High Impact Tutoring Built By Math Experts

Personalized standards-aligned one-on-one math tutoring for schools and districts

Free ready-to-use math resources

Hundreds of free math resources created by experienced math teachers to save time, build engagement and accelerate growth

Free ready-to-use math resources

20 Effective Math Strategies To Approach Problem-Solving 

Katie Keeton

Math strategies for problem-solving help students use a range of approaches to solve many different types of problems. It involves identifying the problem and carrying out a plan of action to find the answer to mathematical problems.  

Problem-solving skills are essential to math in the general classroom and real-life. They require logical reasoning and critical thinking skills. Students must be equipped with strategies to help them find solutions to problems.

This article explores mathematical problem solving strategies, logical reasoning and critical thinking skills to help learners with solving math word problems independently in real-life situations. 

What are problem-solving strategies?

Problem-solving strategies in math are methods students can use to figure out solutions to math problems. Some problem-solving strategies: 

  • Draw a model
  • Use different approaches
  • Check the inverse to make sure the answer is correct

Students need to have a toolkit of math problem-solving strategies at their disposal to provide different ways to approach math problems. This makes it easier to find solutions and understand math better. 

Strategies can help guide students to the solution when it is difficult ot know when to start.

The ultimate guide to problem solving techniques

The ultimate guide to problem solving techniques

Download these ready-to-go problem solving techniques that every student should know. Includes printable tasks for students including challenges, short explanations for teachers with questioning prompts.

20 Math Strategies For Problem-Solving

Different problem-solving math strategies are required for different parts of the problem. It is unlikely that students will use the same strategy to understand and solve the problem. 

Here are 20 strategies to help students develop their problem-solving skills. 

Strategies to understand the problem

Strategies that help students understand the problem before solving it helps ensure they understand: 

  • The context
  • What the key information is
  • How to form a plan to solve it

Following these steps leads students to the correct solution and makes the math word problem easier .

Here are five strategies to help students understand the content of the problem and identify key information. 

1. Read the problem aloud

Read a word problem aloud to help understand it. Hearing the words engages auditory processing. This can make it easier to process and comprehend the context of the situation.

2. Highlight keywords 

When keywords are highlighted in a word problem, it helps the student focus on the essential information needed to solve it. Some important keywords help determine which operation is needed.  For example, if the word problem asks how many are left, the problem likely requires subtraction.  Ensure students highlight the keywords carefully and do not highlight every number or keyword. There is likely irrelevant information in the word problem.

3. Summarize the information

Read the problem aloud, highlight the key information and then summarize the information. Students can do this in their heads or write down a quick summary.  Summaries should include only the important information and be in simple terms that help contextualize the problem.

4. Determine the unknown

A common problem that students have when solving a word problem is misunderstanding what they are solving. Determine what the unknown information is before finding the answer.  Often, a word problem contains a question where you can find the unknown information you need to solve. For example, in the question ‘How many apples are left?’ students need to find the number of apples left over.

5. Make a plan

Once students understand the context of the word problem, have dentified the important information and determined the unknown, they can make a plan to solve it.  The plan will depend on the type of problem. Some problems involve more than one step to solve them as some require more than one answer.  Encourage students to make a list of each step they need to take to solve the problem before getting started.

Strategies for solving the problem 

1. draw a model or diagram.

Students may find it useful to draw a model, picture, diagram, or other visual aid to help with the problem solving process.  It can help to visualize the problem to understand the relationships between the numbers in the problem. In turn, this helps students see the solution.

math problem that needs a problem solving strategy

Similarly, you could draw a model to represent the objects in the problem:

math problem requiring problem solving

2. Act it out

This particular strategy is applicable at any grade level but is especially helpful in math investigation in elementary school . It involves a physical demonstration or students acting out the problem using movements, concrete resources and math manipulatives .  When students act out a problem, they can visualize and contectualize the word problem in another way and secure an understanding of the math concepts.  The examples below show how 1st-grade students could “act out” an addition and subtraction problem:

The problemHow to act out the problem
Gia has 6 apples. Jordan has 3 apples. How many apples do they have altogether?Two students use counters to represent the apples. One student has 6 counters and the other student takes 3. Then, they can combine their “apples” and count the total.
Michael has 7 pencils. He gives 2 pencils to Sarah. How many pencils does Michael have now?One student (“Michael”) holds 7 pencils, the other (“Sarah”) holds 2 pencils. The student playing Michael gives 2 pencils to the student playing Sarah. Then the students count how many pencils Michael is left holding.

3. Work backwards

Working backwards is a popular problem-solving strategy. It involves starting with a possible solution and deciding what steps to take to arrive at that solution.  This strategy can be particularly helpful when students solve math word problems involving multiple steps. They can start at the end and think carefully about each step taken as opposed to jumping to the end of the problem and missing steps in between.

For example,

problem solving math question 1

To solve this problem working backwards, start with the final condition, which is Sam’s grandmother’s age (71) and work backwards to find Sam’s age. Subtract 20 from the grandmother’s age, which is 71.  Then, divide the result by 3 to get Sam’s age. 71 – 20 = 51 51 ÷ 3 = 17 Sam is 17 years old.

4. Write a number sentence

When faced with a word problem, encourage students to write a number sentence based on the information. This helps translate the information in the word problem into a math equation or expression, which is more easily solved.  It is important to fully understand the context of the word problem and what students need to solve before writing an equation to represent it.

5. Use a formula

Specific formulas help solve many math problems. For example, if a problem asks students to find the area of a rug, they would use the area formula (area = length × width) to solve.   Make sure students know the important mathematical formulas they will need in tests and real-life. It can help to display these around the classroom or, for those who need more support, on students’ desks.

Strategies for checking the solution 

Once the problem is solved using an appropriate strategy, it is equally important to check the solution to ensure it is correct and makes sense. 

There are many strategies to check the solution. The strategy for a specific problem is dependent on the problem type and math content involved.

Here are five strategies to help students check their solutions. 

1. Use the Inverse Operation

For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7. As good practice, encourage students to use the inverse operation routinely to check their work. 

2. Estimate to check for reasonableness

Once students reach an answer, they can use estimation or rounding to see if the answer is reasonable.  Round each number in the equation to a number that’s close and easy to work with, usually a multiple of ten.  For example, if the question was 216 ÷ 18 and the quotient was 12, students might round 216 to 200 and round 18 to 20. Then use mental math to solve 200 ÷ 20, which is 10.  When the estimate is clear the two numbers are close. This means your answer is reasonable. 

3. Plug-In Method

This method is particularly useful for algebraic equations. Specifically when working with variables.  To use the plug-in method, students solve the problem as asked and arrive at an answer. They can then plug the answer into the original equation to see if it works. If it does, the answer is correct.

Problem solving math problem 2

If students use the equation 20m+80=300 to solve this problem and find that m = 11, they can plug that value back into the equation to see if it is correct. 20m + 80 = 300 20 (11) + 80 = 300 220 + 80 = 300 300 = 300 ✓

4. Peer Review

Peer review is a great tool to use at any grade level as it promotes critical thinking and collaboration between students. The reviewers can look at the problem from a different view as they check to see if the problem was solved correctly.   Problem solvers receive immediate feedback and the opportunity to discuss their thinking with their peers. This strategy is effective with mixed-ability partners or similar-ability partners. In mixed-ability groups, the partner with stronger skills provides guidance and support to the partner with weaker skills, while reinforcing their own understanding of the content and communication skills.  If partners have comparable ability levels and problem-solving skills, they may find that they approach problems differently or have unique insights to offer each other about the problem-solving process.

5. Use a Calculator

A calculator can be introduced at any grade level but may be best for older students who already have a foundational understanding of basic math operations. Provide students with a calculator to allow them to check their solutions independently, accurately, and quickly. Since calculators are so readily available on smartphones and tablets, they allow students to develop practical skills that apply to real-world situations.  

Step-by-step problem-solving processes for your classroom

In his book, How to Solve It , published in 1945, mathematician George Polya introduced a 4-step process to solve problems. 

Polya’s 4 steps include:

  • Understand the problem
  • Devise a plan
  • Carry out the plan

Today, in the style of George Polya, many problem-solving strategies use various acronyms and steps to help students recall. 

Many teachers create posters and anchor charts of their chosen process to display in their classrooms. They can be implemented in any elementary, middle school or high school classroom. 

Here are 5 problem-solving strategies to introduce to students and use in the classroom.

CUBES math strategy for problem solving

How Third Space Learning improves problem-solving 

Resources .

Third Space Learning offers a free resource library is filled with hundreds of high-quality resources. A team of experienced math experts carefully created each resource to develop students mental arithmetic, problem solving and critical thinking. 

Explore the range of problem solving resources for 2nd to 8th grade students. 

One-on-one tutoring 

Third Space Learning offers one-on-one math tutoring to help students improve their math skills. Highly qualified tutors deliver high-quality lessons aligned to state standards. 

Former teachers and math experts write all of Third Space Learning’s tutoring lessons. Expertly designed lessons follow a “my turn, follow me, your turn” pedagogy to help students move from guided instruction and problem-solving to independent practice. 

