributions.

SPJMH and WH equally contributed to the design and conception of the study. SPJMH gathered and analysed the sources and literature. SPJMH and WH both had a major contribution in the writing of the manuscript. Both authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Competing interests.

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

S. P. J. M. ( Serge) Horbach, Phone: +31243652730, Email: [email protected] .

W. ( Willem) Halffman, Phone: +31243652579, Email: [email protected] .

Watch CBS News

We may receive commissions from some links to products on this page. Promotions are subject to availability and retailer terms.

How to expedite the mortgage closing process

By Angelica Leicht

Edited By Matt Richardson

May 6, 2024 / 12:01 PM EDT / CBS News

New homes

Buying a home is an exciting milestone, but the mortgage process can be tedious and stressful. Not only do you have to find the right mortgage lender , but you also have to determine the best mortgage loan for your needs, which can be tricky in today's rate environment. After all, inflation has caused mortgage rates to skyrocket over the last couple of years. While rates were hovering near 3% in late 2021, the average 30-year loan rate is now well above 7%. 

In turn, other types of mortgage loans, like adjustable-rate mortgages (ARMs) , can be worth considering if you want to keep costs down , as the variable rates tied to these loans could mean future interest savings if mortgage rates decline. But as with any type of mortgage loan, ARM loans also have their downsides — as do other lower-rate options , like 15-year mortgage loans. Ultimately, though, it's important to put in the work, weigh your options and find the right mortgage loan at the right rate . 

But that's just one part of the mortgage loan process. There are lots of steps involved in buying a home with a mortgage, and, in turn, there are numerous potential delays that can occur and drag out closing . Luckily, there are also ways you can stay on track and potentially speed up the mortgage closing process. Here's what you should know.

Compare your best mortgage loan options and apply for a loan today .

There are a few ways you may be able to help speed up the mortgage closing process, including:

Use a knowledgeable real estate agent

An experienced real estate agent can provide valuable guidance throughout the mortgage loan process, as they are better prepared for what's to come, understand the roles of all the parties involved and know the typical timelines. Plus, having an agent who is proactive in following up and good at coordinating can make a big difference in keeping everything on track and getting to closing quickly.

Find out what mortgage loan rates you could qualify for here .

Respond quickly to lender requests

Your mortgage lender will likely need additional documentation from you at various points during the underwriting and loan processing steps. Be sure to respond promptly to any requests you get to avoid unnecessary delays. 

Keep your loan officer's contact information handy and make sure you have updated pay stubs, bank statements, tax returns or other financial documents on hand to provide as needed. The quicker you can provide the requested paperwork, the quicker your file can keep progressing, helping to expedite the process.

Be flexible on your closing date and time

While you'll select an ideal closing date when first applying for the loan, sometimes meetings need to be shifted due to circumstances beyond your control. Remaining flexible on exactly when closing takes place can help you circumvent unnecessary delays caused by busy schedules and tight timeframes.

Review closing documents beforehand

You'll receive your closing disclosure several days in advance. This document outlines the final loan terms, projected monthly payment and closing costs. Rather than waiting until closing to review this dense stack of documents for the first time, go through it carefully as soon as you receive it. This allows you to resolve any errors or discrepancies upfront rather than delaying closing.

Have cash ready to close

In addition to your down payment, you'll need to pay other costs at closing, like lender fees, title insurance, property taxes and prepaid items like homeowner's insurance. Once you receive a list of the official closing costs from your lender, obtain a cashier's check, certified funds or wire transfer for the total amount due. 

Don't wait until the last minute to get a cashier's check or transfer closing funds, either. Take care of this a few days before your scheduled closing date to avoid any payment delays that could postpone closing. Having the cash ready prevents last minute rushes or delays in funding.

Preemptively address any credit issues

Your credit will be run again just before closing, so avoid any credit issues that could derail the process. Don't open any new credit lines or loans, max out or miss payments on existing credit cards or make any major purchases that could impact your credit score or debt ratios. If any new credit issues arise, clear them up quickly and provide documentation to your lender as soon as possible.

Maintain consistent employment

Your mortgage lender approved you for your mortgage loan based on your current employment and income situation. So, try to avoid any employment changes like switching jobs or becoming self-employed in the final weeks leading up to closing, as this could raise red flags and require re-verification of your employment, delaying your closing date in turn.

Secure homeowners insurance before your closing date

You'll need a paid homeowner's insurance policy in place before closing. As soon as your purchase contract is accepted, contact insurance companies to shop rates and determine which one makes the most sense for you. And, once you're sure that the home purchase will be completed, secure the policy. Be sure to also provide the insurance binder proof to your lender well before closing so this isn't a last-minute holdup.

Coordinate power of attorney if necessary

If a spouse or co-borrower will be out of town or unable to physically attend the closing, make arrangements for power of attorney well in advance. Your lender likely has specific power of attorney requirements, so discuss this ahead of time so the proper documents are prepared and ready to be signed by closing.

