• Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

55 Brilliant Research Topics For STEM Students

Research Topics For STEM Students

Primarily, STEM is an acronym for Science, Technology, Engineering, and Mathematics. It’s a study program that weaves all four disciplines for cross-disciplinary knowledge to solve scientific problems. STEM touches across a broad array of subjects as STEM students are required to gain mastery of four disciplines.

As a project-based discipline, STEM has different stages of learning. The program operates like other disciplines, and as such, STEM students embrace knowledge depending on their level. Since it’s a discipline centered around innovation, students undertake projects regularly. As a STEM student, your project could either be to build or write on a subject. Your first plan of action is choosing a topic if it’s written. After selecting a topic, you’ll need to determine how long a thesis statement should be .

Given that topic is essential to writing any project, this article focuses on research topics for STEM students. So, if you’re writing a STEM research paper or write my research paper , below are some of the best research topics for STEM students.

List of Research Topics For STEM Students

Quantitative research topics for stem students, qualitative research topics for stem students, what are the best experimental research topics for stem students, non-experimental research topics for stem students, capstone research topics for stem students, correlational research topics for stem students, scientific research topics for stem students, simple research topics for stem students, top 10 research topics for stem students, experimental research topics for stem students about plants, research topics for grade 11 stem students, research topics for grade 12 stem students, quantitative research topics for stem high school students, survey research topics for stem students, interesting and informative research topics for senior high school stem students.

Several research topics can be formulated in this field. They cut across STEM science, engineering, technology, and math. Here is a list of good research topics for STEM students.

  • The effectiveness of online learning over physical learning
  • The rise of metabolic diseases and their relationship to increased consumption
  • How immunotherapy can improve prognosis in Covid-19 progression

For your quantitative research in STEM, you’ll need to learn how to cite a thesis MLA for the topic you’re choosing. Below are some of the best quantitative research topics for STEM students.

  • A study of the effect of digital technology on millennials
  • A futuristic study of a world ruled by robotics
  • A critical evaluation of the future demand in artificial intelligence

There are several practical research topics for STEM students. However, if you’re looking for qualitative research topics for STEM students, here are topics to explore.

  • An exploration into how microbial factories result in the cause shortage in raw metals
  • An experimental study on the possibility of older-aged men passing genetic abnormalities to children
  • A critical evaluation of how genetics could be used to help humans live healthier and longer.
Experimental research in STEM is a scientific research methodology that uses two sets of variables. They are dependent and independent variables that are studied under experimental research. Experimental research topics in STEM look into areas of science that use data to derive results.

Below are easy experimental research topics for STEM students.

  • A study of nuclear fusion and fission
  • An evaluation of the major drawbacks of Biotechnology in the pharmaceutical industry
  • A study of single-cell organisms and how they’re capable of becoming an intermediary host for diseases causing bacteria

Unlike experimental research, non-experimental research lacks the interference of an independent variable. Non-experimental research instead measures variables as they naturally occur. Below are some non-experimental quantitative research topics for STEM students.

  • Impacts of alcohol addiction on the psychological life of humans
  • The popularity of depression and schizophrenia amongst the pediatric population
  • The impact of breastfeeding on the child’s health and development

STEM learning and knowledge grow in stages. The older students get, the more stringent requirements are for their STEM research topic. There are several capstone topics for research for STEM students .

Below are some simple quantitative research topics for stem students.

  • How population impacts energy-saving strategies
  • The application of an Excel table processor capabilities for cost calculation
  •  A study of the essence of science as a sphere of human activity

Correlations research is research where the researcher measures two continuous variables. This is done with little or no attempt to control extraneous variables but to assess the relationship. Here are some sample research topics for STEM students to look into bearing in mind how to cite a thesis APA style for your project.

  • Can pancreatic gland transplantation cure diabetes?
  • A study of improved living conditions and obesity
  • An evaluation of the digital currency as a valid form of payment and its impact on banking and economy

There are several science research topics for STEM students. Below are some possible quantitative research topics for STEM students.

  • A study of protease inhibitor and how it operates
  • A study of how men’s exercise impacts DNA traits passed to children
  • A study of the future of commercial space flight

If you’re looking for a simple research topic, below are easy research topics for STEM students.

  • How can the problem of Space junk be solved?
  • Can meteorites change our view of the universe?
  • Can private space flight companies change the future of space exploration?

For your top 10 research topics for STEM students, here are interesting topics for STEM students to consider.

  • A comparative study of social media addiction and adverse depression
  • The human effect of the illegal use of formalin in milk and food preservation
  • An evaluation of the human impact on the biosphere and its results
  • A study of how fungus affects plant growth
  • A comparative study of antiviral drugs and vaccine
  • A study of the ways technology has improved medicine and life science
  • The effectiveness of Vitamin D among older adults for disease prevention
  • What is the possibility of life on other planets?
  • Effects of Hubble Space Telescope on the universe
  • A study of important trends in medicinal chemistry research

Below are possible research topics for STEM students about plants:

  • How do magnetic fields impact plant growth?
  • Do the different colors of light impact the rate of photosynthesis?
  • How can fertilizer extend plant life during a drought?

Below are some examples of quantitative research topics for STEM students in grade 11.

  • A study of how plants conduct electricity
  • How does water salinity affect plant growth?
  • A study of soil pH levels on plants

Here are some of the best qualitative research topics for STEM students in grade 12.

  • An evaluation of artificial gravity and how it impacts seed germination
  • An exploration of the steps taken to develop the Covid-19 vaccine
  • Personalized medicine and the wave of the future

Here are topics to consider for your STEM-related research topics for high school students.

  • A study of stem cell treatment
  • How can molecular biological research of rare genetic disorders help understand cancer?
  • How Covid-19 affects people with digestive problems

Below are some survey topics for qualitative research for stem students.

  • How does Covid-19 impact immune-compromised people?
  • Soil temperature and how it affects root growth
  • Burned soil and how it affects seed germination

Here are some descriptive research topics for STEM students in senior high.

  • The scientific information concept and its role in conducting scientific research
  • The role of mathematical statistics in scientific research
  • A study of the natural resources contained in oceans

Final Words About Research Topics For STEM Students

STEM topics cover areas in various scientific fields, mathematics, engineering, and technology. While it can be tasking, reducing the task starts with choosing a favorable topic. If you require external assistance in writing your STEM research, you can seek professional help from our experts.

Leave a Reply Cancel reply

Studmentors-logo

161+ Exciting Qualitative Research Topics For STEM Students

161+ Exciting Qualitative Research Topics For STEM Students

Are you doing Qualitative research? Looking for the best qualitative research topics for stem students? It is a most interesting and good field for research. Qualitative research allows STEM (Science, Technology, Engineering, and Mathematics) students to delve deeper into complex issues, explore human behavior, and understand the intricacies of the world around them.

In this article, we’ll provide you with an extensive list of 161+ qualitative research topics tailored to STEM students. We’ll also explore how to find and choose good qualitative research topics, and why these topics are particularly beneficial for students, including those in high school.

Also Like To Read: 171+ Brilliant Quantitative Research Topics For STEM Students

Table of Contents

What Are Qualitative Research Topics for STEM Students

Qualitative research topics for stem students are questions or issues that necessitate an in-depth exploration of people’s experiences, beliefs, and behaviors. STEM students can use this approach to investigate societal impacts, ethical dilemmas, and user experiences related to scientific advancements and innovations.

Unlike quantitative research, which focuses on numerical data and statistical analysis, qualitative research delves into the ‘whys’ and ‘hows’ of a particular phenomenon.

How to Find and Choose Good Qualitative Research Topics

Selecting qualitative research topics for stem students is a crucial step in the research process. Here are some tips to help you find and choose a suitable topic:

How to Find and Choose Good Qualitative Research Topics

  • Passion and Interest: Start by considering your personal interests and passions. What topics within STEM excite you? Research becomes more engaging when you’re genuinely interested in the subject.
  • Relevance: Choose qualitative research topics for stem students. Look for gaps in the existing knowledge or unanswered questions.
  • Literature Review: Conduct a thorough literature review to identify the latest trends and areas where qualitative research is lacking. This can guide you in selecting a topic that contributes to the field.
  • Feasibility: Ensure that your chosen topic is feasible within the resources and time constraints available to you. Some research topics may require extensive resources and funding.
  • Ethical Considerations: Be aware of ethical concerns related to your qualitative research topics for stem students, especially when dealing with human subjects or sensitive issues.

Here are the most exciting and very interesting Qualitative Research Topics For STEM Students, high school students, nursing students, college students, etc.

Biology Qualitative Research Topics

  • Impact of Ecosystem Restoration on Biodiversity
  • Ethical Considerations in Human Gene Editing
  • Public Perceptions of Biotechnology in Agriculture
  • Coping Mechanisms and Stress Responses in Marine Biologists
  • Cultural Perspectives on Traditional Herbal Medicine
  • Community Attitudes Toward Wildlife Conservation Efforts
  • Ethical Issues in Animal Testing and Research
  • Indigenous Knowledge and Ethnobotany
  • Psychological Well-being of Conservation Biologists
  • Attitudes Toward Endangered Species Protection

Chemistry Qualitative Research Topics For STEM Students

  • Adoption of Green Chemistry Practices in the Pharmaceutical Industry
  • Public Perception of Chemical Safety in Household Products
  • Strategies for Improving Chemistry Education
  • Art Conservation and Chemical Analysis
  • Consumer Attitudes Toward Organic Chemistry in Everyday Life
  • Ethical Considerations in Chemical Waste Disposal
  • The Role of Chemistry in Sustainable Agriculture
  • Perceptions of Nanomaterials and Their Applications
  • Chemistry-Related Career Aspirations in High School Students
  • Cultural Beliefs and Traditional Chemical Practices

Physics Qualitative Research Topics

  • Gender Bias in Physics Education and Career Progression
  • Philosophical Implications of Quantum Mechanics
  • Public Understanding of Renewable Energy Technologies
  • Influence of Science Fiction on Scientific Research
  • Perceptions of Dark Matter and Dark Energy in the Universe
  • Student Experiences in High School Physics Classes
  • Physics Outreach Programs and Their Impact on Communities
  • Cultural Variations in the Perception of Time and Space
  • Role of Physics in Environmental Conservation
  • Public Engagement with Science Through Astronomy Events

Engineering Qualitative Research Topics For STEM Students

  • Ethics in Artificial Intelligence and Robotics
  • Human-Centered Design in Engineering
  • Innovation and Sustainability in Civil Engineering
  • Public Perception of Self-Driving Cars
  • Engineering Solutions for Climate Change Mitigation
  • Experiences of Women in Male-Dominated Engineering Fields
  • Role of Engineers in Disaster Response and Recovery
  • Ethical Considerations in Technology Patents
  • Perceptions of Engineering Education and Career Prospects
  • Students Views on the Role of Engineers in Society

Computer Science Qualitative Research Topics

  • Gender Diversity in Tech Companies
  • Ethical Implications of AI-Powered Decision-Making
  • User Experience and Interface Design
  • Cybersecurity Awareness and Behaviors
  • Digital Privacy Concerns and Practices
  • Social Media Use and Mental Health in College Students
  • Gaming Culture and its Impact on Social Interactions
  • Student Attitudes Toward Coding and Programming
  • Online Learning Platforms and Student Satisfaction
  • Perceptions of Artificial Intelligence in Everyday Life

Mathematics Qualitative Research Topics For STEM Students

  • Gender Stereotypes in Mathematics Education
  • Cultural Variations in Problem-Solving Approaches
  • Perception of Math in Everyday Life
  • Math Anxiety and Coping Mechanisms
  • Historical Development of Mathematical Concepts
  • Attitudes Toward Mathematics Among Elementary School Students
  • Role of Mathematics in Solving Real-World Problems
  • Homeschooling Approaches to Teaching Mathematics
  • Effectiveness of Math Tutoring Programs
  • Math-Related Stereotypes in Society

Environmental Science Qualitative Research Topics

  • Local Communities’ Responses to Climate Change
  • Public Understanding of Conservation Practices
  • Sustainable Agriculture and Farmer Perspectives
  • Environmental Education and Behavior Change
  • Indigenous Ecological Knowledge and Biodiversity Conservation
  • Conservation Awareness and Behavior of Tourists
  • Climate Change Perceptions Among Youth
  • Perceptions of Water Scarcity and Resource Management
  • Environmental Activism and Youth Engagement
  • Community Responses to Environmental Disasters

Geology and Earth Sciences Qualitative Research Topics For STEM Students

  • Geologists’ Risk Perception and Decision-Making
  • Volcano Hazard Preparedness in At-Risk Communities
  • Public Attitudes Toward Geological Hazards
  • Environmental Consequences of Extractive Industries
  • Perceptions of Geological Time and Deep Earth Processes
  • Use of Geospatial Technology in Environmental Research
  • Role of Geology in Disaster Preparedness and Response
  • Geological Factors Influencing Urban Planning
  • Community Engagement in Geoscience Education
  • Climate Change Communication and Public Understanding

Astronomy and Space Science Qualitative Research Topics

  • The Role of Science Communication in Astronomy Education
  • Perceptions of Space Exploration and Colonization
  • UFO and Extraterrestrial Life Beliefs
  • Public Understanding of Black Holes and Neutron Stars
  • Space Tourism and Future Space Travel
  • Impact of Space Science Outreach Programs on Student Interest
  • Cultural Beliefs and Rituals Related to Celestial Events
  • Space Science in Indigenous Knowledge Systems
  • Public Engagement with Astronomical Phenomena
  • Space Exploration in Science Fiction and Popular Culture

Medicine and Health Sciences Qualitative Research Topics

  • Patient-Physician Communication and Trust
  • Ethical Considerations in Human Cloning and Genetic Modification
  • Public Attitudes Toward Vaccination
  • Coping Strategies for Healthcare Workers in Pandemics
  • Cultural Beliefs and Health Practices
  • Health Disparities Among Underserved Communities
  • Medical Decision-Making and Informed Consent
  • Mental Health Stigma and Help-Seeking Behavior
  • Wellness Practices and Health-Related Beliefs
  • Perceptions of Alternative and Complementary Medicine

Psychology Qualitative Research Topics

  • Perceptions of Body Image in Different Cultures
  • Workplace Stress and Coping Mechanisms
  • LGBTQ+ Youth Experiences and Well-Being
  • Cross-Cultural Differences in Parenting Styles and Outcomes
  • Perceptions of Psychotherapy and Counseling
  • Attitudes Toward Medication for Mental Health Conditions
  • Psychological Well-being of Older Adults
  • Role of Cultural and Social Factors in Psychological Well-being
  • Technology Use and Its Impact on Mental Health

Social Sciences Qualitative Research Topics

  • Political Polarization and Online Echo Chambers
  • Immigration and Acculturation Experiences
  • Educational Inequality and School Policy
  • Youth Engagement in Environmental Activism
  • Identity and Social Media in the Digital Age
  • Social Media and Its Influence on Political Beliefs
  • Family Dynamics and Conflict Resolution
  • Social Support and Coping Strategies in College Students
  • Perceptions of Cyberbullying Among Adolescents
  • Impact of Social Movements on Societal Change

Interesting Sociology Qualitative Research Topics For STEM Students

  • Perceptions of Racial Inequality and Discrimination
  • Aging and Quality of Life in Elderly Populations
  • Gender Roles and Expectations in Relationships
  • Online Communities and Social Support
  • Cultural Practices and Beliefs Related to Marriage
  • Family Dynamics and Coping Mechanisms
  • Perceptions of Community Safety and Policing
  • Attitudes Toward Social Welfare Programs
  • Influence of Media on Perceptions of Social Issues
  • Youth Perspectives on Education and Career Aspirations

Anthropology Qualitative Research Topics

  • Traditional Knowledge and Biodiversity Conservation
  • Cultural Variation in Parenting Practices
  • Indigenous Language Revitalization Efforts
  • Social Impacts of Tourism on Indigenous Communities
  • Rituals and Ceremonies in Different Cultural Contexts
  • Food and Identity in Cultural Practices
  • Traditional Healing and Healthcare Practices
  • Indigenous Rights and Land Conservation
  • Ethnographic Studies of Marginalized Communities
  • Cultural Practices Surrounding Death and Mourning

Economics and Business Qualitative Research Topics

  • Small Business Resilience in Times of Crisis
  • Workplace Diversity and Inclusion
  • Corporate Social Responsibility Perceptions
  • International Trade and Cultural Perceptions
  • Consumer Behavior and Decision-Making in E-Commerce
  • Business Ethics and Ethical Decision-Making
  • Innovation and Entrepreneurship in Startups
  • Perceptions of Economic Inequality and Wealth Distribution
  • Impact of Economic Policies on Communities
  • Role of Economic Education in Financial Literacy

Good Education Qualitative Research Topics For STEM Students

  • Homeschooling Experiences and Outcomes
  • Teacher Burnout and Coping Strategies
  • Inclusive Education and Special Needs Integration
  • Student Perspectives on Online Learning
  • High-Stakes Testing and Its Impact on Students
  • Multilingual Education and Bilingualism
  • Perceptions of Educational Technology in Classrooms
  • School Climate and Student Well-being
  • Teacher-Student Relationships and Their Effects on Learning
  • Cultural Diversity in Education and Inclusion

Environmental Engineering Qualitative Research Topics

  • Sustainable Transportation and Community Preferences
  • Ethical Considerations in Waste Reduction and Recycling
  • Public Attitudes Toward Renewable Energy Projects
  • Environmental Impact Assessment and Community Engagement
  • Sustainable Urban Planning and Neighborhood Perceptions
  • Water Quality and Conservation Practices in Residential Areas
  • Green Building Practices and User Experiences
  • Community Resilience in the Face of Climate Change
  • Role of Environmental Engineers in Disaster Preparedness

Why Qualitative Research Topics Are Good for STEM Students

  • Deeper Understanding: Qualitative research encourages STEM students to explore complex issues from a human perspective. This deepens their understanding of the broader impact of scientific discoveries and technological advancements.
  • Critical Thinking: Qualitative research fosters critical thinking skills by requiring students to analyze and interpret data, consider diverse viewpoints, and draw nuanced conclusions.
  • Real-World Relevance: Many qualitative research topics have real-world applications. Students can address problems, inform policy, and contribute to society by investigating issues that matter.
  • Interdisciplinary Learning: Qualitative research often transcends traditional STEM boundaries, allowing students to draw on insights from psychology, sociology, anthropology, and other fields.
  • Preparation for Future Careers: Qualitative research skills are valuable in various STEM careers, as they enable students to communicate complex ideas and understand the human and social aspects of their work.

Qualitative Research Topics for High School STEM Students

High school STEM students can benefit from qualitative research by honing their critical thinking and problem-solving skills. Here are some qualitative research topics suitable for high school students:

  • Perceptions of STEM Education: Investigate students’ and teachers’ perceptions of STEM education and its effectiveness.
  • Environmental Awareness: Examine the factors influencing high school students’ environmental awareness and eco-friendly behaviors.
  • Digital Learning in the Classroom: Explore the impact of technology on learning experiences and student engagement.
  • STEM Gender Gap: Analyze the reasons behind the gender gap in STEM fields and potential strategies for closing it.
  • Science Communication: Study how high school students perceive and engage with popular science communication channels, like YouTube and podcasts.
  • Impact of Extracurricular STEM Activities: Investigate how participation in STEM clubs and competitions influences students’ interest and performance in science and technology.

In essence, these are the best qualitative research topics for STEM students in the Philippines and are usable for other countries students too. Qualitative research topics offer STEM students a unique opportunity to explore the multifaceted aspects of their fields, develop essential skills, and contribute to meaningful discoveries. With the right topic selection, a strong research design, and ethical considerations, STEM students can easily get the best knowledge on exciting qualitative research that benefits both their career growth. So, choose a topic that resonates with your interests and get best job in your interest field.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

StatAnalytica

200+ Experimental Quantitative Research Topics For STEM Students In 2023

Experimental Quantitative Research Topics For Stem Students

STEM means Science, Technology, Engineering, and Math, which is not the only stuff we learn in school. It is like a treasure chest of skills that help students become great problem solvers, ready to tackle the real world’s challenges.

In this blog, we are here to explore the world of Research Topics for STEM Students. We will break down what STEM really means and why it is so important for students. In addition, we will give you the lowdown on how to pick a fascinating research topic. We will explain a list of 200+ Experimental Quantitative Research Topics For STEM Students.

And when it comes to writing a research title, we will guide you step by step. So, stay with us as we unlock the exciting world of STEM research – it is not just about grades; it is about growing smarter, more confident, and happier along the way.

What Is STEM?

Table of Contents

STEM is Science, Technology, Engineering, and Mathematics. It is a way of talking about things like learning, jobs, and activities related to these four important subjects. Science is about understanding the world around us, technology is about using tools and machines to solve problems, engineering is about designing and building things, and mathematics is about numbers and solving problems with them. STEM helps us explore, discover, and create cool stuff that makes our world better and more exciting.

Why STEM Research Is Important?

STEM research is important because it helps us learn new things about the world and solve problems. When scientists, engineers, and mathematicians study these subjects, they can discover cures for diseases, create new technology that makes life easier, and build things that help us live better. It is like a big puzzle where we put together pieces of knowledge to make our world safer, healthier, and more fun.

  • STEM research leads to new discoveries and solutions.
  • It helps find cures for diseases.
  • STEM technology makes life easier.
  • Engineers build things that improve our lives.
  • Mathematics helps us understand and solve complex problems.

How to Choose a Topic for STEM Research Paper

Here are some steps to choose a topic for STEM Research Paper:

Step 1: Identify Your Interests

Think about what you like and what excites you in science, technology, engineering, or math. It could be something you learned in school, saw in the news, or experienced in your daily life. Choosing a topic you’re passionate about makes the research process more enjoyable.

Step 2: Research Existing Topics

Look up different STEM research areas online, in books, or at your library. See what scientists and experts are studying. This can give you ideas and help you understand what’s already known in your chosen field.

Step 3: Consider Real-World Problems

Think about the problems you see around you. Are there issues in your community or the world that STEM can help solve? Choosing a topic that addresses a real-world problem can make your research impactful.

Step 4: Talk to Teachers and Mentors

Discuss your interests with your teachers, professors, or mentors. They can offer guidance and suggest topics that align with your skills and goals. They may also provide resources and support for your research.

Step 5: Narrow Down Your Topic

Once you have some ideas, narrow them down to a specific research question or project. Make sure it’s not too broad or too narrow. You want a topic that you can explore in depth within the scope of your research paper.

Here we will discuss 200+ Experimental Quantitative Research Topics For STEM Students: 

Qualitative Research Topics for STEM Students:

Qualitative research focuses on exploring and understanding phenomena through non-numerical data and subjective experiences. Here are 10 qualitative research topics for STEM students:

  • Exploring the experiences of female STEM students in overcoming gender bias in academia.
  • Understanding the perceptions of teachers regarding the integration of technology in STEM education.
  • Investigating the motivations and challenges of STEM educators in underprivileged schools.
  • Exploring the attitudes and beliefs of parents towards STEM education for their children.
  • Analyzing the impact of collaborative learning on student engagement in STEM subjects.
  • Investigating the experiences of STEM professionals in bridging the gap between academia and industry.
  • Understanding the cultural factors influencing STEM career choices among minority students.
  • Exploring the role of mentorship in the career development of STEM graduates.
  • Analyzing the perceptions of students towards the ethics of emerging STEM technologies like AI and CRISPR.
  • Investigating the emotional well-being and stress levels of STEM students during their academic journey.

Easy Experimental Research Topics for STEM Students:

These experimental research topics are relatively straightforward and suitable for STEM students who are new to research:

  •  Measuring the effect of different light wavelengths on plant growth.
  •  Investigating the relationship between exercise and heart rate in various age groups.
  •  Testing the effectiveness of different insulating materials in conserving heat.
  •  Examining the impact of pH levels on the rate of chemical reactions.
  •  Studying the behavior of magnets in different temperature conditions.
  •  Investigating the effect of different concentrations of a substance on bacterial growth.
  •  Testing the efficiency of various sunscreen brands in blocking UV radiation.
  •  Measuring the impact of music genres on concentration and productivity.
  •  Examining the correlation between the angle of a ramp and the speed of a rolling object.
  •  Investigating the relationship between the number of blades on a wind turbine and energy output.

Research Topics for STEM Students in the Philippines:

These research topics are tailored for STEM students in the Philippines:

  •  Assessing the impact of climate change on the biodiversity of coral reefs in the Philippines.
  •  Studying the potential of indigenous plants in the Philippines for medicinal purposes.
  •  Investigating the feasibility of harnessing renewable energy sources like solar and wind in rural Filipino communities.
  •  Analyzing the water quality and pollution levels in major rivers and lakes in the Philippines.
  •  Exploring sustainable agricultural practices for small-scale farmers in the Philippines.
  •  Assessing the prevalence and impact of dengue fever outbreaks in urban areas of the Philippines.
  •  Investigating the challenges and opportunities of STEM education in remote Filipino islands.
  •  Studying the impact of typhoons and natural disasters on infrastructure resilience in the Philippines.
  •  Analyzing the genetic diversity of endemic species in the Philippine rainforests.
  •  Assessing the effectiveness of disaster preparedness programs in Philippine communities.