Throughout each lesson, tutors ask higher-level thinking questions to promote critical thinking and ensure students are developing a deep understanding of the content and problem-solving skills.

math problem solving types

Problem-solving

Educators can use many different strategies to teach problem-solving and help students develop and carry out a plan when solving math problems. Incorporate these math strategies into any math program and use them with a variety of math concepts, from whole numbers and fractions to algebra. 

Teaching students how to choose and implement problem-solving strategies helps them develop mathematical reasoning skills and critical thinking they can apply to real-life problem-solving.

READ MORE :

  • 8 Common Core math examples
  • Tier 3 Interventions: A School Leaders Guide
  • Tier 2 Interventions: A School Leaders Guide
  • Tier 1 Interventions: A School Leaders Guide

There are many different strategies for problem-solving; Here are 5 problem-solving strategies: • draw a model  • act it out  • work backwards  • write a number sentence • use a formula

Here are 10 strategies for problem-solving: • Read the problem aloud • Highlight keywords • Summarize the information • Determine the unknown • Make a plan • Draw a model  • Act it out  • Work backwards  • Write a number sentence • Use a formula

1. Understand the problem 2. Devise a plan 3. Carry out the plan 4. Look back

Some strategies you can use to solve challenging math problems are: breaking the problem into smaller parts, using diagrams or models, applying logical reasoning, and trying different approaches.

Related articles

Why Student Centered Learning Is Important: A Guide For Educators

Why Student Centered Learning Is Important: A Guide For Educators

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

Ultimate Guide to Metacognition [FREE]

Looking for a summary on metacognition in relation to math teaching and learning?

Check out this guide featuring practical examples, tips and strategies to successfully embed metacognition across your school to accelerate math growth.

Privacy Overview

Home

Early Math Resources for Teacher Educators

  • Mathematics of Operations

Print resource

  Print resource or save as PDF

Print feature not currently compatible with Firefox.

Making Sense of Problem Types

  • Previous What Children Know and Need to Learn about Operations
  • Next Engaging Participants around Problem Types

Considering how a young child would intuitively approach word problems helps us to explore the range of problem types within addition, subtraction, multiplication, and division.

by Angela Chan Turrou and Megan Franke

From a Child's Perspective

When we come across a word problem, we often jump directly to thinking about what operation the problem is asking for. Is it an addition, subtraction, multiplication, or division problem? Once we have decided which operation the word problem is asking for, we then decide what strategy we want to use to execute that operation. Though this approach to solving mathematics problems might be common for adults, it is quite far from how young children approach problems. Young children intuitively approach word problems not by thinking about an operation, but by thinking about the  story.   They consider what objects are in the story (is it about frogs or bananas or children on the playground?) and what is happening to the objects in the story (are they hopping away or being eaten or running around together?). 

Let's dig into this idea of a child's perspective and how it might different from an adult's perspective by taking a look at these three word problems.

  • Liz had 6 apple slices. She ate 4 of them. How many apple slices does Liz have now?
  • Liz has 4 rocks in her collection. How many more rocks does Liz need to collect so that she will have 6 rocks?
  • Liz has 6 snow globes and her brother has 4. How many more snow globes does Liz have than her brother?

An adult might look at these word problems and see a common operation (subtraction) across all of them. They might think about subtraction as take away and use the strategy of “six take away four” to solve all three problems and get the common answer of “two.”

preschool teacher and child apples

Examining these three problems the way a young child would allows us to see why a problem might be difficult and what strategies the child is likely to use. How might a young child solve the rock collecting or the snow globes problem? Would they solve both of those the same way? See Beginning Strategies for Problem Solving  f or a discussion of how young children intuitively approach word problems by modeling out the action or number relationships involved.

Problem Types Chart

Below is a chart of word problems organized to help you see important distinctions among addition, subtraction, multiplication, and division problems. Problems that are most applicable to young children are included in the chart. Download and explore the chart below. What do you notice about the chart and how it’s organized? How would a young child solve each problem? What number sentence could you write that matches the problem situation?  [Note: This last question is a "trick question" for the Compare problem.]

screenshot of problem types chart

Problem-Types-Chart_0.pdf 642.8 KB

lego cars

Beginning Strategies for Problem Solving

This piece explores the intuitive strategies that young children use to solve addition, subtraction, multiplication, and division problems.

Resource Type - Handout

Exploring Your Own Thinking

This activity was developed for our graduate students (prospective early childhood teachers). It helps adults to understand how determining...

Resource Type - Activity

Inservice: Introducing +, - , x , ÷

Getting started with solving addition, subtraction, multiplication, and division problems begins by asking teachers to rethink their...

Reset password New user? Sign up

Existing user? Log in

Logical Puzzles

Already have an account? Log in here.

  • Andrew Hayes

A logical puzzle is a problem that can be solved through deductive reasoning. This page gives a summary of the types of logical puzzles one might come across and the problem-solving techniques used to solve them.

Elimination Grids

Truth tellers and liars, cryptograms, arithmetic puzzles, river crossing puzzle, tour puzzles, battleship puzzles, chess puzzles, k-level thinking, other puzzles.

Main Article: Propositional Logic See Also: Predicate Logic

One of the simplest types of logical puzzles is a syllogism . In this type of puzzle, you are given a set of statements, and you are required to determine some truth from those statements. These types of puzzles can often be solved by applying principles from propositional logic and predicate logic . The following syllogism is from Charles Lutwidge Dodgson, better known under his pen name, Lewis Carroll.

I have a dish of potatoes. The following statements are true: No potatoes of mine, that are new, have been boiled. All my potatoes in this dish are fit to eat. No unboiled potatoes of mine are fit to eat. Are there any new potatoes in this dish? The first and third statements can be connected by a transitive argument. All of the new potatoes are unboiled, and unboiled potatoes aren't fit to eat, so no new potatoes are fit to eat. The second statement can be expressed as the equivalent contrapositive. All of the potatoes in the dish are fit to eat; if there is a potato that is not fit to eat, it isn't in the dish. Then, once again, a transitive argument is applied. New potatoes aren't fit to eat, and inedible potatoes aren't in the dish. Thus, there are no new potatoes in the dish. \(_\square\)

Given below are three statements followed by three conclusions. Take the three statements to be true even if they vary from commonly known facts. Read the statements and decide which conclusions follow logically from the statements.

Statements: 1. All actors are musicians. 2. No musician is a singer. 3. Some singers are dancers.

Conclusions: 1. Some actors are singers. 2. Some dancers are actors. 3. No actor is a singer.

Answer Choices: a) Only conclusion 1 follows. b) Only conclusion 2 follows. c) Only conclusion 3 follows. d) At least 2 of the conclusions follows.

Main Article: Elimination Grids

Some logical puzzles require you to determine the correct pairings for sets of objects. These puzzles can often be solved with the process of elimination, and an elimination grid is an effective tool to apply this process.

An example of an elimination grid

Elimination grids are aligned such that each row represents an object within a set, and each column represents an object to be paired with an object from that set. Check marks and X marks are used to show which objects pair, and which objects do not pair.

Mr. and Mrs. Tan have four children--three boys and a girl-- who each like one of the colors--blue, green, red, yellow-- and one of the letters--P, Q, R, S.

  • The oldest child likes the letter Q.
  • The youngest child likes green.
  • Alfred likes the letter S.
  • Brenda has an older brother who likes R.
  • The one who likes blue isn't the oldest.
  • The one who likes red likes the letter P.
  • Charles likes yellow.

Based on the above facts, Darius is the \(\text{__________}.\)

Main Article: Truth-Tellers and Liars

A variation on elimination puzzles is a truth-teller and liar puzzle , also known as a knights and knaves puzzle . In this type of puzzle, you are given a set of people and their respective statements, and you are also told that some of the people always tell the truth and some always lie. The goal of the puzzle is to deduce the truth from the given statements.

20\(^\text{th}\) century mathematician Raymond Smullyan popularized these types of puzzles.

You are in a room with three chests. You know at least one has treasure, and if a chest has no treasure, it contains deadly poison.

Each chest has a message on it, but all the messages are lying .

  • Left chest: "The middle chest has treasure."
  • Middle chest: "All these chests have treasure."
  • Right chest: "Only one of these chests has treasure."

Which chests have treasure?

There are two people, A and B , each of whom is either a knight or a knave.

A says, "At least one of us is a knave."

What are A and B ?

\(\) Details and Assumptions:

  • A knight always tells the truth.
  • A knave always lies.
Main Article: Cryptograms

A cryptogram is a puzzle in which numerical digits in a number sentence are replaced with characters, and the goal of the puzzle is to determine the values of these characters.

\[ \begin{array} { l l l l l } & &P & P & Q \\ & &P & Q & Q \\ + && Q & Q & Q \\ \hline & & 8 & 7 & 6 \\ \end{array} \]

In the sum shown above, \(P\) and \(Q\) each represent a digit. What is the value of \(P+Q\)?

\[ \overline{EVE} \div \overline{DID} = 0. \overline{TALKTALKTALKTALK\ldots} \]

Given that \(E,V,D,I,T,A,L\) and \(K \) are distinct single digits, let \(\overline{EVE} \) and \( \overline{DID} \) be two coprime 3-digit positive integers and \(\overline{TALK} \) be a 4-digit integer, such that the equation above holds true, where the right hand side is a repeating decimal number.

