Statology

Statistics Made Easy

Understanding the Null Hypothesis for ANOVA Models

A one-way ANOVA is used to determine if there is a statistically significant difference between the mean of three or more independent groups.

A one-way ANOVA uses the following null and alternative hypotheses:

  • H 0 :  μ 1  = μ 2  = μ 3  = … = μ k  (all of the group means are equal)
  • H A : At least one group mean is different   from the rest

To decide if we should reject or fail to reject the null hypothesis, we must refer to the p-value in the output of the ANOVA table.

If the p-value is less than some significance level (e.g. 0.05) then we can reject the null hypothesis and conclude that not all group means are equal.

A two-way ANOVA is used to determine whether or not there is a statistically significant difference between the means of three or more independent groups that have been split on two variables (sometimes called “factors”).

A two-way ANOVA tests three null hypotheses at the same time:

  • All group means are equal at each level of the first variable
  • All group means are equal at each level of the second variable
  • There is no interaction effect between the two variables

To decide if we should reject or fail to reject each null hypothesis, we must refer to the p-values in the output of the two-way ANOVA table.

The following examples show how to decide to reject or fail to reject the null hypothesis in both a one-way ANOVA and two-way ANOVA.

Example 1: One-Way ANOVA

Suppose we want to know whether or not three different exam prep programs lead to different mean scores on a certain exam. To test this, we recruit 30 students to participate in a study and split them into three groups.

The students in each group are randomly assigned to use one of the three exam prep programs for the next three weeks to prepare for an exam. At the end of the three weeks, all of the students take the same exam. 

The exam scores for each group are shown below:

Example one-way ANOVA data

When we enter these values into the One-Way ANOVA Calculator , we receive the following ANOVA table as the output:

ANOVA output table interpretation

Notice that the p-value is 0.11385 .

For this particular example, we would use the following null and alternative hypotheses:

  • H 0 :  μ 1  = μ 2  = μ 3 (the mean exam score for each group is equal)

Since the p-value from the ANOVA table is not less than 0.05, we fail to reject the null hypothesis.

This means we don’t have sufficient evidence to say that there is a statistically significant difference between the mean exam scores of the three groups.

Example 2: Two-Way ANOVA

Suppose a botanist wants to know whether or not plant growth is influenced by sunlight exposure and watering frequency.

She plants 40 seeds and lets them grow for two months under different conditions for sunlight exposure and watering frequency. After two months, she records the height of each plant. The results are shown below:

Two-way ANOVA table in Excel

In the table above, we see that there were five plants grown under each combination of conditions.

For example, there were five plants grown with daily watering and no sunlight and their heights after two months were 4.8 inches, 4.4 inches, 3.2 inches, 3.9 inches, and 4.4 inches:

Two-way ANOVA data in Excel

She performs a two-way ANOVA in Excel and ends up with the following output:

null hypothesis 2 way anova

We can see the following p-values in the output of the two-way ANOVA table:

  • The p-value for watering frequency is 0.975975 . This is not statistically significant at a significance level of 0.05.
  • The p-value for sunlight exposure is 3.9E-8 (0.000000039) . This is statistically significant at a significance level of 0.05.
  • The p-value for the interaction between watering  frequency and sunlight exposure is 0.310898 . This is not statistically significant at a significance level of 0.05.

These results indicate that sunlight exposure is the only factor that has a statistically significant effect on plant height.

And because there is no interaction effect, the effect of sunlight exposure is consistent across each level of watering frequency.

That is, whether a plant is watered daily or weekly has no impact on how sunlight exposure affects a plant.

Additional Resources

The following tutorials provide additional information about ANOVA models:

How to Interpret the F-Value and P-Value in ANOVA How to Calculate Sum of Squares in ANOVA What Does a High F Value Mean in ANOVA?

Featured Posts

null hypothesis 2 way anova

Hey there. My name is Zach Bobbitt. I have a Masters of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike.  My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

2 Replies to “Understanding the Null Hypothesis for ANOVA Models”

Hi, I’m a student at Stellenbosch University majoring in Conservation Ecology and Entomology and we are currently busy doing stats. I am still at a very entry level of stats understanding, so pages like these are of huge help. I wanted to ask, why is the sum of squares (treatment) for the one way ANOVA so high? I calculated it by hand and got a much lower number, could you please help point out if and where I went wrong?

As I understand it, SSB (treatment) is calculated by finding the mean of each group and the grand mean, and then calculating the sum of squares like this: GM = 85.5 x1 = 83.4 x2 = 89.3 x3 = 84.7

SSB = (85.5 – 83.4)^2 + (85.5 – 89.3)^2 + (85.5 – 84.7)^2 = 18.65 DF = 2

I would appreciate any help, thank you so much!

Hi Theo…Certainly! Here are the equations rewritten as they would be typed in Python:

### Sum of Squares Between Groups (SSB)

In a one-way ANOVA, the sum of squares between groups (SSB) measures the variation due to the interaction between the groups. It is calculated as follows:

1. **Calculate the group means**: “`python mean_group1 = 83.4 mean_group2 = 89.3 mean_group3 = 84.7 “`

2. **Calculate the grand mean**: “`python grand_mean = 85.5 “`

3. **Calculate the sum of squares between groups (SSB)**: Assuming each group has `n` observations: “`python n = 10 # Number of observations in each group

ssb = n * ((mean_group1 – grand_mean)**2 + (mean_group2 – grand_mean)**2 + (mean_group3 – grand_mean)**2) “`

### Example Calculation

For simplicity, let’s assume each group has 10 observations: “`python n = 10

ssb = n * ((83.4 – 85.5)**2 + (89.3 – 85.5)**2 + (84.7 – 85.5)**2) “`

Now calculate each term: “`python term1 = (83.4 – 85.5)**2 # term1 = (-2.1)**2 = 4.41 term2 = (89.3 – 85.5)**2 # term2 = (3.8)**2 = 14.44 term3 = (84.7 – 85.5)**2 # term3 = (-0.8)**2 = 0.64 “`

Sum these squared differences: “`python sum_of_squared_diffs = term1 + term2 + term3 # sum_of_squared_diffs = 4.41 + 14.44 + 0.64 = 19.49 ssb = n * sum_of_squared_diffs # ssb = 10 * 19.49 = 194.9 “`

So, the sum of squares between groups (SSB) is 194.9, assuming each group has 10 observations.

### Degrees of Freedom (DF)

The degrees of freedom for SSB is calculated as: “`python df_between = k – 1 “` where `k` is the number of groups.

For three groups: “`python k = 3 df_between = k – 1 # df_between = 3 – 1 = 2 “`

### Summary

– **SSB** should consider the number of observations in each group. – **DF** is the number of groups minus one.

By ensuring you include the number of observations per group in your SSB calculation, you can get the correct SSB value.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Join the Statology Community

Sign up to receive Statology's exclusive study resource: 100 practice problems with step-by-step solutions. Plus, get our latest insights, tutorials, and data analysis tips straight to your inbox!

By subscribing you accept Statology's Privacy Policy.

Stats: Two-Way ANOVA

Assumptions.

  • The populations from which the samples were obtained must be normally or approximately normally distributed.
  • The samples must be independent.
  • The variances of the populations must be equal.
  • The groups must have the same sample size.
  • The population means of the first factor are equal. This is like the one-way ANOVA for the row factor.
  • The population means of the second factor are equal. This is like the one-way ANOVA for the column factor.
  • There is no interaction between the two factors. This is similar to performing a test for independence with contingency tables.

Treatment Groups

Main effect, interaction effect, within variation, two-way anova table, error in bluman textbook.

Chapter 6: Two-way Analysis of Variance

In the previous chapter we used one-way ANOVA to analyze data from three or more populations using the null hypothesis that all means were the same (no treatment effect). For example, a biologist wants to compare mean growth for three different levels of fertilizer. A one-way ANOVA tests to see if at least one of the treatment means is significantly different from the others. If the null hypothesis is rejected, a multiple comparison method, such as Tukey’s, can be used to identify which means are different, and the confidence interval can be used to estimate the difference between the different means.

Suppose the biologist wants to ask this same question but with two different species of plants while still testing the three different levels of fertilizer. The biologist needs to investigate not only the average growth between the two species (main effect A) and the average growth for the three levels of fertilizer (main effect B), but also the interaction or relationship between the two factors of species and fertilizer. Two-way analysis of variance allows the biologist to answer the question about growth affected by species and levels of fertilizer, and to account for the variation due to both factors simultaneously.

Our examination of one-way ANOVA was done in the context of a completely randomized design where the treatments are assigned randomly to each subject (or experimental unit). We now consider analysis in which two factors can explain variability in the response variable. Remember that we can deal with factors by controlling them, by fixing them at specific levels, and randomly applying the treatments so the effect of uncontrolled variables on the response variable is minimized. With two factors, we need a factorial experiment.

9778.png

Table 1. Observed data for two species at three levels of fertilizer.  

This is an example of a factorial experiment in which there are a total of 2 x 3 = 6 possible combinations of the levels for the two different factors (species and level of fertilizer). These six combinations are referred to as treatments and the experiment is called a 2 x 3 factorial experiment . We use this type of experiment to investigate the effect of multiple factors on a response and the interaction between the factors. Each of the n observations of the response variable for the different levels of the factors exists within a cell. In this example, there are six cells and each cell corresponds to a specific treatment.

Image37424.PNG

Main Effects and Interaction Effect

Main effects deal with each factor separately. In the previous example we have two factors, A and B. The main effect of Factor A (species) is the difference between the mean growth for Species 1 and Species 2, averaged across the three levels of fertilizer. The main effect of Factor B (fertilizer) is the difference in mean growth for levels 1, 2, and 3 averaged across the two species. The interaction is the simultaneous changes in the levels of both factors. If the changes in the level of Factor A result in different changes in the value of the response variable for the different levels of Factor B, we say that there is an interaction effect between the factors. Consider the following example to help clarify this idea of interaction.