Read More 

  • Frontend Project Ideas
  • Business Intelligence Projects For Beginners

Good Research Topics for STEM Students:

These research topics are considered good because they offer interesting avenues for investigation and learning:

  •  Developing a low-cost and efficient water purification system for rural communities.
  •  Investigating the potential use of CRISPR-Cas9 for gene therapy in genetic disorders.
  •  Studying the applications of blockchain technology in securing medical records.
  •  Analyzing the impact of 3D printing on customized prosthetics for amputees.
  •  Exploring the use of artificial intelligence in predicting and preventing forest fires.
  •  Investigating the effects of microplastic pollution on aquatic ecosystems.
  •  Analyzing the use of drones in monitoring and managing agricultural crops.
  •  Studying the potential of quantum computing in solving complex optimization problems.
  •  Investigating the development of biodegradable materials for sustainable packaging.
  •  Exploring the ethical implications of gene editing in humans.

Unique Research Topics for STEM Students:

Unique research topics can provide STEM students with the opportunity to explore unconventional and innovative ideas. Here are 10 unique research topics for STEM students:

  •  Investigating the use of bioluminescent organisms for sustainable lighting solutions.
  •  Studying the potential of using spider silk proteins for advanced materials in engineering.
  •  Exploring the application of quantum entanglement for secure communication in the field of cryptography.
  •  Analyzing the feasibility of harnessing geothermal energy from underwater volcanoes.
  •  Investigating the use of CRISPR-Cas12 for rapid and cost-effective disease diagnostics.
  •  Studying the interaction between artificial intelligence and human creativity in art and music generation.
  •  Exploring the development of edible packaging materials to reduce plastic waste.
  •  Investigating the impact of microgravity on cellular behavior and tissue regeneration in space.
  •  Analyzing the potential of using sound waves to detect and combat invasive species in aquatic ecosystems.
  •  Studying the use of biotechnology in reviving extinct species, such as the woolly mammoth.

Experimental Research Topics for STEM Students in the Philippines

Research topics for STEM students in the Philippines can address specific regional challenges and opportunities. Here are 10 experimental research topics for STEM students in the Philippines:

  •  Assessing the effectiveness of locally sourced materials for disaster-resilient housing construction in typhoon-prone areas.
  •  Investigating the utilization of indigenous plants for natural remedies in Filipino traditional medicine.
  •  Studying the impact of volcanic soil on crop growth and agriculture in volcanic regions of the Philippines.
  •  Analyzing the water quality and purification methods in remote island communities.
  •  Exploring the feasibility of using bamboo as a sustainable construction material in the Philippines.
  •  Investigating the potential of using solar stills for freshwater production in water-scarce regions.
  •  Studying the effects of climate change on the migration patterns of bird species in the Philippines.
  •  Analyzing the growth and sustainability of coral reefs in marine protected areas.
  •  Investigating the utilization of coconut waste for biofuel production.
  •  Studying the biodiversity and conservation efforts in the Tubbataha Reefs Natural Park.

Capstone Research Topics for STEM Students in the Philippines:

Capstone research projects are often more comprehensive and can address real-world issues. Here are 10 capstone research topics for STEM students in the Philippines:

  •  Designing a low-cost and sustainable sanitation system for informal settlements in urban Manila.
  •  Developing a mobile app for monitoring and reporting natural disasters in the Philippines.
  •  Assessing the impact of climate change on the availability and quality of drinking water in Philippine cities.
  •  Designing an efficient traffic management system to address congestion in major Filipino cities.
  •  Analyzing the health implications of air pollution in densely populated urban areas of the Philippines.
  •  Developing a renewable energy microgrid for off-grid communities in the archipelago.
  •  Assessing the feasibility of using unmanned aerial vehicles (drones) for agricultural monitoring in rural Philippines.
  •  Designing a low-cost and sustainable aquaponics system for urban agriculture.
  •  Investigating the potential of vertical farming to address food security in densely populated urban areas.
  •  Developing a disaster-resilient housing prototype suitable for typhoon-prone regions.

Experimental Quantitative Research Topics for STEM Students:

Experimental quantitative research involves the collection and analysis of numerical data to conclude. Here are 10 Experimental Quantitative Research Topics For STEM Students interested in experimental quantitative research:

  •  Examining the impact of different fertilizers on crop yield in agriculture.
  •  Investigating the relationship between exercise and heart rate among different age groups.
  •  Analyzing the effect of varying light intensities on photosynthesis in plants.
  •  Studying the efficiency of various insulation materials in reducing building heat loss.
  •  Investigating the relationship between pH levels and the rate of corrosion in metals.
  •  Analyzing the impact of different concentrations of pollutants on aquatic ecosystems.
  •  Examining the effectiveness of different antibiotics on bacterial growth.
  •  Trying to figure out how temperature affects how thick liquids are.
  •  Finding out if there is a link between the amount of pollution in the air and lung illnesses in cities.
  •  Analyzing the efficiency of solar panels in converting sunlight into electricity under varying conditions.

Descriptive Research Topics for STEM Students

Descriptive research aims to provide a detailed account or description of a phenomenon. Here are 10 topics for STEM students interested in descriptive research:

  •  Describing the physical characteristics and behavior of a newly discovered species of marine life.
  •  Documenting the geological features and formations of a particular region.
  •  Creating a detailed inventory of plant species in a specific ecosystem.
  •  Describing the properties and behavior of a new synthetic polymer.
  •  Documenting the daily weather patterns and climate trends in a particular area.
  •  Providing a comprehensive analysis of the energy consumption patterns in a city.
  •  Describing the structural components and functions of a newly developed medical device.
  •  Documenting the characteristics and usage of traditional construction materials in a region.
  •  Providing a detailed account of the microbiome in a specific environmental niche.
  •  Describing the life cycle and behavior of a rare insect species.

Research Topics for STEM Students in the Pandemic:

The COVID-19 pandemic has raised many research opportunities for STEM students. Here are 10 research topics related to pandemics:

  •  Analyzing the effectiveness of various personal protective equipment (PPE) in preventing the spread of respiratory viruses.
  •  Studying the impact of lockdown measures on air quality and pollution levels in urban areas.
  •  Investigating the psychological effects of quarantine and social isolation on mental health.
  •  Analyzing the genomic variation of the SARS-CoV-2 virus and its implications for vaccine development.
  •  Studying the efficacy of different disinfection methods on various surfaces.
  •  Investigating the role of contact tracing apps in tracking & controlling the spread of infectious diseases.
  •  Analyzing the economic impact of the pandemic on different industries and sectors.
  •  Studying the effectiveness of remote learning in STEM education during lockdowns.
  •  Investigating the social disparities in healthcare access during a pandemic.
  • Analyzing the ethical considerations surrounding vaccine distribution and prioritization.

Research Topics for STEM Students Middle School

Research topics for middle school STEM students should be engaging and suitable for their age group. Here are 10 research topics:

  • Investigating the growth patterns of different types of mold on various food items.
  • Studying the negative effects of music on plant growth and development.
  • Analyzing the relationship between the shape of a paper airplane and its flight distance.
  • Investigating the properties of different materials in making effective insulators for hot and cold beverages.
  • Studying the effect of salt on the buoyancy of different objects in water.
  • Analyzing the behavior of magnets when exposed to different temperatures.
  • Investigating the factors that affect the rate of ice melting in different environments.
  • Studying the impact of color on the absorption of heat by various surfaces.
  • Analyzing the growth of crystals in different types of solutions.
  • Investigating the effectiveness of different natural repellents against common pests like mosquitoes.

Technology Research Topics for STEM Students

Technology is at the forefront of STEM fields. Here are 10 research topics for STEM students interested in technology:

  • Developing and optimizing algorithms for autonomous drone navigation in complex environments.
  • Exploring the use of blockchain technology for enhancing the security and transparency of supply chains.
  • Investigating the applications of virtual reality (VR) and augmented reality (AR) in medical training and surgery simulations.
  • Studying the potential of 3D printing for creating personalized prosthetics and orthopedic implants.
  • Analyzing the ethical and privacy implications of facial recognition technology in public spaces.
  • Investigating the development of quantum computing algorithms for solving complex optimization problems.
  • Explaining the use of machine learning and AI in predicting and mitigating the impact of natural disasters.
  • Studying the advancement of brain-computer interfaces for assisting individuals with
  • disabilities.
  • Analyzing the role of wearable technology in monitoring and improving personal health and wellness.
  • Investigating the use of robotics in disaster response and search and rescue operations.

Scientific Research Topics for STEM Students

Scientific research encompasses a wide range of topics. Here are 10 research topics for STEM students focusing on scientific exploration:

  • Investigating the behavior of subatomic particles in high-energy particle accelerators.
  • Studying the ecological impact of invasive species on native ecosystems.
  • Analyzing the genetics of antibiotic resistance in bacteria and its implications for healthcare.
  • Exploring the physics of gravitational waves and their detection through advanced interferometry.
  • Investigating the neurobiology of memory formation and retention in the human brain.
  • Studying the biodiversity and adaptation of extremophiles in harsh environments.
  • Analyzing the chemistry of deep-sea hydrothermal vents and their potential for life beyond Earth.
  • Exploring the properties of superconductors and their applications in technology.
  • Investigating the mechanisms of stem cell differentiation for regenerative medicine.
  • Studying the dynamics of climate change and its impact on global ecosystems.

Interesting Research Topics for STEM Students:

Engaging and intriguing research topics can foster a passion for STEM. Here are 10 interesting research topics for STEM students:

  • Exploring the science behind the formation of auroras and their cultural significance.
  • Investigating the mysteries of dark matter and dark energy in the universe.
  • Studying the psychology of decision-making in high-pressure situations, such as sports or
  • emergencies.
  • Analyzing the impact of social media on interpersonal relationships and mental health.
  • Exploring the potential for using genetic modification to create disease-resistant crops.
  • Investigating the cognitive processes involved in solving complex puzzles and riddles.
  • Studying the history and evolution of cryptography and encryption methods.
  • Analyzing the physics of time travel and its theoretical possibilities.
  • Exploring the role of Artificial Intelligence  in creating art and music.
  • Investigating the science of happiness and well-being, including factors contributing to life satisfaction.

Practical Research Topics for STEM Students

Practical research often leads to real-world solutions. Here are 10 practical research topics for STEM students:

  • Developing an affordable and sustainable water purification system for rural communities.
  • Designing a low-cost, energy-efficient home heating and cooling system.
  • Investigating strategies for reducing food waste in the supply chain and households.
  • Studying the effectiveness of eco-friendly pest control methods in agriculture.
  • Analyzing the impact of renewable energy integration on the stability of power grids.
  • Developing a smartphone app for early detection of common medical conditions.
  • Investigating the feasibility of vertical farming for urban food production.
  • Designing a system for recycling and upcycling electronic waste.
  • Studying the environmental benefits of green roofs and their potential for urban heat island mitigation.
  • Analyzing the efficiency of alternative transportation methods in reducing carbon emissions.

Experimental Research Topics for STEM Students About Plants

Plants offer a rich field for experimental research. Here are 10 experimental research topics about plants for STEM students:

  • Investigating the effect of different light wavelengths on plant growth and photosynthesis.
  • Studying the impact of various fertilizers and nutrient solutions on crop yield.
  • Analyzing the response of plants to different types and concentrations of plant hormones.
  • Investigating the role of mycorrhizal in enhancing nutrient uptake in plants.
  • Studying the effects of drought stress and water scarcity on plant physiology and adaptation mechanisms.
  • Analyzing the influence of soil pH on plant nutrient availability and growth.
  • Investigating the chemical signaling and defense mechanisms of plants against herbivores.
  • Studying the impact of environmental pollutants on plant health and genetic diversity.
  • Analyzing the role of plant secondary metabolites in pharmaceutical and agricultural applications.
  • Investigating the interactions between plants and beneficial microorganisms in the rhizosphere.

Qualitative Research Topics for STEM Students in the Philippines

Qualitative research in the Philippines can address local issues and cultural contexts. Here are 10 qualitative research topics for STEM students in the Philippines:

  • Exploring indigenous knowledge and practices in sustainable agriculture in Filipino communities.
  • Studying the perceptions and experiences of Filipino fishermen in coping with climate change impacts.
  • Analyzing the cultural significance and traditional uses of medicinal plants in indigenous Filipino communities.
  • Investigating the barriers and facilitators of STEM education access in remote Philippine islands.
  • Exploring the role of traditional Filipino architecture in natural disaster resilience.
  • Studying the impact of indigenous farming methods on soil conservation and fertility.
  • Analyzing the cultural and environmental significance of mangroves in coastal Filipino regions.
  • Investigating the knowledge and practices of Filipino healers in treating common ailments.
  • Exploring the cultural heritage and conservation efforts of the Ifugao rice terraces.
  • Studying the perceptions and practices of Filipino communities in preserving marine biodiversity.

Science Research Topics for STEM Students

Science offers a diverse range of research avenues. Here are 10 science research topics for STEM students:

  • Investigating the potential of gene editing techniques like CRISPR-Cas9 in curing genetic diseases.
  • Studying the ecological impacts of species reintroduction programs on local ecosystems.
  • Analyzing the effects of microplastic pollution on aquatic food webs and ecosystems.
  • Investigating the link between air pollution and respiratory health in urban populations.
  • Studying the role of epigenetics in the inheritance of acquired traits in organisms.
  • Analyzing the physiology and adaptations of extremophiles in extreme environments on Earth.
  • Investigating the genetics of longevity and factors influencing human lifespan.
  • Studying the behavioral ecology and communication strategies of social insects.
  • Analyzing the effects of deforestation on global climate patterns and biodiversity loss.
  • Investigating the potential of synthetic biology in creating bioengineered organisms for beneficial applications.

Correlational Research Topics for STEM Students

Correlational research focuses on relationships between variables. Here are 10 correlational research topics for STEM students:

  • Analyzing the correlation between dietary habits and the incidence of chronic diseases.
  • Studying the relationship between exercise frequency and mental health outcomes.
  • Investigating the correlation between socioeconomic status and access to quality healthcare.
  • Analyzing the link between social media usage and self-esteem in adolescents.
  • Studying the correlation between academic performance and sleep duration among students.
  • Investigating the relationship between environmental factors and the prevalence of allergies.
  • Analyzing the correlation between technology use and attention span in children.
  • Studying how environmental factors are related to the frequency of allergies.
  • Investigating the link between parental involvement in education and student achievement.
  • Analyzing the correlation between temperature fluctuations and wildlife migration patterns.

Quantitative Research Topics for STEM Students in the Philippines

Quantitative research in the Philippines can address specific regional issues. Here are 10 quantitative research topics for STEM students in the Philippines

  • Analyzing the impact of typhoons on coastal erosion rates in the Philippines.
  • Studying the quantitative effects of land use change on watershed hydrology in Filipino regions.
  • Investigating the quantitative relationship between deforestation and habitat loss for endangered species.
  • Analyzing the quantitative patterns of marine biodiversity in Philippine coral reef ecosystems.
  • Studying the quantitative assessment of water quality in major Philippine rivers and lakes.
  • Investigating the quantitative analysis of renewable energy potential in specific Philippine provinces.
  • Analyzing the quantitative impacts of agricultural practices on soil health and fertility.
  • Studying the quantitative effectiveness of mangrove restoration in coastal protection in the Philippines.
  • Investigating the quantitative evaluation of indigenous agricultural practices for sustainability.
  • Analyzing the quantitative patterns of air pollution and its health impacts in urban Filipino areas.

Things That Must Keep In Mind While Writing Quantitative Research Title 

Here are few things that must be keep in mind while writing quantitative research tile:

1. Be Clear and Precise

Make sure your research title is clear and says exactly what your study is about. People should easily understand the topic and goals of your research by reading the title.

2. Use Important Words

Include words that are crucial to your research, like the main subjects, who you’re studying, and how you’re doing your research. This helps others find your work and understand what it’s about.

3. Avoid Confusing Words

Stay away from words that might confuse people. Your title should be easy to grasp, even if someone isn’t an expert in your field.

4. Show Your Research Approach

Tell readers what kind of research you did, like experiments or surveys. This gives them a hint about how you conducted your study.

5. Match Your Title with Your Research Questions

Make sure your title matches the questions you’re trying to answer in your research. It should give a sneak peek into what your study is all about and keep you on the right track as you work on it.

STEM students, addressing what STEM is and why research matters in this field. It offered an extensive list of research topics , including experimental, qualitative, and regional options, catering to various academic levels and interests. Whether you’re a middle school student or pursuing advanced studies, these topics offer a wealth of ideas. The key takeaway is to choose a topic that resonates with your passion and aligns with your goals, ensuring a successful journey in STEM research. Choose the best Experimental Quantitative Research Topics For Stem Students today!

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

  • Our Program Divisions
  • Our Three Academies
  • Government Affairs
  • Statement on Diversity and Inclusion
  • Our Study Process
  • Conflict of Interest Policies and Procedures
  • Project Comments and Information
  • Read Our Expert Reports and Published Proceedings
  • Explore PNAS, the Flagship Scientific Journal of NAS
  • Access Transportation Research Board Publications
  • Coronavirus Disease 2019 (COVID-19)
  • Diversity, Equity, and Inclusion
  • Economic Recovery
  • Fellowships and Grants
  • Publications by Division
  • Division of Behavioral and Social Sciences and Education
  • Division on Earth and Life Studies
  • Division on Engineering and Physical Sciences
  • Gulf Research Program
  • Health and Medicine Division
  • Policy and Global Affairs Division
  • Transportation Research Board
  • National Academy of Sciences
  • National Academy of Engineering
  • National Academy of Medicine
  • Publications by Topic
  • Agriculture
  • Behavioral and Social Sciences
  • Biography and Autobiography
  • Biology and Life Sciences
  • Computers and Information Technology
  • Conflict and Security Issues
  • Earth Sciences
  • Energy and Energy Conservation
  • Engineering and Technology
  • Environment and Environmental Studies
  • Food and Nutrition
  • Health and Medicine
  • Industry and Labor
  • Math, Chemistry, and Physics
  • Policy for Science and Technology
  • Space and Aeronautics
  • Surveys and Statistics
  • Transportation and Infrastructure
  • Searchable Collections
  • New Releases

Undergraduate Research Experiences for STEM Students: Successes, Challenges, and Opportunities

VIEW LARGER COVER

Undergraduate Research Experiences for STEM Students

Successes, challenges, and opportunities.

Undergraduate research has a rich history, and many practicing researchers point to undergraduate research experiences (UREs) as crucial to their own career success. There are many ongoing efforts to improve undergraduate science, technology, engineering, and mathematics (STEM) education that focus on increasing the active engagement of students and decreasing traditional lecture-based teaching, and UREs have been proposed as a solution to these efforts and may be a key strategy for broadening participation in STEM. In light of the proposals questions have been asked about what is known about student participation in UREs, best practices in UREs design, and evidence of beneficial outcomes from UREs.

Undergraduate Research Experiences for STEM Students provides a comprehensive overview of and insights about the current and rapidly evolving types of UREs, in an effort to improve understanding of the complexity of UREs in terms of their content, their surrounding context, the diversity of the student participants, and the opportunities for learning provided by a research experience. This study analyzes UREs by considering them as part of a learning system that is shaped by forces related to national policy, institutional leadership, and departmental culture, as well as by the interactions among faculty, other mentors, and students. The report provides a set of questions to be considered by those implementing UREs as well as an agenda for future research that can help answer questions about how UREs work and which aspects of the experiences are most powerful.

RESOURCES AT A GLANCE

  • Press Release
  • Report Brief
  • Education — Higher Education
  • Education — Math and Science Education
  • Education — Policy, Reviews and Evaluations

Suggested Citation

National Academies of Sciences, Engineering, and Medicine. 2017. Undergraduate Research Experiences for STEM Students: Successes, Challenges, and Opportunities . Washington, DC: The National Academies Press. https://doi.org/10.17226/24622. Import this citation to: Bibtex EndNote Reference Manager

Publication Info

  • Paperback:  978-0-309-45280-9
  • Ebook:  978-0-309-45283-0

What is skim?

The Chapter Skim search tool presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter. You may select key terms to highlight them within pages of each chapter.

Copyright Information

The National Academies Press (NAP) has partnered with Copyright Clearance Center's Marketplace service to offer you a variety of options for reusing NAP content. Through Marketplace, you may request permission to reprint NAP content in another publication, course pack, secure website, or other media. Marketplace allows you to instantly obtain permission, pay related fees, and print a license directly from the NAP website. The complete terms and conditions of your reuse license can be found in the license agreement that will be made available to you during the online order process. To request permission through Marketplace you are required to create an account by filling out a simple online form. The following list describes license reuses offered by the NAP through Marketplace:

  • Republish text, tables, figures, or images in print
  • Post on a secure Intranet/Extranet website
  • Use in a PowerPoint Presentation
  • Distribute via CD-ROM

Click here to obtain permission for the above reuses. If you have questions or comments concerning the Marketplace service, please contact:

Marketplace Support International +1.978.646.2600 US Toll Free +1.855.239.3415 E-mail: [email protected] marketplace.copyright.com

To request permission to distribute a PDF, please contact our Customer Service Department at [email protected] .

What is a prepublication?

What is a prepublication image

An uncorrected copy, or prepublication, is an uncorrected proof of the book. We publish prepublications to facilitate timely access to the committee's findings.

What happens when I pre-order?

The final version of this book has not been published yet. You can pre-order a copy of the book and we will send it to you when it becomes available. We will not charge you for the book until it ships. Pricing for a pre-ordered book is estimated and subject to change. All backorders will be released at the final established price. As a courtesy, if the price increases by more than $3.00 we will notify you. If the price decreases, we will simply charge the lower price. Applicable discounts will be extended.

Downloading and Using eBooks from NAP

What is an ebook.

An ebook is one of two file formats that are intended to be used with e-reader devices and apps such as Amazon Kindle or Apple iBooks.

Why is an eBook better than a PDF?

A PDF is a digital representation of the print book, so while it can be loaded into most e-reader programs, it doesn't allow for resizable text or advanced, interactive functionality. The eBook is optimized for e-reader devices and apps, which means that it offers a much better digital reading experience than a PDF, including resizable text and interactive features (when available).

Where do I get eBook files?

eBook files are now available for a large number of reports on the NAP.edu website. If an eBook is available, you'll see the option to purchase it on the book page.

View more FAQ's about Ebooks

Types of Publications

Consensus Study Report: Consensus Study Reports published by the National Academies of Sciences, Engineering, and Medicine document the evidence-based consensus on the study’s statement of task by an authoring committee of experts. Reports typically include findings, conclusions, and recommendations based on information gathered by the committee and the committee’s deliberations. Each report has been subjected to a rigorous and independent peer-review process and it represents the position of the National Academies on the statement of task.

what are the research topics for stem students

  • 2023 AERA in the News
  • 2022 AERA in the News
  • 2021 AERA In the News
  • 2020 AERA In the News
  • 2019 AERA In the News
  • 2018 AERA In the News
  • 2017 AERA In the News
  • 2016 AERA In the News
  • 2015 AERA In the News
  • 2014 AERA In the News
  • 2013 AERA In the News
  • AERA Speaking Out on Major Issues
  • 2023 AERA News Releases
  • 2022 AERA News Releases
  • 2021 AERA News Releases
  • 2020 AERA News Releases
  • 2019 AERA News Releases
  • 2018 AERA News Releases
  • 2017 AERA News Releases
  • 2016 AERA News Releases
  • 2015 AERA News Releases
  • 2014 AERA News Releases
  • 2013 AERA News Releases
  • 2012 AERA News Releases
  • 2011 News Releases
  • 2010 News Releases
  • 2009 News Releases
  • 2008 News Releases
  • 2007 News Releases
  • 2006 News Releases
  • 2005 News Releases
  • 2004 News Releases
  • AERA Research Archive
  • Trending Topic Research Files
  • Communication Resources for Researchers
  • AERA Highlights Archival Issues
  • AERA Video Gallery

what are the research topics for stem students

Share 

  • Open access
  • Published: 22 April 2020

Research and trends in STEM education: a systematic analysis of publicly funded projects

  • Yeping Li 1 ,
  • Ke Wang 2 ,
  • Yu Xiao 1 ,
  • Jeffrey E. Froyd 3 &
  • Sandra B. Nite 1  

International Journal of STEM Education volume  7 , Article number:  17 ( 2020 ) Cite this article

17k Accesses

30 Citations

7 Altmetric

Metrics details

Taking publicly funded projects in STEM education as a special lens, we aimed to learn about research and trends in STEM education. We identified a total of 127 projects funded by the Institute of Education Sciences (IES) of the US Department of Education from 2003 to 2019. Both the number of funded projects in STEM education and their funding amounts were high, although there were considerable fluctuations over the years. The number of projects with multiple principal investigators increased over time. The project duration was typically in the range of 3–4 years, and the goals of these projects were mostly categorized as “development and innovation” or “efficacy and replication.” The majority of the 127 projects focused on individual STEM disciplines, especially mathematics. The findings, based on IES-funded projects, provided a glimpse of the research input and trends in STEM education in the USA, with possible implications for developing STEM education research in other education systems around the world.

