Geography Notes

Universe: essay on our universe | geography.

ADVERTISEMENTS:

Here is an essay on ‘ Our Universe’ for class 6, 7, 8, 9, 10, 11 and 12. Find paragraphs, long and short essays on ‘Our Universe’ especially written for school and college students.

Essay on Our Universe

Our Universe contains 176 billion (one billion = 100 crores) constellations (group of stars) and each constellation includes hundreds of billion stars. Universe consists, constellation, in which Sun exists, is so big that from the core of constellation, light takes around 27 thousand years to reach up to sun. The solar system which is part of Milky Way galaxy is in disc-shaped spiral form.

Essay # 1. Sun:

Sun rotates round its axis from West to East. About 99.85% mass of solar system lies with sun only whereas planets constitute – 0.135%, comets – 0.01%, satellites – 0.00005%, dwarf planets – 0.000002%, shooting stars – 0.0000001% and inter planetary medium consists of 0.0000001% of the rest of mass.

Sun is not stationery and completes one rotation round its own axis in 25 days. One rotation of sun takes 25 days (of Earth) if observed from the equator while if we observe it from its poles, each rotation of sun takes 36 days. The rotation of sun was observed by Galileo first of all.

Sun is source of light, heat, energy and life on our Earth. Normally looking pale, this spherical ball of fire has 13 lakh multiples more volume than that of Earth and 3.25 lakh times more weight. Pressure of gaseous material on its centre is 200 billion multiples more than the pressure of air, Earth experiences while density of gases is 150 times more than that of water. Temperature of sun is 50 lakh degrees Kelvin (one Kelvin is equal to one degree on Celsius scale).

Hydrogen in form of Plasma turns into Helium at this temperature. This fusion gives birth to energy. The quantum of such produced energy may be imagined from the fact that fusion produced energy in one second is more than as much mankind has used on Earth till date. This fusion is continuous process on the surface of Sun.

Gravity of Sun is 28 times more than that of earth and black spots visible on sun are actually very powerful magnetic regions. Each magnetic regions of sun is more than 10 thousand times more powerful than magnetic power of Earth. Actual size of each black spot may be lakhs of square kilometers. Temperature at photosphere of sun is only 6000° Kelvin while ends of chromospheres experience it 10 thousand degree.

At corona this temperature varies from 10 lakh Kelvin to 50 lakh Kelvin. Continuous winds blow at the surface of sun at speed of 800 to 900 kilometer per second and these may prove dangerous for Earth at times. These winds have their fatal effect on Ionosphere. Solar storms disturb communication system on Earth. Many a times, power grids get destroyed or seized because of disturbance at the surface of Sun.

Optical telescope at Udaipur and Kodyekanal along with Radio telescope at Pune keep continuous watch over happenings related to Sun.

Essay # 2. Planets:

Planet is a Greek word which means, Wanderer. All the planets are spherical and are total eight in number.

We can group these planets in two, that is:­

a. Inner Planets:

Inner planets are those planets which are nearer to sun as compared to others. Secondly their relief constitution includes rocks and metals. These planets are known as terrestrial planets also. Namely these planets are; Mercury, Venus, Earth & Mars.

b. Outer Planets:

Outer planets are beyond asteroids and are constituted of gases, popularly known as Gas Giants. These are; Jupiter, Saturn, Uranus and Neptune.

The planets do not have any light of their own but these illuminate by reflecting sunlight and are visible at night. In the sequence of their distance from sun, these may be retented from initial alphabets of words in this sentence; My Very Efficient Mother Just Served Us Nuts.

i. Mercury:

This planet is not only smallest one but also lies closest to Sun. It does not have atmosphere of its own and is engulfed by blasts taking place because of Sun. Its core is made of iron and has this part larger than crust.

It is presumed that this crust reduced due to some comet accident. Mercury lies some 579 million (57crore 90 lakh) kilometer away from Sun and its average temperature varies between 420°C during day to -180°C at night.

It completes its revolution around Sun in 88 days while takes 58 days and 16 hours to complete its one rotation on its axis. Galileo founded Mercury in 1631 which has no satellite.

This is a rocky celestial body like Earth and second planet if counted serial vise from Sun. It completes its revolution round sun is 224.7 days while takes 243 long days to complete its rotation round its own axis from East to West.

All the other planets rotate around their axis from West to East. This hottest planet is second most glittering celestial body, first being the Moon. Also known as sister planet of Earth, Venus resembles to it in shape, size and gravity.

It has a number of volcanoes just like Earth and its surface has been formed because of volcanic eruptions. Its atmosphere consists of Carbon dioxide (96.5%) and Nitrogen. That is why it is called ‘Veiled planet’ also. Venus lies nearly 1082 million kilometers away from Sun.

iii. Earth:

Our mother planet’s name has not been derived from Greek or Roman language but from old English and Germanic. According to International Astronomical Union (IAU) biggest among Inner planets, Earth is only planet which has Geological activity taking place in its core.

Its atmosphere is also quite different to that of other planets as it consists of 77% Nitrogen and 21% Oxygen which gives it a name of ‘blue planet’. Earth is only planet where life exists. Situated nearly 14.96 crore kilometers away from sun.

The earth completes a rotation round its axis in 23 hours, 56 minutes and 4.09 seconds (approximately 24 hours) while to revolve around the sun, it takes 365 days 5 hours and 48 minutes. It has a satellite named Moon.

Known as the Red Planet, Mars is fourth planet of our solar system as counted from Sun. Its soil has very rich iron content and because of Ferrus content it looks red. As far its rotation on axis is concerned, it has similarity with Earth and it supports various seasons also.

Mars is a cold planet which has thin atmosphere. Its one rotation on its axis is completed in 24 hours, 37 minutes and 23 seconds while its revolution against sun takes 687 days. Having two satellites, Mars is placed around 2279 lakh kilometer away from sun.

The success of India to plant its Orbiter in orbit of Mars in its just first attempt has made it a pioneer and an exceptional one. Mars is only planet other than Earth which has ice-caps on its poles which have been named as Planum Boreum (North Pole) and Planum Australe (South Pole) or Southern Cap. The spacecraft that reached in the orbit of Mars is named 440 Newton Liquid Apogee Motor (LAM).

v. Jupiter:

First beyond the Asteroids, Jupiter is fifth planet of our solar system and is the biggest planet. This planet is one of the Gas Giants and has 1280 kilometer wide atmosphere composed of gases like Methane, Ammonia, Hydrogen and Helium.

It revolves around the sun in anti-clockwise direction and completes one revolution in 12 years. Its rotation on its axis is very fast and completes one in just 10 hours causing severely blowing winds.

These winds look like multi-coloured cloud belts. Jupiter is tilted on its axis at 3.1° and has more than 60 satellites. Most of the satellites are unknown for mankind as far information about them is concerned.

vi. Saturn:

The sixth from sun and second largest planet in solar system is Saturn. Situated some 1,431 million kilometers (More than 143 crore km) away from Sun, it is constituted of iron and nickel principally. Completing its rotation on its axis in 10 hours and 41 minutes, it makes one revolution around Sun in 29.5 years.

Its swift rotation gives rise to winds at the speed of 1800 kilometers per hour. Speed of winds on Saturn is higher than that on Jupiter but lesser than that on Neptune. There are nine rings around Saturn which from three arcs around it. These rings are made of frozen ice and rocks. It has around 62 satellites and biggest among them is Titan which is almost double the size of Moon. The atmosphere of Titan is thicker than that of Earth.

vii. Uranus:

This is seventh planet of our Solar System and third largest planet. Its size is 63 multiples bigger than earth but in weight it is only 14.5 multiples than that of Earth. Constituted of gases, Uranus has coldest atmosphere as compared to all the planets and has an average temperature of 223°C. Many layers of clouds are found on Uranus.

Higher cloud formation consists of Methane gas while lower formation consists of water. Speed of winds on this planet is 250 meters per second while it is tilted at 97.77° on its axis. Revolving round sun in anti-clockwise direction, it completes one revolution in 84 years while for completing one rotation around its axis, it takes 10 hours and 48 minutes.

viii. Neptune:

Neptune resembles to Uranus as seen in the Solar System. But it is smaller than Uranus and its surface is more condense. Presence of Methane gas makes it look green. Winds blow at speed of 2100 kilometers per hour in the atmosphere of this planet.

