Why Every Educator Needs to Teach Problem-Solving Skills

Strong problem-solving skills will help students be more resilient and will increase their academic and career success .

Want to learn more about how to measure and teach students’ higher-order skills, including problem solving, critical thinking, and written communication?

Problem-solving skills are essential in school, careers, and life.

Problem-solving skills are important for every student to master. They help individuals navigate everyday life and find solutions to complex issues and challenges. These skills are especially valuable in the workplace, where employees are often required to solve problems and make decisions quickly and effectively.

Problem-solving skills are also needed for students’ personal growth and development because they help individuals overcome obstacles and achieve their goals. By developing strong problem-solving skills, students can improve their overall quality of life and become more successful in their personal and professional endeavors.

why is it important to teach problem solving skills

Problem-Solving Skills Help Students…

   develop resilience.

Problem-solving skills are an integral part of resilience and the ability to persevere through challenges and adversity. To effectively work through and solve a problem, students must be able to think critically and creatively. Critical and creative thinking help students approach a problem objectively, analyze its components, and determine different ways to go about finding a solution.  

This process in turn helps students build self-efficacy . When students are able to analyze and solve a problem, this increases their confidence, and they begin to realize the power they have to advocate for themselves and make meaningful change.

When students gain confidence in their ability to work through problems and attain their goals, they also begin to build a growth mindset . According to leading resilience researcher, Carol Dweck, “in a growth mindset, people believe that their most basic abilities can be developed through dedication and hard work—brains and talent are just the starting point. This view creates a love of learning and a resilience that is essential for great accomplishment.”

icon-resilience

    Set and Achieve Goals

Students who possess strong problem-solving skills are better equipped to set and achieve their goals. By learning how to identify problems, think critically, and develop solutions, students can become more self-sufficient and confident in their ability to achieve their goals. Additionally, problem-solving skills are used in virtually all fields, disciplines, and career paths, which makes them important for everyone. Building strong problem-solving skills will help students enhance their academic and career performance and become more competitive as they begin to seek full-time employment after graduation or pursue additional education and training.

CAE Portal Icon 280

  Resolve Conflicts

In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes “thinking outside the box” and approaching a conflict by searching for different solutions. This is a very different (and more effective!) method than a more stagnant approach that focuses on placing blame or getting stuck on elements of a situation that can’t be changed.

While it’s natural to get frustrated or feel stuck when working through a conflict, students with strong problem-solving skills will be able to work through these obstacles, think more rationally, and address the situation with a more solution-oriented approach. These skills will be valuable for students in school, their careers, and throughout their lives.

Perspectives

    Achieve Success

We are all faced with problems every day. Problems arise in our personal lives, in school and in our jobs, and in our interactions with others. Employers especially are looking for candidates with strong problem-solving skills. In today’s job market, most jobs require the ability to analyze and effectively resolve complex issues. Students with strong problem-solving skills will stand out from other applicants and will have a more desirable skill set.

In a recent opinion piece published by The Hechinger Report , Virgel Hammonds, Chief Learning Officer at KnowledgeWorks, stated “Our world presents increasingly complex challenges. Education must adapt so that it nurtures problem solvers and critical thinkers.” Yet, the “traditional K–12 education system leaves little room for students to engage in real-world problem-solving scenarios.” This is the reason that a growing number of K–12 school districts and higher education institutions are transforming their instructional approach to personalized and competency-based learning, which encourage students to make decisions, problem solve and think critically as they take ownership of and direct their educational journey.

graduate-icon

Problem-Solving Skills Can Be Measured and Taught

Research shows that problem-solving skills can be measured and taught. One effective method is through performance-based assessments which require students to demonstrate or apply their knowledge and higher-order skills to create a response or product or do a task.

What Are Performance-Based Assessments?

why is it important to teach problem solving skills

With the No Child Left Behind Act (2002), the use of standardized testing became the primary way to measure student learning in the U.S. The legislative requirements of this act shifted the emphasis to standardized testing, and this led to a  decline in nontraditional testing methods .

But   many educators, policy makers, and parents have concerns with standardized tests. Some of the top issues include that they don’t provide feedback on how students can perform better, they don’t value creativity, they are not representative of diverse populations, and they can be disadvantageous to lower-income students.

While standardized tests are still the norm, U.S. Secretary of Education Miguel Cardona is encouraging states and districts to move away from traditional multiple choice and short response tests and instead use performance-based assessment, competency-based assessments, and other more authentic methods of measuring students abilities and skills rather than rote learning. 

Performance-based assessments  measure whether students can apply the skills and knowledge learned from a unit of study. Typically, a performance task challenges students to use their higher-order skills to complete a project or process. Tasks can range from an essay to a complex proposal or design.

Preview a Performance-Based Assessment

Want a closer look at how performance-based assessments work?  Preview CAE’s K–12 and Higher Education assessments and see how CAE’s tools help students develop critical thinking, problem-solving, and written communication skills.

Performance-Based Assessments Help Students Build and Practice Problem-Solving Skills

In addition to effectively measuring students’ higher-order skills, including their problem-solving skills, performance-based assessments can help students practice and build these skills. Through the assessment process, students are given opportunities to practically apply their knowledge in real-world situations. By demonstrating their understanding of a topic, students are required to put what they’ve learned into practice through activities such as presentations, experiments, and simulations. 

This type of problem-solving assessment tool requires students to analyze information and choose how to approach the presented problems. This process enhances their critical thinking skills and creativity, as well as their problem-solving skills. Unlike traditional assessments based on memorization or reciting facts, performance-based assessments focus on the students’ decisions and solutions, and through these tasks students learn to bridge the gap between theory and practice.

Performance-based assessments like CAE’s College and Career Readiness Assessment (CRA+) and Collegiate Learning Assessment (CLA+) provide students with in-depth reports that show them which higher-order skills they are strongest in and which they should continue to develop. This feedback helps students and their teachers plan instruction and supports to deepen their learning and improve their mastery of critical skills.

why is it important to teach problem solving skills

Explore CAE’s Problem-Solving Assessments

CAE offers performance-based assessments that measure student proficiency in higher-order skills including problem solving, critical thinking, and written communication.

  • College and Career Readiness Assessment (CCRA+) for secondary education and
  • Collegiate Learning Assessment (CLA+) for higher education.

Our solution also includes instructional materials, practice models, and professional development.

We can help you create a program to build students’ problem-solving skills that includes:

  • Measuring students’ problem-solving skills through a performance-based assessment    
  • Using the problem-solving assessment data to inform instruction and tailor interventions
  • Teaching students problem-solving skills and providing practice opportunities in real-life scenarios
  • Supporting educators with quality professional development

Get started with our problem-solving assessment tools to measure and build students’ problem-solving skills today! These skills will be invaluable to students now and in the future.

why is it important to teach problem solving skills

Ready to Get Started?

Learn more about cae’s suite of products and let’s get started measuring and teaching students important higher-order skills like problem solving..

why is it important to teach problem solving skills

Parent Portal

Extracurriculars

why is it important to teach problem solving skills

Why Teaching Problem-Solving Skills is Essential for Student Success

Teaching the art of problem-solving is crucial for preparing students to thrive in an increasingly complex and interconnected world. Beyond the ability to find solutions, problem-solving fosters critical thinking, creativity, and resilience: qualities essential for academic success and lifelong learning. 

This article explores the importance of problem-solving skills, critical strategies for nurturing them in students, and practical approaches educators and parents can employ. 

By equipping students with these skills, we empower them to tackle challenges confidently, innovate effectively, and contribute meaningfully to their communities and future careers .

Why Teaching Problem-Solving Skills is Important

Problem-solving is a crucial skill that empowers students to tackle challenges with confidence and creativity . In an educational context, problem-solving is not just about finding solutions; it involves critical thinking, analysis, and application of knowledge. Students who excel in problem-solving can understand complex problems, break them down into manageable parts, and develop effective strategies to solve them. This skill is applicable across all subjects, from math and science to language arts and social studies, fostering a more profound understanding and retention of material .

Beyond academics, problem-solving is a cornerstone of success in life. Successful people across various fields possess strong problem-solving abilities. They can navigate obstacles, innovate solutions, and adapt to changing circumstances. In engineering and business management careers, problem solvers are highly valued for their ability to find efficient and creative solutions to complex issues.

Educators prepare students for future challenges and opportunities by teaching problem-solving in schools. They learn to think critically , work collaboratively, and persist in facing difficulties, all essential lifelong learning and achievement skills. Thus, nurturing problem-solving skills in students enhances their academic performance and equips them for success in their future careers and personal lives.

Aspects of Problem Solving

Developing problem-solving skills is crucial for preparing students to navigate the complexities of the modern world. Critical thinking, project-based learning, and volunteering enhance academic learning and empower students to address real-world challenges effectively. By focusing on these aspects, students can develop the skills they need to innovate, collaborate, and positively impact their communities.

Critical Thinking

Critical thinking is a fundamental skill for problem-solving as it involves analysing and evaluating information to make reasoned judgments and decisions. It enables students to approach problems systematically, consider multiple perspectives, and identify underlying issues.

Critical thinking allows students to:

  • Analyse information : Students can assess the relevance and reliability of information to determine its impact on problem-solving. For example, in a science project, critical thinking helps students evaluate experimental results to draw valid conclusions.
  • Develop solutions : Students can choose the most effective solution by critically evaluating different approaches. In a group project, critical thinking enables students to compare and refine ideas to solve a problem creatively.