Introduction

The rapid development of science, technology, engineering, and mathematics (STEM) education and research since the beginning of this century has benefited from strong, ongoing support from many different entities, including government agencies, professional organizations, industries, and education institutions (Li, 2014 ). Typically, studies that summarized the status of research in STEM education have used publications as the unit of their analyses (e.g., Li et al., 2019 ; Li et al., 2020 ; Margot & Kettler, 2019 ; Minichiello et al., 2018 ; Otten, Van den Heuvel-Panhuizen, & Veldhuis, 2019 ; Schreffler et al., 2019 ). Another approach, which has been used less frequently, is to study research funding. Although not all research publications were generated from funded projects and not all funded projects have been equally productive, as measured by publications, research funding and publications present two different, but related perspectives on the state of research in STEM education. Our review focuses on research funding.

Types of funding support to education research

There are different types of sources and mechanisms in place to allocate, administer, distribute, and manage funding support to education. In general, there are two sources of funding: public and private.

Public funding sources are commonly government agencies that support education program development and training, project evaluation, and research. For example, multiple state and federal agencies in the USA provide and manage funding support to education research, programs and training, including the US Department of Education (ED), the National Science Foundation (NSF), and the National Endowment for the Humanities—Division of Education Programs. Researchers seeking support from public funding sources often submit proposals that are vetted through a well-structured peer-review process. The process is competitive, and the decision to fund a project validates both its importance and alignment with the funding agency’s development agenda. Changes in the agencies’ agendas and funding priorities can reflect governmental intentions and priorities for education and research.

Private funding sources have played a very important role in supporting education programs and research with a long history. Some private funding sources in the USA can be sizeable, such as the Bill & Melinda Gates Foundation ( https://www.gatesfoundation.org ), while many also have specific foci, such as the Howard Hughes Medical Institute ( https://www.hhmi.org ) that is dedicated to advancing science through research and science education. At the same time, private funding sources often have their own development agendas, flexibility in deciding funding priorities, and specific mechanisms in making funding decisions, including how funds can be used, distributed, and managed. Indeed, private funding sources differ from public funding sources in many ways. Given many special features associated with private funding sources, including the lack of transparency, we chose to examine projects that were supported by public funding sources in this review.

Approaches to examining public research funding support

One approach to studying public research funding support to STEM education would be to examine requests-for-proposals (RFPs) issued by different government agencies. However, those RFPs tend to provide guidelines, which are not sufficiently concrete to learn about specific research that is funded. In contrast, reviewing those projects selected for funding can provide more detailed information on research activity. Figure 1 shows a flowchart of research activity and distinguishes how funded projects and publications might provide different perspectives on research. In this review, we focus on the bolded portion of the flowchart, i.e., projects funded to promote STEM education.

figure 1

A general flowchart of RFPs to publications

Current review

Why focus on research funding in the usa.

Recent reviews of journal publications in STEM education have consistently revealed that scholars in the USA played a leading role in producing and promoting scholarship in STEM education, with about 75% of authorship credits for all publications in STEM education either in the International Journal of STEM Education alone from 2014 to 2018 (Li et al., 2019 ) or in 36 selected journals published from 2000 to 2018 (Li et al., 2020 ). The strong scholarship development in the USA is likely due to a research environment that is well supported and conducive to high research output. Studying public funding support for STEM education research in the USA will provide information on trends and patterns, which will be valuable both in the USA and in other countries.

The context of policy and public funding support to STEM education in the USA

The tremendous development of STEM education in the USA over the past decades has benefited greatly from both national policies and strong funding support from the US governmental agencies as well as private funding sources. Federal funding for research and development in science, mathematics, technology, and engineering-related education in the USA was restarted in the late 1980s, in the latter years of the Reagan administration, which had earlier halted funding. In recent years, the federal government has strongly supported STEM education research and development. For example, the Obama administration in the USA (The White House, 2009 ) launched the “Educate to Innovate” campaign in November 2009 for excellence in STEM education as a national priority, with over 260 million USD in financial and in-kind support commitment. The Trump administration has continued to emphasize STEM education. For example, President Trump signed a memorandum in 2017 to direct ED to spend 200 million USD per year on competitive grants promoting STEM (The White House, 2017 ). In response, ED awarded 279 million USD in STEM discretionary grants in Fiscal Year 2018 (US Department of Education, 2018 ). The Trump administration took a step further to release a report in December 2018 detailing its five-year strategic plan of boosting STEM education in the USA (The White House, 2018 ). The strategic plan envisions that “All Americans will have lifelong access to high-quality STEM education and the USA will be the global leader in STEM literacy, innovation, and employment.” (Committee on STEM Education, 2018 , p. 1). Consistently, current Secretory of Education DeVos in the Trump administration has taken STEM as a centerpiece of her comprehensive education agenda (see https://www.ed.gov/stem ). The consistency in national policies and public funding support shows that STEM education continues to be a strategic priority in the USA.

Among many federal agencies that funded STEM education programs, the ED and NSF have functioned as two primary agencies. For ED, the Institute of Education Sciences (Institute of Education Sciences (IES), n.d. , see https://ies.ed.gov/aboutus/ ) was created by the Education Sciences Reform Act of 2002 as its statistics, research, and evaluation arm. ED’s support to STEM education research has been mainly administered and managed by IES since 2003. In contrast to the focus of ED on education, NSF (see https://www.nsf.gov/about/ ) was created by Congress in 1950 to support basic research in many fields such as mathematics, computer sciences, and social sciences. Education and Human Resources is one of its seven directorates that provides important funding support to STEM education programs and research. In addition to these two federal agencies, some other federal agencies also provide funding support to STEM education programs and research from time to time.

Any study of public funding support to STEM education research in the USA would need to limit its scope, given the complexity of various public funding sources available in the system, the ambiguity associated with the meaning of STEM education across different federal agencies (Li et al., 2020 ), and the number of programs that have funded STEM education research over the years. For the purpose of this review, we have chosen to focus on the projects in STEM education funded by IES.

Research questions

Given the preceding research approach decision to focus on research projects funded by IES, we generated the following questions:

What were the number of projects, total project funding, and the average funding per project from 2003 to 2019 in STEM education research?

What were the trends of having single versus multiple principal investigator(s) in STEM education?

What were the types of awardees of the projects?

What were the participant populations in the projects?

What were the types of projects in terms of goals for program development and research in STEM education?

What were the disciplinary foci of the projects?

What research methods did projects tend to use in conducting STEM education research?

Based on the above discussion to focus on funding support from IES, we first specified the time period, and then searched the IES website to identify STEM education research projects funded by IES within the specified time period.

Time period

As discussed above, IES was established in 2002 and it did not start to administer and manage research funding support for ED until 2003. Therefore, we considered IES funded projects from 2003 to the end of 2019.

Searching and identifying IES funded projects in STEM education

Given the diverse perspectives about STEM education across different agencies and researchers (Li et al., 2020 ), we did not discuss and define the meaning of STEM education. Instead, we used the process described in the following paragraph to identify STEM education research projects funded by IES.

On the publicly accessible IES website ( https://ies.ed.gov ), one menu item is “FUNDING OPPORTUNITIES”, and there is a list of choices within this menu item. One choice is “SEARCH FUNDED RESEARCH GRANTS AND CONTRACTS.” On this web search page, we can choose “Program” under “ADDITIONAL SEARCH OPTIONS.” There are two program categories related to STEM under the option of “Program.” One is “Science, Technology, Engineering, and Mathematics (STEM) Education” under one large category of “Education Research” and the other is “Science, Technology, Engineering, and Mathematics” under another large category of “Special Education Research.” We searched for funded projects under these two program categories, and the process returned 98 funded projects in “Science, Technology, Engineering, and Mathematics (STEM) Education” under “Education Research” and 29 funded projects in “Science, Technology, Engineering, and Mathematics” under “Special Education Research,” for a total of 127 funded projects in these two programs designated for STEM education by IES Footnote 1 .

Data analysis

To address questions 1, 2, 3, and 4, we collected the following information about these projects identified using above procedure: amount of funding, years of duration, information about the PI, types of awardees that received and administered the funding (i.e., university versus those non-university including non-profit organization such as WestEd, Educational Testing Service), and projects’ foci on school level and participants. When a project’s coverage went beyond one category, the project was then coded in terms of its actual number of categories being covered. For example, we used the five categories to classify project’s participants: Pre–K, grades 1–4, grades 5–8, grades 9–12, and adult. If a funded project involved participants from Pre-school to grade 8, then we coded the project as having participants in three categories: Pre-K, grades 1–4, and grades 5–8.

To address question 5, we analyzed projects based on goal classifications from IES. IES followed the classification of research types that was produced through a joint effort between IES and NSF in 2013 (Institute of Education Sciences (IES) and National Science Foundation (NSF), 2013 ). The effort specified six types of research that provide guidance on the goals and level of funding support: foundational research, early-stage or exploratory research, design and development research, efficacy research, effectiveness research, and scale-up research. Related to these types, IES classified goals for funded projects: development and innovation, efficacy and replication, exploration, measurement, and scale-up evaluation, as described on the IES website.

To address question 6, we coded the disciplinary focus using the following five categories: mathematics, science, technology, engineering, and integrated (meaning an integration of any two or more of STEM disciplines). In some cases, we coded a project with multiple disciplinary foci into more than one category. The following are two project examples and how we coded them in terms of disciplinary foci:

The project of “A Randomized Controlled Study of the Effects of Intelligent Online Chemistry Tutors in Urban California School Districts” (2008, https://ies.ed.gov/funding/grantsearch/details.asp?ID=601 ) was to test the efficacy of the Quantum Chemistry Tutors, a suite of computer-based cognitive tutors that are designed to give individual tutoring to high school students on 12 chemistry topics. Therefore, we coded this project as having three categories of disciplinary foci: science because it was chemistry, technology because it applied instructional technology, and integrated because it integrated two or more of STEM disciplines.

The project of “Applications of Intelligent Tutoring Systems (ITS) to Improve the Skill Levels of Students with Deficiencies in Mathematics” (2009, https://ies.ed.gov/funding/grantsearch/details.asp?ID=827 ) was coded as having three categories of disciplinary foci: mathematics, technology because it used intelligent tutoring systems, and integrated because it integrated two or more of STEM disciplines.

To address question 7, all 127 projects were coded using a classification category system developed and used in a previous study (Wang et al., 2019 ). Specifically, each funded project was coded in terms of research type (experimental, interventional, longitudinal, single case, correlational) Footnote 2 , data collection method (interview, survey, observation, researcher designed tests, standardized tests, computer data Footnote 3 ), and data analysis method (descriptive statistics, ANOVA*, general regression, HLM, IRT, SEM, others) Footnote 4 . Based on a project description, specific method(s) were identified and coded following a procedure similar to what we used in a previous study (Wang et al., 2019 ). Two researchers coded each project’s description, and the agreement between them for all 127 projects was 88.2%. When method and disciplinary focus-coding discrepancies occurred, a final decision was reached after discussion.

Results and discussion

In the following sections, we report findings as corresponding to each of the seven research questions.

Question 1: the number of projects, total funding, and the average funding per project from 2003 to 2019

Figure 2 shows the distribution of funded projects over the years in each of the two program categories, “Education Research” and “Special Education Research,” as well as combined (i.e., “STEM” for projects funded under “Education Research,” “Special STEM” for projects funded under “Special Education Research,” and “Combined” for projects funded under both “Education Research” and “Special Education Research”). As Fig. 2 shows, the number of projects increased each year up to 2007, with STEM education projects started in 2003 under “Education Research” and in 2006 under “Special Education Research.” The number of projects in STEM under “Special Education Research” was generally less than those funded under the program category of “Education Research,” especially before 2011. There are noticeable decreases in combined project counts from 2009 to 2011 and from 2012 to 2014, before the number count increased again in 2015. We did not find a consistent pattern across the years from 2003 to 2019.

figure 2

The distribution of STEM education projects over the years. (Note: STEM refers to projects funded under “Education Research,” Special STEM refers to projects funded under “Special Education Research,” and “Combined” refers to projects funded under both “Education Research” and “Special Education Research.” The same annotations are used in the rest of the figures.)

A similar trend can be observed in the total funding amount for STEM education research (see Fig. 3 ). The figure shows noticeably big year-to-year swings from 2003 to 2019, with the highest funding amount of more than 33 million USD in 2007 and the lowest amount of 2,698,900 USD in 2013 from these two program categories. Although it is possible that insufficient high-quality grant proposals were available in one particular year to receive funding, the funded amount and the number of projects (Fig. 2 ) provide insights about funding trends over the time period of the review.

figure 3

Annual funding totals

As there are diverse perspectives and foci about STEM education, we also wondered if STEM education research projects might be funded by IES but in program options other than those designated options of “Science, Technology, Engineering, and Mathematics (STEM) Education.” We found a total of 54 funded projects from 2007 to 2019, using the acronym “STEM” as a search term under the option of “SEARCH FUNDED RESEARCH GRANTS AND CONTRACTS” without any program category restriction. Only 2 (3.7%) out of these 54 projects were in the IES designated program options of STEM education in the category of “Education Research.” Further information about these 54 projects and related discussion can be found as additional notes at the end of this review.

Results from two different approaches to searching for IES-funded projects will likely raise questions about what kinds of projects were funded in the designated program option of “Science, Technology, Engineering, and Mathematics (STEM) Education,” if only two funded projects under this option contained the acronym “STEM” in a project’s title and/or description. We shall provide further information in the following sub-sections, especially when answering question 6 related to projects’ disciplinary focus.

Figure 4 illustrates the trend of average funding amount per project each year in STEM education research from 2003 to 2019. The average funding per project varied considerably in the program category “Special Education Research,” and no STEM projects were funded in 2014 and 2017 in this category. In contrast, average funding per project was generally within the range of 1,132,738 USD in 2019 to 3,475,975 USD in 2014 for the projects in the category of “Education Research” and also for project funding in the combined category.

figure 4

The trend of average funding amount per project funded each year in STEM education research

Figure 5 shows the number of projects in different funding amount categories (i.e., less than 1 million USD, 1–2 million USD, 2–3 million USD, 3 million USD or more). The majority of the 127 projects obtained funding of 1–2 million USD (77 projects, 60.6%), with 60 out of 98 projects (61.2%) under “Education Research” program and 17 out of 29 projects (58.6%) in the program category “Special Education Research.” The category with second most projects is funding of 3 million USD or more (21 projects, 16.5%), with 15 projects (15.3% of 98 projects) under “Education Research” and 6 projects (20.7% of 29 projects) under “Special Education Research.”

figure 5

The number of projects in terms of total funding amount categories

Figure 6 shows the average amount of funding per project funded across these different funding amount and program categories. In general, the projects funded under “Education Research” tended to have a higher average amount than those funded under “Special Education Research,” except for those projects in the total funding amount category of “less than 1 million USD.” Considering all 127 funded projects, the average amount of funding was 1,960,826.3 USD per project.

figure 6

The average amount of funding per project across different total funding amount and program categories

Figure 7 shows that the vast majority of these 127 projects were 3- or 4-year projects. In particular, 59 (46.5%) projects were funded as 4-year projects, with 46 projects (46.9%) under “Education Research” and 13 projects (44.8%) under “Special Education Research.” This category is followed closely by 3-year projects (54 projects, 42.5%), with 41 projects (41.8%) under “Education Research” and 13 projects (44.8%) under “Special Education Research.”

figure 7

The number of projects in terms of years of project duration. (Note, 2: 2-year projects; 3: 3-year projects; 4: 4-year projects; 5: 5-year projects)

Question 2: trends of single versus multiple principal investigator(s) in STEM education

Figure 8 shows the distribution of projects over the years grouped by a single PI or multiple PIs where the program categories of “Education Research” and “Special Education Research” have been combined. The majority of projects before 2009 had a single PI, and the trend has been to have multiple PIs for STEM education research projects since 2009. The trend illustrates the increased emphases on collaboration in STEM education research, which is consistent with what we learned from a recent study of journal publications in STEM education (Li et al., 2020 ).

figure 8

The distribution of projects with single versus multiple PIs over the years (combined)

Separating projects by program categories, Fig. 9 shows projects funded in the program category “Education Research.” The trends of single versus multiple PIs in Fig. 9 are similar to the trends shown in Fig. 8 for the combined programs. In addition, almost all projects in STEM education funded under this regular research program had multiple PIs since 2010.

figure 9

The distribution of projects with single versus multiple PIs over the years (in “Education Research” program)

Figure 10 shows projects funded in the category “Special Education Research.” The pattern in Fig. 10 , where very few projects funded under this category had multiple PIs before 2014, is quite different from the patterns in Figs. 8 and 9 . We did not learn if single PIs were appropriate for the nature of these projects. The trend started to change in 2015 as the number of projects with multiple PIs increased and the number of projects with single PIs declined.

figure 10

The distribution of projects with single versus multiple PIs over the years (in “Special Education Research” program)

Question 3: types of awardees of these projects

Besides the information about the project’s PI, the nature of the awardees can help illustrate what types of entity or organization were interested in developing and carrying out STEM education research. Figure 11 shows that the university was the main type of awardee before 2012, with 80 (63.0%) projects awarded to universities from 2003 to 2019. At the same time, non-university entities received funding support for 47 (37.0%) projects and they seem to have become even more active and successful in obtaining research funding in STEM education over the past several years. The result suggests that diverse organizations develop and conduct STEM education research, another indicator of the importance of STEM education research.

figure 11

The distribution of projects funded to university versus non-university awardees over the years

Question 4: participant populations in the projects

Figure 12 indicates that the vast majority of projects were focused on student populations in preschool to grade 12. This is understandable as IES is the research funding arm of ED. Among those projects, middle school students were the participants in the most projects (70 projects), followed by student populations in elementary school (48 projects), and high school (38 projects). The adult population (including post-secondary students and teachers) was the participant group in 36 projects in a combined program count.

figure 12

The number of projects in STEM education for different groups of participants (Note: Pre-K: preschool-kindergarten; G1–4: grades 1–4; G5–8: grades 5–8; G9–12: grades 9–12; adult: post-secondary students and teachers)

If we separate “Education Research” and “Special Education Research” programs, projects in the category “Special Education Research” focused on student populations in elementary and middle school most frequently, and then adult population. In contrast, projects in the category “Education Research” focused most frequently on middle school student population, followed by student populations in high school and elementary school.

Given the importance of funded research in special education Footnote 5 at IES, we considered projects focused on participants with disabilities. Figure 13 shows there were 28 projects in the category “Special Education Research” for participants with disabilities. There were also three such projects funded in the category “Education Research,” which together accounted for a total of 31 (24.4%) projects. In addition, some projects in the category “Education Research” focused on other participants, including 11 projects focused on ELL students (8.7%) projects and 37 projects focused on low SES students (29.1%).

figure 13

The number of funded projects in STEM education for three special participant populations (Note: ELL: English language learners, Low SES: low social-economic status)

Figure 14 shows the trend of projects in STEM education for special participant populations. Participant populations with ELL and/or Low SES gained much attention before 2011 among these projects. Participant populations with disabilities received relatively consistent attention in projects on STEM education over the years. Research on STEM education with special participant populations is important and much needed. However, related scholarship is still in an early development stage. Interested readers can find related publications in this journal (e.g., Schreffler et al., 2019 ) and other journals (e.g., Lee, 2014 ).

figure 14

The distribution of projects in STEM education for special participant populations over the years

Question 5: types of projects in terms of goals for program development and research

Figure 15 shows that “development and innovation” was the most frequently funded type of project (58 projects, 45.7%), followed by “efficacy and replication” (34 projects, 26.8%), and “measurement” (21 projects, 16.5%). The pattern is consistent across “Education Research,” “Special Education Research,” and combined. However, it should be noted that all five projects with the goal of “scale-up evaluation” were in the category “Education Research” Footnote 6 and funding for these projects were large.

figure 15

The number of projects in terms of the types of goals

Examining the types of projects longitudinally, Fig. 16 shows that while “development and innovation” and “efficacy and replication” types of projects were most frequently funded in the “Education Research” program, the types of projects being funded changed longitudinally. The number of “development and innovation” projects was noticeably fewer over the past several years. In contrast, the number of “measurement” projects and “efficacy and replication” projects became more dominant. The change might reflect a shift in research development and needs.

figure 16

The distribution of projects in terms of the type of goals over the years (in “Education Research” program)

Figure 17 shows the distribution of project types in the category “Special Education Research.” The pattern is different from the pattern shown in Fig. 16 . The types of “development and innovation” and “efficacy and replication” projects were also the dominant types of projects under “Special Education Research” program category in most of these years from 2007 to 2019. Projects in the type “measurement” were only observed in 2010 when that was the only type of project funded.

figure 17

The distribution of projects in terms of goals over the years (in “Special Education Research” program)

Question 6: disciplinary foci of projects in developing and conducting STEM education research

Figure 18 shows that the majority of the 127 projects under such specific programs included disciplinary foci on individual STEM disciplines: mathematics in 88 projects, science in 51 projects, technology in 43 projects, and engineering in 2 projects. The tremendous attention to mathematics in these projects is a bit surprising, as mathematics was noted as being out of balance in STEM education (English, 2016 ) and also in STEM education publications (Li, 2018b , 2019 ). As noted above, each project can be classified in multiple disciplinary foci. However, of the 88 projects with a disciplinary focus on mathematics, 54 projects had mathematics as the only disciplinary focus (38 under “Education Research” program and 16 under “Special Education Research” program). We certainly hope that there will be more projects that further scholarship where mathematics is included as part of (integrated) STEM education (see Li & Schoenfeld, 2019 ).

figure 18

The number of projects in terms of disciplinary focus

There were also projects with specific focus on integrated STEM education (i.e., combining any two or more disciplines of STEM), with a total of 55 (43.3%) projects in a combined program count. The limited number of projects on integrated STEM in the designated STEM funding programs further confirms the common perception that the development of integrated STEM education and research is still in its initial stage (Honey et al., 2014 ; Li, 2018a ).

In examining possible funding trends, Fig. 19 shows that mathematics projects were more frequently funded before 2012. Engineering was a rare disciplinary focus. Integrated STEM was a disciplinary focus from time to time among these projects. No other trends were observed.

figure 19

The distribution of projects in terms of disciplinary focus over the years

Question 7: research types and methods that projects used

Figure 20 indicates that “interventional” (in 104 projects, 81.9%) and “experimental research” (in 89 projects, 70.1%) were the most frequently funded types of research. The percentages of projects funded under the regular education research program were similar to those funded under “Special Education Research” program, except that projects funded under “Special Education Research” tended to utilize correlational research more often.

figure 20

The number of projects in terms of the type of research conducted

Research in STEM education uses diverse data collection and analysis methods; therefore, we wanted to study types of methods (Figs. 21 and 22 , respectively). Among the six types of methods used for data collection, Fig. 21 indicates that “standardized tests” and “designed tests” were the most commonly used methods for data collection, followed by “survey,” “observation,” and “interview.” The majority of projects used three quantitative methods (“standardized tests,” “researcher designed tests,” and “survey”). The finding is consistent with the finding from analysis of journal publications in STEM education (Li et al., 2020 ). Data collected through “interview” and “observation” were more likely to be analyzed using qualitative methods as part of a project’s research methodology.

figure 21

The number of projects categorized by the type of data collection methods

figure 22

The number of projects categorized by the type of data analysis methods

Figure 22 shows the use of seven (including others) data analysis methods among these projects. The first six methods (i.e., descriptive, ANOVA*, general regression, HLM, IRT, and SEM) as well as some methods in “others” are quantitative data analysis methods. The number of projects that used these quantitative methods is considerably larger than the number of projects that used qualitative methods (i.e., included in “others” category).

Concluding remarks

The systematic analysis of IES-funded research projects in STEM education presented an informative picture about research support for STEM education development in the USA, albeit based on only one public funding agency from 2003 to 2019. Over this 17-year span, IES funded 127 STEM education research projects (an average of over seven projects per year) in two designated STEM program categories. Although we found no discernable longitudinal funding patterns in these two program categories, both the number of funded projects in STEM education and their funding amounts were high. If we included an additional 52 projects with the acronym “STEM” funded by many other programs from 2007 to 2019 (see “ Notes ” section below), the total number of projects in STEM education research would be even higher, and the number of projects with the acronym “STEM” would also be larger. The results suggested the involvement of many researchers with diverse expertise in STEM education research was supported by a broad array of program areas in IES.