Find the value of the sum \( \overline{EVE} + \overline{DID} + \overline{TALK} \).

Main Articles: Fill in the Blanks and Operator Search

Arithmetic puzzles contain a series of numbers, operations, and blanks in order, and the object of the puzzle is to fill in the blanks to obtain a desired result.

\[\huge{\Box \times \Box \Box = \Box \Box \Box}\]

Fill the boxes above with the digits \(1,2,3,4,5,6\), with no digit repeated, such that the equation is true.

Enter your answer by concatenating all digits in the order they appear. For example, if the answer is \(1 \times 23 = 456\), enter \(123456\) as your final answer.

Also try its sister problem.

\[ \LARGE{\begin{eqnarray} \boxed{\phantom0} \; + \; \boxed{\phantom0} \; &=& \; \boxed{\phantom0} \\ \boxed{\phantom0} \; - \; \boxed{\phantom0} \; &=& \; \boxed{\phantom0} \\ \boxed{\phantom0} \; \times \; \boxed{\phantom0}\; &=& \; \boxed{\phantom0} \\ \boxed{\phantom0} \; \div \; \boxed{\phantom0} \; &=& \; \boxed{\phantom0} \\ \end{eqnarray}} \]

Put one of the integers \(1, 2, \ldots , 13\) into each of the boxes, such that twelve of these numbers are used once for each (and one number is not used at all) and all four equations are true.

What is the sum of all possible values of the missing (not used) number?

Main Article: River Crossing Puzzles

In a river crossing puzzle , the goal is to find a way to move a group of people or objects across a river (or some other kind of obstacle), and to do it in the fewest amount of steps or least amount of time.

A famous river crossing problem is Richard Hovasse's bridge and torch problem , written below.

Four people come to a river in the night. There is a narrow bridge, but it can only hold two people at a time. They have one torch and, because it's night, the torch has to be used when crossing the bridge. Person A can cross the bridge in one minute, B in two minutes, C in five minutes, and D in eight minutes. When two people cross the bridge together, they must move at the slower person's pace. The question is, can they all get across the bridge in 15 minutes or less? Assume that a solution minimizes the total number of crosses. This gives a total of five crosses--three pair crosses and two solo crosses. Also, assume we always choose the fastest for the solo cross. First, we show that if the two slowest persons (C and D) cross separately, they accumulate a total crossing time of 15. This is done by taking persons A, C, D: D+A+C+A = 8+1+5+1=15. (Here we use A because we know that using A to cross both C and D separately is the most efficient.) But, the time has elapsed and persons A and B are still on the starting side of the bridge and must cross. So it is not possible for the two slowest (C and D) to cross separately. Second, we show that in order for C and D to cross together that they need to cross on the second pair cross: i.e. not C or D, so A and B, must cross together first. Remember our assumption at the beginning states that we should minimize crosses, so we have five crosses--3 pair crossings and 2 single crossings. Assume that C and D cross first. But then C or D must cross back to bring the torch to the other side, so whoever solo-crossed must cross again. Hence, they will cross separately. Also, it is impossible for them to cross together last, since this implies that one of them must have crossed previously, otherwise there would be three persons total on the start side. So, since there are only three choices for the pair crossings and C and D cannot cross first or last, they must cross together on the second, or middle, pair crossing. Putting all this together, A and B must cross first, since we know C and D cannot and we are minimizing crossings. Then, A must cross next, since we assume we should choose the fastest to make the solo cross. Then we are at the second, or middle, pair crossing, so C and D must go. Then we choose to send the fastest back, which is B. A and B are now on the start side and must cross for the last pair crossing. This gives us, B+A+D+B+B = 2+1+8+2+2 = 15. It is possible for all four people to cross in 15 minutes. \(_\square\)
Main Article: Tour Puzzles See Also: Eulerian Path

In a tour puzzle , the goal is to determine the correct path for an object to traverse a graph. These kinds of puzzles can take several forms: chess tours, maze traversals, eulerian paths , and others.

Find the path that leads from the star in the center back to the star in the center. Paths can only go in the direction of an arrow. Image Credit: Eric Fisk Show Solution The solution path is outlined in red below.
Determine a path through the below graph such that each edge is traversed exactly once . Show Solution There are several possible solutions. One possible solution is shown below, with the edges marked in the order they are traversed.

A chess tour is an interesting type of puzzle in its own right, and is explained in detail further down the page.

Main Article: Nonograms

A nonogram is a grid-based puzzle in which a series of numerical clues are given beside a rectangular grid. When the puzzle is completed, a picture is formed in the grid.

The puzzle begins with a series of numbers on the left and above the grid. Each of these numbers represents a consecutive run of shaded spaces in the corresponding row or column. Each consecutive run is separated from other runs by at least one empty space. The puzzle is complete when all of the numbers have been satisfied. The primary technique to solve these puzzles is the process of elimination. If the puzzle is designed correctly, there should be no guesswork required.

Complete the nonogram: Show Solution

One of the many logical puzzles is the Battleship puzzle (sometimes called Bimaru, Yubotu, Solitaire Battleships or Battleship Solitaire). The puzzle is based on the Battleship game.

Solitaire Battleships was invented by Jaime Poniachik in Argentina and was first featured in the magazine Humor & Juegos.

This is an example of a solved Battleship puzzle. The puzzle consists of a 10 × 10 small squares, which contain the following:

  • 1 battleship 4 squares long
  • 2 cruisers 3 squares long each
  • 3 destroyers 2 squares long each
  • 4 submarines 1 square long each.

They can be put horizontally or vertically, but never diagonally. The boats are placed so that no boats touch each other, not even vertically. The numbers beside the row/column indicate the numbers of squares occupied in the row/column, respectively. ⬤ indicates a submarine and ⬛ indicates the body of a ship, while the half circles indicate the beginning/end of a ship.

The goal of the game is to fill in the grid with water or ships.

Main Article: Sudoku

A sudoku is a puzzle on a \(9\times 9\) grid in which each row, column, and smaller square portion contains each of the digits 1 through 9, each no more than once. Each puzzle begins with some of the spaces on the grid filled in. The goal is to fill in the remaining spaces on the puzzle. The puzzle is solved primarily through the process of elimination. No guesswork should be required to solve, and there should be only one solution for any given puzzle.

Solve the sudoku puzzle: Puzzle generated by Open Sky Sudoku Generator Each row should contain the each of the digits 1 through 9 exactly once. The same is true for columns and the smaller \(3\times 3\) squares. Show Solution
Main Article: Chess Puzzles See Also: Reduced Games , Opening Strategies , and Rook Strategies

Chess puzzles take the rules of chess and challenge you to perform certain actions or deduce board states.

One kind of chess puzzle is a chess tour , related to the tour puzzles mentioned in the section above. This kind of puzzle challenges you to develop a tour of a chess piece around the board, applying the rules of how that piece moves.

Dan and Sam play a game on a \(5\times3\) board. Dan places a White Knight on a corner and Sam places a Black Knight on the nearest corner. Each one moves his Knight in his turn to squares that have not been already visited by any of the Knights at any moment of the match.

For example, Dan moves, then Sam, and Dan wants to go to Black Knight's initial square, but he can't, because this square has been occupied earlier.

When someone can't move, he loses. If Dan begins, who will win, assuming both players play optimally?

This is the seventeenth problem of the set Winning Strategies.

Due to its well-defined ruleset, the game of chess affords many different types of puzzles. The problem below shows that you can even deduce whose turn it is from a certain boardstate (or perhaps you cannot).

Whose move is it now?

Main Article: K-Level Thinking See Also: Induction - Introduction

K-level thinking is the name of a kind of assumption in certain logic puzzles. In these types of puzzles, there are a number of actors in a situation, and each of them is perfectly logical in their decision-making. Furthermore, each of these actors is aware that all other actors in the situation are perfectly logical in their decision-making.

Calvin, Zandra, and Eli are students in Mr. Silverman's math class. Mr. Silverman hands each of them a sealed envelope with a number written inside.

He tells them that they each have a positive integer and the sum of the three numbers is 14. They each open their envelope and inspect their own number without seeing the other numbers.

Calvin says,"I know that Zandra and Eli each have a different number." Zandra replies, "I already knew that all three of our numbers were different." After a brief pause Eli finally says, "Ah, now I know what number everyone has!"

What number did each student get?

Format your answer by writing Calvin's number first, then Zandra's number, and finally Eli's number. For example, if Calvin has 8, Zandra has 12, and Eli has 8, the answer would be 8128.

Two logicians must find two distinct integers \(A\) and \(B\) such that they are both between 2 and 100 inclusive, and \(A\) divides \(B\). The first logician knows the sum \( A + B \) and the second logician knows the difference \(B-A\).

Then the following discussion takes place:

Logician 1: I don't know them. Logician 2: I already knew that.

Logician 1: I already know that you are supposed to know that. Logician 2: I think that... I know... that you were about to say that!

Logician 1: I still can't figure out what the two numbers are. Logician 2: Oops! My bad... my previous conclusion was unwarranted. I didn't know that yet!

What are the two numbers?

