Smart. Open. Grounded. Inventive. Read our Ideas Made to Matter.

Which program is right for you?

MIT Sloan Campus life

Through intellectual rigor and experiential learning, this full-time, two-year MBA program develops leaders who make a difference in the world.

A rigorous, hands-on program that prepares adaptive problem solvers for premier finance careers.

A 12-month program focused on applying the tools of modern data science, optimization and machine learning to solve real-world business problems.

Earn your MBA and SM in engineering with this transformative two-year program.

Combine an international MBA with a deep dive into management science. A special opportunity for partner and affiliate schools only.

A doctoral program that produces outstanding scholars who are leading in their fields of research.

Bring a business perspective to your technical and quantitative expertise with a bachelor’s degree in management, business analytics, or finance.

A joint program for mid-career professionals that integrates engineering and systems thinking. Earn your master’s degree in engineering and management.

An interdisciplinary program that combines engineering, management, and design, leading to a master’s degree in engineering and management.

Executive Programs

A full-time MBA program for mid-career leaders eager to dedicate one year of discovery for a lifetime of impact.

This 20-month MBA program equips experienced executives to enhance their impact on their organizations and the world.

Non-degree programs for senior executives and high-potential managers.

A non-degree, customizable program for mid-career professionals.

How to engage your business in community and economic development

Why companies are turning to ‘citizen developers’

‘Climate capitalism’ can help scale green solutions

Credit: Mimi Phan

Ideas Made to Matter

Design thinking, explained

Rebecca Linke

Sep 14, 2017

What is design thinking?

Design thinking is an innovative problem-solving process rooted in a set of skills.The approach has been around for decades, but it only started gaining traction outside of the design community after the 2008 Harvard Business Review article [subscription required] titled “Design Thinking” by Tim Brown, CEO and president of design company IDEO.

Since then, the design thinking process has been applied to developing new products and services, and to a whole range of problems, from creating a business model for selling solar panels in Africa to the operation of Airbnb .

At a high level, the steps involved in the design thinking process are simple: first, fully understand the problem; second, explore a wide range of possible solutions; third, iterate extensively through prototyping and testing; and finally, implement through the customary deployment mechanisms. 

The skills associated with these steps help people apply creativity to effectively solve real-world problems better than they otherwise would. They can be readily learned, but take effort. For instance, when trying to understand a problem, setting aside your own preconceptions is vital, but it’s hard.

Creative brainstorming is necessary for developing possible solutions, but many people don’t do it particularly well. And throughout the process it is critical to engage in modeling, analysis, prototyping, and testing, and to really learn from these many iterations.

Once you master the skills central to the design thinking approach, they can be applied to solve problems in daily life and any industry.

Here’s what you need to know to get started.

Infographic of the design thinking process

Understand the problem 

The first step in design thinking is to understand the problem you are trying to solve before searching for solutions. Sometimes, the problem you need to address is not the one you originally set out to tackle.

“Most people don’t make much of an effort to explore the problem space before exploring the solution space,” said MIT Sloan professor Steve Eppinger. The mistake they make is to try and empathize, connecting the stated problem only to their own experiences. This falsely leads to the belief that you completely understand the situation. But the actual problem is always broader, more nuanced, or different than people originally assume.

Take the example of a meal delivery service in Holstebro, Denmark. When a team first began looking at the problem of poor nutrition and malnourishment among the elderly in the city, many of whom received meals from the service, it thought that simply updating the menu options would be a sufficient solution. But after closer observation, the team realized the scope of the problem was much larger , and that they would need to redesign the entire experience, not only for those receiving the meals, but for those preparing the meals as well. While the company changed almost everything about itself, including rebranding as The Good Kitchen, the most important change the company made when rethinking its business model was shifting how employees viewed themselves and their work. That, in turn, helped them create better meals (which were also drastically changed), yielding happier, better nourished customers.

Involve users

Imagine you are designing a new walker for rehabilitation patients and the elderly, but you have never used one. Could you fully understand what customers need? Certainly not, if you haven’t extensively observed and spoken with real customers. There is a reason that design thinking is often referred to as human-centered design.

“You have to immerse yourself in the problem,” Eppinger said.

How do you start to understand how to build a better walker? When a team from MIT’s Integrated Design and Management program together with the design firm Altitude took on that task, they met with walker users to interview them, observe them, and understand their experiences.  

“We center the design process on human beings by understanding their needs at the beginning, and then include them throughout the development and testing process,” Eppinger said.

Central to the design thinking process is prototyping and testing (more on that later) which allows designers to try, to fail, and to learn what works. Testing also involves customers, and that continued involvement provides essential user feedback on potential designs and use cases. If the MIT-Altitude team studying walkers had ended user involvement after its initial interviews, it would likely have ended up with a walker that didn’t work very well for customers. 

It is also important to interview and understand other stakeholders, like people selling the product, or those who are supporting the users throughout the product life cycle.

The second phase of design thinking is developing solutions to the problem (which you now fully understand). This begins with what most people know as brainstorming.

Hold nothing back during brainstorming sessions — except criticism. Infeasible ideas can generate useful solutions, but you’d never get there if you shoot down every impractical idea from the start.

“One of the key principles of brainstorming is to suspend judgment,” Eppinger said. “When we're exploring the solution space, we first broaden the search and generate lots of possibilities, including the wild and crazy ideas. Of course, the only way we're going to build on the wild and crazy ideas is if we consider them in the first place.”

That doesn’t mean you never judge the ideas, Eppinger said. That part comes later, in downselection. “But if we want 100 ideas to choose from, we can’t be very critical.”

In the case of The Good Kitchen, the kitchen employees were given new uniforms. Why? Uniforms don’t directly affect the competence of the cooks or the taste of the food.

But during interviews conducted with kitchen employees, designers realized that morale was low, in part because employees were bored preparing the same dishes over and over again, in part because they felt that others had a poor perception of them. The new, chef-style uniforms gave the cooks a greater sense of pride. It was only part of the solution, but if the idea had been rejected outright, or perhaps not even suggested, the company would have missed an important aspect of the solution.

Prototype and test. Repeat.

You’ve defined the problem. You’ve spoken to customers. You’ve brainstormed, come up with all sorts of ideas, and worked with your team to boil those ideas down to the ones you think may actually solve the problem you’ve defined.

“We don’t develop a good solution just by thinking about a list of ideas, bullet points and rough sketches,” Eppinger said. “We explore potential solutions through modeling and prototyping. We design, we build, we test, and repeat — this design iteration process is absolutely critical to effective design thinking.”

Repeating this loop of prototyping, testing, and gathering user feedback is crucial for making sure the design is right — that is, it works for customers, you can build it, and you can support it.

“After several iterations, we might get something that works, we validate it with real customers, and we often find that what we thought was a great solution is actually only just OK. But then we can make it a lot better through even just a few more iterations,” Eppinger said.

Implementation

The goal of all the steps that come before this is to have the best possible solution before you move into implementing the design. Your team will spend most of its time, its money, and its energy on this stage.

“Implementation involves detailed design, training, tooling, and ramping up. It is a huge amount of effort, so get it right before you expend that effort,” said Eppinger.

Design thinking isn’t just for “things.” If you are only applying the approach to physical products, you aren’t getting the most out of it. Design thinking can be applied to any problem that needs a creative solution. When Eppinger ran into a primary school educator who told him design thinking was big in his school, Eppinger thought he meant that they were teaching students the tenets of design thinking.

“It turns out they meant they were using design thinking in running their operations and improving the school programs. It’s being applied everywhere these days,” Eppinger said.

In another example from the education field, Peruvian entrepreneur Carlos Rodriguez-Pastor hired design consulting firm IDEO to redesign every aspect of the learning experience in a network of schools in Peru. The ultimate goal? To elevate Peru’s middle class.

As you’d expect, many large corporations have also adopted design thinking. IBM has adopted it at a company-wide level, training many of its nearly 400,000 employees in design thinking principles .

What can design thinking do for your business?

The impact of all the buzz around design thinking today is that people are realizing that “anybody who has a challenge that needs creative problem solving could benefit from this approach,” Eppinger said. That means that managers can use it, not only to design a new product or service, “but anytime they’ve got a challenge, a problem to solve.”

Applying design thinking techniques to business problems can help executives across industries rethink their product offerings, grow their markets, offer greater value to customers, or innovate and stay relevant. “I don’t know industries that can’t use design thinking,” said Eppinger.

Ready to go deeper?

Read “ The Designful Company ” by Marty Neumeier, a book that focuses on how businesses can benefit from design thinking, and “ Product Design and Development ,” co-authored by Eppinger, to better understand the detailed methods.

Register for an MIT Sloan Executive Education course:

Systematic Innovation of Products, Processes, and Services , a five-day course taught by Eppinger and other MIT professors.

  • Leadership by Design: Innovation Process and Culture , a two-day course taught by MIT Integrated Design and Management director Matthew Kressy.
  • Managing Complex Technical Projects , a two-day course taught by Eppinger.
  • Apply for M astering Design Thinking , a 3-month online certificate course taught by Eppinger and MIT Sloan senior lecturers Renée Richardson Gosline and David Robertson.

Steve Eppinger is a professor of management science and innovation at MIT Sloan. He holds the General Motors Leaders for Global Operations Chair and has a PhD from MIT in engineering. He is the faculty co-director of MIT's System Design and Management program and Integrated Design and Management program, both master’s degrees joint between the MIT Sloan and Engineering schools. His research focuses on product development and technical project management, and has been applied to improving complex engineering processes in many industries.

Read next: 10 agile ideas worth sharing

Related Articles

A robot hand holds a brush on top of a collage of illustrated motor vehicles

  • Product overview
  • All features
  • App integrations

CAPABILITIES

  • project icon Project management
  • Project views
  • Custom fields
  • Status updates
  • goal icon Goals and reporting
  • Reporting dashboards
  • workflow icon Workflows and automation
  • portfolio icon Resource management
  • Time tracking
  • my-task icon Admin and security
  • Admin console
  • asana-intelligence icon Asana Intelligence
  • list icon Personal
  • premium icon Starter
  • briefcase icon Advanced
  • Goal management
  • Organizational planning
  • Campaign management
  • Creative production
  • Content calendars
  • Marketing strategic planning
  • Resource planning
  • Project intake
  • Product launches
  • Employee onboarding
  • View all uses arrow-right icon
  • Project plans
  • Team goals & objectives
  • Team continuity
  • Meeting agenda
  • View all templates arrow-right icon
  • Work management resources Discover best practices, watch webinars, get insights
  • What's new Learn about the latest and greatest from Asana
  • Customer stories See how the world's best organizations drive work innovation with Asana
  • Help Center Get lots of tips, tricks, and advice to get the most from Asana
  • Asana Academy Sign up for interactive courses and webinars to learn Asana
  • Developers Learn more about building apps on the Asana platform
  • Community programs Connect with and learn from Asana customers around the world
  • Events Find out about upcoming events near you
  • Partners Learn more about our partner programs
  • Support Need help? Contact the Asana support team
  • Asana for nonprofits Get more information on our nonprofit discount program, and apply.

Featured Reads

problem solving and process design

  • Project planning |
  • How to solve problems using the design ...

How to solve problems using the design thinking process

Sarah Laoyan contributor headshot

The design thinking process is a problem-solving design methodology that helps you develop solutions in a human-focused way. Initially designed at Stanford’s d.school, the five stage design thinking method can help solve ambiguous questions, or more open-ended problems. Learn how these five steps can help your team create innovative solutions to complex problems.

As humans, we’re approached with problems every single day. But how often do we come up with solutions to everyday problems that put the needs of individual humans first?

This is how the design thinking process started.

What is the design thinking process?

The design thinking process is a problem-solving design methodology that helps you tackle complex problems by framing the issue in a human-centric way. The design thinking process works especially well for problems that are not clearly defined or have a more ambiguous goal.

One of the first individuals to write about design thinking was John E. Arnold, a mechanical engineering professor at Stanford. Arnold wrote about four major areas of design thinking in his book, “Creative Engineering” in 1959. His work was later taught at Stanford’s Hasso-Plattner Institute of Design (also known as d.school), a design institute that pioneered the design thinking process. 

This eventually led Nobel Prize laureate Herbert Simon to outline one of the first iterations of the design thinking process in his 1969 book, “The Sciences of the Artificial.” While there are many different variations of design thinking, “The Sciences of the Artificial” is often credited as the basis. 

Anatomy of Work Special Report: How to spot—and overcome—the most crucial enterprise challenges

Learn how enterprises can improve processes and productivity, no matter how complex your organization is. With fewer redundancies, leaders and their teams can hit goals faster.

[Resource Card] AOW Blog Image

A non-linear design thinking approach

Design thinking is not a linear process. It’s important to understand that each stage of the process can (and should) inform the other steps. For example, when you’re going through user testing, you may learn about a new problem that didn’t come up during any of the previous stages. You may learn more about your target personas during the final testing phase, or discover that your initial problem statement can actually help solve even more problems, so you need to redefine the statement to include those as well. 

Why use the design thinking process

The design thinking process is not the most intuitive way to solve a problem, but the results that come from it are worth the effort. Here are a few other reasons why implementing the design thinking process for your team is worth it.

Focus on problem solving

As human beings, we often don’t go out of our way to find problems. Since there’s always an abundance of problems to solve, we’re used to solving problems as they occur. The design thinking process forces you to look at problems from many different points of view. 

The design thinking process requires focusing on human needs and behaviors, and how to create a solution to match those needs. This focus on problem solving can help your design team come up with creative solutions for complex problems. 

Encourages collaboration and teamwork

The design thinking process cannot happen in a silo. It requires many different viewpoints from designers, future customers, and other stakeholders . Brainstorming sessions and collaboration are the backbone of the design thinking process.

Foster innovation

The design thinking process focuses on finding creative solutions that cater to human needs. This means your team is looking to find creative solutions for hyper specific and complex problems. If they’re solving unique problems, then the solutions they’re creating must be equally unique.

The iterative process of the design thinking process means that the innovation doesn’t have to end—your team can continue to update the usability of your product to ensure that your target audience’s problems are effectively solved. 