Do an early final walk-through

Before heading to the closing table, conduct a final walk-through of the property as early as possible to ensure it is in the expected condition per your contract. That can give you extra time to resolve any unexpected issues and avoid closing delays in certain cases. Note, though, that in some circumstances, a delayed closing is still better than being stuck with repairs or headaches after the deal is sealed.

The bottom line

By taking a few proactive steps during the homebuying process, you can help facilitate a smoother mortgage closing process. And, while some closing delays are unavoidable, being organized, responsive and solution-oriented can prevent unnecessary headaches and keep things progressing toward your closing date.

Angelica Leicht is senior editor for CBS' Moneywatch: Managing Your Money, where she writes and edits articles on a range of personal finance topics. Angelica previously held editing roles at The Simple Dollar, Interest, HousingWire and other financial publications.

More from CBS News

How much interest would a $10,000 6-month CD earn now?

4 ways to avoid mortgage rate lock extension fees

3 reasons to use home equity before June

Why you should open a CD despite inflation cooling

IMAGES

  1. Flowchart of the Article Selection and Review Process

    article review process time

  2. Popular vs. Scholarly Resources

    article review process time

  3. The review process

    article review process time

  4. Article review process.

    article review process time

  5. Guidelines For Writing An Article Review

    article review process time

  6. 10 Ultimate Steps: How to Peer Review an Article Effectively

    article review process time

VIDEO

  1. wbsu review process /review result wbsu 2022 /review process in wbsu/por/pps/ug pg exam/wbsu

  2. The peer review process can create conflicts of interest because the choice

  3. How to Review an Article in MPRP: A Step-by-Step Guide

  4. Original research vs Review article: Differences

  5. Sixth Schedule for Ladakh

  6. Verifying Article Review Submitted by Reviewer

COMMENTS

  1. Editorial and Peer Review Process

    The time to render a first decision averages about 43 days, but times vary depending on how long it takes for the editor to receive and assess reviews. ... PLOS offers accepted authors the opportunity to publish the peer review history of their manuscript alongside the final article. The peer review history package includes the complete ...

  2. Peer review guidance: a primer for researchers

    The peer review process is essential for evaluating the quality of scholarly works, suggesting corrections, and learning from other authors' mistakes. The principles of peer review are largely based on professionalism, eloquence, and collegiate attitude. As such, reviewing journal submissions is a privilege and responsibility for 'elite ...

  3. Peer review demystified: part 1

    Metrics. Peer review is at the heart of publishing scientific papers. In this first installment of a two-part Editorial, we explain how we manage the process at Nature Methods. The basic peer ...

  4. How to Write an Effective Journal Article Review

    The most critical characteristics of an effective review are clarity, specificity, constructiveness, and thoroughness (Hyman, 1995 ). A journal article review should inform the managing editor and author of the primary strengths and weaknesses of a manuscript in a focused way (see Table 11.1 ).

  5. A Field Guide for the Review Process: Writing and Responding to Peer

    The peer review process--both writing reviews for academic journals and re-sponding to reviews of one's own work--is fundamental to building scientific knowledge. In this article, we explain why you should invest time reviewing, how to write a constructive review, and how to respond effectively to reviews of your own work.

  6. The Peer Review Process

    The peer review process can be broadly summarized into 10 steps, although these steps can vary slightly between journals. Explore what's involved, below. ... Review is Conducted. The reviewer sets time aside to read the paper several times. The first read is used to form an initial impression of the work. If major problems are found at this ...

  7. Editorial criteria and processes

    In recognition of the time and expertise our reviewers provide to Nature's editorial process, we formally acknowledge their contribution to the external peer review of articles published in the ...

  8. Duration and quality of the peer review process: the author's

    The scientific peer review process is one of the weakest links in the process of scientific knowledge production. While it is possible to review a paper in less than a day (Ware and Mabe 2015), it may often lie untouched on reviewers' desks and in editorial offices for extended periods before it is evaluated.This means a substantial loss of time for the scientific process, which has ...

  9. How long does the review process take?

    The review process currently averages at 77 days from submission to acceptance across our 50+ journals. It varies across journals for a number of reasons (e.g. some fields have reviewers who are on field work and out of contact for a time, and some fields do more iterations in the discussion forum). The time period also depends on the article ...

  10. Understanding peer review

    The purpose of peer review is to evaluate the paper's quality and suitability for publication. As well as peer review acting as a form of quality control for academic journals, it is a very useful source of feedback for you. The feedback can be used to improve your paper before it is published. So at its best, peer review is a collaborative ...

  11. Understanding Peer Review in Science

    The manuscript peer review process helps ensure scientific publications are credible and minimizes errors. Peer review is an essential element of the scientific publishing process that helps ensure that research articles are evaluated, critiqued, and improved before release into the academic community. Take a look at the significance of peer review in scientific publications, the typical steps ...

  12. How to write a good scientific review article

    Next, consider whether the review topic is worth writing about at the present time. Has a closely related review article been published in the past 1-2 years? If so, it might be too soon for an update unless you can review the same body of research from a different perspective. ... Although the peer-review process is not usually as rigorous ...