Enter your answer as a decimal number \(A.B\). \((\)For example, if \(A=23\) and \(B=92\), write \(23.92.)\)

Note: In this problem, the participants are not in a contest on who finds numbers first. If one of them has sufficient information to determine the numbers, he may keep this quiet. Therefore nothing may be inferred from silence. The only information to be used are the explicit declarations in the dialogue.

Of course, the puzzles outlined above aren't the only types of puzzles one might encounter. Below are a few more logical puzzles that are unrelated to the types outlined above.

You are asked to guess an integer between \(1\) and \(N\) inclusive.

Each time you make a guess, you are told either

(a) you are too high, (b) you are too low, or (c) you got it!

You are allowed to guess too high twice and too low twice, but if you have a \(3^\text{rd}\) guess that is too high or a \(3^\text{rd}\) guess that is too low, you are out.

What is the maximum \(N\) for which you are guaranteed to accomplish this?

\(\) Clarification : For example, if you were allowed to guess too high once and too low once, you could guarantee to guess the right answer if \(N=5\), but not for \(N>5\). So, in this case, the answer would be \(5\).

You play a game with a pile of \(N\) gold coins.

You and a friend take turns removing 1, 3, or 6 coins from the pile. The winner is the one who takes the last coin.

For the person that goes first, how many winning strategies are there for \(N < 1000?\)

\(\) Clarification: For \(1 \leq N \leq 999\), for how many values of \(N\) can the first player develop a winning strategy?

Problem Loading...

Note Loading...

Set Loading...

  • Math tutors
  • Math classes
  • 1st Grade Math Worksheets
  • 2nd Grade Math Worksheets
  • 3rd Grade Math Worksheets
  • 4th Grade Math Worksheets
  • 5th Grade Math Worksheets
  • 6th Grade Math Worksheets
  • 7th Grade Math Worksheets
  • 8th Grade Math Worksheets
  • Knowledge Base

10 Strategies for Problem-Solving in Math

reviewed by Jo-ann Caballes

Updated on August 21, 2024

math problem solving types

It’s not surprising that kids who lack problem-solving skills feel stuck in math class. Students who are behind in problem-solving may have difficulties identifying and carrying out a plan of action to solve a problem. Math strategies for problem-solving allow children to use a range of approaches to work out math problems productively and with ease. This article explores math problem-solving strategies and how kids can use them both in traditional classes and in a virtual classroom. 

What are problem-solving strategies in math?

Problem-solving strategies for math make it easier to tackle math and work up an effective solution. When we face any kind of problem, it’s usually impossible to solve it without carrying out a good plan.In other words, these strategies were designed to make math for kids easier and more manageable. Another great benefit of these strategies is that kids can spend less time cracking math problems. 

Here are some problem-solving methods:

  • Drawing a picture or diagram (helps visualize the problem)
  • Breaking the problem into smaller parts (to keep track of what has been done)
  • Making a table or a list (helps students to organize information)

When children have a toolkit of math problem-solving strategies at hand, it makes it easier for them to excel in math and progress faster. 

How to solve math problems?

To solve math problems, it’s worth having strategies for math problem-solving that include several steps, but it doesn’t necessarily mean they are failproof. They serve as a guide to the solution when it’s difficult to decide where and how to start. Research suggests that breaking down complex problems into smaller stages can reduce cognitive load and make it easier for students to solve problems. Essentially, a suitable strategy can help kids to find the right answers fast. 

Here are 5 math problem-solving strategies for kids:

  • Recognize the Problem  
  • Work up a Plan  
  • Carry Out the Plan  
  • Review the Work  
  • Reflect and Analyze  

Understanding the Problem 

Understanding the problem is the first step in the journey of solving it. Without doing this, kids won’t be able to address it in any way. In the beginning, it’s important to read the problem carefully and make sure to understand every part of it. Next, when kids know what they are asked to do, they have to write down the information they have and determine what essentially they need to solve. 

Work Out a Plan 

Working out a plan is one of the most important steps to solving math problems. Here, the kid has to choose a good strategy that will help them with a specific math problem. Outline these steps either in mind or on paper.

Carry Out the Plan 

Being methodical at that stage is key. It involves following the plan and performing calculations with the correct operations and rules. Finally, when the work is done, the child can review and show their work to a teacher or tutor.

Review the Work

This is where checking if the answer is correct takes place. If time allows, children and the teacher can choose other methods and try to solve the same problem again with a different approach. 

Reflect and Analyze

This stage is a great opportunity to think about how the problem was solved: did any part cause confusion? Was there a more efficient method? It’s important to let the child know that they can use the insights gained for future reference. 

Ways to solve math problems

The ways to solve math problems for kids are numerous, but it doesn’t mean they all work the same for everybody. For example, some children may find visual strategies work best for them; some prefer acting out the problem using movements. Finding what kind of method or strategy works best for your kid will be extremely beneficial both for school performance and in real-life scenarios where they can apply problem-solving. 

Online tutoring platforms like Brighterly offer personalized assistance, interactive tools, and access to resources that help to determine which strategies are best for your child. Expertise-driven tutors know how to guide your kid so they won’t be stuck with the same fallacies that interfere with effective problem-solving. For example, tutors can assist kids with drawing a diagram, acting a problem out with movement, or working backward. All of these ways are highly effective, especially with a trusted supporter by your side. 

banner-img

Your child will fall in love with math 
after just one lesson!

Choose 1:1 online math tutoring.

banner-img

What are 10 strategies for solving math problems?

There are plenty of different problem-solving strategies for mathematical problems to help kids discover answers. Let’s explore 10 popular problem-solving strategies:

Understand the Problem

Figuring out the nature of math problems is the key to solving them. Kids need to identify what kind of issue this is (fraction problem, word problem, quadratic equation, etc.) and work up a plan to solve it. 

Guess and Check

With this approach, kids simply need to keep guessing until they get the answer right. While this approach may seem irrelevant, it illustrates what the kid’s thinking process is. 

Work It Out

This method encourages students to write down or say their problem-solving process instead of going straight to solving it without preparation. This minimizes the probability of mistakes. 

Work Backwords 

Working backward is a great problem-solving strategy to acquire a fresh perspective. It requires one to come up with a probable solution and decide which step to take to come to that solution. 

A visual representation of a math problem may help kids to understand it in full. One way to visualize a problem is to use a blank piece of paper and draw a picture, including all of the aspects of the issue. 

Find a Pattern 

By helping students see patterns in math problems, we help them to extract and list relevant details. This method is very effective in learning shapes and other topics that need repetition. 

It may be self-explanatory, but it’s quite helpful to ask, “What are some possible solutions to this issue?”. By giving kids time to think and reflect, we help them to develop creative and critical thinking.

Draw a Picture or Diagram

Instead of drawing the math problem yourself, ask the kid to draw it themselves. They can draw pictures of the ideas they have been taught to help them remember the concepts better.

Trial and Error Method

Not knowing clear formulas or instructions, kids won’t be able to solve anything. Ask them to make a list of possible answers based on rules they already know. Let them learn by making mistakes and trying to find a better solution. 

Review Answers with Peers

It’s so fun to solve problems alongside your peers. Kids can review their answers together and share ideas on how each problem can be solved. 

Help your kid achieve their full math potential

The best Brighterly tutors are ready to help with that.

Math problem-solving strategies for elementary students

5 problem-solving strategies for elementary students include:

Using Simple Language 

Ask students to explain the problem in their own words to make sure they understand the problem correctly.

Using Visuals and Manipulatives 

Using drawing and manipulatives like counters, blocks, or beads can help students grasp the issue faster. 

Simplifying the Problem

Breaking the problem into a step-by-step process and smaller, manageable steps will allow students to find the solution faster. 

Looking for Patterns 

Identifying patterns in numbers and operations is a great strategy to help students gain more confidence along the way. 

Using Stories

math problem solving types

Turning math problems into stories will surely engage youngsters and make them participate more actively. 

To recap, students need to have effective math problem-solving strategies up their sleeves. Not only does it help them in the classroom, but it’s also an essential skill for real-life situations. Productive problem-solving strategies for math vary depending on the grade. But what they have in common is that kids have to know how to break the issue into smaller parts and apply critical and creative thinking to solve it. 

If you want your kid to learn how to thrive in STEM and apply problem-solving strategies to both math and real life, book a free demo lesson with Brighterly today! Make your child excited about math!

Author Jessica Kaminski

Jessica is a a seasoned math tutor with over a decade of experience in the field. With a BSc and Master’s degree in Mathematics, she enjoys nurturing math geniuses, regardless of their age, grade, and skills. Apart from tutoring, Jessica blogs at Brighterly. She also has experience in child psychology, homeschooling and curriculum consultation for schools and EdTech websites.

Previous Article Image

As adults, we take numbers for granted, but preschoolers and kindergartners have no idea what these symbols mean. Yet, we often demand instant understanding and flawless performance when we start teaching numbers to our children. If you don’t have a clue about how to teach numbers for kids, browse no more. You will get four […]

May 19, 2022

Previous Article Image

Teaching strategies aren’t something that is set in stone and continue to evolve every year. Even though traditional educational strategies like teachers teaching in front of the classroom seemed to work for decades with little to no adjustments, the digital age has brought along numerous challenges. Teaching methods for kids require new strategies, so educators […]

Math homework help for grade 1-8

Get the homework support your child needs!