The planet consists of around 900 full circles and various incomplete arcs. Situated approximately 4,498 million kilometer away from Sun, it completes one rotation its axis in 16 hours and a revolution around sun in 164.8 years. Neptune has 13 satellites while Triton and Neried are two main satellites.

There are various dwarf planets in our solar system, out of which only five have been recognised.

1. Pluto (Earlier know as ninth planet, was declared dwarf in August, 2006)

4. Make make

Essay # 3. Satellites:

Satellites are of two types, manmade and natural. Satellites are actually celestial objects that revolve around some other celestial object. Natural satellites rotate on their axis also. They neither have atmosphere nor light of their own but due to reflection of sunlight, they look illuminated.

Manmade satellites are made of aluminium or plastic and are hardened with help of carbonic sheets. They travel at the speed which is 10 to 30 multiples more than that of an aircraft. Humankind has been benefitted extremely by manmade satellites in fields of telecommunications, weather forecasting, geological activities and atmospheric activities among other fields. India fired its first satellite named Arya Bhatt in 1975 and since then, we have sent more than 75 satellites into the orbit.

Moon is natural satellite of our Earth. It is around 3,84,403 kilometers away from Earth and takes 27.3 days to complete its revolution around Earth. As yet mankind has touched only this celestial body i.e. Moon on 21st July 1969. Atmosphere of Moon is so thin that it weighs only 104 kilograms and gravity is only one sixth part of the gravity of Earth.

Essay # 4. Asteroids or Planetoids:

These are too smaller than planets of Solar System but bigger than Asteroids. These celestial bodies revolve round the sun in anti-clockwise direction. These rocky bodies are numerous and most of these are concentrated between Mars and Jupiter. Five of them namely Ceres, Pallas, Vesta, Hypiea and Euphrosyne have been recognised. European Space Agency has found water vapour on Ceres on 22nd January, 2014.

Essay # 5. Comets:

The word comet is derived from Latin word ‘Stella Cometa’ which means ‘hairy star’. These celestial bodies were part of sun earlier and are made of frozen gases, ice and small rocky substances. Head of comet is 16 million kilometers in diameter and is followed by cloud of misty substance looking like a tail.

This tail is also lakhs of kilometer long. Tail is never towards sun facing side of comet and shines with rays from Sun. Comet which passed through Solar System was first seen in 1705 and it passes close to sun after every 75.5 years. English scientist Edmond Halley founded it and it was therefore named Halley’s Comet.

Comets are being traced regularly. Their total number was 5,186 in August, 2014. Halley’s Comet was seen in 1910, then in 1986 and next it shall be sighted in 2062. Nucleus of Halley’s Comet is 16 x 8 x 8 kilometers and it is the darkest object in solar system. This comet is periodical one and may be sighted at specific intervals but all the comets are not periodical.

Essay # 6. Meteors or Meteorites:

One can see a streak of star light in the sky sometimes, it gives an impression that any part of star has broken away. These are actually meteorites. Parts of meteorites that remain unburnt and reach our Earth in small parts are named as meteorites.

When these enter the atmosphere of Earth, burn out immediately and vanish in shape of ash most of times. A part of Arizona desert in U.S. is known to have come into form due to striking of some meteor. There are, however, various principles about formation of meteors. Some thinkers part them parts of planet which has vanished while others say these are parts of Sun, Earth and Moon only.

Indian Museum at Kolkata is known for preserving remains of meteors. Biggest such museum in Asia, it has 468 meteor parts. Their study has concluded that meteors are made of metals like iron, nickel, aluminium, oxygen and tin.

These get attracted towards Earth because of gravity of Earth. On April 21, 2013 a meteor shower was observed in many parts of the world in which more than 20 shooting stars were seen within an hour. This shower is known as Orionid Meteor Shower. Such wonderful sights are very common in our solar system.

Related Articles:

  • Essay on the Earth: Structure and Gradients | Solar System | Geography
  • The Best Essay on Lithosphere | Earth | Solar System | Geography
  • Tidal Hypothesis of James Jeans | Tides| Geography
  • Essay on the Universe | Hindi | Geography

Essay , Geography , Universe , Essay on Our Universe

Privacy Overview

CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Logo

Essay on Our Universe

Students are often asked to write an essay on Our Universe in their schools and colleges. And if you’re also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic.

Let’s take a look…

100 Words Essay on Our Universe

What is the universe.

The universe is a vast space that holds everything we know – from tiny atoms to giant galaxies. It includes all of space, time, energy, and matter. Imagine it as a huge home where all the stars, planets, and moons live. It’s so big that we can’t see the end of it, and it’s always expanding.

Stars and Galaxies

Stars are like giant balls of gas that give off light and heat. They group together to form galaxies. Our sun is a star, and it’s part of a galaxy we call the Milky Way. There are billions of galaxies each with its own stars.

Planets and Moons

Planets are big objects that orbit, or go around, a star. Earth is a planet that goes around our sun. Some planets have moons, which are smaller objects that orbit planets. Just like Earth has one moon, other planets can have many.

The Mystery of Space

Space is full of mysteries. Scientists use telescopes to study far-away stars and planets. They’re trying to learn more about black holes, which are places in space where gravity is very strong, and about the possibility of life beyond Earth.

250 Words Essay on Our Universe

The big bang.

The universe began with a huge explosion called the Big Bang about 13.8 billion years ago. This explosion made all the space, time, matter, and energy in the universe. It started very small and hot, then cooled and stretched to become as big as it is now, and it’s still expanding.

Stars are huge balls of hot gas that give off light and heat. Our sun is a star. There are billions of stars in the universe. Stars group together to form galaxies. Our galaxy is called the Milky Way, and it has billions of stars too. There are so many galaxies we can’t count them all.

Planets are big objects that orbit, or go around, stars. Our Earth is a planet. Some planets have moons that orbit them. Moons are smaller than planets and there are hundreds of moons in our universe.

Exploring the Universe

Scientists use telescopes to look at stars, planets, and galaxies. They use space probes to explore things too far to see with telescopes. By studying the universe, we learn more about where we come from and our place in the cosmos.

500 Words Essay on Our Universe

Introduction to the universe.

The universe is like a huge home with many rooms, each filled with stars, planets, and all sorts of interesting things. Imagine looking up at the night sky. Every star you see is part of our universe. It is everything that exists, from the smallest ant to the biggest galaxy.

What’s in the Universe?

The size of our universe.

Think of the biggest thing you’ve ever seen. Now imagine something a million times bigger. Our universe is even larger than that! It’s so big that we measure how far things are in it with a special word: “light-year.” A light-year is the distance light travels in one year, and light is super fast!

The Beginning of Everything

A long time ago, scientists believe the universe started with a big bang. It wasn’t an explosion, but more like everything, all the space, time, and stuff that would become galaxies, started expanding from a tiny point. Since then, the universe has been getting bigger and bigger.

The Life of Stars

Humans have always been curious about the stars. We’ve used telescopes to look far away, and we’ve sent spacecraft to explore planets and moons. Some spacecraft, like the Voyager probes, have even left our solar system and are sending back information from beyond.

The Mystery of Dark Matter and Dark Energy

There are things in the universe we can’t see called dark matter and dark energy. We know they’re there because they affect how galaxies move and how the universe is growing. But what they are exactly is still a big question.

Our Place in the Universe

Our universe is a fascinating and mysterious place. It’s full of wonders that we are just beginning to understand. As we continue to look up at the stars and learn more, we realize how amazing it is that we are a part of something so vast and incredible. The universe is the biggest adventure waiting for us to explore.

That’s it! I hope the essay helped you.

If you’re looking for more, here are essays on other interesting topics:

Happy studying!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

October 1, 1994

17 min read

The Evolution of the Universe

Some 15 billion years ago the universe emerged from a hot, dense sea of matter and energy. As the cosmos expanded and cooled, it spawned galaxies, stars, planets and life

By P. James E. Peebles , David N. Schramm , Edwin L. Turner & Richard G. Kron

universe essay 300 words

GALAXY CLUSTER is representative of what the universe looked like when it was 60 percent of its present age. The Hubble Space Telescope captured the image by focusing on the cluster as it completed 10 orbits. This image is one of the longest and clearest exposures ever produced. Several pairs of galaxies appear to be caught in one another’s gravitational field. Such interactions are rarely found in nearby clusters and are evidence that the universe is evolving.