Factor A has two levels and Factor B has two levels. In the left box, when Factor A is at level 1, Factor B changes by 3 units. When Factor A is at level 2, Factor B again changes by 3 units. Similarly, when Factor B is at level 1, Factor A changes by 2 units. When Factor B is at level 2, Factor A again changes by 2 units. There is no interaction. The change in the true average response when the level of either factor changes from 1 to 2 is the same for each level of the other factor. In this case, changes in levels of the two factors affect the true average response separately, or in an additive manner.

New%20Fig.%201%20pg.132.png

Figure 1. Illustration of interaction effect.

The right box illustrates the idea of interaction. When Factor A is at level 1, Factor B changes by 3 units but when Factor A is at level 2, Factor B changes by 6 units. When Factor B is at level 1, Factor A changes by 2 units but when Factor B is at level 2, Factor A changes by 5 units. The change in the true average response when the levels of both factors change simultaneously from level 1 to level 2 is 8 units, which is much larger than the separate changes suggest. In this case, there is an interaction between the two factors, so the effect of simultaneous changes cannot be determined from the individual effects of the separate changes. Change in the true average response when the level of one factor changes depends on the level of the other factor. You cannot determine the separate effect of Factor A or Factor B on the response because of the interaction.

Assumptions

Basic Assumption : The observations on any particular treatment are independently selected from a normal distribution with variance σ 2 (the same variance for each treatment), and samples from different treatments are independent of one another.

We can use normal probability plots to satisfy the assumption of normality for each treatment. The requirement for equal variances is more difficult to confirm, but we can generally check by making sure that the largest sample standard deviation is no more than twice the smallest sample standard deviation.

Although not a requirement for two-way ANOVA, having an equal number of observations in each treatment, referred to as a balance design, increases the power of the test. However, unequal replications (an unbalanced design), are very common. Some statistical software packages (such as Excel) will only work with balanced designs. Minitab will provide the correct analysis for both balanced and unbalanced designs in the General Linear Model component under ANOVA statistical analysis. However, for the sake of simplicity, we will focus on balanced designs in this chapter.

Sums of Squares and the ANOVA Table

In the previous chapter, the idea of sums of squares was introduced to partition the variation due to treatment and random variation. The relationship is as follows:

SSTo = SSTr + SSE

We now partition the variation even more to reflect the main effects (Factor A and Factor B) and the interaction term:

SSTo = SSA + SSB +SSAB +SSE

  • SSTo is the total sums of squares, with the associated degrees of freedom klm – 1
  • SSA is the factor A main effect sums of squares, with associated degrees of freedom k – 1
  • SSB is the factor B main effect sums of squares, with associated degrees of freedom l – 1
  • SSAB is the interaction sum of squares, with associated degrees of freedom ( k – 1)( l – 1)
  • SSE is the error sum of squares, with associated degrees of freedom kl ( m – 1)

As we saw in the previous chapter, the magnitude of the SSE is related entirely to the amount of underlying variability in the distributions being sampled. It has nothing to do with values of the various true average responses. SSAB reflects in part underlying variability, but its value is also affected by whether or not there is an interaction between the factors; the greater the interaction, the greater the value of SSAB.

The following ANOVA table illustrates the relationship between the sums of squares for each component and the resulting F-statistic for testing the three null and alternative hypotheses for a two-way ANOVA.

  • H 0 : There is no interaction between factors H 1 : There is a significant interaction between factors
  • H 0 : There is no effect of Factor A on the response variable H 1 : There is an effect of Factor A on the response variable
  • H 0 : There is no effect of Factor B on the response variable H 1 : There is an effect of Factor B on the response variable

If there is a significant interaction, then ignore the following two sets of hypotheses for the main effects. A significant interaction tells you that the change in the true average response for a level of Factor A depends on the level of Factor B. The effect of simultaneous changes cannot be determined by examining the main effects separately. If there is NOT a significant interaction, then proceed to test the main effects. The Factor A sums of squares will reflect random variation and any differences between the true average responses for different levels of Factor A. Similarly, Factor B sums of squares will reflect random variation and the true average responses for the different levels of Factor B.

098.jpg

Table 2. Two-way ANOVA table.

Each of the five sources of variation, when divided by the appropriate degrees of freedom (df), provides an estimate of the variation in the experiment. The estimates are called mean squares and are displayed along with their respective sums of squares and df in the analysis of variance table. In one-way ANOVA, the mean square error (MSE) is the best estimate of σ 2 (the population variance) and is the denominator in the F-statistic. In a two-way ANOVA, it is still the best estimate of σ 2 . Notice that in each case, the MSE is the denominator in the test statistic and the numerator is the mean sum of squares for each main factor and interaction term. The F-statistic is found in the final column of this table and is used to answer the three alternative hypotheses. Typically, the p-values associated with each F-statistic are also presented in an ANOVA table. You will use the Decision Rule to determine the outcome for each of the three pairs of hypotheses.

If the p-value is smaller than α (level of significance), you will reject the null hypothesis.

When we conduct a two-way ANOVA, we always first test the hypothesis regarding the interaction effect. If the null hypothesis of no interaction is rejected, we do NOT interpret the results of the hypotheses involving the main effects. If the interaction term is NOT significant, then we examine the two main effects separately. Let’s look at an example.

An experiment was carried out to assess the effects of soy plant variety (factor A, with k = 3 levels) and planting density (factor B, with l = 4 levels – 5, 10, 15, and 20 thousand plants per hectare) on yield. Each of the 12 treatments ( k * l ) was randomly applied to m = 3 plots ( klm = 36 total observations). Use a two-way ANOVA to assess the effects at a 5% level of significance.

9695.png

Table 3. Observed data for three varieties of soy plants at four densities.

It is always important to look at the sample average yields for each treatment, each level of factor A, and each level of factor B.

Table 4. Summary table.

For example, 11.32 is the average yield for variety #1 over all levels of planting densities. The value 11.46 is the average yield for plots planted with 5,000 plants across all varieties. The grand mean is 13.88. The ANOVA table is presented next.

Table 5. Two-way ANOVA table.

You begin with the following null and alternative hypotheses:

H 0 : There is no interaction between factors

H 1 : There is a significant interaction between factors

10004.png

The p-value for the test for a significant interaction between factors is 0.562. This p-value is greater than 5% ( α ), therefore we fail to reject the null hypothesis. There is no evidence of a significant interaction between variety and density. So it is appropriate to carry out further tests concerning the presence of the main effects.

H 0 : There is no effect of Factor A (variety) on the response variable

H 1 : There is an effect of Factor A on the response variable

10014.png

The p-value (<0.001) is less than 0.05 so we will reject the null hypothesis. There is a significant difference in yield between the three varieties.

H 0 : There is no effect of Factor B (density) on the response variable

H 1 : There is an effect of Factor B on the response variable

10022.png

The p-value (<0.001) is less than 0.05 so we will reject the null hypothesis. There is a significant difference in yield between the four planting densities.

Multiple Comparisons

The next step is to examine the multiple comparisons for each main effect to determine the differences. We will proceed as we did with one-way ANOVA multiple comparisons by examining the Tukey’s Grouping for each main effect. For factor A, variety, the sample means, and grouping letters are presented to identify those varieties that are significantly different from other varieties. Varieties 1 and 2 are not significantly different from each other, both producing similar yields. Variety 3 produced significantly greater yields than both variety 1 and 2.

Some of the densities are also significantly different. We will follow the same procedure to determine the differences.

The Grouping Information shows us that a planting density of 15,000 plants/plot results in the greatest yield. However, there is no significant difference in yield between 10,000 and 15,000 plants/plot or between 10,000 and 20,000 plants/plot. The plots with 5,000 plants/plot result in the lowest yields and these yields are significantly lower than all other densities tested.

The main effects plots also illustrate the differences in yield across the three varieties and four densities.

9662.png

Figure 2. Main effects plots.

But what happens if there is a significant interaction between the main effects? This next example will demonstrate how a significant interaction alters the interpretation of a 2-way ANOVA.

A researcher was interested in the effects of four levels of fertilization (control, 100 lb., 150 lb., and 200 lb.) and four levels of irrigation (A, B, C, and D) on biomass yield. The sixteen possible treatment combinations were randomly assigned to 80 plots (5 plots for each treatment). The total biomass yields for each treatment are listed below.

Table 6. Observed data for four irrigation levels and four fertilizer levels.

Factor A (irrigation level) has k = 4 levels and factor B (fertilizer) has l = 4 levels. There are m = 5 replicates and 80 total observations. This is a balanced design as the number of replicates is equal. The ANOVA table is presented next.

Table 7. Two-way ANOVA table.

We again begin with testing the interaction term. Remember, if the interaction term is significant, we ignore the main effects.

10031.png

The p-value for the test for a significant interaction between factors is <0.001. This p-value is less than 5%, therefore we reject the null hypothesis. There is evidence of a significant interaction between fertilizer and irrigation. Since the interaction term is significant, we do not investigate the presence of the main effects. We must now examine multiple comparisons for all 16 treatments (each combination of fertilizer and irrigation level) to determine the differences in yield, aided by the factor plot.

The factor plot allows you to visualize the differences between the 16 treatments. Factor plots can present the information two ways, each with a different factor on the x-axis. In the first plot, fertilizer level is on the x-axis. There is a clear distinction in average yields for the different treatments. Irrigation levels A and B appear to be producing greater yields across all levels of fertilizers compared to irrigation levels C and D. In the second plot, irrigation level is on the x-axis. All levels of fertilizer seem to result in greater yields for irrigation levels A and B compared to C and D.