Addressing the seven questions showed several findings. Funding support for STEM education research was strong, with an average of about 2 million USD per project for a typical 3–4 year duration. Also, our analysis showed that the number of projects with multiple PIs over the years increased over the study time period, which we speculate was because STEM education research increasingly requires collaboration. STEM education research is still in early development stage, evidenced by the predominance of project goals in either “development and innovation” or “efficacy and replication” categories. We found very few projects (5 out of 127 projects, 4.0%) that were funded for “scale-up evaluation.” Finally, as shown by our analysis of project participants, IES had focused on funding projects for students in grades 1–12. Various quantitative research methods were frequently used by these projects for data collection and analyses.

These results illustrated how well STEM education research was supported through both the designated STEM education and many other programs during the study time period, which helps to explain why researchers in the USA have been so productive in producing and promoting scholarship in STEM education (Li et al., 2019 ; Li et al., 2020 ). We connected several findings from this study to findings from recent reviews of journal publications in STEM education. For example, publications in STEM education appeared in many different journals as many researchers with diverse expertise were supported to study various issues related to STEM education, STEM education publications often have co-authorship, and there is heavy use of quantitative research methods. The link between public funding and significant numbers of publications in STEM education research from US scholars offers a strong argument for the importance of providing strong funding support to research and development in STEM education in the USA and also in many other countries around the world.

The systematic analysis also revealed that STEM education, as used by IES in naming the designated programs, did not convey a clear definition or scope. In fact, we found diverse disciplinary foci in these projects. Integrated STEM was not a main focus of these designated programs in funding STEM education. Instead, many projects in these programs had clear subject content focus in individual disciplines, which is very similar to discipline-based education research (DBER, National Research Council, 2012 ). Interestingly enough, STEM education research had also been supported in many other programs of IES with diverse foci Footnote 7 , such as “Small Business Innovation Research,” “Cognition and Student Learning,” and “Postsecondary and Adult Education.” This funding reality further suggested the broad scope of issues associated with STEM education, as well as the growing need of building STEM education research as a distinct field (Li, 2018a ).

Inspired by our recent review of journal publications as research output in STEM education, this review started with an ambitious goal to study funding support as research input for STEM education. However, we had to limit the scope of the study for feasibility. We limited funding sources to one federal agency in the USA. Therefore, we did not analyze funding support from private funding sources including many private foundations and corporations. Although public funding sources have been one of the most important funding supports available for researchers to develop and expand their research work, the results of this systematic analysis suggest the importance future studies to learn more about research support and input to STEM education from other sources including other major public funding agencies, private foundations, and non-profit professional organizations.

Among these 54 funded projects containing the acronym “STEM” from 2007 to 2019, Table 1 shows that only 2 (3.7%) were in the IES designated program option of STEM education in the category of “Education Research.” Forty-nine projects were in 13 other program options in the category of “Education Research,” with surprisingly large numbers of projects under the “Small Business Innovation Research” option (17, 31.5%) and “Cognition and Student Learning” (11, 20.4%). Three of the 54 funded projects were in the program category of “Special Education Research.” To be specific, two of the three were in the program of “Small Business Innovation Research in Special Education,” and one was in the program of “Special Topic: Career and Technical Education for Students with Disabilities.”

The results suggest that many projects, focusing on various issues and questions directly associated with STEM education, were funded even when researchers applied for funding support in program options not designated as “Science, Technology, Engineering, and Mathematics (STEM) Education.” It implies that issues associated with STEM education had been generally acknowledged as important across many different program areas in education research and special education research. The funding support available in diverse program areas likely allowed numerous scholars with diverse expertise to study many different questions and publish their research in diverse journals, as we noted in the recent review of journal publications in STEM education (Li et al., 2020 ).

A previous study identified and analyzed a total of 46 IES funded projects from 2007 to 2018 (with an average of fewer than 4 projects per year) that contain the acronym “STEM” in a project’s title and/or description (Wang et al., 2019 ). Finding eight newly funded projects in 2019 suggested a growing interest in research on issues directly associated with STEM education in diverse program areas. In fact, five out of these eight newly funded projects specifically included the acronym “STEM” in the project’s title to explicitly indicate the project’s association with STEM education.

Availability of data and materials

The data and materials used and analyzed for the review are publicly available at the IES website, White House website, and other government agency websites.

In a previous study (Wang, Li, & Xiao, 2019), we used the acronym “STEM” as a search term under the option of “SEARCH FUNDED RESEARCH GRANTS AND CONTRACTS” without any program category restriction, and identified and analyzed 46 funded projects from 2007 to 2018 that contain “STEM” in a project’s title and/or description after screening out unrelated key words containing “stem” such as “system”. To make comparisons when needed, we did the same search using the acronym “STEM” and found 8 more funded projects in 2019 for a total of 54 funded projects across many different program categories from 2007 to 2019.

The project of “A Randomized Controlled Study of the Effects of Intelligent Online Chemistry Tutors in Urban California School Districts” (2008). In the project description, its subtitle shows intervention information. We coded this project as “interventional.” Then, the project also included the treatment group and the control group. We coded this project as “experimental.” Finally, this project was to test the efficacy of computer-based cognitive tutors. This was a correlational study. We thus coded it as “correlational.”

Computer data means that the project description indicated this kind of information, such as log data on students.

Descriptive means “descriptive statistics.” General regression means multiple regression, linear regression, logistical regression, except hierarchical linear regression model. ANOVA* is used here as a broad term to include analysis of variance, analysis of covariance, multivariate analysis of variance, and/or multivariate analysis of variance. Others include factor analysis, t tests, Mann-Whitney tests, and binomial tests, log data analysis, meta-analysis, constant comparative data analysis, and qualitative analysis.

Special education originally was about students with disabilities. It has broadened in scope over the years.

The number of students under Special Education was 14% of students in public schools in the USA in 2017–2018. https://nces.ed.gov/programs/coe/indicator_cgg.asp

For example, “Design Environment for Educator-Student Collaboration Allowing Real-Time Engineering-centric, STEM (DESCARTES) Exploration in Middle Grades” (2017) was funded as a 2-year project to Parametric Studios, Inc. (awardee) under the program option of “Small Business Innovation Research” (here is the link: https://ies.ed.gov/funding/grantsearch/details.asp?ID=1922 ). “Exploring the Spatial Alignment Hypothesis in STEM Learning Environments” (2017) was funded as a 4-year project to WestEd (awardee) under the program option of “Cognition and Student Learning” (link: https://ies.ed.gov/funding/grantsearch/details.asp?ID=2059 ). “Enhancing Undergraduate STEM Education by Integrating Mobile Learning Technologies with Natural Language Processing” (2018) was funded as a 4-year project to Purdue University (awardee) under the program option of “Postsecondary and Adult Education” (link: https://ies.ed.gov/funding/grantsearch/details.asp?ID=2130 ).

Abbreviations

Analysis of variance

Discipline-based education research

Department of Education

Hierarchical linear modeling

Institute of Education Sciences

Item response theory

National Science Foundation

Pre-school–grade 12

Requests-for-proposal

Structural equation modeling

Science, technology, engineering, and mathematics

Committee on STEM Education, National Science & Technology Council, the White House (2018). Charting a course for success: America’s strategy for STEM education . Washington, DC. https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf Accessed on 18 Jan 2019.

English, L. D. (2016). STEM education K-12: perspectives on integration. International Journal of STEM Education, 3 , 3 https://doi.org/10.1186/s40594-016-0036-1 .

Article   Google Scholar  

Honey, M., Pearson, G., & Schweingruber, A. (2014). STEM integration in K-12 education: status, prospects, and an agenda for research . Washington DC: National Academies Press.

Google Scholar  

Institute of Education Sciences (IES) (n.d.). About IES: connecting research, policy and practice. Retrieved from https://ies.ed.gov/aboutus/ Accessed on 2 Feb 2020.

Institute of Education Sciences (IES) & National Science Foundation (NSF). (2013). Common guidelines for education research and development. Washington, DC: The authors. Retrieved from https://www.nsf.gov/pubs/2013/nsf13126/nsf13126.pdf Accessed on 2 Feb 2020.

Lee, A. (2014). Students with disabilities choosing science technology engineering and math (STEM) majors in postsecondary institutions. Journal of Postsecondary Education and Disability, 27 (3), 261–272.

Li, Y. (2014). International journal of STEM education – a platform to promote STEM education and research worldwide. International Journal of STEM Education, 1 , 1 https://doi.org/10.1186/2196-7822-1-1 .

Li, Y. (2018a). Journal for STEM Education Research – promoting the development of interdisciplinary research in STEM education. Journal for STEM Education Research, 1 (1-2), 1–6 https://doi.org/10.1007/s41979-018-0009-z .

Li, Y. (2018b). Four years of development as a gathering place for international researchers and readers in STEM education. International Journal of STEM Education, 5 , 54 https://doi.org/10.1186/s40594-018-0153-0 .

Li, Y. (2019). Five years of development in pursuing excellence in quality and global impact to become the first journal in STEM education covered in SSCI. International Journal of STEM Education, 6 , 42 https://doi.org/10.1186/s40594-019-0198-8 .

Li, Y., Froyd, J. E., & Wang, K. (2019). Learning about research and readership development in STEM education: a systematic analysis of the journal’s publications from 2014 to 2018. International Journal of STEM Education, 6 , 19 https://doi.org/10.1186/s40594-019-0176-1 .

Li, Y., & Schoenfeld, A. H. (2019). Problematizing teaching and learning mathematics as ‘given’ in STEM education. International Journal of STEM Education, 6 , 44 https://doi.org/10.1186/s40594-019-0197-9 .

Li, Y., Wang, K., Xiao, Y., & Froyd, J. E. (2020). Research and trends in STEM education: a systematic review of journal publications. International Journal of STEM Education, 7 , 11 https://doi.org/10.1186/s40594-020-00207-6 .

Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: a systematic literature review. International Journal of STEM Education, 6 , 2 https://doi.org/10.1186/s40594-018-0151-2 .

Minichiello, A., Hood, J. R., & Harkness, D. S. (2018). Bring user experience design to bear on STEM education: a narrative literature review. Journal for STEM Education Research, 1 (1-2), 7–33.

National Research Council. (2012). Discipline-based education research: understanding and improving learning in undergraduate science and engineering . Washington DC: National Academies Press.

Otten, M., Van den Heuvel-Panhuizen, M., & Veldhuis, M. (2019). The balance model for teaching linear equations: a systematic literature review. International Journal of STEM Education, 6 , 30 https://doi.org/10.1186/s40594-019-0183-2 .

Schreffler, J., Vasquez III, E., Chini, J., & James, W. (2019). Universal design for learning in postsecondary STEM education for students with disabilities: a systematic literature review. International Journal of STEM Education, 6 , 8 https://doi.org/10.1186/s40594-019-0161-8 .

The White House (2009). President Obama launches “Educate to Innovate” campaign for excellence in science, technology, engineering & math (Stem) education. Retrieved from https://obamawhitehouse.archives.gov/the-press-office/president-obama-launches-educate-innovate-campaign-excellence-science-technology-en Accessed on 2 Feb 2020.

The White House (2017). Presidential memorandum for the secretary of Education. Retrieved from https://www.whitehouse.gov/presidential-actions/presidential-memorandum-secretary-education/ Accessed on 2 Feb 2020.

The White House (2018). President Donald J. Trump is working to ensure all Americans have access to STEM education. Retrieved from https://www.whitehouse.gov/briefings-statements/president-donald-j-trump-is-working-to-ensure-all-americans-have-access-to-stem-education/ Accessed on 2 Feb 2020.

U.S. Department of Education (2018). U.S. Department of Education fulfills administration promise to invest $200 million in STEM education. Retrieved from https://www.ed.gov/news/press-releases/us-department-education-fulfills-administration-promise-invest-200-million-stem-education Accessed on 2 Feb 2020.

Wang, K., Li, Y., & Xiao, Y. (2019). Exploring the status and development trends of STEM education research: the case of IES funded projects on STEM education in the U.S. 数学教育学报 . Journal of Mathematics Education, 28 (3), 53–61.

Download references

This review was supported by a grant from the National Science Foundation (DUE-1852942). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and affiliations.

Texas A&M University, College Station, TX, 77843-4232, USA

Yeping Li, Yu Xiao & Sandra B. Nite

Nicholls State University, Thibodaux, LA, 70310, USA

Ohio State University, Columbus, OH, 43210, USA

Jeffrey E. Froyd

You can also search for this author in PubMed   Google Scholar

Contributions

YL conceptualized the study and drafted the manuscript. KW contributed with data collection, coding, analyses, and manuscript reviews. YX contributed to data collection, coding, and manuscript reviews. JEF and SBN contributed to manuscript improvement through manuscript reviews and revisions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yeping Li .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Li, Y., Wang, K., Xiao, Y. et al. Research and trends in STEM education: a systematic analysis of publicly funded projects. IJ STEM Ed 7 , 17 (2020). https://doi.org/10.1186/s40594-020-00213-8

Download citation

Received : 18 March 2020

Accepted : 20 March 2020

Published : 22 April 2020

DOI : https://doi.org/10.1186/s40594-020-00213-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Scholarship
  • STEM education research
  • STEM funding

what are the research topics for stem students

Advertisement

Advertisement

Trends and Hot Topics of STEM and STEM Education: a Co-word Analysis of Literature Published in 2011–2020

  • Published: 23 February 2023

Cite this article

what are the research topics for stem students

  • Ying-Shao Hsu   ORCID: orcid.org/0000-0002-1635-8213 1 , 2 ,
  • Kai-Yu Tang   ORCID: orcid.org/0000-0002-3965-3055 3 &
  • Tzu-Chiang Lin   ORCID: orcid.org/0000-0003-3842-3749 4 , 5  

1022 Accesses

3 Citations

Explore all metrics

This study explored research trends in science, technology, engineering, and mathematics (STEM) education. Descriptive analysis and co-word analysis were used to examine articles published in Social Science Citation Index journals from 2011 to 2020. From a search of the Web of Science database, a total of 761 articles were selected as target samples for analysis. A growing number of STEM-related publications were published after 2016. The most frequently used keywords in these sample papers were also identified. Further analysis identified the leading journals and most represented countries among the target articles. A series of co-word analyses were conducted to reveal word co-occurrence according to the title, keywords, and abstract. Gender moderated engagement in STEM learning and career selection. Higher education was critical in training a STEM workforce to satisfy societal requirements for STEM roles. Our findings indicated that the attention of STEM education researchers has shifted to the professional development of teachers. Discussions and potential research directions in the field are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

what are the research topics for stem students

Similar content being viewed by others

what are the research topics for stem students

A review of STEM education with the support of visualizing its structure through the CiteSpace software

what are the research topics for stem students

A systematic review of STEM education research in the GCC countries: trends, gaps and barriers

what are the research topics for stem students

Mathematics and interdisciplinary STEM education: recent developments and future directions

Data availability.

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Akgunduz, D. (2016). A Research about the placement of the top thousand students placed in STEM fields in Turkey between the years 2000 and 2014. EURASIA Journal of Mathematics, Science and Technology Education, 12 (5), 1365–1377.

Article   Google Scholar  

Appianing, J., & Van Eck, R. N. (2018). Development and validation of the Value-Expectancy STEM Assessment Scale for students in higher education. International Journal of STEM Education , 5 , article 24.

Assefa, S. G., & Rorissa, A. (2013). A bibliometric mapping of the structure of STEM education using co-word analysis. Journal of the American Society for Information Science and Technology, 64 (12), 2513–2536.

Belland, B. R., Walker, A. E., Kim, N. J., & Lefler, M. (2017). Synthesizing results from empirical research on computer-based scaffolding in STEM education: A meta-analysis. Review of Educational Research, 87 (2), 309–344.

Brotman, J. S., & Moore, F. M. (2008). Girls and science: A review of four themes in the science education literature. Journal of Research in Science Teaching, 45 (9), 971–1002.

Brown, R. E., & Bogiages, C. A. (2019). Professional development through STEM integration: How early career math and science teachers respond to experiencing integrated STEM tasks. International Journal of Science and Mathematics Education, 17 (1), 111–128.

Burt, B. A., Williams, K. L., & Palmer, G. J. M. (2019). It takes a village: The role of emic and etic adaptive strengths in the persistence of black men in engineering graduate programs. American Educational Research Journal, 56 (1), 39–74.

Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry. Scientometrics, 22 (1), 155–205.

Carlisle, D. L. & Weaver, G. C. (2018). STEM education centers: Catalyzing the improvement of undergraduate STEM education. International Journal of STEM Education, 5 , article 47.

Chang, D. F., & ChangTzeng, H. C. (2020). Patterns of gender parity in the humanities and STEM programs: The trajectory under the expanded higher education system. Studies in Higher Education, 45 (6), 1108–1120.

Charleston, L. J. (2012). A qualitative investigation of African Americans’ decision to pursue computing science degrees: Implications for cultivating career choice and aspiration. Journal of Diversity in Higher Education, 5 (4), 222–243.

Charleston, L. J., George, P. L., Jackson, J. F. L., Berhanu, J., & Amechi, M. H. (2014). Navigating underrepresented STEM spaces: Experiences of black women in US computing science higher education programs who actualize success. Journal of Diversity in Higher Education, 7 (3), 166–176.

Chien, Y. H., & Chu, P. Y. (2018). The different learning outcomes of high school and college students on a 3D-printing STEAM engineering design curriculum. International Journal of Science and Mathematics Education, 16 (6), 1047–1064.

Dehdarirad, T., Villarroya, A., & Barrios, M. (2014). Research trends in gender differences in higher education and science: A co-word analysis. Scientometrics, 101 (1), 273–290.

Dickerson, D. L., Eckhoff, A., Stewart, C. O., Chappell, S., & Hathcock, S. (2014). The examination of a pullout STEM program for urban upper elementary students. Research in Science Education, 44 (3), 483–506.

Eccles, J., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J., & Midgley, C. (1983). Expectancies, values and academic behaviors. In J. T. Spence (Ed.), Achievement and Achievement Motives . W. San Francisco: H. Freeman.

Ellison, S., & Allen, B. (2018). Disruptive innovation, labor markets, and Big Valley STEM School: Network analysis in STEM education. Cultural Studies of Science Education, 13 (1), 267–298.

Erdogan, N., Navruz, B., Younes, R., & Capraro, R. M. (2016). Viewing how STEM project-based learning influences students’ science achievement through the implementation lens: A latent growth modeling. Eurasia Journal of Mathematics, Science and Technology Education, 12 (8), 2139–2154.

European Commission, Directorate-General for Education, Youth, Sport and Culture (2016). Does the EU need more STEM graduates? Final report . Retrieve from https://data.europa.eu/doi/10.2766/000444

Fredricks, J. A., Hofkens, T., Wang, M. T., Mortenson, E., & Scott, P. (2018). Supporting girls’ and boys’ engagement in math and science learning: A mixed methods study. Journal of Research in Science Teaching, 55 (2), 271–298.

Fry, R., Kennedy, B., & Funk, C. (2021). Stem jobs see uneven progress in increasing gender, racial and ethnic diversity. Retrieve from https://www.pewresearch.org/science/wp-content/uploads/sites/16/2021/03/PS_2021.04.01_diversity-in-STEM_REPORT.pdf

Ganley, C. M., George, C. E., Cimpian, J. R., & Makowski, M. B. (2018). Gender equity in college majors: Looking beyond the STEM/non-STEM dichotomy for answers regarding female participation. American Educational Research Journal, 55 (3), 453–487.

Gehrke, S., & Kezar, A. (2019). Perceived outcomes associated with engagement in and design of faculty communities of practice focused on STEM reform. Research in Higher Education, 60 (4), 844–869.

Gilmore, J., Vieyra, M., Timmerman, B., Feldon, D., & Maher, M. (2015). The relationship between undergraduate research participation and subsequent research performance of early career STEM graduate students. Journal of Higher Education, 86 (6), 834–863.

Godwin, A., Potvin, G., Hazari, Z., & Lock, R. (2016). Identity, critical agency, and engineering: An affective model for predicting engineering as a career choice. Journal of Engineering Education, 105 (2), 312–340.

Han, S., Yalvac, B., Capraro, M. M., & Capraro, R. M. (2015). In-service teachers’ implementation and understanding of STEM project based learning. Eurasia Journal of Mathematics Science and Technology Education, 11 (1), 63–76.

Heras, M., Ruiz-Mallén, I., & Gallois, S. (2020). Staging science with young people: Bringing science closer to students through stand-up comedy. International Journal of Science Education, 42 (12), 1968–1987.

Hernandez, P. R., Estrada, M., Woodcock, A., & Schultz, P. W. (2017). Protégé perceptions of high mentorship quality depend on shared values more than on demographic match. Journal of Experimental Education, 85 (3), 450–468.

Hinojo Lucena, F. J., Lopez Belmonte, J., Fuentes Cabrera, A., Trujillo Torres, J. M., & Pozo Sanchez, S. (2020). Academic effects of the use of flipped learning in physical education. International journal of Environmental Research and Public Health , 17 (1), article 276.

Holmes, K., Gore, J., Smith, M., & Lloyd, A. (2018). An integrated analysis of school students’ aspirations for STEM careers: Which student and school factors are most predictive? International Journal of Science and Mathematics Education, 16 (4), 655–675.

Huang, X., & Qiao, C. (2022). Enhancing computational thinking skills through artificial intelligence education at a STEAM high school. Science & Education . https://doi.org/10.1007/s11191-022-00392-6

Hughes, R. M., Nzekwe, B., & Molynearx, K. J. (2013). The single sex debate for girls in science: A comparison between two informal science programs on middle school students’ STEM identity formation. Research in Science Education, 43 , 1979–2007.

Hughes, B. S., Corrigan, M. W., Grove, D., Andersen, S. B., & Wong, J. T. (2022). Integrating arts with STEM and leading with STEAM to increase science learning with equity for emerging bilingual learners in the United States. International Journal of STEM Education , 9 , article 58.

Johnson, A. M. (2019). “I can turn it on when I need to”: Pre-college integration, culture, and peer academic engagement among black and Latino/a engineering students. Sociology of Education, 92 (1), 1–20.

Kayan-Fadlelmula, F., Sellami, A., Abdelkader, N., & Umer, S. (2022). A systematic review of STEM education research in the GCC countries: Trends, gaps and barriers. International Journal of STEM Education, 9 , article 2.

Kelly, R., Mc Garr, O., Leahy, K., & Goos, M. (2020). An investigation of university students and professionals’ professional STEM identity status. Journal of Science Education and Technology, 29 (4), 536–546.

Kezar, A., Gehrke, S., & Bernstein-Sierra, S. (2017). Designing for success in STEM communities of practice: Philosophy and personal interactions. The Review of Higher Education, 40 (2), 217–244.

Kezar, A., Gehrke, S., & Bernstein-Sierra, S. (2018). Communities of transformation: Creating changes to deeply entrenched issues. The Journal of Higher Education, 89 (6), 832–864.

Kricorian, K., Seu, M., Lpoez, D., Ureta, E., & Equils, O. (2020). Factors influencing participation of underrepresented students in STEM fields: Matched mentors and mindsets. International Journal of STEM Education, 7 , article 16.

Ku, C. J., Hsu, Y. S., Chang, M. C., & Lin, K. Y. (2022). A model for examining middle school students’ STEM integration behavior in a national technology competition. International Journal of STEM Education, 9 (1), 3.

Leydesdroff, L. (1989). Words and co-words as indicators of intellectual organization. Research Policy, 18 (4), 209–223.

Li, Y., Wang, K., Xiao, Y., & Froyd, J. E. (2020a). Research and trends in STEM education: A systematic review of journal publications. International Journal of STEM Education, 7 , article 11.

Li, Y., Wang, K., Xiao, Y., Froyd, J. E., Nite, S. B. (2020b). Research and trends in STEM education: A systematic analysis of publicly funded projects. International Journal of STEM Education, 7 , article 17.

Lin, T. C., Lin, T. J., & Tsai, C. C. (2014). Research trends in science education from 2008 to 2012: A systematic content analysis of publications in selected journals. International Journal of Science Education, 36 (8), 1346–1372.

Lin, T. J., Lin, T. C., Potvin, P., & Tsai, C. C. (2019). Research trends in science education from 2013 to 2017: A systematic content analysis of publications in selected journals. International Journal of Science Education, 41 (3), 367–387.

Lin, T. C., Tang, K. Y., Lin, S. S., Changlai, M. L., & Hsu, Y. S. (2022). A co-word analysis of selected science education literature: Identifying research trends of scaffolding in two decades (2000–2019). Frontiers in Psychology, 13 , 844425.