Editor’s Note (10/8/19): Cosmologist James Peebles won a 2019 Nobel Prize in Physics for his contributions to theories of how our universe began and evolved. He describes these ideas in this article, which he co-wrote for  Scientific American  in 1994.

At a particular instant roughly 15 billion years ago, all the matter and energy we can observe, concentrated in a region smaller than a dime, began to expand and cool at an incredibly rapid rate. By the time the temperature had dropped to 100 million times that of the sun’s core, the forces of nature assumed their present properties, and the elementary particles known as quarks roamed freely in a sea of energy. When the universe had expanded an additional 1,000 times, all the matter we can measure filled a region the size of the solar system.

At that time, the free quarks became confined in neutrons and protons. After the universe had grown by another factor of 1,000, protons and neutrons combined to form atomic nuclei, including most of the helium and deuterium present today. All of this occurred within the first minute of the expansion. Conditions were still too hot, however, for atomic nuclei to capture electrons. Neutral atoms appeared in abundance only after the expansion had continued for 300,000 years and the universe was 1,000 times smaller than it is now. The neutral atoms then began to coalesce into gas clouds, which later evolved into stars. By the time the universe had expanded to one fifth its present size, the stars had formed groups recognizable as young galaxies.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

When the universe was half its present size, nuclear reactions in stars had produced most of the heavy elements from which terrestrial planets were made. Our solar system is relatively young: it formed five billion years ago, when the universe was two thirds its present size. Over time the formation of stars has consumed the supply of gas in galaxies, and hence the population of stars is waning. Fifteen billion years from now stars like our sun will be relatively rare, making the universe a far less hospitable place for observers like us.

Our understanding of the genesis and evolution of the universe is one of the great achievements of 20th-century science. This knowledge comes from decades of innovative experiments and theories. Modern telescopes on the ground and in space detect the light from galaxies billions of light-years away, showing us what the universe looked like when it was young. Particle accelerators probe the basic physics of the high-energy environment of the early universe. Satellites detect the cosmic background radiation left over from the early stages of expansion, providing an image of the universe on the largest scales we can observe.

Our best efforts to explain this wealth of data are embodied in a theory known as the standard cosmological model or the big bang cosmology. The major claim of the theory is that in the largescale average the universe is expanding in a nearly homogeneous way from a dense early state. At present, there are no fundamental challenges to the big bang theory, although there are certainly unresolved issues within the theory itself. Astronomers are not sure, for example, how the galaxies were formed, but there is no reason to think the process did not occur within the framework of the big bang. Indeed, the predictions of the theory have survived all tests to date.

Yet the big bang model goes only so far, and many fundamental mysteries remain. What was the universe like before it was expanding? (No observation we have made allows us to look back beyond the moment at which the expansion began.) What will happen in the distant future, when the last of the stars exhaust the supply of nuclear fuel? No one knows the answers yet.

Our universe may be viewed in many lights—by mystics, theologians, philosophers or scientists. In science we adopt the plodding route: we accept only what is tested by experiment or observation. Albert Einstein gave us the now well-tested and accepted Theory of General Relativity, which establishes the relations between mass, energy, space and time. Einstein showed that a homogeneous distribution of matter in space fits nicely with his theory. He assumed without discussion that the universe is static, unchanging in the large-scale average [see “How Cosmology Became a Science,” by Stephen G. Brush; SCIENTIFIC AMERICAN, August 1992].

In 1922 the Russian theorist Alexander A. Friedmann realized that Einstein’s universe is unstable; the slightest perturbation would cause it to expand or contract. At that time, Vesto M. Slipher of Lowell Observatory was collecting the first evidence that galaxies are actually moving apart. Then, in 1929, the eminent astronomer Edwin P. Hubble showed that the rate a galaxy is moving away from us is roughly proportional to its distance from us.

universe essay 300 words

MULTIPLE IMAGES of a distant quasar ( left ) are the result of an effect known as gravitational lensing. The effect occurs when light from a distant object is bent by the gravitational field of an intervening galaxy. In this case, the galaxy, which is visible in the center, produces four images of the quasar. The photograph was produced using the Hubble telescope.

The existence of an expanding universe implies that the cosmos has evolved from a dense concentration of matter into the present broadly spread distribution of galaxies. Fred Hoyle, an English cosmologist, was the first to call this process the big bang. Hoyle intended to disparage the theory, but the name was so catchy it gained popularity. It is somewhat misleading, however, to describe the expansion as some type of explosion of matter away from some particular point in space.

That is not the picture at all: in Einstein’s universe the concept of space and the distribution of matter are intimately linked; the observed expansion of the system of galaxies reveals the unfolding of space itself. An essential feature of the theory is that the average density in space declines as the universe expands; the distribution of matter forms no observable edge. In an explosion the fastest particles move out into empty space, but in the big bang cosmology, particles uniformly fill all space. The expansion of the universe has had little influence on the size of galaxies or even clusters of galaxies that are bound by gravity; space is simply opening up between them. In this sense, the expansion is similar to a rising loaf of raisin bread. The dough is analogous to space, and the raisins, to clusters of galaxies. As the dough expands, the raisins move apart. Moreover, the speed with which any two raisins move apart is directly and positively related to the amount of dough separating them.

The evidence for the expansion of the universe has been accumulating for some 60 years. The first important clue is the redshift. A galaxy emits or absorbs some wavelengths of light more strongly than others. If the galaxy is moving away from us, these emission and absorption features are shifted to longer wavelengths—that is, they become redder as the recession velocity increases. This phenomenon is known as the redshift.

Hubble’s measurements indicated that the redshift of a distant galaxy is greater than that of one closer to the earth. This relation, now known as Hubble’s law, is just what one would expect in a uniformly expanding universe. Hubble’s law says the recession velocity of a galaxy is equal to its distance multiplied by a quantity called Hubble’s constant. The redshift effect in nearby galaxies is relatively subtle, requiring good instrumentation to detect it. In contrast, the redshift of very distant objects—radio galaxies and quasars—is an awesome phenomenon; some appear to be moving away at greater than 90 percent of the speed of light.

Hubble contributed to another crucial part of the picture. He counted the number of visible galaxies in different directions in the sky and found that they appear to be rather uniformly distributed. The value of Hubble’s constant seemed to be the same in all directions, a necessary consequence of uniform expansion. Modern surveys confirm the fundamental tenet that the universe is homogeneous on large scales. Although maps of the distribution of the nearby galaxies display clumpiness, deeper surveys reveal considerable uniformity.

The Milky Way, for instance, resides in a knot of two dozen galaxies; these in turn are part of a complex of galaxies that protrudes from the so-called local supercluster. The hierarchy of clustering has been traced up to dimensions of about 500 million light-years. The fluctuations in the average density of matter diminish as the scale of the structure being investigated increases. In maps that cover distances that reach close to the observable limit, the average density of matter changes by less than a tenth of a percent.

To test Hubble’s law, astronomers need to measure distances to galaxies. One method for gauging distance is to observe the apparent brightness of a galaxy. If one galaxy is four times fainter in the night sky than an otherwise comparable galaxy, then it can be estimated to be twice as far away. This expectation has now been tested over the whole of the visible range of distances.

universe essay 300 words

HOMOGENEOUS DISTRIBUTION of galaxies is apparent in a map that includes objects from 300 to 1,000 million light-years away. The only inhomogeneity, a gap near the center line, occurs because part of the sky is obscured by the Milky Way. Michael Strauss of the Institute for Advanced Study in Princeton, N.J., created the map using data from NASA’s Infrared Astronomical Satellite .

Some critics of the theory have pointed out that a galaxy that appears to be smaller and fainter might not actually be more distant. Fortunately, there is a direct indication that objects whose redshifts are larger really are more distant. The evidence comes from observations of an effect known as gravitational lensing. An object as massive and compact as a galaxy can act as a crude lens, producing a distorted, magnified image (or even many images) of any background radiation source that lies behind it. Such an object does so by bending the paths of light rays and other electromagnetic radiation. So if a galaxy sits in the line of sight between the earth and some distant object, it will bend the light rays from the object so that they are observable [see “Gravitational Lenses,” by Edwin L. Turner; SCIENTIFIC AMERICAN, July 1988]. During the past decade, astronomers have discovered more than a dozen gravitational lenses. The object behind the lens is always found to have a higher redshift than the lens itself, confirming the qualitative prediction of Hubble’s law.