9631.png

Figure 3. Interaction plots.

The next step is to use the multiple comparison output to determine where there are SIGNIFICANT differences. Let’s focus on the first factor plot to do this.

9620.png

Figure 4. Interaction plot.

The Grouping Information tells us that while irrigation levels A and B look similar across all levels of fertilizer, only treatments A-100, A-150, A-200, B-control, B-150, and B-200 are statistically similar (upper circle). Treatment B-100 and A-control also result in similar yields (middle circle) and both have significantly lower yields than the first group.

Irrigation levels C and D result in the lowest yields across the fertilizer levels. We again refer to the Grouping Information to identify the differences. There is no significant difference in yield for irrigation level D over any level of fertilizer. Yields for D are also similar to yields for irrigation level C at 100, 200, and control levels for fertilizer (lowest circle). Irrigation level C at 150 level fertilizer results in significantly higher yields than any yield from irrigation level D for any fertilizer level, however, this yield is still significantly smaller than the first group using irrigation levels A and B.

Interpreting Factor Plots

When the interaction term is significant the analysis focuses solely on the treatments, not the main effects. The factor plot and grouping information allow the researcher to identify similarities and differences, along with any trends or patterns. The following series of factor plots illustrate some true average responses in terms of interactions and main effects.

This first plot clearly shows a significant interaction between the factors. The change in response when level B changes, depends on level A.

9609.png

Figure 5. Interaction plot.

The second plot shows no significant interaction. The change in response for the level of factor A is the same for each level of factor B.

9598.png

Figure 6. Interaction plot.

The third plot shows no significant interaction and shows that the average response does not depend on the level of factor A.

9588.png

Figure 7. Interaction plot.

This fourth plot again shows no significant interaction and shows that the average response does not depend on the level of factor B.

9579.png

Figure 8. Interaction plot.

This final plot illustrates no interaction and neither factor has any effect on the response.

9568.png

Figure 9. Interaction plot.

Two-way analysis of variance allows you to examine the effect of two factors simultaneously on the average response. The interaction of these two factors is always the starting point for two-way ANOVA. If the interaction term is significant, then you will ignore the main effects and focus solely on the unique treatments (combinations of the different levels of the two factors). If the interaction term is not significant, then it is appropriate to investigate the presence of the main effect of the response variable separately.

Software Solutions

113_1.tif

General Linear Model: yield vs. fert, irrigation

112_1.tif

  • Natural Resources Biometrics. Authored by : Diane Kiernan. Located at : https://textbooks.opensuny.org/natural-resources-biometrics/ . Project : Open SUNY Textbooks. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike

Footer Logo Lumen Candela

Privacy Policy

Two way ANOVA

This page offers all the basic information you need about two way ANOVA. It is part of Statkat’s wiki module, containing similarly structured info pages for many different statistical methods. The info pages give information about null and alternative hypotheses, assumptions, test statistics and confidence intervals, how to find p values, SPSS how-to’s and more.

To compare two way ANOVA with other statistical methods, go to Statkat's Comparison tool or practice with two way ANOVA at Statkat's Practice question center

  • 1. When to use
  • 2. Null hypothesis
  • 3. Alternative hypothesis
  • 4. Assumptions
  • 5. Test statistic
  • 6. Pooled standard deviation
  • 7. Sampling distribution
  • 8. Significant?
  • 9. Effect size
  • 10. ANOVA table
  • 11. Equivalent to
  • 12. Example context

When to use?

Note that theoretically, it is always possible to 'downgrade' the measurement level of a variable. For instance, a test that can be performed on a variable of ordinal measurement level can also be performed on a variable of interval measurement level, in which case the interval variable is downgraded to an ordinal variable. However, downgrading the measurement level of variables is generally a bad idea since it means you are throwing away important information in your data (an exception is the downgrade from ratio to interval level, which is generally irrelevant in data analysis).

If you are not sure which method you should use, you might like the assistance of our method selection tool or our method selection table .

Null hypothesis

Two way ANOVA tests the following null hypothesis (H 0 ):

  • H 0 for main and interaction effects together (model): no main effects and interaction effect
  • H 0 for independent variable A: no main effect for A
  • H 0 for independent variable B: no main effect for B
  • H 0 for the interaction term: no interaction effect between A and B

Alternative hypothesis

Two way ANOVA tests the above null hypothesis against the following alternative hypothesis (H 1 or H a ):

  • H 1 for main and interaction effects together (model): there is a main effect for A, and/or for B, and/or an interaction effect
  • H 1 for independent variable A: there is a main effect for A
  • H 1 for independent variable B: there is a main effect for B
  • H 1 for the interaction term: there is an interaction effect between A and B

Assumptions

Statistical tests always make assumptions about the sampling procedure that was used to obtain the sample data. So called parametric tests also make assumptions about how data are distributed in the population. Non-parametric tests are more 'robust' and make no or less strict assumptions about population distributions, but are generally less powerful. Violation of assumptions may render the outcome of statistical tests useless, although violation of some assumptions (e.g. independence assumptions) are generally more problematic than violation of other assumptions (e.g. normality assumptions in combination with large samples).

Two way ANOVA makes the following assumptions:

  • Within each of the $I \times J$ populations, the scores on the dependent variable are normally distributed
  • The standard deviation of the scores on the dependent variable is the same in each of the $I \times J$ populations
  • For each of the $I \times J$ groups, the sample is an independent and simple random sample from the population defined by that group. That is, within and between groups, observations are independent of one another
  • Equal sample sizes for each group make the interpretation of the ANOVA output easier (unequal sample sizes result in overlap in the sum of squares; this is advanced stuff)

Test statistic

Two way ANOVA is based on the following test statistic:

  • $F = \dfrac{\mbox{mean square model}}{\mbox{mean square error}}$
  • $F = \dfrac{\mbox{mean square A}}{\mbox{mean square error}}$
  • $F = \dfrac{\mbox{mean square B}}{\mbox{mean square error}}$
  • $F = \dfrac{\mbox{mean square interaction}}{\mbox{mean square error}}$

Pooled standard deviation

Sampling distribution.

  • $F$ distribution with $(I - 1) + (J - 1) + (I - 1) \times (J - 1)$ (df model, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
  • $F$ distribution with $I - 1$ (df A, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
  • $F$ distribution with $J - 1$ (df B, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
  • $F$ distribution with $(I - 1) \times (J - 1)$ (df interaction, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom

Significant?

This is how you find out if your test result is significant:

  • Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
  • Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$

Effect size

  • Proportion variance explained $R^2$: Proportion variance of the dependent variable $y$ explained by the independent variables and the interaction effect together: $$ \begin{align} R^2 &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}} \end{align} $$ $R^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.
  • Proportion variance explained $\eta^2$: Proportion variance of the dependent variable $y$ explained by an independent variable or interaction effect: $$ \begin{align} \eta^2_A &= \dfrac{\mbox{sum of squares A}}{\mbox{sum of squares total}}\\ \\ \eta^2_B &= \dfrac{\mbox{sum of squares B}}{\mbox{sum of squares total}}\\ \\ \eta^2_{int} &= \dfrac{\mbox{sum of squares int}}{\mbox{sum of squares total}} \end{align} $$ $\eta^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.
  • Proportion variance explained $\omega^2$: Corrects for the positive bias in $\eta^2$ and is equal to: $$ \begin{align} \omega^2_A &= \dfrac{\mbox{sum of squares A} - \mbox{degrees of freedom A} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\ \\ \omega^2_B &= \dfrac{\mbox{sum of squares B} - \mbox{degrees of freedom B} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\ \\ \omega^2_{int} &= \dfrac{\mbox{sum of squares int} - \mbox{degrees of freedom int} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\ \end{align} $$ $\omega^2$ is a better estimate of the explained variance in the population than $\eta^2$. Only for balanced designs (equal sample sizes).

ANOVA table

This is how the entries of the ANOVA table are computed:

two way ANOVA table

Equivalent to

Two way ANOVA is equivalent to:

Example context

Two way ANOVA could for instance be used to answer the question:

How to perform a two way ANOVA in SPSS:

  • Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factor(s)

How to perform a two way ANOVA in jamovi :

  • Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factors

Hypothesis Testing - Analysis of Variance (ANOVA)

Lisa Sullivan, PhD

Professor of Biostatistics

Boston University School of Public Health

null hypothesis 2 way anova

Introduction

This module will continue the discussion of hypothesis testing, where a specific statement or hypothesis is generated about a population parameter, and sample statistics are used to assess the likelihood that the hypothesis is true. The hypothesis is based on available information and the investigator's belief about the population parameters. The specific test considered here is called analysis of variance (ANOVA) and is a test of hypothesis that is appropriate to compare means of a continuous variable in two or more independent comparison groups. For example, in some clinical trials there are more than two comparison groups. In a clinical trial to evaluate a new medication for asthma, investigators might compare an experimental medication to a placebo and to a standard treatment (i.e., a medication currently being used). In an observational study such as the Framingham Heart Study, it might be of interest to compare mean blood pressure or mean cholesterol levels in persons who are underweight, normal weight, overweight and obese.  

The technique to test for a difference in more than two independent means is an extension of the two independent samples procedure discussed previously which applies when there are exactly two independent comparison groups. The ANOVA technique applies when there are two or more than two independent groups. The ANOVA procedure is used to compare the means of the comparison groups and is conducted using the same five step approach used in the scenarios discussed in previous sections. Because there are more than two groups, however, the computation of the test statistic is more involved. The test statistic must take into account the sample sizes, sample means and sample standard deviations in each of the comparison groups.