The 5 stages of design thinking

Currently, one of the more popular models of design thinking is the model proposed by the Hasso-Plattner Institute of Design (or d.school) at Stanford. The main reason for its popularity is because of the success this process had in successful companies like Google, Apple, Toyota, and Nike. Here are the five steps designated by the d.school model that have helped many companies succeed.

1. Empathize stage

The first stage of the design thinking process is to look at the problem you’re trying to solve in an empathetic manner. To get an accurate representation of how the problem affects people, actively look for people who encountered this problem previously. Asking them how they would have liked to have the issue resolved is a good place to start, especially because of the human-centric nature of the design thinking process. 

Empathy is an incredibly important aspect of the design thinking process.  The design thinking process requires the designers to put aside any assumptions and unconscious biases they may have about the situation and put themselves in someone else’s shoes. 

For example, if your team is looking to fix the employee onboarding process at your company, you may interview recent new hires to see how their onboarding experience went. Another option is to have a more tenured team member go through the onboarding process so they can experience exactly what a new hire experiences.

2. Define stage

Sometimes a designer will encounter a situation when there’s a general issue, but not a specific problem that needs to be solved. One way to help designers clearly define and outline a problem is to create human-centric problem statements. 

A problem statement helps frame a problem in a way that provides relevant context in an easy to comprehend way. The main goal of a problem statement is to guide designers working on possible solutions for this problem. A problem statement frames the problem in a way that easily highlights the gap between the current state of things and the end goal. 

Tip: Problem statements are best framed as a need for a specific individual. The more specific you are with your problem statement, the better designers can create a human-centric solution to the problem. 

Examples of good problem statements:

We need to decrease the number of clicks a potential customer takes to go through the sign-up process.

We need to decrease the new subscriber unsubscribe rate by 10%. 

We need to increase the Android app adoption rate by 20%.

3. Ideate stage

This is the stage where designers create potential solutions to solve the problem outlined in the problem statement. Use brainstorming techniques with your team to identify the human-centric solution to the problem defined in step two. 

Here are a few brainstorming strategies you can use with your team to come up with a solution:

Standard brainstorm session: Your team gathers together and verbally discusses different ideas out loud.

Brainwrite: Everyone writes their ideas down on a piece of paper or a sticky note and each team member puts their ideas up on the whiteboard. 

Worst possible idea: The inverse of your end goal. Your team produces the most goofy idea so nobody will look silly. This takes out the rigidity of other brainstorming techniques. This technique also helps you identify areas that you can improve upon in your actual solution by looking at the worst parts of an absurd solution. 

It’s important that you don’t discount any ideas during the ideation phase of brainstorming. You want to have as many potential solutions as possible, as new ideas can help trigger even better ideas. Sometimes the most creative solution to a problem is the combination of many different ideas put together.

4. Prototype stage

During the prototype phase, you and your team design a few different variations of inexpensive or scaled down versions of the potential solution to the problem. Having different versions of the prototype gives your team opportunities to test out the solution and make any refinements. 

Prototypes are often tested by other designers, team members outside of the initial design department, and trusted customers or members of the target audience. Having multiple versions of the product gives your team the opportunity to tweak and refine the design before testing with real users. During this process, it’s important to document the testers using the end product. This will give you valuable information as to what parts of the solution are good, and which require more changes.

After testing different prototypes out with teasers, your team should have different solutions for how your product can be improved. The testing and prototyping phase is an iterative process—so much so that it’s possible that some design projects never end.

After designers take the time to test, reiterate, and redesign new products, they may find new problems, different solutions, and gain an overall better understanding of the end-user. The design thinking framework is flexible and non-linear, so it’s totally normal for the process itself to influence the end design. 

Tips for incorporating the design thinking process into your team

If you want your team to start using the design thinking process, but you’re unsure of how to start, here are a few tips to help you out. 

Start small: Similar to how you would test a prototype on a small group of people, you want to test out the design thinking process with a smaller team to see how your team functions. Give this test team some small projects to work on so you can see how this team reacts. If it works out, you can slowly start rolling this process out to other teams.

Incorporate cross-functional team members : The design thinking process works best when your team members collaborate and brainstorm together. Identify who your designer’s key stakeholders are and ensure they’re included in the small test team. 

Organize work in a collaborative project management software : Keep important design project documents such as user research, wireframes, and brainstorms in a collaborative tool like Asana . This way, team members will have one central source of truth for anything relating to the project they’re working on.

Foster collaborative design thinking with Asana

The design thinking process works best when your team works collaboratively. You don’t want something as simple as miscommunication to hinder your projects. Instead, compile all of the information your team needs about a design project in one place with Asana. 

Related resources

problem solving and process design

How to use a feasibility study in project management

problem solving and process design

How to track utilization rate and drive team profitability

problem solving and process design

How to accomplish big things with long-term goals

problem solving and process design

Smooth product launches are simpler than you think

About this site

Design thinking in context, design thinking today.

  • Designer's Mindset
  • Adoption and Integration
  • Teaching and Learning
  • New Applications
  • Privacy Policy

Design Thinking Defined

—tim brown, executive chair of ideo.

Thinking like a designer can transform the way organizations develop products, services, processes, and strategy. This approach, which is known as design thinking, brings together what is desirable from a human point of view with what is technologically feasible and economically viable. It also allows people who aren't trained as designers to use creative tools to address a vast range of challenges.

IDEO did not invent design thinking, but we have become known for practicing it and applying it to solving problems small and large. It’s fair to say that we were in the right place at the right time. When we looked back over our shoulder, we discovered that there was a revolutionary movement behind us.

This design thinking site is just one small part of the IDEO network. There’s much more, including full online courses we've developed on many topics related to design thinking and its applications. We fundamentally believe in the power of design thinking as a methodology for creating positive impact in the world—and we bring that belief into our client engagements as well as into creating open resources such as this.

At IDEO, we’re often asked to share what we know about design thinking. We’ve developed this website in response to that request. Here, we introduce design thinking, how it came to be, how it is being used, and steps and tools for mastering it. You’ll find our particular take on design thinking, as well as the perspectives of others. Everything on this site is free for you to use and share with proper attribution .

(From 2008-2018, designthinking.ideo.com was the home of IDEO's design thinking blog, written by our CEO, Tim Brown . You can find that blog here .)

We live and work in a world of interlocking systems, where many of the problems we face are dynamic, multifaceted, and inherently human. Think of some of the big questions being asked by businesses, government, educational and social organizations: How will we navigate the disruptive forces of the day, including technology and globalism? How will we grow and improve in response to rapid change? How can we effectively support individuals while simultaneously changing big systems? For us, design thinking offers an approach for addressing these and other big questions.

There’s no single definition for design thinking. It’s an idea, a strategy, a method, and a way of seeing the world. It’s grown beyond the confines of any individual person, organization or website. And as it matures, its history deepens and its impact evolves. For IDEO, design thinking is a way to solve problems through creativity. Certainly, it isn’t a fail-safe approach; nor is it the only approach. But based on the impact we are seeing in our work, the relevance of design thinking has never been greater.

Design thinking is maturing. It’s moving from a nascent practice to an established one, and with that comes interest and critique. People are debating its definition, pedigree, and value. As a leading and committed practitioner of design thinking, IDEO has a stake in this conversation—and a responsibility to contextualize its value in the present moment and, importantly, in the future.

We’ve learned a lot over the years, and we’d like to share our insights. We’ve seen design thinking transform lives and organizations, and on occasion we’ve seen it fall short when approached superficially, or without a solid foundation of study. Design thinking takes practice; and as a community of designers, entrepreneurs, engineers, teachers, researchers, and more, we’ve followed the journey to mastery, and developed maps that can guide others.

Designer's mindset

At IDEO, we are a community of designers who naturally share a mindset due to our profession. Our teams include people who've trained in applied fields such as industrial design, environmental architecture, graphic design, and engineering; as well as people from law, psychology, anthropology, and many other areas. Together, we have rallied around design thinking as a way of explaining design's applications and utility so that others can practice it, too. Design thinking uses creative activities to foster collaboration and solve problems in human-centered ways. We adopt a “beginner’s mind,” with the intent to remain open and curious, to assume nothing, and to see ambiguity as an opportunity.

To think like a designer requires dreaming up wild ideas, taking time to tinker and test, and being willing to fail early and often. The designer's mindset embraces empathy, optimism, iteration, creativity, and ambiguity. And most critically, design thinking keeps people at the center of every process. A human-centered designer knows that as long as you stay focused on the people you're designing for—and listen to them directly—you can arrive at optimal solutions that meet their needs.

Anyone can approach the world like a designer. But to unlock greater potential and to learn how to work as a dynamic problem solver, creative confidence is key. For IDEO founder David Kelley, creative confidence is the belief that everyone is creative, and that creativity isn’t the ability to draw or compose or sculpt, but a way of understanding the world.

Skip navigation

Nielsen Norman Group logo

World Leaders in Research-Based User Experience

Design Thinking 101

problem solving and process design

July 31, 2016 2016-07-31

  • Email article
  • Share on LinkedIn
  • Share on Twitter

In This Article:

Definition of design thinking, why — the advantage, flexibility — adapt to fit your needs, scalability — think bigger, history of design thinking.

Design thinking is an ideology supported by an accompanying process . A complete definition requires an understanding of both.

Definition: The design thinking ideology asserts that a hands-on, user-centric approach to problem solving can lead to innovation, and innovation can lead to differentiation and a competitive advantage. This hands-on, user-centric approach is defined by the design thinking process and comprises 6 distinct phases, as defined and illustrated below.

The design-thinking framework follows an overall flow of 1) understand, 2) explore, and 3) materialize. Within these larger buckets fall the 6 phases: empathize, define, ideate, prototype, test, and implement.

The 6 Design Thinking Phases: empathize, define, ideate, prototype, test, and implement

Conduct research in order to develop knowledge about what your users do, say, think, and feel .

Imagine your goal is to improve an onboarding experience for new users. In this phase, you talk to a range of actual users.  Directly observe what they do, how they think, and what they want, asking yourself things like ‘what motivates or discourages users?’ or ‘where do they experience frustration?’ The goal is to gather enough observations that you can truly begin to empathize with your users and their perspectives.

Combine all your research and observe where your users’ problems exist. While pinpointing your users’ needs , begin to highlight opportunities for innovation.

Consider the onboarding example again. In the define phase, use the data gathered in the empathize phase to glean insights. Organize all your observations and draw parallels across your users’ current experiences. Is there a common pain point across many different users? Identify unmet user needs.

Brainstorm a range of crazy, creative ideas that address the unmet user needs identified in the define phase. Give yourself and your team total freedom; no idea is too farfetched and quantity supersedes quality.

At this phase, bring your team members together and sketch out many different ideas. Then, have them share ideas with one another, mixing and remixing, building on others' ideas.

Build real, tactile representations for a subset of your ideas. The goal of this phase is to understand what components of your ideas work, and which do not. In this phase you begin to weigh the impact vs. feasibility of your ideas through feedback on your prototypes.

Make your ideas tactile. If it is a new landing page, draw out a wireframe and get feedback internally.  Change it based on feedback, then prototype it again in quick and dirty code. Then, share it with another group of people.

Return to your users for feedback. Ask yourself ‘Does this solution meet users’ needs?’ and ‘Has it improved how they feel, think, or do their tasks?’

Put your prototype in front of real customers and verify that it achieves your goals. Has the users’ perspective during onboarding improved? Does the new landing page increase time or money spent on your site? As you are executing your vision, continue to test along the way.

Put the vision into effect. Ensure that your solution is materialized and touches the lives of your end users.

This is the most important part of design thinking, but it is the one most often forgotten. As Don Norman preaches, “we need more design doing.” Design thinking does not free you from the actual design doing. It’s not magic.

“There’s no such thing as a creative type. As if creativity is a verb, a very time-consuming verb. It’s about taking an idea in your head, and transforming that idea into something real. And that’s always going to be a long and difficult process. If you’re doing it right, it’s going to feel like work.”  - Milton Glaser

As impactful as design thinking can be for an organization, it only leads to true innovation if the vision is executed. The success of design thinking lies in its ability to transform an aspect of the end user’s life. This sixth step — implement — is crucial.

Why should we introduce a new way to think about product development? There are numerous reasons to engage in design thinking, enough to merit a standalone article, but in summary, design thinking achieves all these advantages at the same time.

Design thinking:

  • Is a user-centered process that starts with user data, creates design artifacts that address real and not imaginary user needs, and then tests those artifacts with real users
  • Leverages collective expertise and establishes a shared language, as well as buy-in amongst your team
  • Encourages innovation by exploring multiple avenues for the same problem

Jakob Nielsen says “ a wonderful interface solving the wrong problem will fail ." Design thinking unfetters creative energies and focuses them on the right problem. 

The above process will feel abstruse at first. Don’t think of it as if it were a prescribed step-by-step recipe for success. Instead, use it as scaffolding to support you when and where you need it. Be a master chef, not a line cook: take the recipe as a framework, then tweak as needed.

Each phase is meant to be iterative and cyclical as opposed to a strictly linear process, as depicted below. It is common to return to the two understanding phases, empathize and define, after an initial prototype is built and tested. This is because it is not until wireframes are prototyped and your ideas come to life that you are able to get a true representation of your design. For the first time, you can accurately assess if your solution really works. At this point, looping back to your user research is immensely helpful. What else do you need to know about the user in order to make decisions or to prioritize development order? What new use cases have arisen from the prototype that you didn’t previously research?

You can also repeat phases. It’s often necessary to do an exercise within a phase multiple times in order to arrive at the outcome needed to move forward. For example, in the define phase, different team members will have different backgrounds and expertise, and thus different approaches to problem identification. It’s common to spend an extended amount of time in the define phase, aligning a team to the same focus. Repetition is necessary if there are obstacles in establishing buy-in. The outcome of each phase should be sound enough to serve as a guiding principle throughout the rest of the process and to ensure that you never stray too far from your focus.