Liu, J. S., & Lu, L. Y. (2012). An integrated approach for main path analysis: Development of the Hirsch index as an example. Journal of the American Society for Information Science and Technology, 63 (3), 528–542.

Liu, C. Y., & Wu, C. J. (2022). STEM without art: A ship without a sail. Thinking Skills and Creativity, 43 , 100977.

Lou, S. H., Shih, R. C., Diez, C. R., & Tseng, K. H. (2011). The impact of problem-based learning strategies on STEM knowledge integration and attitudes: An exploratory study among female Taiwanese senior high school students. International Journal of Technology and Design Education, 21 (2), 195–215.

Lynch, S. J., Burton, E. P., Behrend, T., House, A., Ford, M., Spillane, N., Matray, S., Han, E., & Means, B. (2018). Understanding inclusive STEM high schools as opportunity structures for underrepresented students: Critical components. Journal of Research in Science Teaching, 55 (5), 712–748.

Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The Role of mathematics in interdisciplinary STEM education. ZDM-Mathematics Education, 51 (6), 869–884.

Mansfield, K. C. (2014). How listening to student voices informs and strengthens social justice research and practice. Educational Administration Quarterly, 50 (3), 392–430.

Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: A systematic literature review. International Journal of STEM education , 6 , article 2.

Marín-Marín, J. A., Moreno-Guerrero, A. J., Dúo-Terrón, P., & López-Belmonte, J. (2021). STEAM in education: A bibliometric analysis of performance and co-words in Web of Science. International Journal of STEM Education , 8 , article 41.

Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A Review of Literature. Science Education, 103 (4), 799–822.

Google Scholar  

McGee, E. O. (2020). Interrogating structural racism in STEM higher education. Educational Researcher, 49 (9), 633–644.

Meho, L. I., & Yang, K. (2006). A new era in citation and bibliometric analyses: Web of Science, Scopus, and Google Scholar. arXiv preprint cs/0612132 .

Mejias, S., Thompson, N., Sedas, R. M., Rosin, M., Soep, E., Peppler, K., Roche, J., Wong, J., Hurley, M., Bell, P., & Bevan, B. (2021). The trouble with STEAM and why we use it anyway. Science Education, 105 (2), 209–231.

Micari, M., Van Winkle, Z., & Pazos, P. (2016). Among friends: The role of academic-preparedness diversity in individual performance within a small-group STEM learning environment. International Journal of Science Education, 38 (12), 1904–1922.

Millar, V. (2020). Trends, issues and possibilities for an interdisciplinary STEM curriculum. Science & Education, 29 (4), 929–948.

Nadelson, L. S., Callahan, J., Pyke, P., Hay, A., Dance, M., & Pfiester, J. (2013). Teacher STEM perception and preparation: Inquiry-based STEM professional development for elementary teachers. Journal of Educational Research, 106 (2), 157–168.

Nakatoh, T., & Hirokawa, S. (2019, July). Evaluation index to find relevant papers: Improvement of focused citation count. In International Conference on Human-Computer Interaction (pp. 555–566). Springer, Cham.

National Science Technology Council. (2012). Coordinating federal science, technology, engineering, and mathematics (STEM) education investments: Progress report. Retrieved from https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/nstc_federal_stem_education_coordination_report.pdf

National Science Technology Council. (2013). Federal Science, Technology, Engineering, and Mathematics (STEM) Education 5-Year Strategic Plan. Retrieved from https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/stem_stratplan_2013.pdf

Ong, M., Smith, J. M., & Ko, L. T. (2018). Counterspaces for women of color in STEM higher education: Marginal and central spaces for persistence and success. Journal of Research in Science Teaching, 55 (2), 206–245.

Organisation for Economic Cooperation and Development, OECD (2021). Education at A Glance 2021. Retrieve from https://read.oecd.org/10.1787/b35a14e5-en?format=pdf

Perez-Felkner, L., Felkner, J. S., Nix, S., & Magalhaes, M. (2020). The puzzling relationship between international development and gender equity: The case of STEM postsecondary education in Cambodia. International Journal of Educational Development, 72 , 102102.

Perignat, E., & Katz-Buonincontro, J. (2019). STEAM in practice and research: An integrative literature review. Thinking Skills and Creativity, 31 , 31–43.

Quigley, C. F., & Herro, D. (2016). “Finding the joy in the unknown”: Implementation of steam teaching practices in middle school science and math classrooms. Journal of Science Education and Technology, 25 (3), 410–426.

Ramey, K. E., & Stevens, R. (2019). Interest development and learning in choice-based, in-school, making activities: The case of a 3D printer. Learning, Culture and Social Interaction, 23 , 100262.

Salami, M. K., Makela, C. J., & de Miranda, M. A. (2017). Assessing changes in teachers’ attitudes toward interdisciplinary STEM teaching. International Journal of Technology and Design Education, 27 (1), 63–88.

Sanders, M. (2009). Integrative STEM education primer. The Technology Teacher, 68 (4), 20–26.

Saorín, J. L., Melian-Díaz, D., Bonnet, A., Carrera, C. C., Meier, C., & De La Torre-Cantero, J. (2017). Makerspace teaching-learning environment to enhance creative competence in engineering students. Thinking Skills and Creativity, 23 , 188–198.

Simon, R. M., Wagner, A., & Killion, B. (2017). Gender and choosing a STEM major in college: Femininity, masculinity, chilly climate, and occupational values. Journal of Research in Science Teaching, 54 (3), 299–323.

Stolle-McAllister, K., Domingo, M. R. S., & Carrillo, A. (2011). The Meyerhoff way: How the Meyerhoff scholarship program helps black students succeed in the sciences. Journal of Science Education and Technology, 20 (1), 5–16.

Thomas, B., & Watters, J. J. (2015). Perspectives on Australian, Indian and Malaysian approaches to STEM education. International Journal of Educational Development, 45 , 42–53.

Tosun, C. (2022). Analysis of the last 40 years of science education research via bibliometric methods. Science & Education . https://doi.org/10.1007/s11191-022-00400-9

Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84 (2), 523–538.

Vencent-Ruz, P., & Schunn, C. D. (2017). The increasingly important role of science competency beliefs for science learning in girls. Journal of Research in Science Teaching, 54 (6), 790–822.

Wang, S., Chen, Y., Lv, X., & Xu, J. (2022). Hot topics and frontier evolution of science education research: A bibliometric mapping from 2001 to 2020. Science & Education . https://doi.org/10.1007/s11191-022-00337-z

Weeden, K. A., Gelbgiser, D., & Morgan, S. L. (2020). Pipeline dreams: Occupational plans and gender differences in STEM major persistence and completion. Sociology of Education, 93 (4), 297–314.

Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25 (1), 68–81.

Download references

Author information

Authors and affiliations.

Graduate Institute of Science Education, National Taiwan Normal University, No. 88, Ting-Jou Rd., Sec. 4, Taipei City, 116, Taiwan

Ying-Shao Hsu

Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, No. 88, Ting-Jou Rd., Sec. 4, Taipei City, 116, Taiwan

Graduate Institute of Library & Information Science, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan

Kai-Yu Tang

Center for Liberal Arts, National Kaohsiung University of Science and Technology, No. 415, Jiangong Rd., Sanmin Dist, Kaohsiung City, 807618, Taiwan

Tzu-Chiang Lin

Center for Teacher Education, National Kaohsiung University of Science and Technology, No. 415, Jiangong Rd., Sanmin Dist, Kaohsiung City, 807618, Taiwan

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Tzu-Chiang Lin .

Ethics declarations

Ethical approval and consent to participate.

This study involves neither human participants’ data nor relevant biological material. Ethics approval and informed consent are hence not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Hsu, YS., Tang, KY. & Lin, TC. Trends and Hot Topics of STEM and STEM Education: a Co-word Analysis of Literature Published in 2011–2020. Sci & Educ (2023). https://doi.org/10.1007/s11191-023-00419-6

Download citation

Accepted : 26 January 2023

Published : 23 February 2023

DOI : https://doi.org/10.1007/s11191-023-00419-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • STEM education
  • Co-word analysis
  • Research trends
  • Find a journal
  • Publish with us
  • Track your research

CodeAvail

Best 151+ Quantitative Research Topics for STEM Students

Quantitative Research Topics for STEM Students

In today’s rapidly evolving world, STEM (Science, Technology, Engineering, and Mathematics) fields have gained immense significance. For STEM students, engaging in quantitative research is a pivotal aspect of their academic journey. Quantitative research involves the systematic collection and interpretation of numerical data to address research questions or test hypotheses. Choosing the right research topic is essential to ensure a successful and meaningful research endeavor. 

In this blog, we will explore 151+ quantitative research topics for STEM students. Whether you are an aspiring scientist, engineer, or mathematician, this comprehensive list will inspire your research journey. But we understand that the journey through STEM education and research can be challenging at times. That’s why we’re here to support you every step of the way with our Engineering Assignment Help service. 

What is Quantitative Research in STEM?

Table of Contents

Quantitative research is a scientific approach that relies on numerical data and statistical analysis to draw conclusions and make predictions. In STEM fields, quantitative research encompasses a wide range of methodologies, including experiments, surveys, and data analysis. The key characteristics of quantitative research in STEM include:

  • Data Collection: Systematic gathering of numerical data through experiments, observations, or surveys.
  • Statistical Analysis: Application of statistical techniques to analyze data and draw meaningful conclusions.
  • Hypothesis Testing: Testing hypotheses and theories using quantitative data.
  • Replicability: The ability to replicate experiments and obtain consistent results.
  • Generalizability: Drawing conclusions that can be applied to larger populations or phenomena.

Importance of Quantitative Research Topics for STEM Students

Quantitative research plays a pivotal role in STEM education and research for several reasons:

1. Empirical Evidence

It provides empirical evidence to support or refute scientific theories and hypotheses.

2. Data-Driven Decision-Making

STEM professionals use quantitative research to make informed decisions, from designing experiments to developing new technologies.

3. Innovation

It fuels innovation by providing data-driven insights that lead to the creation of new products, processes, and technologies.

4. Problem Solving

STEM students learn critical problem-solving skills through quantitative research, which are invaluable in their future careers.

5. Interdisciplinary Applications 

Quantitative research transcends STEM disciplines, facilitating collaboration and the tackling of complex, real-world problems.

Also Read: Google Scholar Research Topics

Quantitative Research Topics for STEM Students

Now, let’s explore important quantitative research topics for STEM students:

Biology and Life Sciences

Here are some quantitative research topics in biology and life science:

1. The impact of climate change on biodiversity.

2. Analyzing the genetic basis of disease susceptibility.

3. Studying the effectiveness of vaccines in preventing infectious diseases.

4. Investigating the ecological consequences of invasive species.

5. Examining the role of genetics in aging.

6. Analyzing the effects of pollution on aquatic ecosystems.

7. Studying the evolution of antibiotic resistance.

8. Investigating the relationship between diet and lifespan.

9. Analyzing the impact of deforestation on wildlife.

10. Studying the genetics of cancer development.

11. Investigating the effectiveness of various plant fertilizers.

12. Analyzing the impact of microplastics on marine life.

13. Studying the genetics of human behavior.

14. Investigating the effects of pollution on plant growth.

15. Analyzing the microbiome’s role in human health.

16. Studying the impact of climate change on crop yields.

17. Investigating the genetics of rare diseases.

Let’s get started with some quantitative research topics for stem students in chemistry:

1. Studying the properties of superconductors at different temperatures.

2. Analyzing the efficiency of various catalysts in chemical reactions.

3. Investigating the synthesis of novel polymers with unique properties.

4. Studying the kinetics of chemical reactions.

5. Analyzing the environmental impact of chemical waste disposal.

6. Investigating the properties of nanomaterials for drug delivery.

7. Studying the behavior of nanoparticles in different solvents.

8. Analyzing the use of renewable energy sources in chemical processes.

9. Investigating the chemistry of atmospheric pollutants.

10. Studying the properties of graphene for electronic applications.

11. Analyzing the use of enzymes in industrial processes.

12. Investigating the chemistry of alternative fuels.

13. Studying the synthesis of pharmaceutical compounds.

14. Analyzing the properties of materials for battery technology.

15. Investigating the chemistry of natural products for drug discovery.

16. Analyzing the effects of chemical additives on food preservation.

17. Investigating the chemistry of carbon capture and utilization technologies.

Here are some quantitative research topics in physics for stem students:

1. Investigating the behavior of subatomic particles in high-energy collisions.

2. Analyzing the properties of dark matter and dark energy.

3. Studying the quantum properties of entangled particles.

4. Investigating the dynamics of black holes and their gravitational effects.

5. Analyzing the behavior of light in different mediums.

6. Studying the properties of superfluids at low temperatures.

7. Investigating the physics of renewable energy sources like solar cells.

8. Analyzing the properties of materials at extreme temperatures and pressures.

9. Studying the behavior of electromagnetic waves in various applications.

10. Investigating the physics of quantum computing.

11. Analyzing the properties of magnetic materials for data storage.

12. Studying the behavior of particles in plasma for fusion energy research.

13. Investigating the physics of nanoscale materials and devices.

14. Analyzing the properties of materials for use in semiconductors.

15. Studying the principles of thermodynamics in energy efficiency.

16. Investigating the physics of gravitational waves.

17. Analyzing the properties of materials for use in quantum technologies.

Engineering

Let’s explore some quantitative research topics for stem students in engineering: 

1. Investigating the efficiency of renewable energy systems in urban environments.

2. Analyzing the impact of 3D printing on manufacturing processes.

3. Studying the structural integrity of materials in aerospace engineering.

4. Investigating the use of artificial intelligence in autonomous vehicles.

5. Analyzing the efficiency of water treatment processes in civil engineering.

6. Studying the impact of robotics in healthcare.

7. Investigating the optimization of supply chain logistics using quantitative methods.

8. Analyzing the energy efficiency of smart buildings.

9. Studying the effects of vibration on structural engineering.

10. Investigating the use of drones in agricultural practices.

11. Analyzing the impact of machine learning in predictive maintenance.

12. Studying the optimization of transportation networks.

13. Investigating the use of nanomaterials in electronic devices.

14. Analyzing the efficiency of renewable energy storage systems.

15. Studying the impact of AI-driven design in architecture.

16. Investigating the optimization of manufacturing processes using Industry 4.0 technologies.

17. Analyzing the use of robotics in underwater exploration.

Environmental Science

Here are some top quantitative research topics in environmental science for students:

1. Investigating the effects of air pollution on respiratory health.

2. Analyzing the impact of deforestation on climate change.

3. Studying the biodiversity of coral reefs and their conservation.

4. Investigating the use of remote sensing in monitoring deforestation.

5. Analyzing the effects of plastic pollution on marine ecosystems.

6. Studying the impact of climate change on glacier retreat.

7. Investigating the use of wetlands for water quality improvement.

8. Analyzing the effects of urbanization on local microclimates.

9. Studying the impact of oil spills on aquatic ecosystems.

10. Investigating the use of renewable energy in mitigating greenhouse gas emissions.

11. Analyzing the effects of soil erosion on agricultural productivity.

12. Studying the impact of invasive species on native ecosystems.

13. Investigating the use of bioremediation for soil cleanup.

14. Analyzing the effects of climate change on migratory bird patterns.

15. Studying the impact of land use changes on water resources.

16. Investigating the use of green infrastructure for urban stormwater management.

17. Analyzing the effects of noise pollution on wildlife behavior.

Computer Science

Let’s get started with some simple quantitative research topics for stem students:

1. Investigating the efficiency of machine learning algorithms for image recognition.

2. Analyzing the security of blockchain technology in financial transactions.

3. Studying the impact of quantum computing on cryptography.

4. Investigating the use of natural language processing in chatbots and virtual assistants.

5. Analyzing the effectiveness of cybersecurity measures in protecting sensitive data.

6. Studying the impact of algorithmic trading in financial markets.

7. Investigating the use of deep learning in autonomous robotics.

8. Analyzing the efficiency of data compression algorithms for large datasets.

9. Studying the impact of virtual reality in medical simulations.

10. Investigating the use of artificial intelligence in personalized medicine.

11. Analyzing the effectiveness of recommendation systems in e-commerce.

12. Studying the impact of cloud computing on data storage and processing.

13. Investigating the use of neural networks in predicting disease outbreaks.

14. Analyzing the efficiency of data mining techniques in customer behavior analysis.

15. Studying the impact of social media algorithms on user behavior.

16. Investigating the use of machine learning in natural language translation.

17. Analyzing the effectiveness of sentiment analysis in social media monitoring.

Mathematics

Let’s explore the quantitative research topics in mathematics for students:

1. Investigating the properties of prime numbers and their distribution.

2. Analyzing the behavior of chaotic systems using differential equations.

3. Studying the optimization of algorithms for solving complex mathematical problems.

4. Investigating the use of graph theory in network analysis.

5. Analyzing the properties of fractals in natural phenomena.

6. Studying the application of probability theory in risk assessment.

7. Investigating the use of numerical methods in solving partial differential equations.

8. Analyzing the properties of mathematical models for population dynamics.

9. Studying the optimization of algorithms for data compression.

10. Investigating the use of topology in data analysis.

11. Analyzing the behavior of mathematical models in financial markets.

12. Studying the application of game theory in strategic decision-making.

13. Investigating the use of mathematical modeling in epidemiology.

14. Analyzing the properties of algebraic structures in coding theory.

15. Studying the optimization of algorithms for image processing.

16. Investigating the use of number theory in cryptography.

17. Analyzing the behavior of mathematical models in climate prediction.

Earth Sciences

Here are some quantitative research topics for stem students in earth science:

1. Investigating the impact of volcanic eruptions on climate patterns.

2. Analyzing the behavior of earthquakes along tectonic plate boundaries.

3. Studying the geomorphology of river systems and erosion.

4. Investigating the use of remote sensing in monitoring wildfires.

5. Analyzing the effects of glacier melt on sea-level rise.

6. Studying the impact of ocean currents on weather patterns.

7. Investigating the use of geothermal energy in renewable power generation.

8. Analyzing the behavior of tsunamis and their destructive potential.

9. Studying the impact of soil erosion on agricultural productivity.

10. Investigating the use of geological data in mineral resource exploration.

11. Analyzing the effects of climate change on coastal erosion.

12. Studying the geomagnetic field and its role in navigation.

13. Investigating the use of radar technology in weather forecasting.

14. Analyzing the behavior of landslides and their triggers.

15. Studying the impact of groundwater depletion on aquifer systems.

16. Investigating the use of GIS (Geographic Information Systems) in land-use planning.

17. Analyzing the effects of urbanization on heat island formation.

Health Sciences and Medicine

Here are some quantitative research topics for stem students in health science and medicine:

1. Investigating the effectiveness of telemedicine in improving healthcare access.

2. Analyzing the impact of personalized medicine in cancer treatment.

3. Studying the epidemiology of infectious diseases and their spread.

4. Investigating the use of wearable devices in monitoring patient health.

5. Analyzing the effects of nutrition and exercise on metabolic health.

6. Studying the impact of genetics in predicting disease susceptibility.

7. Investigating the use of artificial intelligence in medical diagnosis.

8. Analyzing the behavior of pharmaceutical drugs in clinical trials.

9. Studying the effectiveness of mental health interventions in schools.

10. Investigating the use of gene editing technologies in treating genetic disorders.

11. Analyzing the properties of medical imaging techniques for early disease detection.

12. Studying the impact of vaccination campaigns on public health.

13. Investigating the use of regenerative medicine in tissue repair.

14. Analyzing the behavior of pathogens in antimicrobial resistance.

15. Studying the epidemiology of chronic diseases like diabetes and heart disease.

16. Investigating the use of bioinformatics in genomics research.

17. Analyzing the effects of environmental factors on health outcomes.

Quantitative research is the backbone of STEM fields, providing the tools and methodologies needed to explore, understand, and innovate in the world of science and technology . As STEM students, embracing quantitative research not only enhances your analytical skills but also equips you to address complex real-world challenges. With the extensive list of 155+ quantitative research topics for stem students provided in this blog, you have a starting point for your own STEM research journey. Whether you’re interested in biology, chemistry, physics, engineering, or any other STEM discipline, there’s a wealth of quantitative research topics waiting to be explored. So, roll up your sleeves, grab your lab coat or laptop, and embark on your quest for knowledge and discovery in the exciting world of STEM.

I hope you enjoyed this blog post about quantitative research topics for stem students.

Related Posts

8 easiest programming language to learn for beginners.

There are so many programming languages you can learn. But if you’re looking to start with something easier. We bring to you a list of…

10 Online Tutoring Help Benefits

Do you need a computer science assignment help? Get the best quality assignment help from computer science tutors at affordable prices. They always presented to help…

STEM Education Research

Science isn’t merely for scientists. Understanding science is part of being a well-rounded and informed citizen. Science, technology, engineering, and mathematics (STEM) education research is dedicated to studying the nature of learning, the impact of different science teaching strategies, and the most effective ways to recruit and retain the next generation of scientists.

Center for Astrophysics | Harvard & Smithsonian STEM education researchers are engaged in a number of projects:

Developing research-based tests for use in evaluating students’ knowledge of science concepts. These tests are designed to check for common differences in the way non-scientists understand a subject as compared to scientists. When offered at the beginning and end of science courses, they assess whether instruction has resulted in students' conceptual growth. The tests are freely available for education researchers and teachers, and cover the full range of elementary, secondary, and university courses in science. Misconception-Orientation Standard-Based Assessment Resources for Teachers (MOSART)

Studying ways to improve students’ preparation for introductory STEM courses in college. Students arrive at college with varying pre-college educational experiences, which often influence how well they do in their first STEM classes. To keep interested students in STEM programs, researchers look at measurable factors that predict improved performance. Factors Influencing College Success in STEM (FICS)

Discerning factors that strengthen students’ interest in pursuing a STEM career. Education researchers look at a whole range of pre-college experiences in and out of school that can affect students’ interest in pursuing STEM careers, in order to see both what encourages and what drives them away. Persistence in STEM (PRiSE)

Examining predictors of student outcomes in MOOCs. Many universities have implemented MOOCs to provide academic resources beyond the university, but the research on how well they perform compared with ordinary classes is scant. In addition, MOOCs are frequently plagued by students dropping out. By studying actual implementations of MOOCs, SED researchers hope to gather evidence to explain why many students don’t stick with the course through the end. Massive Open Online Courses (MOOCs)

Advancing Science Teaching and Learning

Public understanding of science is essential for our democratic society. At the same time, white female students and students of color are underrepresented across STEM fields, which is a problem both from equity and workforce demand perspectives. For these reasons, researchers at the Center for Astrophysics | Harvard & Smithsonian study how to improve science teaching and learning.

The Science Education Department (SED) at the Center for Astrophysics is dedicated to researching how people learn, and identifying measurable ways to evaluate learning for students in STEM classes. SED researchers have developed assessment tools designed to evaluate students’ conceptual knowledge for all levels from elementary school through university. These tests are freely available for teachers and other education specialists. Experts in the program also study the educational outcomes of massive open online courses (MOOCs) , which are widely used by universities despite the current lack of evidence on their effectiveness.

A current challenge of STEM education is the substantial underrepresentation of white female scientists and scientists of color across STEM fields, which limits the potential for innovation and excellence in scientific research. To address this problem, SED researchers study variables that predict persistence of students within the STEM pipeline, factors that impact achievement by students in STEM courses, and the development of science identity.

In addition to pursuing fundamental STEM education research, Harvard and Smithsonian educators translate these findings into practice by developing innovative science programs, curricula, interactive media, and technology-based tools for STEM learning. These research-based resources are used by educational audiences in the United States and around the world. The significance of SED’s work has been recognized in the form of grants from the National Science Foundation, NASA, and the National Institutes of Health.

Students working at the CFA

Cambridge Explores the Universe 2018, held at the Center for Astrophysics | Harvard & Smithsonian in Cambridge, MA.

Students work with the CFA

A student working with a professional astronomer at the Cambridge Explores the Universe 2018, held at the Center for Astrophysics | Harvard & Smithsonian in Cambridge, MA.

  • How can astronomy improve life on earth?
  • Solar & Heliospheric Physics
  • Science Education Department

Related News

New grant supports teen air quality studies, michael foley elected first grad student on aas education committee, cfa job shadow event makes astronomy more accessible, to navigate the heavens, take a seat, thousands of new astronomical images highlighted in latest release of worldwide telescope, astronomy educators awarded $2.8m to inspire minority youth to pursue stem careers, factors influencing college success in stem (fics), massive open online courses (moocs), misconception-oriented standards-based assessment resources for teachers (mosart), persistence in stem (prise), sensing the dynamic universe, worldwide telescope (wwt), youthastronet, telescopes and instruments, microobservatory telescope network, spitzer space telescope.

Home

STEM Library Resources

  • What is the research process?
  • How do I choose or develop a research topic?
  • What are scholarly articles?
  • What are tips for reading scientific papers?
  • How can I identify a primary research article?
  • How can I make sure my sources are credible?
  • How can I cite my sources properly?
  • Use Library Resources
  • Find Discipline-Specific Guides
  • Best-Bet STEM Resources
  • Information Literacy & Generative AI This link opens in a new window
  • Does writing matter in STEM?