Project-Based Learning

Project-based learning (PBL) is an instructional approach where students learn by actively engaging in real-world and personally meaningful projects. It allows students to explore complex problems and develop essential skills such as collaboration and communication.

Here is how project-based learning helps students develop problem-solving skills.

  • Apply knowledge : Students apply academic concepts to real-world problems by working on projects. For instance, in designing a community garden, students use math to plan the layout and science to understand plant growth.
  • Develop skills : PBL fosters problem-solving by challenging students to address authentic problems. For example, in a history project, students might analyse primary sources to understand the causes of historical events and propose solutions to prevent similar conflicts.

Volunteering

Volunteering allows students to contribute to their communities while developing empathy, leadership , and problem-solving skills. It provides practical experiences that enhance learning and help students understand and address community needs.

Volunteering is important because it allows students to:

  • Identify needs : Students can identify community needs and consider solutions by working in diverse settings. For example, volunteering at a food bank can inspire students to address food insecurity by organising donation drives.
  • Collaborate : Volunteering encourages teamwork and collaboration to solve problems. Students learn to coordinate tasks and resources to achieve common goals when organising a charity event.

The Problem-Solving Process

Problem-solving involves a systematic approach to understanding, analysing, and solving problems. Here are the critical steps in the problem-solving process:

  • Identify the problem : The first step is clearly defining and understanding the problem. This involves identifying the specific issue or challenge that needs to be addressed.
  • Define goals : Once the problem is identified, it's essential to establish clear and measurable goals. This helps focus efforts and guide the problem-solving process.
  • Explore possible solutions : The next step is brainstorming and exploring various solutions. This involves generating ideas and considering different approaches to solving the problem.
  • Evaluate options : After generating potential solutions, evaluate each option based on its feasibility, effectiveness, and possible outcomes.
  • Choose the best solution : Select the most appropriate solution that best meets the defined goals and addresses the root cause of the problem.
  • Implement the solution : Once a solution is chosen, it must be implemented. This step involves planning the implementation process and taking necessary actions to execute the solution.
  • Monitor progress : After implementing the solution, monitor its progress and evaluate its effectiveness. This step helps ensure that the problem is being resolved as expected.
  • Reflect and adjust : Reflect on the problem-solving process, identify any lessons learned, and make adjustments if necessary. This continuous improvement cycle helps refine solutions and develop better problem-solving skills.

How to Become a General Problem Solver

Parents play a crucial role in nurturing their children's problem-solving skills. Here are some ways parents can help their children become effective problem solvers.

  • Encourage critical thinking : Encourage children to ask questions, analyse information, and consider different perspectives. Engage them in discussions that challenge their thinking and promote reasoning.
  • Support independence : Allow children to tackle challenges on their own. Offer guidance and encouragement without immediately providing solutions. This helps build confidence and resilience.
  • Provide opportunities for problem-solving : Create opportunities for children to solve real-life problems, such as planning a family event, organising their room, or resolving conflicts with siblings or friends.
  • Foster creativity : Encourage creative thinking and brainstorming. Provide materials and activities that stimulate imagination and innovation.
  • Model problem-solving behaviours : Demonstrate problem-solving skills in your own life and involve children in decision-making processes. Show them how to approach challenges calmly and methodically.

How Online Schooling Encourages Problem-Solving

Online schooling encourages problem-solving skills by requiring students to navigate digital platforms, manage their time effectively , and troubleshoot technical issues independently. 

Students often engage in interactive assignments and projects that promote critical thinking and creativity. They learn to adapt to different learning environments and collaborate virtually, fostering innovative solutions. 

Online schooling also encourages self-directed learning , where students must identify and address their own learning gaps. This enhances problem-solving abilities and prepares them for the complexities of the digital age.

To find out more about online learning, click here . 

Download the FREE Exam Study Planner

Why Teaching Problem-Solving Skills is Essential for Student Success

Download our free study planners to stay organised and manage your next examination period successfully.

Other articles

why is it important to teach problem solving skills

2025 scholarship applications and adult service award nomination forms are now available. Learn more

Future Problem Solving

  • Global Issues
  • Community Projects
  • Creative Writing
  • Storytelling
  • Problem-Solving Method
  • Real World Issues
  • Future Scenarios
  • Authentic Assessments
  • 5Cs of Learning
  • Youth Protection
  • DEIB Commitment
  • International Conference
  • Find FPS Near Me
  • Partner With Us

Future Problem Solving

Why is problem solving important?

Future Problem Solving teaches students HOW to think, not WHAT to think, using a problem solving process. Just why is problem solving important? We answer that question.

Retired affiliate directors Brenda Darnell (Kentucky) and Cyd Rogers (Texas) collaborated together to share some tips on the important role parents play in their Future Problem Solving students’ experience.

Students increase their understanding about a topic or situation

In Global Issues, students analyze and work through important futuristic topics. In Community Projects, students gain understanding about a community issue they identify, then implement real solutions as a result of that understanding. Although Creative Writing  and Storytelling produce a creative and imaginative product, they begin by developing a basis of information about the topic their stories are based on.

Problem solving promotes critical and creative thinking

The process students use in Future Problem Solving alternates between creative/divergent thinking to generate ideas and critical/convergent thinking to focus and analyze those ideas and to make decisions about them. Creative thinking is important because it broadens our perspective by pushing us out of a linear way of thinking. It instills curiosity and encourages questions, opening us up to the concept of many new ideas. It allows us to think without judgment, showing us that there are many perspectives to any issue, and many innovative solutions to any problem.

Critical thinking helps us think clearly and systematically, teaching us how to break down information and improve our ability to comprehend. It helps identify bias and promote open-mindedness. Knowing how to sort through all the “extra noise” helps us reflect, develop, and justify our decisions. Critical thinking promotes the development of many crucial life and career skills, such as logical thinking, decision-making, and open-mindedness.

Problem solving is empowering

Continually learning and expanding one’s knowledge helps students tackle personal challenges in their lives. Futuristic topics allow students to address world problems that will exist in the future. Self-confidence is boosted as students learn that they can make a difference. Problem solving in our program helps students develop persistence, embrace change, and overcome obstacles – all of which are empowering life skills.

Problem solving is a collaborative approach

Working cooperatively with others helps students realize that a variety of knowledge, perspectives, and experiences can enhance the outcome. Empathy is developed, and relationships are strengthened as students learn to respect other perspectives, opinions and differences. Problem solving improves decision-making, teaches compromise, and reduces conflict as students work together rather than against each other. Students learn to share ideas appropriately and with respect. They become more invested in finding a solution, which can encourage them to take ownership of the problem and follow through on any actions needed to implement the solution.

Problem solving is an essential skill for the workplace

Future Problem Solving addresses the top skills desired in the workplace identified by the World Economic Forum. FPS alumni tell us time and time again that their participation has helped them in their careers.

  • During my entire K-12 tenure, no other experience was more influential or beneficial to my ability to think broadly and creatively than FPS. – Evan, Restoration Biologist
  • In FPS I learned to see undesirable and/or unforeseen circumstances as solvable challenges rather than insurmountable problems. – Danielle, Master Social Worker
  • I learned about conflict and compromise and negotiating the dynamics of a group of very strong-willed, often stubborn teammates under intense pressure – skills I’ve drawn on in my life ever since. – Reuben, History/Social Science Content Support Lead, MA Dept. of Elementary & Secondary Education
  • FPS taught me a problem solving process that I still use today. Whether the problem is change or distrust in an election, the steps to address it are largely the same. – David, Attorney, Wisconsin Ethics Commission

A specific model

A specific model provides a foundation for effective problem solving, as it helps one strategize, prioritize, and make decisions. Future Problem Solving uses the Creative Problem Process (CPS) created by Alex Osborne in the 1940s. He and his colleague, Sidney Parnes, worked to further develop the process in the 50s and 60s. CPS is the basis for many creative problem solving methods used in the business world today.

Terminology in the many problem solving models that exist may vary, but the process and thinking skills are the same. All models incorporate three basic elements: (1) understanding the challenge/ issue/ situation; (2) generating ideas; and (3) preparing for action.

Understanding the challenge/issue/situationStep 1: Identify challenges
Step 2: Select an underlying problem
Generating ideasStep 3: Produce solution ideas
Preparing for actionStep 4: Generate and select criteria
Step 5: Evaluate solutions
Step 6: Develop an action plan

In summary, perhaps Bill Gates in The Road Ahead, says it best: “More than ever, an education that emphasizes general problem-solving skills will be important. In a changing world, education is the best preparation for being able to adapt.”

Additional resources

  • What Is Creative Thinking and Why Is It Important? (LifeHack)
  • Why is Creativity Important and What Does it Contribute? (National Youth Council of Ireland)
  • Why Is Critical Thinking Important? A Survival Guide (University of the People)
  • What Are Critical Thinking Skills and Why Are They Important? (Coursera)
  • 10 Ways Collaboration Can Benefit Problem Solving (Medium)

Related Articles

  • Quick Start Guide: Learning the 6-step problem solving approach
  • The Way We Go – Korean FPS
  • 10 strategies for coping with perfectionism
  • How do the UN SDGs for Quality Education and Future Problem Solving align?
  • How do NYLC Service-Learning Standards and Future Problem Solving align?
  • How do STEM and Future Problem Solving align?

