Python Topics

Popular articles.

  • Syntax And Usage - Dictionary Comprehensions (May 31, 2024)
  • Reading And Writing (Apr 27, 2024)
  • Asyncio (Apr 26, 2024)
  • Metaclasses (May 04, 2024)
  • Type Hints (May 04, 2024)

Conditional Dictionary Comprehensions

Table of Contents

Understanding Conditional Statements in Python

Combining dictionary comprehensions with conditional statements, examples of conditional dictionary comprehensions, benefits of using conditional dictionary comprehensions, common mistakes and how to avoid them, advanced usage of conditional dictionary comprehensions, practical applications of conditional dictionary comprehensions, exercises to practice conditional dictionary comprehensions.

Conditional statements, also known as decision-making statements, play a crucial role in Python. They allow the program to respond differently to different inputs, making it more flexible and useful. In Python, the primary conditional statements are `if`, `elif`, and `else`.

Here's a brief explanation of each:

  • The `if` statement checks a condition and executes the code within its block if the condition is True.
  • The `elif` (short for 'else if') statement checks another condition if the previous conditions were not met.
  • The `else` statement executes its block of code if none of the conditions above were met.

Let's illustrate this with a simple example:

In this code, Python checks the conditions in order. Since `age` is 20, it is not less than 13, so Python skips the first block of code. The second condition, `age < 18`, is also False, so Python skips the second block as well. Finally, Python executes the `else` block, and the output is "Adult". In the upcoming sections, we will see how these conditional statements can be used in conjunction with dictionary comprehensions to create more complex and useful data structures.

python conditional assignment dictionary

What does the 'elif' statement do in Python?

python conditional assignment dictionary

What are the primary conditional statements in Python?

What will be the output of the following Python code? age = 20 if age < 13: print('Child') elif age < 18: print('Teenager') else: print('Adult')

What is the role of conditional statements in Python?

What will be the output of the following code snippet? age = 20 if age < 13: print('Child') elif age < 18: print('Teenager') else: print('Adult')

What happens if all conditions in an if-elif-else sequence are false?

Which statement is executed if none of the conditions in the 'if' or 'elif' statements are satisfied?

The power of dictionary comprehensions in Python can be significantly enhanced by integrating them with conditional statements. This combination allows us to create dictionaries that meet specific conditions, making our code more efficient and readable. The syntax for a dictionary comprehension with a conditional statement is as follows:

The `if condition` part is the new addition here. This condition is checked for each item in the iterable. If the condition is True, the item is included in the new dictionary; if it's False, the item is skipped. Let's illustrate this with an example. Suppose we have a list of numbers and we want to create a dictionary where the keys are the numbers and the values are the squares of the numbers, but we only want to include the numbers that are even.

In this code, the `if n%2 == 0` condition checks if each number is even. Only the even numbers are included in the `squares` dictionary. We can also use `if-else` conditions in a dictionary comprehension, although the syntax is a bit different:

In this case, the `if-else` condition is applied to the `value_expression`, not the `item`. If the condition is True, `value_expression` is used as the value for the current item; if it's False, `other_value_expression` is used instead. Here's an example:

In this code, the `if n%2 == 0 else 'odd'` condition determines the value for each key in the `labels` dictionary. If the number is even, the value is 'even'; if it's odd, the value is 'odd'. This ability to include conditional logic in dictionary comprehensions makes them a versatile tool for Python programming. In the following sections, we will explore more examples and use cases of conditional dictionary comprehensions.

What is the syntax for a dictionary comprehension with a conditional statement in Python?

What does the 'if condition' in a dictionary comprehension do?

What will be the output of the following code: {n: 'positive' if n > 0 else 'negative' for n in [-1, 0, 1]}

What is the output of the following code: numbers = [1, 2, 3, 4, 5, 6] labels = {n: 'even' if n%2 == 0 else 'odd' for n in numbers} print(labels)

How does the 'if condition' part in a dictionary comprehension work?

What is the difference between the 'if' and 'if-else' conditions in a dictionary comprehension?

How can you include an 'if-else' condition in a dictionary comprehension?

What will be the output of the following dictionary comprehension: {n: n**3 for n in [1, 2, 3, 4, 5, 6] if n%2 != 0}?

To further illustrate the power and versatility of conditional dictionary comprehensions, let's explore a few more examples.

1. Filtering a Dictionary:  Suppose we have a dictionary of students and their grades, and we want to create a new dictionary that only includes the students who scored above a certain grade.

In this code, the `if score > 80` condition filters out the students who scored 80 or below.

2. Transforming Values Based on a Condition: Let's say we have a list of numbers and we want to create a dictionary where the keys are the numbers and the values are 'positive', 'negative', or 'zero', depending on the number.

In this code, the `if n > 0 else 'negative' if n < 0 else 'zero'` condition determines the value for each key in the `labels` dictionary.

3. Creating a Dictionary from Two Lists: Suppose we have two lists: one with keys and one with values. We want to create a dictionary that pairs each key with its corresponding value, but only if the value is not None.

In this code, the `if v is not None` condition filters out the key-value pairs where the value is None. These examples demonstrate how conditional dictionary comprehensions can be used to create dictionaries that meet specific conditions, making our code more efficient and readable. In the following sections, we will delve deeper into the benefits and practical applications of this powerful Python feature.

What will be the output of the following code snippet? grades = {'John': 85, 'Emily': 90, 'Michael': 78, 'Sarah': 92} high_scores = {student: score for student, score in grades.items() if score > 85}

What is the output of the following dictionary comprehension: {'John': 85, 'Emily': 90, 'Michael': 78, 'Sarah': 92} if score greater than 80?

What will be the output of the following code snippet? numbers = [-2, -1, 0, 1, 2] labels = {n: 'positive' if n > 0 else 'negative' if n < 0 else 'zero' for n in numbers}

What is the purpose of the 'if' condition in a dictionary comprehension?

What will the output of the following dictionary comprehension be: {k: v for k, v in zip(['a', 'b', 'c', 'd'], [1, None, 3, None]) if v is not None}?

What will the output of the following dictionary comprehension be: {n: 'positive' if n > 0 else 'negative' if n < 0 else 'zero' for n in [-2, -1, 0, 1, 2]}?

What will be the output of the following code snippet? keys = ['a', 'b', 'c', 'd'] values = [1, None, 3, None] dictionary = {k: v for k, v in zip(keys, values) if v is not None}

Which of the following is not a use case for conditional dictionary comprehensions?

Conditional dictionary comprehensions in Python offer several advantages that make them a valuable tool for any Python programmer: 1. Conciseness: They allow you to create and manipulate dictionaries in a single line of code, which can make your code more concise and easier to read. 2. Efficiency: They are generally faster than equivalent code written with traditional loops and conditional statements, especially for large data sets. 3. Flexibility: They can handle complex logic and multiple conditions, making them a versatile tool for creating dictionaries that meet specific requirements. 4. Readability: They follow a clear and consistent syntax that is easy to understand, making your code more readable and maintainable. 5. Immutability: They create a new dictionary rather than modifying an existing one, which can be beneficial in situations where you need to preserve the original data. For example, consider the task of creating a dictionary from a list of numbers, where the keys are the numbers and the values are the squares of the numbers, but only for the even numbers. Here's how you could do it with a traditional loop and conditional statements:

And here's how you could do it with a conditional dictionary comprehension:

As you can see, the dictionary comprehension version is much shorter and easier to read, and it accomplishes the same task in a single line of code. This is just one example of the benefits of using conditional dictionary comprehensions in Python. In the following sections, we will explore more advanced uses and practical applications of this powerful feature.

What happens if you use a conditional dictionary comprehension to create a dictionary from an existing one?

What is the output of the following code snippet: {n: n**2 for n in [1, 2, 3, 4, 5, 6] if n%2 == 0}?

Which of the following statements about conditional dictionary comprehensions in Python is NOT true?

What is one of the benefits of using conditional dictionary comprehensions in Python?

While conditional dictionary comprehensions are a powerful tool, they can also be a source of confusion for beginners. Here are some common mistakes and how to avoid them:

1. Misplacing the Condition:  The condition in a dictionary comprehension should come after the loop, not before it. For example, this is incorrect:

And this is the correct way:

2. Confusing the Syntax with List Comprehensions: The syntax for dictionary comprehensions is similar to that of list comprehensions, but there are important differences. In a dictionary comprehension, you need to specify both a key expression and a value expression, separated by a colon. For example, this is incorrect:

3. Overusing Dictionary Comprehensions:  While dictionary comprehensions can make your code more concise, they can also make it harder to read if overused or used inappropriately. If your comprehension is too complex or involves multiple conditions, it might be better to use a traditional loop and conditional statements instead. Remember, readability is one of the guiding principles of Python.

4. Ignoring Errors and Exceptions: Like any other code, dictionary comprehensions can raise errors and exceptions. Make sure to handle these appropriately, either by using try/except blocks or by validating the data before using it in a comprehension.

By being aware of these common mistakes and understanding how to avoid them, you can use conditional dictionary comprehensions effectively and write more efficient and readable Python code.

What is the key difference between the syntax of list comprehensions and dictionary comprehensions?

Why should dictionary comprehensions not be overused?

How can errors and exceptions in dictionary comprehensions be handled?

Where should the condition be placed in a dictionary comprehension?

While we have covered the basics of conditional dictionary comprehensions, there are more advanced techniques that can further enhance their utility. Let's delve into some of these:

1. Nested Dictionary Comprehensions:  You can nest dictionary comprehensions inside other dictionary comprehensions to create more complex data structures. For example, suppose we have a dictionary of students, and for each student, we have a list of grades. We want to create a new dictionary that includes only the subjects where the student scored above a certain grade.

In this code, the inner dictionary comprehension filters the subjects for each student, and the outer dictionary comprehension applies this to all students.

2. Using Functions in Dictionary Comprehensions:  You can use functions in the key or value expressions of a dictionary comprehension to perform more complex transformations. For example, suppose we have a list of strings and we want to create a dictionary where the keys are the strings and the values are the lengths of the strings, but only for the strings that are not empty.

In this code, the `len(s)` function calculates the length of each string.

3. Using Multiple Conditions: You can use multiple conditions in a dictionary comprehension to filter the items more precisely. The conditions are checked in order and must all be True for the item to be included in the new dictionary.

In this code, the `if n%2 == 0` condition checks if the number is even, and the `if n > 4` condition checks if the number is greater than 4. These advanced techniques can help you leverage the full power of conditional dictionary comprehensions and write more efficient and expressive Python code.

What is the purpose of nested dictionary comprehensions?

What does the `if n%2 == 0 if n > 4` condition do in a dictionary comprehension?

What is the output of the given code snippet: lengths = {s: len(s) for s in ['hello', '', 'world', 'python', ''] if s}

Can functions be used in the key or value expressions of a dictionary comprehension?

Conditional dictionary comprehensions have a wide range of practical applications in Python programming. Here are a few examples:

1. Data Filtering: You can use conditional dictionary comprehensions to filter data based on certain criteria. For instance, if you have a dictionary of products with their prices, you can create a new dictionary that only includes the products within a certain price range.

2. Data Transformation: Conditional dictionary comprehensions can be used to transform data in various ways. For example, you can use them to normalize or standardize data, convert data types, encode categorical data, etc.

3. Data Analysis:  Conditional dictionary comprehensions can be used to perform various data analysis tasks, such as calculating summary statistics, finding unique values, grouping data, etc.

These are just a few examples of the many practical applications of conditional dictionary comprehensions in Python. By mastering this powerful feature, you can write more efficient and expressive code, and solve a wide range of programming problems more easily.

What is one practical application of conditional dictionary comprehensions in Python?