Image -Get the homework support your child needs!

Choose kid's grade

Math Program Boost Your Child's Math Abilities! Ideal for 1st-8th Graders, Perfectly Synced with School Curriculum!

After-school math classes for grades 1-8

Personalized lessons for kids & teens.

Personalized lessons for kids & teens

Our after-school math curriculum includes

Related posts.

Geometry Games

100 Silly Math Jokes and Math Puns for Kids!

In the wonderful world of numbers and logic, there’s no shortage of fun to be had! Welcome to Brighterly, where we believe that learning math should be as enjoyable as it is educational. So, here’s an assortment of 100 Silly Math Jokes and Math Puns for Kids that will surely get your little ones giggling […]

Jul 26, 2023

Common Core Math

Common Core Math Standards

Math isn’t an easy field of knowledge — it requires that kids dig deeper into the subject, investigate, and try to understand topics (instead of simply memorizing them). Luckily, there are math wizards who can help untangle all the math complexities.  After decades of solving math problems a certain way, teachers now use a new […]

Apr 05, 2022

15 best outdoor games MAIN

15 Best Outdoor Math Games for Your Child

Math doesn’t come naturally to most kids. If your young one has trouble understanding math, taking lessons outside to do some outdoor math activities can be beneficial to break the learning barrier. In this piece, we will discover the 15 best outside math games and how they can be beneficial for both children and educators. […]

Want your kid to excel in math?

Kid’s grade

Image full form

We use cookies to help give you the best service possible. If you continue to use the website we will understand that you consent to the Terms and Conditions. These cookies are safe and secure. We will not share your history logs with third parties. Learn More

You are using an outdated browser. Please upgrade your browser to improve your experience.

Math Problem Solving Strategies That Make Students Say “I Get It!”

math problem solving types

Even students who are quick with math facts can get stuck when it comes to problem solving.

As soon as a concept is translated to a word problem, or a simple mathematical sentence contains an unknown, they’re stumped.

That’s because problem solving requires us to  consciously choose the strategies most appropriate for the problem   at hand . And not all students have this metacognitive ability.

But you can teach these strategies for problem solving.  You just need to know what they are.

We’ve compiled them here divided into four categories:

Strategies for understanding a problem

Strategies for solving the problem, strategies for working out, strategies for checking the solution.

Get to know these strategies and then model them explicitly to your students. Next time they dive into a rich problem, they’ll be filling up their working out paper faster than ever!

Before students can solve a problem, they need to know what it’s asking them. This is often the first hurdle with word problems that don’t specify a particular mathematical operation.

Encourage your students to:

Read and reread the question

They say they’ve read it, but have they  really ? Sometimes students will skip ahead as soon as they’ve noticed one familiar piece of information or give up trying to understand it if the problem doesn’t make sense at first glance.

Teach students to interpret a question by using self-monitoring strategies such as:

  • Rereading a question more slowly if it doesn’t make sense the first time
  • Asking for help
  • Highlighting or underlining important pieces of information.

Identify important and extraneous information

John is collecting money for his friend Ari’s birthday. He starts with $5 of his own, then Marcus gives him another $5. How much does he have now?

As adults looking at the above problem, we can instantly look past the names and the birthday scenario to see a simple addition problem. Students, however, can struggle to determine what’s relevant in the information that’s been given to them.

Teach students to sort and sift the information in a problem to find what’s relevant. A good way to do this is to have them swap out pieces of information to see if the solution changes. If changing names, items or scenarios has no impact on the end result, they’ll realize that it doesn’t need to be a point of focus while solving the problem.

Schema approach

This is a math intervention strategy that can make problem solving easier for all students, regardless of ability.

Compare different word problems of the same type and construct a formula, or mathematical sentence stem, that applies to them all. For example, a simple subtraction problems could be expressed as:

[Number/Quantity A] with [Number/Quantity B] removed becomes [end result].

This is the underlying procedure or  schema  students are being asked to use. Once they have a list of schema for different mathematical operations (addition, multiplication and so on), they can take turns to apply them to an unfamiliar word problem and see which one fits.

Struggling students often believe math is something you either do automatically or don’t do at all. But that’s not true. Help your students understand that they have a choice of problem-solving strategies to use, and if one doesn’t work, they can try another.

Here are four common strategies students can use for problem solving.

Visualizing

Visualizing an abstract problem often makes it easier to solve. Students could draw a picture or simply draw tally marks on a piece of working out paper.

Encourage visualization by modeling it on the whiteboard and providing graphic organizers that have space for students to draw before they write down the final number.

Guess and check

Show students how to make an educated guess and then plug this answer back into the original problem. If it doesn’t work, they can adjust their initial guess higher or lower accordingly.

Find a pattern

To find patterns, show students how to extract and list all the relevant facts in a problem so they can be easily compared. If they find a pattern, they’ll be able to locate the missing piece of information.

Work backward

Working backward is useful if students are tasked with finding an unknown number in a problem or mathematical sentence. For example, if the problem is 8 + x = 12, students can find x by:

  • Starting with 12
  • Taking the 8 from the 12
  • Being left with 4
  • Checking that 4 works when used instead of x

Now students have understood the problem and formulated a strategy, it’s time to put it into practice. But if they just launch in and do it, they might make it harder for themselves. Show them how to work through a problem effectively by:

Documenting working out

Model the process of writing down every step you take to complete a math problem and provide working out paper when students are solving a problem. This will allow students to keep track of their thoughts and pick up errors before they reach a final solution.

Check along the way

Checking work as you go is another crucial self-monitoring strategy for math learners. Model it to them with think aloud questions such as:

  • Does that last step look right?
  • Does this follow on from the step I took before?
  • Have I done any ‘smaller’ sums within the bigger problem that need checking?

Students often make the mistake of thinking that speed is everything in math — so they’ll rush to get an answer down and move on without checking.

But checking is important too. It allows them to pinpoint areas of difficulty as they come up, and it enables them to tackle more complex problems that require multiple checks  before  arriving at a final answer.

Here are some checking strategies you can promote:

Check with a partner

Comparing answers with a peer leads is a more reflective process than just receiving a tick from the teacher. If students have two different answers, encourage them to talk about how they arrived at them and compare working out methods. They’ll figure out exactly where they went wrong, and what they got right.

Reread the problem with your solution

Most of the time, students will be able to tell whether or not their answer is correct by putting it back into the initial problem. If it doesn’t work or it just ‘looks wrong’, it’s time to go back and fix it up.

Fixing mistakes

Show students how to backtrack through their working out to find the exact point where they made a mistake. Emphasize that they can’t do this if they haven’t written down everything in the first place — so a single answer with no working out isn’t as impressive as they might think!

Need more help developing problem solving skills?

Read up on  how to set a problem solving and reasoning activity  or explore Mathseeds and Mathletics, our award winning online math programs. They’ve got over 900 teacher tested problem solving activities between them!

3p-solutions-mathletics

Get access to 900+ unique problem solving activities

You might like....

Problem Solving in Mathematics

  • Math Tutorials
  • Pre Algebra & Algebra
  • Exponential Decay
  • Worksheets By Grade

The main reason for learning about math is to become a better problem solver in all aspects of life. Many problems are multistep and require some type of systematic approach. There are a couple of things you need to do when solving problems. Ask yourself exactly what type of information is being asked for: Is it one of addition, subtraction, multiplication , or division? Then determine all the information that is being given to you in the question.

Mathematician George Pólya’s book, “ How to Solve It: A New Aspect of Mathematical Method ,” written in 1957, is a great guide to have on hand. The ideas below, which provide you with general steps or strategies to solve math problems, are similar to those expressed in Pólya’s book and should help you untangle even the most complicated math problem.

Use Established Procedures

Learning how to solve problems in mathematics is knowing what to look for. Math problems often require established procedures and knowing what procedure to apply. To create procedures, you have to be familiar with the problem situation and be able to collect the appropriate information, identify a strategy or strategies, and use the strategy appropriately.

Problem-solving requires practice. When deciding on methods or procedures to use to solve problems, the first thing you will do is look for clues, which is one of the most important skills in solving problems in mathematics. If you begin to solve problems by looking for clue words, you will find that these words often indicate an operation.

Look for Clue Words

Think of yourself as a math detective. The first thing to do when you encounter a math problem is to look for clue words. This is one of the most important skills you can develop. If you begin to solve problems by looking for clue words, you will find that those words often indicate an operation.

Common clue words for addition  problems:

Common clue words for  subtraction  problems:

  • How much more

Common clue words for multiplication problems:

Common clue words for division problems:

Although clue words will vary a bit from problem to problem, you'll soon learn to recognize which words mean what in order to perform the correct operation.

Read the Problem Carefully

This, of course, means looking for clue words as outlined in the previous section. Once you’ve identified your clue words, highlight or underline them. This will let you know what kind of problem you’re dealing with. Then do the following:

  • Ask yourself if you've seen a problem similar to this one. If so, what is similar about it?
  • What did you need to do in that instance?
  • What facts are you given about this problem?
  • What facts do you still need to find out about this problem?