April Michele

April Michele Bio

When the video is over, I say, “Many of us, probably all of us, are like the man in the video yelling for help when we get stuck. When we get stuck, we stop and immediately say ‘Help!’ instead of embracing the challenge and trying new ways to work through it.” I often introduce this lesson during math class, but it can apply to any area of our lives, and I can refer to the experience and conversation we had during any part of our day.

Research shows that just because students know the strategies does not mean they will engage in the appropriate strategies. Therefore, I try to provide opportunities where students can explicitly practice learning how, when, and why to use which strategies effectively  so that they can become self-directed learners.

For example, I give students a math problem that will make many of them feel “stuck”. I will say, “Your job is to get yourselves stuck—or to allow yourselves to get stuck on this problem—and then work through it, being mindful of how you’re getting yourselves unstuck.” As students work, I check-in to help them name their process: “How did you get yourself unstuck?” or “What was your first step? What are you doing now? What might you try next?” As students talk about their process, I’ll add to a list of strategies that students are using and, if they are struggling, help students name a specific process. For instance, if a student says he wrote the information from the math problem down and points to a chart, I will say: “Oh that’s interesting. You pulled the important information from the problem out and organized it into a chart.” In this way, I am giving him the language to match what he did, so that he now has a strategy he could use in other times of struggle.

The charts grow with us over time and are something that we refer to when students are stuck or struggling. They become a resource for students and a way for them to talk about their process when they are reflecting on and monitoring what did or did not work.

For me, as a teacher, it is important that I create a classroom environment in which students are problem solvers. This helps tie struggles to strategies so that the students will not only see value in working harder but in working smarter by trying new and different strategies and revising their process. In doing so, they will more successful the next time around.

Related Content

Esther Care, Helyn Kim, Alvin Vista

October 17, 2017

David Owen, Alvin Vista

November 15, 2017

Loren Clarke, Esther Care

December 5, 2017

Global Education K-12 Education

Global Economy and Development

Center for Universal Education

Magdalena Rodríguez Romero

September 10, 2024

Tom Swiderski, Sarah Crittenden Fuller, Kevin C. Bastian

September 9, 2024

Julien Lafortune, Barbara Biasi, David Schönholzer

September 6, 2024

Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

why is it important to teach problem solving skills

Teaching Guides

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules

Teaching Problem-Solving Skills

Many instructors design opportunities for students to solve “problems”. But are their students solving true problems or merely participating in practice exercises? The former stresses critical thinking and decision­ making skills whereas the latter requires only the application of previously learned procedures.

Problem solving is often broadly defined as "the ability to understand the environment, identify complex problems, review related information to develop, evaluate strategies and implement solutions to build the desired outcome" (Fissore, C. et al, 2021). True problem solving is the process of applying a method – not known in advance – to a problem that is subject to a specific set of conditions and that the problem solver has not seen before, in order to obtain a satisfactory solution.

Below you will find some basic principles for teaching problem solving and one model to implement in your classroom teaching.

Principles for teaching problem solving

  • Model a useful problem-solving method . Problem solving can be difficult and sometimes tedious. Show students how to be patient and persistent, and how to follow a structured method, such as Woods’ model described below. Articulate your method as you use it so students see the connections.
  • Teach within a specific context . Teach problem-solving skills in the context in which they will be used by students (e.g., mole fraction calculations in a chemistry course). Use real-life problems in explanations, examples, and exams. Do not teach problem solving as an independent, abstract skill.
  • Help students understand the problem . In order to solve problems, students need to define the end goal. This step is crucial to successful learning of problem-solving skills. If you succeed at helping students answer the questions “what?” and “why?”, finding the answer to “how?” will be easier.
  • Take enough time . When planning a lecture/tutorial, budget enough time for: understanding the problem and defining the goal (both individually and as a class); dealing with questions from you and your students; making, finding, and fixing mistakes; and solving entire problems in a single session.
  • Ask questions and make suggestions . Ask students to predict “what would happen if …” or explain why something happened. This will help them to develop analytical and deductive thinking skills. Also, ask questions and make suggestions about strategies to encourage students to reflect on the problem-solving strategies that they use.
  • Link errors to misconceptions . Use errors as evidence of misconceptions, not carelessness or random guessing. Make an effort to isolate the misconception and correct it, then teach students to do this by themselves. We can all learn from mistakes.

Woods’ problem-solving model

Define the problem.

  • The system . Have students identify the system under study (e.g., a metal bridge subject to certain forces) by interpreting the information provided in the problem statement. Drawing a diagram is a great way to do this.
  • Known(s) and concepts . List what is known about the problem, and identify the knowledge needed to understand (and eventually) solve it.
  • Unknown(s) . Once you have a list of knowns, identifying the unknown(s) becomes simpler. One unknown is generally the answer to the problem, but there may be other unknowns. Be sure that students understand what they are expected to find.
  • Units and symbols . One key aspect in problem solving is teaching students how to select, interpret, and use units and symbols. Emphasize the use of units whenever applicable. Develop a habit of using appropriate units and symbols yourself at all times.
  • Constraints . All problems have some stated or implied constraints. Teach students to look for the words "only", "must", "neglect", or "assume" to help identify the constraints.
  • Criteria for success . Help students consider, from the beginning, what a logical type of answer would be. What characteristics will it possess? For example, a quantitative problem will require an answer in some form of numerical units (e.g., $/kg product, square cm, etc.) while an optimization problem requires an answer in the form of either a numerical maximum or minimum.

Think about it

  • “Let it simmer”.  Use this stage to ponder the problem. Ideally, students will develop a mental image of the problem at hand during this stage.
  • Identify specific pieces of knowledge . Students need to determine by themselves the required background knowledge from illustrations, examples and problems covered in the course.
  • Collect information . Encourage students to collect pertinent information such as conversion factors, constants, and tables needed to solve the problem.

Plan a solution

  • Consider possible strategies . Often, the type of solution will be determined by the type of problem. Some common problem-solving strategies are: compute; simplify; use an equation; make a model, diagram, table, or chart; or work backwards.
  • Choose the best strategy . Help students to choose the best strategy by reminding them again what they are required to find or calculate.

Carry out the plan

  • Be patient . Most problems are not solved quickly or on the first attempt. In other cases, executing the solution may be the easiest step.
  • Be persistent . If a plan does not work immediately, do not let students get discouraged. Encourage them to try a different strategy and keep trying.

Encourage students to reflect. Once a solution has been reached, students should ask themselves the following questions:

  • Does the answer make sense?
  • Does it fit with the criteria established in step 1?
  • Did I answer the question(s)?
  • What did I learn by doing this?
  • Could I have done the problem another way?

If you would like support applying these tips to your own teaching, CTE staff members are here to help.  View the  CTE Support  page to find the most relevant staff member to contact. 

  • Fissore, C., Marchisio, M., Roman, F., & Sacchet, M. (2021). Development of problem solving skills with Maple in higher education. In: Corless, R.M., Gerhard, J., Kotsireas, I.S. (eds) Maple in Mathematics Education and Research. MC 2020. Communications in Computer and Information Science, vol 1414. Springer, Cham. https://doi.org/10.1007/978-3-030-81698-8_15
  • Foshay, R., & Kirkley, J. (1998). Principles for Teaching Problem Solving. TRO Learning Inc., Edina MN.  (PDF) Principles for Teaching Problem Solving (researchgate.net)
  • Hayes, J.R. (1989). The Complete Problem Solver. 2nd Edition. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Woods, D.R., Wright, J.D., Hoffman, T.W., Swartman, R.K., Doig, I.D. (1975). Teaching Problem solving Skills.
  • Engineering Education. Vol 1, No. 1. p. 238. Washington, DC: The American Society for Engineering Education.

teaching tips

Catalog search

Teaching tip categories.

  • Assessment and feedback
  • Blended Learning and Educational Technologies
  • Career Development
  • Course Design
  • Course Implementation
  • Inclusive Teaching and Learning
  • Learning activities
  • Support for Student Learning
  • Support for TAs
  • Learning activities ,
  • Utility Menu

University Logo

GA4 Tracking Code

Home

fa51e2b1dc8cca8f7467da564e77b5ea

  • Make a Gift
  • Join Our Email List
  • Problem Solving in STEM

Solving problems is a key component of many science, math, and engineering classes.  If a goal of a class is for students to emerge with the ability to solve new kinds of problems or to use new problem-solving techniques, then students need numerous opportunities to develop the skills necessary to approach and answer different types of problems.  Problem solving during section or class allows students to develop their confidence in these skills under your guidance, better preparing them to succeed on their homework and exams. This page offers advice about strategies for facilitating problem solving during class.

How do I decide which problems to cover in section or class?

In-class problem solving should reinforce the major concepts from the class and provide the opportunity for theoretical concepts to become more concrete. If students have a problem set for homework, then in-class problem solving should prepare students for the types of problems that they will see on their homework. You may wish to include some simpler problems both in the interest of time and to help students gain confidence, but it is ideal if the complexity of at least some of the in-class problems mirrors the level of difficulty of the homework. You may also want to ask your students ahead of time which skills or concepts they find confusing, and include some problems that are directly targeted to their concerns.

You have given your students a problem to solve in class. What are some strategies to work through it?

