• Search Search Please fill out this field.

What Is a Type II Error?

  • How It Works
  • Type I vs. Type II Error

The Bottom Line

  • Corporate Finance
  • Financial Analysis

Type II Error Explained, Plus Example & vs. Type I Error

Adam Hayes, Ph.D., CFA, is a financial writer with 15+ years Wall Street experience as a derivatives trader. Besides his extensive derivative trading expertise, Adam is an expert in economics and behavioral finance. Adam received his master's in economics from The New School for Social Research and his Ph.D. from the University of Wisconsin-Madison in sociology. He is a CFA charterholder as well as holding FINRA Series 7, 55 & 63 licenses. He currently researches and teaches economic sociology and the social studies of finance at the Hebrew University in Jerusalem.

hypothesis testing type 2 error meaning

Michela Buttignol / Investopedia

A type II error is a statistical term used within the context of hypothesis testing that describes the error that occurs when one fails to reject a null hypothesis that is actually false. A type II error produces a false negative, also known as an error of omission.

For example, a test for a disease may report a negative result when the patient is infected. This is a type II error because we accept the conclusion of the test as negative, even though it is incorrect.

A type II error can be contrasted with a type I error , where researchers incorrectly reject a true null hypothesis. A type II error happens when one fails to reject a null hypothesis that is actually false. A type I error produces a false positive.

Key Takeaways

  • A type II error is defined as the probability of incorrectly failing to reject the null hypothesis, when in fact it is not applicable to the entire population.
  • A type II error is essentially a false negative.
  • A type II error can be made less likely by making more stringent criteria for rejecting a null hypothesis, although this increases the chances of a false positive.
  • The sample size, the true population size, and the preset alpha level influence the magnitude of risk of an error.
  • Analysts need to weigh the likelihood and impact of type II errors with type I errors.

Understanding a Type II Error

A type II error, also known as an error of the second kind or a beta error, confirms an idea that should have been rejected—for instance, claiming that two observances are the same, despite them being different. A type II error does not reject the null hypothesis, even though the alternative hypothesis is actually correct. In other words, a false finding is accepted as true.

The likelihood of a type II error can be reduced by making more stringent criteria for rejecting a null hypothesis (H 0 ). For example, if an analyst is considering anything that falls within the +/- bounds of a 95% confidence interval as statistically insignificant (a negative result), then by decreasing that tolerance to +/- 90%, and subsequently narrowing the bounds, you will get fewer negative results, and thus reduce the chances of a false negative.

Taking these steps, however, tends to increase the chances of encountering a type I error—a false-positive result. When conducting a hypothesis test, the probability or risk of making a type I error or type II error should be considered.

The steps taken to reduce the chances of encountering a type II error tend to increase the probability of a type I error.

Type I Errors vs. Type II Errors

The difference between a type II error and a type I error is that a type I error rejects the null hypothesis when it is true (i.e., a false positive). The probability of committing a type I error is equal to the level of significance that was set for the hypothesis test. Therefore, if the level of significance is 0.05, there is a 5% chance that a type I error may occur.

The probability of committing a type II error is equal to one minus the power of the test, also known as beta. The power of the test could be increased by increasing the sample size, which decreases the risk of committing a type II error.

Some statistical literature will include overall significance level and type II error risk as part of the report’s analysis. For example, a 2021 meta-analysis of exosome in the treatment of spinal cord injury recorded an overall significance level of 0.05 and a type II error risk of 0.1.

Example of a Type II Error

Assume a biotechnology company wants to compare how effective two of its drugs are for treating diabetes. The null hypothesis states the two medications are equally effective. A null hypothesis, H 0 , is the claim that the company hopes to reject using the one-tailed test . The alternative hypothesis, H a , states that the two drugs are not equally effective. The alternative hypothesis, H a , is the state of nature that is supported by rejecting the null hypothesis.

The biotech company implements a large clinical trial of 3,000 patients with diabetes to compare the treatments. The company randomly divides the 3,000 patients into two equally sized groups, giving one group one of the treatments and the other group the other treatment. It selects a significance level of 0.05, which indicates it is willing to accept a 5% chance it may reject the null hypothesis when it is true or a 5% chance of committing a type I error.

Assume the beta is calculated to be 0.025, or 2.5%. Therefore, the probability of committing a type II error is 97.5%. If the two medications are not equal, the null hypothesis should be rejected. However, if the biotech company does not reject the null hypothesis when the drugs are not equally effective, then a type II error occurs.

What Is the Difference Between Type I and Type II Errors?

A type I error occurs if a null hypothesis is rejected that is actually true in the population. This type of error is representative of a false positive. Alternatively, a type II error occurs if a null hypothesis is not rejected that is actually false in the population. This type of error is representative of a false negative.

What Causes Type II Errors?

A type II error is commonly caused if the statistical power of a test is too low. The higher the statistical power, the greater the chance of avoiding an error. It’s often recommended that the statistical power should be set to at least 80% prior to conducting any testing.

What Factors Influence the Magnitude of Risk for Type II Errors?

As the sample size of a study increases, the risk of type II errors should decrease. As the true population effect size increases, the probability of a type II error should also decrease. Finally, the preset alpha level set by the research influences the magnitude of risk. As the alpha level set decreases, the risk of a type II error increases.

How Can a Type II Error Be Minimized?

It is not possible to fully prevent committing a type II error, but the risk can be minimized by increasing the sample size. However, doing so will also increase the risk of committing a type I error instead.

In statistics, a type II error results in a false negative—meaning that there is a finding, but it has been missed in the analysis (or that the null hypothesis is not rejected when it ought to have been). A type II error can occur if there is not enough power in statistical tests, often resulting from sample sizes that are too small. Increasing the sample size can help reduce the chances of committing a type II error.

Type II errors can be contrasted with type I errors, which are false positives.

Europe PMC. “ A Meta-Analysis of Exosome in the Treatment of Spinal Cord Injury .”

hypothesis testing type 2 error meaning

  • Terms of Service
  • Editorial Policy
  • Privacy Policy
  • Your Privacy Choices

Type 1 and Type 2 Errors in Statistics

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

On This Page:

A statistically significant result cannot prove that a research hypothesis is correct (which implies 100% certainty). Because a p -value is based on probabilities, there is always a chance of making an incorrect conclusion regarding accepting or rejecting the null hypothesis ( H 0 ).

Anytime we make a decision using statistics, there are four possible outcomes, with two representing correct decisions and two representing errors.

type 1 and type 2 errors

The chances of committing these two types of errors are inversely proportional: that is, decreasing type I error rate increases type II error rate and vice versa.

As the significance level (α) increases, it becomes easier to reject the null hypothesis, decreasing the chance of missing a real effect (Type II error, β). If the significance level (α) goes down, it becomes harder to reject the null hypothesis , increasing the chance of missing an effect while reducing the risk of falsely finding one (Type I error).

Type I error 

A type 1 error is also known as a false positive and occurs when a researcher incorrectly rejects a true null hypothesis. Simply put, it’s a false alarm.

This means that you report that your findings are significant when they have occurred by chance.

The probability of making a type 1 error is represented by your alpha level (α), the p- value below which you reject the null hypothesis.

A p -value of 0.05 indicates that you are willing to accept a 5% chance of getting the observed data (or something more extreme) when the null hypothesis is true.

You can reduce your risk of committing a type 1 error by setting a lower alpha level (like α = 0.01). For example, a p-value of 0.01 would mean there is a 1% chance of committing a Type I error.

However, using a lower value for alpha means that you will be less likely to detect a true difference if one really exists (thus risking a type II error).

Scenario: Drug Efficacy Study

Imagine a pharmaceutical company is testing a new drug, named “MediCure”, to determine if it’s more effective than a placebo at reducing fever. They experimented with two groups: one receives MediCure, and the other received a placebo.

  • Null Hypothesis (H0) : MediCure is no more effective at reducing fever than the placebo.
  • Alternative Hypothesis (H1) : MediCure is more effective at reducing fever than the placebo.

After conducting the study and analyzing the results, the researchers found a p-value of 0.04.

If they use an alpha (α) level of 0.05, this p-value is considered statistically significant, leading them to reject the null hypothesis and conclude that MediCure is more effective than the placebo.

However, MediCure has no actual effect, and the observed difference was due to random variation or some other confounding factor. In this case, the researchers have incorrectly rejected a true null hypothesis.

Error : The researchers have made a Type 1 error by concluding that MediCure is more effective when it isn’t.