Develop a Plan and Review Your Work

Based on what you discovered by reading the problem carefully and identifying similar problems you’ve encountered before, you can then:

  • Define your problem-solving strategy or strategies. This might mean identifying patterns, using known formulas, using sketches, and even guessing and checking.
  • If your strategy doesn't work, it may lead you to an ah-ha moment and to a strategy that does work.

If it seems like you’ve solved the problem, ask yourself the following:

  • Does your solution seem probable?
  • Does it answer the initial question?
  • Did you answer using the language in the question?
  • Did you answer using the same units?

If you feel confident that the answer is “yes” to all questions, consider your problem solved.

Tips and Hints

Some key questions to consider as you approach the problem may be:

  • What are the keywords in the problem?
  • Do I need a data visual, such as a diagram, list, table, chart, or graph?
  • Is there a formula or equation that I'll need? If so, which one?
  • Will I need to use a calculator? Is there a pattern I can use or follow?

Read the problem carefully, and decide on a method to solve the problem. Once you've finished working the problem, check your work and ensure that your answer makes sense and that you've used the same terms and or units in your answer.

  • Examples of Problem Solving with 4 Block
  • Using Percents - Calculating Commissions
  • What to Know About Business Math
  • Parentheses, Braces, and Brackets in Math
  • How to Solve a System of Linear Equations
  • How to Solve Proportions to Adjust a Recipe
  • Calculate the Exact Number of Days
  • What Is a Ratio? Definition and Examples
  • Changing From Base 10 to Base 2
  • Finding the Percent of Change Between Numbers
  • Learn About Natural Numbers, Whole Numbers, and Integers
  • How to Calculate Commissions Using Percents
  • Overview of the Stem-and-Leaf Plot
  • Understanding Place Value
  • Probability and Chance
  • Evaluating Functions With Graphs

Microsoft

Try Math Solver

Key Features

Get step-by-step explanations

Graph your math problems

Graph your math problems

Practice, practice, practice

Practice, practice, practice

Get math help in your language

Get math help in your language

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Additional menu

Khan Academy Blog

Free Math Worksheets — Over 100k free practice problems on Khan Academy

Looking for free math worksheets.

You’ve found something even better!

That’s because Khan Academy has over 100,000 free practice questions. And they’re even better than traditional math worksheets – more instantaneous, more interactive, and more fun!

Just choose your grade level or topic to get access to 100% free practice questions:

Kindergarten, basic geometry, pre-algebra, algebra basics, high school geometry.

  • Trigonometry

Statistics and probability

High school statistics, ap®︎/college statistics, precalculus, differential calculus, integral calculus, ap®︎/college calculus ab, ap®︎/college calculus bc, multivariable calculus, differential equations, linear algebra.

  • Addition and subtraction
  • Place value (tens and hundreds)
  • Addition and subtraction within 20
  • Addition and subtraction within 100
  • Addition and subtraction within 1000
  • Measurement and data
  • Counting and place value
  • Measurement and geometry
  • Place value
  • Measurement, data, and geometry
  • Add and subtract within 20
  • Add and subtract within 100
  • Add and subtract within 1,000
  • Money and time
  • Measurement
  • Intro to multiplication
  • 1-digit multiplication
  • Addition, subtraction, and estimation
  • Intro to division
  • Understand fractions
  • Equivalent fractions and comparing fractions
  • More with multiplication and division
  • Arithmetic patterns and problem solving
  • Quadrilaterals
  • Represent and interpret data
  • Multiply by 1-digit numbers
  • Multiply by 2-digit numbers
  • Factors, multiples and patterns
  • Add and subtract fractions
  • Multiply fractions
  • Understand decimals
  • Plane figures
  • Measuring angles
  • Area and perimeter
  • Units of measurement
  • Decimal place value
  • Add decimals
  • Subtract decimals
  • Multi-digit multiplication and division
  • Divide fractions
  • Multiply decimals
  • Divide decimals
  • Powers of ten
  • Coordinate plane
  • Algebraic thinking
  • Converting units of measure
  • Properties of shapes
  • Ratios, rates, & percentages
  • Arithmetic operations
  • Negative numbers
  • Properties of numbers
  • Variables & expressions
  • Equations & inequalities introduction
  • Data and statistics
  • Negative numbers: addition and subtraction
  • Negative numbers: multiplication and division
  • Fractions, decimals, & percentages
  • Rates & proportional relationships
  • Expressions, equations, & inequalities
  • Numbers and operations
  • Solving equations with one unknown
  • Linear equations and functions
  • Systems of equations
  • Geometric transformations
  • Data and modeling
  • Volume and surface area
  • Pythagorean theorem
  • Transformations, congruence, and similarity
  • Arithmetic properties
  • Factors and multiples
  • Reading and interpreting data
  • Negative numbers and coordinate plane
  • Ratios, rates, proportions
  • Equations, expressions, and inequalities
  • Exponents, radicals, and scientific notation
  • Foundations
  • Algebraic expressions
  • Linear equations and inequalities
  • Graphing lines and slope
  • Expressions with exponents
  • Quadratics and polynomials
  • Equations and geometry
  • Algebra foundations
  • Solving equations & inequalities
  • Working with units
  • Linear equations & graphs
  • Forms of linear equations
  • Inequalities (systems & graphs)
  • Absolute value & piecewise functions
  • Exponents & radicals
  • Exponential growth & decay
  • Quadratics: Multiplying & factoring
  • Quadratic functions & equations
  • Irrational numbers
  • Performing transformations
  • Transformation properties and proofs
  • Right triangles & trigonometry
  • Non-right triangles & trigonometry (Advanced)
  • Analytic geometry
  • Conic sections
  • Solid geometry
  • Polynomial arithmetic
  • Complex numbers
  • Polynomial factorization
  • Polynomial division
  • Polynomial graphs
  • Rational exponents and radicals
  • Exponential models
  • Transformations of functions
  • Rational functions
  • Trigonometric functions
  • Non-right triangles & trigonometry
  • Trigonometric equations and identities
  • Analyzing categorical data
  • Displaying and comparing quantitative data
  • Summarizing quantitative data
  • Modeling data distributions
  • Exploring bivariate numerical data
  • Study design
  • Probability
  • Counting, permutations, and combinations
  • Random variables
  • Sampling distributions
  • Confidence intervals
  • Significance tests (hypothesis testing)
  • Two-sample inference for the difference between groups
  • Inference for categorical data (chi-square tests)
  • Advanced regression (inference and transforming)
  • Analysis of variance (ANOVA)
  • Scatterplots
  • Data distributions
  • Two-way tables
  • Binomial probability
  • Normal distributions
  • Displaying and describing quantitative data
  • Inference comparing two groups or populations
  • Chi-square tests for categorical data
  • More on regression
  • Prepare for the 2020 AP®︎ Statistics Exam
  • AP®︎ Statistics Standards mappings
  • Polynomials
  • Composite functions
  • Probability and combinatorics
  • Limits and continuity
  • Derivatives: definition and basic rules
  • Derivatives: chain rule and other advanced topics
  • Applications of derivatives
  • Analyzing functions
  • Parametric equations, polar coordinates, and vector-valued functions
  • Applications of integrals
  • Differentiation: definition and basic derivative rules
  • Differentiation: composite, implicit, and inverse functions
  • Contextual applications of differentiation
  • Applying derivatives to analyze functions
  • Integration and accumulation of change
  • Applications of integration
  • AP Calculus AB solved free response questions from past exams
  • AP®︎ Calculus AB Standards mappings
  • Infinite sequences and series
  • AP Calculus BC solved exams
  • AP®︎ Calculus BC Standards mappings
  • Integrals review
  • Integration techniques
  • Thinking about multivariable functions
  • Derivatives of multivariable functions
  • Applications of multivariable derivatives
  • Integrating multivariable functions
  • Green’s, Stokes’, and the divergence theorems
  • First order differential equations
  • Second order linear equations
  • Laplace transform
  • Vectors and spaces
  • Matrix transformations
  • Alternate coordinate systems (bases)

Frequently Asked Questions about Khan Academy and Math Worksheets

Why is khan academy even better than traditional math worksheets.

Khan Academy’s 100,000+ free practice questions give instant feedback, don’t need to be graded, and don’t require a printer.

Math WorksheetsKhan Academy
Math worksheets take forever to hunt down across the internetKhan Academy is your one-stop-shop for practice from arithmetic to calculus
Math worksheets can vary in quality from site to siteEvery Khan Academy question was written by a math expert with a strong education background
Math worksheets can have ads or cost moneyKhan Academy is a nonprofit whose resources are always free to teachers and learners – no ads, no subscriptions
Printing math worksheets use up a significant amount of paper and are hard to distribute during virtual learningKhan Academy practice requires no paper and can be distributed whether your students are in-person or online
Math worksheets can lead to cheating or a lack of differentiation since every student works on the same questionsKhan Academy has a full question bank to draw from, ensuring that each student works on different questions – and at their perfect skill level
Math worksheets can slow down student learning since they need to wait for feedbackKhan Academy gives instant feedback after every answer – including hints and video support if students are stuck
Math worksheets take up time to collect and take up valuable planning time to gradeKhan Academy questions are graded instantly and automatically for you

What do Khan Academy’s interactive math worksheets look like?

Here’s an example:

What are teachers saying about Khan Academy’s interactive math worksheets?