  • Try to give your students a chance to grapple with the problems as much as possible.  Offering them the chance to do the problem themselves allows them to learn from their mistakes in the presence of your expertise as their teacher. (If time is limited, they may not be able to get all the way through multi-step problems, in which case it can help to prioritize giving them a chance to tackle the most challenging steps.)
  • When you do want to teach by solving the problem yourself at the board, talk through the logic of how you choose to apply certain approaches to solve certain problems.  This way you can externalize the type of thinking you hope your students internalize when they solve similar problems themselves.
  • Start by setting up the problem on the board (e.g you might write down key variables and equations; draw a figure illustrating the question).  Ask students to start solving the problem, either independently or in small groups.  As they are working on the problem, walk around to hear what they are saying and see what they are writing down. If several students seem stuck, it might be a good to collect the whole class again to clarify any confusion.  After students have made progress, bring the everyone back together and have students guide you as to what to write on the board.
  • It can help to first ask students to work on the problem by themselves for a minute, and then get into small groups to work on the problem collaboratively.
  • If you have ample board space, have students work in small groups at the board while solving the problem.  That way you can monitor their progress by standing back and watching what they put up on the board.
  • If you have several problems you would like to have the students practice, but not enough time for everyone to do all of them, you can assign different groups of students to work on different – but related - problems.

When do you want students to work in groups to solve problems?

  • Don’t ask students to work in groups for straightforward problems that most students could solve independently in a short amount of time.
  • Do have students work in groups for thought-provoking problems, where students will benefit from meaningful collaboration.
  • Even in cases where you plan to have students work in groups, it can be useful to give students some time to work on their own before collaborating with others.  This ensures that every student engages with the problem and is ready to contribute to a discussion.

What are some benefits of having students work in groups?

  • Students bring different strengths, different knowledge, and different ideas for how to solve a problem; collaboration can help students work through problems that are more challenging than they might be able to tackle on their own.
  • In working in a group, students might consider multiple ways to approach a problem, thus enriching their repertoire of strategies.
  • Students who think they understand the material will gain a deeper understanding by explaining concepts to their peers.

What are some strategies for helping students to form groups?  

  • Instruct students to work with the person (or people) sitting next to them.
  • Count off.  (e.g. 1, 2, 3, 4; all the 1’s find each other and form a group, etc)
  • Hand out playing cards; students need to find the person with the same number card. (There are many variants to this.  For example, you can print pictures of images that go together [rain and umbrella]; each person gets a card and needs to find their partner[s].)
  • Based on what you know about the students, assign groups in advance. List the groups on the board.
  • Note: Always have students take the time to introduce themselves to each other in a new group.

What should you do while your students are working on problems?

  • Walk around and talk to students. Observing their work gives you a sense of what people understand and what they are struggling with. Answer students’ questions, and ask them questions that lead in a productive direction if they are stuck.
  • If you discover that many people have the same question—or that someone has a misunderstanding that others might have—you might stop everyone and discuss a key idea with the entire class.

After students work on a problem during class, what are strategies to have them share their answers and their thinking?

  • Ask for volunteers to share answers. Depending on the nature of the problem, student might provide answers verbally or by writing on the board. As a variant, for questions where a variety of answers are relevant, ask for at least three volunteers before anyone shares their ideas.
  • Use online polling software for students to respond to a multiple-choice question anonymously.
  • If students are working in groups, assign reporters ahead of time. For example, the person with the next birthday could be responsible for sharing their group’s work with the class.
  • Cold call. To reduce student anxiety about cold calling, it can help to identify students who seem to have the correct answer as you were walking around the class and checking in on their progress solving the assigned problem. You may even want to warn the student ahead of time: "This is a great answer! Do you mind if I call on you when we come back together as a class?"
  • Have students write an answer on a notecard that they turn in to you.  If your goal is to understand whether students in general solved a problem correctly, the notecards could be submitted anonymously; if you wish to assess individual students’ work, you would want to ask students to put their names on their notecard.  
  • Use a jigsaw strategy, where you rearrange groups such that each new group is comprised of people who came from different initial groups and had solved different problems.  Students now are responsible for teaching the other students in their new group how to solve their problem.
  • Have a representative from each group explain their problem to the class.
  • Have a representative from each group draw or write the answer on the board.

What happens if a student gives a wrong answer?

  • Ask for their reasoning so that you can understand where they went wrong.
  • Ask if anyone else has other ideas. You can also ask this sometimes when an answer is right.
  • Cultivate an environment where it’s okay to be wrong. Emphasize that you are all learning together, and that you learn through making mistakes.
  • Do make sure that you clarify what the correct answer is before moving on.
  • Once the correct answer is given, go through some answer-checking techniques that can distinguish between correct and incorrect answers. This can help prepare students to verify their future work.

How can you make your classroom inclusive?

  • The goal is that everyone is thinking, talking, and sharing their ideas, and that everyone feels valued and respected. Use a variety of teaching strategies (independent work and group work; allow students to talk to each other before they talk to the class). Create an environment where it is normal to struggle and make mistakes.
  • See Kimberly Tanner’s article on strategies to promoste student engagement and cultivate classroom equity. 

A few final notes…

  • Make sure that you have worked all of the problems and also thought about alternative approaches to solving them.
  • Board work matters. You should have a plan beforehand of what you will write on the board, where, when, what needs to be added, and what can be erased when. If students are going to write their answers on the board, you need to also have a plan for making sure that everyone gets to the correct answer. Students will copy what is on the board and use it as their notes for later study, so correct and logical information must be written there.

For more information...

Tipsheet: Problem Solving in STEM Sections

Tanner, K. D. (2013). Structure matters: twenty-one teaching strategies to promote student engagement and cultivate classroom equity . CBE-Life Sciences Education, 12(3), 322-331.

  • Designing Your Course
  • A Teaching Timeline: From Pre-Term Planning to the Final Exam
  • The First Day of Class
  • Group Agreements
  • Classroom Debate
  • Flipped Classrooms
  • Leading Discussions
  • Polling & Clickers
  • Teaching with Cases
  • Engaged Scholarship
  • Devices in the Classroom
  • Beyond the Classroom
  • On Professionalism
  • Getting Feedback
  • Equitable & Inclusive Teaching
  • Artificial Intelligence
  • Advising and Mentoring
  • Teaching and Your Career
  • Teaching Remotely
  • Tools and Platforms
  • The Science of Learning
  • Bok Publications
  • Other Resources Around Campus

Benefits of Problem-Solving in the K-12 Classroom

Posted October 5, 2022 by Miranda Marshall

why is it important to teach problem solving skills

From solving complex algebra problems to investigating scientific theories, to making inferences about written texts, problem-solving is central to every subject explored in school. Even beyond the classroom, problem-solving is ranked among the most important skills for students to demonstrate on their resumes, with 82.9% of employers considering it a highly valued attribute. On an even broader scale, students who learn how to apply their problem-solving skills to the issues they notice in their communities – or even globally –  have the tools they need to change the future and leave a lasting impact on the world around them.

Problem-solving can be taught in any content area and can even combine cross-curricular concepts to connect learning from all subjects. On top of building transferrable skills for higher education and beyond, read on to learn more about five amazing benefits students will gain from the inclusion of problem-based learning in their education:

  • Problem-solving is inherently student-centered.

Student-centered learning refers to methods of teaching that recognize and cater to students’ individual needs. Students learn at varying paces, have their own unique strengths, and even further, have their own interests and motivations – and a student-centered approach recognizes this diversity within classrooms by giving students some degree of control over their learning and making them active participants in the learning process.

Incorporating problem-solving into your curriculum is a great way to make learning more student-centered, as it requires students to engage with topics by asking questions and thinking critically about explanations and solutions, rather than expecting them to absorb information in a lecture format or through wrote memorization.

  • Increases confidence and achievement across all school subjects.

As with any skill, the more students practice problem-solving, the more comfortable they become with the type of critical and analytical thinking that will carry over into other areas of their academic careers. By learning how to approach concepts they are unfamiliar with or questions they do not know the answers to, students develop a greater sense of self-confidence in their ability to apply problem-solving techniques to other subject areas, and even outside of school in their day-to-day lives.

The goal in teaching problem-solving is for it to become second nature, and for students to routinely express their curiosity, explore innovative solutions, and analyze the world around them to draw their own conclusions.

  • Encourages collaboration and teamwork.

Since problem-solving often involves working cooperatively in teams, students build a number of important interpersonal skills alongside problem-solving skills. Effective teamwork requires clear communication, a sense of personal responsibility, empathy and understanding for teammates, and goal setting and organization – all of which are important throughout higher education and in the workplace as well.

  • Increases metacognitive skills.

Metacognition is often described as “thinking about thinking” because it refers to a person’s ability to analyze and understand their own thought processes. When making decisions, metacognition allows problem-solvers to consider the outcomes of multiple plans of action and determine which one will yield the best results.

Higher metacognitive skills have also widely been linked to improved learning outcomes and improved studying strategies. Metacognitive students are able to reflect on their learning experiences to understand themselves and the world around them better.

  • Helps with long-term knowledge retention.

Students who learn problem-solving skills may see an improved ability to retain and recall information. Specifically, being asked to explain how they reached their conclusions at the time of learning, by sharing their ideas and facts they have researched, helps reinforce their understanding of the subject matter.