Iteration in the Design Thinking process: Understand, Explore, Materialize

The packaged and accessible nature of design thinking makes it scalable. Organizations previously unable to shift their way of thinking now have a guide that can be comprehended regardless of expertise, mitigating the range of design talent while increasing the probability of success. This doesn’t just apply to traditional “designery” topics such as product design, but to a variety of societal, environmental, and economical issues. Design thinking is simple enough to be practiced at a range of scopes; even tough, undefined problems that might otherwise be overwhelming. While it can be applied over time to improve small functions like search, it can also be applied to design disruptive and transformative solutions, such as restructuring the career ladder for teachers in order to retain more talent. 

It is a common misconception that design thinking is new. Design has been practiced for ages : monuments, bridges, automobiles, subway systems are all end-products of design processes. Throughout history, good designers have applied a human-centric creative process to build meaningful and effective solutions.

In the early 1900's husband and wife designers Charles and Ray Eames practiced “learning by doing,” exploring a range of needs and constraints before designing their Eames chairs, which continue to be in production even now, seventy years later. 1960's dressmaker Jean Muir was well known for her “common sense” approach to clothing design, placing as much emphasis on how her clothes felt to wear as they looked to others. These designers were innovators of their time. Their approaches can be viewed as early examples of design thinking — as they each developed a deep understanding of their users’ lives and unmet needs. Milton Glaser, the designer behind the famous I ♥ NY logo, describes this notion well: “We’re always looking, but we never really see…it’s the act of attention that allows you to really grasp something, to become fully conscious of it.”

Despite these (and other) early examples of human-centric products, design has historically been an afterthought in the business world, applied only to touch up a product’s aesthetics. This topical design application has resulted in corporations creating solutions which fail to meet their customers’ real needs. Consequently, some of these companies moved their designers from the end of the product-development process, where their contribution is limited, to the beginning. Their human-centric design approach proved to be a differentiator: those companies that used it have reaped the financial benefits of creating products shaped by human needs.

In order for this approach to be adopted across large organizations, it needed to be standardized. Cue design thinking, a formalized framework of applying the creative design process to traditional business problems.

The specific term "design thinking" was coined in the 1990's by David Kelley and Tim Brown of IDEO, with Roger Martin, and encapsulated methods and ideas that have been brewing for years into a single unified concept.

We live in an era of experiences , be they services or products, and we’ve come to have high expectations for these experiences. They are becoming more complex in nature as information and technology continues to evolve. With each evolution comes a new set of unmet needs. While design thinking is simply an approach to problem solving, it increases the probability of success and breakthrough innovation.

Learn more about design thinking in the full-day course Generating Big Ideas with Design Thinking .

Free Downloads

Related courses, generating big ideas with design thinking.

Unearthing user pain points to drive breakthrough design concepts

Interaction

Service Blueprinting

Orchestrate people, props, and processes that are core to your digital experience

Discovery: Building the Right Thing

Conduct successful discovery phases to ensure you build the best solution

Related Topics

  • Design Process Design Process
  • Managing UX Teams

Learn More:

Please accept marketing cookies to view the embedded video. https://www.youtube.com/watch?v=6lmvCqvmjfE

problem solving and process design

The Role of Design

Don Norman · 5 min

problem solving and process design

Design Thinking Activities

Sarah Gibbons · 5 min

problem solving and process design

Design Thinking: Top 3 Challenges and Solutions

Related Articles:

Design Thinking: Study Guide

Kate Moran and Megan Brown · 4 min

Service Blueprinting in Practice: Who, When, What

Alita Joyce and Sarah Gibbons · 7 min

Design Thinking Builds Strong Teams

User-Centered Intranet Redesign: Set Up for Success in 11 Steps

Kara Pernice · 10 min

UX Responsibilities in Scrum Events

Anna Kaley · 13 min

Journey Mapping: 9 Frequently Asked Questions

Alita Joyce and Kate Kaplan · 7 min

Stage 2 in the Design Thinking Process: Define the Problem

Once you’ve empathized with your users, you can move on to the second stage of the design thinking process and define the problem your users need you to solve..

If you’ve read our introduction to User Experience (UX) Design , you’ll know that UX is essentially about solving the problems that prevent users from accomplishing what they want to do with our product.

Before you can go into problem-solving mode, however, there is one very crucial step that you need to complete—one that will shape your entire design project from start to finish. In the Design Thinking process , this step is what’s known as the “define” stage.

As the second step in the Design Thinking process, the define stage is where you’ll establish a clear idea of exactly which problem you will solve for the user. You’ll then shape this into a problem statement which will act as your northern star throughout the design process.

In this guide, we’ll tell you everything you need to know about this stage in the Design Thinking process, as well as how to define a meaningful problem statement.

Here’s what we’ll cover:

  • What is the define stage and why is it necessary?
  • What is a problem statement?
  • How to define a meaningful problem statement
  • What comes after the define phase?

Before we dive in, though, if you’d like an overview of the entire Design Thinking process, check out this video:

1. What is the define stage and why is it necessary?

As the second step in the Design Thinking process, the define stage is dedicated to defining the problem: what user problem will you be trying to solve? In other words, what is your design challenge?

The define stage is preceded by the empathize phase , where you’ll have learned as much about your users as possible, conducting interviews and using a variety of immersion and observation techniques. Once you have a good idea of who your users are and, most importantly, their wants, needs, and pain-points, you’re ready to turn this empathy into an actionable problem statement.

The relationship between the empathize and define stages can best be described in terms of analysis and synthesis. In the empathize phase, we use analysis to break down everything we observe and discover about our users into smaller, more manageable components—dividing their actions and behaviour into “what”, “why” and “how” categories, for example. In the define stage, we piece these components back together, synthesising our findings to create a detailed overall picture.

Why is the define stage so important?

The define stage ensures you fully understand the goal of your design project. It helps you to articulate your design problem, and provides a clear-cut objective to work towards. A meaningful, actionable problem statement will steer you in the right direction, helping you to kick-start the ideation process (see Stage Three of the Design Thinking process ) and work your way towards a solution.

Without a well-defined problem statement, it’s hard to know what you’re aiming for. Your work will lack focus, and the final design will suffer. Not only that: in the absence of a clear problem statement, it’s extremely difficult to explain to stakeholders and team members exactly what you are trying to achieve.

With this in mind, let’s take a closer look at problem statements and how you can go about defining them.

2. What is a problem statement?

A problem statement identifies the gap between the current state (i.e. the problem) and the desired state (i.e. the goal) of a process or product . Within the design context, you can think of the user problem as an unmet need. By designing a solution that meets this need, you can satisfy the user and ensure a pleasant user experience.

A problem statement, or point of view (POV) statement, frames this problem (or need) in a way that is actionable for designers. It provides a clear description of the issue that the designer seeks to address, keeping the focus on the user at all times.

Problem or POV statements can take various formats, but the end goal is always the same: to guide the design team towards a feasible solution. Let’s take a look at some of the ways you might frame your design problem:

  • From the user’s perspective: “I am a young working professional trying to eat healthily, but I’m struggling because I work long hours and don’t always have time to go grocery shopping and prepare my meals. This makes me feel frustrated and bad about myself.”
  • From a user research perspective: “Busy working professionals need an easy, time-efficient way to eat healthily because they often work long hours and don’t have time to shop and meal prep.”
  • Based on the four Ws—who, what, where, and why: “Our young working professional struggles to eat healthily during the week because she is working long hours. Our solution should deliver a quick and easy way for her to procure ingredients and prepare healthy meals that she can take to work.”

As you can see, each of these statements addresses the same issue—just in a slightly different way. As long as you focus on the user, what they need and why, it’s up to you how you choose to present and frame your design problem.

We’ll look at how to form your problem statement a little later on. Before we do, let’s consider some problem statement “do”s and “don’t”s.

What makes a good problem statement?

A good problem statement is human-centered and user-focused. Based on the insights you gathered in the empathize phase, it focuses on the users and their needs—not on product specifications or business outcomes. Here are some pointers that will help you create a meaningful problem statement:

  • Focus on the user: The user and their needs should be front and center of your problem statement. Avoid statements that start with “we need to…” or “the product should”, instead concentrating on the user’s perspective: “Young working professionals need…”, as in the examples above.
  • Keep it broad: A good problem statement leaves room for innovation and creative freedom. It’s important to keep it broad enough to invite a range of different ideas; avoid any references to specific solutions or technical requirements, for example.
  • Make it manageable: At the same time, your problem statement should guide you and provide direction. If it’s too broad in terms of the user’s needs and goals, you’ll struggle to hone in on a suitable solution. So, don’t try to address too many user needs in one problem statement; prioritize and frame your problem accordingly.

Bearing these things in mind, let’s explore some useful methods for creating a meaningful problem statement.

3. How to write a meaningful problem statement

Writing a meaningful problem statement can be extremely challenging. How do you condense all the complexities of the user’s conscious and unconscious desires into one simple, actionable statement? Fortunately, there are some tried-and-tested methods that will help you do just that.

Space saturation and group

One of the first steps in defining a problem statement is to organize your findings from the empathize phase. Space saturation and group is a popular method used by design thinkers to collect and visually present all observations made in the empathize phase in one space. As the name suggests, you will literally “saturate” a wall or whiteboard with Post-It notes and images, resulting in a collage of artifacts from your user research.

As the Stanford d.school explains: “You space saturate to help you unpack thoughts and experiences into tangible and visual pieces of information that you surround yourself with to inform and inspire the design team. You group these findings to explore what themes and patterns emerge, and strive to move toward identifying meaningful needs of people and insights that will inform your design solutions.”

This method should involve anyone who took part in the empathize stage of the design project, and should take no longer than 20-30 minutes.

The four Ws

Asking the right questions will help you put your finger on the right problem statement. With all your findings from the empathize phase in one place, ask yourself the four Ws: Who , what , where , and why?

  • Who is experiencing the problem? In other words, who is your target user; who will be the focus of your problem statement?
  • What is the problem? Based on the observations you made during the empathize phase, what are the problems and pain-points that frequently came up? What task is the user trying to accomplish, and what’s standing in their way?
  • Where does the problem present itself? In what space (physical or digital), situation or context is the user when they face this problem? Are there any other people involved?
  • Why does it matter? Why is it important that this problem be solved? What value would a solution bring to the user, and to the business?

Approaching your observations with these four questions in mind will help you to identify patterns within your user research. In identifying the most prevalent issues, you’ll be one step closer to formulating a meaningful problem statement.

The five whys

Another question-based strategy, the five whys technique can help you delve deeper into the problem and drill down to the root cause. Once you’ve identified the root cause, you have something that you can act upon; somewhere specific to focus your problem-solving efforts.

Let’s take our previous example of the young working professional who wants to eat healthily, but finds it difficult to do so. Here’s how you might use the five whys to break the problem down and get to the root cause:

  • Why is she not eating healthily? → She orders takeaway everyday.
  • Why does she order takeaway everyday? → Her fridge and cupboards are empty.
  • Why are the fridge and cupboards empty? → She hasn’t been grocery shopping in over a week.
  • Why hasn’t she been grocery shopping? → She doesn’t have time to go to the supermarket.
  • Why doesn’t she have time? → She works long hours and is exhausted.

The root cause here is a lack of time, so your solution might focus on efficiency and convenience. Your final problem statement might look something like this: “Young working professionals need a quick, convenient solution to eating healthily.”

4. What comes after the define phase?

By the end of the define phase, you’ll have turned your findings from the empathize stage into a meaningful, actionable problem statement. With your problem statement to hand, you’ll be ready to move on to the ideation phase , where you’ll turn your problem statement into “how might we” questions and generate as many potential solutions as possible.

As you move through the Design Thinking process, you’ll constantly refer back to your problem statement to make sure you’re moving in the right direction. A well-thought-out problem statement will keep you on track, help you communicate your objectives to key stakeholders, and ultimately lead you to that all-important user solution.

Want to learn more about designing user-friendly solutions? Check out these articles:

  • UX Best Practices: How Can You Become A Better Designer?
  • What Is User Experience Design? Everything You Need To Know To Get Started
  • This Is Why Empathy Matters As A UX Designer
  • What is lean UX?

How to solve problems with design thinking

May 18, 2023 Is it time to throw out the standard playbook when it comes to problem solving? Uniquely challenging times call for unique approaches, write Michael Birshan , Ben Sheppard , and coauthors in a recent article , and design thinking offers a much-needed fresh perspective for leaders navigating volatility. Design thinking is a systemic, intuitive, customer-focused problem-solving approach that can create significant value and boost organizational resilience. The proof is in the pudding: From 2013 to 2018, companies that embraced the business value of design had TSR that were 56 percentage points higher than that of their industry peers. Check out these insights to understand how to use design thinking to unleash the power of creativity in strategy and problem solving.

Designing out of difficult times

What is design thinking?

The power of design thinking

Leading by design

Author Talks: Don Norman designs a better world

Are you asking enough from your design leaders?

Tapping into the business value of design

Redesigning the design department

Author Talks: Design your future

A design-led approach to embracing an ecosystem strategy

More than a feeling: Ten design practices to deliver business value

MORE FROM MCKINSEY

How design helps incumbents build new businesses

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

problem solving and process design

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

What Is Creative Problem-Solving & Why Is It Important?

Business team using creative problem-solving

  • 01 Feb 2022

One of the biggest hindrances to innovation is complacency—it can be more comfortable to do what you know than venture into the unknown. Business leaders can overcome this barrier by mobilizing creative team members and providing space to innovate.

There are several tools you can use to encourage creativity in the workplace. Creative problem-solving is one of them, which facilitates the development of innovative solutions to difficult problems.

Here’s an overview of creative problem-solving and why it’s important in business.

Access your free e-book today.

What Is Creative Problem-Solving?

Research is necessary when solving a problem. But there are situations where a problem’s specific cause is difficult to pinpoint. This can occur when there’s not enough time to narrow down the problem’s source or there are differing opinions about its root cause.

In such cases, you can use creative problem-solving , which allows you to explore potential solutions regardless of whether a problem has been defined.