Hubble’s law has great significance not only because it describes the expansion of the universe but also because it can be used to calculate the age of the cosmos. To be precise, the time elapsed since the big bang is a function of the present value of Hubble’s constant and its rate of change. Astronomers have determined the approximate rate of the expansion, but no one has yet been able to measure the second value precisely.

Still, one can estimate this quantity from knowledge of the universe’s average density. One expects that because gravity exerts a force that opposes expansion, galaxies would tend to move apart more slowly now than they did in the past. The rate of change in expansion is therefore related to the gravitational pull of the universe set by its average density. If the density is that of just the visible material in and around galaxies, the age of the universe probably lies between 12 and 20 billion years. (The range allows for the uncertainty in the rate of expansion.)

Yet many researchers believe the density is greater than this minimum value. So-called dark matter would make up the difference. A strongly defended argument holds that the universe is just dense enough that in the remote future the expansion will slow almost to zero. Under this assumption, the age of the universe decreases to the range of seven to 13 billion years.

universe essay 300 words

DENSITY of neutrons and protons in the universe determined the abundances of certain elements. For a higher density universe, the computed helium abundance is little different, and the computed abundance of deuterium is considerably lower. The shaded region is consistent with the observations, ranging from an abundance of 24 percent for helium to one part in 1010 for the lithium isotope. This quantitative agreement is a prime success of the big bang cosmology.

To improve these estimates, many astronomers are involved in intensive research to measure both the distances to galaxies and the density of the universe. Estimates of the expansion time provide an important test for the big bang model of the universe. If the theory is correct, everything in the visible universe should be younger than the expansion time computed from Hubble’s law.

These two timescales do appear to be in at least rough concordance. For example, the oldest stars in the disk of the Milky Way galaxy are about nine billion years old—an estimate derived from the rate of cooling of white dwarf stars. The stars in the halo of the Milky Way are somewhat older, about 15 billion years—a value derived from the rate of nuclear fuel consumption in the cores of these stars. The ages of the oldest known chemical elements are also approximately 15 billion years—a number that comes from radioactive dating techniques. Workers in laboratories have derived these age estimates from atomic and nuclear physics. It is noteworthy that their results agree, at least approximately, with the age that astronomers have derived by measuring cosmic expansion.

Another theory, the steady state theory, also succeeds in accounting for the expansion and homogeneity of the universe. In 1946 three physicists in England—Hoyle, Hermann Bondi and Thomas Gold—proposed such a cosmology. In their theory the universe is forever expanding, and matter is created spontaneously to fill the voids. As this material accumulates, they suggested, it forms new stars to replace the old. This steady state hypothesis predicts that ensembles of galaxies close to us should look statistically the same as those far away. The big bang cosmology makes a different prediction: if galaxies were all formed long ago, distant galaxies should look younger than those nearby because light from them requires a longer time to reach us. Such galaxies should contain more shortlived stars and more gas out of which future generations of stars will form.

The test is simple conceptually, but it took decades for astronomers to develop detectors sensitive enough to study distant galaxies in detail. When astronomers examine nearby galaxies that are powerful emitters of radio wavelengths, they see, at optical wavelengths, relatively round systems of stars. Distant radio galaxies, on the other hand, appear to have elongated and sometimes irregular structures. Moreover, in most distant radio galaxies, unlike the ones nearby, the distribution of light tends to be aligned with the pattern of the radio emission.

Likewise, when astronomers study the population of massive, dense clusters of galaxies, they find differences between those that are close and those far away. Distant clusters contain bluish galaxies that show evidence of ongoing star formation. Similar clusters that are nearby contain reddish galaxies in which active star formation ceased long ago. Observations made with the Hubble Space Telescope confirm that at least some of the enhanced star formation in these younger clusters may be the result of collisions between their member galaxies, a process that is much rarer in the present epoch.

universe essay 300 words

DISTANT GALAXIES differ greatly from those nearby—an observation that shows that galaxies evolved from earlier, more irregular forms. Among galaxies that are bright at both optical ( blue ) and radio ( red ) wavelengths, the nearby galaxies tend to have smooth elliptical shapes at optical wavelengths and very elongated radio images. As redshift, and therefore distance, increases, galaxies have more irregular elongated forms that appear aligned at optical and radio wavelengths. The galaxy at the far right is seen as it was at 10 percent of the present age of the universe. The images were assembled by Pat McCarthy of the Carnegie Institute.

So if galaxies are all moving away from one another and are evolving from earlier forms, it seems logical that they were once crowded together in some dense sea of matter and energy. Indeed, in 1927, before much was known about distant galaxies, a Belgian cosmologist and priest, Georges Lemaître, proposed that the expansion of the universe might be traced to an exceedingly dense state he called the primeval “super-atom.” It might even be possible, he thought, to detect remnant radiation from the primeval atom. But what would this radiation signature look like?

When the universe was very young and hot, radiation could not travel very far without being absorbed and emitted by some particle. This continuous exchange of energy maintained a state of thermal equilibrium; any particular region was unlikely to be much hotter or cooler than the average. When matter and energy settle to such a state, the result is a so-called thermal spectrum, where the intensity of radiation at each wavelength is a definite function of the temperature. Hence, radiation originating in the hot big bang is recognizable by its spectrum.

In fact, this thermal cosmic background radiation has been detected. While working on the development of radar in the 1940s, Robert H. Dicke, then at the Massachusetts Institute of Technology, invented the microwave radiometer—a device capable of detecting low levels of radiation. In the 1960s Bell Laboratories used a radiometer in a telescope that would track the early communications satellites Echo-1 and Telstar. The engineer who built this instrument found that it was detecting unexpected radiation. Arno A. Penzias and Robert W. Wilson identified the signal as the cosmic background radiation. It is interesting that Penzias and Wilson were led to this idea by the news that Dicke had suggested that one ought to use a radiometer to search for the cosmic background.

Astronomers have studied this radiation in great detail using the Cosmic Background Explorer (COBE) satellite and a number of rocket-launched, balloon-borne and ground-based experiments. The cosmic background radiation has two distinctive properties. First, it is nearly the same in all directions. (As George F. Smoot of Lawrence Berkeley Laboratory and his team discovered in 1992, the variation is just one part per 100,000.) The interpretation is that the radiation uniformly fills space, as predicted in the big bang cosmology. Second, the spectrum is very close to that of an object in thermal equilibrium at 2.726 kelvins above absolute zero. To be sure, the cosmic background radiation was produced when the universe was far hotter than 2.726 degrees, yet researchers anticipated correctly that the apparent temperature of the radiation would be low. In the 1930s Richard C. Tolman of the California Institute of Technology showed that the temperature of the cosmic background would diminish because of the universe’s expansion.

The cosmic background radiation provides direct evidence that the universe did expand from a dense, hot state, for this is the condition needed to produce the radiation. In the dense, hot early universe thermonuclear reactions produced elements heavier than hydrogen, including deuterium, helium and lithium. It is striking that the computed mix of the light elements agrees with the observed abundances. That is, all evidence indicates that the light elements were produced in the hot, young universe, whereas the heavier elements appeared later, as products of the thermonuclear reactions that power stars.

The theory for the origin of the light elements emerged from the burst of research that followed the end of World War II. George Gamow and graduate student Ralph A. Alpher of George Washington University and Robert Herman of the Johns Hopkins University Applied Physics Laboratory and others used nuclear physics data from the war e›ort to predict what kind of nuclear processes might have occurred in the early universe and what elements might have been produced. Alpher and Herman also realized that a remnant of the original expansion would still be detectable in the existing universe.

Despite the fact that significant details of this pioneering work were in error, it forged a link between nuclear physics and cosmology. The workers demonstrated that the early universe could be viewed as a type of thermonuclear reactor. As a result, physicists have now precisely calculated the abundances of light elements produced in the big bang and how those quantities have changed because of subsequent events in the interstellar medium and nuclear processes in stars.