  13. Review articles: purpose, process, and structure

    In this editorial, we seek to address three topics relevant to review papers. First, we outline a case for their importance to the scientific process, by describing the purpose of review papers.Second, we detail the review paper editorial initiative conducted over the past two years by the Journal of the Academy of Marketing Science (JAMS), focused on increasing the prevalence of review papers.

  14. Writing a Scientific Review Article: Comprehensive Insights for

    2. Benefits of Review Articles to the Author. Analysing literature gives an overview of the "WHs": WHat has been reported in a particular field or topic, WHo the key writers are, WHat are the prevailing theories and hypotheses, WHat questions are being asked (and answered), and WHat methods and methodologies are appropriate and useful [].For new or aspiring researchers in a particular ...

  15. Peer review process

    Peer review is a positive process. Peer review is an integral part of scientific publishing that confirms the validity of the science reported. Peer reviewers are experts who volunteer their time to help improve the journal manuscripts they review-they offer authors free advice. Through the peer review process, manuscripts should become:

  16. Improving the peer-review process from the perspective of an ...

    The peer-review process is a fundamental component in the advancement of science. In this process, independent reviewers evaluate the quality of a manuscript and its suitability for publication in ...

  17. SciRev

    After receiving the final decision of a review process, visit the journal's page, click on 'Review this journal' and share your experience by filling out the SciRev questionnaire. All review experiences are provided by registered members of the academic community, and checked for systematic errors by the SciRev team. Submit a review.

  18. Writing a good review article

    Tips for writing a good review article. Here are a few practices that can make the time-consuming process of writing a review article easier: Define your question: Take your time to identify the research question and carefully articulate the topic of your review paper. A good review should also add something new to the field in terms of a ...

  19. Review process

    Contact the Associate Editor who invited you, to ask them to approve the co-review. When you submit your review, add the co-reviewer's name to the 'Confidential comments to the Editor' section of the referee report. If you are the co-reviewer, you must assess any competing interests you may have, and either decline to be a co-reviewer, or ...

  20. 4 Common Types of Team Conflict

    The first occurs when conflict revolves around a single member of a team (20-25% of team conflicts). The second is when two members of a team disagree (the most common team conflict at 35%). The ...

  21. Cultural Relativity and Acceptance of Embryonic Stem Cell Research

    The process of creating embryonic stem cell lines involves the destruction of the embryos for research.[6] ... If the fetus is more than 120 days old, the time ensoulment is interpreted to occur according to Islamic law, abortion is no longer permissible.[54] ... Voices in Bioethics applies a strong process of editing and peer review to produce ...

  22. Physical activity improves stress load, recovery, and academic

    Physical activity has been proven to be beneficial for physical and psychological health as well as for academic achievement. However, especially university students are insufficiently physically active because of difficulties in time management regarding study, work, and social demands. As they are at a crucial life stage, it is of interest how physical activity affects university students ...

  23. 'The Blue Angels' Review: Imax Doc Showcases Top Guns, No ...

    May 17, 2024 8:25am PT. 'The Blue Angels' Review: Dazzling Imax Documentary Showcases Top Guns, but No Mavericks. Director Paul Crowder's film follows the elite flying squadron through a ...

  24. Duration and quality of the peer review process: the author's

    Process too slow. Given the fact that reviewers are often overloaded with academic work, that they are generally not paid for their review work, and that reviews are mostly anonymous, there are few incentives to give high priority to this work (Azar 2007; Moizer 2009).Hence, while the actual time it takes to write a referee report may vary between a few hours and a day (Ware and Mabe 2015 ...

  25. US State Dept moves $1 bln weapons aid for Israel to congressional

    The U.S. State Department has moved a $1 billion package of weapons aid for Israel into the congressional review process, two U.S. officials said on Tuesday.

  26. Data collection on co formulants used in representative plant

    The composition of authorised PPPs may change over time: Article 45 of the PPP Regulation covers the amendments on request of the authorisation holder, including a change in the ... in the EFSA peer review process: In Article 2(3) of the Regulation, co-formulants are defined as 'substances or preparations which

  27. 'The Second Act' Review: Léa Seydoux and Louis Garrel's ...

    Producer: Hugo Sélignac. Crew: Director, writer, camera, editor: Quentin Dupieux. With: Léa Seydoux, Vincent Lindon, Louis Garrel, Raphaël Quenard, Manuel Guillot. Quentin Dupieux kicks off ...

  28. The changing forms and expectations of peer review

    This opened possibilities which include new timing of the process, such as post-publication peer review (see 2.3.1); publishing more articles, while allowing a shift of review criteria from importance to rigour (see 2.3.2); the advent of automated checks and similar software tools (see 2.3.3); further specialisation of peer review (see 2.3.4 ...

  29. How to expedite the mortgage closing process

    Keep your loan officer's contact information handy and make sure you have updated pay stubs, bank statements, tax returns or other financial documents on hand to provide as needed. The quicker you ...