Implications

Resource Allocation : Making a Type I error can lead to wastage of resources. If a business believes a new strategy is effective when it’s not (based on a Type I error), they might allocate significant financial and human resources toward that ineffective strategy.

Unnecessary Interventions : In medical trials, a Type I error might lead to the belief that a new treatment is effective when it isn’t. As a result, patients might undergo unnecessary treatments, risking potential side effects without any benefit.

Reputation and Credibility : For researchers, making repeated Type I errors can harm their professional reputation. If they frequently claim groundbreaking results that are later refuted, their credibility in the scientific community might diminish.

Type II error

A type 2 error (or false negative) happens when you accept the null hypothesis when it should actually be rejected.

Here, a researcher concludes there is not a significant effect when actually there really is.

The probability of making a type II error is called Beta (β), which is related to the power of the statistical test (power = 1- β). You can decrease your risk of committing a type II error by ensuring your test has enough power.

You can do this by ensuring your sample size is large enough to detect a practical difference when one truly exists.

Scenario: Efficacy of a New Teaching Method

Educational psychologists are investigating the potential benefits of a new interactive teaching method, named “EduInteract”, which utilizes virtual reality (VR) technology to teach history to middle school students.

They hypothesize that this method will lead to better retention and understanding compared to the traditional textbook-based approach.

  • Null Hypothesis (H0) : The EduInteract VR teaching method does not result in significantly better retention and understanding of history content than the traditional textbook method.
  • Alternative Hypothesis (H1) : The EduInteract VR teaching method results in significantly better retention and understanding of history content than the traditional textbook method.

The researchers designed an experiment where one group of students learns a history module using the EduInteract VR method, while a control group learns the same module using a traditional textbook.

After a week, the student’s retention and understanding are tested using a standardized assessment.

Upon analyzing the results, the psychologists found a p-value of 0.06. Using an alpha (α) level of 0.05, this p-value isn’t statistically significant.

Therefore, they fail to reject the null hypothesis and conclude that the EduInteract VR method isn’t more effective than the traditional textbook approach.

However, let’s assume that in the real world, the EduInteract VR truly enhances retention and understanding, but the study failed to detect this benefit due to reasons like small sample size, variability in students’ prior knowledge, or perhaps the assessment wasn’t sensitive enough to detect the nuances of VR-based learning.

Error : By concluding that the EduInteract VR method isn’t more effective than the traditional method when it is, the researchers have made a Type 2 error.

This could prevent schools from adopting a potentially superior teaching method that might benefit students’ learning experiences.

Missed Opportunities : A Type II error can lead to missed opportunities for improvement or innovation. For example, in education, if a more effective teaching method is overlooked because of a Type II error, students might miss out on a better learning experience.

Potential Risks : In healthcare, a Type II error might mean overlooking a harmful side effect of a medication because the research didn’t detect its harmful impacts. As a result, patients might continue using a harmful treatment.

Stagnation : In the business world, making a Type II error can result in continued investment in outdated or less efficient methods. This can lead to stagnation and the inability to compete effectively in the marketplace.

How do Type I and Type II errors relate to psychological research and experiments?

Type I errors are like false alarms, while Type II errors are like missed opportunities. Both errors can impact the validity and reliability of psychological findings, so researchers strive to minimize them to draw accurate conclusions from their studies.

How does sample size influence the likelihood of Type I and Type II errors in psychological research?

Sample size in psychological research influences the likelihood of Type I and Type II errors. A larger sample size reduces the chances of Type I errors, which means researchers are less likely to mistakenly find a significant effect when there isn’t one.

A larger sample size also increases the chances of detecting true effects, reducing the likelihood of Type II errors.

Are there any ethical implications associated with Type I and Type II errors in psychological research?

Yes, there are ethical implications associated with Type I and Type II errors in psychological research.

Type I errors may lead to false positive findings, resulting in misleading conclusions and potentially wasting resources on ineffective interventions. This can harm individuals who are falsely diagnosed or receive unnecessary treatments.

Type II errors, on the other hand, may result in missed opportunities to identify important effects or relationships, leading to a lack of appropriate interventions or support. This can also have negative consequences for individuals who genuinely require assistance.

Therefore, minimizing these errors is crucial for ethical research and ensuring the well-being of participants.

Further Information

  • Publication manual of the American Psychological Association
  • Statistics for Psychology Book Download

Print Friendly, PDF & Email

Related Articles

Exploratory Data Analysis

Exploratory Data Analysis

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

Criterion Validity: Definition & Examples

Criterion Validity: Definition & Examples

Convergent Validity: Definition and Examples

Convergent Validity: Definition and Examples

Content Validity in Research: Definition & Examples

Content Validity in Research: Definition & Examples

Construct Validity In Psychology Research

Construct Validity In Psychology Research

Have a thesis expert improve your writing

Check your thesis for plagiarism in 10 minutes, generate your apa citations for free.

  • Knowledge Base
  • Type I & Type II Errors | Differences, Examples, Visualizations

Type I & Type II Errors | Differences, Examples, Visualizations

Published on 18 January 2021 by Pritha Bhandari . Revised on 2 February 2023.

In statistics , a Type I error is a false positive conclusion, while a Type II error is a false negative conclusion.

Making a statistical decision always involves uncertainties, so the risks of making these errors are unavoidable in hypothesis testing .

The probability of making a Type I error is the significance level , or alpha (α), while the probability of making a Type II error is beta (β). These risks can be minimized through careful planning in your study design.

  • Type I error (false positive) : the test result says you have coronavirus, but you actually don’t.
  • Type II error (false negative) : the test result says you don’t have coronavirus, but you actually do.

Table of contents

Error in statistical decision-making, type i error, type ii error, trade-off between type i and type ii errors, is a type i or type ii error worse, frequently asked questions about type i and ii errors.

Using hypothesis testing, you can make decisions about whether your data support or refute your research predictions with null and alternative hypotheses .

Hypothesis testing starts with the assumption of no difference between groups or no relationship between variables in the population—this is the null hypothesis . It’s always paired with an alternative hypothesis , which is your research prediction of an actual difference between groups or a true relationship between variables .

In this case:

  • The null hypothesis (H 0 ) is that the new drug has no effect on symptoms of the disease.
  • The alternative hypothesis (H 1 ) is that the drug is effective for alleviating symptoms of the disease.

Then , you decide whether the null hypothesis can be rejected based on your data and the results of a statistical test . Since these decisions are based on probabilities, there is always a risk of making the wrong conclusion.

  • If your results show statistical significance , that means they are very unlikely to occur if the null hypothesis is true. In this case, you would reject your null hypothesis. But sometimes, this may actually be a Type I error.
  • If your findings do not show statistical significance, they have a high chance of occurring if the null hypothesis is true. Therefore, you fail to reject your null hypothesis. But sometimes, this may be a Type II error.

Type I and Type II error in statistics

A Type I error means rejecting the null hypothesis when it’s actually true. It means concluding that results are statistically significant when, in reality, they came about purely by chance or because of unrelated factors.

The risk of committing this error is the significance level (alpha or α) you choose. That’s a value that you set at the beginning of your study to assess the statistical probability of obtaining your results ( p value).

The significance level is usually set at 0.05 or 5%. This means that your results only have a 5% chance of occurring, or less, if the null hypothesis is actually true.

If the p value of your test is lower than the significance level, it means your results are statistically significant and consistent with the alternative hypothesis. If your p value is higher than the significance level, then your results are considered statistically non-significant.

To reduce the Type I error probability, you can simply set a lower significance level.

Type I error rate

The null hypothesis distribution curve below shows the probabilities of obtaining all possible results if the study were repeated with new samples and the null hypothesis were true in the population .

At the tail end, the shaded area represents alpha. It’s also called a critical region in statistics.

If your results fall in the critical region of this curve, they are considered statistically significant and the null hypothesis is rejected. However, this is a false positive conclusion, because the null hypothesis is actually true in this case!

Type I error rate

A Type II error means not rejecting the null hypothesis when it’s actually false. This is not quite the same as “accepting” the null hypothesis, because hypothesis testing can only tell you whether to reject the null hypothesis.

Instead, a Type II error means failing to conclude there was an effect when there actually was. In reality, your study may not have had enough statistical power to detect an effect of a certain size.

Power is the extent to which a test can correctly detect a real effect when there is one. A power level of 80% or higher is usually considered acceptable.