Getting started with research topics

The possibilities for selecting a research topic are nearly endless! While most initial research ideas will need some tweaking to be in line with your project’s or assignment's scope, you can take nearly any idea, interest, or phenomenon and turn it into a research topic. 

Please check with instructor for specific directions concerning topic selection for a research project or to confirm if a topic is acceptable.

Brainstorming initial topics

Tip #1: choose a topic you care about..

This could be a personal interest, related to something you have experienced, related to your job or future career, etc. You could even research a problem or barrier you’ve experienced or something that upsets you. What matters is that you have a vested interest in your research topic. This is going to help motivate you to keep working on the project. 

For example: Adrian works full-time and also has young child, and sometimes they get stressed out about work-life balance. Adrian could choose “working parent mental health” as an initial topic.

Tip #2: Be curious.

Have you ever wondered why something works (or doesn’t work) the way that it does? Are you curious about how something impact your life? Research that! 

For example: Traffic noise from I-215 sometimes keeps Gabi from falling asleep. Gabi could choose “noise pollution and insomnia” as an initial research topic.

Tip #3: Be observant.

Notice trends, phenomena, or occurrences in your daily life. You can research why those trends might occur.

For example: Rui has noticed more vehicles running red lights while commuting work. Rui could choose “distracted and aggressive driving” as an initial research topic.

Tip #4: Think about something you’ve recently learned or read in a class.

If a reading, assignment, or video from a class has stood out to you, explore that further. That topic or an aspect of it could serve as your initial research topic. 

For example: Almas was fascinated to learn in HLTH 1050 that former drug cartel leader Pablo Escobar imported hippos to Colombia and that the hippos are now causing significant issues as a non-native species. Almas could choose “impacts of non-native animal species” as an initial research topic. 

Developing your topic

Great! You’ve selected an initial topic that interests you. Now you will want to refine it so your topic fits within the scope of your project. 

Strategy #1: Ask self-reflective questions.

Ask yourself personal questions to help focus your topic. Ask yourself: Why did I choose this topic in the first place? What specifically interests me about it? Do I have personal experience with this? This reflective process can help you move from a general topic like "medical marijuana" to a more specific one that is also interesting to you. For example, perhaps you know someone who suffers from chronic pain and had medical marijuana recommended to them; you might want to learn more about how medical marijuana helps with chronic pain and if there are any negative medical side effects associated with its use.

Strategy #2: Ask what you want to learn and why.

Try answering this question by filling in the blanks: “I am researching [topic], because I want to find out [issue / question] in order to [application, or why it matters].” For example: I am researching sound pollution, because I want to learn if it impacts sleep cycles in order to understand how traffic noise may negatively impact human health.

Strategy #3: Create an argument.

Another way to refine your initial topic is to give your opinion, take a side to an argument, or present a different outlook. Try to keep an open mind and withhold your own judgement until you have done some research. It is a growth experience to consider other views! Ask something like: “What are the consequences of X on Y?” For example: What are the consequences of vehicle emissions on Utah’s air quality?

Strategy #4: Use the 3 P's

Identify a problem (your initial topic), a population (a specific group of people), and a place. Adding these three components together can help focus your topic.

  • The 3 P's: Population, Place, Problem Licensed under CC BY-NC by Sarah Hood

Evaluating the feasibility of your topic

The next step in developing your research topic is making sure that it is actually feasible for you to research. Sometimes great ideas have to be tabled for another point in time because of current limitations. Here are three questions/sets of questions to ask yourself before moving ahead with your research project.

Why do I care about this topic?

What about it interests me? Will I continue to be interested in this topic throughout the research process? If you cannot answer these questions, return to brainstorming possible topics.

Is my topic too broad or too narrow to fit within the project's scope?

If your topic is too broad, you may be overwhelmed by the amount of sources you find or feel like you have no clear goal of what to study or accomplish. If your topic is too narrow, you may have a very hard time finding sources or completing your project. Look for a topic that is “just right.” It should be specific enough that it is actionable.

  • Too broad: What causes air pollution in Utah?
  • Too narrow: How to pickup trucks driving on I-15 between Draper and South Salt Lake City contribute to the ozone levels in Salt Lake County’s air conditions?
  • Better: How do commuting vehicles in Salt Lake County contribute to air pollution?

Do I have the available resources (time, money, tools, support, etc.) to realistically accomplish this project in the set timeframe?

If your project is going to require you do an observational study, do you have the available time to do that? If your project requires specialized equipment, do you have access to it and knowledge of how to use it? If you need to acquire supplies or incentives for people to participate in your project, do you have the funding? These logistical questions are important, because having the appropriate resources available can help set you up for success. If you don’t have these resources available, you may need to table your research topic until another time.

  • << Previous: What is the research process?
  • Next: What are scholarly articles? >>
  • Last Updated: Apr 24, 2024 11:07 AM
  • URL: https://libguides.slcc.edu/STEM
  • Frontiers in Education
  • STEM Education
  • Research Topics

Insights in STEM Education: 2022

Total Downloads

Total Views and Downloads

About this Research Topic

As we enter the third decade of the 21st century, the field of education plays a more crucial role in understanding the contemporary world than ever before. Analyzing the role of education in leading and driving change through policy, practice, and constant innovation for a more inclusive education, whether ...

Keywords : insights in, STEM education

Important Note : All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Topic coordinators, recent articles, submission deadlines.

Submission closed.

Participating Journals

Total views.

  • Demographics

No records found

total views article views downloads topic views

Top countries

Top referring sites, about frontiers research topics.

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

logo

Top 151+ Great Quantitative Research Topics For STEM Students

Are you a STEM enthusiast eager to dive into quantitative research but uncertain about the best topics to explore? Look no further! In this comprehensive guide, we’ll navigate through the top 27+ Quantitative Research Topics for STEM Students. 

There are we give the best topics for future scientists, engineers, and math whizzes! Are you curious about diving into the fantastic world of quantitative research? Well, you’re in for an exciting way! Today, we’re going to explore some super cool Quantitative Research Topics for STEM Students like you. But first, what’s all this talk about “quantitative research”? Don’t worry; it’s not as tricky as it sounds!

Quantitative research simply means using numbers and data to study things. For example, solving a math problem or conducting a science experiment where you count, measure, or analyze stuff to learn more. Cool, right? Now, let’s talk about STEM. No, not the plant stem, but STEM subjects—science, Technology, Engineering, and Mathematics. These subjects are like the crucial part of knowledge!

So, here’s the exciting part! We’ve got a bunch of fascinating topics lined up for you to explore in these STEM fields using numbers, stats, and math. From studying how robots help doctors predict climate change to finding ways to make renewable energy work better in cities, these topics will make your brain more creative!

Also Like To Know: Sk Project Ideas

Table of Contents

What Is Experimental Quantitative Research Topics For STEM Students

Experimental quantitative research topics for STEM students involve conducting investigations using numbers and measurements to find answers to questions related to science, technology, engineering, and mathematics. These topics help students gather data through controlled experiments and use mathematical analysis to understand how things work or solve problems in subjects like biology, physics, chemistry, or mathematics. For example, they might explore topics like testing how different temperatures affect plant growth or analyzing the relationship between force and motion using simple experiments and numbers.

How Do You Identify A Quantitative Research Title?

Here are 7 easy steps to identify a quantitative research title:

How Do You Identify A Quantitative Research Title?

1. Define Your Research Area

Start by identifying the general subject or field you want to study. For instance, it could be related to science, education, psychology, etc.

2. Focus on a Specific Topic

Narrow down your field to a particular region or issue. For instance, if you’re keen on brain research, you should zero in on the impacts of web-based entertainment on teens’ psychological wellness.

3. Identify Variables

Determine the variables or factors you want to measure or investigate. In quantitative research, these are typically measurable quantities or numerical data.

4. Formulate a Research Question

Develop a clear and concise research question that reflects what you want to study. Ensure it is specific and can be addressed using quantitative methods.

5. Consider the Population or Sample

Determine the population you want to study or the sample you’ll collect data from. This will help shape the scope of your research.

6. Quantifiable Outcome

Guarantee that the exploration title recommends a result that can be estimated mathematically. Quantitative exploration means assembling mathematical information and investigating it genuinely.

7. Review and Refine

After forming a speculative title, survey it to guarantee it aligns with the examination targets, is clear and concise, and precisely mirrors the focal point of your review. Make any essential refinements to further develop clarity and accuracy.

List of Best 127+ Great Quantitative Research Topics For STEM Students

Here are the 127+ Great Quantitative Research Topics For STEM Students:

Best Mathematics Quantitative Research Topics For STEM Students

  • Applications of Machine Learning in Mathematical Problem Solving
  • Chaos Theory and Its Applications in Nonlinear Systems
  • Algorithmic Trading Strategies and Mathematical Modeling
  • Data Compression Techniques: Efficiency and Accuracy Trade-offs
  • Exploring Applications of Topological Data Analysis
  • Analyzing Random Matrix Theory in Statistical Physics
  • Mathematical Models for Climate Change Predictions
  • Analyzing Cryptocurrency Trends Using Mathematical Models
  • Investigating Mathematical Models for Social Networks
  • Studying Mathematical Foundations of Quantum Computing

Easy Quantitative Research Topics For STEM Students In Physics

  • Quantum Entanglement and Its Applications in Communication
  • Plasma Physics: Understanding Fusion Reactors
  • Superconductivity and Its Practical Applications
  • Statistical Mechanics in Complex Systems
  • Applications of String Theory in Cosmology
  • Gravitational Wave Detection and Interpretation
  • Quantum Field Theory and Particle Interactions
  • Quantum Computing: Designing Error-Correcting Codes
  • Analyzing Exoplanet Data Using Astrophysical Models
  • Studying Black Hole Physics and Information Paradox
  • Computational Chemistry for Drug Design and Discovery
  • Quantum Chemistry: Exploring Molecular Properties
  • Applications of Nanomaterials in Renewable Energy
  • Analyzing Chemical Reaction Kinetics
  • Environmental Impact Assessment of Chemical Pollutants
  • Polymer Chemistry: Designing Advanced Materials
  • Studying Catalysis and Surface Chemistry
  • Exploring Electrochemical Energy Storage Systems
  • Bioinorganic Chemistry: Metalloprotein Modeling
  • Investigating Supramolecular Chemistry for Functional Materials

Biology Quantitative Research Topics For STEM Students

  • Systems Biology: Modeling Cellular Signaling Networks
  • Computational Neuroscience: Brain Network Analysis
  • Population Genetics and Evolutionary Dynamics
  • Mathematical Modeling of Infectious Diseases
  • Studying Protein Folding Using Computational Methods
  • Ecological Niche Modeling for Biodiversity Conservation
  • Quantitative Analysis of Gene Regulatory Networks
  • Metagenomics: Analyzing Microbial Communities
  • Bioinformatics Applications in Personalized Medicine
  • Integrative Biology: Understanding Multi-Omics Data

Engineering

  • Robotics and Autonomous Systems: Motion Planning Algorithms
  • Finite Element Analysis for Structural Engineering
  • Machine Learning in Image Processing and Computer Vision
  • Control Systems Engineering in Autonomous Vehicles
  • Renewable Energy Grid Integration and Optimization
  • Optimization of Transportation Networks
  • Analyzing Fluid Dynamics in Aerospace Engineering
  • Materials Science: Quantum Mechanics in Materials Design
  • Sustainable Infrastructure Planning and Design
  • Cyber-Physical Systems: Security and Resilience

Computer Science Quantitative Research Topics For STEM Students

  • Big Data Analytics: Scalable Algorithms for Data Processing
  • Natural Language Processing for Sentiment Analysis
  • Blockchain Technology: Security and Consensus Algorithms
  • Understanding How Quantum Computers Solve Problems
  • Creating AI Models that Explain Decisions for Help in Making Choices
  • Protecting Privacy While Mining Data
  • Keeping Networks Safe: Spotting Intruders
  • Making the Most of Cloud Computing: Sharing Resources Better
  • Humans and Robots Working Together Better
  • Improving How We Keep Secrets Safe with Quantum Cryptography

Earth and Environmental Sciences

  • Predicting How Weather Will Change in Different Areas
  • Using Maps and Data to Study the Environment
  • Managing Water and Predicting How Much We’ll Have
  • Looking at Pictures from Far Away to Watch the Environment
  • Studying Earthquakes and Where They Happen
  • Learning About the Ocean and How It Affects Weather
  • Checking How Green Energy Projects Affect the Environment
  • Measuring Soil Damage and How Nutrients Move
  • Looking at Air Quality and Figuring Out What’s Making It Bad
  • Seeing How Much Nature Helps Us Using Numbers

Agriculture and Food Sciences

  • Precision Agriculture: Using Data Analytics for Crop Management
  • Genetics and Genomics in Crop Improvement Strategies
  • Quantitative Analysis of Food Supply Chains
  • Agricultural Policy Analysis and Economic Modeling
  • Nutritional Analysis Using Quantitative Methods
  • Modeling Pesticide Use and Environmental Impact
  • Aquaculture: Optimization of Fish Farming Practices
  • Soil Fertility Modeling and Nutrient Management
  • Food Safety Assessment Using Quantitative Techniques
  • Sustainable Agriculture: Systems Modeling and Optimization

Health Sciences and Medicine: quantitative research topics in nursing

  • Epidemiology: Modeling Disease Transmission Dynamics
  • Healthcare Analytics: Predictive Modeling for Patient Outcomes
  • Pharmacokinetics and Drug Dosage Optimization
  • Health Informatics: Quantitative Analysis of Electronic Health Records
  • Medical Imaging Analysis Using Quantitative Techniques
  • Health Economics: Cost-Benefit Analysis of Healthcare Policies
  • Genomic Medicine: Analyzing Genetic Data for Disease Risk Prediction
  • Public Health Policy Evaluation Using Quantitative Methods
  • Biostatistics: Designing Clinical Trials and Statistical Analysis
  • Computational Anatomy for Disease Diagnosis and Treatment

Psychology and Social Sciences

  • Quantitative Analysis of Social Network Dynamics
  • Behavioral Economics: Decision-Making Models
  • Psychometrics: Measurement Models in Psychological Testing
  • Quantitative Study of Human Cognition and Memory
  • Social Media Analytics: Sentiment Analysis and Trends
  • Sociology: Modeling Social Movements and Cultural Dynamics
  • Educational Data Mining and Learning Analytics
  • Quantitative Research in Political Science and Policy Analysis
  • Consumer Behavior Analysis Using Quantitative Methods
  • Quantitative Approaches to Studying Emotion and Personality

Astronomy and Astrophysics

  • Cosmic Microwave Background Radiation: Analyzing Anisotropies
  • Time-domain Astronomy: Statistical Analysis of Variable Stars
  • Gravitational Lensing: Quantifying Distortions in Cosmic Images
  • Stellar Evolution Modeling and Simulations
  • Exoplanet Atmosphere Characterization Using Quantitative Methods
  • Galaxy Formation and Evolution: Statistical Approaches
  • Multimessenger Astronomy: Data Fusion Techniques
  • Dark Matter and Dark Energy: Analyzing Cosmological Models
  • Astrophysical Jets: Modeling High-Energy Particle Emissions
  • Supernova Studies: Quantitative Analysis of Stellar Explosions

Linguistics and Language Sciences

  • Computational Linguistics: Natural Language Generation Models
  • Phonetics and Speech Analysis Using Quantitative Techniques
  • Sociolinguistics: Statistical Analysis of Dialect Variation
  • Syntax and Grammar Modeling in Linguistic Theory
  • Quantitative Study of Language Acquisition in Children
  • Corpus Linguistics: Quantifying Textual Data
  • Language Typology and Universals: Cross-Linguistic Analysis
  • Psycholinguistics: Quantitative Study of Language Processing
  • Machine Translation: Improving Accuracy and Efficiency
  • Quantitative Approaches to Historical Linguistics

Business and Economics: quantitative research topics in education

  • Financial Risk Management: Quantitative Modeling of Risks
  • Econometrics: Statistical Methods in Economic Analysis
  • Marketing Analytics: Consumer Behavior Modeling
  • Quantitative Analysis of Macroeconomic Policies
  • Operations Research: Optimization in Supply Chain Management
  • Quantitative Methods in Corporate Finance
  • Labor Economics: Analyzing Employment Trends Using Data
  • Economic Impact Assessment of Policy Interventions
  • Quantitative Analysis of Market Dynamics and Competition
  • Behavioral Finance: Quantifying Psychological Aspects in Financial Decision-Making

Education and Pedagogy

  • Educational Data Mining for Adaptive Learning Systems
  • Quantitative Analysis of Learning Outcomes and Student Performance
  • Technology Integration in Education: Assessing Efficacy
  • Assessment and Evaluation Models in Educational Research
  • Quantitative Study of Teacher Effectiveness and Practices
  • Cognitive Load Theory: Quantifying Learning Processes
  • Educational Psychology: Quantitative Analysis of Motivation
  • Online Education: Analytics for Engagement and Success
  • Curriculum Development: Quantitative Approaches to Design
  • Educational Policy Analysis Using Quantitative Methods

Communication and Media Studies

  • Media Effects Research: Quantitative Analysis of Influence
  • Computational Journalism: Data-driven Storytelling
  • Social Media Influence Metrics and Analysis
  • Quantitative Study of Public Opinion and Opinion Formation
  • Media Content Analysis Using Statistical Methods
  • Communication Network Analysis: Quantifying Connections
  • Quantitative Approaches to Media Bias Assessment
  • Entertainment Analytics: Audience Behavior Modeling
  • Digital Media Consumption Patterns: Statistical Analysis
  • Crisis Communication: Quantitative Assessment of Responses

quantitative research topics for accounting students in the Philippines

Here are ten quantitative research topics suitable for accounting students in the Philippines:

  • “Impact of Tax Changes on Small and Medium Businesses (SMEs) in the Philippines: A Numbers-Based Study”
  • “Evaluating How Well Philippine Banks are Doing Financially: A Comparison Using Simple Measures”
  • “Checking How Good Internal Controls are at Stopping Fraud: Looking at Numbers in Filipino Businesses”
  • “Looking at How Companies in the Philippines are Run and How Well They’re Doing Financially”
  • “Figuring Out What Makes Auditing Good: A Study on Auditing in the Philippines”
  • “Seeing How Using Accounting Systems Helps Companies Work Better: A Study Using Numbers”
  • “Finding Out What Makes Financial Reports Good Quality in the Philippines: A Numbers Approach”
  • “Seeing How Following International Financial Reporting Standards (IFRS) Affects Philippine Companies”
  • “Studying What Factors Affect How Well College Students in the Philippines Understand Finances”
  • “Managing Money Flow and Keeping Small Businesses in the Philippines Stable: A Numbers-Based Look”

What are the 10 examples of research titles in school quantitative?

Here are ten examples of quantitative research titles suitable for school-related studies:

  • “Technology’s Influence on Grades: A Number-Based Look”
  • “How Class Size Affects How Well Students Learn: A Number Study”
  • “Parents Getting Involved and How Well Kids Do in School: A Numbers Look”
  • “Checking if Different Math Teaching Ways Work Well”
  • “Connecting How Much Students Get Into School with Test Scores”
  • “Bullying in Schools: Looking at How Much and How It Affects Grades”
  • “Looking at How Money Affects How Good Kids Are at Reading”
  • “Checking if Counseling Helps Kids’ Feelings: A Number Way”
  • “Do After-School Stuff Help Kids Do Better in School?”
  • “Seeing if a New Way to Grade is Better Than the Old Way: Comparing with Numbers”

Best experimental quantitative research topics for stem students in the Philippines

The following are the best quantitative research topics for stem students:

Biology Quantitative Research Topics

In the realm of Biology, quantitative research delves into the numerical aspects of living organisms, ecosystems, and genetics, aiding in understanding diverse biological phenomena.

Chemistry Quantitative Research Topics

Chemistry’s quantitative research explores numerical relationships within chemical reactions, material properties, and various compounds, offering insights into chemical phenomena through measurable data.

Physics Quantitative Research Topics

In Physics, quantitative research scrutinizes measurable physical quantities and their interactions, exploring fundamental principles and phenomena of the natural world.

Mathematics Quantitative Research Topics

Mathematics, in its quantitative research, investigates numerical patterns, structures, and mathematical theories, exploring the quantifiable aspects of various mathematical concepts.

We’ve investigated the marvels of utilizing numbers, information, and math to disentangle the secrets of science, innovation, design, and math. Quantitative research isn’t about staggering recipes or complex speculations. It’s tied in with utilizing straightforward math and measurements to grasp our general surroundings. Whether it’s anticipating the effect of environmental change, investigating how robots help medical services, or sorting out ways of making our urban communities greener, every point we’ve examined holds the potential for meaningful revelations.

As you proceed with your educational process, keep this interest alive. Embrace the delight of getting clarification on some pressing issues, testing, and investigating. Your passion for STEM subjects can prompt astounding things—from inventing innovations to tracking down answers for worldwide difficulties.

All in all, what’s next for you? Pick a topic that invigorates you, jump into the universe of quantitative exploration, and let your creative mind take off! Who knows, you’ll be the one to find something staggering that impacts the world.

Frequently Asked Questions

Can i conduct quantitative research in any stem field.

Yes, quantitative research methods can be applied across various STEM disciplines, including biology, chemistry, physics, computer science, environmental science, engineering, mathematics, and more.

Do I need advanced mathematical skills to conduct quantitative research in STEM?

While a solid understanding of mathematics is beneficial, many quantitative research projects in STEM can be conducted with basic mathematical principles. However, depending on the complexity of the topic and methods used, advanced mathematical skills may be necessary.

What tools and software are commonly used in quantitative research in STEM?

Common tools and software include statistical software such as R, Python (with libraries like NumPy and SciPy), MATLAB, SPSS, and Excel. Depending on the research topic, specialized software for data visualization, simulation, and mathematical modeling may also be used.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

ct-logo

189+ Good Quantitative Research Topics For STEM Students

Quantitative research is an essential part of STEM (Science, Technology, Engineering, and Mathematics) fields. It involves collecting and analyzing numerical data to answer research questions and test hypotheses. 

In 2023, STEM students have a wealth of exciting research opportunities in various disciplines. Whether you’re an undergraduate or graduate student, here are quantitative research topics to consider for your next project.

If you are looking for the best list of quantitative research topics for stem students, then you can check the given list in each field. It offers STEM students numerous opportunities to explore and contribute to their respective fields in 2023 and beyond. 

Whether you’re interested in astrophysics, biology, engineering, mathematics, or any other STEM field.

Also Read: Most Exciting Qualitative Research Topics For Students

What Is Quantitative Research

Table of Contents

Quantitative research is a type of research that focuses on the organized collection, analysis, and evaluation of numerical data to answer research questions, test theories, and find trends or connections between factors. It is an organized, objective way to do study that uses measurable data and scientific methods to come to results.

Quantitative research is often used in many areas, such as the natural sciences, social sciences, economics, psychology, education, and market research. It gives useful information about patterns, trends, cause-and-effect relationships, and how often things happen. Quantitative tools are used by researchers to answer questions like “How many?” and “How often?” “Is there a significant difference?” or “What is the relationship between the variables?”

In comparison to quantitative research, qualitative research uses non-numerical data like conversations, notes, and open-ended surveys to understand and explore the ideas, experiences, and points of view of people or groups. Researchers often choose between quantitative and qualitative methods based on their research goals, questions, and the type of thing they are studying.

How To Choose Quantitative Research Topics For STEM

Here’s a step-by-step guide on how to choose quantitative research topics for STEM:

Step 1:- Identify Your Interests and Passions

Start by reflecting on your personal interests within STEM. What areas or subjects in STEM excite you the most? Choosing a topic you’re passionate about will keep you motivated throughout the research process.

Step 2:- Review Coursework and Textbooks

Look through your coursework, textbooks, and class notes. Identify concepts, theories, or areas that you found particularly intriguing or challenging. These can be a source of potential research topics.

Step 3:- Consult with Professors and Advisors

Discuss your research interests with professors, academic advisors, or mentors. They can provide valuable insights, suggest relevant topics, and guide you toward areas with research opportunities.

Step 4:- Read Recent Literature

Explore recent research articles, journals, and publications in STEM fields. This will help you identify current trends, gaps in knowledge, and areas where further research is needed.

Step 5:- Narrow Down Your Focus

Once you have a broad area of interest, narrow it down to a specific research focus. Consider questions like:

  • What specific problem or phenomenon do you want to investigate?
  • Are there unanswered questions or controversies in this area?
  • What impact could your research have on the field or society?

Step 6:- Consider Resources and Access

Assess the resources available to you, including access to laboratories, equipment, databases, and funding. Ensure that your chosen topic aligns with the resources you have or can access.