Our grasp of the conditions that prevailed in the early universe does not translate into a full understanding of how galaxies formed. Nevertheless, we do have quite a few pieces of the puzzle. Gravity causes the growth of density fluctuations in the distribution of matter, because it more strongly slows the expansion of denser regions, making them grow still denser. This process is observed in the growth of nearby clusters of galaxies, and the galaxies themselves were probably assembled by the same process on a smaller scale.

The growth of structure in the early universe was prevented by radiation pressure, but that changed when the universe had expanded to about 0.1 percent of its present size. At that point, the temperature was about 3,000 kelvins, cool enough to allow the ions and electrons to combine to form neutral hydrogen and helium. The neutral matter was able to slip through the radiation and to form gas clouds that could collapse to star clusters. Observations show that by the time the universe was one fifth its present size, matter had gathered into gas clouds large enough to be called young galaxies.

A pressing challenge now is to reconcile the apparent uniformity of the early universe with the lumpy distribution of galaxies in the present universe. Astronomers know that the density of the early universe did not vary by much, because they observe only slight irregularities in the cosmic background radiation. So far it has been easy to develop theories that are consistent with the available measurements, but more critical tests are in progress. In particular, different theories for galaxy formation predict quite different fluctuations in the cosmic background radiation on angular scales less than about one degree. Measurements of such tiny fluctuations have not yet been done, but they might be accomplished in the generation of experiments now under way. It will be exciting to learn whether any of the theories of galaxy formation now under consideration survive these tests.

The present-day universe has provided ample opportunity for the development of life as we know it—there are some 100 billion billion stars similar to the sun in the part of the universe we can observe. The big bang cosmology implies, however, that life is possible only for a bounded span of time: the universe was too hot in the distant past, and it has limited resources for the future. Most galaxies are still producing new stars, but many others have already exhausted their supply of gas. Thirty billion years from now, galaxies will be much darker and filled with dead or dying stars, so there will be far fewer planets capable of supporting life as it now exists.

The universe may expand forever, in which case all the galaxies and stars will eventually grow dark and cold. The alternative to this big chill is a big crunch. If the mass of the universe is large enough, gravity will eventually reverse the expansion, and all matter and energy will be reunited. During the next decade, as researchers improve techniques for measuring the mass of the universe, we may learn whether the present expansion is headed toward a big chill or a big crunch.

In the near future, we expect new experiments to provide a better understanding of the big bang. As we improve measurements of the expansion rate and the ages of stars, we may be able to confirm that the stars are indeed younger than the expanding universe. The larger telescopes recently completed or under construction may allow us to see how the mass of the universe affects the curvature of spacetime, which in turn influences our observations of distant galaxies.

We will also continue to study issues that the big bang cosmology does not address. We do not know why there was a big bang or what may have existed before. We do not know whether our universe has siblings—other expanding regions well removed from what we can observe. We do not understand why the fundamental constants of nature have the values they do. Advances in particle physics suggest some interesting ways these questions might be answered; the challenge is to find experimental tests of the ideas.

In following the debate on such matters of cosmology, one should bear in mind that all physical theories are approximations of reality that can fail if pushed too far. Physical science advances by incorporating earlier theories that are experimentally supported into larger, more encompassing frameworks. The big bang theory is supported by a wealth of evidence: it explains the cosmic background radiation, the abundances of light elements and the Hubble expansion. Thus, any new cosmology surely will include the big bang picture. Whatever developments the coming decades may bring, cosmology has moved from a branch of philosophy to a physical science where hypotheses meet the test of observation and experiment.

  • Engineering
  • Write For Us
  • Privacy Policy

universe essay 300 words

Essay on Wonder of Science

essay on wonder of science

Here we have shared the Essay on Wonder of Science in detail so you can use it in your exam or assignment of 150, 250, 400, 500, or 1000 words.

You can use this Essay on Wonder of Science in any assignment or project whether you are in school (class 10th or 12th), college, or preparing for answer writing in competitive exams. 

Topics covered in this article.

Essay on Wonder of Science in 150 words

  • Essay on Wonder of Science in 250-300 words
  • Essay on Wonder of Science in 500 words
  • Essay on Wonder of Science in 1000 words

Science has gifted humanity with countless wonders that have transformed our world. Electricity, with its ability to power our lives and drive technological advancements, is a marvel. Medical breakthroughs have conquered diseases and extended human life. The exploration of space has unveiled the mysteries of the universe, leading to practical applications and expanding our knowledge. Information technology, including computers and the internet, has revolutionized communication and connectivity. These wonders of science have shaped our society and hold immense potential for the future. Science continues to push boundaries, and we must embrace its wonders responsibly for the betterment of humanity.

Essay on Wonder of Science in 250-350 words

The wonders of science have shaped and transformed our world in remarkable ways. From advancements in technology to groundbreaking discoveries, science has opened new frontiers of knowledge and revolutionized various fields.

One of the wonders of science is the ability to harness and manipulate electricity. Electricity powers our homes, industries, and transportation systems. It enables communication, powers medical equipment, and drives technological innovations. The discovery and understanding of electricity have paved the way for numerous advancements that have transformed our lives.

Another wonder of science is medical advancements. Through scientific research and innovation, diseases that were once fatal have been cured or managed effectively. Medical technologies, such as vaccines, antibiotics, and advanced imaging systems, have improved healthcare outcomes and extended human lifespan. Science continues to unravel the complexities of the human body, providing new insights and treatments for various ailments.

The field of space exploration is yet another wonder of science. Through scientific inquiry and technological advancements, humans have ventured into space, unraveling the mysteries of the universe. Satellites and space probes have provided us with invaluable data about our planet, the solar system, and beyond. Space exploration has not only expanded our understanding of the cosmos but has also led to practical applications, such as satellite communication and weather forecasting.

Furthermore, the wonders of science can be witnessed in the realm of information technology. Computers, the internet, and digital technologies have revolutionized communication, education, and business. They have connected people from different corners of the world, democratized access to knowledge, and transformed the way we work and interact. The rapid advancements in information technology continue to reshape our society and hold great potential for the future.

In conclusion, the wonders of science have brought about incredible advancements and discoveries that have shaped our world. From electricity and medical advancements to space exploration and information technology, science continues to push the boundaries of knowledge and revolutionize various fields. As we embrace the wonders of science, we must also recognize the responsibility to use these advancements for the betterment of humanity and the preservation of our planet.

Essay on Wonder of Science in 500-1000 words

Title: The Wonders of Science – Unveiling the Marvels that Shape Our World

Introduction :

Science, with its remarkable achievements and groundbreaking discoveries, has unfolded a world of wonders that have transformed our lives. From advancements in technology to profound revelations in understanding the natural world, science continues to shape and redefine our existence. This essay explores the wonders of science, highlighting the marvels that have revolutionized various fields and left an indelible impact on humanity.

Electricity : Illuminating the World

One of the most significant wonders of science is the harnessing and manipulation of electricity. The discovery of electricity and its practical applications have revolutionized society. It powers our homes, industries, and transportation systems, providing comfort, convenience, and efficiency. Electric lighting has transformed nights into days, extending productivity and enhancing safety. Electricity enables communication across vast distances, linking people and cultures. Moreover, the advent of electrical appliances and devices has simplified tasks, improved living standards, and enabled innovations in various sectors.

Medical Advancements : Prolonging and Enhancing Lives

The wonders of science are vividly demonstrated in the field of medicine. Medical advancements have conquered diseases, prolonged human life, and improved healthcare outcomes. Scientific research and innovation have led to the development of vaccines, antibiotics, and life-saving treatments. These medical breakthroughs have eradicated or significantly reduced the prevalence of once-deadly diseases, offering hope and better health for millions of people worldwide. Furthermore, advanced medical technologies and imaging systems have revolutionized diagnostics, enabling precise and early detection of ailments. This has facilitated more effective treatment plans and improved patient care.

Space Exploration : Unraveling the Mysteries of the Cosmos

Space exploration stands as a testament to the wonders of science. Humans’ relentless curiosity and scientific inquiry have propelled us to venture into the cosmos, unraveling the mysteries of the universe. Through manned missions, space probes, and satellites, scientists have gained invaluable insights into our own planet, the solar system, and beyond. Space exploration has provided us with breathtaking images, expanded our understanding of celestial bodies, and shed light on the origins and evolution of the cosmos. Moreover, practical applications of space exploration, such as satellite communication, global positioning systems (GPS), and weather forecasting, have become integral to modern life.