The risk of a Type II error is inversely related to the statistical power of a study. The higher the statistical power, the lower the probability of making a Type II error.

Statistical power is determined by:

  • Size of the effect : Larger effects are more easily detected.
  • Measurement error : Systematic and random errors in recorded data reduce power.
  • Sample size : Larger samples reduce sampling error and increase power.
  • Significance level : Increasing the significance level increases power.

To (indirectly) reduce the risk of a Type II error, you can increase the sample size or the significance level.

Type II error rate

The alternative hypothesis distribution curve below shows the probabilities of obtaining all possible results if the study were repeated with new samples and the alternative hypothesis were true in the population .

The Type II error rate is beta (β), represented by the shaded area on the left side. The remaining area under the curve represents statistical power, which is 1 – β.

Increasing the statistical power of your test directly decreases the risk of making a Type II error.

Type II error rate

The Type I and Type II error rates influence each other. That’s because the significance level (the Type I error rate) affects statistical power, which is inversely related to the Type II error rate.

This means there’s an important tradeoff between Type I and Type II errors:

  • Setting a lower significance level decreases a Type I error risk, but increases a Type II error risk.
  • Increasing the power of a test decreases a Type II error risk, but increases a Type I error risk.

This trade-off is visualized in the graph below. It shows two curves:

  • The null hypothesis distribution shows all possible results you’d obtain if the null hypothesis is true. The correct conclusion for any point on this distribution means not rejecting the null hypothesis.
  • The alternative hypothesis distribution shows all possible results you’d obtain if the alternative hypothesis is true. The correct conclusion for any point on this distribution means rejecting the null hypothesis.

Type I and Type II errors occur where these two distributions overlap. The blue shaded area represents alpha, the Type I error rate, and the green shaded area represents beta, the Type II error rate.

By setting the Type I error rate, you indirectly influence the size of the Type II error rate as well.

Type I and Type II error

It’s important to strike a balance between the risks of making Type I and Type II errors. Reducing the alpha always comes at the cost of increasing beta, and vice versa .

For statisticians, a Type I error is usually worse. In practical terms, however, either type of error could be worse depending on your research context.

A Type I error means mistakenly going against the main statistical assumption of a null hypothesis. This may lead to new policies, practices or treatments that are inadequate or a waste of resources.

In contrast, a Type II error means failing to reject a null hypothesis. It may only result in missed opportunities to innovate, but these can also have important practical consequences.

In statistics, a Type I error means rejecting the null hypothesis when it’s actually true, while a Type II error means failing to reject the null hypothesis when it’s actually false.

The risk of making a Type I error is the significance level (or alpha) that you choose. That’s a value that you set at the beginning of your study to assess the statistical probability of obtaining your results ( p value ).

To reduce the Type I error probability, you can set a lower significance level.

The risk of making a Type II error is inversely related to the statistical power of a test. Power is the extent to which a test can correctly detect a real effect when there is one.

To (indirectly) reduce the risk of a Type II error, you can increase the sample size or the significance level to increase statistical power.

Statistical significance is a term used by researchers to state that it is unlikely their observations could have occurred under the null hypothesis of a statistical test . Significance is usually denoted by a p -value , or probability value.

Statistical significance is arbitrary – it depends on the threshold, or alpha value, chosen by the researcher. The most common threshold is p < 0.05, which means that the data is likely to occur less than 5% of the time under the null hypothesis .

When the p -value falls below the chosen alpha value, then we say the result of the test is statistically significant.

In statistics, power refers to the likelihood of a hypothesis test detecting a true effect if there is one. A statistically powerful test is more likely to reject a false negative (a Type II error).

If you don’t ensure enough power in your study, you may not be able to detect a statistically significant result even when it has practical significance. Your study might not have the ability to answer your research question.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2023, February 02). Type I & Type II Errors | Differences, Examples, Visualizations. Scribbr. Retrieved 3 June 2024, from https://www.scribbr.co.uk/stats/type-i-and-type-ii-error/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

8.2: Type I and II Errors

  • Last updated
  • Save as PDF
  • Page ID 24056

  • Rachel Webb
  • Portland State University

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

How do you quantify really small? Is 5% or 10% or 15% really small? How do you decide? That depends on your field of study and the importance of the situation. Is this a pilot study? Is someone’s life at risk? Would you lose your job? Most industry standards use 5% as the cutoff point for how small is small enough, but 1%, 5% and 10% are frequently used depending on what the situation calls for.

Now, how small is small enough? To answer that, you really want to know the types of errors you can make in hypothesis testing.

The first error is if you say that H 0 is false, when in fact it is true. This means you reject H 0 when H 0 was true. The second error is if you say that H 0 is true, when in fact it is false. This means you fail to reject H 0 when H 0 is false.

Figure 8-4 shows that if we “Reject H 0 ” when H 0 is actually true, we are committing a type I error. The probability of committing a type I error is the Greek letter \(\alpha\), pronounced alpha. This can be controlled by the researcher by choosing a specific level of significance \(\alpha\).

clipboard_eec1caec9e13e3465d5a0c53094848700.png

Figure 8-4 shows that if we “Do Not Reject H 0 ” when H 0 is actually false, we are committing a type II error. The probability of committing a type II error is denoted with the Greek letter β, pronounced beta. When we increase the sample size this will reduce β. The power of a test is 1 – β.

A jury trial is about to take place to decide if a person is guilty of committing murder. The hypotheses for this situation would be:

  • \(H_0\): The defendant is innocent
  • \(H_1\): The defendant is not innocent

The jury has two possible decisions to make, either acquit or convict the person on trial, based on the evidence that is presented. There are two possible ways that the jury could make a mistake. They could convict an innocent person or they could let a guilty person go free. Both are bad news, but if the death penalty was sentenced to the convicted person, the justice system could be killing an innocent person. If a murderer is let go without enough evidence to convict them then they could possibly murder again. In statistics we call these two types of mistakes a type I and II error.

Figure 8-5 is a diagram to see the four possible jury decisions and two errors.

clipboard_e3c10ea812a7425f19e1c849bec82e74c.png

Type I Error is rejecting H 0 when H 0 is true, and Type II Error is failing to reject H 0 when H 0 is false.

Since these are the only two possible errors, one can define the probabilities attached to each error.

\(\alpha\) = P(Type I Error) = P(Rejecting H 0 | H 0 is true)

β = P(Type II Error) = P(Failing to reject H 0 | H 0 is false)

An investment company wants to build a new food cart. They know from experience that food carts are successful if they have on average more than 100 people a day walk by the location. They have a potential site to build on, but before they begin, they want to see if they have enough foot traffic. They observe how many people walk by the site every day over a month. They will build if there is more than an average of 100 people who walk by the site each day. In simple terms, explain what the type I & II errors would be using context from the problem.

The hypotheses are: H 0 : μ = 100 and H 1 : μ > 100.

Sometimes it is helpful to use words next to your hypotheses instead of the formal symbols

  • H 0 : μ ≤ 100 (Do not build)
  • H 1 : μ > 100 (Build).

A type I error would be to reject the null when in fact it is true. Take your finger and cover up the null hypothesis (our decision is to reject the null), then what is showing? The alternative hypothesis is what action we take.

If we reject H 0 then we would build the new food cart. However, H 0 was actually true, which means that the mean was less than or equal to 100 people walking by.

In more simple terms, this would mean that our evidence showed that we have enough foot traffic to support the food cart. Once we build, though, there was not on average more than 100 people that walk by and the food cart may fail.

A type II error would be to fail to reject the null when in fact the null is false. Evidence shows that we should not build on the site, but this actually would have been a prime location to build on.

The missed opportunity of a type II error is not as bad as possibly losing thousands of dollars on a bad investment.

What is more severe of an error is dependent on what side of the desk you are sitting on. For instance, if a hypothesis is about miles per gallon for a new car the hypotheses may be set up differently depending on if you are buying the car or selling the car. For this course, the claim will be stated in the problem and always set up the hypotheses to match the stated claim. In general, the research question should be set up as some type of change in the alternative hypothesis.

Controlling for Type I Error

The significance level used by the researcher should be picked prior to collection and analyzing data. This is called “a priori,” versus picking α after you have done your analysis which is called “post hoc.” When deciding on what significance level to pick, one needs to look at the severity of the consequences of the type I and type II errors. For example, if the type I error may cause the loss of life or large amounts of money the researcher would want to set \(\alpha\) low.