Step 7:- Think About Practicality

Consider the feasibility of conducting research on your chosen topic. Are the data readily available, or will you need to collect data yourself? Can you complete the research within your available time frame?

Step 8:- Define Your Research Question

Formulate a clear and specific research question or hypothesis. Your research question should guide your entire study and provide a focus for your data collection and analysis.

Step 9:- Conduct a Literature Review

Dive deeper into the existing literature related to your chosen topic. This will help you understand the current state of research, identify gaps, and refine your research question.

Step 10:- Consider the Impact

Think about the potential impact of your research. How does your topic contribute to the advancement of knowledge in your field? Does it have practical applications or implications for society?

Step 11:- Brainstorm Research Methods

Determine the quantitative research methods and data collection techniques you plan to use. Consider whether you’ll conduct experiments, surveys, data analysis, simulations, or use existing datasets.

Step 12:- Seek Feedback

Share your research topic and ideas with peers, advisors, or mentors. They can provide valuable feedback and help you refine your research focus.

Step 13:- Assess Ethical Considerations

Consider ethical implications related to your research, especially if it involves human subjects, sensitive data, or potential environmental impacts. Ensure that your research adheres to ethical guidelines.

Step 14:- Finalize Your Research Topic

Once you’ve gone through these steps, finalize your research topic. Write a clear and concise research proposal that outlines your research question, objectives, methods, and expected outcomes.

Step 15:- Stay Open to Adjustments

Be open to adjusting your research topic as you progress. Sometimes, new insights or challenges may lead you to refine or adapt your research focus.

Following are the most interesting quantitative research topics for stem students. These are given below.

Quantitative Research Topics In Physics and Astronomy

  • Quantum Computing Algorithms : Investigate new algorithms for quantum computers and their potential applications.
  • Dark Matter Detection Methods : Explore innovative approaches to detect dark matter particles.
  • Quantum Teleportation : Study the principles and applications of quantum teleportation.
  • Exoplanet Characterization : Analyze data from telescopes to characterize exoplanets.
  • Nuclear Fusion Modeling : Create mathematical models for nuclear fusion reactions.
  • Superconductivity at High Temperatures : Research the properties and applications of high-temperature superconductors.
  • Gravitational Wave Analysis : Analyze gravitational wave data to study astrophysical phenomena.
  • Black Hole Thermodynamics : Investigate the thermodynamics of black holes and their entropy.

Quantitative Research Topics In Biology and Life Sciences

  • Genome-Wide Association Studies (GWAS) : Conduct GWAS to identify genetic factors associated with diseases.
  • Pharmacokinetics and Pharmacodynamics : Study drug interactions in the human body.
  • Ecological Modeling : Model ecosystems to understand population dynamics.
  • Protein Folding : Research the kinetics and thermodynamics of protein folding.
  • Cancer Epidemiology : Analyze cancer incidence and risk factors in specific populations.
  • Neuroimaging Analysis : Develop algorithms for analyzing brain imaging data.
  • Evolutionary Genetics : Investigate evolutionary patterns using genetic data.
  • Stem Cell Differentiation : Study the factors influencing stem cell differentiation.

Engineering and Technology Quantitative Research Topics

  • Renewable Energy Efficiency : Optimize the efficiency of solar panels or wind turbines.
  • Aerodynamics of Drones : Analyze the aerodynamics of drone designs.
  • Autonomous Vehicle Safety : Evaluate safety measures for autonomous vehicles.
  • Machine Learning in Robotics : Implement machine learning algorithms for robot control.
  • Blockchain Scalability : Research methods to scale blockchain technology.
  • Quantum Computing Hardware : Design and test quantum computing hardware components.
  • IoT Security : Develop security protocols for the Internet of Things (IoT).
  • 3D Printing Materials Analysis : Study the mechanical properties of 3D-printed materials.

Quantitative Research Topics In Mathematics and Statistics

Following are the best Quantitative Research Topics For STEM Students in mathematics and statistics.

  • Prime Number Distribution : Investigate the distribution of prime numbers.
  • Graph Theory Algorithms : Develop algorithms for solving graph theory problems.
  • Statistical Analysis of Financial Markets : Analyze financial data and market trends.
  • Number Theory Research : Explore unsolved problems in number theory.
  • Bayesian Machine Learning : Apply Bayesian methods to machine learning models.
  • Random Matrix Theory : Study the properties of random matrices in mathematics and physics.
  • Topological Data Analysis : Use topology to analyze complex data sets.
  • Quantum Algorithms for Optimization : Research quantum algorithms for optimization problems.

Experimental Quantitative Research Topics In Science and Earth Sciences

  • Climate Change Modeling : Develop climate models to predict future trends.
  • Biodiversity Conservation Analysis : Analyze data to support biodiversity conservation efforts.
  • Geographic Information Systems (GIS) : Apply GIS techniques to solve environmental problems.
  • Oceanography and Remote Sensing : Use satellite data for oceanographic research.
  • Air Quality Monitoring : Develop sensors and models for air quality assessment.
  • Hydrological Modeling : Study the movement and distribution of water resources.
  • Volcanic Activity Prediction : Predict volcanic eruptions using quantitative methods.
  • Seismology Data Analysis : Analyze seismic data to understand earthquake patterns.

Chemistry and Materials Science Quantitative Research Topics

  • Nanomaterial Synthesis and Characterization : Research the synthesis and properties of nanomaterials.
  • Chemoinformatics : Analyze chemical data for drug discovery and materials science.
  • Quantum Chemistry Simulations : Perform quantum simulations of chemical reactions.
  • Materials for Renewable Energy : Investigate materials for energy storage and conversion.
  • Catalysis Kinetics : Study the kinetics of chemical reactions catalyzed by materials.
  • Polymer Chemistry : Research the properties and applications of polymers.
  • Analytical Chemistry Techniques : Develop new analytical techniques for chemical analysis.
  • Sustainable Chemistry : Explore green chemistry approaches for sustainable materials.

Computer Science and Information Technology Topics

  • Natural Language Processing (NLP) : Work on NLP algorithms for language understanding.
  • Cybersecurity Analytics : Analyze cybersecurity threats and vulnerabilities.
  • Big Data Analytics : Apply quantitative methods to analyze large data sets.
  • Machine Learning Fairness : Investigate bias and fairness issues in machine learning models.
  • Human-Computer Interaction (HCI) : Study user behavior and interaction patterns.
  • Software Performance Optimization : Optimize software applications for performance.
  • Distributed Systems Analysis : Analyze the performance of distributed computing systems.
  • Bioinformatics Data Mining : Develop algorithms for mining biological data.

Good Quantitative Research Topics Students In Medicine and Healthcare

  • Clinical Trial Data Analysis : Analyze clinical trial data to evaluate treatment effectiveness.
  • Epidemiological Modeling : Model disease spread and intervention strategies.
  • Healthcare Data Analytics : Analyze healthcare data for patient outcomes and cost reduction.
  • Medical Imaging Algorithms : Develop algorithms for medical image analysis.
  • Genomic Medicine : Apply genomics to personalized medicine approaches.
  • Telemedicine Effectiveness : Study the effectiveness of telemedicine in healthcare delivery.
  • Health Informatics : Analyze electronic health records for insights into patient care.

Agriculture and Food Sciences Topics

  • Precision Agriculture : Use quantitative methods for optimizing crop production.
  • Food Safety Analysis : Analyze food safety data and quality control.
  • Aquaculture Sustainability : Research sustainable practices in aquaculture.
  • Crop Disease Modeling : Model the spread of diseases in agricultural crops.
  • Climate-Resilient Agriculture : Develop strategies for agriculture in changing climates.
  • Food Supply Chain Optimization : Optimize food supply chain logistics.
  • Soil Health Assessment : Analyze soil data for sustainable land management.

Social Sciences with Quantitative Approaches

  • Educational Data Mining : Analyze educational data for improving learning outcomes.
  • Sociodemographic Surveys : Study social trends and demographics using surveys.
  • Psychometrics : Develop and validate psychological measurement instruments.
  • Political Polling Analysis : Analyze political polling data and election trends.
  • Economic Modeling : Develop economic models for policy analysis.
  • Urban Planning Analytics : Analyze data for urban planning and infrastructure.
  • Climate Policy Evaluation : Evaluate the impact of climate policies on society.

Environmental Engineering Quantitative Research Topics

  • Water Quality Assessment : Analyze water quality data for environmental monitoring.
  • Waste Management Optimization : Optimize waste collection and recycling programs.
  • Environmental Impact Assessments : Evaluate the environmental impact of projects.
  • Air Pollution Modeling : Model the dispersion of air pollutants in urban areas.
  • Sustainable Building Design : Apply quantitative methods to sustainable architecture.

Quantitative Research Topics Robotics and Automation

  • Robotic Swarm Behavior : Study the behavior of robot swarms in different tasks.
  • Autonomous Drone Navigation : Develop algorithms for autonomous drone navigation.
  • Humanoid Robot Control : Implement control algorithms for humanoid robots.
  • Robotic Grasping and Manipulation : Study robotic manipulation techniques.
  • Reinforcement Learning for Robotics : Apply reinforcement learning to robotic control.

Quantitative Research Topics Materials Engineering

  • Additive Manufacturing Process Optimization : Optimize 3D printing processes.
  • Smart Materials for Aerospace : Research smart materials for aerospace applications.
  • Nanostructured Materials for Energy Storage : Investigate energy storage materials.
  • Corrosion Prevention : Develop corrosion-resistant materials and coatings.

Nuclear Engineering Quantitative Research Topics

  • Nuclear Reactor Safety Analysis : Study safety aspects of nuclear reactor designs.
  • Nuclear Fuel Cycle Analysis : Analyze the nuclear fuel cycle for efficiency.
  • Radiation Shielding Materials : Research materials for radiation protection.

Quantitative Research Topics In Biomedical Engineering

  • Medical Device Design and Testing : Develop and test medical devices.
  • Biomechanics Analysis : Analyze biomechanics in sports or rehabilitation.
  • Biomaterials for Medical Implants : Investigate materials for medical implants.

Good Quantitative Research Topics Chemical Engineering

  • Chemical Process Optimization : Optimize chemical manufacturing processes.
  • Industrial Pollution Control : Develop strategies for pollution control in industries.
  • Chemical Reaction Kinetics : Study the kinetics of chemical reactions in industries.

Best Quantitative Research Topics In Renewable Energy

  • Energy Storage Systems : Research and optimize energy storage solutions.
  • Solar Cell Efficiency : Improve the efficiency of photovoltaic cells.
  • Wind Turbine Performance Analysis : Analyze and optimize wind turbine designs.

Brilliant Quantitative Research Topics In Astronomy and Space Sciences

  • Astrophysical Simulations : Simulate astrophysical phenomena using numerical methods.
  • Spacecraft Trajectory Optimization : Optimize spacecraft trajectories for missions.
  • Exoplanet Detection Algorithms : Develop algorithms for exoplanet detection.

Quantitative Research Topics In Psychology and Cognitive Science

  • Cognitive Psychology Experiments : Conduct quantitative experiments in cognitive psychology.
  • Emotion Recognition Algorithms : Develop algorithms for emotion recognition in AI.
  • Neuropsychological Assessments : Create quantitative assessments for brain function.

Geology and Geological Engineering Quantitative Research Topics

  • Geological Data Analysis : Analyze geological data for mineral exploration.
  • Geological Hazard Prediction : Predict geological hazards using quantitative models.

Top Quantitative Research Topics In Forensic Science

  • Forensic Data Analysis : Analyze forensic evidence using quantitative methods.
  • Crime Pattern Analysis : Study crime patterns and trends in urban areas.

Great Quantitative Research Topics In Cybersecurity

  • Network Intrusion Detection : Develop quantitative methods for intrusion detection.
  • Cryptocurrency Analysis : Analyze blockchain data and cryptocurrency trends.

Mathematical Biology Quantitative Research Topics

  • Epidemiological Modeling : Model disease spread and control in populations.
  • Population Genetics : Analyze genetic data to understand population dynamics.

Quantitative Research Topics In Chemical Analysis

  • Analytical Chemistry Methods : Develop quantitative methods for chemical analysis.
  • Spectroscopy Analysis : Analyze spectroscopic data for chemical identification.

Mathematics Education Quantitative Research Topics

  • Mathematics Curriculum Analysis : Analyze curriculum effectiveness in mathematics education.
  • Mathematics Assessment Development : Develop quantitative assessments for mathematics skills.

Quantitative Research Topics In Social Research

  • Social Network Analysis : Analyze social network structures and dynamics.
  • Survey Research : Conduct quantitative surveys on social issues and trends.

Quantitative Research Topics In Computational Neuroscience

  • Neural Network Modeling : Model neural networks and brain functions computationally.
  • Brain Connectivity Analysis : Analyze functional and structural brain connectivity.

Best Topics In Transportation Engineering

  • Traffic Flow Modeling : Model and optimize traffic flow in urban areas.
  • Public Transportation Efficiency : Analyze the efficiency of public transportation systems.

Good Quantitative Research Topics In Energy Economics

  • Energy Policy Analysis : Evaluate the economic impact of energy policies.
  • Renewable Energy Cost-Benefit Analysis : Assess the economic viability of renewable energy projects.

Quantum Information Science

  • Quantum Cryptography Protocols : Develop and analyze quantum cryptography protocols.
  • Quantum Key Distribution : Study the security of quantum key distribution systems.

Human Genetics

  • Genome Editing Ethics : Investigate ethical issues in genome editing technologies.
  • Population Genomics : Analyze genomic data for population genetics research.

Marine Biology

  • Coral Reef Health Assessment : Quantitatively assess the health of coral reefs.
  • Marine Ecosystem Modeling : Model marine ecosystems and biodiversity.

Data Science and Machine Learning

  • Machine Learning Explainability : Develop methods for explaining machine learning models.
  • Data Privacy in Machine Learning : Study privacy issues in machine learning applications.
  • Deep Learning for Image Analysis : Develop deep learning models for image recognition.

Environmental Engineering

Robotics and automation, materials engineering, nuclear engineering, biomedical engineering, chemical engineering, renewable energy, astronomy and space sciences, psychology and cognitive science, geology and geological engineering, forensic science, cybersecurity, mathematical biology, chemical analysis, mathematics education, quantitative social research, computational neuroscience, quantitative research topics in transportation engineering, quantitative research topics in energy economics, topics in quantum information science, amazing quantitative research topics in human genetics, quantitative research topics in marine biology, what is a common goal of qualitative and quantitative research.

A common goal of both qualitative and quantitative research is to generate knowledge and gain a deeper understanding of a particular phenomenon or topic. However, they approach this goal in different ways:

1. Understanding a Phenomenon

Both types of research aim to understand and explain a specific phenomenon, whether it’s a social issue, a natural process, a human behavior, or a complex event.

2. Testing Hypotheses

Both qualitative and quantitative research can involve hypothesis testing. While qualitative research may not use statistical hypothesis tests in the same way as quantitative research, it often tests hypotheses or research questions by examining patterns and themes in the data.

3. Contributing to Knowledge

Researchers in both approaches seek to contribute to the body of knowledge in their respective fields. They aim to answer important questions, address gaps in existing knowledge, and provide insights that can inform theory, practice, or policy.

4. Informing Decision-Making

Research findings from both qualitative and quantitative studies can be used to inform decision-making in various domains, whether it’s in academia, government, industry, healthcare, or social services.

5. Enhancing Understanding

Both approaches strive to enhance our understanding of complex phenomena by systematically collecting and analyzing data. They aim to provide evidence-based explanations and insights.

6. Application

Research findings from both qualitative and quantitative studies can be applied to practical situations. For example, the results of a quantitative study on the effectiveness of a new drug can inform medical treatment decisions, while qualitative research on customer preferences can guide marketing strategies.

7. Contributing to Theory

In academia, both types of research contribute to the development and refinement of theories in various disciplines. Quantitative research may provide empirical evidence to support or challenge existing theories, while qualitative research may generate new theoretical frameworks or perspectives.

Conclusion – Quantitative Research Topics For STEM Students

So, selecting a quantitative research topic for STEM students is a pivotal decision that can shape the trajectory of your academic and professional journey. The process involves a thoughtful exploration of your interests, a thorough review of the existing literature, consideration of available resources, and the formulation of a clear and specific research question.

Your chosen topic should resonate with your passions, align with your academic or career goals, and offer the potential to contribute to the body of knowledge in your STEM field. Whether you’re delving into physics, biology, engineering, mathematics, or any other STEM discipline, the right research topic can spark curiosity, drive innovation, and lead to valuable insights.

Moreover, quantitative research in STEM not only expands the boundaries of human knowledge but also has the power to address real-world challenges, improve technology, and enhance our understanding of the natural world. It is a journey that demands dedication, intellectual rigor, and an unwavering commitment to scientific inquiry.

What is quantitative research in STEM?

Quantitative research in this context is designed to improve our understanding of the science system’s workings, structural dependencies and dynamics.

What are good examples of quantitative research?

Surveys and questionnaires serve as common examples of quantitative research. They involve collecting data from many respondents and analyzing the results to identify trends, patterns

What are the 4 C’s in STEM?

They became known as the “Four Cs” — critical thinking, communication, collaboration, and creativity.

Similar Articles

How To Do Homework Fast

How To Do Homework Fast – 11 Tips To Do Homework Fast

Homework is one of the most important parts that have to be done by students. It has been around for…

Write assignment introduction

How to Write an Assignment Introduction – 6 Best Tips

In essence, the writing tasks in academic tenure students are an integral part of any curriculum. Whether in high school,…

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Featured Topics

Featured series.

A series of random questions answered by Harvard experts.

Explore the Gazette

Read the latest.

Illustration of a person holding chest and stomach while in lotus position.

Had a bad experience meditating? You’re not alone.

Gallery wall of Taylor Swift, William Shakespeare, Mona Lisa, Jane Austen, and the Beatles.

Better to be talented or lucky?

Two surgeons analyzing a patient’s medical scans.

Families may remove brain-injured patients from life support too soon

Science & tech.

George Whitesides.

‘The scientist is not in the business of following instructions.’

George Whitesides became a giant of chemistry by keeping it simple

Mikhail Lukin (left) and Can Knaut stand near a quantum network node.

Glimpse of next-generation internet

Physicists demo first metro-area quantum computer network in Boston

Portrait of Venki Ramakrishnan.

Science is making anti-aging progress. But do we want to live forever?

Nobel laureate details new book, which surveys research, touches on larger philosophical questions

Six layers of excitatory neurons color-coded by depth.

Epic science inside a cubic millimeter of brain

Researchers publish largest-ever dataset of neural connections

Panelists Melissa Dell, Alex Csiszar, and Latanya Sweeney at a Harvard symposium on artificial intelligence.

What is ‘original scholarship’ in the age of AI?

Symposium considers how technology is changing academia

Joonho Lee (top left), Rita Hamad, Fei Chen, Miaki Ishii, Jeeyun Chung, Suyang Xu, Stephanie Pierce, and Jarad Mason.

Complex questions, innovative approaches

Seven projects awarded Star-Friedman Challenge grants

All Science & Tech

Early warning sign of extinction.

Fossil record stretching millions of years shows tiny ocean creatures on the move before Earth heats up

Planktonic foraminifera fossils.

So much for summers of love

Despite ‘hippie’ reputation, male bonobos fight three times as often as chimps, study finds

Bonobo.

Are you a human? Select all that apply.

Philosopher Barba-Kay on CAPTCHA dilemma, Aristotle’s good life, and how the internet is changing us — not for the better

Antón Barba-Kay speaking from a podium.

Amazon butterfly evolved from hybrids

Genomic findings challenge thinking on what makes a species

Rsearcher James Mallet holds a Heliconius elevatus butterfly.

Is AI friend or foe? Wrong question.

A lawyer, a computer scientist, and a statistician debate ethics of artificial intelligence

Illustration of human hand connecting with computer cursor hand. (Nick Shepherd/Ikon Images)

Getting ahead of dyslexia

Harvard lab’s research suggests at-risk kids can be identified before they ever struggle in school

Megan Loh and Nadine Gaab show a model of an MRI machine they use to acclimate young study participants.

Why AI fairness conversations must include disabled people

Tech offers promise to help yet too often perpetuates ableism, say researchers. It doesn’t have to be this way.

Naomi Saphra, Lawrence Weru, and Maitreya Shah.

How did you get that frog to float?

Ever-creative, Nobel laureate in physics Andre Geim extols fun, fanciful side of very serious science

Sir Andre Geim (pictured), giving the Morris Loeb Lecture in Physics.

Lifting a few with my chatbot

Sociologist Sherry Turkle warns against growing trend of turning to AI for companionship, counsel

Sherry Turkle.

Hate mosquitoes? Who doesn’t? But maybe we shouldn’t.

Entomologist says there is much scientists don’t know about habitats, habits, impacts on their environments

A Culex mosquito (Culex pilosus) feeding from an invasive brown anole lizard in Florida.

Climate alignment is no easy task

Experts at the Salata Institute outline tensions between global and local priorities

An overheated planet Earth.

A playbook for policy change

Leah Stokes turns a love for the wilderness into a commitment to help mitigate climate change

Stokes looking off into the distance.

Under pressure

New tool for precise measurement of superconductors

Chris Laumann and Norman Yao explain high-pressure hydride superconductor research.

Glimpse into how mind may affect healing

Study finds bruising fades faster in patients who are led to believe more time has passed than actually has

Illustration of a watch with a band-aid strap.

Herbaria’s use and importance grows with climate change

In race against extinction, new agreement supports Harvard’s work to analyze and digitize its medicinal plant collections

A man stands in a greenhouse with green plants behind him

Harvard physicists create a new phase of matter

First demonstration of non-Abelian anyons in a quantum processor

chamber of the Quantinuum H2 quantum processor

Did fermented foods fuel brain growth?

Study puts fermentation, not fire, as pivot point behind our ancestors’ increasing cranial capacity

Soybeans that have been fermented with Bacillus natto.

‘Radcliffe Wave’ is waving 

Astronomers detail oscillation of our giant neighbor

The Radcliffe Wave .

Aramont Fellows bring cutting-edge scientific innovation to the forefront

Four groundbreaking projects investigate brain development, capture raw data with AI, innovate quantum computers, and develop new models to map supernovas

AI, brain, space illustration.

Deep in the Amazon, SEAS team tracks a mobile element

Field work on the Rio Negro could help communities exposed to methylmercury protect their food web

Researchers during water collection at dawn on the Rio Negro.

The miracle of ‘dog’

New findings illuminate complex neuroscience behind even the simplest words, with implications for treatment of speech, language disorders

Speech bubble inside of head.

A fast pivot into the unknown

AI’s rapid rise prompts Harvard/MIT Symposium exploring excitement, potential challenges to STEM education, research

Logan McCarty.

An evolutionary clue, curled up and long unstudied, in a Harvard museum

Trilobites’ soft undersides show mechanics of early ‘enrollment’ defense

Sarah Losso (pictured) holds up a trilobite glass slide.

Bird’s-eye view of energy conservation 

Physics of V-shaped flight formations offer insights into how to improve efficiency of groups of drones, underwater vehicles

Prasoon Suchandra (left) and Shabnam Raayai working with lasers in their lab.

Why do some kids learn to talk earlier than others?

Global study by new faculty Elika Bergelson finds three key predictors of language development. They may surprise you.

Mother pointing while talking to infant.

You did it of your own free will? No such thing.

Neuroscientist Robert Sapolsky says every decision, action you make is result of chain of genes, biology, experience that preceded it

Robert Sapolsky.

High-temperature superconductors with a twist

Fabrication method could facilitate materials discovery

Graphical representation of the stacked, twisted cuprate superconductor, with accompanying data in the background.

Robotic exosuit gives Parkinson’s patient smoother stride

Eliminates gait freezing, a common and highly debilitating symptom

Soft robotic exosuit worn around the hips and thighs.

Demystifying a mammal’s brain, cell by cell

Harvard-led team helps create first molecular map for national neuroscience study

Section of mouse brain atlas with cells colored by category.

Researchers create first logical quantum processor

Key step toward reliable, game-changing quantum computing

Mikhail Lukin and including Dolev Bluvstein

share this!

May 23, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

Marginal students reap more benefits from STEM programs: Study

by James Dean, Cornell University

science

Enrolling in a selective college STEM program pays off more for academically marginal students—even though they are less likely to graduate, Cornell economics research finds.

The analysis found that students who weren't as ready for science, technology, engineering and math coursework were up to 18 percentage points less likely to complete STEM degrees than better-prepared peers at a flagship public university in Colombia. But their average future earnings—including graduates and dropouts—increased by as much as 40% compared to similarly qualified applicants rejected by the programs. For better-prepared students, the added earnings benefit from enrolling was minimal.

The findings lend support to policies that seek to broaden access to selective STEM programs instead of prioritizing graduation rates, suggesting they could help reduce income inequality.