How can you create a new dictionary that only includes products within a certain price range using conditional dictionary comprehensions?

How can you use conditional dictionary comprehensions to calculate high sales in a month?

How can you transform data using conditional dictionary comprehensions to check if a student has passed or not?

To solidify your understanding of conditional dictionary comprehensions, here are a few exercises you can try: 1. Word Lengths:  Given a list of words, create a dictionary where the keys are the words and the values are the lengths of the words, but only include words that are at least 5 characters long. 2. Positive and Negative Numbers:  Given a list of numbers, create a dictionary where the keys are the numbers and the values are 'positive', 'negative', or 'zero', depending on the number. 3. Grade Categories:  Given a dictionary of students and their grades, create a new dictionary that categorizes each student as 'excellent', 'good', 'average', or 'poor', based on their grade. 4. Unique Values: Given a dictionary, create a new dictionary that includes only the items with unique values. 5. Nested Dictionary Comprehension: Given a dictionary of students, where for each student there is a dictionary of subjects and grades, create a new dictionary that includes only the subjects where the student scored above a certain grade.

Remember, the key to mastering conditional dictionary comprehensions, like any other programming concept, is practice. Don't be discouraged if you don't get it right away. Keep trying different problems and reviewing the examples and explanations in this article, and you will soon become proficient at using conditional dictionary comprehensions in Python.

What is the purpose of nested dictionary comprehension?

What is the purpose of conditional dictionary comprehensions in Python?

How can you create a new dictionary that includes only the items with unique values from a given dictionary?

What dictionary comprehension should be used when given a list of words to create a dictionary where the keys are the words and the values are the lengths of the words?

How would you categorize students based on their grades using conditional dictionary comprehensions?

Conditional dictionary comprehensions are a powerful feature of Python that can make your code more efficient, readable, and expressive. They allow you to create and manipulate dictionaries in a single line of code, and they can handle complex logic and multiple conditions. However, like any other tool, they should be used judiciously. While they can make your code more concise, they can also make it harder to read if overused or used inappropriately. Always strive for a balance between conciseness and readability, and remember that the ultimate goal is to write code that is easy to understand, maintain, and debug. 

What should be the ultimate goal when writing code according to the passage?

Which of the following resources is not mentioned in the passage for further reading on dictionary comprehensions?

What are conditional dictionary comprehensions in Python?

What is the key to mastering any programming concept according to the passage?

Conditional expression (ternary operator) in Python

Python has a conditional expression (sometimes called a "ternary operator"). You can write operations like if statements in one line with conditional expressions.

  • 6. Expressions - Conditional expressions — Python 3.11.3 documentation

Basics of the conditional expression (ternary operator)

If ... elif ... else ... by conditional expressions, list comprehensions and conditional expressions, lambda expressions and conditional expressions.

See the following article for if statements in Python.

  • Python if statements (if, elif, else)

In Python, the conditional expression is written as follows.

The condition is evaluated first. If condition is True , X is evaluated and its value is returned, and if condition is False , Y is evaluated and its value is returned.

If you want to switch the value based on a condition, simply use the desired values in the conditional expression.

If you want to switch between operations based on a condition, simply describe each corresponding expression in the conditional expression.

An expression that does not return a value (i.e., an expression that returns None ) is also acceptable in a conditional expression. Depending on the condition, either expression will be evaluated and executed.

The above example is equivalent to the following code written with an if statement.

You can also combine multiple conditions using logical operators such as and or or .

  • Boolean operators in Python (and, or, not)

By combining conditional expressions, you can write an operation like if ... elif ... else ... in one line.

However, it is difficult to understand, so it may be better not to use it often.

The following two interpretations are possible, but the expression is processed as the first one.

In the sample code below, which includes three expressions, the first expression is interpreted like the second, rather than the third:

By using conditional expressions in list comprehensions, you can apply operations to the elements of the list based on the condition.

See the following article for details on list comprehensions.

  • List comprehensions in Python

Conditional expressions are also useful when you want to apply an operation similar to an if statement within lambda expressions.

In the example above, the lambda expression is assigned to a variable for convenience, but this is not recommended by PEP8.

Refer to the following article for more details on lambda expressions.

  • Lambda expressions in Python

Related Categories

Related articles.

  • Shallow and deep copy in Python: copy(), deepcopy()
  • Composite two images according to a mask image with Python, Pillow
  • OpenCV, NumPy: Rotate and flip image
  • pandas: Check if DataFrame/Series is empty
  • Check pandas version: pd.show_versions
  • Python if statement (if, elif, else)
  • pandas: Find the quantile with quantile()
  • Handle date and time with the datetime module in Python
  • Get image size (width, height) with Python, OpenCV, Pillow (PIL)
  • Convert between Unix time (Epoch time) and datetime in Python
  • Convert BGR and RGB with Python, OpenCV (cvtColor)
  • Matrix operations with NumPy in Python
  • pandas: Replace values in DataFrame and Series with replace()
  • Uppercase and lowercase strings in Python (conversion and checking)
  • Calculate mean, median, mode, variance, standard deviation in Python

python conditional assignment dictionary

Write Shorter Conditionals (Using Dictionaries)

A concise alternative to the classic if-else statement and the new match-case statement..

Thijmen Dam

Thijmen Dam

Hi everyone, Thijmen here, and in this article I will demonstrate a concise alternative to the classic If-Else statement and the new Match-Case statement that was introduced in Python 3.10.

Benefits and Drawbacks

The approach uses a dictionary to attain a conditional with less and arguably more readable code. It won’t be a replacement for each and every If-Else or Match-Case statement in your code, but it is certainly useful in plenty of situations.

The only drawback is that it may come at the cost of a minor decrease in runtime. More on that later in the article.

Example Case

Say we want to create a function that:

  • Takes a number as argument.
  • Validates whether this number corresponds to a month.
  • Returns the full name of that particular month.

If the provided argument is not a valid month index, we return a string that indicates that the input is invalid.

If we were to use an If-Else statement, the function would look something like this:

Another approach would be to use the recently released Match-Case statement:

I want to stress that there is nothing inherently wrong with either of these approaches. After all, the code is valid and does what it needs to do.

But in terms of code clarity , I think there is more to be gained.

Dictionary Approach

The first step is to return a dictionary that uses the index of the months as keys, and their corresponding names as values.

Subsequently, we use the .get() method to obtain the name of the month that actually belongs to the number that we provided as function argument.

The great thing about this method is that we can also specify a default return value for when the requested key is not part of the dictionary. In our case, this is the string “not a month”.

And that’s all there really is to it. Neat, right?

Speed Comparison

As promised I want to end this article with a quick speed comparison.

If we call the dictionary approach that I just illustrated a million times for every month , our total runtime is ~10 seconds.

This is ~3.5 seconds when using If-Elif-Else , and also ~3.5 seconds using Match-Case .

While our dictionary conditional has the least-best performance, it is important to understand where this difference comes from.

Because we define our dictionary within the month() function it has to be constructed once for every function call, which is rather inefficient. If we instead define the dictionary outside the function and rerun the experiment, we achieve the fastest runtime , which is ~2.5 seconds:

Context Is Important

What suits you best in terms of code clarity and runtime is of course up to you . You will know what is more important for your specific project.

Consider this method as just another tool in your toolbox, that is sometimes right for the job, and sometimes it is not.

Anyway, that’s it for this article. I hope you found it useful, and see you at the next one!

If you learned something new from this article, please consider subscribing to my YouTube channel . Thanks! 🙂

This article and the corresponding video are part of my Python Snippets series, where we cover a variety of topics around Python programming in a byte-sized format.

Thijmen Dam

Written by Thijmen Dam

At parties I say I am a nerd with a ❤️ for making stuff, be it software (videos), music, or dinner!

More from Thijmen Dam and ITNEXT

Overwrite Previously Printed Lines

Overwrite Previously Printed Lines

Two methods for overwriting print statements in python.

Upgrading Hundreds of Kubernetes Clusters

Gulcan Topcu

Upgrading Hundreds of Kubernetes Clusters

Automating the upgrade process for hundreds of kubernetes clusters is a formidable task, but it’s one that pierre mavro, the co-founder and….

Flutter: Choosing Mobile UI Tests Automation Tool

Pavel Sulimau

Flutter: Choosing Mobile UI Tests Automation Tool

In the large-scale flutter projects our team has been working on for the last 4+ years the topic of ui tests automation was always on the….

Bypass Paywalls on Mac Safari

Bypass Paywalls on Mac Safari

Hey everyone, thijmen here, and in this article i will demonstrate how you can bypass paywalls on mac safari using 12ft.io and siri…, recommended from medium.

OOPs in Python

Abhay Kumar

OOPs in Python

An easy guide.

Mastering Python’s Asyncio: A Practical Guide

Mastering Python’s Asyncio: A Practical Guide

When you dive into python’s world, one gem that truly shines for handling modern web and network tasks is asyncio. this toolkit is python's….

python conditional assignment dictionary

Coding & Development

python conditional assignment dictionary

Predictive Modeling w/ Python

Principal Component Analysis for ML

Practical Guides to Machine Learning

python conditional assignment dictionary

Axel Casas, PhD Candidate

4 Must Read Python Books To Boost Your Skills By 10000%

Start learning python easily, fast, and while having fun.

50 Coding Laws That Would Make You A Decent Programmer.

Alexander obidiegwu

50 Coding Laws That Would Make You A Decent Programmer.

Follow these laws or get fired..

The guide to Git I never had.

The guide to Git I never had.

🩺 doctors have stethoscopes..

Common side effects of not drinking

Karolina Kozmana

Common side effects of not drinking

By rejecting alcohol, you reject something very human, an extra limb that we have collectively grown to deal with reality and with each….

Text to speech

  • Python »
  • 3.12.3 Documentation »
  • The Python Language Reference »
  • 6. Expressions
  • Theme Auto Light Dark |

6. Expressions ¶

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical analysis. When (one alternative of) a syntax rule has the form

and no semantics are given, the semantics of this form of name are the same as for othername .

6.1. Arithmetic conversions ¶

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted to a common type”, this means that the operator implementation for built-in types works as follows:

If either argument is a complex number, the other is converted to complex;

otherwise, if either argument is a floating point number, the other is converted to floating point;

otherwise, both must be integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string as a left argument to the ‘%’ operator). Extensions must define their own conversion behavior.

6.2. Atoms ¶

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

6.2.1. Identifiers (Names) ¶

An identifier occurring as an atom is a name. See section Identifiers and keywords for lexical definition and section Naming and binding for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt to evaluate it raises a NameError exception.

Private name mangling: When an identifier that textually occurs in a class definition begins with two or more underscore characters and does not end in two or more underscores, it is considered a private name of that class. Private names are transformed to a longer form before code is generated for them. The transformation inserts the class name, with leading underscores removed and a single underscore inserted, in front of the name. For example, the identifier __spam occurring in a class named Ham will be transformed to _Ham__spam . This transformation is independent of the syntactical context in which the identifier is used. If the transformed name is extremely long (longer than 255 characters), implementation defined truncation may happen. If the class name consists only of underscores, no transformation is done.

6.2.2. Literals ¶

Python supports string and bytes literals and various numeric literals:

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating point number, complex number) with the given value. The value may be approximated in the case of floating point and imaginary (complex) literals. See section Literals for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence) may obtain the same object or a different object with the same value.

6.2.3. Parenthesized forms ¶

A parenthesized form is an optional expression list enclosed in parentheses:

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it yields a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the same rules as for literals apply (i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma. The exception is the empty tuple, for which parentheses are required — allowing unparenthesized “nothing” in expressions would cause ambiguities and allow common typos to pass uncaught.