Controlling for Type II Error

The power of a test is the complement of a type II error or correctly rejecting a false null hypothesis. You can increase the power of the test and hence decrease the type II error by increasing the sample size. Similar to confidence intervals, where we can reduce our margin of error when we increase the sample size. In general, we would like to have a high confidence level and a high power for our hypothesis tests. When you increase your confidence level, then in turn the power of the test will decrease. Calculating the probability of a type II error is a little more difficult and it is a conditional probability based on the researcher’s hypotheses and is not discussed in this course.

“‘That's right!’ shouted Vroomfondel, ‘we demand rigidly defined areas of doubt and uncertainty!’” (Adams, 2002)

Visualizing \(\alpha\) and β

If \(\alpha\) increases that means the chances of making a type I error will increase. It is more likely that a type I error will occur. It makes sense that you are less likely to make type II errors, only because you will be rejecting H 0 more often. You will be failing to reject H 0 less, and therefore, the chance of making a type II error will decrease. Thus, as α increases, β will decrease, and vice versa. That makes them seem like complements, but they are not complements. Consider one more factor – sample size.

Consider if you have a larger sample that is representative of the population, then it makes sense that you have more accuracy than with a smaller sample. Think of it this way, which would you trust more, a sample mean of 890 if you had a sample size of 35 or sample size of 350 (assuming a representative sample)? Of course, the 350 because there are more data points and so more accuracy. If you are more accurate, then there is less chance that you will make any error.

By increasing the sample size of a representative sample, you decrease β.

  • For a constant sample size, n , if \(\alpha\) increases, β decreases.
  • For a constant significance level, \(\alpha\), if n increases, β decreases.

When the sample size becomes large, point estimates become more precise and any real differences in the mean and null value become easier to detect and recognize. Even a very small difference would likely be detected if we took a large enough sample size. Sometimes researchers will take such a large sample size that even the slightest difference is detected. While we still say that difference is statistically significant, it might not be practically significant. Statistically significant differences are sometimes so minor that they are not practically relevant. This is especially important to research: if we conduct a study, we want to focus on finding a meaningful result. We do not want to spend lots of money finding results that hold no practical value.

The role of a statistician in conducting a study often includes planning the size of the study. The statistician might first consult experts or scientific literature to learn what would be the smallest meaningful difference from the null value. They also would obtain some reasonable estimate for the standard deviation. With these important pieces of information, they would choose a sufficiently large sample size so that the power for the meaningful difference is perhaps 80% or 90%. While larger sample sizes may still be used, the statistician might advise against using them in some cases, especially in sensitive areas of research.

If we look at the following two sampling distributions in Figure 8-6, the one on the left represents the sampling distribution for the true unknown mean. The curve on the right represents the sampling distribution based on the hypotheses the researcher is making. Do you remember the difference between a sampling distribution, the distribution of a sample, and the distribution of the population? Revisit the Central Limit Theorem in Chapter 6 if needed.

If we start with \(\alpha\) = 0.05, the critical value is represented by the vertical green line at \(z_{\alpha}\) = 1.96. Then the blue shaded area to the right of this line represents \(\alpha\). The area under the curve to the left of \(z_{\alpha / 2}\) = 1.96 based on the researcher’s claim would represent β.

clipboard_e7c65b0c521321075f8c809c2fab3b9ac.png

If we were to change \(\alpha\) from 0.05 to 0.01 then we get a critical value of \(z_{\alpha / 2}\) = 2.576. Note that when \(\alpha\) decreases, then β increases which means your power 1 – β decreases. See Figure 8-7.

This text does not go over how to calculate β. You will need to be able to write out a sentence interpreting either the type I or II errors given a set of hypotheses. You also need to know the relationship between \(\alpha\), β, confidence level, and power.

Hypothesis tests are not flawless, since we can make a wrong decision in statistical hypothesis tests based on the data. For example, in the court system, innocent people are sometimes wrongly convicted and the guilty sometimes walk free, or diagnostic tests that have false negatives or false positives. However, the difference is that in statistical hypothesis tests, we have the tools necessary to quantify how often we make such errors. A type I Error is rejecting the null hypothesis when H 0 is actually true. A type II Error is failing to reject the null hypothesis when the alternative is actually true (H 0 is false).

We use the symbols \(\alpha\) = P(Type I Error) and β = P(Type II Error). The critical value is a cutoff point on the horizontal axis of the sampling distribution that you can compare your test statistic to see if you should reject the null hypothesis. For a left-tailed test the critical value will always be on the left side of the sampling distribution, the right-tailed test will always be on the right side, and a two-tailed test will be on both tails. Use technology to find the critical values. Most of the time in this course the shortcut menus that we use will give you the critical values as part of the output.

8.2.1 Finding Critical Values

A researcher decides they want to have a 5% chance of making a type I error so they set α = 0.05. What z-score would represent that 5% area? It would depend on if the hypotheses were a left-tailed, two-tailed or right-tailed test. This zscore is called a critical value. Figure 8-8 shows examples of critical values for the three possible sets of hypotheses.

clipboard_eb9ca3f2fa72ae8e0e0186541560d1157.png

Two-tailed Test

If we are doing a two-tailed test then the \(\alpha\) = 5% area gets divided into both tails. We denote these critical values \(z_{\alpha / 2}\) and \(z_{1-\alpha / 2}\). When the sample data finds a z-score ( test statistic ) that is either less than or equal to \(z_{\alpha / 2}\) or greater than or equal to \(z_{1-\alpha / 2}\) then we would reject H 0 . The area to the left of the critical value \(z_{\alpha / 2}\) and to the right of the critical value \(z_{1-\alpha / 2}\) is called the critical or rejection region. See Figure 8-9.

clipboard_e7a6daefb1bf296ee0ee1389fd3cfdeb5.png

When \(\alpha\) = 0.05 then the critical values \(z_{\alpha / 2}\) and \(z_{1-\alpha / 2}\) are found using the following technology.

Excel: \(z_{\alpha / 2}\) =NORM.S.INV(0.025) = –1.96 and \(z_{1-\alpha / 2}\) =NORM.S.INV(0.975) = 1.96

TI-Calculator: \(z_{\alpha / 2}\) = invNorm(0.025,0,1) = –1.96 and \(z_{1-\alpha / 2}\) = invNorm(0.975,0,1) = 1.96

Since the normal distribution is symmetric, you only need to find one side’s z-score and we usually represent the critical values as ± \(z_{\alpha / 2}\).

Most of the time we will be finding a probability (p-value) instead of the critical values. The p-value and critical values are related and tell the same information so it is important to know what a critical value represents.

Right-tailed Test

If we are doing a right-tailed test then the \(\alpha\) = 5% area goes into the right tail. We denote this critical value \(z_{1-\alpha}\). When the sample data finds a z-score more than \(z_{1-\alpha}\) then we would reject H 0 , reject H 0 if the test statistic is ≥ \(z_{1-\alpha}\). The area to the right of the critical value \(z_{1-\alpha}\) is called the critical region. See Figure 8-10.

clipboard_e8a4056c54332f7e0695328df084a0342.png

Figure 8-10

When \(\alpha\) = 0.05 then the critical value \(z_{1-\alpha}\) is found using the following technology.

Excel: \(z_{1-\alpha}\) =NORM.S.INV(0.95) = 1.645 Figure 8-10

TI-Calculator: \(z_{1-\alpha}\) = invNorm(0.95,0,1) = 1.645

Left-tailed Test

If we are doing a left-tailed test then the \(\alpha\) = 5% area goes into the left tail. If the sampling distribution is a normal distribution then we can use the inverse normal function in Excel or calculator to find the corresponding z-score. We denote this critical value \(z_{\alpha}\).

When the sample data finds a z-score less than \(z_{\alpha}\) then we would reject H0, reject Ho if the test statistic is ≤ \(z_{\alpha}\). The area to the left of the critical value \(z_{\alpha}\) is called the critical region. See Figure 8-11.

clipboard_ec4666de6d263a6bb55405555c4b54b6a.png

Figure 8-11

When \(\alpha\) = 0.05 then the critical value \(z_{\alpha}\) is found using the following technology.

Excel: \(z_{\alpha}\) =NORM.S.INV(0.05) = –1.645

TI-Calculator: \(z_{\alpha}\) = invNorm(0.05,0,1) = –1.645

The Claim and Summary

The wording on the summary statement changes depending on which hypothesis the researcher claims to be true. We really should always be setting up the claim in the alternative hypothesis since most of the time we are collecting evidence to show that a change has occurred, but occasionally a textbook will have the claim in the null hypothesis. Do not use the phrase “accept H 0 ” since this implies that H0 is true. The lack of evidence is not evidence of nothing.