"If colleges want to maximize their graduation rate in their STEM programs, then they would admit the most-prepared students," said Evan Riehl, assistant professor in the Department of Economics and the ILR School. "But if their goal is to benefit society—meaning to admit students who are going to have the highest average benefit from enrolling in STEM programs—then our findings suggest that these colleges are actually better off admitting students from disadvantaged backgrounds even if they have relatively less preparation."

Riehl's paper, " The Returns to STEM Programs for Less-Prepared Students ," published in the May issue of the American Economic Journal: Economic Policy , is co-authored with Kevin Ng, Ph.D. '22, a research analyst at CNA, a nonprofit research and analysis firm.

Research has shown STEM degrees generate higher earnings than other fields and boost innovation, driving interest in growing the number of STEM students around the world. Selective STEM programs, however, are known for weeding out underperforming students and for high dropout rates, prompting debate about potential mismatches for less-prepared applicants, who on average are more socioeconomically disadvantaged.

"A growing body of research finds that students from disadvantaged backgrounds tend to benefit from going to more selective schools," Riehl said. "But some believe if there is a mismatch, it's most likely to be in STEM majors, where research shows academic preparation matters the most."

Investigating the benefits of enrolling in such programs, regardless of the graduation outcome, Riehl and Ng obtained data on applicants to all programs at Universidad del Valle, or "Univalle," in Cali, Colombia, from 1999 to 2004. They linked that information to administrative records providing students' scores on entrance exams across subjects, enrollment and graduation outcomes, and average monthly earnings roughly 15 years later, in 2017.

The researchers first compared outcomes for students with similar levels of academic preparation and likelihoods of completing STEM degrees based on test scores—the sole basis for highly competitive admissions at Univalle. They also compared outcomes for students who were either barely admitted or barely rejected by Univalle, including during a period when the university doubled cohorts in certain STEM subjects, thus enrolling more students with lower levels of preparation.

The analysis confirmed academic preparation's importance, consistent with prior research. Only about one-third of the marginal students who enrolled in Univalle's engineering and natural science programs graduated—a rate comparable to those at flagship U.S. universities, the authors said. Less-prepared students were 9 to 18 percentage points less likely to complete STEM degrees than their more-prepared peers.

But surprisingly, Riehl said, lower completion rates did not translate to lower average earnings more than a decade later. Compared to similar marginal applicants who were not accepted to a Univalle STEM program , those who enrolled earned 30% to 40% more. Among better-prepared students, the earnings return from enrolling was close to zero.

That gap may be explained, Riehl and Ng propose, by the students' "counterfactual" schooling options—where they enrolled if rejected by Univalle. Research on graduation rates often assumes that students rejected by a selective STEM program will pursue a STEM degree elsewhere, Riehl said. But for those who barely missed out on admission to Univalle, the data showed that their fallback was more likely to be a lower-paying major or a technical school, not another college STEM program.

An important caveat, the researchers said, was that the significant earnings gains for less-prepared students might be concentrated among those who had managed to graduate. Policies striving to improve STEM skills at younger ages could help ensure that returns are spread more evenly, they said. But Riehl and Ng concluded that focusing only on graduation rates can lead to an overly pessimistic view of selective STEM programs' potential benefits .

"STEM programs can play an important role in reducing earnings inequality," they wrote, "among students who arrive at college with different levels of academic preparation."

Provided by Cornell University

Explore further

Feedback to editors

what are the research topics for stem students

Researchers develop organic photoredox catalysts with enhanced stability and recyclability

what are the research topics for stem students

Theory and experiment combine to shine a new light on proton spin

what are the research topics for stem students

On repeat: Biologists observe recurring evolutionary changes, over time, in stick insects

2 hours ago

what are the research topics for stem students

New findings on fertility: Sperm can adapt to sexually transmitted microbes

what are the research topics for stem students

Observing mammalian cells with superfast soft X-rays

3 hours ago

what are the research topics for stem students

New study challenges conventional wisdom that Americans are 'pocketbook voters'

what are the research topics for stem students

Carbon dioxide, the main culprit of global warming, reborn as an antioxidant substance

what are the research topics for stem students

New study offers a cleaner path for controlling water, transforming greenhouse gases

4 hours ago

what are the research topics for stem students

Heavy water: How melting ice sheets and pumped groundwater can lower local sea levels—and boost them elsewhere

5 hours ago

what are the research topics for stem students

Unveiling a novel AAK1 inhibitor: How chemical proteomics unlock therapeutic potential

Relevant physicsforums posts, cover songs versus the original track, which ones are better, metal, rock, instrumental rock and fusion.

May 20, 2024

Today's Fusion Music: T Square, Cassiopeia, Rei & Kanade Sato

May 19, 2024

Bach, Bach, and more Bach please

May 18, 2024

What are your favorite Disco "Classics"?

May 17, 2024

Who is your favorite Jazz musician and what is your favorite song?

More from Art, Music, History, and Linguistics

Related Stories

what are the research topics for stem students

'Tracking' students can be beneficial, study finds

Aug 24, 2022

what are the research topics for stem students

Time off after high school makes college less likely

Mar 3, 2022

what are the research topics for stem students

Guidance counselors could help female high schoolers erase the STEM gender gap: Report

Apr 3, 2024

what are the research topics for stem students

Research unveils effective STEM program models for high school students from historically marginalized communities

Mar 8, 2024

what are the research topics for stem students

Study shows diverse college classrooms linked to better STEM learning outcomes for all students

Dec 6, 2023

what are the research topics for stem students

How introductory courses deter minority students from STEM degrees

Sep 28, 2022

Recommended for you

what are the research topics for stem students

Stress bragging may make you seem less competent, less likable at work

what are the research topics for stem students

Gender gaps remain for many women scientists, study finds

what are the research topics for stem students

First-generation medical students face unique challenges and need more targeted support, say researchers

May 16, 2024

what are the research topics for stem students

Investigation reveals varied impact of preschool programs on long-term school success

May 2, 2024

what are the research topics for stem students

Ridesourcing platforms thrive on socio-economic inequality, say researchers

Apr 26, 2024

what are the research topics for stem students

Which countries are more at risk in the global supply chain?

Apr 19, 2024

Let us know if there is a problem with our content

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

How to Craft Your Ideal Thesis Research Topic

How to Craft Your Ideal Thesis Research Topic

Table of contents

what are the research topics for stem students

Catherine Miller

Writing your undergraduate thesis is probably one of the most interesting parts of studying, especially because you get to choose your area of study. But as both a student and a teacher who’s helped countless students develop their research topics, I know this freedom can be just as intimidating as it is liberating.

Fortunately, there’a a step-by-step process you can follow that will help make the whole process a lot easier. In this article, I’ll show you how to choose a unique, specific thesis topic that’s true to your passions and interests, while making a contribution to your field.

what are the research topics for stem students

Choose a topic that you’re interested in

First things first: double-check with your teachers or supervisor if there are any constraints on your research topic. Once your parameters are clear, it’s time to identify what lights you up — after all, you’re going to be spending a lot of time thinking about it.

Within your field of study, you probably already have some topics that have grabbed your attention more than others. This can be a great place to start. Additionally, consider using the rest of your academic and extra-curricular interests as a source of ideas. At this stage, you only need a broad topic before you narrow it down to a specific question. 

If you’re feeling stuck, here are some things to try:

  • Look back through old course notes to remind yourself of topics you previously covered. Do any of these inspire you?
  • Talk to potential supervisors about your ideas, as they can point you toward areas you might not have considered.
  • Think about the things you enjoy in everyday life — whether that’s cycling, cinema, cooking, or fashion — then consider if there are any overlaps with your field of study.
  • Imagine you have been asked to give a presentation or record a podcast in the next three days. What topics would you feel confident discussing?
  • Watch a selection of existing lectures or explainer videos, or listen to podcasts by experts in your field. Note which topics you feel curious to explore further.
  • Discuss your field of study with teachers friends and family, some with existing knowledge and some without. Which aspects do you enjoy talking about? 

By doing all this, you might uncover some unusual and exciting avenues for research. For example, when writing my Master’s dissertation, I decided to combine my field of study (English teaching methodology) with one of my passions outside work (creative writing). In my undergraduate course, a friend drew on her lived experience of disability to look into the literary portrayal of disability in the ancient world. 

Do your research

Once you’ve chosen your topic of interest, it’s time to dive into research. This is a really important part of this early process because it allows you to:

  • See what other people have written about the topic — you don’t want to cover the same old ground as everyone else.
  • Gain perspective on the big questions surrounding the topic. 
  • Go deeper into the parts that interest you to help you decide where to focus.
  • Start building your bibliography and a bank of interesting quotations. 

A great way to start is to visit your library for an introductory book. For example, the “A Very Short Introduction” series from the Oxford University Press provides overviews of a range of themes. Similar types of overviews may have the title “ A Companion to [Subject]” or “[Subject] A Student Companion”. Ask your librarian or teacher if you’re not sure where to begin. 

Your introductory volume can spark ideas for further research, and the bibliography can give you some pointers about where to go next. You can also use keywords to research online via academic sites like JStor or Google Scholar. Check which subscriptions are available via your institution.

At this stage, you may not wish to read every single paper you come across in full — this could take a very long time and not everything will be relevant. Summarizing software like Wordtune could be very useful here.

Just upload a PDF or link to an online article using Wordtune, and it will produce a summary of the whole paper with a list of key points. This helps you to quickly sift through papers to grasp their central ideas and identify which ones to read in full. 

Screenshot of Wordtune's summarizing tool

Get Wordtune for free > Get Wordtune for free >

You can also use Wordtune for semantic search. In this case, the tool focuses its summary around your chosen search term, making it even easier to get what you need from the paper.

what are the research topics for stem students

As you go, make sure you keep organized notes of what you’ve read, including the author and publication information and the page number of any citations you want to use. 

Some people are happy to do this process with pen and paper, but if you prefer a digital method, there are several software options, including Zotero , EndNote , and Mendeley . Your institution may have an existing subscription so check before you sign up.

Narrowing down your thesis research topic

Now you’ve read around the topic, it’s time to narrow down your ideas so you can craft your final question. For example, when it came to my undergraduate thesis, I knew I wanted to write about Ancient Greek religion and I was interested in the topic of goddesses. So, I:

  • Did some wide reading around the topic of goddesses
  • Learned that the goddess Hera was not as well researched as others and that there were some fascinating aspects I wanted to explore
  • Decided (with my supervisor’s support) to focus on her temples in the Argive region of Greece

what are the research topics for stem students

As part of this process, it can be helpful to consider the “5 Ws”: why, what, who, when, and where, as you move from the bigger picture to something more precise. 

Why did you choose this research topic?

Come back to the reasons you originally chose your theme. What grabbed you? Why is this topic important to you — or to the wider world? In my example, I knew I wanted to write about goddesses because, as a woman, I was interested in how a society in which female lives were often highly controlled dealt with having powerful female deities. My research highlighted Hera as one of the most powerful goddesses, tying into my key interest.

What are some of the big questions about your topic?

During your research, you’ll probably run into the same themes time and time again. Some of the questions that arise may not have been answered yet or might benefit from a fresh look. 

Equally, there may be questions that haven’t yet been asked, especially if you are approaching the topic from a modern perspective or combining research that hasn’t been considered before. This might include taking a post-colonial, feminist, or queer approach to older texts or bringing in research using new scientific methods.

In my example, I knew there were still controversies about why so many temples to the goddess Hera were built in a certain region, and was keen to explore these further.

Who is the research topic relevant to?

Considering the “who” might help you open up new avenues. Is there a particular audience you want to reach? What might they be interested in? Is this a new audience for this field? Are there people out there who might be affected by the outcome of this research — for example, people with a particular medical condition — who might be able to use your conclusions?

Which period will you focus on?

Depending on the nature of your field, you might be able to choose a timeframe, which can help narrow the topic down. For example, you might focus on historical events that took place over a handful of years, look at the impact of a work of literature at a certain point after its publication, or review scientific progress over the last five years. 

With my thesis, I decided to focus on the time when the temples were built rather than considering the hundreds of years for which they have existed, which would have taken me far too long.

Where does your topic relate to?

Place can be another means of narrowing down the topic. For example, consider the impact of your topic on a particular neighborhood, city, or country, rather than trying to process a global question. 

In my example, I chose to focus my research on one area of Greece, where there were lots of temples to Hera. This meant skipping other important locations, but including these would have made the thesis too wide-ranging.

Create an outline and get feedback

Once you have an idea of what you are going to write about, create an outline or summary and get feedback from your teacher(s). It’s okay if you don’t know exactly how you’re going to answer your thesis question yet, but based on your research you should have a rough plan of the key points you want to cover. So, for me, the outline was as follows:

  • Context: who was the goddess Hera?
  • Overview of her sanctuaries in the Argive region
  • Their initial development 
  • Political and cultural influences
  • The importance of the mythical past

In the final thesis, I took a strong view on why the goddess was so important in this region, but it took more research, writing, and discussion with my supervisor to pin down my argument.

To choose a thesis research topic, find something you’re passionate about, research widely to get the big picture, and then move to a more focused view. Bringing a fresh perspective to a popular theme, finding an underserved audience who could benefit from your research, or answering a controversial question can make your thesis stand out from the crowd.

For tips on how to start writing your thesis, don’t miss our advice on writing a great research abstract and a stellar literature review . And don’t forget that Wordtune can also support you with proofreading, making it even easier to submit a polished thesis.

How do you come up with a research topic for a thesis?

To help you find a thesis topic, speak to your professor, look through your old course notes, think about what you already enjoy in everyday life, talk about your field of study with friends and family, and research podcasts and videos to find a topic that is interesting for you. It’s a good idea to refine your topic so that it’s not too general or broad.  

Do you choose your own thesis topic?

Yes, you usually choose your own thesis topic. You can get help from your professor(s), friends, and family to figure out which research topic is interesting to you. 

Share This Article:

How to Craft an Engaging Elevator Pitch that Gets Results

How to Craft an Engaging Elevator Pitch that Gets Results

Eight Steps to Craft an Irresistible LinkedIn Profile

Eight Steps to Craft an Irresistible LinkedIn Profile

7 Common Errors in Writing + How to Fix Them (With Examples)

7 Common Errors in Writing + How to Fix Them (With Examples)

Looking for fresh content, thank you your submission has been received.

U.S. flag

A .gov website belongs to an official government organization in the United States.

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Public Health in STEM Education
  • CDC's Impact
  • Public Health Strategy
  • Teacher Resources K-12

Student Resources K–12

  • College and Professional Resources
  • Examples of STEM Partnerships

What to know

CDC's Comics, camps, and apps can help you explore public health. Help solve outbreaks like a disease detective. See how what you are learning in school can help create a healthier world.

a group of young women talking

Elementary School

  • Ask a Scientist Comic Series
  • CDC Museum The Story of CDC Enrichment Modules
  • BAM! Dining Decisions App
  • See all resources

Middle and High School

Cdc museum disease detective camp.

  • NCHS Data Detectives Camp
  • Public Health Academy Teen Newsletter
  • Junior Disease Detectives: Operation Outbreak Graphic Novel

Learn more about the CDC Museum Disease Detective Camp

Fun fact: Attend CDC Museum Disease Detective Camp as a high school student. Then, apply to become a camp counselor the next year. After becoming a counselor, apply to become the camp intern the following year!

Impact: Since 2005, over 1,950 rising high school juniors and seniors have attended camp. Students come from across the world to be immersed in this one-week CDC experience. 900 more students participated in the CDC Museum Public Health Academy Online Summer Course .

CDC Disease Detective Camp gives high school juniors and seniors exposure to key aspects of CDC.

CDC Museum Camp featured on CNN

two students examining documentation

A group of teens learn how to become disease detectives at the CDC. Learn more about CDC's Camp . Source: CNN.

Science, Technology, Engineering, and Math (STEM)

Public Health in STEM Education is a program that aims to integrate public health concepts and practices into STEM (Science, Technology, Engineering, and Math) education.

For Everyone

Public health.

COMMENTS

  1. 55 Brilliant Research Topics For STEM Students

    There are several science research topics for STEM students. Below are some possible quantitative research topics for STEM students. A study of protease inhibitor and how it operates. A study of how men's exercise impacts DNA traits passed to children. A study of the future of commercial space flight.

  2. 151+ Brilliant Qualitative Research Topics for STEM Students

    Qualitative Research Topics for STEM Students. 1. Studying how different types of dirt affect plant growth. 2. Checking how different plant foods impact how much crops grow. 3. Looking at how exercising affects your heart rate. 4. Testing which materials keep things warm the best.

  3. 169+ Exciting Qualitative Research Topics For STEM Students

    Qualitative research topics for stem students are questions or issues that necessitate an in-depth exploration of people's experiences, beliefs, and behaviors. STEM students can use this approach to investigate societal impacts, ethical dilemmas, and user experiences related to scientific advancements and innovations. ...

  4. 250+ Amazing Qualitative Research Topics for STEM Students

    Qualitative research in STEM (Science, Technology, Engineering, and Mathematics) examines many different areas. It helps us understand how people interact with science and technology. These research topics explore how people feel and think about different scientific fields. They also examine ethical issues, how society is affected, and how ...

  5. Research and trends in STEM education: a systematic review of journal

    With the rapid increase in the number of scholarly publications on STEM education in recent years, reviews of the status and trends in STEM education research internationally support the development of the field. For this review, we conducted a systematic analysis of 798 articles in STEM education published between 2000 and the end of 2018 in 36 journals to get an overview about developments ...

  6. 11 STEM Research Topics for High School Students

    Topic 1: Artificial Intelligence (AI) AI stands at the forefront of technological innovation. Students can engage in research on AI applications in various sectors and the ethical implications of AI. This field is suitable for students with interests in computer science, AI, data analytics, and related areas. Topic 2: Applied Math and AI.

  7. 200+ Experimental Quantitative Research Topics For Stem Students

    Here are 10 practical research topics for STEM students: Developing an affordable and sustainable water purification system for rural communities. Designing a low-cost, energy-efficient home heating and cooling system. Investigating strategies for reducing food waste in the supply chain and households.

  8. Home

    Overview. The Journal for STEM Education Research is an interdisciplinary research journal that aims to promote STEM education as a distinct field. Offers a platform for interdisciplinary research on a broad spectrum of topics in STEM education. Publishes integrative reviews and syntheses of literature relevant to STEM education and research.

  9. PDF Qualitative Research Topics for STEM Students

    Here's a list of over 200 qualitative research topics for STEM students: The Ethical Implications of CRISPR Technology in Genetic Engineering. Exploring the Societal Impact of Artificial Intelligence in Healthcare. User Experience and Human-Centered Design in Software Development.

  10. STEM: Innovation on Teaching and Learning

    This Research Topic is focused on STEM education: based on this model, several studies have emerged on innovative approaches on teaching and learning. In order to meet the demands of developing students for the 21st century skills and given the appropriate characteristics for this goal of the STEM model, further research is needed on this topic.Being so, it is justified to carry out more ...

  11. Undergraduate Research Experiences for STEM Students

    Undergraduate Research Experiences for STEM Students provides a comprehensive overview of and insights about the current and rapidly evolving types of UREs, in an effort to improve understanding of the complexity of UREs in terms of their content, their surrounding context, the diversity of the student participants, and the opportunities for ...

  12. Trending Topic Research: STEM

    STEM. Trending Topic Research File. Science, Technology Engineering, and Mathematics (STEM) is one of the most talked about topics in education, emphasizing research, problem solving, critical thinking, and creativity. The following compendium of open-access articles are inclusive of all substantive AERA journal content regarding STEM published ...

  13. Research and trends in STEM education: a systematic analysis of

    Taking publicly funded projects in STEM education as a special lens, we aimed to learn about research and trends in STEM education. We identified a total of 127 projects funded by the Institute of Education Sciences (IES) of the US Department of Education from 2003 to 2019. Both the number of funded projects in STEM education and their funding amounts were high, although there were ...

  14. Trends and Hot Topics of STEM and STEM Education: a Co-word ...

    This study explored research trends in science, technology, engineering, and mathematics (STEM) education. Descriptive analysis and co-word analysis were used to examine articles published in Social Science Citation Index journals from 2011 to 2020. From a search of the Web of Science database, a total of 761 articles were selected as target samples for analysis. A growing number of STEM ...

  15. 250 Good Qualitative Research Topics for STEM Students

    Computer Science and IT Topics for STEM Students. User experiences with virtual reality technology. Social media usage patterns among STEM students. Ethical considerations in cybersecurity practices. Online learning experiences during the COVID-19 pandemic. Perceptions of algorithmic bias in AI systems.

  16. Best 151+ Quantitative Research Topics for STEM Students

    Engineering. Let's explore some quantitative research topics for stem students in engineering: 1. Investigating the efficiency of renewable energy systems in urban environments. 2. Analyzing the impact of 3D printing on manufacturing processes. 3. Studying the structural integrity of materials in aerospace engineering.

  17. STEM Education Research

    Science isn't merely for scientists. Understanding science is part of being a well-rounded and informed citizen. Science, technology, engineering, and mathematics (STEM) education research is dedicated to studying the nature of learning, the impact of different science teaching strategies, and the most effective ways to recruit and retain the next generation of scientists.

  18. How do I choose or develop a research topic?

    This guide introduces students to the SME librarian and available STEM resources while providing guidance on basic information literacy skills. This page provides tips and strategies for developing research topics. ... The next step in developing your research topic is making sure that it is actually feasible for you to research. Sometimes ...

  19. Insights in STEM Education: 2022

    This editorial initiative, led by Dr Lianghuo Fan, Specialty Chief Editor of the STEM Education section, together with Dr Sibel Erduran and Dr Subramaniam Ramanathan, is focused on new insights, novel developments, current challenges, recent advances, and future perspectives in the field of STEM education. The Research Topic solicits brief ...

  20. 260+ Experimental Research Topics for STEM Students

    These experimental research topics for stem students not only offer intellectual challenges but also the potential to make a significant impact on the world. So, embrace the world of experimental research and be a part of the ever-evolving landscape of science and technology. Your contributions can lead to breakthroughs that shape our future.

  21. 151+ Great Quantitative Research Topics For STEM Students

    Experimental quantitative research topics for STEM students involve conducting investigations using numbers and measurements to find answers to questions related to science, technology, engineering, and mathematics. These topics help students gather data through controlled experiments and use mathematical analysis to understand how things work ...

  22. 189+ Good Quantitative Research Topics For STEM Students

    Following are the best Quantitative Research Topics For STEM Students in mathematics and statistics. Prime Number Distribution: Investigate the distribution of prime numbers. Graph Theory Algorithms: Develop algorithms for solving graph theory problems. Statistical Analysis of Financial Markets: Analyze financial data and market trends.

  23. The SkillsCenter: Creating scalable research opportunities for STEM

    This is accomplished through a curriculum designed around a single research topic, where each student or group of students is responsible for developing a small component of the novel research. While assessing outcomes has proven challenging, experts generally agree that these courses are useful for developing students' discipline-specific ...

  24. 10 Research Ideas in STEM for Middle School Students

    To help you get started, we have curated a list of 10 research topics in STEM that are suitable for middle school students! 1. Renewable Energy & Clean Technologies Research Topics. Renewable energy is the need of the hour and reducing the global reliance on fossil fuels for power production is a key issue for nations across the world.

  25. Pursuing STEM Careers: Perspectives of Senior High School Students

    Abstract and Figures. This qualitative descriptive research explored the perspectives of STEM (science, technology, engineering, and mathematics) senior high school students in a public secondary ...

  26. Science & Tech Archives

    Aramont Fellows bring cutting-edge scientific innovation to the forefront. Four groundbreaking projects investigate brain development, capture raw data with AI, innovate quantum computers, and develop new models to map supernovas. February 6, 2024.

  27. Marginal students reap more benefits from STEM programs: Study

    Enrolling in a selective college STEM program pays off more for academically marginal students—even though they are less likely to graduate, Cornell economics research finds. Topics Week's top

  28. Your Step-by-Step Guide to Choosing a Thesis Research Topic.

    Choose a topic that you're interested in. First things first: double-check with your teachers or supervisor if there are any constraints on your research topic. Once your parameters are clear, it's time to identify what lights you up — after all, you're going to be spending a lot of time thinking about it.

  29. 9 Undergraduate Research Projects That Wowed Us This Year

    Many present their work at research conferences, and some even co-author work with faculty and graduate students that leads to publication. As 2023-2024 drew to a close, the NYU News team coordinated with the Office of the Provost to pull together a snapshot of the research efforts that students undertook during this school year.

  30. Student Resources K-12

    Fun fact: Attend CDC Museum Disease Detective Camp as a high school student. Then, apply to become a camp counselor the next year. After becoming a counselor, apply to become the camp intern the following year! Impact: Since 2005, over 1,950 rising high school juniors and seniors have attended camp. Students come from across the world to be ...