Creative problem-solving is less structured than other innovation processes and encourages exploring open-ended solutions. It also focuses on developing new perspectives and fostering creativity in the workplace . Its benefits include:

  • Finding creative solutions to complex problems : User research can insufficiently illustrate a situation’s complexity. While other innovation processes rely on this information, creative problem-solving can yield solutions without it.
  • Adapting to change : Business is constantly changing, and business leaders need to adapt. Creative problem-solving helps overcome unforeseen challenges and find solutions to unconventional problems.
  • Fueling innovation and growth : In addition to solutions, creative problem-solving can spark innovative ideas that drive company growth. These ideas can lead to new product lines, services, or a modified operations structure that improves efficiency.

Design Thinking and Innovation | Uncover creative solutions to your business problems | Learn More

Creative problem-solving is traditionally based on the following key principles :

1. Balance Divergent and Convergent Thinking

Creative problem-solving uses two primary tools to find solutions: divergence and convergence. Divergence generates ideas in response to a problem, while convergence narrows them down to a shortlist. It balances these two practices and turns ideas into concrete solutions.

2. Reframe Problems as Questions

By framing problems as questions, you shift from focusing on obstacles to solutions. This provides the freedom to brainstorm potential ideas.

3. Defer Judgment of Ideas

When brainstorming, it can be natural to reject or accept ideas right away. Yet, immediate judgments interfere with the idea generation process. Even ideas that seem implausible can turn into outstanding innovations upon further exploration and development.

4. Focus on "Yes, And" Instead of "No, But"

Using negative words like "no" discourages creative thinking. Instead, use positive language to build and maintain an environment that fosters the development of creative and innovative ideas.

Creative Problem-Solving and Design Thinking

Whereas creative problem-solving facilitates developing innovative ideas through a less structured workflow, design thinking takes a far more organized approach.

Design thinking is a human-centered, solutions-based process that fosters the ideation and development of solutions. In the online course Design Thinking and Innovation , Harvard Business School Dean Srikant Datar leverages a four-phase framework to explain design thinking.

The four stages are:

The four stages of design thinking: clarify, ideate, develop, and implement

  • Clarify: The clarification stage allows you to empathize with the user and identify problems. Observations and insights are informed by thorough research. Findings are then reframed as problem statements or questions.
  • Ideate: Ideation is the process of coming up with innovative ideas. The divergence of ideas involved with creative problem-solving is a major focus.
  • Develop: In the development stage, ideas evolve into experiments and tests. Ideas converge and are explored through prototyping and open critique.
  • Implement: Implementation involves continuing to test and experiment to refine the solution and encourage its adoption.

Creative problem-solving primarily operates in the ideate phase of design thinking but can be applied to others. This is because design thinking is an iterative process that moves between the stages as ideas are generated and pursued. This is normal and encouraged, as innovation requires exploring multiple ideas.

Creative Problem-Solving Tools

While there are many useful tools in the creative problem-solving process, here are three you should know:

Creating a Problem Story

One way to innovate is by creating a story about a problem to understand how it affects users and what solutions best fit their needs. Here are the steps you need to take to use this tool properly.

1. Identify a UDP

Create a problem story to identify the undesired phenomena (UDP). For example, consider a company that produces printers that overheat. In this case, the UDP is "our printers overheat."

2. Move Forward in Time

To move forward in time, ask: “Why is this a problem?” For example, minor damage could be one result of the machines overheating. In more extreme cases, printers may catch fire. Don't be afraid to create multiple problem stories if you think of more than one UDP.

3. Move Backward in Time

To move backward in time, ask: “What caused this UDP?” If you can't identify the root problem, think about what typically causes the UDP to occur. For the overheating printers, overuse could be a cause.

Following the three-step framework above helps illustrate a clear problem story:

  • The printer is overused.
  • The printer overheats.
  • The printer breaks down.

You can extend the problem story in either direction if you think of additional cause-and-effect relationships.

4. Break the Chains

By this point, you’ll have multiple UDP storylines. Take two that are similar and focus on breaking the chains connecting them. This can be accomplished through inversion or neutralization.

  • Inversion: Inversion changes the relationship between two UDPs so the cause is the same but the effect is the opposite. For example, if the UDP is "the more X happens, the more likely Y is to happen," inversion changes the equation to "the more X happens, the less likely Y is to happen." Using the printer example, inversion would consider: "What if the more a printer is used, the less likely it’s going to overheat?" Innovation requires an open mind. Just because a solution initially seems unlikely doesn't mean it can't be pursued further or spark additional ideas.
  • Neutralization: Neutralization completely eliminates the cause-and-effect relationship between X and Y. This changes the above equation to "the more or less X happens has no effect on Y." In the case of the printers, neutralization would rephrase the relationship to "the more or less a printer is used has no effect on whether it overheats."

Even if creating a problem story doesn't provide a solution, it can offer useful context to users’ problems and additional ideas to be explored. Given that divergence is one of the fundamental practices of creative problem-solving, it’s a good idea to incorporate it into each tool you use.

Brainstorming

Brainstorming is a tool that can be highly effective when guided by the iterative qualities of the design thinking process. It involves openly discussing and debating ideas and topics in a group setting. This facilitates idea generation and exploration as different team members consider the same concept from multiple perspectives.

Hosting brainstorming sessions can result in problems, such as groupthink or social loafing. To combat this, leverage a three-step brainstorming method involving divergence and convergence :

  • Have each group member come up with as many ideas as possible and write them down to ensure the brainstorming session is productive.
  • Continue the divergence of ideas by collectively sharing and exploring each idea as a group. The goal is to create a setting where new ideas are inspired by open discussion.
  • Begin the convergence of ideas by narrowing them down to a few explorable options. There’s no "right number of ideas." Don't be afraid to consider exploring all of them, as long as you have the resources to do so.

Alternate Worlds

The alternate worlds tool is an empathetic approach to creative problem-solving. It encourages you to consider how someone in another world would approach your situation.

For example, if you’re concerned that the printers you produce overheat and catch fire, consider how a different industry would approach the problem. How would an automotive expert solve it? How would a firefighter?

Be creative as you consider and research alternate worlds. The purpose is not to nail down a solution right away but to continue the ideation process through diverging and exploring ideas.

Which HBS Online Entrepreneurship and Innovation Course is Right for You? | Download Your Free Flowchart

Continue Developing Your Skills

Whether you’re an entrepreneur, marketer, or business leader, learning the ropes of design thinking can be an effective way to build your skills and foster creativity and innovation in any setting.

If you're ready to develop your design thinking and creative problem-solving skills, explore Design Thinking and Innovation , one of our online entrepreneurship and innovation courses. If you aren't sure which course is the right fit, download our free course flowchart to determine which best aligns with your goals.

problem solving and process design

About the Author

FREE K-12 standards-aligned STEM

curriculum for educators everywhere!

Find more at TeachEngineering.org .

Engineering Design Process

The engineering design process emphasizes open-ended problem solving and encourages students to learn from failure . This process nurtures students’ abilities to create innovative solutions to challenges in any subject!

problem solving and process design

The engineering design process is a series of steps that guides engineering teams as we solve problems. The design process is iterative , meaning that we repeat the steps as many times as needed, making improvements along the way as we learn from failure and uncover new design possibilities to arrive at great solutions.

Overarching themes of the engineering design process are teamwork and design . Strengthen your students’ understanding of open-ended design as you encourage them to work together to brainstorm new ideas, apply science and math concepts, test prototypes and analyze data—and aim for creativity and practicality in their solutions. Project-based learning engages learners of all ages—and fosters STEM literacy.

Browse all K-12 engineering design process curriculum

Ask: identify the need & constraints.

Engineers ask critical questions about what they want to create, whether it be a skyscraper, amusement park ride, bicycle or smartphone. These questions include: What is the problem to solve? What do we want to design? Who is it for? What do we want to accomplish? What are the project requirements? What are the limitations? What is our goal?

Research the Problem

This includes talking to people from many different backgrounds and specialties to assist with researching what products or solutions already exist, or what technologies might be adaptable to your needs.

Imagine: Develop Possible Solutions

You work with a team to brainstorm ideas and develop as many solutions as possible. This is the time to encourage wild ideas and defer judgment! Build on the ideas of others! Stay focused on topic, and have one conversation at a time! Remember: good design is all about teamwork! Help students understand the brainstorming guidelines by using the TE handout and two sizes of classroom posters .

Plan: Select a Promising Solution

For many teams this is the hardest step! Revisit the needs, constraints and research from the earlier steps, compare your best ideas, select one solution and make a plan to move forward with it.

Create: Build a Prototype

Building a prototype makes your ideas real! These early versions of the design solution help your team verify whether the design meets the original challenge objectives. Push yourself for creativity, imagination and excellence in design.

Test and Evaluate Prototype

Does it work? Does it solve the need? Communicate the results and get feedback. Analyze and talk about what works, what doesn't and what could be improved.

Improve: Redesign as Needed

Discuss how you could improve your solution. Make revisions. Draw new designs. Iterate your design to make your product the best it can be. And now, REPEAT!

Check out our high school engineering design unit

problem solving and process design

Engineering-Design Aligned Curricula

problem solving and process design

The TeachEngineering hands-on activities featured here, by grade band, exemplify the engineering design process.

preview of 'Bacteria! It’s Everywhere! ' Activity

Students investigate what causes them to become sick during the school year. They use the engineering design process to test the classroom lab spaces for bacteria. After their tests, they develop ideas to control the spread of germs within the classroom.

preview of 'Soil from Spoiled: Engineering a Compost Habitat for Worms' Activity

A unique activity for young learners that combines engineering and biology, students design an optimal environment for red wiggler worms in a compost bin.

preview of 'Stop Freewheeling Using Friction! ' Maker Challenge

In this maker challenge, students use the engineering design process to design a covering for a portable wheelchair ramp for their school. The design must be easy to use, and allows people to move up the ramp easily and go down slowly.

preview of 'Inundation Inspiration' Maker Challenge

Students employ the engineering design process to create a device that uses water-absorbing crystals for use during a flood or storm surge. They use (or build) a toy house, follow the engineering design process to build their device, and subject the house to tests that mimic a heavy flood or rising ...

preview of 'Silkworm Strength! ' Maker Challenge

Students use the engineering design process to design a bridge out of silkworm cocoons that can hold at least 50 grams. Students can use other materials to supplement the silk bridge, but have a $10 budget.

preview of 'Biodomes Engineering Design Project: Lessons 2-6' Activity

In this multi-day activity, students explore environments, ecosystems, energy flow and organism interactions by creating a scale model biodome, following the steps of the engineering design process.

preview of 'Exploring Variables While Testing & Improving Mint-Mobiles (for Elementary School)' Activity

Build a model race car out of lifesaver candies, popsicle sticks, straws, and other fun materials! Have students learn about independent, dependent, and control variables, and find out who can make the fastest car given their new knowledge.

preview of 'Operation Build a Bridge and Get Over It ' Activity

Design and construct a bridge for a local city that will have a high strength-to-weight ratio and resist collapse. Have students use their understanding of the engineering design process—and a lot of wooden craft sticks—to achieve their goals.

preview of 'Design and Build a Rube Goldberg ' Activity

In this two-part activity, students design and build Rube Goldberg machines. This open-ended challenge employs the engineering design process and may have a pre-determined purpose, such as rolling a marble into a cup from a distance, or let students decide the purposes.

preview of 'Water Bottle Rockets' Activity

Students are challenged to design and build rockets from two-liter plastic soda bottles that travel as far and straight as possible or stay aloft as long as possible. Guided by the steps of the engineering design process, students first watch a video that shows rocket launch failures and then partic...

preview of 'Creative Crash Test Cars' Maker Challenge

Students explore how mass affects momentum in head-on collisions and experience the engineering design process as if they are engineers working on the next big safety feature for passenger cars. They design, create and redesign impact-resistant passenger vehicle compartments for small-size model car...

preview of 'Trebuchet Design & Build Challenge ' Activity

Students work as teams of engineers to design and build their own trebuchets. They research how to build and test their trebuchets, evaluate their results, and present their results and design process to the class.

Grades 9-12

preview of 'Out-of-the Box: A Furniture Design + Engineering Challenge ' Maker Challenge

Student teams follow the steps of the engineering design process as they design and build architecturally inspired cardboard furniture. Given a list of constraints, including limited fabrication materials and tools, groups research architectural styles, brainstorm ideas, make small-scale quick proto...

preview of 'Balloons' Activity

Students follow the steps of the engineering design process as they design and construct balloons for aerial surveillance. Applying their newfound knowledge, the young engineers build and test balloons that fly carrying small flip cameras that capture aerial images of their school.

preview of 'Inquiry and Engineering: Gliders' Activity

Student teams design, build and test small-sized gliders to maximize flight distance and an aerodynamic ratio, applying their knowledge of fluid dynamics to its role in flight. Students experience the entire engineering design process, from brainstorming to CAD (or by hand) drafting, including resea...

preview of 'Bio-Engineering: Making and Testing Model Proteins ' Activity

Students learn about human proteins, how their shapes are related to their functions and how DNA protein mutations result in diseases. Then, in a hypothetical engineering scenario, they use common classroom supplies to design and build their own structural, transport and defense protein models to he...

preview of 'Android App Development' Activity

Students develop an app for an Android device that utilizes its built-in internal sensors, specifically the accelerometer. The goal of this activity is to teach programming design and skills using MIT's App Inventor software (free to download from the Internet) as the vehicle for learning.

Welcome to TeachEngineering’s Engineering Design Process curricula for Grade K-2 Educators!

preview of 'Be “Cool” with Popsicle Engineering' Activity

Create popsicles using the engineering design process! In this activity, students work to solve the problems of a local popsicle shop while learning how scientific and engineering concepts play a part in behind-the-scenes design.

preview of 'Design a Better Bandage' Maker Challenge

In this maker challenge, students follow the engineering design process and use water-absorbing crystals to create a bandage that can be used in a traumatic situation, like a car accident or hiking accident.