Problem-solving scenarios in which students participate in small-group discussions can be especially beneficial, as this discussion gives students the opportunity to both ask and answer questions about the new concepts they’re exploring.

At all grade levels, students can see tremendous gains in their academic performance and emotional intelligence when problem-solving is thoughtfully planned into their learning.

Interested in helping your students build problem-solving skills, but aren’t sure where to start? Future Problem Solving Problem International (FPSPI) is an amazing academic competition for students of all ages, all around the world, that includes helpful resources for educators to implement in their own classrooms!

Learn more about this year’s competition season from this recorded webinar:    https://youtu.be/AbeKQ8_Sm8U and/or email [email protected] to get started!

Signup Newsletter

Sign me up for the newsletter!

why is it important to teach problem solving skills

The Institute of Competition Sciences (ICS) was founded in 2012 to help transform learning into an exciting challenge for all students. We exist to support students in realizing the full potential of their future.

Quick Links

  • Competitions
  • Privacy Policy
  • Terms and Conditions

Connect with us on social media

Instagram

Copyright © 2024 Institute of Competition Sciences. All rights reserved.

Don’t Just Tell Students to Solve Problems. Teach Them How.

The positive impact of an innovative UC San Diego problem-solving educational curriculum continues to grow

Published Date

Share this:, article content.

Problem solving is a critical skill for technical education and technical careers of all types. But what are best practices for teaching problem solving to high school and college students? 

The University of California San Diego Jacobs School of Engineering is on the forefront of efforts to improve how problem solving is taught. This UC San Diego approach puts hands-on problem-identification and problem-solving techniques front and center. Over 1,500 students across the San Diego region have already benefited over the last three years from this program. In the 2023-2024 academic year, approximately 1,000 upper-level high school students will be taking the problem solving course in four different school districts in the San Diego region. Based on the positive results with college students, as well as high school juniors and seniors in the San Diego region, the project is getting attention from educators across the state of California, and around the nation and the world.

{/exp:typographee}

In Summer 2023, th e 27 community college students who took the unique problem-solving course developed at the UC San Diego Jacobs School of Engineering thrived, according to Alex Phan PhD, the Executive Director of Student Success at the UC San Diego Jacobs School of Engineering. Phan oversees the project. 

Over the course of three weeks, these students from Southwestern College and San Diego City College poured their enthusiasm into problem solving through hands-on team engineering challenges. The students brimmed with positive energy as they worked together. 

What was noticeably absent from this laboratory classroom: frustration.

“In school, we often tell students to brainstorm, but they don’t often know where to start. This curriculum gives students direct strategies for brainstorming, for identifying problems, for solving problems,” sai d Jennifer Ogo, a teacher from Kearny High School who taught the problem-solving course in summer 2023 at UC San Diego. Ogo was part of group of educators who took the course themselves last summer.

The curriculum has been created, refined and administered over the last three years through a collaboration between the UC San Diego Jacobs School of Engineering and the UC San Diego Division of Extended Studies. The project kicked off in 2020 with a generous gift from a local philanthropist.

Not getting stuck

One of the overarching goals of this project is to teach both problem-identification and problem-solving skills that help students avoid getting stuck during the learning process. Stuck feelings lead to frustration – and when it’s a Science, Technology, Engineering and Math (STEM) project, that frustration can lead students to feel they don’t belong in a STEM major or a STEM career. Instead, the UC San Diego curriculum is designed to give students the tools that lead to reactions like “this class is hard, but I know I can do this!” –  as Ogo, a celebrated high school biomedical sciences and technology teacher, put it. 

Three years into the curriculum development effort, the light-hearted energy of the students combined with their intense focus points to success. On the last day of the class, Mourad Mjahed PhD, Director of the MESA Program at Southwestern College’s School of Mathematics, Science and Engineering came to UC San Diego to see the final project presentations made by his 22 MESA students.

“Industry is looking for students who have learned from their failures and who have worked outside of their comfort zones,” said Mjahed. The UC San Diego problem-solving curriculum, Mjahed noted, is an opportunity for students to build the skills and the confidence to learn from their failures and to work outside their comfort zone. “And from there, they see pathways to real careers,” he said. 

What does it mean to explicitly teach problem solving? 

This approach to teaching problem solving includes a significant focus on learning to identify the problem that actually needs to be solved, in order to avoid solving the wrong problem. The curriculum is organized so that each day is a complete experience. It begins with the teacher introducing the problem-identification or problem-solving strategy of the day. The teacher then presents case studies of that particular strategy in action. Next, the students get introduced to the day’s challenge project. Working in teams, the students compete to win the challenge while integrating the day’s technique. Finally, the class reconvenes to reflect. They discuss what worked and didn't work with their designs as well as how they could have used the day’s problem-identification or problem-solving technique more effectively. 

The challenges are designed to be engaging – and over three years, they have been refined to be even more engaging. But the student engagement is about much more than being entertained. Many of the students recognize early on that the problem-identification and problem-solving skills they are learning can be applied not just in the classroom, but in other classes and in life in general. 

Gabriel from Southwestern College is one of the students who saw benefits outside the classroom almost immediately. In addition to taking the UC San Diego problem-solving course, Gabriel was concurrently enrolled in an online computer science programming class. He said he immediately started applying the UC San Diego problem-identification and troubleshooting strategies to his coding assignments. 

Gabriel noted that he was given a coding-specific troubleshooting strategy in the computer science course, but the more general problem-identification strategies from the UC San Diego class had been extremely helpful. It’s critical to “find the right problem so you can get the right solution. The strategies here,” he said, “they work everywhere.”

Phan echoed this sentiment. “We believe this curriculum can prepare students for the technical workforce. It can prepare students to be impactful for any career path.”

The goal is to be able to offer the course in community colleges for course credit that transfers to the UC, and to possibly offer a version of the course to incoming students at UC San Diego. 

As the team continues to work towards integrating the curriculum in both standardized high school courses such as physics, and incorporating the content as a part of the general education curriculum at UC San Diego, the project is expected to impact thousands more students across San Diego annually. 

Portrait of the Problem-Solving Curriculum

On a sunny Wednesday in July 2023, an experiential-learning classroom was full of San Diego community college students. They were about half-way through the three-week problem-solving course at UC San Diego, held in the campus’ EnVision Arts and Engineering Maker Studio. On this day, the students were challenged to build a contraption that would propel at least six ping pong balls along a kite string spanning the laboratory. The only propulsive force they could rely on was the air shooting out of a party balloon.

A team of three students from Southwestern College – Valeria, Melissa and Alondra – took an early lead in the classroom competition. They were the first to use a plastic bag instead of disposable cups to hold the ping pong balls. Using a bag, their design got more than half-way to the finish line – better than any other team at the time – but there was more work to do. 

As the trio considered what design changes to make next, they returned to the problem-solving theme of the day: unintended consequences. Earlier in the day, all the students had been challenged to consider unintended consequences and ask questions like: When you design to reduce friction, what happens? Do new problems emerge? Did other things improve that you hadn’t anticipated? 

Other groups soon followed Valeria, Melissa and Alondra’s lead and began iterating on their own plastic-bag solutions to the day’s challenge. New unintended consequences popped up everywhere. Switching from cups to a bag, for example, reduced friction but sometimes increased wind drag. 

Over the course of several iterations, Valeria, Melissa and Alondra made their bag smaller, blew their balloon up bigger, and switched to a different kind of tape to get a better connection with the plastic straw that slid along the kite string, carrying the ping pong balls. 

One of the groups on the other side of the room watched the emergence of the plastic-bag solution with great interest. 

“We tried everything, then we saw a team using a bag,” said Alexander, a student from City College. His team adopted the plastic-bag strategy as well, and iterated on it like everyone else. They also chose to blow up their balloon with a hand pump after the balloon was already attached to the bag filled with ping pong balls – which was unique. 

“I don’t want to be trying to put the balloon in place when it's about to explode,” Alexander explained. 

Asked about whether the structured problem solving approaches were useful, Alexander’s teammate Brianna, who is a Southwestern College student, talked about how the problem-solving tools have helped her get over mental blocks. “Sometimes we make the most ridiculous things work,” she said. “It’s a pretty fun class for sure.” 

Yoshadara, a City College student who is the third member of this team, described some of the problem solving techniques this way: “It’s about letting yourself be a little absurd.”

Alexander jumped back into the conversation. “The value is in the abstraction. As students, we learn to look at the problem solving that worked and then abstract out the problem solving strategy that can then be applied to other challenges. That’s what mathematicians do all the time,” he said, adding that he is already thinking about how he can apply the process of looking at unintended consequences to improve both how he plays chess and how he goes about solving math problems.

Looking ahead, the goal is to empower as many students as possible in the San Diego area and  beyond to learn to problem solve more enjoyably. It’s a concrete way to give students tools that could encourage them to thrive in the growing number of technical careers that require sharp problem-solving skills, whether or not they require a four-year degree. 

You May Also Like

Technique to study how proteins bind to dna is easily misused; new study offers solution, eight talks explore untold stories and enduring impact of the holocaust, neurodiverse interns showcase their talent in tech, brain scans reveal that mindfulness meditation for pain is not a placebo, stay in the know.

Keep up with all the latest from UC San Diego. Subscribe to the newsletter today.

You have been successfully subscribed to the UC San Diego Today Newsletter.