6.2.4. Displays for lists, sets and dictionaries ¶

For constructing a list, a set or a dictionary Python provides special syntax called “displays”, each of them in two flavors:

either the container contents are listed explicitly, or

they are computed via a set of looping and filtering instructions, called a comprehension .

Common syntax elements for comprehensions are:

The comprehension consists of a single expression followed by at least one for clause and zero or more for or if clauses. In this case, the elements of the new container are those that would be produced by considering each of the for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element each time the innermost block is reached.

However, aside from the iterable expression in the leftmost for clause, the comprehension is executed in a separate implicitly nested scope. This ensures that names assigned to in the target list don’t “leak” into the enclosing scope.

The iterable expression in the leftmost for clause is evaluated directly in the enclosing scope and then passed as an argument to the implicitly nested scope. Subsequent for clauses and any filter condition in the leftmost for clause cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For example: [x*y for x in range(10) for y in range(x, x+10)] .

To ensure the comprehension always results in a container of the appropriate type, yield and yield from expressions are prohibited in the implicitly nested scope.

Since Python 3.6, in an async def function, an async for clause may be used to iterate over a asynchronous iterator . A comprehension in an async def function may consist of either a for or async for clause following the leading expression, may contain additional for or async for clauses, and may also use await expressions. If a comprehension contains either async for clauses or await expressions or other asynchronous comprehensions it is called an asynchronous comprehension . An asynchronous comprehension may suspend the execution of the coroutine function in which it appears. See also PEP 530 .

Added in version 3.6: Asynchronous comprehensions were introduced.

Changed in version 3.8: yield and yield from prohibited in the implicitly nested scope.

Changed in version 3.11: Asynchronous comprehensions are now allowed inside comprehensions in asynchronous functions. Outer comprehensions implicitly become asynchronous.

6.2.5. List displays ¶

A list display is a possibly empty series of expressions enclosed in square brackets:

A list display yields a new list object, the contents being specified by either a list of expressions or a comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed into the list object in that order. When a comprehension is supplied, the list is constructed from the elements resulting from the comprehension.

6.2.6. Set displays ¶

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons separating keys and values:

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or a comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and added to the set object. When a comprehension is supplied, the set is constructed from the elements resulting from the comprehension.

An empty set cannot be constructed with {} ; this literal constructs an empty dictionary.

6.2.7. Dictionary displays ¶

A dictionary display is a possibly empty series of dict items (key/value pairs) enclosed in curly braces:

A dictionary display yields a new dictionary object.

If a comma-separated sequence of dict items is given, they are evaluated from left to right to define the entries of the dictionary: each key object is used as a key into the dictionary to store the corresponding value. This means that you can specify the same key multiple times in the dict item list, and the final dictionary’s value for that key will be the last one given.

A double asterisk ** denotes dictionary unpacking . Its operand must be a mapping . Each mapping item is added to the new dictionary. Later values replace values already set by earlier dict items and earlier dictionary unpackings.

Added in version 3.5: Unpacking into dictionary displays, originally proposed by PEP 448 .

A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon followed by the usual “for” and “if” clauses. When the comprehension is run, the resulting key and value elements are inserted in the new dictionary in the order they are produced.

Restrictions on the types of the key values are listed earlier in section The standard type hierarchy . (To summarize, the key type should be hashable , which excludes all mutable objects.) Clashes between duplicate keys are not detected; the last value (textually rightmost in the display) stored for a given key value prevails.

Changed in version 3.8: Prior to Python 3.8, in dict comprehensions, the evaluation order of key and value was not well-defined. In CPython, the value was evaluated before the key. Starting with 3.8, the key is evaluated before the value, as proposed by PEP 572 .

6.2.8. Generator expressions ¶

A generator expression is a compact generator notation in parentheses:

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it is enclosed in parentheses instead of brackets or curly braces.

Variables used in the generator expression are evaluated lazily when the __next__() method is called for the generator object (in the same fashion as normal generators). However, the iterable expression in the leftmost for clause is immediately evaluated, so that an error produced by it will be emitted at the point where the generator expression is defined, rather than at the point where the first value is retrieved. Subsequent for clauses and any filter condition in the leftmost for clause cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For example: (x*y for x in range(10) for y in range(x, x+10)) .

The parentheses can be omitted on calls with only one argument. See section Calls for details.

To avoid interfering with the expected operation of the generator expression itself, yield and yield from expressions are prohibited in the implicitly defined generator.

If a generator expression contains either async for clauses or await expressions it is called an asynchronous generator expression . An asynchronous generator expression returns a new asynchronous generator object, which is an asynchronous iterator (see Asynchronous Iterators ).

Added in version 3.6: Asynchronous generator expressions were introduced.

Changed in version 3.7: Prior to Python 3.7, asynchronous generator expressions could only appear in async def coroutines. Starting with 3.7, any function can use asynchronous generator expressions.

6.2.9. Yield expressions ¶

The yield expression is used when defining a generator function or an asynchronous generator function and thus can only be used in the body of a function definition. Using a yield expression in a function’s body causes that function to be a generator function, and using it in an async def function’s body causes that coroutine function to be an asynchronous generator function. For example:

Due to their side effects on the containing scope, yield expressions are not permitted as part of the implicitly defined scopes used to implement comprehensions and generator expressions.

Changed in version 3.8: Yield expressions prohibited in the implicitly nested scopes used to implement comprehensions and generator expressions.

Generator functions are described below, while asynchronous generator functions are described separately in section Asynchronous generator functions .

When a generator function is called, it returns an iterator known as a generator. That generator then controls the execution of the generator function. The execution starts when one of the generator’s methods is called. At that time, the execution proceeds to the first yield expression, where it is suspended again, returning the value of expression_list to the generator’s caller, or None if expression_list is omitted. By suspended, we mean that all local state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state of any exception handling. When the execution is resumed by calling one of the generator’s methods, the function can proceed exactly as if the yield expression were just another external call. The value of the yield expression after resuming depends on the method which resumed the execution. If __next__() is used (typically via either a for or the next() builtin) then the result is None . Otherwise, if send() is used, then the result will be the value passed in to that method.

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one entry point and their execution can be suspended. The only difference is that a generator function cannot control where the execution should continue after it yields; the control is always transferred to the generator’s caller.

Yield expressions are allowed anywhere in a try construct. If the generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage collected), the generator-iterator’s close() method will be called, allowing any pending finally clauses to execute.

When yield from <expr> is used, the supplied expression must be an iterable. The values produced by iterating that iterable are passed directly to the caller of the current generator’s methods. Any values passed in with send() and any exceptions passed in with throw() are passed to the underlying iterator if it has the appropriate methods. If this is not the case, then send() will raise AttributeError or TypeError , while throw() will just raise the passed in exception immediately.

When the underlying iterator is complete, the value attribute of the raised StopIteration instance becomes the value of the yield expression. It can be either set explicitly when raising StopIteration , or automatically when the subiterator is a generator (by returning a value from the subgenerator).

Changed in version 3.3: Added yield from <expr> to delegate control flow to a subiterator.

The parentheses may be omitted when the yield expression is the sole expression on the right hand side of an assignment statement.

The proposal for adding generators and the yield statement to Python.

The proposal to enhance the API and syntax of generators, making them usable as simple coroutines.

The proposal to introduce the yield_from syntax, making delegation to subgenerators easy.

The proposal that expanded on PEP 492 by adding generator capabilities to coroutine functions.

6.2.9.1. Generator-iterator methods ¶

This subsection describes the methods of a generator iterator. They can be used to control the execution of a generator function.

Note that calling any of the generator methods below when the generator is already executing raises a ValueError exception.

Starts the execution of a generator function or resumes it at the last executed yield expression. When a generator function is resumed with a __next__() method, the current yield expression always evaluates to None . The execution then continues to the next yield expression, where the generator is suspended again, and the value of the expression_list is returned to __next__() ’s caller. If the generator exits without yielding another value, a StopIteration exception is raised.

This method is normally called implicitly, e.g. by a for loop, or by the built-in next() function.

Resumes the execution and “sends” a value into the generator function. The value argument becomes the result of the current yield expression. The send() method returns the next value yielded by the generator, or raises StopIteration if the generator exits without yielding another value. When send() is called to start the generator, it must be called with None as the argument, because there is no yield expression that could receive the value.

Raises an exception at the point where the generator was paused, and returns the next value yielded by the generator function. If the generator exits without yielding another value, a StopIteration exception is raised. If the generator function does not catch the passed-in exception, or raises a different exception, then that exception propagates to the caller.

In typical use, this is called with a single exception instance similar to the way the raise keyword is used.

For backwards compatibility, however, the second signature is supported, following a convention from older versions of Python. The type argument should be an exception class, and value should be an exception instance. If the value is not provided, the type constructor is called to get an instance. If traceback is provided, it is set on the exception, otherwise any existing __traceback__ attribute stored in value may be cleared.

Changed in version 3.12: The second signature (type[, value[, traceback]]) is deprecated and may be removed in a future version of Python.

Raises a GeneratorExit at the point where the generator function was paused. If the generator function then exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), close returns to its caller. If the generator yields a value, a RuntimeError is raised. If the generator raises any other exception, it is propagated to the caller. close() does nothing if the generator has already exited due to an exception or normal exit.

6.2.9.2. Examples ¶

Here is a simple example that demonstrates the behavior of generators and generator functions:

For examples using yield from , see PEP 380: Syntax for Delegating to a Subgenerator in “What’s New in Python.”

6.2.9.3. Asynchronous generator functions ¶

The presence of a yield expression in a function or method defined using async def further defines the function as an asynchronous generator function.

When an asynchronous generator function is called, it returns an asynchronous iterator known as an asynchronous generator object. That object then controls the execution of the generator function. An asynchronous generator object is typically used in an async for statement in a coroutine function analogously to how a generator object would be used in a for statement.

Calling one of the asynchronous generator’s methods returns an awaitable object, and the execution starts when this object is awaited on. At that time, the execution proceeds to the first yield expression, where it is suspended again, returning the value of expression_list to the awaiting coroutine. As with a generator, suspension means that all local state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state of any exception handling. When the execution is resumed by awaiting on the next object returned by the asynchronous generator’s methods, the function can proceed exactly as if the yield expression were just another external call. The value of the yield expression after resuming depends on the method which resumed the execution. If __anext__() is used then the result is None . Otherwise, if asend() is used, then the result will be the value passed in to that method.

If an asynchronous generator happens to exit early by break , the caller task being cancelled, or other exceptions, the generator’s async cleanup code will run and possibly raise exceptions or access context variables in an unexpected context–perhaps after the lifetime of tasks it depends, or during the event loop shutdown when the async-generator garbage collection hook is called. To prevent this, the caller must explicitly close the async generator by calling aclose() method to finalize the generator and ultimately detach it from the event loop.

In an asynchronous generator function, yield expressions are allowed anywhere in a try construct. However, if an asynchronous generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage collected), then a yield expression within a try construct could result in a failure to execute pending finally clauses. In this case, it is the responsibility of the event loop or scheduler running the asynchronous generator to call the asynchronous generator-iterator’s aclose() method and run the resulting coroutine object, thus allowing any pending finally clauses to execute.

To take care of finalization upon event loop termination, an event loop should define a finalizer function which takes an asynchronous generator-iterator and presumably calls aclose() and executes the coroutine. This finalizer may be registered by calling sys.set_asyncgen_hooks() . When first iterated over, an asynchronous generator-iterator will store the registered finalizer to be called upon finalization. For a reference example of a finalizer method see the implementation of asyncio.Loop.shutdown_asyncgens in Lib/asyncio/base_events.py .

The expression yield from <expr> is a syntax error when used in an asynchronous generator function.