Maker Challenge

preview of 'Engineering an Animal’s Survival ' Activity

Students perform research and design prosthetic prototypes for an animal to use for its survival. They research a set of pre-chosen animals and their habitats. They then create habitats for their animals to live and model 3D prosthetics for the animals to use with modeling clay.

preview of 'Invent a Backscratcher from Everyday Materials' Activity

Given scrap cardboard, paper towel tubes, scissors, and glue, how could a student invent their own backscratcher? Engage in the process of how real engineers design products to meet a desired function.

preview of 'Keeping Damp in a Drought ' Maker Challenge

Students design a way for mint plants to keep a constant moisture level for 72 hours. The mint plants must be kept moist since they are young and just starting to establish growth.

preview of 'Naturally Organized ' Activity

Design a customized table top supply organizer inspired by the natural home of a ladybug—or any other insect of a student's choosing—to hold all of their classroom supplies! By the end of this activity, students will understand the properties of biomimicry and the engineering design process.

Welcome to TeachEngineering’s Engineering Design Process curricula for Grade 3-5 Educators!

preview of 'Biodomes are Engineered Ecosystems: A Mini World' Lesson

As students learn about the creation of biodomes, they are introduced to the steps of the engineering design process, including guidelines for brainstorming. They learn how engineers are involved in the design and construction of biodomes and use brainstorming to come up with ideas for possible biod...

preview of 'Biohazard Protection Design Project: Suit Up!' Activity

Students learn about providing healthcare in a global setting and the importance of wearing protective equipment when treating patients with infectious diseases like Ebola. They learn about biohazard suits, heat transfer through conduction and convection and the engineering design cycle. Student tea...

preview of 'Build a Toy Workshop' Activity

Working as if they are engineers who work for (the hypothetical) Build-a-Toy Workshop company, students apply their imaginations and the engineering design process to design and build prototype toys with moving parts. They set up electric circuits using batteries, wire and motors. They create plans ...

preview of 'Clean Enough to Drink: Making Devices to Filter Dirty Water' Activity

Whether on Earth or in space, life-threatening illnesses may occur if the water we drink is of poor quality. It’s up to your students to design and build a filtration system for the International Space Station so they can guarantee astronauts get the safe and clean water they need.

preview of 'Constraints: Pop Rockets on a Shoestring Budget' Activity

Your students have been hired to build a pop rocket, but on a tight budget. Engineering design usually has some constraints and you won’t always have access to the materials you think you might need. But through brainstorming and trial and error, a viable rocket launch is definitely possible!

preview of 'Construct and Test Roofs for Different Climates' Activity

In this activity, students design and build model houses, then test them against various climate elements, and then re-design and improve them. Using books, websites and photos, students learn about the different types of roofs found on various houses in different environments throughout the world....

preview of 'Cutting Through Soil' Activity

Students pretend they are agricultural engineers during the colonial period and design a miniature plow that cuts through a "field" of soil. They are introduced to the engineering design process and learn of several famous historical figures who contributed to plow design.

preview of 'Design and Fly a Kite' Activity

Students learn how to use wind energy to combat gravity and create lift by creating their own tetrahedral kites capable of flying. They explore different tetrahedron kite designs, learning that the geometry of the tetrahedron shape lends itself well to kites and wings because of its advantageous str...

preview of 'Design Criteria-to-Working Model: Engineer a Sneaker' Activity

Students learn the basics of engineering sneakers and shoes. They are challenged to decide on specific design requirements, such as heavy traction or extra cushioning, and then use different materials to create working prototype shoes that meet the design criteria. Includes worksheets.

preview of 'Design Your Own Snazzy Sneakers' Maker Challenge

For this maker challenge, students decide on specific design requirements (such as good traction or deep cushioning), sketch their plans, and then use a variety of materials to build prototype shoes that meet the design criteria.

preview of 'Engineering a Habitat’s Humidity ' Activity

Students design a temporary habitat for a future classroom pet—a hingeback tortoise. The students investigate hingeback tortoise habitat features as well as the design features of such a habitat. Each group communicates and presents this information to the rest of the class after they research, brai...

preview of 'Engineering a Mountain Rescue Litter	' Activity

When a person gets injured in the wilderness and needs medical attention, rescuers might use a device called a mountain rescue litter specifically designed for difficult evacuations. Design and build a small-sized prototype to save some (potatoes’) lives!

preview of 'Engineering Derby: Tool Ingenuity' Activity

Student teams are challenged to navigate a table tennis ball through a timed obstacle course using only the provided unconventional “tools.” Teams act as engineers by working through the steps of the engineering design process to complete the overall task with each group member responsible to accomp...

preview of 'Engineering in the World of Dr. Seuss' Activity

Students explore the engineering design process within the context of Dr. Seuss’s book, Bartholomew and the Oobleck. Students study a sample of aloe vera gel (the oobleck) in lab groups. After analyzing the substance, they use the engineering design process to develop and test other substances to ma...

preview of 'Gone with the Wind Energy: Design-Build-Test Mini Sail Cars! ' Activity

Students explore the use of wind power in the design, construction and testing of "sail cars," which, in this case, are little wheeled carts with masts and sails that are powered by the moving air generated from a box fan. The scientific method is reviewed and reinforced with the use of controls and...

preview of 'Hare and Snail Challenges' Activity

Students engage in the second design challenge of the unit, which is an extension of the maze challenge they solved in the first lesson/activity of this unit. Students extend the ideas learned in the maze challenge with a focus more on the robot design. Specifically, students learn how to design the...

preview of 'Line-Follower Challenge' Activity

Student groups are challenged to program robots with color sensors to follow a black line. Learning both the logic and skills behind programming robots for this challenge helps students improve their understanding of how robots "think" and widens their appreciation for the complexity involved in pro...

preview of 'Master Driver' Activity

As part of a design challenge, students learn how to use a rotation sensor (located inside the casing of a LEGO® MINDSTORMS ® EV3 motor) to measure how far a robot moves with each rotation. Through experimentation and measurement with the sensor, student pairs determine the relationship between the ...

preview of 'Maze Challenge' Activity

As the first engineering design challenge of the unit, students are introduced to the logic for solving a maze. Student groups apply logic to program LEGO® MINDSTORMS® EV3 robots to navigate through a maze, first with no sensors, and then with sensors.

preview of 'Naked Egg Drop' Activity

Student pairs experience the iterative engineering design process as they design, build, test and improve catching devices to prevent a "naked" egg from breaking when dropped from increasing heights. To support their design work, they learn about materials properties, energy types and conservation o...

preview of 'Problem Solve Your School' Activity

Students apply what they have learned about the engineering design process to a real-life problem that affects them and/or their school. They choose a problem as a group, and then follow the engineering design process to come up with and test their design solution.

preview of 'Race to the Top! Modeling Skyscrapers' Activity

Working individually or in pairs, students compete to design, create, test and redesign free-standing, weight-bearing towers using Kapla® wooden blocks. The challenge is to build the tallest tower while meeting the design criteria and minimizing the amount of material used—all within a time limit.

preview of 'Right on Target: Catapult Game' Activity

Students experience the engineering design process as they design and build accurate and precise catapults using common materials. They use their catapults to participate in a game in which they launch Ping-Pong balls to attempt to hit various targets.

preview of 'Sea Turtle Eggs: Washed to Sea? ' Activity

Students employ the full engineering design process to research and design prototypes that could be used to solve the loss of sea turtle life during a hurricane. Students learn about sea turtle nesting behaviors and environmental impacts of hurricanes. Students work collaboratively to build structur...

preview of 'Simulation in Healthcare' Lesson

Students learn how engineering design is applied to solve healthcare problems by using an engineering tool called simulation. While engineering design is commonly used to study and design everything from bridges, factories, airports to space shuttles, the use of engineering design to study healthcar...

preview of 'Straw Towers to the Moon' Activity

Students learn about civil engineers and work through each step of the engineering design process in two mini-activities that prepare them for a culminating challenge to design and build the tallest straw tower possible, given limited time and resources. In the culminating challenge (tallest straw t...

preview of 'Sumobot Challenge' Activity

Students apply their knowledge of constructing and programming LEGO® MINDSTORMS® robots to create sumobots—strong robots capable of pushing other robots out of a ring. To meet the challenge, groups follow the steps of the engineering design process and consider robot structure, weight and gear ratio...

preview of 'Temperature Tells All! Model House Testing for Clean vs. Warm Air' Activity

Students learn about health risks caused by cooking and heating with inefficient stoves inside homes. They simulate the cook stove scenario and follow the engineering design process steps, including iterative trials, to increase warmth inside a building while reducing air quality problems. A student...

preview of 'The Strongest Strongholds' Activity

Students work together in small groups, while competing with other teams, to explore the engineering design process through a tower building challenge. They are given a set of design constraints and then conduct online research to learn basic tower-building concepts. During a two-day process and usi...

preview of 'Time for Design' Lesson

Students are introduced to the engineering design process, focusing on the concept of brainstorming design alternatives. They learn that engineering is about designing creative ways to improve existing artifacts, technologies or processes, or developing new inventions that benefit society.

preview of 'Ultrasonic Sensor Robot Design Project: Don't Bump into Me!' Activity

Students' understanding of how robotic ultrasonic sensors work is reinforced in a design challenge involving LEGO® MINDSTORMS® EV3 robots and ultrasonic sensors. Student groups program their robots to move freely without bumping into obstacles (toy LEGO people).

preview of 'Wind-Powered Sail Cars' Activity

Student pairs design and construct small, wind-powered sail cars using limited quantities of drinking straws, masking tape, paper and beads. Teams compete to see which sail car travels the farthest when pushed by the wind (simulated by the use of an electric fan). Students learn about wind and kinet...

Welcome to TeachEngineering’s Engineering Design Process curricula for Grade 6-8 Educators!

preview of 'Adding Helpful Carrier Devices to Crutches' Maker Challenge

Student teams are challenged to design assistive devices that modify crutches to help people carry things such as books and school supplies. Given a list of constraints, including a device weight limit and minimum load capacity, groups brainstorm ideas and then make detailed plans for their best sol...

preview of 'Algorithmic Remote Rover Programming: Curiosity Killed the App' Lesson

Students gain experience with the software/system design process, closely related to the engineering design process, to solve a problem. The lesson culminates in a hands-on experience with the design process as students simulate the remote control of a rover.

preview of 'Amusement Park Ride: Ups and Downs in Design' Activity

Students design, build and test looping model roller coasters using foam pipe insulation tubing. They learn about potential and kinetic energy as they test and evaluate designs, addressing the task as if they are engineers. Winning designs have the lowest cost and best aesthetics. Three student work...

preview of 'An Assistive Artistic Device' Activity

Students design and develop a useful assistive device for people challenged by fine motor skill development who cannot grasp and control objects. In the process of designing prototype devices, they learn about the engineering design process and how to use it to solve problems.

preview of 'Automatic Floor Cleaner Computer Program Challenge' Activity

Students learn more about assistive devices, specifically biomedical engineering applied to computer engineering concepts, with an engineering challenge to create an automatic floor cleaner computer program. Following the steps of the design process, they design computer programs and test them by pr...

preview of 'Balsa Towers' Activity

Students groups use balsa wood and glue to build their own towers using some of the techniques they learned from the associated lesson.

preview of 'Boat Design Challenge: Journey to the Egyptian Afterlife' Activity

Student teams are challenged to design models of Egyptian funerary barges for the purpose of transporting mummies through the underworld to the afterlife. Students design and build prototypes using materials and tools like the ancient Egyptians had at their disposal.

preview of 'Bouncy Ball Factory ' Maker Challenge

Students become product engineers in a bouncy ball factory as they design and prototype a polymer bouncy ball that meets specific requirements: must be spherical in shape, cannot disintegrate when thrown on the ground, and must bounce.

preview of 'Broken Bones and Biomedical Materials' Activity

Students are introduced to the concept and steps of the engineering design process and taught how to apply it. In small groups, students learn of their design challenge (improve a cast for a broken arm), brainstorm solutions, are given materials and create prototypes.

preview of 'Chair Design' Activity

Students become familiar with the engineering design process as they design, build, and test chair prototypes.

preview of 'Cleaning the Air ' Activity

In this activity, students undertake a similar engineering challenge as they design and build a filter to remove pepper from an air stream without blocking more than 50% of the air.

preview of 'Clearing a Path to the Heart' Activity

Following the steps of the engineering design process and acting as biomedical engineers, student teams use everyday materials to design and develop devices and approaches to unclog blood vessels. Through this open-ended design project, they learn about the circulatory system, biomedical engineering...

preview of 'Cool Puppy! A Doghouse Design Project' Maker Challenge

Students design and build small doghouses to shelter a (toy) puppy from the heat—and create them within constraints. They apply what they know about light energy and how it travels through various materials, as well as how a material’s color affects its light absorption and reflection. They test the...

preview of 'Cooler Design Challenge' Activity

Students learn about convection, conduction, and radiation in order to solve the challenge of designing and building a small insulated cooler with the goal of keeping an ice cube and a Popsicle from melting. This activity uses the engineering design process to build the cooler as well as to measure ...

preview of 'Design a Carrying Device for People Using Crutches ' Activity

Students are given a biomedical engineering challenge, which they solve while following the steps of the engineering design process. In a design lab environment, student groups design, create and test prototype devices that help people using crutches carry things, such as books and school supplies.

preview of 'Design Air Racer Cars Using Tinkercad ' Activity

Students build an electric racer vehicle using Tinkercad to design blades for their racers. Students print their designs using a MakerBot printer. Students race their vehicles to see which design travels the furthest distance in the least amount of time.

preview of 'Design Your Own Pedometer!' Maker Challenge

Students use the engineering design process to design, create, and test a pedometer that keeps track of the number of steps a person takes. This maker challenge exposes students to basic coding, micro:bit processor applications, and how programming and engineering can be used to solve health problem...

preview of 'Designing Polymers to Clean Water' Activity

Students learn how to engineer a design for a polymer brush—a coating consisting of polymers that represents an antifouling polymer brush coating for a water filtration surface.

preview of 'Do the Robot! Programming a RedBot to Dance' Maker Challenge

Students program the drive motors of a SparkFun RedBot with a multistep control sequence—a “dance.” Doing this is a great introduction to robotics and improves overall technical literacy by helping students understand that we use programs to control the motion and function of robots, and without the...

preview of 'Does It Cut It? Understanding Wind Turbine Blade Performance' Activity