If one is examining the means observed among, say three groups, it might be tempting to perform three separate group to group comparisons, but this approach is incorrect because each of these comparisons fails to take into account the total data, and it increases the likelihood of incorrectly concluding that there are statistically significate differences, since each comparison adds to the probability of a type I error. Analysis of variance avoids these problemss by asking a more global question, i.e., whether there are significant differences among the groups, without addressing differences between any two groups in particular (although there are additional tests that can do this if the analysis of variance indicates that there are differences among the groups).

The fundamental strategy of ANOVA is to systematically examine variability within groups being compared and also examine variability among the groups being compared.

Learning Objectives

After completing this module, the student will be able to:

  • Perform analysis of variance by hand
  • Appropriately interpret results of analysis of variance tests
  • Distinguish between one and two factor analysis of variance tests
  • Identify the appropriate hypothesis testing procedure based on type of outcome variable and number of samples

The ANOVA Approach

Consider an example with four independent groups and a continuous outcome measure. The independent groups might be defined by a particular characteristic of the participants such as BMI (e.g., underweight, normal weight, overweight, obese) or by the investigator (e.g., randomizing participants to one of four competing treatments, call them A, B, C and D). Suppose that the outcome is systolic blood pressure, and we wish to test whether there is a statistically significant difference in mean systolic blood pressures among the four groups. The sample data are organized as follows:

The hypotheses of interest in an ANOVA are as follows:

  • H 0 : μ 1 = μ 2 = μ 3 ... = μ k
  • H 1 : Means are not all equal.

where k = the number of independent comparison groups.

In this example, the hypotheses are:

  • H 0 : μ 1 = μ 2 = μ 3 = μ 4
  • H 1 : The means are not all equal.

The null hypothesis in ANOVA is always that there is no difference in means. The research or alternative hypothesis is always that the means are not all equal and is usually written in words rather than in mathematical symbols. The research hypothesis captures any difference in means and includes, for example, the situation where all four means are unequal, where one is different from the other three, where two are different, and so on. The alternative hypothesis, as shown above, capture all possible situations other than equality of all means specified in the null hypothesis.

Test Statistic for ANOVA

The test statistic for testing H 0 : μ 1 = μ 2 = ... =   μ k is:

and the critical value is found in a table of probability values for the F distribution with (degrees of freedom) df 1 = k-1, df 2 =N-k. The table can be found in "Other Resources" on the left side of the pages.

NOTE: The test statistic F assumes equal variability in the k populations (i.e., the population variances are equal, or s 1 2 = s 2 2 = ... = s k 2 ). This means that the outcome is equally variable in each of the comparison populations. This assumption is the same as that assumed for appropriate use of the test statistic to test equality of two independent means. It is possible to assess the likelihood that the assumption of equal variances is true and the test can be conducted in most statistical computing packages. If the variability in the k comparison groups is not similar, then alternative techniques must be used.

The F statistic is computed by taking the ratio of what is called the "between treatment" variability to the "residual or error" variability. This is where the name of the procedure originates. In analysis of variance we are testing for a difference in means (H 0 : means are all equal versus H 1 : means are not all equal) by evaluating variability in the data. The numerator captures between treatment variability (i.e., differences among the sample means) and the denominator contains an estimate of the variability in the outcome. The test statistic is a measure that allows us to assess whether the differences among the sample means (numerator) are more than would be expected by chance if the null hypothesis is true. Recall in the two independent sample test, the test statistic was computed by taking the ratio of the difference in sample means (numerator) to the variability in the outcome (estimated by Sp).  

The decision rule for the F test in ANOVA is set up in a similar way to decision rules we established for t tests. The decision rule again depends on the level of significance and the degrees of freedom. The F statistic has two degrees of freedom. These are denoted df 1 and df 2 , and called the numerator and denominator degrees of freedom, respectively. The degrees of freedom are defined as follows:

df 1 = k-1 and df 2 =N-k,

where k is the number of comparison groups and N is the total number of observations in the analysis.   If the null hypothesis is true, the between treatment variation (numerator) will not exceed the residual or error variation (denominator) and the F statistic will small. If the null hypothesis is false, then the F statistic will be large. The rejection region for the F test is always in the upper (right-hand) tail of the distribution as shown below.

Rejection Region for F   Test with a =0.05, df 1 =3 and df 2 =36 (k=4, N=40)

Graph of rejection region for the F statistic with alpha=0.05

For the scenario depicted here, the decision rule is: Reject H 0 if F > 2.87.

The ANOVA Procedure

We will next illustrate the ANOVA procedure using the five step approach. Because the computation of the test statistic is involved, the computations are often organized in an ANOVA table. The ANOVA table breaks down the components of variation in the data into variation between treatments and error or residual variation. Statistical computing packages also produce ANOVA tables as part of their standard output for ANOVA, and the ANOVA table is set up as follows: 

where  

  • X = individual observation,
  • k = the number of treatments or independent comparison groups, and
  • N = total number of observations or total sample size.

The ANOVA table above is organized as follows.

  • The first column is entitled "Source of Variation" and delineates the between treatment and error or residual variation. The total variation is the sum of the between treatment and error variation.
  • The second column is entitled "Sums of Squares (SS)" . The between treatment sums of squares is

and is computed by summing the squared differences between each treatment (or group) mean and the overall mean. The squared differences are weighted by the sample sizes per group (n j ). The error sums of squares is:

and is computed by summing the squared differences between each observation and its group mean (i.e., the squared differences between each observation in group 1 and the group 1 mean, the squared differences between each observation in group 2 and the group 2 mean, and so on). The double summation ( SS ) indicates summation of the squared differences within each treatment and then summation of these totals across treatments to produce a single value. (This will be illustrated in the following examples). The total sums of squares is:

and is computed by summing the squared differences between each observation and the overall sample mean. In an ANOVA, data are organized by comparison or treatment groups. If all of the data were pooled into a single sample, SST would reflect the numerator of the sample variance computed on the pooled or total sample. SST does not figure into the F statistic directly. However, SST = SSB + SSE, thus if two sums of squares are known, the third can be computed from the other two.

  • The third column contains degrees of freedom . The between treatment degrees of freedom is df 1 = k-1. The error degrees of freedom is df 2 = N - k. The total degrees of freedom is N-1 (and it is also true that (k-1) + (N-k) = N-1).
  • The fourth column contains "Mean Squares (MS)" which are computed by dividing sums of squares (SS) by degrees of freedom (df), row by row. Specifically, MSB=SSB/(k-1) and MSE=SSE/(N-k). Dividing SST/(N-1) produces the variance of the total sample. The F statistic is in the rightmost column of the ANOVA table and is computed by taking the ratio of MSB/MSE.  

A clinical trial is run to compare weight loss programs and participants are randomly assigned to one of the comparison programs and are counseled on the details of the assigned program. Participants follow the assigned program for 8 weeks. The outcome of interest is weight loss, defined as the difference in weight measured at the start of the study (baseline) and weight measured at the end of the study (8 weeks), measured in pounds.  

Three popular weight loss programs are considered. The first is a low calorie diet. The second is a low fat diet and the third is a low carbohydrate diet. For comparison purposes, a fourth group is considered as a control group. Participants in the fourth group are told that they are participating in a study of healthy behaviors with weight loss only one component of interest. The control group is included here to assess the placebo effect (i.e., weight loss due to simply participating in the study). A total of twenty patients agree to participate in the study and are randomly assigned to one of the four diet groups. Weights are measured at baseline and patients are counseled on the proper implementation of the assigned diet (with the exception of the control group). After 8 weeks, each patient's weight is again measured and the difference in weights is computed by subtracting the 8 week weight from the baseline weight. Positive differences indicate weight losses and negative differences indicate weight gains. For interpretation purposes, we refer to the differences in weights as weight losses and the observed weight losses are shown below.

Is there a statistically significant difference in the mean weight loss among the four diets?  We will run the ANOVA using the five-step approach.

  • Step 1. Set up hypotheses and determine level of significance

H 0 : μ 1 = μ 2 = μ 3 = μ 4 H 1 : Means are not all equal              α=0.05

  • Step 2. Select the appropriate test statistic.  

The test statistic is the F statistic for ANOVA, F=MSB/MSE.

  • Step 3. Set up decision rule.  

The appropriate critical value can be found in a table of probabilities for the F distribution(see "Other Resources"). In order to determine the critical value of F we need degrees of freedom, df 1 =k-1 and df 2 =N-k. In this example, df 1 =k-1=4-1=3 and df 2 =N-k=20-4=16. The critical value is 3.24 and the decision rule is as follows: Reject H 0 if F > 3.24.

  • Step 4. Compute the test statistic.  

To organize our computations we complete the ANOVA table. In order to compute the sums of squares we must first compute the sample means for each group and the overall mean based on the total sample.  

We can now compute

So, in this case:

Next we compute,

SSE requires computing the squared differences between each observation and its group mean. We will compute SSE in parts. For the participants in the low calorie diet:  

For the participants in the low fat diet:  

For the participants in the low carbohydrate diet:  

For the participants in the control group:

We can now construct the ANOVA table .

  • Step 5. Conclusion.  

We reject H 0 because 8.43 > 3.24. We have statistically significant evidence at α=0.05 to show that there is a difference in mean weight loss among the four diets.    

ANOVA is a test that provides a global assessment of a statistical difference in more than two independent means. In this example, we find that there is a statistically significant difference in mean weight loss among the four diets considered. In addition to reporting the results of the statistical test of hypothesis (i.e., that there is a statistically significant difference in mean weight losses at α=0.05), investigators should also report the observed sample means to facilitate interpretation of the results. In this example, participants in the low calorie diet lost an average of 6.6 pounds over 8 weeks, as compared to 3.0 and 3.4 pounds in the low fat and low carbohydrate groups, respectively. Participants in the control group lost an average of 1.2 pounds which could be called the placebo effect because these participants were not participating in an active arm of the trial specifically targeted for weight loss. Are the observed weight losses clinically meaningful?