6.2.9.4. Asynchronous generator-iterator methods ¶

This subsection describes the methods of an asynchronous generator iterator, which are used to control the execution of a generator function.

Returns an awaitable which when run starts to execute the asynchronous generator or resumes it at the last executed yield expression. When an asynchronous generator function is resumed with an __anext__() method, the current yield expression always evaluates to None in the returned awaitable, which when run will continue to the next yield expression. The value of the expression_list of the yield expression is the value of the StopIteration exception raised by the completing coroutine. If the asynchronous generator exits without yielding another value, the awaitable instead raises a StopAsyncIteration exception, signalling that the asynchronous iteration has completed.

This method is normally called implicitly by a async for loop.

Returns an awaitable which when run resumes the execution of the asynchronous generator. As with the send() method for a generator, this “sends” a value into the asynchronous generator function, and the value argument becomes the result of the current yield expression. The awaitable returned by the asend() method will return the next value yielded by the generator as the value of the raised StopIteration , or raises StopAsyncIteration if the asynchronous generator exits without yielding another value. When asend() is called to start the asynchronous generator, it must be called with None as the argument, because there is no yield expression that could receive the value.

Returns an awaitable that raises an exception of type type at the point where the asynchronous generator was paused, and returns the next value yielded by the generator function as the value of the raised StopIteration exception. If the asynchronous generator exits without yielding another value, a StopAsyncIteration exception is raised by the awaitable. If the generator function does not catch the passed-in exception, or raises a different exception, then when the awaitable is run that exception propagates to the caller of the awaitable.

Returns an awaitable that when run will throw a GeneratorExit into the asynchronous generator function at the point where it was paused. If the asynchronous generator function then exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), then the returned awaitable will raise a StopIteration exception. Any further awaitables returned by subsequent calls to the asynchronous generator will raise a StopAsyncIteration exception. If the asynchronous generator yields a value, a RuntimeError is raised by the awaitable. If the asynchronous generator raises any other exception, it is propagated to the caller of the awaitable. If the asynchronous generator has already exited due to an exception or normal exit, then further calls to aclose() will return an awaitable that does nothing.

6.3. Primaries ¶

Primaries represent the most tightly bound operations of the language. Their syntax is:

6.3.1. Attribute references ¶

An attribute reference is a primary followed by a period and a name:

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This object is then asked to produce the attribute whose name is the identifier. The type and value produced is determined by the object. Multiple evaluations of the same attribute reference may yield different objects.

This production can be customized by overriding the __getattribute__() method or the __getattr__() method. The __getattribute__() method is called first and either returns a value or raises AttributeError if the attribute is not available.

If an AttributeError is raised and the object has a __getattr__() method, that method is called as a fallback.

6.3.2. Subscriptions ¶

The subscription of an instance of a container class will generally select an element from the container. The subscription of a generic class will generally return a GenericAlias object.

When an object is subscripted, the interpreter will evaluate the primary and the expression list.

The primary must evaluate to an object that supports subscription. An object may support subscription through defining one or both of __getitem__() and __class_getitem__() . When the primary is subscripted, the evaluated result of the expression list will be passed to one of these methods. For more details on when __class_getitem__ is called instead of __getitem__ , see __class_getitem__ versus __getitem__ .

If the expression list contains at least one comma, it will evaluate to a tuple containing the items of the expression list. Otherwise, the expression list will evaluate to the value of the list’s sole member.

For built-in objects, there are two types of objects that support subscription via __getitem__() :

Mappings. If the primary is a mapping , the expression list must evaluate to an object whose value is one of the keys of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An example of a builtin mapping class is the dict class.

Sequences. If the primary is a sequence , the expression list must evaluate to an int or a slice (as discussed in the following section). Examples of builtin sequence classes include the str , list and tuple classes.

The formal syntax makes no special provision for negative indices in sequences . However, built-in sequences all provide a __getitem__() method that interprets negative indices by adding the length of the sequence to the index so that, for example, x[-1] selects the last item of x . The resulting value must be a nonnegative integer less than the number of items in the sequence, and the subscription selects the item whose index is that value (counting from zero). Since the support for negative indices and slicing occurs in the object’s __getitem__() method, subclasses overriding this method will need to explicitly add that support.

A string is a special kind of sequence whose items are characters . A character is not a separate data type but a string of exactly one character.

6.3.3. Slicings ¶

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions or as targets in assignment or del statements. The syntax for a slicing:

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by defining that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is the case if the slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same __getitem__() method as normal subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The conversion of a slice item that is an expression is that expression. The conversion of a proper slice is a slice object (see section The standard type hierarchy ) whose start , stop and step attributes are the values of the expressions given as lower bound, upper bound and stride, respectively, substituting None for missing expressions.

6.3.4. Calls ¶

A call calls a callable object (e.g., a function ) with a possibly empty series of arguments :

An optional trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects, class objects, methods of class instances, and all objects having a __call__() method are callable). All argument expressions are evaluated before the call is attempted. Please refer to section Function definitions for the syntax of formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots. Next, for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the same as the first formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError exception is raised. Otherwise, the argument is placed in the slot, filling it (even if the expression is None , it fills the slot). When all arguments have been processed, the slots that are still unfilled are filled with the corresponding default value from the function definition. (Default values are calculated, once, when the function is defined; thus, a mutable object such as a list or dictionary used as default value will be shared by all calls that don’t specify an argument value for the corresponding slot; this should usually be avoided.) If there are any unfilled slots for which no default value is specified, a TypeError exception is raised. Otherwise, the list of filled slots is used as the argument list for the call.

CPython implementation detail: An implementation may provide built-in functions whose positional parameters do not have names, even if they are ‘named’ for the purpose of documentation, and which therefore cannot be supplied by keyword. In CPython, this is the case for functions implemented in C that use PyArg_ParseTuple() to parse their arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised, unless a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a tuple containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised, unless a formal parameter using the syntax **identifier is present; in this case, that formal parameter receives a dictionary containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iterable . Elements from these iterables are treated as if they were additional positional arguments. For the call f(x1, x2, *y, x3, x4) , if y evaluates to a sequence y1 , …, yM , this is equivalent to a call with M+4 positional arguments x1 , x2 , y1 , …, yM , x3 , x4 .

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it is processed before the keyword arguments (and any **expression arguments – see below). So:

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice this confusion does not often arise.

If the syntax **expression appears in the function call, expression must evaluate to a mapping , the contents of which are treated as additional keyword arguments. If a parameter matching a key has already been given a value (by an explicit keyword argument, or from another unpacking), a TypeError exception is raised.

When **expression is used, each key in this mapping must be a string. Each value from the mapping is assigned to the first formal parameter eligible for keyword assignment whose name is equal to the key. A key need not be a Python identifier (e.g. "max-temp °F" is acceptable, although it will not match any formal parameter that could be declared). If there is no match to a formal parameter the key-value pair is collected by the ** parameter, if there is one, or if there is not, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument slots or as keyword argument names.

Changed in version 3.5: Function calls accept any number of * and ** unpackings, positional arguments may follow iterable unpackings ( * ), and keyword arguments may follow dictionary unpackings ( ** ). Originally proposed by PEP 448 .

A call always returns some value, possibly None , unless it raises an exception. How this value is computed depends on the type of the callable object.

The code block for the function is executed, passing it the argument list. The first thing the code block will do is bind the formal parameters to the arguments; this is described in section Function definitions . When the code block executes a return statement, this specifies the return value of the function call.

The result is up to the interpreter; see Built-in Functions for the descriptions of built-in functions and methods.

A new instance of that class is returned.

The corresponding user-defined function is called, with an argument list that is one longer than the argument list of the call: the instance becomes the first argument.

The class must define a __call__() method; the effect is then the same as if that method was called.

6.4. Await expression ¶

Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function .

Added in version 3.5.

6.5. The power operator ¶

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on its right. The syntax is:

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left (this does not constrain the evaluation order for the operands): -1**2 results in -1 .

The power operator has the same semantics as the built-in pow() function, when called with two arguments: it yields its left argument raised to the power of its right argument. The numeric arguments are first converted to a common type, and the result is of that type.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case, all arguments are converted to float and a float result is delivered. For example, 10**2 returns 100 , but 10**-2 returns 0.01 .

Raising 0.0 to a negative power results in a ZeroDivisionError . Raising a negative number to a fractional power results in a complex number. (In earlier versions it raised a ValueError .)

This operation can be customized using the special __pow__() method.

6.6. Unary arithmetic and bitwise operations ¶

All unary arithmetic and bitwise operations have the same priority:

The unary - (minus) operator yields the negation of its numeric argument; the operation can be overridden with the __neg__() special method.

The unary + (plus) operator yields its numeric argument unchanged; the operation can be overridden with the __pos__() special method.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is defined as -(x+1) . It only applies to integral numbers or to custom objects that override the __invert__() special method.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

6.7. Binary arithmetic operations ¶

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators and one for additive operators:

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or one argument must be an integer and the other must be a sequence. In the former case, the numbers are converted to a common type and then multiplied together. In the latter case, sequence repetition is performed; a negative repetition factor yields an empty sequence.

This operation can be customized using the special __mul__() and __rmul__() methods.

The @ (at) operator is intended to be used for matrix multiplication. No builtin Python types implement this operator.

The / (division) and // (floor division) operators yield the quotient of their arguments. The numeric arguments are first converted to a common type. Division of integers yields a float, while floor division of integers results in an integer; the result is that of mathematical division with the ‘floor’ function applied to the result. Division by zero raises the ZeroDivisionError exception.

This operation can be customized using the special __truediv__() and __floordiv__() methods.

The % (modulo) operator yields the remainder from the division of the first argument by the second. The numeric arguments are first converted to a common type. A zero right argument raises the ZeroDivisionError exception. The arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 + 0.34 .) The modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value of the result is strictly smaller than the absolute value of the second operand [ 1 ] .

The floor division and modulo operators are connected by the following identity: x == (x//y)*y + (x%y) . Floor division and modulo are also connected with the built-in function divmod() : divmod(x, y) == (x//y, x%y) . [ 2 ] .

In addition to performing the modulo operation on numbers, the % operator is also overloaded by string objects to perform old-style string formatting (also known as interpolation). The syntax for string formatting is described in the Python Library Reference, section printf-style String Formatting .

The modulo operation can be customized using the special __mod__() method.

The floor division operator, the modulo operator, and the divmod() function are not defined for complex numbers. Instead, convert to a floating point number using the abs() function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both be sequences of the same type. In the former case, the numbers are converted to a common type and then added together. In the latter case, the sequences are concatenated.

This operation can be customized using the special __add__() and __radd__() methods.

The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a common type.

This operation can be customized using the special __sub__() method.

6.8. Shifting operations ¶

The shifting operations have lower priority than the arithmetic operations:

These operators accept integers as arguments. They shift the first argument to the left or right by the number of bits given by the second argument.

This operation can be customized using the special __lshift__() and __rshift__() methods.

A right shift by n bits is defined as floor division by pow(2,n) . A left shift by n bits is defined as multiplication with pow(2,n) .

6.9. Binary bitwise operations ¶

Each of the three bitwise operations has a different priority level:

The & operator yields the bitwise AND of its arguments, which must be integers or one of them must be a custom object overriding __and__() or __rand__() special methods.

The ^ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers or one of them must be a custom object overriding __xor__() or __rxor__() special methods.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers or one of them must be a custom object overriding __or__() or __ror__() special methods.

6.10. Comparisons ¶

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic, shifting or bitwise operation. Also unlike C, expressions like a < b < c have the interpretation that is conventional in mathematics:

Comparisons yield boolean values: True or False . Custom rich comparison methods may return non-boolean values. In this case Python will call bool() on such value in boolean contexts.

Comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to x < y and y <= z , except that y is evaluated only once (but in both cases z is not evaluated at all when x < y is found to be false).

Formally, if a , b , c , …, y , z are expressions and op1 , op2 , …, opN are comparison operators, then a op1 b op2 c ... y opN z is equivalent to a op1 b and b op2 c and ... y opN z , except that each expression is evaluated at most once.

Note that a op1 b op2 c doesn’t imply any kind of comparison between a and c , so that, e.g., x < y > z is perfectly legal (though perhaps not pretty).

6.10.1. Value comparisons ¶

The operators < , > , == , >= , <= , and != compare the values of two objects. The objects do not need to have the same type.

Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an object is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value. Also, there is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of all its data attributes. Comparison operators implement a particular notion of what the value of an object is. One can think of them as defining the value of an object indirectly, by means of their comparison implementation.

Because all types are (direct or indirect) subtypes of object , they inherit the default comparison behavior from object . Types can customize their comparison behavior by implementing rich comparison methods like __lt__() , described in Basic customization .

The default behavior for equality comparison ( == and != ) is based on the identity of the objects. Hence, equality comparison of instances with the same identity results in equality, and equality comparison of instances with different identities results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive (i.e. x is y implies x == y ).

A default order comparison ( < , > , <= , and >= ) is not provided; an attempt raises TypeError . A motivation for this default behavior is the lack of a similar invariant as for equality.

The behavior of the default equality comparison, that instances with different identities are always unequal, may be in contrast to what types will need that have a sensible definition of object value and value-based equality. Such types will need to customize their comparison behavior, and in fact, a number of built-in types have done that.

The following list describes the comparison behavior of the most important built-in types.

Numbers of built-in numeric types ( Numeric Types — int, float, complex ) and of the standard library types fractions.Fraction and decimal.Decimal can be compared within and across their types, with the restriction that complex numbers do not support order comparison. Within the limits of the types involved, they compare mathematically (algorithmically) correct without loss of precision.

The not-a-number values float('NaN') and decimal.Decimal('NaN') are special. Any ordered comparison of a number to a not-a-number value is false. A counter-intuitive implication is that not-a-number values are not equal to themselves. For example, if x = float('NaN') , 3 < x , x < 3 and x == x are all false, while x != x is true. This behavior is compliant with IEEE 754.

None and NotImplemented are singletons. PEP 8 advises that comparisons for singletons should always be done with is or is not , never the equality operators.

Binary sequences (instances of bytes or bytearray ) can be compared within and across their types. They compare lexicographically using the numeric values of their elements.

Strings (instances of str ) compare lexicographically using the numerical Unicode code points (the result of the built-in function ord() ) of their characters. [ 3 ]

Strings and binary sequences cannot be directly compared.

Sequences (instances of tuple , list , or range ) can be compared only within each of their types, with the restriction that ranges do not support order comparison. Equality comparison across these types results in inequality, and ordering comparison across these types raises TypeError .

Sequences compare lexicographically using comparison of corresponding elements. The built-in containers typically assume identical objects are equal to themselves. That lets them bypass equality tests for identical objects to improve performance and to maintain their internal invariants.

Lexicographical comparison between built-in collections works as follows:

For two collections to compare equal, they must be of the same type, have the same length, and each pair of corresponding elements must compare equal (for example, [1,2] == (1,2) is false because the type is not the same).

Collections that support order comparison are ordered the same as their first unequal elements (for example, [1,2,x] <= [1,2,y] has the same value as x <= y ). If a corresponding element does not exist, the shorter collection is ordered first (for example, [1,2] < [1,2,3] is true).

Mappings (instances of dict ) compare equal if and only if they have equal (key, value) pairs. Equality comparison of the keys and values enforces reflexivity.

Order comparisons ( < , > , <= , and >= ) raise TypeError .

Sets (instances of set or frozenset ) can be compared within and across their types.

They define order comparison operators to mean subset and superset tests. Those relations do not define total orderings (for example, the two sets {1,2} and {2,3} are not equal, nor subsets of one another, nor supersets of one another). Accordingly, sets are not appropriate arguments for functions which depend on total ordering (for example, min() , max() , and sorted() produce undefined results given a list of sets as inputs).

Comparison of sets enforces reflexivity of its elements.

Most other built-in types have no comparison methods implemented, so they inherit the default comparison behavior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:

Equality comparison should be reflexive. In other words, identical objects should compare equal:

x is y implies x == y

Comparison should be symmetric. In other words, the following expressions should have the same result:

x == y and y == x x != y and y != x x < y and y > x x <= y and y >= x

Comparison should be transitive. The following (non-exhaustive) examples illustrate that:

x > y and y > z implies x > z x < y and y <= z implies x < z

Inverse comparison should result in the boolean negation. In other words, the following expressions should have the same result:

x == y and not x != y x < y and not x >= y (for total ordering) x > y and not x <= y (for total ordering)

The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings). See also the total_ordering() decorator.

The hash() result should be consistent with equality. Objects that are equal should either have the same hash value, or be marked as unhashable.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following these rules.

6.10.2. Membership test operations ¶

The operators in and not in test for membership. x in s evaluates to True if x is a member of s , and False otherwise. x not in s returns the negation of x in s . All built-in sequences and set types support this as well as dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set, frozenset, dict, or collections.deque, the expression x in y is equivalent to any(x is e or x == e for e in y) .

For the string and bytes types, x in y is True if and only if x is a substring of y . An equivalent test is y.find(x) != -1 . Empty strings are always considered to be a substring of any other string, so "" in "abc" will return True .

For user-defined classes which define the __contains__() method, x in y returns True if y.__contains__(x) returns a true value, and False otherwise.

For user-defined classes which do not define __contains__() but do define __iter__() , x in y is True if some value z , for which the expression x is z or x == z is true, is produced while iterating over y . If an exception is raised during the iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines __getitem__() , x in y is True if and only if there is a non-negative integer index i such that x is y[i] or x == y[i] , and no lower integer index raises the IndexError exception. (If any other exception is raised, it is as if in raised that exception).

The operator not in is defined to have the inverse truth value of in .

6.10.3. Identity comparisons ¶

The operators is and is not test for an object’s identity: x is y is true if and only if x and y are the same object. An Object’s identity is determined using the id() function. x is not y yields the inverse truth value. [ 4 ]

6.11. Boolean operations ¶

In the context of Boolean operations, and also when expressions are used by control flow statements, the following values are interpreted as false: False , None , numeric zero of all types, and empty strings and containers (including strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects can customize their truth value by providing a __bool__() method.

The operator not yields True if its argument is false, False otherwise.

The expression x and y first evaluates x ; if x is false, its value is returned; otherwise, y is evaluated and the resulting value is returned.

The expression x or y first evaluates x ; if x is true, its value is returned; otherwise, y is evaluated and the resulting value is returned.

Note that neither and nor or restrict the value and type they return to False and True , but rather return the last evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is empty, the expression s or 'foo' yields the desired value. Because not has to create a new value, it returns a boolean value regardless of the type of its argument (for example, not 'foo' produces False rather than '' .)

6.12. Assignment expressions ¶

An assignment expression (sometimes also called a “named expression” or “walrus”) assigns an expression to an identifier , while also returning the value of the expression .

One common use case is when handling matched regular expressions:

Or, when processing a file stream in chunks:

Assignment expressions must be surrounded by parentheses when used as expression statements and when used as sub-expressions in slicing, conditional, lambda, keyword-argument, and comprehension-if expressions and in assert , with , and assignment statements. In all other places where they can be used, parentheses are not required, including in if and while statements.

Added in version 3.8: See PEP 572 for more details about assignment expressions.

6.13. Conditional expressions ¶

Conditional expressions (sometimes called a “ternary operator”) have the lowest priority of all Python operations.

The expression x if C else y first evaluates the condition, C rather than x . If C is true, x is evaluated and its value is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.14. Lambdas ¶

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression lambda parameters: expression yields a function object. The unnamed object behaves like a function object defined with:

See section Function definitions for the syntax of parameter lists. Note that functions created with lambda expressions cannot contain statements or annotations.

6.15. Expression lists ¶

Except when part of a list or set display, an expression list containing at least one comma yields a tuple. The length of the tuple is the number of expressions in the list. The expressions are evaluated from left to right.

An asterisk * denotes iterable unpacking . Its operand must be an iterable . The iterable is expanded into a sequence of items, which are included in the new tuple, list, or set, at the site of the unpacking.

Added in version 3.5: Iterable unpacking in expression lists, originally proposed by PEP 448 .

A trailing comma is required only to create a one-item tuple, such as 1, ; it is optional in all other cases. A single expression without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To create an empty tuple, use an empty pair of parentheses: () .)

6.16. Evaluation order ¶

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is evaluated before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

6.17. Operator precedence ¶

The following table summarizes the operator precedence in Python, from highest precedence (most binding) to lowest precedence (least binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given, operators are binary. Operators in the same box group left to right (except for exponentiation and conditional expressions, which group from right to left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right chaining feature as described in the Comparisons section.

Table of Contents

  • 6.1. Arithmetic conversions
  • 6.2.1. Identifiers (Names)
  • 6.2.2. Literals
  • 6.2.3. Parenthesized forms
  • 6.2.4. Displays for lists, sets and dictionaries
  • 6.2.5. List displays
  • 6.2.6. Set displays
  • 6.2.7. Dictionary displays
  • 6.2.8. Generator expressions
  • 6.2.9.1. Generator-iterator methods
  • 6.2.9.2. Examples
  • 6.2.9.3. Asynchronous generator functions
  • 6.2.9.4. Asynchronous generator-iterator methods
  • 6.3.1. Attribute references
  • 6.3.2. Subscriptions
  • 6.3.3. Slicings
  • 6.3.4. Calls
  • 6.4. Await expression
  • 6.5. The power operator
  • 6.6. Unary arithmetic and bitwise operations
  • 6.7. Binary arithmetic operations
  • 6.8. Shifting operations
  • 6.9. Binary bitwise operations
  • 6.10.1. Value comparisons
  • 6.10.2. Membership test operations
  • 6.10.3. Identity comparisons
  • 6.11. Boolean operations
  • 6.12. Assignment expressions
  • 6.13. Conditional expressions
  • 6.14. Lambdas
  • 6.15. Expression lists
  • 6.16. Evaluation order
  • 6.17. Operator precedence

Previous topic

5. The import system

7. Simple statements

  • Report a Bug
  • Show Source

Python One Line Conditional Assignment

Problem : How to perform one-line if conditional assignments in Python?

Example : Say, you start with the following code.

You want to set the value of x to 42 if boo is True , and do nothing otherwise.

Let’s dive into the different ways to accomplish this in Python. We start with an overview:

Exercise : Run the code. Are all outputs the same?

Next, you’ll dive into each of those methods and boost your one-liner superpower !

Method 1: Ternary Operator

The most basic ternary operator x if c else y returns expression x if the Boolean expression c evaluates to True . Otherwise, if the expression c evaluates to False , the ternary operator returns the alternative expression y .

Let’s go back to our example problem! You want to set the value of x to 42 if boo is True , and do nothing otherwise. Here’s how to do this in a single line:

While using the ternary operator works, you may wonder whether it’s possible to avoid the ...else x part for clarity of the code? In the next method, you’ll learn how!

If you need to improve your understanding of the ternary operator, watch the following video:

The Python Ternary Operator -- And a Surprising One-Liner Hack

You can also read the related article:

  • Python One Line Ternary

Method 2: Single-Line If Statement

Like in the previous method, you want to set the value of x to 42 if boo is True , and do nothing otherwise. But you don’t want to have a redundant else branch. How to do this in Python?