Students gain an understanding of the factors that affect wind turbine operation. Following the steps of the engineering design process, engineering teams use simple materials (cardboard and wooden dowels) to build and test their own turbine blade prototypes with the objective of maximizing electric...

preview of 'E.G. Benedict's Ambulance Patient Safety Challenge ' Activity

Students further their understanding of the engineering design process (EDP) while applying researched information on transportation technology, materials science and bioengineering. Students are given a fictional client statement (engineering challenge) and directed to follow the steps of the EDP t...

preview of 'Engineering in Reverse!' Activity

Students learn about the process of reverse engineering and how this technique is used to improve upon technology. Students analyze push-toys and draw diagrams of the predicted mechanisms inside the toys. Then, they disassemble the toys and draw the actual inner mechanisms.

preview of 'Exploring Variables While Testing & Improving Mint-Mobiles (for Middle School)' Activity

Students design, build, and test model race cars made from simple materials (lifesaver-shaped candies, plastic drinking straws, Popsicle sticks, index cards, tape) as a way to explore independent, dependent and control variables.

preview of 'Fancy Feet! Stress & Strain Forces in Shoe Design' Activity

Students use the engineering design process to solve a real-world problem—shoe engineering! Working in small teams, they design, build and test a pair of wearable platform or high-heeled shoes, taking into consideration the stress and strain forces that it will encounter from the shoe wearer.

preview of 'Follow the Light' Activity

Students' understanding of how robotic color sensors work is reinforced in a design challenge involving LEGO® MINDSTORMS® robots and light sensors. Working in pairs, students program LEGO robots to follow a flashlight as its light beam moves around.

preview of 'Future Hospitals: Robotics and Automated Patient Care Engineering' Activity

Students further their understanding of the engineering design process while combining mechanical engineering and bioengineering to create an automated medical device.

preview of 'Hot Cans and Cold Cans' Activity

Students apply the concepts of conduction, convection and radiation as they work in teams to solve two challenges. One problem requires that they maintain the warm temperature of one soda can filled with water at approximately human body temperature, and the other problem is to cause an identical so...

preview of 'Hydraulic Arm Challenge' Activity

Students design and build a mechanical arm that lifts and moves an empty 12-ounce soda can using hydraulics for power. Small design teams (1-2 students each) design and build a single axis for use in the completed mechanical arm.

preview of 'Just Like Kidneys: Semipermeable Membrane Prototypes' Activity

Using ordinary classroom materials, students act as biomedical engineering teams challenged to design prototype models that demonstrate semipermeability to help medical students learn about kidney dialysis. A model consists of two layers of a medium separated by material acting as the membrane. Grou...

preview of 'Keep Your Cool! Design Your Own Cooler Challenge' Maker Challenge

Students brainstorm, design, and build a cooler and monitor its effectiveness to keep a bottle of ice water cold in comparison to a bottle of ice water left at room temperature. Students engage in design by choosing from a range of materials to build their prototype.

preview of 'Lending a Hand: Teaching Forces through Assistive Device Design ' Activity

Students learn about how biomedical engineers create assistive devices for persons with fine motor skill disabilities. They do this by designing, building and testing their own hand "gripper" prototypes that are able to grasp and lift a 200 ml cup of sand.

preview of 'Mars Rover App Creation' Activity

Based on their experience exploring the Mars rover Curiosity and learning about what engineers must go through to develop a vehicle like Curiosity, students create Android apps that can control LEGO® MINDSTORMS® robots, simulating the difficulties the Curiosity rover could encounter. The activity go...

preview of 'No Valve in Vain' Activity

Acting as biomedical engineers, students design, build, test and redesign prototype heart valves using materials such as waterproof tape, plastic tubing, flexible plastic and foam sheets, clay, wire and pipe cleaners. They test them with flowing water, representing blood moving through the heart.

preview of 'Off-Road Wheelchair Challenge' Activity

Students further their understanding of the engineering design process (EDP) while being introduced to assistive technology devices and biomedical engineering. They are given a fictional client statement and are tasked to follow the steps of the EDP to design and build small-scale, off-road wheelcha...

preview of 'Oil: Clean It Up! ' Maker Challenge

Student groups create and test oil spill cleanup kits that are inexpensive and accessible for homeowners or for big companies to give to individual workers—to aid in home, community or environmental oil spill cleanup process.

preview of 'Paper Drop Design Competition' Activity

Using paper, paper clips and tape, student teams design flying/falling devices to stay in the air as long as possible and land as close as possible to a given target. Student teams use the steps of the engineering design process to guide them through the initial conception, evaluation, testing and r...

preview of 'Protect the Pump: Prototyping Designs for Biomedical Devices' Activity

Students learn how biomedical engineers work with engineers and other professionals to develop dependable medical devices. Student teams brainstorm, sketch, design and create prototypes of suction pump protection devices to keep fluid from backing up and ruining the pump motors.

preview of 'Protect Your Body, Filter Your Water!' Activity

Students experience the steps of the engineering design process as they design solutions for a real-world problem that negatively affects the environment. They use plastic tubing and assorted materials such as activated carbon, cotton balls, felt and cloth to create filters with the capability to re...

preview of 'Sensory Toys Make Sense!' Activity

Students design and create sensory integration toys for young children with developmental disabilities—an engineering challenge that combines the topics of biomedical engineering, engineering design and human senses. Students learn the steps of the engineering design process (EDP) and how to use it ...

preview of 'Sled Hockey Design Challenge' Activity

Students are asked to design a hockey stick for a school’s new sled hockey team. Using the engineering design process, students act as material engineers to create hockey sticks that have different interior structures using multiple materials that can withstand flexure testing.

preview of 'Solar Sails: The Future of Space Travel' Activity

Working as if they were engineers, students design and construct model solar sails made of aluminum foil to move cardboard tube satellites through “space” on a string. Working in teams, they follow the engineering design thinking steps—ask, research, imagine, plan, create, test, improve—to design an...

preview of 'Sounds All Around' Activity

Students follow the steps of the engineering design process to create their own ear trumpet devices (used before modern-day hearing aids), including testing them with a set of reproducible sounds.

preview of 'Spaghetti Soapbox Derby' Activity

Student pairs design, build, and test model vehicles capable of rolling down a ramp and then coasting freely as far as possible. The challenge is to make the vehicles entirely out of dry pasta using only adhesive (such as hot glue) to hold the components together.

preview of 'Super Slinger Engineering Challenge' Activity

Students are challenged to design, build and test small-scale launchers while they learn and follow the steps of the engineering design process. For the challenge, the "slingers" must be able to aim and launch Ping-Pong balls 20 feet into a goal using ordinary building materials such as tape, string...

preview of 'Swiss Alps Emergency Sled Design' Activity

Students act as engineers to solve a hypothetical problem that has occurred in the Swiss Alps due to a natural seismic disaster. Working in groups, they follow the engineering design process steps to create model sleds that meet the requirements to transport materials to people in distress that live...

preview of 'The Artificial Bicep' Activity

Students learn more about how muscles work and how biomedical engineers can help keep the muscular system healthy. Following the engineering design process, they create their own biomedical device to aid in the recovery of a strained bicep.

preview of 'Three-Tower Types Challenge: Tower Investigation and the Egg' Activity

In this activity, student groups design and build three types of towers (guyed or cable-supported, free-standing or self-standing, and monopole), engineering them to meet the requirements that they hold an egg one foot high for 15 seconds.

preview of 'Toxic Island: Designing Devices to Deliver Goods' Maker Challenge

A classic engineering challenge involves designing and building devices that can deliver necessary goods to “Toxic Island.” Working within specific constraints, students design a device that must not touch the water or island, and must deliver supplies accurately and quickly.

preview of 'Using Waits, Loops and Switches' Activity

Students are given a difficult challenge that requires they integrate what they have learned so far in the unit about wait blocks, loops and switches. They incorporate these tools into their programming of the LEGO® MINDSTORMS® robots to perform different tasks depending on input from a sound sensor...

preview of 'Wear’s the Technology?' Activity

Students apply their knowledge of scale and geometry to design wearables that would help people in their daily lives, perhaps for medical reasons or convenience. Like engineers, student teams follow the steps of the design process, to research the wearable technology field (watching online videos an...

preview of 'Wimpy Radar Antenna: Reinforced Tower Test, Analyze & Improve' Activity

Students reinforce an antenna tower made from foam insulation so that it can withstand a 480 N-cm bending moment (torque) and a 280 N-cm twisting moment (torque) with minimal deflection.

preview of 'Wristwatch Design for the Visually Impaired' Activity

Students further their understanding of the engineering design process while combining mechanical engineering and bio-engineering to create assistive devices. During this extended activity (seven class periods), students are given a fictional client statement and required to follow the steps of the ...

Welcome to TeachEngineering’s Engineering Design Process curricula for Grade 9-12 Educators!

preview of 'A Zombie Got My Leg Challenge: Making Makeshift Legs' Activity

Students experience the engineering design process as they design and construct lower-leg prostheses in response to a hypothetical zombie apocalypse scenario. Building on what they learned and researched in the associated lesson, they design and fabricate a replacement prosthetic limb using given sp...

preview of 'Above-Ground Storage Tank Design Project' Activity

In this culminating activity, student groups act as engineering design teams to derive equations to determine the stability of specific above-ground storage tank scenarios with given tank specifications and liquid contents. With their flotation analyses completed and the stability determined, studen...

preview of 'An Implementation of Steganography' Activity

Students apply the design process to the problem of hiding a message in a digital image using steganographic methods, a PictureEdit Java class, and API (provided as an attachment). They identify the problems and limitations associated with this task, brainstorm solutions, select a solution, and impl...

preview of 'Augmented Reality Programming Challenge' Maker Challenge

Students explore augmented reality programs, including muscle and bone overlays and body tracking recording program, using Unity and Microsoft Visual Studio and develop ways to modify, enhance, and redesign the program to meet a particular real-world need.

preview of 'Boom Construction' Activity

Student teams design their own booms (bridges) and engage in a friendly competition with other teams to test their designs. Each team strives to design a boom that is light, can hold a certain amount of weight, and is affordable to build.

preview of 'Build Your Own Night-Light with Arduino' Maker Challenge

Students use Arduino microcontrollers and light-sensitive resistors (photocells) to sense the ambient light levels in a room and turn LEDs on and off based on those readings. They are challenged to personalize their basic night-lights with the use of more LEDs, if/else statements and voltage divider...

preview of 'Building Arduino Light Sculptures' Maker Challenge

Students gain practice in Arduino fundamentals as they design their own small-sized prototype light sculptures to light up a hypothetical courtyard. They program Arduino microcontrollers to control the lighting behavior of at least three light-emitting diodes (LEDs) to create imaginative light displ...

preview of 'Control a Servo with Your Phone Using Bluetooth!' Maker Challenge

Students learn how to control an Arduino servo wirelessly using a simple phone application, Bluetooth module and an Android phone. This prepares them to wirelessly control their own projects.

preview of 'Convertible Shoes: Function, Fashion and Design' Activity

Student teams design and build shoe prototypes that convert between high heels and athletic shoes. They apply their knowledge about the mechanics of walking and running as well as shoe design (as learned in the associated lesson) to design a multifunctional shoe that is both fashionable and function...

preview of 'Create and Control a Popsicle Stick Finger Robot' Maker Challenge

Students use servos and flex sensors to make simple, one-jointed, finger robots. They use Arduino microcontrollers, create circuits and write code to read finger flexes and send angle info to servos. They explore the constrain, map and smoothing commands. Can teams combine fingers to create an entir...

preview of 'Creating Mini Wastewater Treatment Plants' Activity

Student teams design, construct, test and improve small working models of water treatment plant processes to filter out contaminants and reclaim resources from simulated wastewater. They keep to a materials budget and earn money from reclaimed materials. They conduct before/after water quality tests...

preview of 'Design a Bicycle Helmet' Activity

Students are introduced to the biomechanical characteristics of helmets, and are challenged to incorporate them into designs for helmets used for various applications.

preview of 'Design Your Own Nano-Polymer Smartphone Case' Maker Challenge

Students design and create their own nano-polymer smartphone case. Students choose their design, mix their nano-polymer (based in silicone) with starch and add coloring of their choice. While students think critically about their design, they embed strings in the nano-polymer material to optimize bo...

preview of 'Designing a Robotic Surgical Device' Activity

Student teams create laparoscopic surgical robots designed to reduce the invasiveness of diagnosing endometriosis and investigate how the disease forms and spreads. Using a synthetic abdominal cavity simulator, students test and iterate their remotely controlled, camera-toting prototype devices, whi...

preview of 'Designing an Elliptical Pool Table' Activity

Students learn about the mathematical characteristics and reflective property of ellipses by building their own elliptical-shaped pool tables. After a slide presentation introduction to ellipses, student “engineering teams” follow the steps of the engineering design process to develop prototypes, wh...

preview of 'Does My Model Valve Stack up to the Real Thing?' Activity

Following the steps of the iterative engineering design process, student teams use what they learned in the previous lessons and activity in this unit to research and choose materials for their model heart valves and test those materials to compare their properties to known properties of real heart ...

preview of 'Energy Storage Derby and Proposal' Activity

Students design, build and test small-sized vehicle prototypes that transfer various types of potential energy into motion. To complete the Go Public phase of the legacy cycle, students demonstrate their understanding of how potential energy may be transferred into kinetic energy.

preview of 'Engineering Self-Cleaning Hydrophobic Surfaces ' Maker Challenge

Students explore how to modify surfaces such as wood or cotton fabric at the nanoscale. They create specialized materials with features such as waterproofing and stain resistance. The challenge starts with student teams identifying an intended user and developing scenarios for using their developed ...

preview of 'Exploiting Polarization: Designing More Effective Sunglasses' Activity

Students apply their understanding of light polarization and attenuation to design, fabricate, test and refine their own prototype sunglasses that better reduce glare and lower light intensity compared to available sunglasses, and better protect eyes from UVA and UVB radiation. They meet the project...

preview of 'Exploring Variables While Testing & Improving Mint-Mobiles (for High School) ' Activity