“My students love Khan Academy because they can immediately learn from their mistakes, unlike traditional worksheets.”

Is Khan Academy free?

Khan Academy’s practice questions are 100% free—with no ads or subscriptions.

What do Khan Academy’s interactive math worksheets cover?

Our 100,000+ practice questions cover every math topic from arithmetic to calculus, as well as ELA, Science, Social Studies, and more.

Is Khan Academy a company?

Khan Academy is a nonprofit with a mission to provide a free, world-class education to anyone, anywhere.

Want to get even more out of Khan Academy?

Then be sure to check out our teacher tools . They’ll help you assign the perfect practice for each student from our full math curriculum and track your students’ progress across the year. Plus, they’re also 100% free — with no subscriptions and no ads.

Get Khanmigo

The best way to learn and teach with AI is here. Ace the school year with our AI-powered guide, Khanmigo. 

For learners     For teachers     For parents

  • Our Mission

6 Tips for Teaching Math Problem-Solving Skills

Solving word problems is tougher than computing with numbers, but elementary teachers can guide students to do the deep thinking involved.

Photo of elementary school teacher with students

A growing concern with students is the ability to problem-solve, especially with complex, multistep problems. Data shows that students struggle more when solving word problems than they do with computation , and so problem-solving should be considered separately from computation. Why?

Consider this. When we’re on the way to a new destination and we plug in our location to a map on our phone, it tells us what lane to be in and takes us around any detours or collisions, sometimes even buzzing our watch to remind us to turn. When I experience this as a driver, I don’t have to do the thinking. I can think about what I’m going to cook for dinner, not paying much attention to my surroundings other than to follow those directions. If I were to be asked to go there again, I wouldn’t be able to remember, and I would again seek help.

If we can switch to giving students strategies that require them to think instead of giving them too much support throughout the journey to the answer, we may be able to give them the ability to learn the skills to read a map and have several ways to get there.

Here are six ways we can start letting students do this thinking so that they can go through rigorous problem-solving again and again, paving their own way to the solution. 

1. Link problem-solving to reading

When we can remind students that they already have many comprehension skills and strategies they can easily use in math problem-solving, it can ease the anxiety surrounding the math problem. For example, providing them with strategies to practice, such as visualizing, acting out the problem with math tools like counters or base 10 blocks, drawing a quick sketch of the problem, retelling the story in their own words, etc., can really help them to utilize the skills they already have to make the task less daunting.

We can break these skills into specific short lessons so students have a bank of strategies to try on their own. Here's an example of an anchor chart that they can use for visualizing . Breaking up comprehension into specific skills can increase student independence and help teachers to be much more targeted in their problem-solving instruction. This allows students to build confidence and break down the barriers between reading and math to see they already have so many strengths that are transferable to all problems.

2. Avoid boxing students into choosing a specific operation

It can be so tempting to tell students to look for certain words that might mean a certain operation. This might even be thoroughly successful in kindergarten and first grade, but just like when our map tells us where to go, that limits students from becoming deep thinkers. It also expires once they get into the upper grades, where those words could be in a problem multiple times, creating more confusion when students are trying to follow a rule that may not exist in every problem.

We can encourage a variety of ways to solve problems instead of choosing the operation first. In first grade, a problem might say, “Joceline has 13 stuffed animals and Jordan has 17. How many more does Jordan have?” Some students might choose to subtract, but a lot of students might just count to find the amount in between. If we tell them that “how many more” means to subtract, we’re taking the thinking out of the problem altogether, allowing them to go on autopilot without truly solving the problem or using their comprehension skills to visualize it. 

3. Revisit ‘representation’

The word “representation” can be misleading. It seems like something to do after the process of solving. When students think they have to go straight to solving, they may not realize that they need a step in between to be able to support their understanding of what’s actually happening in the problem first.

Using an anchor chart like one of these ( lower grade , upper grade ) can help students to choose a representation that most closely matches what they’re visualizing in their mind. Once they sketch it out, it can give them a clearer picture of different ways they could solve the problem.

Think about this problem: “Varush went on a trip with his family to his grandmother’s house. It was 710 miles away. On the way there, three people took turns driving. His mom drove 214 miles. His dad drove 358 miles. His older sister drove the rest. How many miles did his sister drive?”

If we were to show this student the anchor chart, they would probably choose a number line or a strip diagram to help them understand what’s happening.

If we tell students they must always draw base 10 blocks in a place value chart, that doesn’t necessarily match the concept of this problem. When we ask students to match our way of thinking, we rob them of critical thinking practice and sometimes confuse them in the process. 

4. Give time to process

Sometimes as educators, we can feel rushed to get to everyone and everything that’s required. When solving a complex problem, students need time to just sit with a problem and wrestle with it, maybe even leaving it and coming back to it after a period of time.

This might mean we need to give them fewer problems but go deeper with those problems we give them. We can also speed up processing time when we allow for collaboration and talk time with peers on problem-solving tasks. 

5. Ask questions that let Students do the thinking

Questions or prompts during problem-solving should be very open-ended to promote thinking. Telling a student to reread the problem or to think about what tools or resources would help them solve it is a way to get them to try something new but not take over their thinking.

These skills are also transferable across content, and students will be reminded, “Good readers and mathematicians reread.” 

6. Spiral concepts so students frequently use problem-solving skills

When students don’t have to switch gears in between concepts, they’re not truly using deep problem-solving skills. They already kind of know what operation it might be or that it’s something they have at the forefront of their mind from recent learning. Being intentional within their learning stations and assessments about having a variety of rigorous problem-solving skills will refine their critical thinking abilities while building more and more resilience throughout the school year as they retain content learning in the process. 

Problem-solving skills are so abstract, and it can be tough to pinpoint exactly what students need. Sometimes we have to go slow to go fast. Slowing down and helping students have tools when they get stuck and enabling them to be critical thinkers will prepare them for life and allow them multiple ways to get to their own destination.

Download on App Store

  • Solve equations and inequalities
  • Simplify expressions
  • Factor polynomials
  • Graph equations and inequalities
  • Advanced solvers
  • All solvers
  • Arithmetics
  • Determinant
  • Percentages
  • Scientific Notation
  • Inequalities

Download on App Store

What can QuickMath do?

QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students.

  • The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and cancelling common factors within a fraction.
  • The equations section lets you solve an equation or system of equations. You can usually find the exact answer or, if necessary, a numerical answer to almost any accuracy you require.
  • The inequalities section lets you solve an inequality or a system of inequalities for a single variable. You can also plot inequalities in two variables.
  • The calculus section will carry out differentiation as well as definite and indefinite integration.
  • The matrices section contains commands for the arithmetic manipulation of matrices.
  • The graphs section contains commands for plotting equations and inequalities.
  • The numbers section has a percentages command for explaining the most common types of percentage problems and a section for dealing with scientific notation.

Math Topics

More solvers.

  • Add Fractions
  • Simplify Fractions
  • Solutions Integral Calculator Derivative Calculator Algebra Calculator Matrix Calculator More...
  • Graphing Line Graph Exponential Graph Quadratic Graph Sine Graph More...
  • Calculators BMI Calculator Compound Interest Calculator Percentage Calculator Acceleration Calculator More...
  • Geometry Pythagorean Theorem Calculator Circle Area Calculator Isosceles Triangle Calculator Triangles Calculator More...
  • Tools Notebook Groups Cheat Sheets Worksheets Study Guides Practice Verify Solution

Practice

x^{\msquare} \log_{\msquare} \sqrt{\square} \nthroot[\msquare]{\square} \le \ge \frac{\msquare}{\msquare} \cdot \div x^{\circ} \pi
\left(\square\right)^{'} \frac{d}{dx} \frac{\partial}{\partial x} \int \int_{\msquare}^{\msquare} \lim \sum \infty \theta (f\:\circ\:g) f(x)
▭\:\longdivision{▭} \times \twostack{▭}{▭} + \twostack{▭}{▭} - \twostack{▭}{▭} \left( \right) \times \square\frac{\square}{\square}
  • Pre Algebra Order of Operations Factors & Primes Fractions Long Arithmetic Decimals Exponents & Radicals Ratios & Proportions Percent Modulo Number Line Expanded Form Mean, Median & Mode
  • Algebra Equations Inequalities System of Equations System of Inequalities Basic Operations Algebraic Properties Partial Fractions Polynomials Rational Expressions Sequences Power Sums Interval Notation Pi (Product) Notation Induction Prove That Logical Sets Word Problems
  • Pre Calculus Equations Inequalities Scientific Calculator Scientific Notation Arithmetics Complex Numbers Coterminal Angle Polar/Cartesian Simultaneous Equations System of Inequalities Polynomials Rationales Functions Arithmetic & Comp. Coordinate Geometry Plane Geometry Solid Geometry Conic Sections Trigonometry
  • Calculus Derivatives Derivative Applications Limits Integrals Integral Applications Integral Approximation Series ODE Multivariable Calculus Laplace Transform Taylor/Maclaurin Series Fourier Series Fourier Transform
  • Functions Line Equations Functions Arithmetic & Comp. Conic Sections Transformation
  • Linear Algebra Matrices Vectors
  • Trigonometry Identities Proving Identities Trig Equations Trig Inequalities Evaluate Functions Simplify
  • Statistics Mean Geometric Mean Quadratic Mean Average Median Mode Order Minimum Maximum Probability Mid-Range Range Standard Deviation Variance Lower Quartile Upper Quartile Interquartile Range Midhinge Standard Normal Distribution
  • Physics Mechanics
  • Chemistry Chemical Reactions Chemical Properties
  • Finance Simple Interest Compound Interest Present Value Future Value
  • Economics Point of Diminishing Return
  • Conversions Roman Numerals Radical to Exponent Exponent to Radical To Fraction To Decimal To Mixed Number To Improper Fraction Radians to Degrees Degrees to Radians Hexadecimal Scientific Notation Distance Weight Time Volume
  • Pre Algebra
  • Pre Calculus
  • Linear Algebra
  • Trigonometry
  • Conversions
x^{\msquare} \log_{\msquare} \sqrt{\square} \nthroot[\msquare]{\square} \le \ge \frac{\msquare}{\msquare} \cdot \div x^{\circ} \pi
\left(\square\right)^{'} \frac{d}{dx} \frac{\partial}{\partial x} \int \int_{\msquare}^{\msquare} \lim \sum \infty \theta (f\:\circ\:g) f(x)
- \twostack{▭}{▭} \lt 7 8 9 \div AC
+ \twostack{▭}{▭} \gt 4 5 6 \times \square\frac{\square}{\square}
\times \twostack{▭}{▭} \left( 1 2 3 - x
▭\:\longdivision{▭} \right) . 0 = + y