The solution to skip the else part of the ternary operator is surprisingly simple— use a standard if statement without else branch and write it into a single line of code :

To learn more about what you can pack into a single line, watch my tutorial video “If-Then-Else in One Line Python” :

If-Then-Else in One Line Python

Method 3: Ternary Tuple Syntax Hack

A shorthand form of the ternary operator is the following tuple syntax .

Syntax : You can use the tuple syntax (x, y)[c] consisting of a tuple (x, y) and a condition c enclosed in a square bracket. Here’s a more intuitive way to represent this tuple syntax.

In fact, the order of the <OnFalse> and <OnTrue> operands is just flipped when compared to the basic ternary operator. First, you have the branch that’s returned if the condition does NOT hold. Second, you run the branch that’s returned if the condition holds.

Clever! The condition boo holds so the return value passed into the x variable is the <OnTrue> branch 42 .

Don’t worry if this confuses you—you’re not alone. You can clarify the tuple syntax once and for all by studying my detailed blog article.

Related Article : Python Ternary — Tuple Syntax Hack

Python One-Liners Book: Master the Single Line First!

Python programmers will improve their computer science skills with these useful one-liners.

Python One-Liners will teach you how to read and write “one-liners”: concise statements of useful functionality packed into a single line of code. You’ll learn how to systematically unpack and understand any line of Python code, and write eloquent, powerfully compressed Python like an expert.

The book’s five chapters cover (1) tips and tricks, (2) regular expressions, (3) machine learning, (4) core data science topics, and (5) useful algorithms.

Detailed explanations of one-liners introduce key computer science concepts and boost your coding and analytical skills . You’ll learn about advanced Python features such as list comprehension , slicing , lambda functions , regular expressions , map and reduce functions, and slice assignments .

You’ll also learn how to:

  • Leverage data structures to solve real-world problems , like using Boolean indexing to find cities with above-average pollution
  • Use NumPy basics such as array , shape , axis , type , broadcasting , advanced indexing , slicing , sorting , searching , aggregating , and statistics
  • Calculate basic statistics of multidimensional data arrays and the K-Means algorithms for unsupervised learning
  • Create more advanced regular expressions using grouping and named groups , negative lookaheads , escaped characters , whitespaces, character sets (and negative characters sets ), and greedy/nongreedy operators
  • Understand a wide range of computer science topics , including anagrams , palindromes , supersets , permutations , factorials , prime numbers , Fibonacci numbers, obfuscation , searching , and algorithmic sorting

By the end of the book, you’ll know how to write Python at its most refined , and create concise, beautiful pieces of “Python art” in merely a single line.

Get your Python One-Liners on Amazon!!

While working as a researcher in distributed systems, Dr. Christian Mayer found his love for teaching computer science students.

To help students reach higher levels of Python success, he founded the programming education website Finxter.com that has taught exponential skills to millions of coders worldwide. He’s the author of the best-selling programming books Python One-Liners (NoStarch 2020), The Art of Clean Code (NoStarch 2022), and The Book of Dash (NoStarch 2022). Chris also coauthored the Coffee Break Python series of self-published books. He’s a computer science enthusiast, freelancer , and owner of one of the top 10 largest Python blogs worldwide.

His passions are writing, reading, and coding. But his greatest passion is to serve aspiring coders through Finxter and help them to boost their skills. You can join his free email academy here.

Conditional Assignment Operator in Python

  • Python How-To's
  • Conditional Assignment Operator in …

Meaning of ||= Operator in Ruby

Implement ruby’s ||= conditional assignment operator in python using the try...except statement, implement ruby’s ||= conditional assignment operator in python using local and global variables.

Conditional Assignment Operator in Python

There isn’t any exact equivalent of Ruby’s ||= operator in Python. However, we can use the try...except method and concepts of local and global variables to emulate Ruby’s conditional assignment operator ||= in Python.

The basic meaning of this operator is to assign the value of the variable y to variable x if variable x is undefined or is falsy value, otherwise no assignment operation is performed.

But this operator is much more complex and confusing than other simpler conditional operators like += , -= because whenever any variable is encountered as undefined, the console throws out NameError .

a+=b evaluates to a=a+b .

a||=b looks as a=a||b but actually behaves as a||a=b .

We use try...except to catch and handle errors. Whenever the try except block runs, at first, the code lying within the try block executes. If the block of code within the try block successfully executes, then the except block is ignored; otherwise, the except block code will be executed, and the error is handled. Ruby’s ||= operator can roughly be translated in Python’s try-catch method as :

Here, if the variable x is defined, the try block will execute smoothly with no NameError exception. Hence, no assignment operation is performed. If x is not defined, the try block will generate NameError , then the except block gets executed, and variable x is assigned to 10 .

The scope of local variables is confined within a specific code scope, whereas global variables have their scope defined in the entire code space.

All the local variables in a particular scope are available as keys of the locals dictionary in that particular scope. All the global variables are stored as keys of the globals dictionary. We can access those variables whenever necessary using the locals and the globals dictionary.

We can check if a variable exists in any of the dictionaries and set its value only if it does not exist to translate Ruby’s ||= conditional assignment operator in Python.

Here, if the variable x is present in either global or local scope, we don’t perform any assignment operation; otherwise, we assign the value of x to 10 . It is similar to x||=10 in Ruby.

Related Article - Python Operator

  • Python Bitwise NOT
  • How to Unpack Operator ** in Python
  • How to Overload Operator in Python
  • Python Annotation ->
  • The Walrus Operator := in Python
  • Module 2: The Essentials of Python »
  • Conditional Statements
  • View page source

Conditional Statements 

There are reading-comprehension exercises included throughout the text. These are meant to help you put your reading to practice. Solutions for the exercises are included at the bottom of this page.

In this section, we will be introduced to the if , else , and elif statements. These allow you to specify that blocks of code are to be executed only if specified conditions are found to be true, or perhaps alternative code if the condition is found to be false. For example, the following code will square x if it is a negative number, and will cube x if it is a positive number:

Please refer to the “Basic Python Object Types” subsection to recall the basics of the “boolean” type, which represents True and False values. We will extend that discussion by introducing comparison operations and membership-checking, and then expanding on the utility of the built-in bool type.

Comparison Operations 

Comparison statements will evaluate explicitly to either of the boolean-objects: True or False . There are eight comparison operations in Python:

The first six of these operators are familiar from mathematics:

Note that = and == have very different meanings. The former is the assignment operator, and the latter is the equality operator:

Python allows you to chain comparison operators to create “compound” comparisons:

Whereas == checks to see if two objects have the same value, the is operator checks to see if two objects are actually the same object. For example, creating two lists with the same contents produces two distinct lists, that have the same “value”:

Thus the is operator is most commonly used to check if a variable references the None object, or either of the boolean objects:

Use is not to check if two objects are distinct:

bool and Truth Values of Non-Boolean Objects 

Recall that the two boolean objects True and False formally belong to the int type in addition to bool , and are associated with the values 1 and 0 , respectively:

Likewise Python ascribes boolean values to non-boolean objects. For example,the number 0 is associated with False and non-zero numbers are associated with True . The boolean values of built-in objects can be evaluated with the built-in Python command bool :

and non-zero Python integers are associated with True :

The following built-in Python objects evaluate to False via bool :

Zero of any numeric type: 0 , 0.0 , 0j

Any empty sequence, such as an empty string or list: '' , tuple() , [] , numpy.array([])

Empty dictionaries and sets

Thus non-zero numbers and non-empty sequences/collections evaluate to True via bool .

The bool function allows you to evaluate the boolean values ascribed to various non-boolean objects. For instance, bool([]) returns False wherease bool([1, 2]) returns True .

if , else , and elif 

We now introduce the simple, but powerful if , else , and elif conditional statements. This will allow us to create simple branches in our code. For instance, suppose you are writing code for a video game, and you want to update a character’s status based on her/his number of health-points (an integer). The following code is representative of this:

Each if , elif , and else statement must end in a colon character, and the body of each of these statements is delimited by whitespace .

The following pseudo-code demonstrates the general template for conditional statements:

In practice this can look like:

In its simplest form, a conditional statement requires only an if clause. else and elif clauses can only follow an if clause.

Similarly, conditional statements can have an if and an else without an elif :

Conditional statements can also have an if and an elif without an else :

Note that only one code block within a single if-elif-else statement can be executed: either the “if-block” is executed, or an “elif-block” is executed, or the “else-block” is executed. Consecutive if-statements, however, are completely independent of one another, and thus their code blocks can be executed in sequence, if their respective conditional statements resolve to True .

Reading Comprehension: Conditional statements

Assume my_list is a list. Given the following code:

What will happen if my_list is [] ? Will IndexError be raised? What will first_item be?

Assume variable my_file is a string storing a filename, where a period denotes the end of the filename and the beginning of the file-type. Write code that extracts only the filename.

my_file will have at most one period in it. Accommodate cases where my_file does not include a file-type.

"code.py" \(\rightarrow\) "code"

"doc2.pdf" \(\rightarrow\) "doc2"

"hello_world" \(\rightarrow\) "hello_world"

Inline if-else statements 

Python supports a syntax for writing a restricted version of if-else statements in a single line. The following code:

can be written in a single line as:

This is suggestive of the general underlying syntax for inline if-else statements:

The inline if-else statement :

The expression A if <condition> else B returns A if bool(<condition>) evaluates to True , otherwise this expression will return B .

This syntax is highly restricted compared to the full “if-elif-else” expressions - no “elif” statement is permitted by this inline syntax, nor are multi-line code blocks within the if/else clauses.

Inline if-else statements can be used anywhere, not just on the right side of an assignment statement, and can be quite convenient:

We will see this syntax shine when we learn about comprehension statements. That being said, this syntax should be used judiciously. For example, inline if-else statements ought not be used in arithmetic expressions, for therein lies madness:

Short-Circuiting Logical Expressions 

Armed with our newfound understanding of conditional statements, we briefly return to our discussion of Python’s logic expressions to discuss “short-circuiting”. In Python, a logical expression is evaluated from left to right and will return its boolean value as soon as it is unambiguously determined, leaving any remaining portions of the expression unevaluated . That is, the expression may be short-circuited .

For example, consider the fact that an and operation will only return True if both of its arguments evaluate to True . Thus the expression False and <anything> is guaranteed to return False ; furthermore, when executed, this expression will return False without having evaluated bool(<anything>) .

To demonstrate this behavior, consider the following example:

According to our discussion, the pattern False and short-circuits this expression without it ever evaluating bool(1/0) . Reversing the ordering of the arguments makes this clear.

In practice, short-circuiting can be leveraged in order to condense one’s code. Suppose a section of our code is processing a variable x , which may be either a number or a string . Suppose further that we want to process x in a special way if it is an all-uppercased string. The code

is problematic because isupper can only be called once we are sure that x is a string; this code will raise an error if x is a number. We could instead write

but the more elegant and concise way of handling the nestled checking is to leverage our ability to short-circuit logic expressions.

See, that if x is not a string, that isinstance(x, str) will return False ; thus isinstance(x, str) and x.isupper() will short-circuit and return False without ever evaluating bool(x.isupper()) . This is the preferable way to handle this sort of checking. This code is more concise and readable than the equivalent nested if-statements.

Reading Comprehension: short-circuited expressions

Consider the preceding example of short-circuiting, where we want to catch the case where x is an uppercased string. What is the “bug” in the following code? Why does this fail to utilize short-circuiting correctly?

Links to Official Documentation 

Truth testing

Boolean operations

Comparisons

‘if’ statements

Reading Comprehension Exercise Solutions: 

Conditional statements

If my_list is [] , then bool(my_list) will return False , and the code block will be skipped. Thus first_item will be None .