Information Technology : Digital Revolution

The rapid advancements in information technology have heralded a digital revolution, transforming the way we communicate, work, and access information. Computers, the internet, and digital technologies have brought unparalleled connectivity and convenience. They have connected people across the globe, democratized access to knowledge, and revolutionized industries. The internet has become an indispensable tool for communication, collaboration, and information sharing. It has facilitated online education, remote work, and e-commerce. Furthermore, digital technologies have paved the way for innovations such as artificial intelligence, big data analytics, and virtual reality, opening new frontiers in various fields, including healthcare, finance, and entertainment.

Conclusion :

The wonders of science have unfolded a realm of marvels that have shaped and redefined our world. Electricity has revolutionized our lives, while medical advancements have conquered diseases and extended human life expectancy. Space exploration has unraveled the mysteries of the universe, offering practical applications and expanding our knowledge. Information technology has connected us like never before, transforming communication and industries. As we continue to embrace the wonders of science, it is crucial to harness these marvels responsibly, ensuring their benefits reach all of humanity, and using them to foster sustainable progress and a brighter future.

Related Articles More From Author

What is pharmacognosy, essay on community service, essay on plagiarism.

Your Article Library

Essay on our universe: definition, stars and solar system.

universe essay 300 words

ADVERTISEMENTS:

Essay  on Our Universe: Definition, Stars and Solar System!

When we look at the sky, we see different kinds of natural bodies like the sun, the stars, the moon, and so on. The natural bodies in the sky are called celestial bodies or heavenly bodies. They are part of our universe. The universe is a huge space which contains everything that exists. The celestial bodies that we see are just a small fraction of the bodies that exist in the universe. One of the reasons why we do not see more of them is that they are very, very far away.

To measure the large distances in the universe, scientists use a unit of length called the light year. A light year is the distance travelled by light in one year. Light travels 9.46 trillion km in a year (one trillion is 1 followed by 12 zeroes).

One light year represents this huge distance. Proxima Centauri, the star closest to our solar system, is 4.2 light years from us. This means that light from this star takes 4.2 years to reach us. In this article, we shall learn a bit about stars and our solar system. But before that, let us see how the universe was formed.

Scientists believe that the universe was born after a massive explosion called the ‘big bang’. A long time after the big bang, stars like our sun were formed. At that time, clouds of hot gases and particles revolved around the sun. Over time, many particles got stuck together to form large bodies. These bodies pulled in smaller objects near them by gravitational force. This made them larger still. These bodies finally became the planets.

Away from the lights of the city, you can see thousands of stars in the night sky. You can also see some planets and their moons, either with the naked eye or with the help of a telescope. These celestial bodies are different from the stars in one important way. Stars are celestial bodies that produce their own heat and light. Planets and their moons shine by reflecting the light of a star such as our sun.

All stars are huge balls of hydrogen and helium gases. In a star, hydrogen gets converted into helium. In this reaction, a large amount of energy is liberated. This is the source of the heat and light of a star. Stars vary in brightness and size. Some are medium-sized, like our sun. Some are so huge that if they were to be placed in our sun’s position, they would fill the entire solar system!

A star is born in a cloud of gases called a nebula

There are trillions of stars in the universe. They occur in groups called galaxies. The gravitational force between stars keeps the stars of a galaxy together. Apart from stars, a galaxy may have other celestial bodies like planets and moons. So you can say that a galaxy is a group of stars and other celestial bodies bound together by gravitational force.

The distribution of the stars in a galaxy can give it a shape such as spiral, ring or elliptical. Our sun is a part of a spiral galaxy called the Milky Way Galaxy. This galaxy is named after the Milky Way. The Milky Way is a band of stars that we can see on a clear night. These stars are a part of our galaxy. The ancient Romans called this band of stars Via Galactica, or ‘road of milk’. That is how our galaxy got its name.

(a) A ring galaxy and (b) a spiral galaxy

Constellations :

As the earth moves round the sun, we see different stars at different times of the year. In the past, people found many uses for this. For example, they would get ready for sowing when particular stars appeared in the sky. Obviously, it was not possible for them to identify each and every star. So, they looked for groups of stars which seem to form patterns in the sky. A group of stars which seem to form a pattern is called a constellation.

Ancient stargazers made stories about the constellations and named them after the animals, heroes, etc., from these stories. So constellations got names like Cygnus (swan), Leo (lion), Taurus (bull), Cancer (crab), Perseus (a hero) and Libra (scale). You can see many of these constellations on a clear night.

The Great Bear (Ursa Major) is one of the easiest constellations to spot. You can see it between February and May. Its seven brightest stars form the shape of a dipper (a long-handled spoon used for drawing out water). Together, these stars are called the Big Dipper or Saptarshi. These and the other stars of the constellation roughly form the shape of a bear.

The two brightest stars of the Big Dipper are called ‘pointers’ because they point towards the pole star. The pole star lies at the tail of the bear of a smaller constellation called the Little Bear (Ursa Minor).

To find the north direction, ancient travellers would look for the Big Dipper and from there, locate the pole star. While all stars seem to move from the east to the west (as the earth rotates in the opposite direction), the pole star seems fixed. This is because it lies almost directly above the earth’s North Pole [Figure 13.3 (c)].

(a) The Great Bear and the Little Bear (b) The two brightest star of the Great Bear point towards the pole star. (c) The Pole star seems fixed above the north pole of the earth, while the other stars appears to move opposite to the direction of the rotation of the earth

Orion (the Hunter) and Scorpius are two other prominent constellations. There are different stories linking them. According to one, the mighty hunter Orion vowed to kill all the animals of the world. Alarmed at this, the Earth Goddess sent a scorpion to kill Orion. He ran away, and continues to do so even now. This story takes into account the fact that Orion goes below the horizon when Scorpius rises. Orion rises again only when Scorpius sets.

(a) Orion (b) Scorpius

Remember that constellations are imaginary. For our convenience we have picked a few stars that resemble a pattern and called them a constellation. On the other hand, galaxies are real things in which stars and other celestial bodies are held together by gravitational force.

The Solar System :

The sun is the brightest object in the sky. It is huge. It is about 333,000 times heavier than the earth, and you could fit more than a million earths inside it! Its great mass causes a large gravitational force. This keeps the sun, the planets, their moons and some other smaller bodies together as the sun’s family. The sun and all the bodies moving around it are together called the solar system. All the members of the solar system revolve around the sun in almost circular paths, or orbits.

The solar system

After the sun, the planets are the largest bodies in our solar system. Scientists define a planet as a round body that orbits the sun and which has pulled in all objects near its orbit. Remember that planets were formed when large bodies in space pulled in smaller bodies near it. This cleared the space around a planet’s orbit.

There are eight planets in our solar system. In order of distance from the sun they are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune. You can remember this order as My Very Efficient Maid Just Served Us Noodles.

Apart from revolving around the sun, each planet rotates, or spins, about its axis. The time taken to complete a revolution around the sun is the length of a planet’s year. And the time taken to complete one rotation is the planet’s day.

The four planets closest to the sun—Mercury, Venus, Earth and Mars—are small, rocky planets. They are called terrestrial (earthlike) planets. The other four planets—Jupiter, Saturn, Uranus and Neptune—are giants in comparison.

They are made up mainly of gases. They are called gas giants or Jovian (Jupiter like) planets. All the gas giants have rings around them. Since they are very far from the sun, the gas giants are much colder than the terrestrial planets.

While stars twinkle, planets shine with a steady light. You can see some of the planets with the naked eyes or with the help of a good pair of binoculars. Just remember that as the planets move around the sun, they appear at different positions in the sky at different times of the year. And for the period they are behind the sun, they are not visible.

Mercury, the smallest planet of our solar system, revolves around the sun the fastest. But it rotates on its axis at a much slower speed than the earth. So, a day on Mercury is about 58 times longer than a day on earth.

Although Mercury is the closest to the sun, it is not the hottest planet. Its thin atmosphere cannot trap heat. So, at night, when there is no sun, the temperature can fall to as low as -180°C. You can see Mercury near the eastern horizon before sunrise at certain times of the year. And at certain other times, you can see it near the western horizon after sunset.