Campus & Community

Arts & culture, visual storytelling.

  • Media Resources & Contacts

Signup to get the latest UC San Diego newsletters delivered to your inbox.

Award-winning publication highlighting the distinction, prestige and global impact of UC San Diego.

Popular Searches: Covid-19   Ukraine   Campus & Community   Arts & Culture   Voices

why is it important to teach problem solving skills

MSU Extension

Problem-solving skills are an important factor in academic success.

Elizabeth Gutierrez, Michigan State University Extension - May 11, 2012

Updated from an original article written by [email protected]..

share this on facebook

Parents and caregivers can ensure their children's success by teaching and modeling effective problem-solving at home.

Children learn how to problem-solve by seeing and listening to how adults resolve conflict. Photo credit: Pixabay.

Helping your child learn how to problem solve is a critical skill for school readiness. Parents and caregivers are a child’s first and most important teacher; therefore, modeling good problem solving skills is very important. Children learn by watching parents and caregivers handle different situations and solve problems. If a parent handles problems by yelling, throwing things, hitting, grabbing or using other unacceptable strategies, a child will learn to do the same thing.

Often, adults will prevent their children from seeing all conflicts or disagreements. Remember, it is important for children to see adults negotiate differences, compromise and resolve conflicts. Learning to negotiate differences in a constructive way and allowing children to see how this is done is very effective and important. If parent and caregivers handle these situations privately, there is no example for the child/children to learn from.

Children can learn how to be assertive verbally as a result of seeing and listening to how adults resolve conflict. Another simple way a child can learn how to be assertive verbally is by role-playing with puppets and through pretend play with an adult. When using these techniques, it is important to help your child think of constructive ways to respond to different situations. By using puppets and role-play, your child can also learn about how others may feel in specific situations. When using these techniques, it is important not to criticize or label the child for past misbehavior.

There are some basic steps to problem solving from Incredible Years :

  • Identify the problem.
  • List the possible solutions or courses of action.
  • Weigh the possible solutions.
  • Choose a solution to try.
  • Put the solution into practice.
  • Evaluate the solution.

Using effective problem solving techniques will help children avoid conflict with others in a school setting and in their everyday lives. It will also strengthen children’s beginning empathy skills and help them learn more positive attributions about another person’s intentions. Effective problem solving skills is essential for academic and social success.

For more articles on child development, academic success, parenting and life skill development, please visit the Michigan State University Extension website.

This article was published by Michigan State University Extension . For more information, visit https://extension.msu.edu . To have a digest of information delivered straight to your email inbox, visit https://extension.msu.edu/newsletters . To contact an expert in your area, visit https://extension.msu.edu/experts , or call 888-MSUE4MI (888-678-3464).

Did you find this article useful?

Find your spark with image of 4-H clover.

Ready to grow with 4-H? Sign up today!

new - method size: 3 - Random key: 0, method: tagSpecific - key: 0

You Might Also Be Interested In

why is it important to teach problem solving skills

MI Community Minutes: Strengthening Irontown with Negaunee City Manager Nate Heffron

Published on March 1, 2022

why is it important to teach problem solving skills

MSU Soil Testing Update

Published on May 15, 2023

why is it important to teach problem solving skills

ac3-podcast-episode-6

Published on February 28, 2022

The Scoop on the Poop Power Up

Published on March 1, 2020

The Progression of Bt Resistance

Published on December 13, 2019

MIFruitcast: Michigan Fruit Economics with Chris Bardenhagen

Published on January 18, 2024

  • child & family development
  • early childhood development
  • msu extension
  • social and emotional development
  • child & family development,
  • early childhood development,
  • msu extension,

What is problem solving and why is it important

why is it important to teach problem solving skills

By Wayne Stottler , Kepner-Tregoe

  • Problem Solving & Decision Making Over time, developing and refining problem solving skills provides the ability to solve increasingly complex problems Learn More

For over 60 years, Kepner-Tregoe has been helping companies across industries and geographies to develop and mature their problem-solving capabilities through KT’s industry leading approach to training and the implementation of best practice processes. Considering that problem solving is a part of almost every person’s daily life (both at home and in the workplace), it is surprising how often we are asked to explain what problem solving is and why it is important.

Problem solving is at the core of human evolution. It is the methods we use to understand what is happening in our environment, identify things we want to change and then figure out the things that need to be done to create the desired outcome. Problem solving is the source of all new inventions, social and cultural evolution, and the basis for market based economies. It is the basis for continuous improvement, communication and learning.

If this problem-solving thing is so important to daily life, what is it?

Problem-solving is the process of observing what is going on in your environment; identifying things that could be changed or improved; diagnosing why the current state is the way it is and the factors and forces that influence it; developing approaches and alternatives to influence change; making decisions about which alternative to select; taking action to implement the changes; and observing impact of those actions in the environment.

Each step in the problem-solving process employs skills and methods that contribute to the overall effectiveness of influencing change and determine the level of problem complexity that can be addressed. Humans learn how to solve simple problems from a very early age (learning to eat, make coordinated movements and communicate) – and as a person goes through life problem-solving skills are refined, matured and become more sophisticated (enabling them to solve more difficult problems).

Problem-solving is important both to individuals and organizations because it enables us to exert control over our environment.

Fixing things that are broken

Some things wear out and break over time, others are flawed from day-1. Personal and business environments are full of things, activities, interactions and processes that are broken or not operating in the way they are desired to work. Problem-solving gives us a mechanism for identifying these things, figuring out why they are broken and determining a course of action to fix them.

Addressing risk

Humans have learned to identify trends and developed an awareness of cause-and-effect relationships in their environment. These skills not only enable us to fix things when they break but also anticipate what may happen in the future (based on past-experience and current events). Problem-solving can be applied to the anticipated future events and used to enable action in the present to influence the likelihood of the event occurring and/or alter the impact if the event does occur.

Improving performance

Individuals and organizations do not exist in isolation in the environment. There is a complex and ever-changing web of relationships that exist and as a result, the actions of one person will often have either a direct impact on others or an indirect impact by changing the environment dynamics. These interdependencies enable humans to work together to solve more complex problems but they also create a force that requires everyone to continuously improve performance to adapt to improvements by others. Problem-solving helps us understand relationships and implement the changes and improvements needed to compete and survive in a continually changing environment.

Seizing opportunity

Problem solving isn’t just about responding to (and fixing) the environment that exists today. It is also about innovating, creating new things and changing the environment to be more desirable. Problem-solving enables us to identify and exploit opportunities in the environment and exert (some level of) control over the future.

Problem solving skills and the problem-solving process are a critical part of daily life both as individuals and organizations. Developing and refining these skills through training, practice and learning can provide the ability to solve problems more effectively and over time address problems with a greater degree of complexity and difficulty. View KT’s Problem Solving workshop known to be the gold standard for over 60 years.

Blog Image 1

We are experts in:

For inquiries, details, or a proposal!

Subscribe to the KT Newsletter

The teacher's logo for schools and students.

The Will to Teach

Critical Thinking in the Classroom: A Guide for Teachers

In the ever-evolving landscape of education, teaching students the skill of critical thinking has become a priority. This powerful tool empowers students to evaluate information, make reasoned judgments, and approach problems from a fresh perspective. In this article, we’ll explore the significance of critical thinking and provide effective strategies to nurture this skill in your students.

Why is Fostering Critical Thinking Important?

Strategies to cultivate critical thinking, real-world example, concluding thoughts.

Critical thinking is a key skill that goes far beyond the four walls of a classroom. It equips students to better understand and interact with the world around them. Here are some reasons why fostering critical thinking is important:

  • Making Informed Decisions:  Critical thinking enables students to evaluate the pros and cons of a situation, helping them make informed and rational decisions.
  • Developing Analytical Skills:  Critical thinking involves analyzing information from different angles, which enhances analytical skills.
  • Promoting Independence:  Critical thinking fosters independence by encouraging students to form their own opinions based on their analysis, rather than relying on others.

why is it important to teach problem solving skills

Creating an environment that encourages critical thinking can be accomplished in various ways. Here are some effective strategies:

  • Socratic Questioning:  This method involves asking thought-provoking questions that encourage students to think deeply about a topic. For example, instead of asking, “What is the capital of France?” you might ask, “Why do you think Paris became the capital of France?”
  • Debates and Discussions:  Debates and open-ended discussions allow students to explore different viewpoints and challenge their own beliefs. For example, a debate on a current event can engage students in critical analysis of the situation.
  • Teaching Metacognition:  Teaching students to think about their own thinking can enhance their critical thinking skills. This can be achieved through activities such as reflective writing or journaling.
  • Problem-Solving Activities:  As with developing problem-solving skills , activities that require students to find solutions to complex problems can also foster critical thinking.

As a school leader, I’ve seen the transformative power of critical thinking. During a school competition, I observed a team of students tasked with proposing a solution to reduce our school’s environmental impact. Instead of jumping to obvious solutions, they critically evaluated multiple options, considering the feasibility, cost, and potential impact of each. They ultimately proposed a comprehensive plan that involved water conservation, waste reduction, and energy efficiency measures. This demonstrated their ability to critically analyze a problem and develop an effective solution.

Critical thinking is an essential skill for students in the 21st century. It equips them to understand and navigate the world in a thoughtful and informed manner. As a teacher, incorporating strategies to foster critical thinking in your classroom can make a lasting impact on your students’ educational journey and life beyond school.