First, check to see if . is even contained in my_file . If it is, find its index-position, and slice the string up to that index. Otherwise, my_file is already the file name.

Short-circuited expressions

fails to account for the fact that expressions are always evaluated from left to right. That is, bool(x.isupper()) will always be evaluated first in this instance and will raise an error if x is not a string. Thus the following isinstance(x, str) statement is useless.

Learn Python practically and Get Certified .

Popular Tutorials

Popular examples, reference materials, learn python interactively, python introduction.

  • Get Started With Python
  • Your First Python Program
  • Python Comments

Python Fundamentals

  • Python Variables and Literals
  • Python Type Conversion
  • Python Basic Input and Output
  • Python Operators

Python Flow Control

  • Python if...else Statement
  • Python for Loop
  • Python while Loop
  • Python break and continue
  • Python pass Statement

Python Data types

  • Python Numbers and Mathematics
  • Python List
  • Python Tuple
  • Python String
  • Python Sets

Python Dictionary

  • Python Functions
  • Python Function Arguments
  • Python Variable Scope
  • Python Global Keyword
  • Python Recursion
  • Python Modules
  • Python Package
  • Python Main function

Python Files

  • Python Directory and Files Management
  • Python CSV: Read and Write CSV files
  • Reading CSV files in Python
  • Writing CSV files in Python
  • Python Exception Handling
  • Python Exceptions
  • Python Custom Exceptions

Python Object & Class

  • Python Objects and Classes
  • Python Inheritance
  • Python Multiple Inheritance
  • Polymorphism in Python
  • Python Operator Overloading

Python Advanced Topics

  • List comprehension
  • Python Lambda/Anonymous Function
  • Python Iterators
  • Python Generators
  • Python Namespace and Scope
  • Python Closures
  • Python Decorators
  • Python @property decorator
  • Python RegEx

Python Date and Time

  • Python datetime
  • Python strftime()
  • Python strptime()
  • How to get current date and time in Python?
  • Python Get Current Time
  • Python timestamp to datetime and vice-versa
  • Python time Module
  • Python sleep()

Additional Topic

  • Precedence and Associativity of Operators in Python
  • Python Keywords and Identifiers
  • Python Asserts
  • Python Json
  • Python *args and **kwargs

Python Tutorials

Python reversed()

Python Dictionary clear()

  • Python Dictionary items()
  • Python Dictionary keys()

Python Dictionary fromkeys()

  • Python Nested Dictionary

A Python dictionary is a collection of items, similar to lists and tuples. However, unlike lists and tuples, each item in a dictionary is a key-value pair (consisting of a key and a value).

  • Create a Dictionary

We create a dictionary by placing key: value pairs inside curly brackets {} , separated by commas. For example,

Key Value Pairs in a Dictionary

  • Dictionary keys must be immutable, such as tuples, strings, integers, etc. We cannot use mutable (changeable) objects such as lists as keys.
  • We can also create a dictionary using a Python built-in function dict() . To learn more, visit Python dict() .

Valid and Invalid Dictionaries

Immutable objects can't be changed once created. Some immutable objects in Python are integer, tuple and string.

In this example, we have used integers, tuples, and strings as keys for the dictionaries. When we used a list as a key, an error message occurred due to the list's mutable nature.

Note: Dictionary values can be of any data type, including mutable types like lists.

The keys of a dictionary must be unique. If there are duplicate keys, the later value of the key overwrites the previous value.

Here, the key Harry Potter is first assigned to Gryffindor . However, there is a second entry where Harry Potter is assigned to Slytherin .

As duplicate keys are not allowed in a dictionary, the last entry Slytherin overwrites the previous value Gryffindor .

  • Access Dictionary Items

We can access the value of a dictionary item by placing the key inside square brackets.

Note: We can also use the get() method to access dictionary items.

  • Add Items to a Dictionary

We can add an item to a dictionary by assigning a value to a new key. For example,

  • Remove Dictionary Items

We can use the del statement to remove an element from a dictionary. For example,

Note : We can also use the pop() method to remove an item from a dictionary.

If we need to remove all items from a dictionary at once, we can use the clear() method.

  • Change Dictionary Items

Python dictionaries are mutable (changeable). We can change the value of a dictionary element by referring to its key. For example,

Note : We can also use the update() method to add or change dictionary items.

  • Iterate Through a Dictionary

A dictionary is an ordered collection of items (starting from Python 3.7), therefore it maintains the order of its items.

We can iterate through dictionary keys one by one using a for loop .

  • Find Dictionary Length

We can find the length of a dictionary by using the len() function.

  • Python Dictionary Methods

Here are some of the commonly used dictionary methods .

  • Dictionary Membership Test

We can check whether a key exists in a dictionary by using the in and not in operators.

Note: The in operator checks whether a key exists; it doesn't check whether a value exists or not.

Table of Contents

Write a function to merge two dictionaries.

  • Merge dict1 and dict2 , then return the merged dictionary.

Video: Python Dictionaries to Store key/value Pairs

Sorry about that.

Related Tutorials

Python Library

Python Tutorial

Python Data Types

Datagy logo

  • Learn Python
  • Python Lists
  • Python Dictionaries
  • Python Strings
  • Python Functions
  • Learn Pandas & NumPy
  • Pandas Tutorials
  • Numpy Tutorials
  • Learn Data Visualization
  • Python Seaborn
  • Python Matplotlib

Inline If in Python: The Ternary Operator in Python

  • September 16, 2021 December 20, 2022

Inline If Python Cover Image

In this tutorial, you’ll learn how to create inline if statements in Python. This is often known as the Python ternary operator, which allows you to execute conditional if statements in a single line, allowing statements to take up less space and often be written in my easy-to-understand syntax! Let’s take a look at what you’ll learn.

The Quick Answer: Use the Python Ternary Operator

Table of Contents

What is the Python Ternary Operator?

A ternary operator is an inline statement that evaluates a condition and returns one of two outputs. It’s an operator that’s often used in many programming languages, including Python, as well as math. The Python ternary operator has been around since Python 2.5, despite being delayed multiple times.

The syntax of the Python ternary operator is a little different than that of other languages. Let’s take a look at what it looks like:

Now let’s take a look at how you can actually write an inline if statement in Python.

How Do you Write an Inline If Statement in Python?

Before we dive into writing an inline if statement in Python, let’s take a look at how if statements actually work in Python. With an if statement you must include an if , but you can also choose to include an else statement, as well as one more of else-ifs, which in Python are written as elif .

The traditional Python if statement looks like this:

This can be a little cumbersome to write, especially if you conditions are very simple. Because of this, inline if statements in Python can be really helpful to help you write your code faster.

Let’s take a look at how we can accomplish this in Python:

This is significantly easier to write. Let’s break this down a little bit:

  • We assign a value to x , which will be evaluated
  • We declare a variable, y , which we assign to the value of 10, if x is True. Otherwise, we assign it a value of 20.

We can see how this is written out in a much more plain language than a for-loop that may require multiple lines, thereby wasting space.

Tip! This is quite similar to how you’d written a list comprehension. If you want to learn more about Python List Comprehensions, check out my in-depth tutorial here . If you want to learn more about Python for-loops, check out my in-depth guide here .

Now that you know how to write a basic inline if statement in Python, let’s see how you can simplify it even further by omitting the else statement.

How To Write an Inline If Statement Without an Else Statement

Now that you know how to write an inline if statement in Python with an else clause, let’s take a look at how we can do this in Python.

Before we do this, let’s see how we can do this with a traditional if statement in Python

You can see that this still requires you to write two lines. But we know better – we can easily cut this down to a single line. Let’s get started!

We can see here that really what this accomplishes is remove the line break between the if line and the code it executes.

Now let’s take a look at how we can even include an elif clause in our inline if statements in Python!

Check out some other Python tutorials on datagy.io, including our complete guide to styling Pandas and our comprehensive overview of Pivot Tables in Pandas !

How to Write an Inline If Statement With an Elif Statement

Including an else-if, or elif , in your Python inline if statement is a little less intuitive. But it’s definitely doable! So let’s get started. Let’s imagine we want to write this if-statement:

Let’s see how we can easily turn this into an inline if statement in Python:

This is a bit different than what we’ve seen so far, so let’s break it down a bit:

  • First, we evaluate is x == 1. If that’s true, the conditions end and y = 10.
  • Otherwise, we create another condition in brackets
  • First we check if x == 20, and if that’s true, then y = 20. Note that we did not repeated y= here.
  • Finally, if neither of the other decisions are true, we assign 30 to y

This is definitely a bit more complex to read, so you may be better off creating a traditional if statement.

In this post, you learned how to create inline if statement in Python! You learned about the Python ternary operator and how it works. You also learned how to create inline if statements with else statements, without else statements, as well as with else if statements.

To learn more about Python ternary operators, check out the official documentation here .

Nik Piepenbreier

Nik is the author of datagy.io and has over a decade of experience working with data analytics, data science, and Python. He specializes in teaching developers how to use Python for data science using hands-on tutorials. View Author posts

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Python Basics
  • Interview Questions
  • Python Quiz
  • Popular Packages
  • Python Projects
  • Practice Python
  • AI With Python
  • Learn Python3
  • Python Automation
  • Python Web Dev
  • DSA with Python
  • Python OOPs
  • Dictionaries

Python Operators

Precedence and associativity of operators in python.

  • Python Arithmetic Operators
  • Difference between / vs. // operator in Python
  • Python - Star or Asterisk operator ( * )
  • What does the Double Star operator mean in Python?
  • Division Operators in Python
  • Modulo operator (%) in Python
  • Python Logical Operators
  • Python OR Operator
  • Difference between 'and' and '&' in Python
  • not Operator in Python | Boolean Logic

Ternary Operator in Python

  • Python Bitwise Operators

Python Assignment Operators

Assignment operators in python.

  • Walrus Operator in Python 3.8
  • Increment += and Decrement -= Assignment Operators in Python
  • Merging and Updating Dictionary Operators in Python 3.9
  • New '=' Operator in Python3.8 f-string

Python Relational Operators

  • Comparison Operators in Python
  • Python NOT EQUAL operator
  • Difference between == and is operator in Python
  • Chaining comparison operators in Python
  • Python Membership and Identity Operators
  • Difference between != and is not operator in Python

In Python programming, Operators in general are used to perform operations on values and variables. These are standard symbols used for logical and arithmetic operations. In this article, we will look into different types of Python operators. 

  • OPERATORS: These are the special symbols. Eg- + , * , /, etc.
  • OPERAND: It is the value on which the operator is applied.

Types of Operators in Python

  • Arithmetic Operators
  • Comparison Operators
  • Logical Operators
  • Bitwise Operators
  • Assignment Operators
  • Identity Operators and Membership Operators

Python Operators

Arithmetic Operators in Python

Python Arithmetic operators are used to perform basic mathematical operations like addition, subtraction, multiplication , and division .

In Python 3.x the result of division is a floating-point while in Python 2.x division of 2 integers was an integer. To obtain an integer result in Python 3.x floored (// integer) is used.

Example of Arithmetic Operators in Python

Division operators.

In Python programming language Division Operators allow you to divide two numbers and return a quotient, i.e., the first number or number at the left is divided by the second number or number at the right and returns the quotient. 

There are two types of division operators: 

Float division

  • Floor division

The quotient returned by this operator is always a float number, no matter if two numbers are integers. For example:

Example: The code performs division operations and prints the results. It demonstrates that both integer and floating-point divisions return accurate results. For example, ’10/2′ results in ‘5.0’ , and ‘-10/2’ results in ‘-5.0’ .