Another ANOVA Example

Calcium is an essential mineral that regulates the heart, is important for blood clotting and for building healthy bones. The National Osteoporosis Foundation recommends a daily calcium intake of 1000-1200 mg/day for adult men and women. While calcium is contained in some foods, most adults do not get enough calcium in their diets and take supplements. Unfortunately some of the supplements have side effects such as gastric distress, making them difficult for some patients to take on a regular basis.  

 A study is designed to test whether there is a difference in mean daily calcium intake in adults with normal bone density, adults with osteopenia (a low bone density which may lead to osteoporosis) and adults with osteoporosis. Adults 60 years of age with normal bone density, osteopenia and osteoporosis are selected at random from hospital records and invited to participate in the study. Each participant's daily calcium intake is measured based on reported food intake and supplements. The data are shown below.   

Is there a statistically significant difference in mean calcium intake in patients with normal bone density as compared to patients with osteopenia and osteoporosis? We will run the ANOVA using the five-step approach.

H 0 : μ 1 = μ 2 = μ 3 H 1 : Means are not all equal                            α=0.05

In order to determine the critical value of F we need degrees of freedom, df 1 =k-1 and df 2 =N-k.   In this example, df 1 =k-1=3-1=2 and df 2 =N-k=18-3=15. The critical value is 3.68 and the decision rule is as follows: Reject H 0 if F > 3.68.

To organize our computations we will complete the ANOVA table. In order to compute the sums of squares we must first compute the sample means for each group and the overall mean.  

 If we pool all N=18 observations, the overall mean is 817.8.

We can now compute:

Substituting:

SSE requires computing the squared differences between each observation and its group mean. We will compute SSE in parts. For the participants with normal bone density:

For participants with osteopenia:

For participants with osteoporosis:

We do not reject H 0 because 1.395 < 3.68. We do not have statistically significant evidence at a =0.05 to show that there is a difference in mean calcium intake in patients with normal bone density as compared to osteopenia and osterporosis. Are the differences in mean calcium intake clinically meaningful? If so, what might account for the lack of statistical significance?

One-Way ANOVA in R

The video below by Mike Marin demonstrates how to perform analysis of variance in R. It also covers some other statistical issues, but the initial part of the video will be useful to you.

Two-Factor ANOVA

The ANOVA tests described above are called one-factor ANOVAs. There is one treatment or grouping factor with k > 2 levels and we wish to compare the means across the different categories of this factor. The factor might represent different diets, different classifications of risk for disease (e.g., osteoporosis), different medical treatments, different age groups, or different racial/ethnic groups. There are situations where it may be of interest to compare means of a continuous outcome across two or more factors. For example, suppose a clinical trial is designed to compare five different treatments for joint pain in patients with osteoarthritis. Investigators might also hypothesize that there are differences in the outcome by sex. This is an example of a two-factor ANOVA where the factors are treatment (with 5 levels) and sex (with 2 levels). In the two-factor ANOVA, investigators can assess whether there are differences in means due to the treatment, by sex or whether there is a difference in outcomes by the combination or interaction of treatment and sex. Higher order ANOVAs are conducted in the same way as one-factor ANOVAs presented here and the computations are again organized in ANOVA tables with more rows to distinguish the different sources of variation (e.g., between treatments, between men and women). The following example illustrates the approach.

Consider the clinical trial outlined above in which three competing treatments for joint pain are compared in terms of their mean time to pain relief in patients with osteoarthritis. Because investigators hypothesize that there may be a difference in time to pain relief in men versus women, they randomly assign 15 participating men to one of the three competing treatments and randomly assign 15 participating women to one of the three competing treatments (i.e., stratified randomization). Participating men and women do not know to which treatment they are assigned. They are instructed to take the assigned medication when they experience joint pain and to record the time, in minutes, until the pain subsides. The data (times to pain relief) are shown below and are organized by the assigned treatment and sex of the participant.

Table of Time to Pain Relief by Treatment and Sex

The analysis in two-factor ANOVA is similar to that illustrated above for one-factor ANOVA. The computations are again organized in an ANOVA table, but the total variation is partitioned into that due to the main effect of treatment, the main effect of sex and the interaction effect. The results of the analysis are shown below (and were generated with a statistical computing package - here we focus on interpretation). 

 ANOVA Table for Two-Factor ANOVA

There are 4 statistical tests in the ANOVA table above. The first test is an overall test to assess whether there is a difference among the 6 cell means (cells are defined by treatment and sex). The F statistic is 20.7 and is highly statistically significant with p=0.0001. When the overall test is significant, focus then turns to the factors that may be driving the significance (in this example, treatment, sex or the interaction between the two). The next three statistical tests assess the significance of the main effect of treatment, the main effect of sex and the interaction effect. In this example, there is a highly significant main effect of treatment (p=0.0001) and a highly significant main effect of sex (p=0.0001). The interaction between the two does not reach statistical significance (p=0.91). The table below contains the mean times to pain relief in each of the treatments for men and women (Note that each sample mean is computed on the 5 observations measured under that experimental condition).  

Mean Time to Pain Relief by Treatment and Gender

Treatment A appears to be the most efficacious treatment for both men and women. The mean times to relief are lower in Treatment A for both men and women and highest in Treatment C for both men and women. Across all treatments, women report longer times to pain relief (See below).  

Graph of two-factor ANOVA

Notice that there is the same pattern of time to pain relief across treatments in both men and women (treatment effect). There is also a sex effect - specifically, time to pain relief is longer in women in every treatment.  

Suppose that the same clinical trial is replicated in a second clinical site and the following data are observed.

Table - Time to Pain Relief by Treatment and Sex - Clinical Site 2

The ANOVA table for the data measured in clinical site 2 is shown below.

Table - Summary of Two-Factor ANOVA - Clinical Site 2

Notice that the overall test is significant (F=19.4, p=0.0001), there is a significant treatment effect, sex effect and a highly significant interaction effect. The table below contains the mean times to relief in each of the treatments for men and women.  

Table - Mean Time to Pain Relief by Treatment and Gender - Clinical Site 2

Notice that now the differences in mean time to pain relief among the treatments depend on sex. Among men, the mean time to pain relief is highest in Treatment A and lowest in Treatment C. Among women, the reverse is true. This is an interaction effect (see below).  

Graphic display of the results in the preceding table

Notice above that the treatment effect varies depending on sex. Thus, we cannot summarize an overall treatment effect (in men, treatment C is best, in women, treatment A is best).    

When interaction effects are present, some investigators do not examine main effects (i.e., do not test for treatment effect because the effect of treatment depends on sex). This issue is complex and is discussed in more detail in a later module. 

Please enable JavaScript to view this site.

  • Statistics Guide
  • Curve Fitting Guide
  • Prism Guide
  • Zoom Window Out
  • Larger Text  |  Smaller Text
  • Hide Page Header
  • Show Expanding Text
  • Printable Version
  • Save Permalink URL

Two-way ANOVA determines how a response is affected by two factors. For example, you might measure a response to three different drugs in both men and women.

Source of variation

Two-way ANOVA divides the total variability among values into four components. Prism tabulates the percentage of the variability due to interaction between the row and column factor, the percentage due to the row factor, and the percentage due to the column factor. The remainder of the variation is among replicates (also called residual variation).

These values (% of total variation) are called standard omega squared by Sheskin (equations 27.51 - 27.53,  and R 2 by Maxwell and Delaney (page 295). Others call these values eta squared or the correlation ratio.

ANOVA table

The ANOVA table breaks down the overall variability between measurements (expressed as the sum of squares) into four components:

• Interactions between row and column. These are differences between rows that are not the same at each column, equivalent to variation between columns that is not the same at each row.

• Variability among columns.

• Variability among rows.

• Residual or error. Variation among replicates not related to systematic differences between rows and columns.

The ANOVA table shows how the sum of squares is partitioned into the four components. Most scientists will skip these results, which are not especially informative unless you have studied statistics in depth. For each component, the table shows sum-of-squares, degrees of freedom, mean square, and the F ratio. Each F ratio is the ratio of the mean-square value for that source of variation to the residual mean square (with repeated-measures ANOVA, the denominator of one F ratio is the mean square for matching rather than residual mean square). If the null hypothesis is true, the F ratio is likely to be close to 1.0. If the null hypothesis is not true, the F ratio is likely to be greater than 1.0. The F ratios are not very informative by themselves, but are used to determine P values.

Two-way ANOVA partitions the overall variance of the outcome variable into three components, plus a residual (or error) term. Therefore it computes P values that test three null hypotheses (repeated measures two-way ANOVA adds yet another P value).

Interaction P value

The null hypothesis is that there is no interaction between columns (data sets) and rows. More precisely, the null hypothesis states that any systematic differences between columns are the same for each row and that any systematic differences between rows are the same for each column. Often the test of interaction is the most important of the three tests. If columns represent drugs and rows represent gender, then the null hypothesis is that the differences between the drugs are consistent for men and women.

The P value answers this question:

If the null hypothesis is true, what is the chance of randomly sampling subjects and ending up with as much (or more) interaction than you have observed?

The graph on the left below shows no interaction. The treatment has about the same effect in males and females. The graph on the right, in contrast, shows a huge interaction. the effect of the treatment is completely different in males (treatment increases the concentration) and females (where the treatment decreases the concentration). In this example, the treatment effect goes in the opposite direction for males and females. But the test for interaction does not test whether the effect goes in different directions. It tests whether the average treatment effect is the same for each row (each gender, for this example).

null hypothesis 2 way anova

Testing for interaction requires that you enter replicate values or mean and SD (or SEM) and N. If you entered only a single value for each row/column pair, Prism assumes that there is no interaction, and continues with the other calculations. Depending on your experimental design, this assumption may or may not make sense.