There were only two possible correct answers for the decision step.

i. Reject H 0

ii. Fail to reject H 0

Caution! If we fail to reject the null this does not mean that there was no change, we just do not have any evidence that change has occurred. The absence of evidence is not evidence of absence. On the other hand, we need to be careful when we reject the null hypothesis we have not proved that there is change.

When we reject the null hypothesis, there is only evidence that a change has occurred. Our evidence could have been false and lead to an incorrect decision. If we use the phrase, “accept H 0 ” this implies that H 0 was true, but we just do not have evidence that it is false. Hence you will be marked incorrect for your decision if you use accept H 0 , use instead “fail to reject H 0 ” or “do not reject H 0 .”

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

6.1 - type i and type ii errors.

When conducting a hypothesis test there are two possible decisions: reject the null hypothesis or fail to reject the null hypothesis. You should remember though, hypothesis testing uses data from a sample to make an inference about a population. When conducting a hypothesis test we do not know the population parameters. In most cases, we don't know if our inference is correct or incorrect.

When we reject the null hypothesis there are two possibilities. There could really be a difference in the population, in which case we made a correct decision. Or, it is possible that there is not a difference in the population (i.e., \(H_0\) is true) but our sample was different from the hypothesized value due to random sampling variation. In that case we made an error. This is known as a Type I error.

When we fail to reject the null hypothesis there are also two possibilities. If the null hypothesis is really true, and there is not a difference in the population, then we made the correct decision. If there is a difference in the population, and we failed to reject it, then we made a Type II error.

Rejecting \(H_0\) when \(H_0\) is really true, denoted by \(\alpha\) ("alpha") and commonly set at .05

     \(\alpha=P(Type\;I\;error)\)

Failing to reject \(H_0\) when \(H_0\) is really false, denoted by \(\beta\) ("beta")

     \(\beta=P(Type\;II\;error)\)

Example: Trial Section  

A man goes to trial where he is being tried for the murder of his wife.

We can put it in a hypothesis testing framework. The hypotheses being tested are:

  • \(H_0\) : Not Guilty
  • \(H_a\) : Guilty

Type I error  is committed if we reject \(H_0\) when it is true. In other words, did not kill his wife but was found guilty and is punished for a crime he did not really commit.

Type II error  is committed if we fail to reject \(H_0\) when it is false. In other words, if the man did kill his wife but was found not guilty and was not punished.

Example: Culinary Arts Study Section  

Asparagus

A group of culinary arts students is comparing two methods for preparing asparagus: traditional steaming and a new frying method. They want to know if patrons of their school restaurant prefer their new frying method over the traditional steaming method. A sample of patrons are given asparagus prepared using each method and asked to select their preference. A statistical analysis is performed to determine if more than 50% of participants prefer the new frying method:

  • \(H_{0}: p = .50\)
  • \(H_{a}: p>.50\)

Type I error  occurs if they reject the null hypothesis and conclude that their new frying method is preferred when in reality is it not. This may occur if, by random sampling error, they happen to get a sample that prefers the new frying method more than the overall population does. If this does occur, the consequence is that the students will have an incorrect belief that their new method of frying asparagus is superior to the traditional method of steaming.

Type II error  occurs if they fail to reject the null hypothesis and conclude that their new method is not superior when in reality it is. If this does occur, the consequence is that the students will have an incorrect belief that their new method is not superior to the traditional method when in reality it is.

9.2 Outcomes and the Type I and Type II Errors

When you perform a hypothesis test, there are four possible outcomes depending on the actual truth, or falseness, of the null hypothesis H 0 and the decision to reject or not. The outcomes are summarized in the following table:

The four possible outcomes in the table are as follows:

  • The decision is not to reject H 0 when H 0 is true (correct decision).
  • The decision is to reject H 0 when, in fact, H 0 is true (incorrect decision known as a Type I error ).
  • The decision is not to reject H 0 when, in fact, H 0 is false (incorrect decision known as a Type II error ).
  • The decision is to reject H 0 when H 0 is false (correct decision whose probability is called the Power of the Test ).

Each of the errors occurs with a particular probability. The Greek letters α and β represent the probabilities.

α = probability of a Type I error = P (Type I error) = probability of rejecting the null hypothesis when the null hypothesis is true.

β = probability of a Type II error = P (Type II error) = probability of not rejecting the null hypothesis when the null hypothesis is false.

α and β should be as small as possible because they are probabilities of errors. They are rarely zero.

The Power of the Test is 1 – β . Ideally, we want a high power that is as close to one as possible. Increasing the sample size can increase the Power of the Test.

The following are examples of Type I and Type II errors.

Example 9.5

Suppose the null hypothesis, H 0 , is: Frank's rock climbing equipment is safe.

Type I error: Frank does not go rock climbing because he considers that the equipment is not safe, when in fact, the equipment is really safe. Frank is making the mistake of rejecting the null hypothesis, when the equipment is actually safe!

Type II error: Frank goes climbing, thinking that his equipment is safe, but this is a mistake, and he painfully realizes that his equipment is not as safe as it should have been. Frank assumed that the null hypothesis was true, when it was not.

α = probability that Frank thinks his rock climbing equipment may not be safe when, in fact, it really is safe. β = probability that Frank thinks his rock climbing equipment may be safe when, in fact, it is not safe.

Notice that, in this case, the error with the greater consequence is the Type II error. (If Frank thinks his rock climbing equipment is safe, he will go ahead and use it.)

Suppose the null hypothesis, H 0 , is: the blood cultures contain no traces of pathogen X . State the Type I and Type II errors.

Example 9.6

Suppose the null hypothesis, H 0 , is: a tomato plant is alive when a class visits the school garden.

Type I error: The null hypothesis claims that the tomato plant is alive, and it is true, but the students make the mistake of thinking that the plant is already dead.

Type II error: The tomato plant is already dead (the null hypothesis is false), but the students do not notice it, and believe that the tomato plant is alive.

α = probability that the class thinks the tomato plant is dead when, in fact, it is alive = P (Type I error). β = probability that the class thinks the tomato plant is alive when, in fact, it is dead = P (Type II error).

The error with the greater consequence is the Type I error. (If the class thinks the plant is dead, they will not water it.)

Suppose the null hypothesis, H 0 , is: a patient is not sick. Which type of error has the greater consequence, Type I or Type II?

Example 9.7

It’s a Boy Genetic Labs, a genetics company, claims to be able to increase the likelihood that a pregnancy will result in a boy being born. Statisticians want to test the claim. Suppose that the null hypothesis, H 0 , is: It’s a Boy Genetic Labs has no effect on gender outcome.

Type I error : This error results when a true null hypothesis is rejected. In the context of this scenario, we would state that we believe that It’s a Boy Genetic Labs influences the gender outcome, when in fact it has no effect. The probability of this error occurring is denoted by the Greek letter alpha, α .

Type II error : This error results when we fail to reject a false null hypothesis. In context, we would state that It’s a Boy Genetic Labs does not influence the gender outcome of a pregnancy when, in fact, it does. The probability of this error occurring is denoted by the Greek letter beta, β .

The error with the greater consequence would be the Type I error since couples would use the It’s a Boy Genetic Labs product in hopes of increasing the chances of having a boy.

Red tide is a bloom of poison-producing algae—a few different species of a class of plankton called dinoflagellates. When the weather and water conditions cause these blooms, shellfish such as clams living in the area develop dangerous levels of a paralysis-inducing toxin. In Massachusetts, the Division of Marine Fisheries montors levels of the toxin in shellfish by regular sampling of shellfish along the coastline. If the mean level of toxin in clams exceeds 800 μg (micrograms) of toxin per kilogram of clam meat in any area, clam harvesting is banned there until the bloom is over and levels of toxin in clams subside. Describe both a Type I and a Type II error in this context, and state which error has the greater consequence.

Example 9.8

A certain experimental drug claims a cure rate of at least 75 percent for males with a disease. Describe both the Type I and Type II errors in context. Which error is the more serious?

Type I : A patient believes the cure rate for the drug is less than 75 percent when it actually is at least 75 percent.

Type II : A patient believes the experimental drug has at least a 75 percent cure rate when it has a cure rate that is less than 75 percent.