1. What is critical thinking? Critical thinking is the ability to analyze information objectively and make a reasoned judgment.

2. Why is critical thinking important for students? Critical thinking helps students make informed decisions, develop analytical skills, and promotes independence.

3. What are some strategies to cultivate critical thinking in students? Strategies can include Socratic questioning, debates and discussions, teaching metacognition, and problem-solving activities.

4. How can I assess my students’ critical thinking skills? You can assess critical thinking skills through essays, presentations, discussions, and problem-solving tasks that require thoughtful analysis.

5. Can critical thinking be taught? Yes, critical thinking can be taught and nurtured through specific teaching strategies and a supportive learning environment.

' src=

Related Posts

7 simple strategies for strong student-teacher relationships.

Getting to know your students on a personal level is the first step towards building strong relationships. Show genuine interest in their lives outside the classroom.

Students observing a teacher in a classroom.

Connecting Learning to Real-World Contexts: Strategies for Teachers

When students see the relevance of their classroom lessons to their everyday lives, they are more likely to be motivated, engaged, and retain information.

A young girl is using a tablet computer for school.

Encouraging Active Involvement in Learning: Strategies for Teachers

Active learning benefits students by improving retention of information, enhancing critical thinking skills, and encouraging a deeper understanding of the subject matter.

Students raising their hands in a classroom.

Collaborative and Cooperative Learning: A Guide for Teachers

These methods encourage students to work together, share ideas, and actively participate in their education.

A group of students are doing a science experiment in school, guided by their teacher.

Experiential Teaching: Role-Play and Simulations in Teaching

These interactive techniques allow students to immerse themselves in practical, real-world scenarios, thereby deepening their understanding and retention of key concepts.

In a school classroom, a teacher engages with her students while delivering a lesson.

Project-Based Learning Activities: A Guide for Teachers

Project-Based Learning is a student-centered pedagogy that involves a dynamic approach to teaching, where students explore real-world problems or challenges.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

The Importance of Problem Solving and How to Teach it to Kids

building problem solving skills in children

FamilyEducation Editorial Staff

familyeducation logo

Teach your kids to be brilliant problem solvers so they can shine.

We get so lost as parents with all the demands to do more for our children—get better grades, excel at extracurricular activities, have good relationships—that we may be overlooking one of the essential skills they need: problem-solving.

More: A Parent’s Guide to Conscious Discipline

In a Harvard Business Review study about the skills that influence a leader's success, problem-solving ranked third out of 16.

Whether you want your child to get into an Ivy League school, have great relationships, or to be able to take care of the thousands of frustrating tasks that come with adulting, don't miss this significant super-power that helps them succeed.

Our kids face challenges daily when it comes to navigating sibling conflict, a tough math question, or negative peer pressure. Our job as parents or teachers is not to solve everything for them —it is to teach them how to solve things themselves. Using their brains in this way is the crucial ability needed to become confident, smart, and successful individuals.

And the bonus for you is this: instead of giving up or getting frustrated when they encounter a challenge, kids with problem-solving skills manage their emotions, think creatively and learn persistence.

With my children (I have eight), they often pushed back on me for turning the situation back on them to solve, but with some gentle nudging, the application of many tools, and some intriguing conversations, my kids are unbeatable.

Here are some of the best, research-based practices to help your child learn problem-solving so they can build smarter brains and shine in the world:

Don’t have time to read now? Pin it for later:

why is it important to teach problem solving skills

1. Model Effective Problem-Solving

Mother and daughter talking together solving problem

When you encounter a challenge, think out loud about your mental processes to solve difficulties. Showing your children how you address issues can be done numerous times a day with the tangible and intangible obstacles we all face.

2. Ask for Advice

son asking father for advice

Ask your kids for advice when you are struggling with something. Your authenticity teaches them that it's common to make mistakes and face challenges.

When you let them know that their ideas are valued, they'll gain the confidence to attempt solving problems on their own.

3. Don't Provide The Answer—Ask More Questions

mother and young child talk together

By not providing a solution, you are helping them to strengthen their mental muscles to come up with their ideas.

At the same time, the task may be too big for them to cognitively understand. Break it down into small steps, and either offer multiple solutions from which they can choose, or ask them leading questions that help them reach the answers themselves.

4. Be Open-Minded

dad and son bonding on a beautiful day

This particular point is critical in building healthy relationships. Reliable partners can hold their values and opinions while also seeing the other's perspective. And then integrate disparate views into a solution.

Teach them to continually ask, "What is left out of my understanding here?"

High-performing teams in business strive for diversity—new points of view and fresh perspectives to allow for more creative solutions. Children need to be able to assess a problem outside of immediate, apparent details, and be open to taking risks to find a better, more innovative approach. Be willing to take on a new perspective.

5. Go Out and Play

millennial family with young children outside

It may seem counter-intuitive, but problems get solved during play according to research.

See why independent play is vital for raising empowered children here .

Have you ever banged around an idea in your head with no solution? If so, it's time to get out of your mind and out to play.

Tech companies understand this strategy (I know, I worked at one), by supplying refreshing snacks and ping pong tables and napping pods. And while they have deadlines to meet, they don't micromanage the thinking of their employees.

Offer many activities that will take your child’s mind off of the problem so they can refuel and approach things from a fresh perspective.

Let them see you fail, learn, and try again. Show your child a willingness to make mistakes. When they are solving something, as tricky as it may be, allow your child to struggle, sometimes fail and ultimately learn from experiencing consequences.

Problems are a part of life. They grow us to reach our highest potential. Every problem is there not to make your child miserable, but to lead them closer to their dreams.

Tami Green, America’s most respected life coach, has received magical endorsements by experts from Baylor University and the past president of the American Psychiatric Association. She received her coaching certification from Oprah's enchanting life coach, Dr. Martha Beck. She is a brilliant coach who has helped thousands achieve an exhilarated life through her coaching, classes, and conferences. To see more tips like these, visit her website and join her self-help community here .

familyeducation logo

About FamilyEducation's Editorial Team

Join the family.

Your partner in parenting from baby name inspiration to college planning.

  • Our Mission

Helping Students Hone Their Critical Thinking Skills

Used consistently, these strategies can help middle and high school teachers guide students to improve much-needed skills.

Middle school students involved in a classroom discussion

Critical thinking skills are important in every discipline, at and beyond school. From managing money to choosing which candidates to vote for in elections to making difficult career choices, students need to be prepared to take in, synthesize, and act on new information in a world that is constantly changing.

While critical thinking might seem like an abstract idea that is tough to directly instruct, there are many engaging ways to help students strengthen these skills through active learning.

Make Time for Metacognitive Reflection

Create space for students to both reflect on their ideas and discuss the power of doing so. Show students how they can push back on their own thinking to analyze and question their assumptions. Students might ask themselves, “Why is this the best answer? What information supports my answer? What might someone with a counterargument say?”

Through this reflection, students and teachers (who can model reflecting on their own thinking) gain deeper understandings of their ideas and do a better job articulating their beliefs. In a world that is go-go-go, it is important to help students understand that it is OK to take a breath and think about their ideas before putting them out into the world. And taking time for reflection helps us more thoughtfully consider others’ ideas, too.

Teach Reasoning Skills 

Reasoning skills are another key component of critical thinking, involving the abilities to think logically, evaluate evidence, identify assumptions, and analyze arguments. Students who learn how to use reasoning skills will be better equipped to make informed decisions, form and defend opinions, and solve problems. 

One way to teach reasoning is to use problem-solving activities that require students to apply their skills to practical contexts. For example, give students a real problem to solve, and ask them to use reasoning skills to develop a solution. They can then present their solution and defend their reasoning to the class and engage in discussion about whether and how their thinking changed when listening to peers’ perspectives. 

A great example I have seen involved students identifying an underutilized part of their school and creating a presentation about one way to redesign it. This project allowed students to feel a sense of connection to the problem and come up with creative solutions that could help others at school. For more examples, you might visit PBS’s Design Squad , a resource that brings to life real-world problem-solving.

Ask Open-Ended Questions 

Moving beyond the repetition of facts, critical thinking requires students to take positions and explain their beliefs through research, evidence, and explanations of credibility. 

When we pose open-ended questions, we create space for classroom discourse inclusive of diverse, perhaps opposing, ideas—grounds for rich exchanges that support deep thinking and analysis. 

For example, “How would you approach the problem?” and “Where might you look to find resources to address this issue?” are two open-ended questions that position students to think less about the “right” answer and more about the variety of solutions that might already exist. 

Journaling, whether digitally or physically in a notebook, is another great way to have students answer these open-ended prompts—giving them time to think and organize their thoughts before contributing to a conversation, which can ensure that more voices are heard. 

Once students process in their journal, small group or whole class conversations help bring their ideas to life. Discovering similarities between answers helps reveal to students that they are not alone, which can encourage future participation in constructive civil discourse.

Teach Information Literacy 

Education has moved far past the idea of “Be careful of what is on Wikipedia, because it might not be true.” With AI innovations making their way into classrooms, teachers know that informed readers must question everything. 

Understanding what is and is not a reliable source and knowing how to vet information are important skills for students to build and utilize when making informed decisions. You might start by introducing the idea of bias: Articles, ads, memes, videos, and every other form of media can push an agenda that students may not see on the surface. Discuss credibility, subjectivity, and objectivity, and look at examples and nonexamples of trusted information to prepare students to be well-informed members of a democracy.