High school students design, build, and test model race cars made from simple materials (lifesaver-shaped candies, plastic drinking straws, Popsicle sticks, index cards, tape) as a way to explore independent, dependent and control variables.

preview of 'Flying T-Shirts' Activity

During this engineering design/build project, students investigate many different solutions to a problem. Their design challenge is to find a way to get school t-shirts up into the stands during home sporting events. They follow the steps of the engineering design process to design and build a usabl...

preview of 'Having a Ball with Chemistry and Engineering' Maker Challenge

Students work as materials and chemical engineers to develop a bouncy ball using a select number of materials. They develop a plan of what materials they might need to design their product, and then create, test, and evaluate their bouncy ball.

preview of 'Heat Flow and Diagrams Lab' Activity

Student pairs design, redesign and perform simple experiments to test the differences in thermal conductivity (heat flow) through different media (foil and thin steel). Then students create visual diagrams of their findings that can be understood by anyone with little background on the subject, appl...

preview of 'How to Design a Better Smartphone Case' Activity

Students follow the steps of the engineering design process to design an improved smartphone case. As if they are materials engineers, they evaluate how to build a smartphone case and study physical properties, chemical properties, and tessellations. They analyze materials, design and improve a prot...

preview of 'Introduction to Arduino: Getting Connected and Blinking LEDs' Maker Challenge

Students learn how to connect Arduino microcontroller boards to computers and write basic code to blink LEDs. Provided steps guide students through the connection process, troubleshooting common pitfalls and writing their first Arduino programs. Then they independently write their own code to blink ...

preview of 'Make a Sticky-Note Fan with Arduino' Maker Challenge

Students control small electric motors using Arduino microcontrollers to make little spinning fans made with folded and glued paper sticky notes. They build basic circuits and modify code, before applying the principles to create their own more-complicated motor-controlled projects. Advanced project...

preview of 'Making Dirty Water Drinkable! ' Maker Challenge

Students create a water bottle from common materials used in purification tools that can clean dirty water as an inexpensive alternative to a modern filter. Students may iterate upon their design based off their experiment and the designs of their classmates after initial testing.

preview of 'Making Sense of Sensors: Visualizing Sensor Data' Maker Challenge

Students take on the challenge of assembling a light sensor circuit in order to observe its readings using the Arduino Serial Monitor. They also create their own unique visualization through software called Processing. They learn how to use calibration and smoothing along the way to capture a better...

preview of 'Measure the Milky Way with Stars ' Maker Challenge

Students investigate Python and Jupyter Notebook to analyze real astronomical images in order to calculate the interstellar distance to a star cluster across the Milky Way from our own Solar System. They learn how to write Python code that runs in a Jupyter Notebook so they can determine the brightn...

preview of 'Mouse Trap Racing in the Computer Age! ' Activity

Students design, build and evaluate a spring-powered mouse trap racer. For evaluation, teams equip their racers with an intelligent brick from a LEGO© MINDSTORMS© EV3 Education Core Set and a HiTechnic© acceleration sensor.

preview of 'Packed for Shipping: Using Linear Regression in Engineering Design' Activity

Students apply their knowledge of linear regression and design to solve a real-world challenge to create a better packing solution for shipping cell phones. They make composite material packaging containers using cardboard, fabric, plastic, paper and/or rubber bands to create four different-weight p...

preview of 'Power Your House with Wind' Activity

Students learn how engineers harness the energy of the wind to produce power by following the engineering design process as they prototype two types of wind turbines and test to see which works best. Students also learn how engineers decide where to place wind turbines, and the advantages and disadv...

preview of 'Proof of Concept: Miracle Drug Encapsulation' Activity

Students experience the engineering design process as they design, fabricate, test and redesign their own methods for encapsulation of a (hypothetical) new miracle drug. The objective is to delay the drug release by a certain time and have a long release duration—patterned after the timed release re...

preview of 'Pump It! Design-Build-Test Helpful Village Water Pumps' Activity

In this hands-on activity, student groups design, build, test and improve devices to pump water as if they were engineers helping a rural village meet their drinking water supply. Students keep track of their materials costs, and calculate power and cost efficiencies of the prototype pumps.

preview of 'Redesigning a Classroom for the Visually Impaired' Activity

Students practice human-centered design by imagining, designing and prototyping a product to improve classroom accessibility for the visually impaired. Student teams follow the steps of the engineering design process to formulate their ideas, draw them by hand and using free, online Tinkercad softwa...

preview of 'RGB Color Mixing' Maker Challenge

Students write Arduino code and use a “digital sandbox” to create new colors out of the three programming primary colors: green, red and blue. They develop their own functions, use them to make disco light shows, and vary the pattern and colors of their shows.

preview of 'Shantytown Construction Redesign' Activity

Student teams each design, build and test a composite material for use as a concrete building block for shantytown use. The design challenge constraints include: using inexpensive and readily available materials, chemically resistant, physically durable, cost-effective and aesthetically pleasing. Th...

preview of 'Simple Machines and the Rube Goldberg Challenge' Maker Challenge

Students research and learn about simple machines and other mechanisms through learning about a Rube Goldberg machine. Student teams design and build their own Rube Goldberg devices that incorporate at least six simple machines. This project is open-ended with much potential for creativity and fun.

preview of 'Solar Water: Heat it Up!' Activity

Students explore energy efficiency, focusing on renewable energy, by designing and building flat-plate solar water heaters. They calculate the efficiency of the solar water heaters during initial and final tests and compare the efficiencies to those of models currently sold on the market (requiring ...

preview of 'Splash, Pop, Fizz: Rube Goldberg Machines' Activity

Refreshed with an understanding of the six simple machines; screw, wedge, pully, incline plane, wheel and axle, and lever, student groups receive materials and an allotted amount of time to act as mechanical engineers to design and create machines that can complete specified tasks.

preview of 'Stop the Flopping: Designing Soccer Shin Guards' Maker Challenge

Students engineer a working pair of shin guards for soccer or similar contact sport from everyday materials. Since many factors go into the design of a shin guard, students follow the engineering design process to create a prototype.

preview of 'Storing Android Accelerometer Data: App Design' Lesson

Students work through an online tutorial on MIT's App Inventor to learn how to create Android applications. Using those skills, they create their own applications and use them to collect data from an Android device accelerometer and store that data to databases.

preview of 'The Glow Show Slime Engineering Challenge' Maker Challenge

Students learn about the engineering design process and how products may be reinvented to serve new purposes. Working in groups, students design a type of slime. After creating their slime, the teacher turns out the lights and the students see that the slime they made actually glows in the dark!

preview of 'The Lunch-Bot' Activity

Students are challenged to design and program Arduino-controlled robots that behave like simple versions of the automated guided vehicles engineers design for real-world applications. Using Arduino microcontroller boards, infrared (IR) sensors, servomotors, attachable wheels and plastic containers (...

preview of 'The Power of Food' Activity

Students imagine they are stranded on an island and must create the brightest light possible with the meager supplies they have on hand in order to gain the attention of a rescue airplane. In small groups, students create circuits using items in their "survival kits" to create maximum voltage, measu...

preview of 'Truss Destruction ' Activity

Students work within constraints to construct model trusses and then test them to failure as a way to evaluate the relative strength of different truss configurations and construction styles. Within each group, each student builds two exact copies of the team's truss configuration using his/her own ...

preview of 'T-Shirt Launcher' Maker Challenge

Students are challenged to find a way to get school t-shirts up into the stands during sporting events. They work with a real client (if possible, such as a cheerleading squad, booster club or band) to determine the requirements and constraints that would make the project a success, including a budg...

preview of 'Visualize Your Heartbeat' Maker Challenge

Biomedical engineers design, create, and test health technology that measure all sorts of physical functions in the body, including heartbeat. Students play the role of biomedical engineers in this activity and create a device that helps visualize heartbeats.

preview of 'Whatever Floats Your Boat! ' Maker Challenge

Students use a variety of common office and household supplies to design a boat. Their goal: to not only design the fastest boat, but also take into account how much mass or “cargo” the boat can carry, the stability of the boat in the water, the total mass of the boat, boat aesthetics, and how much ...

preview of 'Wind Chimes' Activity

Students are challenged to design and build wind chimes using their knowledge of physics and sound waves, and under given constraints such as weight, cost and number of musical notes it must generate.

preview of 'Wirelessly Control Lights and Motors Using XBee Communication!' Maker Challenge

Students learn how to send signals (such as from buttons or sensors) from one system to another using XBee radio communication modules. By activity end, they are able to control LEDs and motors wirelessly using Arduino microcontrollers and XBee shields. Introduces the concept of the Internet of thin...

problem solving and process design

  • Reviews / Why join our community?
  • For companies
  • Frequently asked questions

problem solving and process design

Obstacles to Problem Solving and Innovation in Design Thinking

Understanding the obstacles that prevent teams from reaching innovative solutions that solve underlying problems is a very important aspect of the Design Thinking process. When we ignore a major influencing factor while trying to develop a solution, we are setting ourselves up for a potentially negative result, or may even be creating an even more problematic situation than the one we are trying to resolve. To ensure your team has the optimum working environment for problem solving, let us look at the most common obstacles to problem solving and innovation — as well as a few simple steps you can take to prevent them.

Obstacles to Problem Solving

The following list of factors, though not exhaustive, represents some of the obstacles to achieving innovative solutions to the challenges we face. The more obstacles we encounter within a problem space , the more difficult the path to innovation. Our goal should always be to create a space where obstacles are understood and removed or neutralised while exploring solutions.

  • Individual people
  • Impulsive reactions
  • Man with a hammer syndrome
  • Team construction
  • Power structures
  • Organisational constraints and power structures
  • Environment
  • Sustainability

If the list above seems long and broad, that’s the whole point . Hundreds of factors can influence how conducive a team can be when solving problems, so it is extremely important to be cognizant of how small and seemingly unimportant factors can adversely affect your team’s progress. While it is not efficient to consider and analyse each and every factor in full, you should nevertheless put them at the back of your mind when working on a project.

Let us elaborate further on the most common obstacles teams face when trying to solve a problem.

Impulsive Reactions

When confronted with a challenging situation, we tend to want to be spontaneous in our reactions. The instinctive mentality is that we should strike, and strike fast, if we want to solve a challenging problem. We tend to pinpoint obvious superficial factors and attack them directly, without reviewing subtle and perhaps more influential factors. We might individually attack symptoms of problems, when the more appropriate solution would be to understand the situation as a group before attempting to apply a solution. Similarly, any one problem may comprise a tangled complex of sub-problems; striking at one of these may ‘seem’ to solve it, but doing so may have deep-reaching effects that can complicate tangent sub-problems and make the whole thing even more problematic. This impulsive urge to jump into a problem and quickly solve it can be a stumbling block in your project, because a truly useful and impactful solution requires a deep, empathic understanding of the problem. Consequently, it takes insight and restraint to overcome this impulse. While it feels good to be doing something about a problem, remember that “doing something” doesn’t have to mean taking a potentially brash action. The danger here is to mistake careful analysis for wasting time, as it seems to be far less proactive-looking and lacks the glory of a good, quick strike back that shows the problem solver can think on his feet.

Indeed, the very first reaction is rarely the most appropriate in problem solving, unless the problem is so familiar and frequent that one has become an expert in patching it quickly. Its reoccurrence may, however, indicate that the root has not been addressed — but that is another issue. Regarding being impulsive and diving in too soon, it prevents us from taking a bigger-picture view, from gaining deeper insight and from understanding how others view and experience the same problem.

Best practice: In order to solve a complex, wicked problem, you and your team need to resist the urge to react impulsively — whether it’s to solve the obvious, superficial factors quickly, or to develop the very first idea into a full product directly — and learn to dive deep and develop a holistic understanding of the problem, before starting to ideate the possible solutions to it.

problem solving and process design

In order to solve a complex, wicked problem, you and your team need to resist the urge to react impulsively and learn to dive deep and develop a holistic understanding of the problem, before starting to ideate the possible solutions to it.

Egos Get in the Way

At times, we can be our own worst enemies when it comes to working in teams trying to solve problems. If we're focused on ourselves, showing off, on egos and asserting ourselves over others, we will most likely run into issues. Not only will there almost definitely be conflicts within the team, we will also tend to fall in love with our own ideas and refuse to accept it when tests indicate that the solution is not working with the target users.

Solving problems with others requires a sincere desire to achieve the objectives together. It requires a degree of humility and excellent people skills as well. When individuals are more interested in asserting themselves over others, flexing their authority, experience or creative muscles and proving a personal point, the group will suffer and the solutions or ideas that are being forced through may not be the most appropriate. Someone’s vanity will therefore dilute the team’s effectiveness.

Best practice: The most successful problem-solving spaces provide room for each player or actor to present his/her views, thoughts, feelings and experiences, thereby allowing a more holistic approach to solving the problem. There should be no room for egos in an innovative design project.

As you may have noticed, the word “holistic” has popped up quite a few times already — and will likely appear many more times in any Design Thinking article you read. That’s because it’s one of the core aspects of the Design Thinking mindset. It's one of the words you should definitely stick up on the wall close to your thinking and working space if you want to apply Design Thinking. HOLISTIC!

problem solving and process design

We all agree, so it must be right... right? Wrong!

Groupthink is a phenomenon that occurs when the desire for harmony or conformity in the group results in a dysfunctional or irrational decision-making outcome. When working in groups, we find in many cases that people will agree with group decisions due to self-confidence issues, a kind of group peer pressure, or fear of having an opposing view rejected. But groupthink does not only occur due to negative reasoning. It may result from the desire towards a more cohesive group dynamic by avoiding conflict or controversy. Individuals consider expressing loyalty to the group to require avoiding views which may be out of sync with what the group has achieved consensus on.

Groupthink is especially dangerous when it comes to a Design Thinking project, where the team is focused on creating an innovative solution to combat a tricky problem. In Design Thinking, it is crucial to iterate and to base your decisions on user testing and understanding; with groupthink, your team might suppress dissenting viewpoints and be less critical when evaluating ideas.