The thick atmosphere of Venus makes it the brightest and the hottest planet of the solar system. Its atmosphere has mainly carbon dioxide gas, which reflects a lot of sunlight. But it also traps so much heat that the average temperature on Venus is about 450°C.

Venus takes 243 days to complete one rotation, making its day the longest in the solar system. As a matter of fact, a day on Venus is longer than its year! It is easy to spot Venus because it is so bright. When it is visible in the east before sunrise, it is called a morning star. And when it is visible in the west in the evening, it is called an evening star.

The earth is not the fastest, slowest, hottest, coldest, largest or smallest planet. But it is the only planet on which life is known to exist. The planet’s distance from the sun, the composition of its atmosphere and the fact that liquid water is found on it make life possible on it.

Were it nearer the sun, the water on it would have evaporated. Were it farther away, all our oceans, rivers and lakes would have frozen. The carbon dioxide in the earth’s atmosphere plays two important roles. Plants use it to make food—which feeds, directly or indirectly, all animals. It also traps just enough heat to ensure that the nights on earth do not become freezing cold.

No other planet evokes so much interest as Mars does. This is because scientists have found evidence that liquid water once flowed through the channels visible on its surface. So it is possible that some form of life once existed on this planet. The rust-coloured soil of Mars gives it a red colour. So, it is also called the Red Planet.

Mars - the red planet

When visible, Mars looks like a red sphere. During its two-year orbit, it looks the brightest when the earth is between the sun and Mars. During this time, you can see it rise in the east as the sun sets in the west.

Jupiter is the largest and the heaviest planet of our solar system. It also has the largest number of moons. The strong winds blowing on it, and on the other gas giants, create light and dark areas, giving them a striped look.

If you look through a powerful telescope, you will see a big spot on Jupiter’s surface. This spot is actually a huge storm, which has been raging on Jupiter for more than 300 years. In 1979, the Voyager 1 spacecraft discovered faint rings around Jupiter. These rings are not visible even through the most powerful earth-based telescopes. Jupiter is also visible to the naked eye. It looks like a bright spot in the sky.

You can easily recognise a picture of Saturn because of the planet’s prominent rings. These rings are actually particles of dust and ice revolving around Saturn. Apart from these particles, a large number of moons orbit this planet.

(a) Winds in Jupiter's atmosheres give it a striped look. The Spot its surface is an ancent storm (b) Saturn and its rings

Uranus and Neptune:

Uranus and Neptune are the third and the fourth largest planets respectively. Yet, they were the last two planets to be discovered. That is because they are so far away from us. Even today, we know very little about them.

Planet facts

The moons of planets :

An object revolving around a celestial body is known as a satellite. All planets except Mercury and Venus have natural satellites, or moons, revolving around them. So far, we know of more than 150 planetary moons. Some of them are so small that they were discovered only when spacecraft flew past them. A few of the moons are almost as large as planets. One of Jupiter’s moons, Ganymede, is the largest of them all. It is even larger than Mercury. Of all the moons, we know the most about the earth’s moon.

The earth’s moon:

The earth’s moon is the brightest object in the night sky. It shines by reflecting sunlight. If you look at the moon through a telescope or a good pair of binoculars, you will see a number of craters on its surface. These are large depressions created when huge rocks from space hit the moon. The moon does not have water or an atmosphere. It also does not have life on it.

The moon takes 27 days and 8 hours to complete one revolution around the earth. In this time it also completes one rotation around its axis. We see different shapes of the moon as it travels around the earth.

Stand in front of a lamp in a darkened room. Hold a ball in your outstretched arm and move it around you, just as the moon moves around the earth. A friend standing some distance away from you will always see half of the ball (moon) lit by the lamp (sun). But to you (earth) the shape of the lit portion will keep on changing, like the changing shapes of the moon.

The moons of planets

Sunlight lights up half of the moon. As the moon revolves around the earth, we see different parts of the sunlit half. The shapes of these parts are called the phases of the moon. When the entire side facing the earth is sunlit, the moon appears as a full disc. We call this the full moon or purnima. And when the side of the moon facing us gets no sunlight, we do not see the moon.

This is called the new moon or amavasya. After the new moon, the moon appears as a thin crescent. As days pass, we see larger portions of the moon till the full moon appears. After this, the size of the moon visible to us gradually decreases till we once again have the new moon. The whole cycle of one new moon to the next takes 29.5 days. So the new moon and the full moon appear about fifteen days from each other.

The shape of the sunlit half of the moon visible to us changes

Dwarf planets :

A dwarf planet is a small, round body that orbits the sun. At the time of its formation, a dwarf planet could not pull in all other objects near its orbit. So it is not considered a planet. Pluto, which was previously considered a planet, is now considered a dwarf planet. Ceres and Eris are two other dwarf planets.

Asteroids :

In a belt between the orbits of Mars and Jupiter, millions of small, irregular, rocky bodies revolve around the sun. These are asteroids, and the belt is known as the asteroid belt. Asteroids are also called minor planets.

Scientists think that asteroids are pieces of material that failed to come together to form a planet when the solar system was being formed. Asteroids can measure a few metres to hundreds of kilometres in width. Some asteroids even have moons.

Asteroids can have moons too

Meteoroids :

Asteroids were not the only pieces of rock left over from the formation of the solar system. Some others, called meteoroids, still orbit the sun. When they come very close to a planet such as the earth, gravitation pulls them in.

As they enter the earth’s atmosphere, they heat up because of friction with the air, and start burning. As these burning meteoroids fall towards the ground, we see them as streaks of light. The streak of light caused by a burning meteoroid is called a meteor or a shooting star.

Fortunately, the material of most meteoroids burns up completely before it can reach the surface of the earth. However, some large ones fail to burn up completely and strike the earth’s surface. Meteoroids that fall on a planet or a moon are called meteorites. A large meteorite can create a large crater and cause a lot of damage.

Scientists think that dinosaurs were wiped off the earth following a meteorite hit. Meteorite hits are more common on those planets and moons which have little or no atmosphere to burn off the falling rock. The craters on our moon have resulted from meteorite hits.

A comet is a small body of ice and dust that moves around the sun in an elongated orbit. As a comet approaches the sun, it heats up and leaves behind a stream of hot, glowing gases and dust particles. We see this as the ‘tail’ of the comet.

A comet

Related Articles:

  • Solar System: Keynotes on our Solar System
  • 8 Important Facts Regarding the Evolution of Universe | Universe

No comments yet.

Leave a reply click here to cancel reply..

You must be logged in to post a comment.

web statistics

24/7 writing help on your phone

To install StudyMoose App tap and then “Add to Home Screen”

Universe Essay Examples

Universe - Free Essay Examples and Topic Ideas

The universe is a vast expanse of space that encompasses all the matter and energy that exists. It includes everything from galaxies to stars, planets to asteroids, and even the tiniest particles that make up matter. The universe is estimated to be around 13.8 billion years old and is constantly expanding. It is home to countless mysteries and wonders, from black holes and supernovae to galaxies far beyond our own. Despite its incredible size, the universe remains a source of fascination and curiosity for scientists and people around the world.

  • 📘 Free essay examples for your ideas about Universe
  • 🏆 Best Essay Topics on Universe
  • ⚡ Simple & Universe Easy Topics
  • 🎓 Good Research Topics about Universe

Essay examples

Essay topic.

Save to my list

Remove from my list

  • The Distance to Andromeda
  • It is important to define “God” first since we cannot prove the
  • Parallel Universe
  • Aquinas’ First mover
  • About Inn Signs
  • Origin of the universe as one entity
  • Dark Energy, Dark Matter
  • Short Summary Essay on the Big Bang
  • Scientific: Human and Science
  • High Tide in Tucson Barbara Kingsolver
  • The Inclusion of Transgender Women in the Miss Universe
  • In Defense of the Kalam Cosmological Argument
  • Maccabian Janissaries – Explanation
  • Literary Analysis: Hello, Universe by Erin Entrada Kelly
  • Fiction and Flatland’s Theory of Imaginary Worlds
  • Could You Look at Your Life
  • The Distribution of Narcotics in the Depths of Cyberspace
  • The Big Bang Theory is a Theory of how the Universe Started
  • Stephen Hawking’s Studies on Physics and Cosmology
  • Astronomy Ch. 18
  • The Big Bang Theory: Beginning of the Universe
  • Philosophy Questions
  • The Origin of the Universe
  • Should Space Exploration Be Continued?
  • The Science of Energy
  • Claims of Creationisms and Evolution
  • Across the Universe Army Draft Scene Close Analysis
  • My family is a typical Christian family
  • What We See Up There in The Night Sky
  • God is responsible for everything that happens in the universe
  • What Drives History?