One of my favorite lessons is about the Pacific Northwest tree octopus . This project asks students to explore what appears to be a very real website that provides information on this supposedly endangered animal. It is a wonderful, albeit over-the-top, example of how something might look official even when untrue, revealing that we need critical thinking to break down “facts” and determine the validity of the information we consume. 

A fun extension is to have students come up with their own website or newsletter about something going on in school that is untrue. Perhaps a change in dress code that requires everyone to wear their clothes inside out or a change to the lunch menu that will require students to eat brussels sprouts every day. 

Giving students the ability to create their own falsified information can help them better identify it in other contexts. Understanding that information can be “too good to be true” can help them identify future falsehoods. 

Provide Diverse Perspectives 

Consider how to keep the classroom from becoming an echo chamber. If students come from the same community, they may have similar perspectives. And those who have differing perspectives may not feel comfortable sharing them in the face of an opposing majority. 

To support varying viewpoints, bring diverse voices into the classroom as much as possible, especially when discussing current events. Use primary sources: videos from YouTube, essays and articles written by people who experienced current events firsthand, documentaries that dive deeply into topics that require some nuance, and any other resources that provide a varied look at topics. 

I like to use the Smithsonian “OurStory” page , which shares a wide variety of stories from people in the United States. The page on Japanese American internment camps is very powerful because of its first-person perspectives. 

Practice Makes Perfect 

To make the above strategies and thinking routines a consistent part of your classroom, spread them out—and build upon them—over the course of the school year. You might challenge students with information and/or examples that require them to use their critical thinking skills; work these skills explicitly into lessons, projects, rubrics, and self-assessments; or have students practice identifying misinformation or unsupported arguments.

Critical thinking is not learned in isolation. It needs to be explored in English language arts, social studies, science, physical education, math. Every discipline requires students to take a careful look at something and find the best solution. Often, these skills are taken for granted, viewed as a by-product of a good education, but true critical thinking doesn’t just happen. It requires consistency and commitment.

In a moment when information and misinformation abound, and students must parse reams of information, it is imperative that we support and model critical thinking in the classroom to support the development of well-informed citizens.

COMMENTS

  1. Why Every Educator Needs to Teach Problem-Solving Skills

    Resolve Conflicts. In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes "thinking outside the box" and approaching a conflict by searching for different solutions.

  2. Why Teaching Problem-Solving Skills is Important

    Teaching the art of problem-solving is crucial for preparing students to thrive in an increasingly complex and interconnected world. Beyond the ability to find solutions, problem-solving fosters critical thinking, creativity, and resilience: qualities essential for academic success and lifelong learning. This article explores the importance of ...

  3. Why is problem solving important?

    Problem solving promotes critical and creative thinking. The process students use in Future Problem Solving alternates between creative/divergent thinking to generate ideas and critical/convergent thinking to focus and analyze those ideas and to make decisions about them. Creative thinking is important because it broadens our perspective by ...

  4. Teaching problem solving: Let students get 'stuck' and 'unstuck'

    Teaching problem solving: Let students get 'stuck' and 'unstuck'. This is the second in a six-part blog series on teaching 21st century skills, including problem solving, metacognition ...

  5. Teaching Problem Solving

    Make students articulate their problem solving process. In a one-on-one tutoring session, ask the student to work his/her problem out loud. This slows down the thinking process, making it more accurate and allowing you to access understanding. When working with larger groups you can ask students to provide a written "two-column solution.".

  6. Problem-Solving in Elementary School

    Reading and Social Problem-Solving. Moss Elementary classrooms use a specific process to develop problem-solving skills focused on tending to social and interpersonal relationships. The process also concentrates on building reading skills—specifically, decoding and comprehension. Stop, Look, and Think. Students define the problem.

  7. Teaching Problem-Solving Skills

    Teach within a specific context. Teach problem-solving skills in the context in which they will be used by students (e.g., mole fraction calculations in a chemistry course). Use real-life problems in explanations, examples, and exams. Do not teach problem solving as an independent, abstract skill. Help students understand the problem. In order ...

  8. Problem Solving in STEM

    Problem Solving in STEM. Solving problems is a key component of many science, math, and engineering classes. If a goal of a class is for students to emerge with the ability to solve new kinds of problems or to use new problem-solving techniques, then students need numerous opportunities to develop the skills necessary to approach and answer ...

  9. 4 Strategies to Build Your Students' Problem Solving Skills

    Here are a few effective strategies: Project-Based Learning: Projects that require planning, execution, and evaluation naturally involve problem-solving. For example, a project where students need to build a model bridge within a budget encourages them to solve logistical and financial problems. Group Work: Group work allows students to face ...

  10. Building Students' Problem-Solving Skills

    Our approach includes cooperative games and design challenges as well as good-to-know and problem jars. Each part is designed to allow our students to encounter consistent developmentally appropriate and varying types of conflict in order to build problem-solving skills. Throughout each activity, students are put in a variety of mixed groupings ...

  11. Benefits of Problem-Solving in the K-12 Classroom

    Even beyond the classroom, problem-solving is ranked among the most important skills for students to demonstrate on their resumes, with 82.9% of employers considering it a highly valued attribute. On an even broader scale, students who learn how to apply their problem-solving skills to the issues they notice in their communities - or even ...

  12. Don't Just Tell Students to Solve Problems. Teach Them How

    The UC San Diego problem-solving curriculum, Mjahed noted, is an opportunity for students to build the skills and the confidence to learn from their failures and to work outside their comfort zone. "And from there, they see pathways to real careers," he said. Jennifer Ogo, a teacher from Kearny High School, taught the problem-solving course ...

  13. How to Teach Problem Solving Skills in Elementary School

    Here are some of the strategies that I suggest teaching students right away. Stop and Think. Stop and think is one of the problem solving strategies that can be used in a variety of situations. It works very well when students are struggling with a problem independently. For example, when they can't find the necessary resources or supplies to ...

  14. PDF Problem solving: How can we help students overcome cognitive ...

    1 INTRODUCTION. An important and qualifying hallmark of teaching science is the ability to promote problem solving and critcal thinking skills. It is critcal that future citzens have skills in problem-solving to address the range of needs in their life and careers. Problem-solving is an important higher-order cognitve skill.

  15. Problem Solving: How to Teach Young Children

    Here are four strategies for teaching problem-solving skills to children: Set a good example. Children learn by watching us; let them see how you deal with problems. Involve your child in family problem-solving meetings. Encourage your child to participate in solving a small family problem. They'll learn while building confidence. Teach your ...

  16. Problem-solving skills are an important factor in academic success

    Evaluate the solution. Using effective problem solving techniques will help children avoid conflict with others in a school setting and in their everyday lives. It will also strengthen children's beginning empathy skills and help them learn more positive attributions about another person's intentions. Effective problem solving skills is ...

  17. What is problem solving and why is it important

    Problem-solving enables us to identify and exploit opportunities in the environment and exert (some level of) control over the future. Problem solving skills and the problem-solving process are a critical part of daily life both as individuals and organizations. Developing and refining these skills through training, practice and learning can ...

  18. How to create rich and relevant learning contexts for problem-based

    Teachers also found that rich and relevant contexts provided opportunities to progressively develop student decision making skills. For some teachers, starting students with a directed approach and then moving to opportunities where they could exercise greater decision making options, was often necessary to enable students to become more familiar and comfortable with taking risks and dealing ...

  19. PDF teaching critical thinking and Problem solving skills

    of schooling: basic academic skills, critical thinking and problem solving, social skills and work ethic, citizenship, physical health, emotional health, the Dr. Lisa Gueldenzoph Snyder is an associate professor of Business Education in the School of Business and Economics at North Carolina A&T State University in Greensboro, NC.

  20. 6 Tips for Teaching Math Problem-Solving Skills

    1. Link problem-solving to reading. When we can remind students that they already have many comprehension skills and strategies they can easily use in math problem-solving, it can ease the anxiety surrounding the math problem. For example, providing them with strategies to practice, such as visualizing, acting out the problem with math tools ...

  21. Problem Solving

    Brief. Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education of K-12 students. However, knowing how to incorporate problem solving meaningfully into the mathematics curriculum is not necessarily obvious to mathematics teachers. (The term "problem solving" refers to mathematical ...

  22. Critical Thinking in the Classroom: A Guide for Teachers

    Critical thinking is a key skill that goes far beyond the four walls of a classroom. It equips students to better understand and interact with the world around them. Here are some reasons why fostering critical thinking is important: Making Informed Decisions: Critical thinking enables students to evaluate the pros and cons of a situation ...

  23. The Importance of Problem Solving and How to Teach it to Kids

    1. Model Effective Problem-Solving. When you encounter a challenge, think out loud about your mental processes to solve difficulties. Showing your children how you address issues can be done numerous times a day with the tangible and intangible obstacles we all face. 2.

  24. Teaching Critical Thinking Skills in Middle and High School

    Teach Reasoning Skills. Reasoning skills are another key component of critical thinking, involving the abilities to think logically, evaluate evidence, identify assumptions, and analyze arguments. Students who learn how to use reasoning skills will be better equipped to make informed decisions, form and defend opinions, and solve problems.