Best practice: In order to avoid this scenario, team managers need to create a safe and playful space for individuals to express themselves, throw ideas out there, and not feel targeted. No-one must be allowed to dominate while ideas are being brainstormed. The right mentality must be adopted at the beginning of the project, where critiques of ideas are never made personal (and should never feel personal). Of course, during later stages where ideas are evaluated and chosen for their appropriateness, a more critical approach should be taken rather than adopting a conforming mindset.

Man with a Hammer Syndrome

As the saying goes, “to the man with a hammer, every problem looks like a nail.”

We approach problems based on the toolset which we feel most comfortable with and most skilled at. Engineers, doctors, teachers, developers, and politicians may all have tendencies to want to exercise their core skills or experience within their own field. This may not be the correct approach to solve a specific problem, and it may not be a means to achieve the desired objective, especially when the problem has multiple influencing factors which require, wait for it, Holistic thinking. At times, we need to look outside of our core tendencies, skills and experiences and approach the problem on its own level of need.

We tend to try to solve problems which appear similar to previously solved problems, using the same methods even though simpler or more optimal solutions may exist. It's part of how the human brain works in following familiar patterns, thereby reducing cognitive load . But when embarking on a Design Thinking project, it is important to abandon our tendencies to follow patterns, because the way the brain tries to help us reduce cognitive load is the very same one in which it inhibits our ability to think outside of the box!

Best practice: Creating cross-disciplinary teams will help solve this issue, as there will be many men with different kinds of hammers looking for different kinds of nails. It’s of course crucial that the team leader illuminates to all team members that all skills and mindsets are equally important so as to avoid power struggles. In this context the manager’s skills and ideas are as important as the newly employed designer’s are. Likewise, the web designer ’s, architect’s, and developer’s skills and ideas are equally important in a Design Thinking process.

problem solving and process design

As the saying goes, “to the man with a hammer, every problem looks like a nail.” We tend to try to solve problems which appear similar to previously solved problems, using the same methods even though simpler or more optimal solutions may exist. It's part of how the human brain works in following familiar patterns, thereby reducing cognitive load. 'Hammering Man' (1994) is a sculpture which is located in various cities.

It's a Bird; it's a Plane – Misdiagnosing Problems

We need to be sure we are diagnosing problems correctly, as treating symptoms may — as in the case of illnesses — not result in a cure but only temporary relief. In some cases, prescribing the incorrect medication to tackle a symptom may even cause a deepening of the root illness. As part of any human-centred design approach, digging deep into human experience uncovers more about the problems we face than if we only scrutinised things on a superficial level.

Best practice: It is when we immerse ourselves in all the factors that influence a situation that we gain a deeper understanding of the way forward. We need to be vigilant, fully focused and aware of the obstacles which could derail our progress while keeping our focus squarely on the destination.

The Take Away

Before we take on a Design Thinking project, it is important, firstly, to take note of the various obstacles that can prevent us from reaching a solution that really works. From our impulsive tendencies to react to problems quickly and solve them just as fast, to the threat of egos and groupthink, there are many potential pitfalls that teams should learn to avoid. Developing a holistic understanding of the problems that the target users face is a key element of Design Thinking, which is typically adopted to solve complex, wicked problems where multiple spheres and fields collide.

Creativity: Methods to Design Better Products and Services

problem solving and process design

Get Weekly Design Tips

Topics in this article, what you should read next, what is design thinking and why is it so popular.

problem solving and process design

  • 1.6k shares

Personas – A Simple Introduction

problem solving and process design

  • 1.5k shares

Stage 2 in the Design Thinking Process: Define the Problem and Interpret the Results

problem solving and process design

  • 1.3k shares

What is Ideation – and How to Prepare for Ideation Sessions

problem solving and process design

  • 1.2k shares

Affinity Diagrams: How to Cluster Your Ideas and Reveal Insights

problem solving and process design

  • 2 years ago

Stage 4 in the Design Thinking Process: Prototype

problem solving and process design

  • 3 years ago

Stage 3 in the Design Thinking Process: Ideate

problem solving and process design

  • 4 years ago

Stage 1 in the Design Thinking Process: Empathise with Your Users

problem solving and process design

Empathy Map – Why and How to Use It

problem solving and process design

What Is Empathy and Why Is It So Important in Design Thinking?

problem solving and process design

Open Access—Link to us!

We believe in Open Access and the  democratization of knowledge . Unfortunately, world-class educational materials such as this page are normally hidden behind paywalls or in expensive textbooks.

If you want this to change , cite this article , link to us, or join us to help us democratize design knowledge !

Privacy Settings

Our digital services use necessary tracking technologies, including third-party cookies, for security, functionality, and to uphold user rights. Optional cookies offer enhanced features, and analytics.

Experience the full potential of our site that remembers your preferences and supports secure sign-in.

Governs the storage of data necessary for maintaining website security, user authentication, and fraud prevention mechanisms.

Enhanced Functionality

Saves your settings and preferences, like your location, for a more personalized experience.

Referral Program

We use cookies to enable our referral program, giving you and your friends discounts.

Error Reporting

We share user ID with Bugsnag and NewRelic to help us track errors and fix issues.

Optimize your experience by allowing us to monitor site usage. You’ll enjoy a smoother, more personalized journey without compromising your privacy.

Analytics Storage

Collects anonymous data on how you navigate and interact, helping us make informed improvements.

Differentiates real visitors from automated bots, ensuring accurate usage data and improving your website experience.

Lets us tailor your digital ads to match your interests, making them more relevant and useful to you.

Advertising Storage

Stores information for better-targeted advertising, enhancing your online ad experience.

Personalization Storage

Permits storing data to personalize content and ads across Google services based on user behavior, enhancing overall user experience.

Advertising Personalization

Allows for content and ad personalization across Google services based on user behavior. This consent enhances user experiences.

Enables personalizing ads based on user data and interactions, allowing for more relevant advertising experiences across Google services.

Receive more relevant advertisements by sharing your interests and behavior with our trusted advertising partners.

Enables better ad targeting and measurement on Meta platforms, making ads you see more relevant.

Allows for improved ad effectiveness and measurement through Meta’s Conversions API, ensuring privacy-compliant data sharing.

LinkedIn Insights

Tracks conversions, retargeting, and web analytics for LinkedIn ad campaigns, enhancing ad relevance and performance.

LinkedIn CAPI

Enhances LinkedIn advertising through server-side event tracking, offering more accurate measurement and personalization.

Google Ads Tag

Tracks ad performance and user engagement, helping deliver ads that are most useful to you.

Share Knowledge, Get Respect!

or copy link

Cite according to academic standards

Simply copy and paste the text below into your bibliographic reference list, onto your blog, or anywhere else. You can also just hyperlink to this article.

New to UX Design? We’re giving you a free ebook!

The Basics of User Experience Design

Download our free ebook The Basics of User Experience Design to learn about core concepts of UX design.

In 9 chapters, we’ll cover: conducting user interviews, design thinking, interaction design, mobile UX design, usability, UX research, and many more!

New to UX Design? We’re Giving You a Free ebook!

IMAGES

  1. 6 steps of the problem solving process

    problem solving and process design

  2. Problem-Solving Strategies: Definition and 5 Techniques to Try

    problem solving and process design

  3. The problem-solving process chart

    problem solving and process design

  4. An Overview Of 9 Step Problem Solving Model

    problem solving and process design

  5. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    problem solving and process design

  6. Design thinking

    problem solving and process design

VIDEO

  1. Best Practices in 8D

  2. Problem-Solving skills for UX Designers #uxdesign

  3. What is Design Thinking and How to Apply it to Problem Solving in Business?

  4. Design Thinking an Problem Solving

  5. Problem Solving lesson #3

  6. 1.4 Problem Solving In Mathematics: A Process

COMMENTS

  1. Design thinking, explained

    Design thinking is an innovative problem-solving process rooted in a set of skills.The approach has been around for decades, but it only started gaining traction outside of the design community after the 2008 Harvard Business Review article [subscription required] titled "Design Thinking" by Tim Brown, CEO and president of design company IDEO.

  2. Design Thinking, Essential Problem Solving 101- It's More Than

    The term "Design Thinking" dates back to the 1987 book by Peter Rowe; "Design Thinking." In that book he describes the way that architects and urban planners would approach design problems. However, the idea that there was a specific pattern of problem solving in "design thought" came much earlier in Herbert A Simon's book, "The Science of the Artificial" which was published ...

  3. How to solve problems using the design thinking process

    Summary. The design thinking process is a problem-solving design methodology that helps you develop solutions in a human-focused way. Initially designed at Stanford's d.school, the five stage design thinking method can help solve ambiguous questions, or more open-ended problems. Learn how these five steps can help your team create innovative ...

  4. What Is Design Thinking & Why Is It Important?

    The first, and arguably most important, step of design thinking is building empathy with users. By understanding the person affected by a problem, you can find a more impactful solution. On top of empathy, design thinking is centered on observing product interaction, drawing conclusions based on research, and ensuring the user remains the focus ...

  5. The 5 Stages in the Design Thinking Process

    The Design Thinking process is a human-centered, iterative methodology that designers use to solve problems. It has 5 steps—Empathize, Define, Ideate, Prototype and Test. ... Empathy is crucial to problem solving and a human-centered design process as it allows design thinkers to set aside their own assumptions about the world and gain real ...

  6. What is Design Thinking?

    Design thinking is a non-linear, iterative process that teams use to understand users, challenge assumptions, redefine problems and create innovative solutions to prototype and test. It is most useful to tackle ill-defined or unknown problems and involves five phases: Empathize, Define, Ideate, Prototype and Test.

  7. What is design thinking?

    Design thinking is a systemic, intuitive, customer-focused problem-solving approach that organizations can use to respond to rapidly changing environments and to create maximum impact." "(6 pages) ... Designers know there is no end to the design process. The power of design, instead, lies in the ability to adopt and adapt as needs change. When ...

  8. What is Design Thinking, and how is it used to problem-solve?

    Design Thinking is a problem-solving framework. Unlike other brainstorming methods, design thinking uses empathetic observation to focus on human-centered needs first before diving into ideation. The process of design thinking is derived from the methods that designers, architects, and engineers all use to do their work.

  9. The Design Thinking Process: 5 Steps Complete Guide

    The design thinking process is a problem-solving methodology used by designers to approach complex problems and find innovative solutions. It typically involves five stages: empathize, define, ideate, prototype, and test. 2. What is ideate in the design thinking process?

  10. IDEO Design Thinking

    There's no single definition for design thinking. It's an idea, a strategy, a method, and a way of seeing the world. It's grown beyond the confines of any individual person, organization or website. And as it matures, its history deepens and its impact evolves. For IDEO, design thinking is a way to solve problems through creativity.

  11. Design Thinking 101

    Design thinking is an ideology supported by an accompanying process. A complete definition requires an understanding of both. Definition: The design thinking ideology asserts that a hands-on, user-centric approach to problem solving can lead to innovation, and innovation can lead to differentiation and a competitive advantage. This hands-on ...

  12. How to master the seven-step problem-solving process

    Bias is a feature of every human decision-making process. If we design our team interactions intelligently, we can avoid the worst sort of biases. ... The best teams allow divergent thinking to bump them off whatever their initial biases in problem solving are. For me, design thinking gives us a constant reminder of creativity, empathy, and the ...

  13. Problem-solving process design in production: Current progress and

    A core element of a lean and learning production system are processes that show deviations and employees who resolve root causes. If a problem occurs, systematic problem-solving processes enable to find and implement a sustainable solution. The concepts of problem-solving described in scientific literature are rarely successfully applied in ...

  14. Stage 2 in the Design Thinking Process: Define the Problem

    In the Design Thinking process, this step is what's known as the "define" stage. As the second step in the Design Thinking process, the define stage is where you'll establish a clear idea of exactly which problem you will solve for the user. You'll then shape this into a problem statement which will act as your northern star ...

  15. Design Thinking: A Creative Approach to Problem Solving

    Abstract. Design thinking—understanding the human needs related to a problem, reframing the problem in human-centric ways, creating many ideas in brainstorming sessions, and adopting a hands-on approach to prototyping and testing—offers a complementary approach to the rational problem-solving methods typically emphasized in business schools.

  16. How to solve problems with design thinking

    The proof is in the pudding: From 2013 to 2018, companies that embraced the business value of design had TSR that were 56 percentage points higher than that of their industry peers. Check out these insights to understand how to use design thinking to unleash the power of creativity in strategy and problem solving. Designing out of difficult times.

  17. What is Design Thinking and Why Is It So Popular?

    The design thinking process has both a scientific and artistic side to it, as it asks us to understand and challenge our natural, restrictive patterns of thinking and generate innovative solutions to the problems our users face. Design thinking is essentially a problem-solving approach that has the intention to improve products.

  18. What Is Creative Problem-Solving & Why Is It Important?

    Creative problem-solving primarily operates in the ideate phase of design thinking but can be applied to others. This is because design thinking is an iterative process that moves between the stages as ideas are generated and pursued. This is normal and encouraged, as innovation requires exploring multiple ideas.

  19. Design as a Problem-Solving Approach

    The problem-solving cycle, in general terms, can be summarised as research, design, and optimization as an iterative process, which means new designs for new problems. If people buy, use, like, or even recommend your product or service, you can make sure that you offer a good design, which demonstrates that your solution suggestions provide a ...

  20. Stage 2 in the Design Thinking Process: Define the Problem and

    An integral part of the Design Thinking process is the definition of a meaningful and actionable problem statement, which the design thinker will focus on solving. This is perhaps the most challenging part of the Design Thinking process, as the definition of a problem (also called a design challenge) will require you to synthesise your observations about your users from the first stage in the ...

  21. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  22. Engineering Design Process

    The engineering design process emphasizes open-ended problem solving and encourages students to learn from failure. This process nurtures students' abilities to create innovative solutions to challenges in any subject! The engineering design process is a series of steps that guides engineering teams as we solve problems.

  23. Obstacles to Problem Solving and Innovation in Design Thinking

    Understanding the obstacles that prevent teams from reaching innovative solutions that solve underlying problems is a very important aspect of the Design Thinking process. When we ignore a major influencing factor while trying to develop a solution, we are setting ourselves up for a potentially negative result, or may even be creating an even ...