In this scenario, the Type II error contains the more severe consequence. If a patient believes the drug works at least 75 percent of the time, this most likely will influence the patient’s (and doctor’s) choice about whether to use the drug as a treatment option.

Determine both Type I and Type II errors for the following scenario:

Assume a null hypothesis, H 0 , that states the percentage of adults with jobs is at least 88 percent.

Identify the Type I and Type II errors from these four possible choices.

  • Not to reject the null hypothesis that the percentage of adults who have jobs is at least 88 percent when that percentage is actually less than 88 percent
  • Not to reject the null hypothesis that the percentage of adults who have jobs is at least 88 percent when the percentage is actually at least 88 percent
  • Reject the null hypothesis that the percentage of adults who have jobs is at least 88 percent when the percentage is actually at least 88 percent
  • Reject the null hypothesis that the percentage of adults who have jobs is at least 88 percent when that percentage is actually less than 88 percent

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-statistics . Changes were made to the original material, including updates to art, structure, and other content updates.

Access for free at https://openstax.org/books/statistics/pages/1-introduction
  • Authors: Barbara Illowsky, Susan Dean
  • Publisher/website: OpenStax
  • Book title: Statistics
  • Publication date: Mar 27, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/statistics/pages/1-introduction
  • Section URL: https://openstax.org/books/statistics/pages/9-2-outcomes-and-the-type-i-and-type-ii-errors

© Jan 23, 2024 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

  • Math Article
  • Type I And Type Ii Errors

Type I and Type II Errors

Class Registration Banner

Type I and Type II errors are subjected to the result of the null hypothesis. In case of type I or type-1 error, the null hypothesis is rejected though it is true whereas type II or type-2 error, the null hypothesis is not rejected even when the alternative hypothesis is true. Both the error type-i and type-ii are also known as “ false negative ”. A lot of statistical theory rotates around the reduction of one or both of these errors, still, the total elimination of both is explained as a statistical impossibility.

Type I Error

A type I error appears when the null hypothesis (H 0 ) of an experiment is true, but still, it is rejected. It is stating something which is not present or a false hit. A type I error is often called a false positive (an event that shows that a given condition is present when it is absent). In words of community tales, a person may see the bear when there is none (raising a false alarm) where the null hypothesis (H 0 ) contains the statement: “There is no bear”.

The type I error significance level or rate level is the probability of refusing the null hypothesis given that it is true. It is represented by Greek letter α (alpha) and is also known as alpha level. Usually, the significance level or the probability of type i error is set to 0.05 (5%), assuming that it is satisfactory to have a 5% probability of inaccurately rejecting the null hypothesis.

Type II Error

A type II error appears when the null hypothesis is false but mistakenly fails to be refused. It is losing to state what is present and a miss. A type II error is also known as false negative (where a real hit was rejected by the test and is observed as a miss), in an experiment checking for a condition with a final outcome of true or false.

A type II error is assigned when a true alternative hypothesis is not acknowledged. In other words, an examiner may miss discovering the bear when in fact a bear is present (hence fails in raising the alarm). Again, H0, the null hypothesis, consists of the statement that, “There is no bear”, wherein, if a wolf is indeed present, is a type II error on the part of the investigator. Here, the bear either exists or does not exist within given circumstances, the question arises here is if it is correctly identified or not, either missing detecting it when it is present, or identifying it when it is not present.

The rate level of the type II error is represented by the Greek letter β (beta) and linked to the power of a test (which equals 1−β).

Also, read:

Table of Type I and Type II Error

The relationship between truth or false of the null hypothesis and outcomes or result of the test is given in the tabular form:

Type I and Type II Errors Example

Check out some real-life examples to understand the type-i and type-ii error in the null hypothesis.

Example 1 : Let us consider a null hypothesis – A man is not guilty of a crime.

Then in this case:

Example 2: Null hypothesis- A patient’s signs after treatment A, are the same from a placebo.

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

hypothesis testing type 2 error meaning

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

The Difference Between Type I and Type II Errors in Hypothesis Testing

  • Inferential Statistics
  • Statistics Tutorials
  • Probability & Games
  • Descriptive Statistics
  • Applications Of Statistics
  • Math Tutorials
  • Pre Algebra & Algebra
  • Exponential Decay
  • Worksheets By Grade
  • Ph.D., Mathematics, Purdue University
  • M.S., Mathematics, Purdue University
  • B.A., Mathematics, Physics, and Chemistry, Anderson University

The statistical practice of hypothesis testing is widespread not only in statistics but also throughout the natural and social sciences. When we conduct a hypothesis test there a couple of things that could go wrong. There are two kinds of errors, which by design cannot be avoided, and we must be aware that these errors exist. The errors are given the quite pedestrian names of type I and type II errors. What are type I and type II errors, and how we distinguish between them? Briefly:

  • Type I errors happen when we reject a true null hypothesis
  • Type II errors happen when we fail to reject a false null hypothesis

We will explore more background behind these types of errors with the goal of understanding these statements.

Hypothesis Testing

The process of hypothesis testing can seem to be quite varied with a multitude of test statistics. But the general process is the same. Hypothesis testing involves the statement of a null hypothesis and the selection of a level of significance . The null hypothesis is either true or false and represents the default claim for a treatment or procedure. For example, when examining the effectiveness of a drug, the null hypothesis would be that the drug has no effect on a disease.

After formulating the null hypothesis and choosing a level of significance, we acquire data through observation. Statistical calculations tell us whether or not we should reject the null hypothesis.

In an ideal world, we would always reject the null hypothesis when it is false, and we would not reject the null hypothesis when it is indeed true. But there are two other scenarios that are possible, each of which will result in an error.

Type I Error

The first kind of error that is possible involves the rejection of a null hypothesis that is actually true. This kind of error is called a type I error and is sometimes called an error of the first kind.

Type I errors are equivalent to false positives. Let’s go back to the example of a drug being used to treat a disease. If we reject the null hypothesis in this situation, then our claim is that the drug does, in fact, have some effect on a disease. But if the null hypothesis is true, then, in reality, the drug does not combat the disease at all. The drug is falsely claimed to have a positive effect on a disease.

Type I errors can be controlled. The value of alpha, which is related to the level of significance that we selected has a direct bearing on type I errors. Alpha is the maximum probability that we have a type I error. For a 95% confidence level, the value of alpha is 0.05. This means that there is a 5% probability that we will reject a true null hypothesis. In the long run, one out of every twenty hypothesis tests that we perform at this level will result in a type I error.

Type II Error

The other kind of error that is possible occurs when we do not reject a null hypothesis that is false. This sort of error is called a type II error and is also referred to as an error of the second kind.

Type II errors are equivalent to false negatives. If we think back again to the scenario in which we are testing a drug, what would a type II error look like? A type II error would occur if we accepted that the drug had no effect on a disease, but in reality, it did.

The probability of a type II error is given by the Greek letter beta. This number is related to the power or sensitivity of the hypothesis test, denoted by 1 – beta.

How to Avoid Errors

Type I and type II errors are part of the process of hypothesis testing. Although the errors cannot be completely eliminated, we can minimize one type of error.

Typically when we try to decrease the probability one type of error, the probability for the other type increases. We could decrease the value of alpha from 0.05 to 0.01, corresponding to a 99% level of confidence . However, if everything else remains the same, then the probability of a type II error will nearly always increase.

Many times the real world application of our hypothesis test will determine if we are more accepting of type I or type II errors. This will then be used when we design our statistical experiment.