FAQ about Universe

search

👋 Hi! I’m your smart assistant Amy!

Don’t know where to start? Type your requirements and I’ll connect you to an academic expert within 3 minutes.

Writing Universe - logo

  • Environment
  • Information Science
  • Social Issues
  • Argumentative
  • Cause and Effect
  • Classification
  • Compare and Contrast
  • Descriptive
  • Exemplification
  • Informative
  • Controversial
  • Exploratory
  • What Is an Essay
  • Length of an Essay
  • Generate Ideas
  • Types of Essays
  • Structuring an Essay
  • Outline For Essay
  • Essay Introduction
  • Thesis Statement
  • Body of an Essay
  • Writing a Conclusion
  • Essay Writing Tips
  • Drafting an Essay
  • Revision Process
  • Fix a Broken Essay
  • Format of an Essay
  • Essay Examples
  • Essay Checklist
  • Essay Writing Service
  • Pay for Research Paper
  • Write My Research Paper
  • Write My Essay
  • Custom Essay Writing Service
  • Admission Essay Writing Service
  • Pay for Essay
  • Academic Ghostwriting
  • Write My Book Report
  • Case Study Writing Service
  • Dissertation Writing Service
  • Coursework Writing Service
  • Lab Report Writing Service
  • Do My Assignment
  • Buy College Papers
  • Capstone Project Writing Service
  • Buy Research Paper
  • Custom Essays for Sale

Can’t find a perfect paper?

  • Free Essay Samples

Essays on Universe

The Significance of a Hypothesis The improvements in the world since the human life started results from the proposition of something with the aim of making it better or eliminate a problem. Every situation with issues to be addressed, a hypothesis pioneers the process. Therefore, a hypothesis is a statement concerning...

The Big Bang theory is a model that explains how the universe and the matter within it was formed from a cosmic singularity. This model posits that in over thirteen billion years since the formation of the universe, it has expanded from a tiny yet dense and hot primordial fireball...

How humans relate to the cosmos, to the deities, and to one another can be answered using the Aztecs' vast understanding of the universe, everything in it, and how they all interact. The eternal power or energy is self-generating and self-regenerating, according to Aztec philosophy. It is referred to as...

Words: 3099

When Slipher noticed inclined absorption lines in the nuclear spectra of the M31 and the Sombrero galaxy he made the discovery that the galaxies rotate in 1914. (Read, Iorio, Agertz, and Fraternali 2016). Wolf therefore also identified the M81 s likely atomic range lines in the same year (McGaugh, Lelli ,...

Words: 2568

Giordano Bruno was born in Nola, near Naples, in 1548. He was an Italian philosopher, astronomer, mathematician, and oculist. His theories were in advance of modern science (Yates, 2014). The most noteworthy of Giordano's hypotheses, which contradict traditional geocentric astronomy and intuitively go beyond the sun-centered theory, which accounts of...

The Study of Cosmology The study of the universe's nature, origin, evolution, and future is known as cosmology. It's "the scientific study of the large-scale features of the cosmos as a whole," according to the National Aeronautics and Space Administration.Separation into Mythological and Physical Cosmology It is further separated into Mythological cosmology,...

Words: 1153

Found a perfect essay sample but want a unique one?

Request writing help from expert writer in you feed!

The Questions of Extraterrestrial Life The questions "are we alone in the universe?" and "is there life on other planets?" have persisted for a long time. Are we really alone on Earth? Many people believe we are alone, while others claim we are not.Exploring the Possibility of Extraterrestrial Life In an effort...

Words: 1555

Many astronomers concur that a massive explosion of matter and energy created the cosmos. The Big Bang Theory, which is a model rather than a theory concerning the origin of the universe, is the name given to this hypothesis. Astronomers consider the concept to be the most plausible explanation for...

Words: 2214

A selection of women who made a significant contribution to the discipline of astronomy are highlighted in Sobel s book. While employed by Harvard College University, these women made important discoveries. The book emphasizes the sophisticated astronomical concepts these women formed while delving deeply into their lives. The book examines...

Words: 1370

The Moon is a celestial astronomical satellite that orbits the Earth. The moon is the fifth largest body in the solar system, and it has the second highest density. The moon is around 3.84 thousand kilometers from Earth and is believed to have evolved 4.51 billion years ago from debris...

Words: 1382

The origin of the Universe is explained using the most common explanation of the Universe's origin, e.g. the Big Bang Theory, which is based around a celestial cataclysm in all human history. When I watched the documentary Particle Fever (Levinson, 2013), I saw that all other galaxies were moving away...

Words: 2330

The evolution theme is used to educate people about how the universe came to be. The creation problem, according to Fred, fully accounts for the relationship between nature and its creator (2016).The Cosmos and the CreatorAs a result, the cosmos and the creator are central to the nature theme. The...

Related topic to Universe

You might also like.

Home / Essay Samples / Science / Astronomy / Universe

Universe Essay Examples

The red planet: the feasibility and implications of terraforming mars.

When scientists examine Mars' surface, they see features that is the work of flowing liquids: streams, river valleys and deltas. This suggests that the planet may have once had a vast ocean covering its northern hemisphere. Elsewhere, rainstorms appear to have soaked the landscape, carving...

The Copernican Revolution: a Pivotal Moment in Science

This is the Copernican Revolution essay that showed how it was started and what levels it went through earlier than it used to be ultimately accepted. Nicolaus Copernicus who founded the most famous model returned then and he known as it the heliocentric model, wherein...

The Concept of the Principle of Wormhole

This universe we live in is so huge and various that even subsequent to working for masses of years, space explorers and researchers have not started not been equipped for find it to its whole. Toward the beginning of the twentieth century, Albert Einstein changed...

What Intrigues Me in Studying Physics

Physics is the understanding of the universe, from the quantum to the cosmos. Wanting to understand reality and how what we do affects the things around us is the basis of who I am. There is no better way for me to explore this than...

The History of the Palomar Observatory

The study of the night sky has captivated humans for thousands of years. It was a way of life, humans could not have lived without their precious guide. The stars were used as a reference for navigation, used in architectural builds, and were worshipped as...

Atomic Theory: the Understanding of Elemental Properties

The world of science is a natural phenomenon, it being the way of life. It makes up a copious amount of the information we know from laws to discoveries and theories of specific details that make our world and its properties understandable. One of these...

NASA Astronomers Detect First X-rays from Uranus

NASA astronomers at the Chandra X-ray Observatory have detected X-ray emissions from Uranus. The X-ray emissions were detected from a 2002 and 2007 observation of the planet. Only one spacecraft has ever successfully approached Uranus. The astronomers at Chandra X-ray Observatory used observations of the...

How Do We Understand the Universe Around Us

The world we live on right now may very well be just one in a series of many worlds God has created. Moses 1:38 states, “And as one earth shall pass away, and the heavens thereof even so shall another come.” This may be shocking...

The Reasoning to the Existence of God

The universe is following the rules of nature and is operating like clockwork. Since everything operates according to set rules of nature which have been in place since creation, it is logical to say that the universe following all the laws of physics signifies that...

The Use of Ethos, Logos and Pathos in "Cosmic Perspective"

In Cosmic Perspective by Neil DeGrasse Tyson, the author argues on how people should feel empowered and large when learning our place in the universe rather than feeling insignificant or small. Tyson then continues to reason on how people with a big ego tend to...

Trying to find an excellent essay sample but no results?

Don’t waste your time and get a professional writer to help!

You may also like

  • Thomas Edison
  • Microbiology
  • Hermit Crab
  • Electricity
  • Natural Selection
  • Space Exploration Essays
  • Solar Eclipse Essays
  • Moon Essays
  • Stars Essays
  • Mars Essays
  • NASA Essays
  • Planet Essays
  • Uranus Essays
  • Mercury Essays
  • Wildlife Conservation Essays

samplius.com uses cookies to offer you the best service possible.By continuing we’ll assume you board with our cookie policy .--> -->