If the test for interaction leads to statistically significant results, you probably won't learn anything of interest from the other two P values. In the example above, a statistically significant interaction means that the effect of the treatment (difference between treated and control) differs  between males and females. In this case, it is really impossible to interpret the overall P value testing the null hypothesis that the treatment has no effect at all. Instead focus on the multiple comparison post tests. Is the effect statistically significant in males? How about females?

Column factor P value

The null hypothesis is that the mean of each column (totally ignoring the rows) is the same in the overall population, and that all differences we see between column means are due to chance. In the example graphed above, results for control and treated were entered in different columns (with males and females being entered in different rows). The null hypothesis is that the treatment was ineffective so control and treated values differ only due to chance. The P value answers this question: If the null hypothesis is true, what is the chance of randomly obtaining column means as different (or more so) than you have observed?

In the example shown in the left graph above, the P value for the column factor (treatment) is 0.0002. The treatment has an effect that is statistically significant.

In the example shown in the right graph above, the P value for the column factor (treatment) is very high (0.54). On average, the treatment effect is indistinguishable from random variation. But this P value is not meaningful in this example. Since the interaction P value is low, you know that the effect of the treatment is not the same at each row (each gender, for this example). In fact, for this example, the treatment has opposite effects in males and females. Accordingly, asking about the overall, average, treatment effect doesn't make any sense.

Row factor P value

The null hypothesis is that the mean of each row (totally ignoring the columns) is the same in the overall population, and that all differences we see between row means are due to chance. In the example above, the rows represent gender, so the null hypothesis is that the mean response is the same for men and women. The P value answers this question: If the null hypothesis is true, what is the chance of randomly obtaining row means as different (or more so) than you have observed?

In both examples above, the P value for the row factor (gender) is very low.

Data Summary Table

This small section on the results sheet provides a summary of:

• The number of columns (Column Factor)

• The number of rows (Row Factor)

• The number of values

Note that using the Factor Names tab to enter descriptive names for the Column Factor and Row Factor will display the entered descriptive names in the Data Summary Table. This feature was added for ordinary two-way ANOVA in Prism 8.2.

Multiple comparisons tests

Note that the three P values produced by two-way ANOVA are not corrected for the three comparisons. It would seem logical to do so, but this is not traditionally (ever?) done in ANOVA.

Multiple comparisons testing is one of the most confusing topics in statistics. Since Prism offers nearly the same multiple comparisons tests for one-way ANOVA and two-way ANOVA, we have consolidated the information on multiple comparisons .

David J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures: Third Edition IBSN:1584884401.

© 1995- 2019 GraphPad Software, LLC. All rights reserved.

resize nav pane

We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Informatics

Stay up to date on the topics that matter to you

One-Way vs Two-Way ANOVA: Differences, Assumptions and Hypotheses

Analysis of variance (anova) allows comparisons to be made between three or more groups of data..

Ruairi J Mackenzie image

Complete the form below to unlock access to ALL audio articles.

A key statistical test in research fields including biology, economics and psychology, analysis of variance (ANOVA) is very useful for analyzing datasets. It allows comparisons to be made between three or more groups of data. Here, we summarize the key differences between these two tests, including the assumptions and hypotheses that must be made about each type of test. There are two types of ANOVA that are commonly used, the one-way ANOVA and the two-way ANOVA. This article will explore this important statistical test and the difference between these two types of ANOVA. 

What is a one-way ANOVA?

What are the hypotheses of a one-way anova, what are the assumptions and limitations of a one-way anova, what is a two-way anova, what are the assumptions and limitations of a two-way anova, what are the hypotheses of a two-way anova, interactions in two-way anova, summary: differences between one-way and two-way anova.

One-way vs two-way ANOVA differences char

One-Way Anova Test - Date and Weight

A one-way ANOVA is a type of statistical test that compares the variance in the group means within a sample whilst considering only one independent variable or factor. It is a hypothesis-based test, meaning that it aims to evaluate multiple mutually exclusive theories about our data. Before we can generate a hypothesis, we need to have a question about our data that we want an answer to. For example, adventurous researchers studying a population of walruses might ask “Do our walruses weigh more in early or late mating season?” Here, the independent variable or factor (the two terms mean the same thing) is “month of mating season”. In an ANOVA, our independent variables are organised in categorical groups. For example, if the researchers looked at walrus weight in December, January, February and March, there would be four months analyzed, and therefore four groups to the analysis. A one-way ANOVA compares three or more than three categorical groups to establish whether there is a difference between them. Within each group there should be three or more observations (here, this means walruses), and the means of the samples are compared. 

In a one-way ANOVA there are two possible hypotheses.

  • The null hypothesis (H0) is that there is no difference between the groups and equality between means (walruses weigh the same in different months).
  • The alternative hypothesis (H1) is that there is a difference between the means and groups (walruses have different weights in different months).
  • Normality – that each sample is taken from a normally distributed population
  • Sample independence – that each sample has been drawn independently of the other samples
  • Variance equality – that the variance of data in the different groups should be the same
  • Your dependent variable – here, “weight”, should be continuous – that is, measured on a scale which can be subdivided using increments (i.e. grams, milligrams)

Two-Way ANOVA Example (date, sex and weight)

A two-way ANOVA is, like a one-way ANOVA, a hypothesis-based test. However, in the two-way ANOVA each sample is defined in two ways, and resultingly put into two categorical groups. Thinking again of our walruses, researchers might use a two-way ANOVA if their question is: “Are walruses heavier in early or late mating season and does that depend on the sex of the walrus?” In this example, both “month in mating season” and “sex of walrus” are factors – meaning in total, there are two factors.  Once again, each factor’s number of groups must be considered – for “sex” there will only two groups “male” and “female”. The two-way ANOVA therefore examines the effect of two factors (month and sex) on a dependent variable – in this case weight, and also examines whether the two factors affect each other to influence the continuous variable. 

  • Your two independent variables – here, “month” and “sex”, should be in categorical, independent groups.
  • Variance Equality – That the variance of data in the different groups should be the same
  • Normality – That each sample is taken from a normally distributed population

Because the two-way ANOVA consider the effect of two categorical factors, and the effect of the categorical factors on each other, there are three pairs of null or alternative hypotheses for the two-way ANOVA. Here, we present them for our walrus experiment, where month of mating season and sexare the two independent variables.

  • H0: The means of all month groups are equal
  • H1: The mean of at least one month group is different
  • H0: The means of the sex groups are equal
  • H1: The means of the sex groups are different
  • H0: There is no interaction between the month and gender 
  • H1: There is interaction between the month and gender 

Paired vs Unpaired T-Test: Differences, Assumptions and Hypotheses

Paired vs Unpaired T-Test: Differences, Assumptions and Hypotheses

One-way vs two-way anova differences chart, one-way anova two-way anova definition a test that allows one to make comparisons between the means of three or more groups of data. a test that allows one to make comparisons between the means of three or more groups of data, where two independent variables are considered.  number of independent variables one. two.  what is being compared the means of three or more groups of an independent variable on a dependent variable. the effect of multiple groups of two independent variables on a dependent variable and on each other.  number of groups of samples  three or more. each variable should have multiple samples..

What is a One-Way ANOVA? A one-way ANOVA is a type of statistical test that compares the variance in the group means within a sample whilst considering only one independent variable or factor. It is a hypothesis-based test, meaning that it aims to evaluate multiple mutually exclusive theories about our data.

What are the hypotheses of a One-Way ANOVA? In a one-way ANOVA there are two possible hypotheses. The null hypothesis (H0) is that there is no difference between the groups and equality between means. (Walruses weigh the same in different months) The alternative hypothesis (H1) is that there is a difference between the means and groups. (Walruses have different weights in different months)

What are the assumptions of a One-Way ANOVA? Normality – That each sample is taken from a normally distributed population Sample independence – that each sample has been drawn independently of the other samples Variance Equality – That the variance of data in the different groups should be the same Your dependent variable – here, “weight”, should be continuous – that is, measured on a scale which can be subdivided using increments (i.e. grams, milligrams)

What is a Two-Way ANOVA? A two-way ANOVA is, like a one-way ANOVA, a hypothesis-based test. However, in the two-way ANOVA each sample is defined in two ways, and resultingly put into two categorical groups.

What are the hypotheses of a Two-Way ANOVA? Because the two-way ANOVA consider the effect of two categorical factors, and the effect of the categorical factors on each other, there are three pairs of null or alternative hypotheses for the two-way ANOVA. Here, we present them for our walrus experiment, where month of mating season and gender are the two independent variables. H0: The means of all month groups are equal H1: The mean of at least one month group is different H0: The means of the gender groups are equal H1: The means of the gender groups are different H0: There is no interaction between the month and gender H1: There is interaction between the month and gender

Ruairi J Mackenzie image

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

3.1.3: Hypotheses in ANOVA

  • Last updated
  • Save as PDF
  • Page ID 22111

  • Michelle Oja
  • Taft College

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

So far we have seen what ANOVA is used for, why we use it, and how we use it. Now we can turn to the formal hypotheses we will be testing. As with before, we have a null and a research hypothesis to lay out.

Research Hypotheses

Our research hypothesis for ANOVA is more complex with more than two groups. Let’s take a look at it and then dive deeper into what it means.