  • Null Hypothesis Examples
  • Type I and Type II Errors in Statistics
  • What Level of Alpha Determines Statistical Significance?
  • Hypothesis Test Example
  • What Is the Difference Between Alpha and P-Values?
  • How to Conduct a Hypothesis Test
  • What Is a P-Value?
  • Scientific Method Vocabulary Terms
  • An Example of a Hypothesis Test
  • Hypothesis Test for the Difference of Two Population Proportions
  • How to Find Critical Values with a Chi-Square Table
  • What 'Fail to Reject' Means in a Hypothesis Test
  • Null Hypothesis and Alternative Hypothesis
  • The Runs Test for Random Sequences
  • How to Do Hypothesis Tests With the Z.TEST Function in Excel
  • Chi-Square Goodness of Fit Test
  • School Guide
  • Mathematics
  • Number System and Arithmetic
  • Trigonometry
  • Probability
  • Mensuration
  • Maths Formulas
  • Class 8 Maths Notes
  • Class 9 Maths Notes
  • Class 10 Maths Notes
  • Class 11 Maths Notes
  • Class 12 Maths Notes

Type I and Type II Errors

  • Explain Type assertions in TypeScript
  • C# | Implicitly Typed Arrays
  • TypeScript Assertions Type
  • TypeScript Less Common Primitives Type
  • Typescript Generic Type Array
  • TypeScript Narrowing typeof type guards
  • How to use Type Guards in TypeScript ?
  • C Program to Show Types of Errors
  • C++ Program to Show Types of Errors
  • TypeScript Interfaces Type
  • PHP | Types of Errors
  • Errors and Exceptions in Python
  • C++ Error - Does not name a type
  • What is Type Assertion in TypeScript ?
  • Types of Issues and Errors in Programming/Coding
  • Type Casting or Type Conversion in Golang
  • What is Type Annotations in TypeScript ?
  • Type-Safety and Type-Casting in Java Generics
  • typeinfo::bad_typeid in C++ with Examples

Type I and Type II Errors are central for hypothesis testing in general, which subsequently impacts various aspects of science including but not limited to statistical analysis. False discovery refers to a Type I error where a true Null Hypothesis is incorrectly rejected. On the other end of the spectrum, Type II errors occur when a true null hypothesis fails to get rejected.

In this article, we will discuss Type I and Type II Errors in detail, including examples and differences.

Type-I-and-Type-II-Errors

Table of Content

Type I and Type II Error in Statistics

What is error, what is type i error (false positive), what is type ii error (false negative), type i and type ii errors – table, type i and type ii errors examples, examples of type i error, examples of type ii error, factors affecting type i and type ii errors, how to minimize type i and type ii errors, difference between type i and type ii errors.

In statistics , Type I and Type II errors represent two kinds of errors that can occur when making a decision about a hypothesis based on sample data. Understanding these errors is crucial for interpreting the results of hypothesis tests.

In the statistics and hypothesis testing , an error refers to the emergence of discrepancies between the result value based on observation or calculation and the actual value or expected value.

The failures may happen in different factors, such as turbulent sampling, unclear implementation, or faulty assumptions. Errors can be of many types, such as

  • Measurement Error
  • Calculation Error
  • Human Error
  • Systematic Error
  • Random Error

In hypothesis testing, it is often clear which kind of error is the problem, either a Type I error or a Type II one.

Type I error, also known as a false positive , occurs in statistical hypothesis testing when a null hypothesis that is actually true is rejected. In other words, it’s the error of incorrectly concluding that there is a significant effect or difference when there isn’t one in reality.

In hypothesis testing, there are two competing hypotheses:

  • Null Hypothesis (H 0 ): This hypothesis represents a default assumption that there is no effect, no difference, or no relationship in the population being studied.
  • Alternative Hypothesis (H 1 ): This hypothesis represents the opposite of the null hypothesis. It suggests that there is a significant effect, difference, or relationship in the population.

A Type I error occurs when the null hypothesis is rejected based on the sample data, even though it is actually true in the population.

Type II error, also known as a false negative , occurs in statistical hypothesis testing when a null hypothesis that is actually false is not rejected. In other words, it’s the error of failing to detect a significant effect or difference when one exists in reality.

A Type II error occurs when the null hypothesis is not rejected based on the sample data, even though it is actually false in the population. In other words, it’s a failure to recognize a real effect or difference.

Suppose a medical researcher is testing a new drug to see if it’s effective in treating a certain condition. The null hypothesis (H 0 ) states that the drug has no effect, while the alternative hypothesis (H 1 ) suggests that the drug is effective. If the researcher conducts a statistical test and fails to reject the null hypothesis (H 0 ), concluding that the drug is not effective, when in fact it does have an effect, this would be a Type II error.

The table given below shows the relationship between True and False:

Some of examples of type I error include:

  • Medical Testing : Suppose a medical test is designed to diagnose a particular disease. The null hypothesis ( H 0 ) is that the person does not have the disease, and the alternative hypothesis ( H 1 ) is that the person does have the disease. A Type I error occurs if the test incorrectly indicates that a person has the disease (rejects the null hypothesis) when they do not actually have it.
  • Legal System : In a criminal trial, the null hypothesis ( H 0 ) is that the defendant is innocent, while the alternative hypothesis ( H 1 ) is that the defendant is guilty. A Type I error occurs if the jury convicts the defendant (rejects the null hypothesis) when they are actually innocent.
  • Quality Control : In manufacturing, quality control inspectors may test products to ensure they meet certain specifications. The null hypothesis ( H 0 ) is that the product meets the required standard, while the alternative hypothesis ( H 1 ) is that the product does not meet the standard. A Type I error occurs if a product is rejected (null hypothesis is rejected) as defective when it actually meets the required standard.

Using the same H 0 and H 1 , some examples of type II error include:

  • Medical Testing : In a medical test designed to diagnose a disease, a Type II error occurs if the test incorrectly indicates that a person does not have the disease (fails to reject the null hypothesis) when they actually do have it.
  • Legal System : In a criminal trial, a Type II error occurs if the jury acquits the defendant (fails to reject the null hypothesis) when they are actually guilty.
  • Quality Control : In manufacturing, a Type II error occurs if a defective product is accepted (fails to reject the null hypothesis) as meeting the required standard.

Some of the common factors affecting errors are:

  • Sample Size: In statistical hypothesis testing, larger sample sizes generally reduce the probability of both Type I and Type II errors. With larger samples, the estimates tend to be more precise, resulting in more accurate conclusions.
  • Significance Level: The significance level (α) in hypothesis testing determines the probability of committing a Type I error. Choosing a lower significance level reduces the risk of Type I error but increases the risk of Type II error, and vice versa.
  • Effect Size: The magnitude of the effect or difference being tested influences the probability of Type II error. Smaller effect sizes are more challenging to detect, increasing the likelihood of failing to reject the null hypothesis when it’s false.
  • Statistical Power: The power of Statistics (1 – β) dictates that the opportunity for rejecting a wrong null hypothesis is based on the inverse of the chance of committing a Type II error. The power level of the test rises, thus a chance of the Type II error dropping.

To minimize Type I and Type II errors in hypothesis testing, there are several strategies that can be employed based on the information from the sources provided:

  • By setting a lower significance level, the chances of incorrectly rejecting the null hypothesis decrease, thus minimizing Type I errors.
  • Increasing the sample size reduces the variability of the statistic, making it less likely to fall in the non-rejection region when it should be rejected, thus minimizing Type II errors.

Some of the key differences between Type I and Type II Errors are listed in the following table:

Conclusion – Type I and Type II Errors

In conclusion, type I errors occur when we mistakenly reject a true null hypothesis, while Type II errors happen when we fail to reject a false null hypothesis. Being aware of these errors helps us make more informed decisions, minimizing the risks of false conclusions.

People Also Read:

Difference between Null and Alternate Hypothesis Z-Score Table

Type I and Type II Errors – FAQs

What is type i error.

Type I Error occurs when a null hypothesis is incorrectly rejected, indicating a false positive result, concluding that there is an effect or difference when there isn’t one.

What is an Example of a Type 1 Error?

An example of Type I Error is that convicting an innocent person (null hypothesis: innocence) based on insufficient evidence, incorrectly rejecting the null hypothesis of innocence.

What is Type II Error?

Type II Error happens when a null hypothesis is incorrectly accepted, failing to detect a true effect or difference when one actually exists.

What is an Example of a Type 2 Error?

An example of type 2 error is that failing to diagnose a disease in a patient (null hypothesis: absence of disease) despite them actually having the disease, incorrectly failing to reject the null hypothesis.

What is the difference between Type 1 and Type 2 Errors?

Type I error involves incorrectly rejecting a true null hypothesis, while Type II error involves failing to reject a false null hypothesis. In simpler terms, Type I error is a false positive, while Type II error is a false negative.

What is Type 3 Error?

Type 3 Error is not a standard statistical term. It’s sometimes informally used to describe situations where the researcher correctly rejects the null hypothesis but for the wrong reason, often due to a flaw in the experimental design or analysis.

How are Type I and Type II Errors related to hypothesis testing?

In hypothesis testing, Type I Error relates to the significance level (α), which represents the probability of rejecting a true null hypothesis. Type II Error relates to the power of the test (β), which represents the probability of failing to reject a false null hypothesis.

What are some examples of Type I and Type II Errors?