Integer division( Floor division)

The quotient returned by this operator is dependent on the argument being passed. If any of the numbers is float, it returns output in float. It is also known as Floor division because, if any number is negative, then the output will be floored. For example:

Example: The code demonstrates integer (floor) division operations using the // in Python operators . It provides results as follows: ’10//3′ equals ‘3’ , ‘-5//2’ equals ‘-3’ , ‘ 5.0//2′ equals ‘2.0’ , and ‘-5.0//2’ equals ‘-3.0’ . Integer division returns the largest integer less than or equal to the division result.

Precedence of Arithmetic Operators in Python

The precedence of Arithmetic Operators in Python is as follows:

  • P – Parentheses
  • E – Exponentiation
  • M – Multiplication (Multiplication and division have the same precedence)
  • D – Division
  • A – Addition (Addition and subtraction have the same precedence)
  • S – Subtraction

The modulus of Python operators helps us extract the last digit/s of a number. For example:

  • x % 10 -> yields the last digit
  • x % 100 -> yield last two digits

Arithmetic Operators With Addition, Subtraction, Multiplication, Modulo and Power

Here is an example showing how different Arithmetic Operators in Python work:

Example: The code performs basic arithmetic operations with the values of ‘a’ and ‘b’ . It adds (‘+’) , subtracts (‘-‘) , multiplies (‘*’) , computes the remainder (‘%’) , and raises a to the power of ‘b (**)’ . The results of these operations are printed.

Note: Refer to Differences between / and // for some interesting facts about these two Python operators.

Comparison of Python Operators

In Python Comparison of Relational operators compares the values. It either returns True or False according to the condition.

= is an assignment operator and == comparison operator.

Precedence of Comparison Operators in Python

In Python, the comparison operators have lower precedence than the arithmetic operators. All the operators within comparison operators have the same precedence order.

Example of Comparison Operators in Python

Let’s see an example of Comparison Operators in Python.

Example: The code compares the values of ‘a’ and ‘b’ using various comparison Python operators and prints the results. It checks if ‘a’ is greater than, less than, equal to, not equal to, greater than, or equal to, and less than or equal to ‘b’ .

Logical Operators in Python

Python Logical operators perform Logical AND , Logical OR , and Logical NOT operations. It is used to combine conditional statements.

Precedence of Logical Operators in Python

The precedence of Logical Operators in Python is as follows:

  • Logical not
  • logical and

Example of Logical Operators in Python

The following code shows how to implement Logical Operators in Python:

Example: The code performs logical operations with Boolean values. It checks if both ‘a’ and ‘b’ are true ( ‘and’ ), if at least one of them is true ( ‘or’ ), and negates the value of ‘a’ using ‘not’ . The results are printed accordingly.

Bitwise Operators in Python

Python Bitwise operators act on bits and perform bit-by-bit operations. These are used to operate on binary numbers.

Precedence of Bitwise Operators in Python

The precedence of Bitwise Operators in Python is as follows:

  • Bitwise NOT
  • Bitwise Shift
  • Bitwise AND
  • Bitwise XOR

Here is an example showing how Bitwise Operators in Python work:

Example: The code demonstrates various bitwise operations with the values of ‘a’ and ‘b’ . It performs bitwise AND (&) , OR (|) , NOT (~) , XOR (^) , right shift (>>) , and left shift (<<) operations and prints the results. These operations manipulate the binary representations of the numbers.

Python Assignment operators are used to assign values to the variables.

Let’s see an example of Assignment Operators in Python.

Example: The code starts with ‘a’ and ‘b’ both having the value 10. It then performs a series of operations: addition, subtraction, multiplication, and a left shift operation on ‘b’ . The results of each operation are printed, showing the impact of these operations on the value of ‘b’ .

Identity Operators in Python

In Python, is and is not are the identity operators both are used to check if two values are located on the same part of the memory. Two variables that are equal do not imply that they are identical. 

Example Identity Operators in Python

Let’s see an example of Identity Operators in Python.

Example: The code uses identity operators to compare variables in Python. It checks if ‘a’ is not the same object as ‘b’ (which is true because they have different values) and if ‘a’ is the same object as ‘c’ (which is true because ‘c’ was assigned the value of ‘a’ ).

Membership Operators in Python

In Python, in and not in are the membership operators that are used to test whether a value or variable is in a sequence.

Examples of Membership Operators in Python

The following code shows how to implement Membership Operators in Python:

Example: The code checks for the presence of values ‘x’ and ‘y’ in the list. It prints whether or not each value is present in the list. ‘x’ is not in the list, and ‘y’ is present, as indicated by the printed messages. The code uses the ‘in’ and ‘not in’ Python operators to perform these checks.

in Python, Ternary operators also known as conditional expressions are operators that evaluate something based on a condition being true or false. It was added to Python in version 2.5. 

It simply allows testing a condition in a single line replacing the multiline if-else making the code compact.

Syntax :   [on_true] if [expression] else [on_false] 

Examples of Ternary Operator in Python

The code assigns values to variables ‘a’ and ‘b’ (10 and 20, respectively). It then uses a conditional assignment to determine the smaller of the two values and assigns it to the variable ‘min’ . Finally, it prints the value of ‘min’ , which is 10 in this case.

In Python, Operator precedence and associativity determine the priorities of the operator.

Operator Precedence in Python

This is used in an expression with more than one operator with different precedence to determine which operation to perform first.

Let’s see an example of how Operator Precedence in Python works:

Example: The code first calculates and prints the value of the expression 10 + 20 * 30 , which is 610. Then, it checks a condition based on the values of the ‘name’ and ‘age’ variables. Since the name is “ Alex” and the condition is satisfied using the or operator, it prints “Hello! Welcome.”

Operator Associativity in Python

If an expression contains two or more operators with the same precedence then Operator Associativity is used to determine. It can either be Left to Right or from Right to Left.

The following code shows how Operator Associativity in Python works:

Example: The code showcases various mathematical operations. It calculates and prints the results of division and multiplication, addition and subtraction, subtraction within parentheses, and exponentiation. The code illustrates different mathematical calculations and their outcomes.

To try your knowledge of Python Operators, you can take out the quiz on Operators in Python . 

Python Operator Exercise Questions

Below are two Exercise Questions on Python Operators. We have covered arithmetic operators and comparison operators in these exercise questions. For more exercises on Python Operators visit the page mentioned below.

Q1. Code to implement basic arithmetic operations on integers

Q2. Code to implement Comparison operations on integers

Explore more Exercises: Practice Exercise on Operators in Python

Please Login to comment...

Similar reads.

  • python-basics
  • Python-Operators

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

IMAGES

  1. Python

    python conditional assignment dictionary

  2. Learning How to Use Conditionals in Python

    python conditional assignment dictionary

  3. Python

    python conditional assignment dictionary

  4. Conditional Statements in Python

    python conditional assignment dictionary

  5. 6 Python Conditional Statements with Examples

    python conditional assignment dictionary

  6. Python conditional assignment by Belcher Tiara

    python conditional assignment dictionary

VIDEO

  1. Python Lecture #4

  2. 13 Python

  3. Python Tutorial : Conditional Statement

  4. Python Conditional Statements A Beginners Guide

  5. Week 12 :Lesson 3

  6. 14 Python

COMMENTS

  1. python

    The only problem with your dict comprehension as shown is that the place for an expression in a dict comprehension must have two expressions, separated by a colon: { (some_key if condition else default_key):(something_if_true if condition. else something_if_false) for key, value in dict_.items() } The final if clause acts as a filter, which is ...

  2. Conditional expressions in Python Dictionary comprehensions

    Any suggestions on how to include a conditional expression in dictionary comprehension to decide if key, value tuple should be included in the new dictionary

  3. Mastering Conditional Dictionary Comprehensions in Python: A

    The power of dictionary comprehensions in Python can be significantly enhanced by integrating them with conditional statements. This combination allows us to create dictionaries that meet specific conditions, making our code more efficient and readable. The syntax for a dictionary comprehension with a conditional statement is as follows:

  4. Conditional Statements in Python

    In this step-by-step tutorial you'll learn how to work with conditional ("if") statements in Python. Master if-statements and see how to write complex decision making code in your programs.

  5. Python Conditional Assignment (in 3 Ways)

    Conditionally assigning a value in Python is a basic programming task. In this tutorial, we will look at 3 different ways to assign values conditionally in Python.

  6. Conditional expression (ternary operator) in Python

    Python has a conditional expression (sometimes called a "ternary operator"). You can write operations like if statements in one line with conditional expressions.

  7. How To Write Conditional Statements in Python 3

    This tutorial will take you through writing conditional statements in the Python programming language.

  8. The Walrus Operator: Python 3.8 Assignment Expressions

    In this tutorial, you'll learn about assignment expressions and the walrus operator. The biggest change in Python 3.8 was the inclusion of the := operator, which you can use to assign variables in the middle of expressions. You'll see several examples of how to take advantage of this new feature.

  9. Write Shorter Conditionals (Using Dictionaries)

    The approach uses a dictionary to attain a conditional with less and arguably more readable code. It won't be a replacement for each and every If-Else or Match-Case statement in your code, but it is certainly useful in plenty of situations.

  10. Python's Assignment Operator: Write Robust Assignments

    In this tutorial, you'll learn how to use Python's assignment operators to write assignment statements that allow you to create, initialize, and update variables in your code.

  11. 6. Expressions

    Assignment expressions must be surrounded by parentheses when used as expression statements and when used as sub-expressions in slicing, conditional, lambda, keyword-argument, and comprehension-if expressions and in assert, with, and assignment statements.

  12. Python One Line Conditional Assignment

    Python One-Liners will teach you how to read and write "one-liners": concise statements of useful functionality packed into a single line of code. You'll learn how to systematically unpack and understand any line of Python code, and write eloquent, powerfully compressed Python like an expert.

  13. Conditional Assignment Operator in Python

    We can check if a variable exists in any of the dictionaries and set its value only if it does not exist to translate Ruby's ||= conditional assignment operator in Python.

  14. Conditional Statements

    Armed with our newfound understanding of conditional statements, we briefly return to our discussion of Python's logic expressions to discuss "short-circuiting".

  15. Conditional Statements in Python

    Conditional Statements are statements in Python that provide a choice for the control flow based on a condition. It means that the control flow of the Python program will be decided based on the outcome of the condition.

  16. Python Dictionary (With Examples)

    A Python dictionary is a collection of items, similar to lists and tuples. However, unlike lists and tuples, each item in a dictionary is a key-value pair (consisting of a key and a value).

  17. Inline If in Python: The Ternary Operator in Python

    Learn how to create inline if statements in Python, often known as the Python ternary operator, allowing you to apply conditions inline.

  18. Python

    Given 2 dictionaries list, the task is to write a Python program to perform conditional join i.e add keys, based upon similarity of particular key in similar index dictionary.

  19. Python Operators

    Dive into Python Operators: Arithmetic, logical, and bitwise operators with crystal-clear examples and visuals. Explore the tutorial and level up your Python skills today

  20. Best way to do conditional assignment in python

    Easy! For more conditional code: a = b if b else val. For your code: a = get_something() if get_something() else val. With that you can do complex conditions like this: a = get_something() if get_something()/2!=0 else val. answered Jul 15, 2011 at 9:12. Phyo Arkar Lwin.

  21. Python conditional assignment operator

    There is conditional assignment in Python 2.5 and later - the syntax is not very obvious hence it's easy to miss. Here's how you do it:

  22. variable assignment

    The staff then enters the customer details into the system, and thereafter provides him with the unique account number and a default password. A unique customer account number must be autogenerated and should in a sequence. The account can be Savings account or Current account. • Admin staff may update or edit the staff or customer's details.

  23. azure

    I have some logs in my Application Insights that I want to query directly in Python. I'm using Azure Monitor Query and Azure Identity to do this.