What the ANOVA tests is whether there is a difference between any one set of means, but usually we still have expected directions of what means we think will be bigger than what other means. Let's work out an example. Let's say that my IV is mindset, and the three groups (levels) are:

  • Growth Mindset
  • Mixed Mindset (some Growth ideas and some Fixed ideas)
  • Fixed Mindset

If we are measuring passing rates in math, we could write this all out in one sentence and one line of symbols:

  • Research Hypothesis: Students with Growth Mindset with have higher average passing rates in math than students with either a mixed mindset or Fixed Mindset, but Fixed Mindset will have similar average passing rates to students with mixed mindset.
  • Symbols: \( \overline{X}_{G} > \overline{X}_{M} = \overline{X}_{F} \)

But it ends up being easier to write out each pair of means:

  • Research Hypothesis: Students with Growth Mindset with have higher average passing rates in math than students with a mixed mindset. Students with Growth Mindset with have higher average passing rates in math than students with a Fixed Mindset. Students with a Fixed Mindset will have similar average passing rates to students with mixed mindset.
  • \( \overline{X}_{G} > \overline{X}_{M} \)
  • \( \overline{X}_{G} > \overline{X}_{F} \)
  • \( \overline{X}_{M} = \overline{X}_{F} \)

What you might notice is that one of these looks like a null hypothesis (no difference between the means)! And that is okay, as long as the research hypothesis predicts that at least one mean will differ from at least one other mean. It doesn't matter what order you list these means in; it helps to match the research hypothesis, but it's really to help you conceptualize the relationships that you are predicting so put it in the order that makes the most sense to you!

Why is it better to list out each pair of means? Well, look at this research hypothesis:

  • Research Hypothesis: Students with Growth Mindset with have a similar average passing rate in math as students with a mixed mindset. Students with Growth Mindset with have higher average passing rates in math than students with a Fixed Mindset. Students with a Fixed Mindset will have similar average passing rates to students with mixed mindset.
  • \( \overline{X}_{G} = \overline{X}_{M} \)

If you try to write that out in one line of symbols, it'll get confusing because you won't be able to easily show all three predictions. And if you have more than three groups, many research hypotheses won't be able to be represented in one line.

Another reason that this makes more sense is that each mean will be statistically compared with each other mean if the ANOVA results end up rejecting the null hypothesis. If you set up your research hypotheses this way in the first place (in pairs of means), then these pairwise comparisons make more sense later.

Null Hypotheses

Our null hypothesis is still the idea of “no difference” in our data. Because we have multiple group means, we simply list them out as equal to each other:

  • Null Hypothesis: Students with Growth Mindset, mixed mindset, and Fixed Mindset will have similar average passing rates in math .
  • Symbols: \( \overline{X}_{G} = \overline{X}_{M} = \overline{X}_{F} \)

You can list them all out, as well, but it's less necessary with a null hypothesis:

  • Research Hypothesis: Students with Growth Mindset with have a similar average passing rate in math as students with a mixed mindset. Students with Growth Mindset with have a similar average passing rates in math than students with a Fixed Mindset. Students with a Fixed Mindset will have similar average passing rates to students with mixed mindset.
  • \( \overline{X}_{G} = \overline{X}_{F} \)

Null Hypothesis Significance Testing

In our studies so far, when we've calculated an inferential test statistics, like a t-score, what do we do next? Compare it to a critical value in a table! And that's the same thing that we do with our calculated F-value. We compare our calculated value to our critical value to determine if we retain or reject the null hypothesis that all of the means are similar.

(Critical \(<\) Calculated) \(=\) Reject null \(=\) At least one mean is different from at least one other mean. \(= p<.05\)

(Critical \(>\) Calculated) \(=\) Retain null \(=\) All of the means are similar. \(= p>.05\)

What does Rejecting the Null Hypothesis Mean for a Research Hypothesis with Three or More Groups?

Remember when we rejected the null hypothesis when comparing two means with a t-test that we didn't have to do any additional comparisons; rejecting the null hypothesis with a t-test tells us that the two means are statistically significantly different, which means that the bigger mean was statistically significantly bigger. All we had to do was make sure that the means were in the direction that the research hypothesis predicted.

Unfortunately, with three or more group means, we do have to do additional statistical comparisons to test which means are statistically significantly different from which other means. The ANOVA only tells us that at least one mean is different from one other mean. So, rejecting the null hypothesis doesn't really tell us whether our research hypothesis is (fully) supported, partially supported, or not supported. When the null hypothesis is rejected, we will know that a difference exists somewhere, but we will not know where that difference is. Is Growth Mindset different from mixed mindset and Fixed Mindset, but mixed and Fixed are the same? Is Growth Mindset different from both mixed and Fixed Mindset? Are all three of them different from each other? And even if the means are different, are they different in the hypothesized direction? Does Growth Mindset always have a higher mean? We will come back to this issue later and see how to find out specific differences. For now, just remember that an ANOVA tests for any difference in group means, and it does not matter where that difference occurs. We must follow-up with any significant ANOVA to see which means are different from each other, and whether those mean differences (fully) support, partially support, or do not support the research hypothesis.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

13.2: Multiple Comparisons

  • Last updated
  • Save as PDF
  • Page ID 155273

  • John H. McDonald
  • University of Delaware

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Learning Objectives

  • When you perform a large number of statistical tests, some will have \(P\) values less than \(0.05\) purely by chance, even if all your null hypotheses are really true. The Bonferroni correction is one simple way to take this into account; adjusting the false discovery rate using the Benjamini-Hochberg procedure is a more powerful method.

The problem with multiple comparisons

Any time you reject a null hypothesis because a \(P\) value is less than your critical value, it's possible that you're wrong; the null hypothesis might really be true, and your significant result might be due to chance. A \(P\) value of \(0.05\) means that there's a \(5\%\) chance of getting your observed result, if the null hypothesis were true. It does not mean that there's a \(5\%\) chance that the null hypothesis is true.

For example, if you do \(100\) statistical tests, and for all of them the null hypothesis is actually true, you'd expect about \(5\) of the tests to be significant at the \(P<0.05\) level, just due to chance. In that case, you'd have about \(5\) statistically significant results, all of which were false positives. The cost, in time, effort and perhaps money, could be quite high if you based important conclusions on these false positives, and it would at least be embarrassing for you once other people did further research and found that you'd been mistaken.

This problem, that when you do multiple statistical tests, some fraction will be false positives, has received increasing attention in the last few years. This is important for such techniques as the use of microarrays, which make it possible to measure RNA quantities for tens of thousands of genes at once; brain scanning, in which blood flow can be estimated in \(100,000\) or more three-dimensional bits of brain; and evolutionary genomics, where the sequences of every gene in the genome of two or more species can be compared. There is no universally accepted approach for dealing with the problem of multiple comparisons; it is an area of active research, both in the mathematical details and broader epistomological questions.

Controlling the familywise error rate - Bonferroni Correction

The classic approach to the multiple comparison problem is to control the familywise error rate. Instead of setting the critical \(P\) level for significance, or alpha, to \(0.05\), you use a lower critical value. If the null hypothesis is true for all of the tests, the probability of getting one result that is significant at this new, lower critical value is \(0.05\). In other words, if all the null hypotheses are true, the probability that the family of tests includes one or more false positives due to chance is \(0.05\).

The most common way to control the familywise error rate is with the Bonferroni correction . You find the critical value (alpha) for an individual test by dividing the familywise error rate (usually \(0.05\)) by the number of tests. Thus if you are doing \(100\) statistical tests, the critical value for an individual test would be \(0.05/100=0.0005\), and you would only consider individual tests with \(P<0.0005\) to be significant. As an example, García-Arenzana et al. (2014) tested associations of \(25\) dietary variables with mammographic density, an important risk factor for breast cancer, in Spanish women. They found the following results:

As you can see, five of the variables show a significant (\(P<0.05\)) \(P\) value. However, because García-Arenzana et al. (2014) tested \(25\) dietary variables, you'd expect one or two variables to show a significant result purely by chance, even if diet had no real effect on mammographic density. Applying the Bonferroni correction, you'd divide \(P=0.05\) by the number of tests (\(25\)) to get the Bonferroni critical value, so a test would have to have \(P<0.002\) to be significant. Under that criterion, only the test for total calories is significant.

The Bonferroni correction is appropriate when a single false positive in a set of tests would be a problem. It is mainly useful when there are a fairly small number of multiple comparisons and you're looking for one or two that might be significant. However, if you have a large number of multiple comparisons and you're looking for many that might be significant, the Bonferroni correction may lead to a very high rate of false negatives. For example, let's say you're comparing the expression level of \(20,000\) genes between liver cancer tissue and normal liver tissue. Based on previous studies, you are hoping to find dozens or hundreds of genes with different expression levels. If you use the Bonferroni correction, a \(P\) value would have to be less than \(0.05/20000=0.0000025\) to be significant. Only genes with huge differences in expression will have a \(P\) value that low, and could miss out on a lot of important differences just because you wanted to be sure that your results did not include a single false negative.

An important issue with the Bonferroni correction is deciding what a "family" of statistical tests is. García-Arenzana et al. (2014) tested \(25\) dietary variables, so are these tests one "family," making the critical \(P\) value \(0.05/25\)? But they also measured \(13\) non-dietary variables such as age, education, and socioeconomic status; should they be included in the family of tests, making the critical \(P\) value \(0.05/38\)? And what if in 2015, García-Arenzana et al. write another paper in which they compare \(30\) dietary variables between breast cancer and non-breast cancer patients; should they include those in their family of tests, and go back and reanalyze the data in their 2014 paper using a critical \(P\) value of \(0.05/55\)? There is no firm rule on this; you'll have to use your judgment, based on just how bad a false positive would be. Obviously, you should make this decision before you look at the results, otherwise it would be too easy to subconsciously rationalize a family size that gives you the results you want.

The Bonferroni correction assumes that the individual tests are independent of each other, as when you are comparing sample A vs. sample B, C vs. D, E vs. F, etc. If you are comparing sample A vs. sample B, A vs. C, A vs. D, etc., the comparisons are not independent; if A is higher than B, there's a good chance that A will be higher than C as well.