Type I Error: Rejecting a null hypothesis that a new drug has no side effects when it actually does (false positive). Type II Error: Failing to reject a null hypothesis that a new drug has no effect when it actually does (false negative).

How can one minimize Type I and Type II Errors?

Type I Error can be minimized by choosing a lower significance level (α) for hypothesis testing. Type II Error can be minimized by increasing the sample size or improving the sensitivity of the test.

What is the relationship between Type I and Type II Errors?

There is often a trade-off between Type I and Type II Errors. Decreasing the probability of one type of error typically increases the probability of the other.

How do Type I and Type II Errors impact decision-making?

Type I Errors can lead to false conclusions, such as mistakenly believing a treatment is effective when it’s not. Type II Errors can result in missed opportunities, such as failing to identify an effective treatment.

In which fields are Type I and Type II Errors commonly encountered?

Type I and Type II Errors are encountered in various fields, including medical research, quality control, criminal justice, and market research.

author

Please Login to comment...

Similar reads, improve your coding skills with practice.

 alt=

What kind of Experience do you want to share?

IMAGES

  1. Type II Error (Definition, Example)

    hypothesis testing type 2 error meaning

  2. Type II Error

    hypothesis testing type 2 error meaning

  3. PPT

    hypothesis testing type 2 error meaning

  4. PPT

    hypothesis testing type 2 error meaning

  5. Hypothesis Testing and Types of Errors

    hypothesis testing type 2 error meaning

  6. PPT

    hypothesis testing type 2 error meaning

VIDEO

  1. Hypothesis Testing: Type I and Type II errors, example 130.5

  2. Hypothesis

  3. Statistics

  4. Hypothesis Testing

  5. 54- IM (Hypothesis Test)

  6. Testing of Hypothesis,Null, alternative hypothesis, type-I & -II Error etc @VATAMBEDUSRAVANKUMAR

COMMENTS

  1. Type I & Type II Errors

    Have a human editor polish your writing to ensure your arguments are judged on merit, not grammar errors. Get expert writing help

  2. Types I & Type II Errors in Hypothesis Testing

    I have a question about Type I and Type II errors in the realm of equivalence testing using two one sided difference testing (TOST). In a recent 2020 publication that I co-authored with a statistician, we stated that the probability of concluding non-equivalence when that is the truth, (which is the opposite of power, the probability of ...

  3. Type 2 Error Overview & Example

    In hypothesis testing, understanding Type 2 errors is essential. They represent a false negative, where we fail to detect a significant effect that genuinely exists. By thoughtfully designing our studies, we can reduce the risk of these errors and make more informed statistical decisions.

  4. Type II Error Explained, Plus Example & vs. Type I Error

    Type II Error: A type II error is a statistical term used within the context of hypothesis testing that describes the error that occurs when one accepts a null ...

  5. Type I and type II errors

    Type I and type II errors. In statistical hypothesis testing, a type I error, or a false positive, is the rejection of the null hypothesis when it is actually true. For example, an innocent person may be convicted. A type II error, or a false negative, is the failure to reject a null hypothesis that is actually false.

  6. Type II Error

    In statistical hypothesis testing, a type II error is a situation wherein a hypothesis test fails to reject the null hypothesis that is false. In other

  7. Type 1 and Type 2 Errors in Statistics

    A statistically significant result cannot prove that a research hypothesis is correct (which implies 100% certainty). Because a p-value is based on probabilities, there is always a chance of making an incorrect conclusion regarding accepting or rejecting the null hypothesis (H 0).

  8. Type I & Type II Errors

    Statistical significance is a term used by researchers to state that it is unlikely their observations could have occurred under the null hypothesis of a statistical test.Significance is usually denoted by a p-value, or probability value.. Statistical significance is arbitrary - it depends on the threshold, or alpha value, chosen by the researcher.

  9. 8.2: Type I and II Errors

    You will need to be able to write out a sentence interpreting either the type I or II errors given a set of hypotheses. You also need to know the relationship between \(\alpha\), β, confidence level, and power. Hypothesis tests are not flawless, since we can make a wrong decision in statistical hypothesis tests based on the data.

  10. 9.2 Outcomes and the Type I and Type II Errors

    Introduction; 9.1 Null and Alternative Hypotheses; 9.2 Outcomes and the Type I and Type II Errors; 9.3 Probability Distribution Needed for Hypothesis Testing; 9.4 Rare Events, the Sample, Decision and Conclusion; 9.5 Additional Information and Full Hypothesis Test Examples; 9.6 Hypothesis Testing of a Single Mean and Single Proportion; Key Terms; Chapter Review; Formula Review

  11. Introduction to Type I and Type II errors (video)

    - [Instructor] What we're gonna do in this video is talk about Type I errors and Type II errors and this is in the context of significance testing. So just as a little bit of review, in order to do a significance test, we first come up with a null and an alternative hypothesis. And we'll do this on some population in question.

  12. Type I and Type II Error (Decision Error): Definition, Examples

    In summary, the likelihood of Type II Errors increases: the closer something is to what we're testing for (.4 is closer to .5 than .3 is, and so .4 coins make Type II Errors more likely than .3 coins). We don't control this. when we use smaller sample sizes (a sample size of 100 makes Type II Errors more likely than a sample size of 1000).

  13. Hypothesis Testing along with Type I & Type II Errors explained simply

    Type I and Type II Errors. This type of statistical analysis is prone to errors. In the above example, it might be the case that the 20 students chosen are already very engaged and we wrongly decided the high mean engagement ratio is because of the new feature. The diagram below represents the four different scenarios that can happen.

  14. 6.1

    6.1 - Type I and Type II Errors. When conducting a hypothesis test there are two possible decisions: reject the null hypothesis or fail to reject the null hypothesis. You should remember though, hypothesis testing uses data from a sample to make an inference about a population. When conducting a hypothesis test we do not know the population ...

  15. Type I and type II errors: Video, Anatomy & Definition

    Two types of errors can occur in statistics and hypothesis testing. These are Type I and Type II errors. Type I error, also known as a false positive, occurs when a researcher rejects a null hypothesis that is actually true. In other words, the researcher concludes that there is a significant effect or relationship when there really isn't.

  16. 9.2 Outcomes and the Type I and Type II Errors

    Type I error: The null hypothesis claims that the tomato plant is alive, and it is true, but the students make the mistake of thinking that the plant is already dead. Type II error: The tomato plant is already dead (the null hypothesis is false), but the students do not notice it, and believe that the tomato plant is alive.

  17. Type I and Type II Error

    Type I and Type II errors are subjected to the result of the null hypothesis. In case of type I or type-1 error, the null hypothesis is rejected though it is true whereas type II or type-2 error, the null hypothesis is not rejected even when the alternative hypothesis is true.

  18. Type I vs. Type II Errors in Hypothesis Testing

    The statistical practice of hypothesis testing is widespread not only in statistics but also throughout the natural and social sciences. When we conduct a hypothesis test there a couple of things that could go wrong. There are two kinds of errors, which by design cannot be avoided, and we must be aware that these errors exist.

  19. Understanding Hypothesis Testing

    In hypothesis testing, Type I and Type II errors are two possible errors that researchers can make when drawing conclusions about a population based on a sample of data. These errors are associated with the decisions made regarding the null hypothesis and the alternative hypothesis. ... The negative T-statistic indicates that the mean blood ...

  20. Type I and Type II Errors in Statistics

    Type I and Type II Errors are central for hypothesis testing in general, which subsequently impacts various aspects of science including but not limited to statistical analysis. ... To minimize Type I and Type II errors in hypothesis testing, there are several strategies that can be employed based on the information from the sources provided ...

  21. Statistical hypothesis test

    Hypothesis testing (and Type I/II errors) was devised by Neyman and Pearson as a more objective alternative to Fisher's p-value, also meant to determine researcher behaviour, ... Hypothesis testing can mean any mixture of two formulations that both changed with time. Any discussion of significance testing vs hypothesis testing is doubly ...

  22. Hypothesis testing, type I and type II errors

    Hypothesis testing is an important activity of empirical research and evidence-based medicine. A well worked up hypothesis is half the answer to the research question. For this, both knowledge of the subject derived from extensive review of the literature ...

  23. Difference between Type 1 and Type 2 Error

    Hey Guys Welcome Back To My Channel Gyan Gate 🙂Today's Video We Will Discuss Difference between Type 1 and Type 2 Error | Hypothesis testing || by Gyan Ga...