Number Line

  • x^{2}-x-6=0
  • -x+3\gt 2x+1
  • line\:(1,\:2),\:(3,\:1)
  • prove\:\tan^2(x)-\sin^2(x)=\tan^2(x)\sin^2(x)
  • \frac{d}{dx}(\frac{3x+9}{2-x})
  • (\sin^2(\theta))'
  • \lim _{x\to 0}(x\ln (x))
  • \int e^x\cos (x)dx
  • \int_{0}^{\pi}\sin(x)dx
  • \sum_{n=0}^{\infty}\frac{3}{2^n}
  • Is there a step by step calculator for math?
  • Symbolab is the best step by step calculator for a wide range of math problems, from basic arithmetic to advanced calculus and linear algebra. It shows you the solution, graph, detailed steps and explanations for each problem.
  • Is there a step by step calculator for physics?
  • Symbolab is the best step by step calculator for a wide range of physics problems, including mechanics, electricity and magnetism, and thermodynamics. It shows you the steps and explanations for each problem, so you can learn as you go.
  • How to solve math problems step-by-step?
  • To solve math problems step-by-step start by reading the problem carefully and understand what you are being asked to find. Next, identify the relevant information, define the variables, and plan a strategy for solving the problem.
  • Practice Makes Perfect Learning math takes practice, lots of practice. Just like running, it takes practice and dedication. If you want...

We want your feedback

Please add a message.

Message received. Thanks for the feedback.

Microsoft

Get step-by-step explanations

Graph your math problems

Graph your math problems

Practice, practice, practice

Practice, practice, practice

Get math help in your language

Get math help in your language

IMAGES

  1. The Ultimate Problem Solving Model Guide For Crafting Solutions

    math problem solving types

  2. Teach Problem Solving the Easy Way With Word Problem Types

    math problem solving types

  3. Problem Solving Strategies for Math Poster by TeachPlanLove

    math problem solving types

  4. What IS Problem-Solving?

    math problem solving types

  5. What IS Problem-Solving?

    math problem solving types

  6. Problem Solving: 11 Types of Addition and Subtraction Problems

    math problem solving types

VIDEO

  1. Math problem solving

  2. Solving SAT Math problem. Solving System of equation problem

  3. analytical listening

  4. math problem solving

  5. how many types of actions for problems resolving Hindi

  6. Can you solve this math problem?

COMMENTS

  1. 20 Effective Math Strategies For Problem Solving

    Here are five strategies to help students check their solutions. 1. Use the Inverse Operation. For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7.

  2. Module 1: Problem Solving Strategies

    Step 1: Understanding the problem. We are given in the problem that there are 25 chickens and cows. All together there are 76 feet. Chickens have 2 feet and cows have 4 feet. We are trying to determine how many cows and how many chickens Mr. Jones has on his farm. Step 2: Devise a plan.

  3. 1.3: Problem Solving Strategies

    Problem Solving Strategy 6 (Work Systematically). If you are working on simpler problems, it is useful to keep track of what you have figured out and what changes as the problem gets more complicated. For example, in this problem you might keep track of how many 1 × 1 squares are on each board, how many 2 × 2 squares on are each board, how ...

  4. Making Sense of Problem Types

    Making Sense of Problem Types. Print resource. Considering how a young child would intuitively approach word problems helps us to explore the range of problem types within addition, subtraction, multiplication, and division. by Angela Chan Turrou and Megan Franke.

  5. Logical Puzzles

    A logical puzzle is a problem that can be solved through deductive reasoning. This page gives a summary of the types of logical puzzles one might come across and the problem-solving techniques used to solve them. One of the simplest types of logical puzzles is a syllogism. In this type of puzzle, you are given a set of statements, and you are required to determine some truth from those ...

  6. 1.1: Introduction to Problem Solving

    The very first Mathematical Practice is: Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of ...

  7. 10 Strategies for Problem-Solving in Math

    Here are some problem-solving methods: Drawing a picture or diagram (helps visualize the problem) Breaking the problem into smaller parts (to keep track of what has been done) Making a table or a list (helps students to organize information) When children have a toolkit of math problem-solving strategies at hand, it makes it easier for them to ...

  8. Math Problem Solving Strategies That Make Students Say "I Get It!"

    Schema approach. This is a math intervention strategy that can make problem solving easier for all students, regardless of ability. Compare different word problems of the same type and construct a formula, or mathematical sentence stem, that applies to them all. For example, a simple subtraction problems could be expressed as:

  9. Using a Plan of Attack for Math Problem-Solving

    Every classroom even has a formula—a problem-solving plan for math, printed out and displayed on the wall—called the "Plan of Attack," which includes three parts: using 80 percent of the allotted time to conceptualize the question by reading the problem multiple times, then modeling the relationships and actions in the problems; 10 ...

  10. Mathematical Problem

    A math problem is a problem that can be solved, or a question that can be answered, with the tools of mathematics. Mathematical problem-solving makes use of various math functions and processes.

  11. Problem Solving Overview & Strategies

    The general problem solving definition is the use of ideas, skills, or facts to achieve the solution to a problem so a desired outcome can be reached. One example of problem solving could the ...

  12. Problem Solving in Mathematics

    A multistep math problem-solving plan involves looking for clues, developing a game plan, solving the problem, and carefully reflecting on your work. ... Many problems are multistep and require some type of systematic approach. There are a couple of things you need to do when solving problems.

  13. Microsoft Math Solver

    Get math help in your language. Works in Spanish, Hindi, German, and more. Online math solver with free step by step solutions to algebra, calculus, and other math problems. Get help on the web or with our math app.

  14. Free Math Worksheets

    Khan Academy's 100,000+ free practice questions give instant feedback, don't need to be graded, and don't require a printer. Math Worksheets. Khan Academy. Math worksheets take forever to hunt down across the internet. Khan Academy is your one-stop-shop for practice from arithmetic to calculus. Math worksheets can vary in quality from ...

  15. 1.6: Problem Solving Strategies

    A Problem Solving Strategy: Find the Math, Remove the Context. Sometimes the problem has a lot of details in it that are unimportant, or at least unimportant for getting started. The goal is to find the underlying math problem, then come back to the original question and see if you can solve it using the math.

  16. 6 Tips for Teaching Math Problem-Solving Skills

    1. Link problem-solving to reading. When we can remind students that they already have many comprehension skills and strategies they can easily use in math problem-solving, it can ease the anxiety surrounding the math problem. For example, providing them with strategies to practice, such as visualizing, acting out the problem with math tools ...

  17. Step-by-Step Math Problem Solver

    QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students. The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and ...

  18. Step-by-Step Calculator

    Symbolab is the best step by step calculator for a wide range of physics problems, including mechanics, electricity and magnetism, and thermodynamics. It shows you the steps and explanations for each problem, so you can learn as you go. To solve math problems step-by-step start by reading the problem carefully and understand what you are being ...

  19. Microsoft Math Solver

    Type a math problem. Get step-by-step explanations. See how to solve problems and show your work—plus get definitions for mathematical concepts. Graph your math problems. Instantly graph any equation to visualize your function and understand the relationship between variables ...

  20. 5: Problem Solving

    Recognizing patterns in mathematics is a fundamental skill that simplifies problem-solving by revealing underlying structures and relationships. This section explores various types of patterns, including numerical, visual, and algebraic, and provides strategies for identifying and applying them to enhance mathematical understanding and problem ...

  21. Khan Academy

    If this problem persists, tell us. Our mission is to provide a free, world-class education to anyone, anywhere. Khan Academy is a 501(c)(3) nonprofit organization. Donate or volunteer today! Site Navigation. About. News; Impact; Our team; Our interns; Our content specialists; Our leadership; Our supporters; Our contributors; Our finances; Careers;