  • García-Arenzana, N., E.M. Navarrete-Muñoz, V. Lope, P. Moreo, S. Laso-Pablos, N. Ascunce, F. Casanova-Gómez, C. Sánchez-Contador, C. Santamariña, N. Aragonés, B.P. Gómez, J. Vioque, and M. Pollán. 2014. Calorie intake, olive oil consumption and mammographic density among Spanish women. International journal of cancer 134: 1916-1925.
  • Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B 57: 289-300.
  • Reiner, A., D. Yekutieli and Y. Benjamini. 2003. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19: 368-375.
  • Simes, R.J. 1986. An improved Bonferroni procedure for multiple tests of significance. Biometrika 73: 751-754.

IMAGES

  1. PPT

    null hypothesis 2 way anova

  2. PPT

    null hypothesis 2 way anova

  3. Two Way ANOVA

    null hypothesis 2 way anova

  4. Two Way Anova Hypothesis

    null hypothesis 2 way anova

  5. PPT

    null hypothesis 2 way anova

  6. Two-way ANOVA Test: Concepts, Formula & Examples

    null hypothesis 2 way anova

VIDEO

  1. SPSS: Multivariate Analysis Of Variance or MANOVA; Two way, Part 3 of 3

  2. Biostatistics: Estimation and Hypothesis Testing, Part 8, Helpful Video Lecture in Amharic Speech

  3. Statistics and probability- Multiple Linear Regression with Analysis of Variance

  4. Two way ANOVA without replication

  5. Two Way ANOVA in SPSS (Part-2): Results Interpretations

  6. Two-Way ANOVA: Step-wise explanation

COMMENTS

  1. Understanding the Null Hypothesis for ANOVA Models

    Since the p-value from the ANOVA table is not less than 0.05, we fail to reject the null hypothesis. This means we don't have sufficient evidence to say that there is a statistically significant difference between the mean exam scores of the three groups. Example 2: Two-Way ANOVA

  2. Two-Way ANOVA

    Two-Way ANOVA | Examples & When To Use It. Published on March 20, 2020 by Rebecca Bevans.Revised on June 22, 2023. ANOVA (Analysis of Variance) is a statistical test used to analyze the difference between the means of more than two groups. A two-way ANOVA is used to estimate how the mean of a quantitative variable changes according to the levels of two categorical variables.

  3. 4.3: Two-Way ANOVA models and hypothesis tests

    We need to extend our previous discussion of reference-coded models to develop a Two-Way ANOVA model. We start with the Two-Way ANOVA interaction model: yijk = α + τj + γk + ωjk + εijk, where α is the baseline group mean (for level 1 of A and level 1 of B), τj is the deviation for the main effect of A from the baseline for levels 2 ...

  4. What is the NULL hypothesis for interaction in a two-way ANOVA?

    The when performing a two way ANOVA of the type: y~A+B+A*B. We are testing three null hypothesis: There is no difference in the means of factor A. There is no difference in means of factor B. There is no interaction between factors A and B. When written down, the first two hypothesis are easy to formulate (for 1 it is H0: μA1 = μA2 H 0: μ A ...

  5. PDF Week 7 Lecture: Two-way Analysis of Variance (Chapter 12)

    The two-way ANOVA tests the null hypotheses of equal means for each factor, as we will see in the upcoming example. Two-way ANOVA with Equal Replication (see Zar's section 12.1) This is the most common (and simple) type of two-way ANOVA. The two factors in this design ... null hypothesis of no treatment effect (Ho1) is highly significant ( p ...

  6. Two-way anova

    Use two-way anova when you have one measurement variable and two nominal variables, and each value of one nominal variable is found in combination with each value of the other nominal variable. ... In a repeated measures design, one of main effects is usually uninteresting and the test of its null hypothesis may not be reported. If the goal is ...

  7. PDF Chapter 11 Two-Way ANOVA

    268 CHAPTER 11. TWO-WAY ANOVA Two-way (or multi-way) ANOVA is an appropriate analysis method for a study with a quantitative outcome and two (or more) categorical explanatory variables. The usual assumptions of Normality, equal variance, and independent errors apply. The structural model for two-way ANOVA with interaction is that each combi-

  8. Stats: Two-Way ANOVA

    Hypotheses. There are three sets of hypothesis with the two-way ANOVA. The null hypotheses for each of the sets are given below. The population means of the first factor are equal. This is like the one-way ANOVA for the row factor. The population means of the second factor are equal. This is like the one-way ANOVA for the column factor.

  9. The Ultimate Guide to ANOVA

    The null hypothesis for each factor is that there is no significant difference between groups of that factor. All of the following factors are statistically significant with a very small p-value. ... Let's use a two-way ANOVA with a 95% significance threshold to evaluate both factors' effects on the response, a measure of growth.

  10. Chapter 6: Two-way Analysis of Variance

    Chapter 6: Two-way Analysis of Variance. In the previous chapter we used one-way ANOVA to analyze data from three or more populations using the null hypothesis that all means were the same (no treatment effect). For example, a biologist wants to compare mean growth for three different levels of fertilizer.

  11. Two way ANOVA

    To compare two way ANOVA with other statistical methods, go to Statkat's Comparison tool or practice with two way ANOVA at Statkat's Practice question center. Contents. 1. When to use; 2. Null hypothesis; 3. Alternative hypothesis; 4. Assumptions; 5. Test statistic; 6. Pooled standard deviation; 7. Sampling distribution; 8. Significant? 9 ...

  12. PDF Lecture 7: Hypothesis Testing and ANOVA

    •The alternative hypothesis is that at least one of the means is different -Think about the Sesame Street® game where three of these things are kind of the same, but one of these things is not like the other. They don't all have to be different, just one of them. One-Way ANOVA: Null Hypothesis 01 2 3: k Hµ=µ=µ=L=µ! H 0: µ 1 =µ 2 ...

  13. Null & Alternative Hypotheses

    Null hypothesis (H 0) Alternative hypothesis (H a) Two-sample t test or. One-way ANOVA with two groups: The mean dependent variable does not differ between group 1 (µ 1) and group 2 (µ 2) in the population; µ 1 = µ 2. The mean dependent variable differs between group 1 (µ 1) and group 2 (µ 2) in the population; µ 1 ≠ µ 2. One-way ...

  14. Hypothesis Testing

    If the null hypothesis is false, then the F statistic will be large. The rejection region for the F test is always in the upper (right-hand) tail of the distribution as shown below. Rejection Region for F Test with a =0.05, df 1 =3 and df 2 =36 (k=4, N=40) For the scenario depicted here, the decision rule is: Reject H 0 if F > 2.87. The ANOVA ...

  15. GraphPad Prism 10 Statistics Guide

    If the null hypothesis is true, the F ratio is likely to be close to 1.0. If the null hypothesis is not true, the F ratio is likely to be greater than 1.0. The F ratios are not very informative by themselves, but are used to determine P values. P values. Two-way ANOVA partitions the overall variance of the outcome variable into three components ...

  16. ANOVA Test: Definition, Types, Examples, SPSS

    The ANOVA Test. An ANOVA test is a way to find out if survey or experiment results are significant. In other words, they help you to figure out if you need to reject the null hypothesis or accept the alternate hypothesis. Basically, you're testing groups to see if there's a difference between them.

  17. One-Way vs Two-Way ANOVA: Differences, Assumptions and Hypotheses

    In a one-way ANOVA there are two possible hypotheses. The null hypothesis (H0) is that there is no difference between the groups and equality between means (walruses weigh the same in different months). ... The two-way ANOVA therefore examines the effect of two factors (month and sex) on a dependent variable - in this case weight, and also ...

  18. 6.1: Main Effects and Interaction Effect

    If the p-value is smaller than α (level of significance), you will reject the null hypothesis. When we conduct a two-way ANOVA, we always first test the hypothesis regarding the interaction effect. If the null hypothesis of no interaction is rejected, we do NOT interpret the results of the hypotheses involving the main effects.

  19. 4.10: Two-way Anova

    3.421. 4.275. 3.110. Unlike a nested anova, each grouping extends across the other grouping: each genotype contains some males and some females, and each sex contains all three genotypes. A two-way anova is usually done with replication (more than one observation for each combination of the nominal variables).

  20. ANOVA: Complete guide to Statistical Analysis & Applications

    A one-way ANOVA involves a single independent variable, whereas a two-way ANOVA involves two independent variables. ... ANOVA also uses a Null hypothesis and an Alternate hypothesis. The Null hypothesis in ANOVA is valid when all the sample means are equal, or they don't have any significant difference. Thus, they can be considered as a part ...

  21. One-way ANOVA

    The null hypothesis (H 0) of ANOVA is that there is no difference among group means. The alternative hypothesis (H a) ... while a two-way ANOVA has two. One-way ANOVA: Testing the relationship between shoe brand (Nike, Adidas, Saucony, Hoka) and race finish times in a marathon.

  22. How F-tests work in Analysis of Variance (ANOVA)

    F-statistics are the ratio of two variances that are approximately the same value when the null hypothesis is true, which yields F-statistics near 1. We looked at the two different variances used in a one-way ANOVA F-test. Now, let's put them together to see which combinations produce low and high F-statistics.

  23. 2.5.3: Hypotheses in ANOVA

    Do not support the Research Hypothesis (because all of the means are similar). Statistical sentence: F (df) = = F-calc, p<.05 (fill in the df and the calculated F) Statistical sentence: F (df) = = F-calc, p>.05 (fill in the df and the calculated F) 11.3: Hypotheses in ANOVA. With three or more groups, research hypothesis get more interesting.

  24. 13.2: Multiple Comparisons

    The problem with multiple comparisons. Any time you reject a null hypothesis because a \ (P\) value is less than your critical value, it's possible that you're wrong; the null hypothesis might really be true, and your significant result might be due to chance. A \ (P\) value of \ (0.05\) means that there's a \ (5\%\) chance of getting your ...